WO2007088944A1 - 平行二輪倒立振子型の走行体 - Google Patents

平行二輪倒立振子型の走行体 Download PDF

Info

Publication number
WO2007088944A1
WO2007088944A1 PCT/JP2007/051729 JP2007051729W WO2007088944A1 WO 2007088944 A1 WO2007088944 A1 WO 2007088944A1 JP 2007051729 W JP2007051729 W JP 2007051729W WO 2007088944 A1 WO2007088944 A1 WO 2007088944A1
Authority
WO
WIPO (PCT)
Prior art keywords
chassis
wheel
vehicle body
traveling body
traveling
Prior art date
Application number
PCT/JP2007/051729
Other languages
English (en)
French (fr)
Inventor
Koji Yamada
Masaaki Yamaoka
Toshio Fuwa
Mitsuo Koide
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to CN2007800042394A priority Critical patent/CN101378951B/zh
Priority to EP07713757.8A priority patent/EP1980479B1/en
Priority to US12/278,002 priority patent/US7823676B2/en
Publication of WO2007088944A1 publication Critical patent/WO2007088944A1/ja

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0891Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for land vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K11/00Motorcycles, engine-assisted cycles or motor scooters with one or two wheels
    • B62K11/007Automatic balancing machines with single main ground engaging wheel or coaxial wheels supporting a rider
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/16Single-axle vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/46Wheel motors, i.e. motor connected to only one wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/34Stabilising upright position of vehicles, e.g. of single axle vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention is supported by a pair of wheels, a chassis that rotatably supports the pair of wheels coaxially, a wheel actuator that rotates the wheel relative to the chassis, and the chassis!
  • the present invention relates to a parallel two-wheel inverted pendulum type traveling body including a body to be turned and an inversion control device for controlling a wheel actuator so as to invert a chassis.
  • a parallel two-wheel inverted pendulum type traveling body includes a pair of wheels, a chassis that supports the pair of wheels so that the pair of wheels can rotate coaxially, a wheel actuator that rotates the wheels with respect to the chassis, and a chassis
  • a supported vehicle body is provided, an example of which is disclosed in Japanese Patent Laid-Open No. 63-305082.
  • This type of parallel two-wheel inverted pendulum type traveling body travels while maintaining the state in which the chassis is inverted by controlling the wheel actuator by the inverted control device. Normally, the vehicle body is detected by detecting the wheel rotation angle, the wheel rotation angular velocity, the chassis inclination angle, and the chassis inclination angle speed, and controlling the torque of the wheel actuator based on the detection results. Maintains an inverted posture and achieves the result that the vehicle does not touch the ground.
  • a parallel two-wheel inverted pendulum type traveling body can move, stand still, and turn while maintaining a posture in which the chassis is inverted.
  • the rotation angle and the inclination angle are expressed based on the vertical direction.
  • the rotation angle of a wheel refers to the angle formed by a vertical line and a reference line that is fixed to the wheel and extends in the radial direction of the wheel.
  • the tilt angle of the chassis is the angle between the reference line fixed to the chassis and the vertical line.
  • the wheel actuator is controlled so that a torque is applied to the wheel such that the chassis tilts forward in the traveling direction.
  • the traveling body starts running while maintaining the inverted posture, with the moment due to gravity acting on the chassis tilted forward, the moment due to the inertial force acting on the chassis, and the torque acting on the chassis from the wheels balanced.
  • the wheel actuator is controlled so that a torque is applied to the wheel so that the chassis tilts backward in the traveling direction as a result.
  • the moment caused by gravity acting on the chassis tilted backward and the moment due to the inertial force acting on the chassis balance with the torque acting on the chassis from the wheels, and the vehicle will continue to run while maintaining its inverted position. Stop.
  • the conventional parallel two-wheel inverted pendulum type traveling body has a long braking distance that makes it difficult to brake suddenly.
  • the parallel two-wheel inverted pendulum-type traveling body must be capable of rapid braking in order to ensure safety around the traveling body. Is needed. In order to ensure the safety of the surroundings of the traveling body and the safety of the crew members, technology that enables rapid braking without greatly tilting the vehicle body is required.
  • the present invention solves the above problems.
  • the present invention provides a technique that allows a vehicular parallel two-wheel inverted pendulum-type traveling body to be vastly braked without causing the vehicle body to greatly tilt backward!
  • the parallel two-wheel inverted pendulum type traveling body of the present invention includes a braking attitude control device that operates the attitude actuator at the start of braking and moves the vehicle body in the direction opposite to the traveling direction with respect to the chassis. The brakes can be applied suddenly without greatly tilting the back. The vehicle can be braked rapidly without destabilizing the posture of the crew or luggage!
  • braking is performed in a state where the vehicle body is moved in the direction opposite to the traveling direction with respect to the chassis, and therefore, the angle for tilting the chassis backward can be small. For that purpose, it is only necessary to have one degree of freedom that the vehicle body can move in the direction of travel relative to the chassis.
  • the tilt angle of the vehicle body (that is, the angle of the vertical line force) does not change during braking. That is, it is preferable that the vehicle body can move in the traveling direction with respect to the chassis, and that the force can swing in a vertical plane including the traveling direction with respect to the chassis.
  • a member is interposed between the chassis and the vehicle body to ensure two degrees of freedom.
  • the vehicle body is supported to the chassis via an interposition member.
  • the intervening member is connected to the chassis so as to be swingable in a vertical plane including the traveling direction, and supports the vehicle body so as to be slidable along the traveling direction.
  • the posture actuator includes a first actuator that swings the interposed member with respect to the chassis, and a second actuator that slides the vehicle body with respect to the interposed member.
  • the vehicle body is supported to the chassis via an interposed member.
  • the interposition member is swingably connected to the chassis in a vertical plane including the traveling direction, and supports the vehicle body so as to be swingable in the vertical plane including the traveling direction.
  • the posture actuator includes a first actuator that swings the interposed member with respect to the chassis, and a second actuator that swings the vehicle body with respect to the interposed member.
  • the inclination angle of the vehicle body that is, the angle from the vertical line
  • the height of the vehicle body can be changed while maintaining the inclination angle of the vehicle body within a certain range. Getting on and off is facilitated when humans board, and loading and unloading work is facilitated when loading.
  • the chassis is rigid, if a mechanical brake is employed to restrict the rotation of the wheels with respect to the chassis, it is difficult to control the vehicle chassis so that the chassis is maintained inverted only by the inversion control device. For example, when braking suddenly using a mechanical brake while driving, the chassis tilts in the direction of travel due to inertial force. Then, the inversion control device performs control to accelerate the wheels in order to prevent the vehicle from falling. In order to perform control to accelerate the wheel that is restrained by the mechanical brake, it becomes impossible to control only with the inverted control device.
  • the machine is interposed between the wheels and the chassis. It is possible to install an automatic brake and the inverted control device will not be out of control. This is because the control can be continued by utilizing at least one degree of freedom existing between the chassis and the vehicle body.
  • a mechanical brake for braking the wheel against the chassis is installed.
  • the strong braking force of the mechanical brake can be used, and the vehicle can be braked rapidly while maintaining the vehicle body inclination angle within a certain range.
  • the parallel two-wheel inverted pendulum type traveling body of the present invention it is possible to perform rapid braking without greatly tilting the vehicle body. It enables humans and traveling bodies to coexist safely.
  • FIG. 1 is a side view of a traveling body 10 according to a first embodiment.
  • FIG. 2 is a front view of the traveling body 10 of the first embodiment.
  • FIG. 5 is a flowchart showing a flow of a sudden braking operation of the traveling body 10 of the first embodiment.
  • FIGS. 6A and 6B are diagrams showing a state of sudden braking operation of the traveling body 10 of the first embodiment.
  • FIG. 6A is a diagram showing the traveling body 10 during traveling.
  • FIGS. 6A and 6B are diagrams showing a state of sudden braking operation of the traveling body 10 of the first embodiment.
  • FIG. 6B is a diagram showing the traveling body 10 during braking.
  • FIG. 7 is a side view of traveling body 110 of the second embodiment.
  • FIGS. 8A and 8B are diagrams showing a state of sudden braking operation of the traveling body 110 of the second embodiment.
  • FIG. 8A is a diagram showing the traveling body 110 during traveling.
  • FIG. 8A and FIG. 8B are diagrams showing a state of sudden braking operation of the traveling body 110 of the second embodiment.
  • FIG. 8B is a diagram showing the traveling body 110 during braking.
  • FIG. 9 is a view showing a state in which the traveling body 110 of the second embodiment is stopped.
  • Mode 2 The traveling body is provided with a sensor for detecting an obstacle. When the obstacle is detected, a braking process is started, and the attitude actuator is operated by the braking attitude control device to move the vehicle body against the chassis. Move to the opposite side of the direction of travel.
  • FIG. 1 is a view of the traveling body 10 of this embodiment as viewed from the side
  • FIG. 2 is a view of the traveling body 10 as viewed from the front.
  • the traveling body 10 includes a right drive wheel 18, a left drive wheel 20, a chassis 16, an intervening link 14, and a vehicle body 12.
  • the right driving wheel 18 and the left driving wheel 20 correspond to a pair of wheels.
  • the chassis 16 has a mount 28 and a mouth 26.
  • the mount 28 and the rod 26 are integrally formed.
  • the mount 28 rotatably supports the right driving wheel 18 via the axle 30 and rotatably supports the left driving wheel 20 via the axle 32.
  • the axle 30 and the axle 32 are aligned on the same rotational axis C1.
  • the chassis 16 maintains the right driving wheel 18 and the left driving wheel 20 coaxially aligned, and the right driving wheel 18 and the left driving wheel 20 are arranged so that the right driving wheel 18 and the left driving wheel 20 can rotate independently. I support it.
  • the intervening link 14 is connected to the upper end of the rod 26 so as to be able to swing around the rotary shaft 15.
  • the intervening link 14 can swing in a vertical plane (paper surface in FIG. 1) including the traveling direction of the traveling body 10.
  • the intervening link 14 supports the vehicle body 12 so as to be slidable along the traveling direction of the traveling body 10 (the left-right direction in FIG. 1).
  • the vehicle body 12 includes a boarding seat 22 and a housing 24 that are integrally formed.
  • the intervening link 14 corresponds to an intervening member.
  • the vehicle body 12 is supported by a chassis 16 via an intervening link 14.
  • the mount 28 has a right drive wheel 18 that rotates with respect to the mount 28 via the axle 30 on the right.
  • a wheel drive motor 34 and a left wheel drive motor 36 that rotates the left drive wheel 20 relative to the mount 28 via an axle 32 are installed.
  • the right wheel drive motor 34 and the left wheel drive motor 36 can be controlled independently.
  • the right wheel drive motor 34 and the left wheel drive motor 36 correspond to wheel actuators.
  • the traveling body 10 includes a joint drive motor 38 that swings the intervening link 14 around the rotation shaft 15 with respect to the chassis 16.
  • the joint drive motor 38 is mounted on the intervening link 14.
  • the joint drive motor 38 corresponds to a first actuator.
  • the traveling body 10 controls a right wheel drive motor 34, a left wheel drive motor 36, a joint drive motor 38, a notch module 42 that supplies power to the linear motor 40, a right wheel drive motor 34, and a left wheel drive motor 36.
  • a travel control module 44, an attitude control module 45 that controls the operation of the joint drive motor 38 and the linear motor 40, and an operation module 46 that is operated by a passenger of the traveling body 10 are provided.
  • the travel control module 44 controls the right wheel drive motor 34 and the left wheel drive motor 36 in accordance with the operation applied to the operation module 46 by the passenger of the travel body 10 to control the travel of the travel body 10.
  • the attitude control module 45 controls the joint drive motor 38 and the linear motor 40 to control the relative positional relationship of the vehicle body 12 with respect to the chassis 16.
  • the travel control module 44 corresponds to an inverted control device.
  • the attitude control module 45 corresponds to a braking attitude control device.
  • the traveling body 10 includes a joint encoder 50 that detects the swing angle of the intervening link 14 with respect to the chassis 16, a displacement meter 56 that detects the amount of sliding of the vehicle body 12 with respect to the intervening link 14, and the inclination angle velocity of the vehicle body 12. Is provided with a gyro sensor 48.
  • the inclination angle of the vehicle body 12 is positive when the vehicle body 12 is inclined toward the front of the traveling body 10 in the traveling direction, and negative when the vehicle body 12 is inclined toward the rear of the traveling body 10 in the traveling direction.
  • the traveling body 10 also includes a right wheel encoder 52 that detects the rotation angle of the right drive wheel 18 relative to the chassis 16 and a left wheel encoder 54 that detects the rotation angle of the left drive wheel 20 relative to the chassis 16.
  • the traveling body 10 includes an optical obstacle detection mounted on the housing 24.
  • a sensor 58 is provided.
  • the obstacle detection sensor 58 outputs a detection signal when an obstacle is detected in front of the traveling body 10.
  • the traveling body 10 includes mechanical brakes 60 and 62 mounted on a mount 28.
  • the mechanical brake 60 is not normally in contact with the right drive wheel 18, but is in contact with the right drive wheel 18 during a brake operation, and the rotation of the right drive wheel 18 with respect to the chassis 16 is restricted by friction force.
  • the mechanical brake 62 is not normally in contact with the left driving wheel 20, but is in contact with the left driving wheel 20 during braking, and the rotation of the left driving wheel 20 with respect to the chassis 16 is restricted by the frictional force.
  • the operation module 46 is provided with an operation lever (not shown) and a brake lever (not shown).
  • the operation lever is an operation member for the passenger to adjust the traveling speed and traveling direction of the traveling body 10.
  • the passenger can adjust the traveling speed of the traveling body 10 by adjusting the operation amount of the operation lever.
  • the passenger can adjust the traveling direction of the traveling body 10 by adjusting the operating direction of the operation lever.
  • the traveling body 10 can move forward, stop, reverse, turn left, turn right, turn left, turn right, etc. according to the operation applied to the control lever.
  • the passenger can also brake the traveling body 10 by tilting the brake lever.
  • FIG. 3 schematically shows the mechanism of the traveling body 10.
  • the right driving wheel 18 and the left driving wheel 20 are rotatably connected to the lower part of the chassis 16, and each is in contact with the road surface R.
  • An intervening link 14 is connected to the upper portion of the chassis 16 so as to be swingable in a vertical plane.
  • the vehicle body 12 is connected to the intervening link 14 so as to be slidable in both the front and rear directions.
  • the rotation angle of the reference line 18a of the right drive wheel 18 from the vertical line VI is ⁇ 1 and the reference line 20a of the left drive wheel 20 from the vertical line VI is The rotation angle is ⁇ 2, the inclination angle of the chassis 16 from the vertical line VI is 7 ?, and the inclination angle of the intervening link 14 from the vertical line VI (that is, equal to the inclination angle of the vehicle body 12 from the vertical line VI) is ⁇ And
  • the relative rotation angle of the right drive wheel 18 relative to the chassis 16 is ⁇ 1
  • the relative rotation angle of the left drive wheel 20 relative to the chassis 16 is ⁇ 2
  • the relative link 14 relative to the chassis 16 is relative.
  • FIG. 4 is a block diagram showing the configuration of the control system of the traveling body 10.
  • the travel control module 44 and the attitude control module 45 are constituted by a CPU, a ROM, a RAM, and the like.
  • the travel control module 44 and the posture control module 45 functionally include a control unit 64, a current posture calculation unit 66, a target posture setting unit 68, and a command value calculation unit 70.
  • the relative displacement amount ⁇ * between the vehicle body 12 and the intervening link 14 is output from the displacement meter 56.
  • the relative displacement speed d ⁇ * Zdt between the vehicle body 12 and the intervening link 14 is calculated by differentiating the relative displacement ⁇ * with respect to time.
  • the tilt angular velocity d a * Zdt of the vehicle body 12 is output from the gyro sensor 48.
  • the inclination angle ⁇ * of the vehicle body 12 is calculated by integrating the inclination angular velocity (1 ⁇ * Zdt with respect to time.
  • the inclination angle 7? * Of the chassis 16 is calculated from the inclination angle ⁇ * of the vehicle body 12 and the joint encoder 50.
  • the inclination angle ⁇ 1 * of the right drive wheel 18 is calculated from the inclination angle 7? * Of the chassis 16 and the relative rotation angle ⁇ 1 * of the right drive wheel 18 and chassis 16 output from the right wheel encoder 52. .
  • the tilt angle velocity d ⁇ 1 * Zdt is calculated by differentiating the tilt angle ⁇ 1 * with respect to time.
  • the tilt angle 0 2 * of the left drive wheel 20 is calculated from the tilt angle 7? * Of the chassis 16 and the left wheel encoder 54.
  • the relative rotation angle ⁇ 2 * force between the input left driving wheel 20 and chassis 16 is also calculated.
  • the tilt angle velocity d ⁇ 2 * Zdt is calculated by differentiating the tilt angle ⁇ 2 * with respect to time.
  • the rotation angle ⁇ 2 of the left drive wheel 20, the rotation angular velocity d ⁇ 2Zdt, the target value is mainly the operation state of the operation module 46 Or based on the presence or absence of a detection signal from the obstacle detection sensor 58.
  • the target posture setting unit 68 sets a target for the relative displacement amount ⁇ and the relative displacement speed d ⁇ Zdt between the vehicle body 12 and the intervening link 14. Set the series pattern.
  • the target posture setting unit 68 sets the relative displacement amount ⁇ and the relative displacement speed d ⁇ Zdt so that the vehicle body 12 moves rearward with respect to the intervening link 14.
  • the target attitude setting unit 68 sets a target value for the inclination angle ⁇ and the inclination angular velocity dr-Zdt of the chassis 16.
  • the chassis 16 tries to rotate around the rotation axis C1 forward in the traveling direction.
  • the target attitude setting unit 68 adjusts the tilt angle ⁇ and the tilt angle so that the tilt angular velocity d 7? Angular velocity dr? Set the target value of Zdt.
  • the command value calculation unit 70 When the target values of the relative displacement amount ⁇ and the relative displacement speed d ⁇ Zdt of the vehicle body 12 are input from the target posture setting unit 68, the command value calculation unit 70 must maintain a stable inverted posture. Calculate the tilt angle ⁇ and tilt angular velocity dr? Zdt of the chassis 16 so that
  • the command value calculation unit 70 maintains a stable inverted posture.
  • the relative displacement amount ⁇ and the relative displacement speed d ⁇ Zdt of the vehicle body 12 are calculated so that they can be obtained. Also in this case, a time series pattern is calculated in which the amount of displacement ⁇ backward of the vehicle body 12 is increased along with the start of the sudden braking operation, and the amount of displacement ⁇ is decreased as the inertial force decreases.
  • the command value calculation unit 70 drives the right wheel drive motor 34 and the left wheel based on the current posture output from the current posture calculation unit 66 and the target posture output from the target posture setting unit 68. Calculate the command value to motor 36, joint drive motor 38 and linear motor 40. A dynamic model of the traveling body 10 is used for calculating the command value.
  • the command value for each motor calculated by the command value calculation unit 70 is input to the right wheel drive motor 34, the left wheel drive motor 36, the joint drive motor 38, and the linear motor 40.
  • the right wheel drive motor 34, the left wheel drive motor 36, the joint drive motor 38, and the linear motor 40 are driven at an output corresponding to the input command value.
  • the traveling body 10 performs operations such as running, turning, and stopping. Further, the relative positional relationship of the vehicle body 12 with respect to the chassis 16 is adjusted. [0045]
  • the posture of the traveling body 10 is controlled so that it can travel, turn, and stop while maintaining the inverted posture. While the traveling body 10 is stopped or traveling at a constant speed, the posture of the traveling body 10 is adjusted so that the position of the center of gravity is positioned substantially vertically above the rotation axis C1. , ⁇ are each kept close to zero.
  • step S502 the mechanical brakes 60 and 62 are operated.
  • torque that restricts rotation acts between the right drive wheel 18 and the chassis 16 and between the left drive wheel 20 and the chassis 16.
  • step S504 target values are set for the rotation angles ⁇ 1 and ⁇ 2 and the rotation angular velocity d ⁇ 1 / d d ⁇ 2Zdt of the right drive wheel 18 and the left drive wheel 20.
  • step S506 target values for the relative displacement amount ⁇ and the relative displacement speed d ⁇ Zdt of the vehicle body 12 with respect to the intervening link 14 are set.
  • the relative displacement amount ⁇ and the relative displacement speed d ⁇ Zdt are set so that the vehicle body 12 moves rearward with respect to the intervening link 14.
  • the relative displacement amount ⁇ and the relative displacement speed d ⁇ Zdt are set by, for example, storing a predetermined time series pattern in advance and reading the stored pattern.
  • step S508 a command value for each motor is calculated according to the set target value.
  • step S510 each motor is driven with the calculated command value.
  • the vehicle body 12 moves rearward with respect to the intervening link 14, and the inclination angle r? Is adjusted so as to maintain the inverted posture of the traveling body 10.
  • the vehicle body 12 moves rearward with respect to the intervening link 14 and the center of gravity moves rearward. Therefore, the rearward inclination angle 7? Required to balance the inertial force can be kept small. .
  • the angle at which the vehicle body 12 tilts backward during sudden braking can be kept small.
  • step S512 it is determined whether or not the relative rotational angular velocities of the right driving wheel 18, the left driving wheel 20 and the chassis 16 are not more than a predetermined threshold value.
  • ⁇ / dt and d @ 2Zdt are both below the threshold value (YES in step S512) If it is determined that the rotation of the right driving wheel 18 and the left driving wheel 20 has sufficiently weakened, the process proceeds to step S514. If either ⁇ ⁇ ⁇ / dt or d @ 2Zdt exceeds the threshold value (NO in step S512), the rotational force of right drive wheel 18 and left drive wheel 20 is still weak. If not, the process moves to step S504, and the process up to step S510 is repeated.
  • step S51 target values are set for the rotation angles ⁇ 1 and ⁇ 2 and the rotation angle speed d ⁇ 1 / d d ⁇ 2Zdt of the right drive wheel 18 and the left drive wheel 20.
  • step S5166 the tilt angular velocity d ⁇ Zdt is set so as to coincide with the rotational angular velocity d ⁇ 1 / dU d ⁇ 2Zdt of the right drive wheel 18 and the left drive wheel 20 of the tilt angle velocity d 7? Zdt of the chassis 16.
  • step S528 a command value for each motor is calculated based on the set target value.
  • step S520 each motor is driven with the calculated command value.
  • the chassis 16 inclined backward is rotated in synchronization with the right driving wheel 18 and the left driving wheel 20 and is lifted vertically upward.
  • the relative displacement amount ⁇ is adjusted so as to maintain the inverted posture of the traveling body 10.
  • step S522 it is determined whether the inclination angle of the chassis 16 has become zero.
  • the center of gravity of the traveling body 10 moves vertically above the rotation axis C 1 and is in a stopped state, so the process proceeds to step S524.
  • the processes up to step S520 are repeated.
  • step S524 the mechanical brakes 60 and 62 are released, and a transition is made to a stop state in which the inverted posture is maintained on the spot, and the sudden braking operation is terminated.
  • FIG. 6 shows the state of the sudden braking operation of the traveling body 10.
  • the traveling body 10 shown in FIG. 6A moves the vehicle body 12 rearward with respect to the intervening link 14, as shown in FIG.
  • the chassis 16 also has a moment acting on the chassis 16 from the right driving wheel 18 and the left driving wheel 20 along with the brake, a gravity moment acting on the traveling body 10 and a traveling moment.
  • the chassis 16 is tilted backward so that moments due to inertial forces acting on the row 10 are balanced. Since the vehicle body 12 is moved rearward with respect to the intervening link 14, the gravitational moment that contributes to braking increases, and a large braking force by the mechanical brakes 60 and 62 can be applied. It is possible to stop at a short braking distance while maintaining a stable inverted posture.
  • the traveling body 10 of the present embodiment when the sudden braking operation is started, the vehicle body 12 is moved backward, so that it collides with an obstacle between the time when braking is started and the time when the force is stopped. Even in such a case, the passenger can be avoided from danger by evacuating the boarding seat 22 backward.
  • the means for driving the intervening link 14 relative to the vehicle body 12 is not limited thereto.
  • a ball screw and a normal motor may be used together, or a linear slide type motor mechanism may be used.
  • the force described in the case where the mechanical brakes 60, 62 are used as the brakes for the right drive wheel 18 and the left drive wheel 20 may be replaced with electric brakes instead of the mechanical brakes 60, 62.
  • Good. Use both mechanical brakes 60 and 62 and electric brakes.
  • the method of setting the relative displacement speed d ⁇ Zdt is not limited to this.
  • the vehicle body 12 may be moved backward by feedforward control.
  • the relative displacement amount ⁇ of the vehicle body 12 with respect to the intervening link 14 is measured using the displacement meter 56.
  • the relative displacement amount ⁇ may be estimated using, for example, a state observer. Yes.
  • the traveling body 110 includes a right wheel drive motor 34, a left wheel drive motor 36, a first joint drive motor 138 that swings the interposed link 114 around the rotation shaft 115 with respect to the chassis 16, and the interposed link 11 4 is provided with a second joint drive motor 140 that swings the vehicle body 12 around the rotation shaft 117.
  • the first joint drive motor 138 is mounted on the intervening link 114.
  • the second joint drive motor 140 is mounted on the rotor 24.
  • the first joint drive motor 138 corresponds to a first actuator
  • the second joint drive motor 140 corresponds to a second actuator.
  • the posture control module 145 controls the first joint drive motor 138 and the second joint drive motor 140 to control the relative positional relationship of the vehicle body 12 with respect to the chassis 16.
  • the travel control module 144 corresponds to an inverted control device.
  • the attitude control module 145 corresponds to a braking attitude control device.
  • the traveling body 110 includes a first joint encoder 150 that detects the swing angle of the intervening link 114 relative to the chassis 16 and a second joint encoder 150 that detects the swing angle of the vehicle body 12 relative to the intervening link 114. And a gyro sensor 48 for detecting the tilt angular velocity of the vehicle body 12.
  • the traveling body 110 includes a right wheel encoder 52 that detects a relative rotation angle of the right drive wheel 18 with respect to the chassis 16, and a left wheel encoder that detects a relative rotation angle of the left drive wheel 20 with respect to the chassis 16. 54, obstacle detection sensor 58, and mechanical brakes 60 and 62.
  • the inclination angle of the vehicle body 12 and the inclination angle of the intervening link 114 are adjusted separately.
  • the inclination angle and the inclination angular velocity of the vehicle body 12 are adjusted to be zero. As a result, the inclination of the vehicle body 12 is maintained substantially horizontal during traveling.
  • FIG. 8A shows a state where the traveling body 110 is traveling! /
  • FIG. 8B shows a state where the traveling body 110 is traveling!
  • the traveling body 110 tilts the intervening link 114 rearward, moves the vehicle body 12 rearward, and moves the position of the center of gravity of the traveling body 110 rearward. This makes it possible to maintain a stable inverted posture even when a large gravitational moment is applied and a strong brake is applied.
  • the inclination angle of the chassis 16 is adjusted so that the chassis 16 rotates in synchronization with the rotation of the right driving wheel 18 and the left driving wheel 20. Adjust the tilt angular velocity. Because of this, it moves backward by sudden braking action.
  • the bow I is raised by using inertia toward the vertical center of the rotation axis C 1.
  • the traveling body 110 of the present embodiment bends the intervening link 114 and the chassis 16 and grounds the portion where the intervening link 114 and the chassis 16 are connected to the road surface R, and then stops. It can be used as a time aid. Since the passenger seat 22 can be lowered, passengers can easily get on and off and load and unload luggage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Motorcycle And Bicycle Frame (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

明 細 書
平行二輪倒立振子型の走行体
技術分野
[0001] 本出願は、 2006年 2月 3日に出願された日本国特許出願第 2006— 027481号に 基づく優先権を主張する。その出願の全ての内容はこの明細書中に参照により援用 されている。
本発明は、一対の車輪と、一対の車輪を同軸上で回転可能に支持する車台と、車 台に対して車輪を回転させる車輪用ァクチユエータと、車台に支持されて!ヽる車体と 、車台を倒立させるように、車輪用ァクチユエータを制御する倒立制御装置とを備え る平行二輪倒立振子型の走行体に関する。
背景技術
[0002] 平行二輪倒立振子型の走行体は、一対の車輪と、一対の車輪を同軸上で回転で きるように支持する車台と、車台に対して車輪を回転させる車輪用ァクチユエータと、 車台に支持されている車体を備えており、その一例が特開昭 63— 305082号公報 に開示されている。この種の平行二輪倒立振子型の走行体は、倒立制御装置によつ て車輪用ァクチユエータを制御し、車台が倒立している状態を維持しながら走行する 。通常は、車輪の回転角と、車輪の回転角速度と、車台の傾斜角と、車台の傾斜角 速度を検出し、その検出結果に基づいて車輪用ァクチユエータのトルクを制御するこ とによって、車台が倒立した姿勢を維持し、車体が接地しない結果を実現している。 平行二輪倒立振子型の走行体は、車台が倒立した姿勢を維持しながら、移動したり 静止したり旋回したりすることができる。
なお本明細書では、回転角や傾斜角は鉛直方向を基準に表現する。例えば車輪 の回転角とは、車輪に固定されて車輪の半径方向に伸びる基準線と鉛直線がなす 角度をいう。また車台の傾斜角とは、車台に固定されている基準線と鉛直線がなす 角度をいう。
[0003] 平行二輪倒立振子型の走行体では、車台と車輪の間でトルクを発生させて車輪を 回転させる。車輪が回転することによって、走行体は走行したり旋回したり停止したり する。車輪を回転させると、その反作用によって、車輪から車台へトルクが作用し、車 台が傾斜する。平行二輪倒立振子型の走行体では、車輪から車台に作用したトルク によって傾斜した車台に作用する重力によるモーメントと、車台に作用する慣性力に よるモーメントと、車輪から車台へ作用するトルクが釣り合うようにして、車台を倒立し た姿勢に維持する。
[0004] 例えば停止した状態力 走行を開始する場合には、結果として車台が進行方向前 方へ傾斜するようなトルクが車輪に加えられるように、車輪用ァクチユエータを制御す る。前方へ傾斜した車台に作用する重力によるモーメントと、車台に作用する慣性力 によるモーメントと、車輪から車台へ作用するトルクが釣り合い、車台が倒立姿勢を維 持しながら走行体は走行を開始する。
[0005] 走行している状態力 停止する場合には、結果として車台が進行方向後方へ傾斜 するようなトルクが車輪に加えられるように、車輪用ァクチユエータを制御する。後方 へ傾斜した車台に作用する重力によるモーメントと、車台に作用する慣性力によるモ 一メントと、車輪から車台へ作用するトルクが釣り合い、車台が倒立姿勢を維持しなが ら走行体は走行を停止する。
発明の開示
発明が解決しょうとする課題
[0006] 平行二輪倒立振子型の走行体では、走行中に急停止した!/ヽ場合でも、急制動する ことが難しぐ制動距離が長くなつてしまうという問題がある。急制動すると大きな慣性 力が車台に作用することから、車台を後方に大きく傾斜させなければならない。従来 の平行二輪倒立振子型の走行体では、車台に対して車体 (人間が搭乗する搭乗席 や、荷物を載置する載置台などが設置されている)が固定されており、急制動のため に車台が後方に大きく傾斜すると、車体までもが後方に大きく傾斜してしまう。それで は搭乗員の姿勢が不安定になってしまう。人間の代わりに荷物を載置する走行体の 場合でも、荷物の姿勢が不安定になってしまう。従って、従来の平行二輪倒立振子 型の走行体では、急制動することが難しぐ制動距離が長くなつてしまっていた。しか しながら、人間と平行二輪倒立振子型の走行体が安全に共存するためには、走行体 の周囲の安全を確保するために、平行二輪倒立振子型の走行体が急制動できること が必要とされる。走行体の周囲の安全と、搭乗員の安全を確保するためには、車体 を大きく傾斜させることなぐ急制動することが可能な技術が必要とされる。
[0007] 本発明は上記課題を解決する。本発明では、平行二輪倒立振子型の走行体にお V、て、車体を後方に大きく傾斜させな!/、でも急制動することが可能な技術を提供する
課題を解決するための手段
[0008] 本発明で創作された平行二輪倒立振子型の走行体は、一対の車輪と、一対の車 輪を同軸上で回転可能に支持する車台と、車台に対して車輪を回転させる車輪用ァ クチユエータと、車台に支持されている車体と、車台を倒立させるように、車輪用ァク チユエータを制御する倒立制御装置とを備えている。その走行体では、車体は車台 に対して走行体の進行方向に関して相対的に移動可能に車台に支持されている。 その走行体はさらに、車台に対して車体を走行体の進行方向に関して相対的に移 動させる姿勢用ァクチユエータと、進行している走行体の制動を開始する際に車台に 対して車体を走行体の進行方向の逆方向に移動させるように姿勢用ァクチユエータ を制御する制動姿勢制御装置を備えて 、る。
[0009] 従来の平行二輪倒立振子型の走行体では、一対の車輪を支持する部分と車体が 固定されている部分が剛的に一体化されており、全体が車台となっていた。剛体であ つて姿勢が変えられない車台を用いる限り、急制動時には車台を後方に大きく傾斜 させる必要があり、車体までもが後方に大きく傾斜してしまうことが避けられな力つた。 本発明の平行二輪倒立振子型の走行体では、一対の車輪を支持する車台と、人 間が搭乗したり荷物を載置したりする車体が分離されており、姿勢用ァクチユエータ によって両者の相対的位置関係が可変となっている。すなわち、一対の車輪を支持 する車台に対して車体を進行方向と反対側に移動させることによって、車輪に対する 重心の位置を進行方向と反対側に移動させることができる。これができると、急制動 時に車体を後方に大きく傾斜させる必要がなくなる。車台に対して車体を進行方向と 反対側に移動させることによって、車輪に対する重心の位置を進行方向と反対側に 移動させることができることから、車台を後方に傾斜させたのと同じ結果が得られるか らである。 本発明の平行二輪倒立振子型の走行体は、制動開始時に姿勢用ァクチユエータ を作動させて車台に対して車体を進行方向と反対側に移動させる制動姿勢制御装 置を備えているために、車体を後方に大きく傾斜させることなく急制動することができ る。搭乗員や荷物の姿勢を不安定にさせな!、で走行体を急制動することができる。
[0010] また本発明の平行二輪倒立振子型の走行体では、制動が間に合わずに万が一障 害物に衝突してしまう場合でも、制動の開始に伴って車体を後方へ避難させている ため、搭乗者や荷物等を危険から回避させることができる。
[0011] 本発明では、車台に対して車体を進行方向と反対側に移動させた状態で制動する ことから、車台を後方に傾斜させる角度が小さくてすむ。そのためには、車台に対し て車体が進行方向に移動可能であるという 1自由度があればよい。
より改善された技術では、制動中にも車体の傾斜角(すなわち鉛直線力 の角度) が変わらないことが好ましい。すなわち、車台に対して車体が進行方向に移動可能 であり、し力も車台に対して車体が進行方向を含む鉛直面内で揺動可能であること が好ましい。このためには、車台と車体の間に部材を介在させ、 2自由度を確保する
[0012] 本発明の一つの改良された走行体は、車体は車台に対して介在部材を介して支 持されてている。その介在部材は、車台に対して進行方向を含む鉛直面内で揺動可 能に接続されて ヽるとともに、車体を進行方向に沿ってスライド可能に支持して ヽる。 その走行体では、姿勢用ァクチユエータが、車台に対して介在部材を揺動させる第 1 ァクチユエータと、介在部材に対して車体をスライドさせる第 2ァクチユエータを備え ている。
[0013] 上記の改良された走行体によると、介在部材の傾斜角(すなわち鉛直線からの角 度)を変えないで車台に対して車体を進行方向と反対側に移動させることができる。 介在部材の傾斜角が変わらなければ、車体はそれにスライドするだけであることから 、車体の傾斜角(すなわち鉛直線からの角度)も変わらず、車体に搭乗している人間 や、車体に搭載している荷物は、制動時に傾斜することがない。上記の改良された走 行体によると、車体の傾斜角を一定範囲に保って急制動することができる。
[0014] 別の構成で、車台と車体の間に 2自由度を確保することもできる。本発明の他の一 つの改良された走行体は、車体は車台に対して介在部材を介して支持されている。 その介在部材は、車台に対して進行方向を含む鉛直面内で揺動可能に接続されて いるとともに、車体を進行方向を含む鉛直面内で揺動可能に支持している。その走 行体では、姿勢用ァクチユエータが、車台に対して介在部材を揺動させる第 1ァクチ ユエータと、介在部材に対して車体を揺動させる第 2ァクチユエータを備えて 、る。
[0015] 上記の走行体では、車台の傾斜角(すなわち鉛直線からの角度)、車台に対する介 在部材の相対的な角度、介在部材に対する車体の相対的な角度によって、車体の 傾斜角(すなわち鉛直線からの角度)が決まる。車台に対する介在部材の相対的な 角度と介在部材に対する車体の相対的な角度を調整することによって、車台に対し て車体を進行方向と反対側に移動させた姿勢に調整し、車体の傾斜角を一定範囲 に保つことができる。上記の改良された走行体によると、車体の傾斜角を一定範囲に 保って急制動することができる。
し力も、この構成によると、車体の傾斜角を一定範囲に保ちながら、車体の高さを変 えることができる。人間が搭乗する場合には乗り降りが容易化され、荷物を載置する 場合には荷物の積み下ろし作業が容易化される。
[0016] 車台が剛的である場合、機械的ブレーキを採用して車台に対する車輪の回転を拘 束すると、倒立制御装置だけでは車台の倒立を維持するように制御することが難しい 。例えば走行中に機械的ブレーキを利用して急制動すると、慣性力によって車台は 進行方向に傾斜する。すると倒立制御装置は、転倒を防止するために車輪を加速す る制御を行う。機械的ブレーキによって拘束されている車輪を加速する制御を行うた めに、倒立制御装置だけでは制御不能に陥ってしまう。
し力しながら、本発明では、剛的であった車台と車体を分離して、両者の相対的位 置関係をァクチユエータによって制御する方式を採用しているために、車輪と車台の 間に機械的ブレーキを設置することが可能となり、倒立制御装置が制御不能に陥つ てしまうことがない。車台と車体の間に存在する少なくとも 1自由度を活用して制御し 続けられるからである。
[0017] 本発明の改良された走行体では、車輪を車台に対して制動する機械的ブレーキが 設置されている。 この走行体では、機械的ブレーキの強い制動力を利用し、車体の傾斜角を一定範 囲に保ちながら急制動することができる。
発明の効果
[0018] 本発明の平行二輪倒立振子型の走行体によれば、車体を大きく傾斜させないで急 制動することができる。人間と走行体が安全に共存することを可能とする。
車台と車体の間に 2自由度を確保すると、車体の傾斜角を積極的に制御することが 可能となり、制動中の人間または荷物の姿勢を安定化させることができる。
本発明を利用すると、機械的ブレーキを導入することが可能となり、機械的ブレー キの強い制動力を利用してさらに急制動することができる。
図面の簡単な説明
[0019] [図 1]図 1は第 1実施例の走行体 10の側面図である。
[図 2]図 2は第 1実施例の走行体 10の正面図である。
[図 3]図 3は第 1実施例の走行体 10の機構を模式的に示す図である。
[図 4]図 4は第 1実施例の走行制御モジュール 44、姿勢制御モジュール 45の構成を 示すブロック図である。
[図 5]図 5は第 1実施例の走行体 10の急ブレーキ動作の流れを示すフローチャートで ある。
[図 6A]図 6Aと図 6Bは第 1実施例の走行体 10の急ブレーキ動作の様子を示す図で ある。図 6Aは走行中の走行体 10を示す図である。
[図 6B]図 6Aと図 6Bは第 1実施例の走行体 10の急ブレーキ動作の様子を示す図で ある。図 6Bは制動中の走行体 10を示す図である。
[図 7]図 7は第 2実施例の走行体 110の側面図である。
[図 8A]図 8Aと図 8Bは第 2実施例の走行体 110の急ブレーキ動作の様子を示す図 である。図 8Aは走行中の走行体 110を示す図である。
[図 8B]図 8Aと図 8Bは第 2実施例の走行体 110の急ブレーキ動作の様子を示す図 である。図 8Bは制動中の走行体 110を示す図である。
[図 9]図 9は第 2実施例の走行体 110を停止させた状態を示す図である。
発明を実施するための最良の形態 [0020] 最初に、以下に説明する実施例の主要な特徴を列記する。
(形態 1) 走行体は、人間が着席可能な搭乗席を車体に備えており、搭乗者を乗せ て走行することができる。搭乗者の操作によって制動処理を開始し、制動姿勢制御 装置によって姿勢用ァクチユエータを作動させて車台に対して車体を進行方向と反 対側に移動させる。
(形態 2) 走行体は、障害物を検知するセンサを備えており、障害物を検知すると制 動処理を開始し、制動姿勢制御装置によって姿勢用ァクチユエータを作動させて車 台に対して車体を進行方向と反対側に移動させる。
(形態 3) 走行体は、制動処理を開始すると、機械的ブレーキによって制動する。 実施例
[0021] (第 1実施例)
本発明の第 1実施例について図面を参照しながら説明する。図 1は本実施例の走 行体 10を側面から見た図であり、図 2は走行体 10を正面から見た図である。
走行体 10は、右駆動輪 18と、左駆動輪 20と、車台 16と、介在リンク 14と、車体 12 を備えている。
右駆動輪 18と左駆動輪 20は、一対の車輪に相当する。車台 16は、マウント 28と口 ッド 26を備えている。マウント 28とロッド 26は、一体的に形成されている。マウント 28 は、車軸 30を介して右駆動輪 18を回転可能に支持しており、車軸 32を介して左駆 動輪 20を回転可能に支持している。車軸 30と車軸 32は、同一の回転軸 C1上に揃 えられている。車台 16は、右駆動輪 18と左駆動輪 20を同軸上に揃えた状態に維持 し、右駆動輪 18と左駆動輪 20が独立に回転できるように右駆動輪 18と左駆動輪 20 を支持している。介在リンク 14は、ロッド 26の上端に対して回転軸 15まわりに揺動可 能に接続されている。介在リンク 14は、走行体 10の進行方向を含む鉛直面(図 1の 紙面)内で揺動可能である。また介在リンク 14は、車体 12を、走行体 10の進行方向 (図 1の左右方向)に沿ってスライド可能に支持している。車体 12は、一体的に形成さ れた搭乗席 22とハウジング 24を備えている。介在リンク 14は、介在部材に相当する 。車体 12は車台 16に対して介在リンク 14を介して支持されている。
[0022] マウント 28には、車軸 30を介して右駆動輪 18をマウント 28に対して回転させる右 輪駆動モータ 34と、車軸 32を介して左駆動輪 20をマウント 28に対して回転させる左 輪駆動モータ 36が設置されている。右輪駆動モータ 34と左輪駆動モータ 36は独立 に制御可能である。右輪駆動モータ 34と左輪駆動モータ 36は、車輪用ァクチユエ一 タに相当する。
[0023] 走行体 10は、車台 16に対して介在リンク 14を回転軸 15の周りに揺動させる関節 駆動モータ 38を備えている。関節駆動モータ 38は、介在リンク 14に搭載されている 。関節駆動モータ 38は、第 1ァクチユエータに相当する。
走行体 10は、介在リンク 14に対して車体 12を走行体 10の進行方向に沿って前後 両方向にスライドさせるリニアモータ 40を備えている。リニアモータ 40は、ハウジング 24に搭載されている。リニアモータ 40は、第 2ァクチユエータに相当する。
[0024] 走行体 10は、右輪駆動モータ 34と左輪駆動モータ 36と関節駆動モータ 38とリニア モータ 40に電力を供給するノ ッテリモジュール 42と、右輪駆動モータ 34と左輪駆動 モータ 36を制御する走行制御モジュール 44と、関節駆動モータ 38とリニアモータ 40 の動作を制御する姿勢制御モジュール 45と、走行体 10の搭乗者が操作する操作モ ジュール 46を備えている。走行制御モジュール 44は、走行体 10の搭乗者が操作モ ジュール 46に加えた操作に追従して、右輪駆動モータ 34と左輪駆動モータ 36を制 御し、走行体 10の走行を制御する。姿勢制御モジュール 45は、関節駆動モータ 38 とリニアモータ 40を制御し、車台 16に対する車体 12の相対的位置関係を制御する。 走行制御モジュール 44は、倒立制御装置に相当する。姿勢制御モジュール 45は、 制動姿勢制御装置に相当する。
[0025] 走行体 10は、車台 16に対する介在リンク 14の揺動角を検出する関節エンコーダ 5 0と、介在リンク 14に対する車体 12のスライド量を検出する変位計 56と、車体 12の傾 斜角速度を検出するジャイロセンサ 48を備えている。車体 12の傾斜角は、走行体 1 0の進行方向前方に向けて車体 12が傾斜している場合を正とし、走行体 10の進行 方向後方に向けて車体 12が傾斜している場合を負とする。また走行体 10は、車台 1 6に対する右駆動輪 18の回転角を検出する右輪エンコーダ 52と、車台 16に対する 左駆動輪 20の回転角を検出する左輪エンコーダ 54を備えている。
[0026] 図 1に示すように、走行体 10は、ハウジング 24に搭載された光学式の障害物検知 センサ 58を備えている。障害物検知センサ 58は、走行体 10の前方に障害物を検知 すると、検知信号を出力する。
[0027] 図 2に示すように、走行体 10は、マウント 28に搭載された機械式ブレーキ 60、 62を 備えている。機械式ブレーキ 60は、通常は右駆動輪 18とは接触しておらず、ブレー キ動作時に右駆動輪 18に接触して、摩擦力によって右駆動輪 18の車台 16に対す る回転を拘束する。機械式ブレーキ 62は、通常は左駆動輪 20とは接触しておらず、 ブレーキ動作時に左駆動輪 20に接触し、摩擦力によって左駆動輪 20の車台 16に 対する回転を拘束する。
[0028] 操作モジュール 46には、操作レバー(図示されない)とブレーキレバー(図示されな い)が設けられている。操作レバーは、搭乗者が走行体 10の走行速度や走行方向を 調整するための操作部材である。搭乗者は、操作レバーの操作量を調整すること〖こ よって走行体 10の走行速度を調整することができる。また搭乗者は、操作レバーの 操作方向を調整することによって走行体 10の走行方向を調整することができる。走 行体 10は、操作レバーに加えられた操作に応じて、前進、停止、後退、左折、右折、 左旋回、右旋回等をすることができる。また搭乗者は、ブレーキレバーを倒すことによ つて、走行体 10を制動することができる。
[0029] 図 3は走行体 10の機構を模式的に示している。右駆動輪 18、左駆動輪 20は、車 台 16の下部に回転可能に連結しており、それぞれが路面 Rに接地している。車台 16 の上部に対して介在リンク 14が鉛直面内で揺動可能に連結されている。介在リンク 1 4に対して車体 12が前後両方向にスライド可能に連結されて 、る。
[0030] 以下の説明では、図 3に示すように、鉛直線 VIからの右駆動輪 18の基準線 18aの 回転角を θ 1とし、鉛直線 VIからの左駆動輪 20の基準線 20aの回転角を Θ 2とし、 鉛直線 VIからの車台 16の傾斜角を 7?とし、鉛直線 VIからの介在リンク 14の傾斜角 (すなわち鉛直線 VIからの車体 12の傾斜角に等しい)を σとする。また、右駆動輪 1 8の車台 16に対する相対的な回転角を Θ 1とし、左駆動輪 20の車台 16に対する相 対的な回転角を Θ 2とし、介在リンク 14の車台 16に対する相対的な回転角を φとし、 車体 12の介在リンク 14に対する相対的な変位量を δとする。ここで、幾何学的に Θ 1 = 0 1 + 7?、 Θ 2= 0 2+ 7}、 η = σ + φの関係が成り立つ。 [0031] 次に、走行体 10の制御系について説明する。図 4は走行体 10の制御系の構成を 示すブロック図である。走行制御モジュール 44と姿勢制御モジュール 45は、 CPU, ROM、 RAM等によって構成されている。走行制御モジュール 44と姿勢制御モジュ ール 45は、機能的に、制御部 64と、現在姿勢計算部 66と、目標姿勢設定部 68と、 指令値計算部 70を備えて 、る。
[0032] 制御部 64は、操作モジュール 46や障害物検知センサ 58からの入力に基づ!/、て、 現在姿勢計算部 66と目標姿勢設定部 68と指令値計算部 70に処理を実行させる。
[0033] 現在姿勢計算部 66は、ジャイロセンサ 48、関節エンコーダ 50、右輪エンコーダ 52 、左輪エンコーダ 54、変位計 56からの入力に基づいて、走行体 10の現在の姿勢を 計算する。現在姿勢計算部 66では、走行体 10の現在の姿勢として、車体 12の介在 リンク 14に対する相対変位量 δ *、相対変位速度 d δ *Zdt、車体 12の傾斜角 σ *、傾斜角速度 d σ * Zdt、車台 16の傾斜角 η *、傾斜角速度 d η * d 右駆 動輪 18の回転角 0 1 *、回転角速度 d 0 l *Zdt、左駆動輪 20の回転角 0 2 *、回 転角速度 d Θ 2 * Zdtが計算される。なお上記の *は、現在値と目標値を区別する ために付したものであり、 *を付したものは現在値を示す。
[0034] 車体 12と介在リンク 14の相対変位量 δ *は、変位計 56から出力される。車体 12と 介在リンク 14の相対変位速度 d δ * Zdtは、相対変位量 δ *を時間に関して微分 することで算出される。
車体 12の傾斜角速度 d a *Zdtは、ジャイロセンサ 48から出力される。車体 12の 傾斜角 σ *は、傾斜角速度 (1 σ * Zdtを時間に関して積分することで算出される。 車台 16の傾斜角 7? *は、車体 12の傾斜角 σ *と、関節エンコーダ 50から出力さ れる介在リンク 14と車台 16の相対的な回転角 φ *力ら、 7? * = σ * + φ *で算出 される。車台 16の傾斜角速度 dr? *Zdtは、傾斜角 7? *を時間に関して微分するこ とで算出される。
右駆動輪 18の傾斜角 θ 1 *は、車台 16の傾斜角 7? *と、右輪エンコーダ 52から 出力される右駆動輪 18と車台 16の相対的な回転角 Θ 1 *から計算される。傾斜角 速度 d θ 1 * Zdtは、傾斜角 θ 1 *を時間に関して微分することで算出される。
左駆動輪 20の傾斜角 0 2 *は、車台 16の傾斜角 7? *と、左輪エンコーダ 54から 入力される左駆動輪 20と車台 16の相対的な回転角 Θ 2 *力も計算される。傾斜角 速度 d Θ 2*Zdtは、傾斜角 Θ 2 *を時間に関して微分することで算出される。
現在姿勢計算部 66は、上記のように計算された走行体 10の現在の姿勢を、指令 値計算部 70へ出力する。
[0035] 目標姿勢設定部 68は、走行体 10の右駆動輪 18の回転角 Θ 1、回転角速度 d θ 1 Zdt、左駆動輪 20の回転角 Θ 2、回転角速度 d Θ 2/d 車台 16の傾斜角 7?、傾斜 角速度 d η Zdt、車体 12の傾斜角 σ、傾斜角速度 d σ /dt,車体 12の相対変位量 δ、相対変位速度 d δ Zdtについて、目標とする時系列パターンを設定する。
[0036] 右駆動輪 18の回転角 Θ 1、回転角速度 d Θ 1/d 左駆動輪 20の回転角 Θ 2、回 転角速度 d Θ 2Zdtについての目標値は、主に操作モジュール 46の操作状態や、 障害物検知センサ 58からの検知信号の有無に基づいて設定される。
[0037] 車体 12の傾斜角 σ、傾斜角速度 d σ Zdtは、所望のパターンで与えることができる 。本実施例の走行体 10では、傾斜角 σと傾斜角速度 d σ Zdtはそれぞれゼロと設定 される。これによつて、走行中も車体 12は傾斜することなぐ略水平に維持される。な お、傾斜角 σと傾斜角速度 d a Zdtをゼロとすることは、車台 16に対して介在リンク 1 4を揺動させないことを意味しない。車台 16の傾斜角 ηに一致するように、車台 16に 対して介在リンク 14を揺動させることによって、車体 12の傾斜角 σがゼロに調整され る。
[0038] 目標姿勢設定部 68は、状況に応じて、車体 12と介在リンク 14の相対変位量 δお よび相対変位速度 d δ Zdt、あるいは車台 16の傾斜角 ηおよび傾斜角速度 d η /d tの、いずれか一方の組について、目標とする時系列パターンを設定する。
[0039] 目標姿勢設定部 68は、走行体 10が走行中に急ブレーキ動作を開始する際には、 車体 12と介在リンク 14の相対変位量 δおよび相対変位速度 d δ Zdtに関して目標 とする時系列パターンを設定する。急ブレーキ動作を開始する際には、介在リンク 14 に対して車体 12を後方へ移動させることによって走行体 10の重心を後方に移動さ せる。これによつて、急ブレーキ動作に伴って生じる慣性力とのバランスを図る。 目標 姿勢設定部 68は、介在リンク 14に対して車体 12が後方へ移動するように、相対変位 量 δおよび相対変位速度 d δ Zdtを設定する。相対変位量 δ、相対変位速度 d δ / dtの時系列パターンは、予め目標姿勢設定部 68に記憶されている。前記したように 、急ブレーキ動作の開始とともに車体 12の後方への変位量 δを増大させ、慣性力の 低下にあわせて変位量 δを減少させる時系列パターンが記憶されている。
[0040] 目標姿勢設定部 68は、急ブレーキ動作によって右駆動輪 18と左駆動輪 20の回転 角速度が遅くなると、車台 16の傾斜角 ηと傾斜角速度 d r? Zdtに関して目標値を設 定する。右駆動輪 18と左駆動輪 20の回転角速度が遅くなると、車台 16は回転軸 C1 の周りを進行方向前方に向けて回転しょうとする。目標姿勢設定部 68は、車台 16の 傾斜角速度 d 7? Zdtが、右駆動輪 18の回転角速度 d Θ lZdtと左駆動輪 18の回転 角速度 d Θ 2Zdtと一致するように、傾斜角 ηと傾斜角速度 d r? Zdtの目標値を設定 する。
[0041] 目標姿勢設定部 68から、車体 12の相対変位量 δと相対変位速度 d δ Zdtの目標 値が入力される場合には、指令値計算部 70は、安定な倒立姿勢を維持することがで きるように、車台 16の傾斜角 ηと傾斜角速度 d r? Zdtを計算する。
[0042] 目標姿勢設定部 68から、車台 16の傾斜角 7?と傾斜角速度 d 7? Zdtの目標値が入 力される場合には、指令値計算部 70は、安定な倒立姿勢を維持することができるよう に、車体 12の相対変位量 δと相対変位速度 d δ Zdtを計算する。この場合にも、急 ブレーキ動作の開始とともに車体 12の後方への変位量 δを増大させ、慣性力の低 下にあわせて変位量 δを減少させる時系列パターンが計算される。
[0043] 指令値計算部 70では、現在姿勢計算部 66から出力される現在の姿勢と、目標姿 勢設定部 68から出力される目標とする姿勢に基づいて、右輪駆動モータ 34と左輪 駆動モータ 36と関節駆動モータ 38とリニアモータ 40へ指令する値を計算する。指令 値の計算には、走行体 10の動力学モデルが利用される。
[0044] 指令値計算部 70で計算された各モータへの指令値は、右輪駆動モータ 34と左輪 駆動モータ 36と関節駆動モータ 38とリニアモータ 40へ入力される。右輪駆動モータ 34と左輪駆動モータ 36と関節駆動モータ 38とリニアモータ 40は、入力された指令値 に応じた出力で駆動する。各モータが駆動することによって、走行体 10は走行、旋 回、停止などの動作を行う。また、車台 16に対する車体 12の相対的位置関係を調整 する。 [0045] 走行体 10は、倒立姿勢を維持しながら、走行、旋回、停止することができるように、 姿勢を制御される。走行体 10は、停止している間や、一定の速度で走行している間 は、重心の位置が回転軸 C1の略鉛直上方に位置するように姿勢を調整されており、 7?、 σ、 δはそれぞれゼロに近い値に維持される。
[0046] 以下では図 5に示すフローチャートを参照しながら、走行体 10が走行中に急ブレー キ動作を行う場合の処理について説明する。走行体 10は、障害物検知センサ 58に よって前方に障害物が検知されると、急ブレーキ動作を開始する。
[0047] ステップ S502では、機械式ブレーキ 60、 62を作動させる。機械式ブレーキ 60、 62 が作動することで、右駆動輪 18と車台 16の間、ならびに左駆動輪 20と車台 16の間 で、回転を拘束するトルクが作用する。
ステップ S504では、右駆動輪 18と左駆動輪 20の回転角 Θ 1、 Θ 2および回転角 速度 d Θ 1/d d Θ 2Zdtについて、目標値を設定する。
ステップ S506では、車体 12の介在リンク 14に対する相対変位量 δと相対変位速 度 d δ Zdtの目標値を設定する。相対変位量 δと相対変位速度 d δ Zdtは、介在リ ンク 14に対して車体 12を後方側へ移動させるように設定される。相対変位量 δと相 対変位速度 d δ Zdtの設定は、例えば所定の時系列パターンを予め記憶しておき、 記憶されたパターンを読み込むことで行われる。
ステップ S508では、設定された目標値に応じて、各モータへの指令値を計算する ステップ S510では、計算された指令値で各モータを駆動する。各モータが駆動す ることによって、介在リンク 14に対して車体 12が後方へ移動し、走行体 10の倒立姿 勢を維持するように傾斜角 r?が調整される。このとき、介在リンク 14に対して車体 12 が後方へ移動して重心が後方に移動して 、るために、慣性力にバランスするために 必要な後方側への傾斜角 7?が小さく抑えられる。車体 12を後方へ移動させない場 合に比して、急ブレーキ中に車体 12が後方へ傾斜する角度は小さく抑えられる。
[0048] ステップ S512では、右駆動輪 18、左駆動輪 20と車台 16との相対的な回転角速度 άΘ Ι/dt, d@2Zdt力 所定のしきい値以下となったか否かを判断する。 άΘ Ι/dt 、 d@2Zdtが、いずれもしきい値以下となった場合 (ステップ S512で YESの場合) には、右駆動輪 18と左駆動輪 20の回転が充分に弱まったと判断して、処理はステツ プ S514へ移行する。 ά Θ Ι/dt, d@2Zdtのいずれかがしきい値を超えている場合 (ステップ S512で NOの場合)には、右駆動輪 18と左駆動輪 20の回転力 ^、まだ弱ま つていないと判断して、処理はステップ S504へ移行し、ステップ S510までの処理を 繰り返し行う。
[0049] ステップ S514では、右駆動輪 18と左駆動輪 20の回転角 Θ 1、 Θ 2および回転角 速度 d Θ 1/d d Θ 2Zdtについて、目標値を設定する。
ステップ S516では、車台 16の傾斜角速度 d 7? Zdt力 右駆動輪 18と左駆動輪 20 の回転角速度 d Θ 1/dU d Θ 2Zdtと一致するような傾斜角速度 d η Zdtを設定す る。
ステップ S518では、設定された目標値に基づいて、各モータへの指令値を計算す る。
ステップ S520では、計算された指令値で各モータを駆動する。各モータを駆動す ることによって、後方へ傾斜していた車台 16は右駆動輪 18、左駆動輪 20と同調して 回転し、垂直上方に持ち上げられる。この際に、走行体 10の倒立姿勢を維持するよ うに相対変位量 δが調整される。
[0050] ステップ S522では、車台 16の傾斜角 がゼロとなったか否かを判断する。傾斜角 ηがゼロとなった場合 (ステップ S522で YESの場合)、走行体 10の重心は回転軸 C 1の鉛直上方へ移動し、停止状態となっているため、処理はステップ S524へ移行す る。傾斜角 r?がゼロとならない場合 (ステップ S522で NOの場合)、走行体 10の重心 はいまだ回転軸 C1より後方にあり、停止状態となっていないため、処理はステップ S 514へ移行し、ステップ S 520までの処理を繰り返し行う。
ステップ S524では、機械式ブレーキ 60、 62を解除して、その場で倒立姿勢を維持 する停止状態へ移行し、急ブレーキ動作を終了する。
[0051] 図 6に走行体 10の急ブレーキ動作の様子を示す。図 6Aに示す走行中の走行体 1 0は、前方に障害物等が検知されると、図 6Bに示すように、介在リンク 14に対して車 体 12を後方に移動させる。また車台 16は、ブレーキに伴って右駆動輪 18と左駆動 輪 20から車台 16へ作用するモーメントと、走行体 10に作用する重力モーメントと、走 行体 10に作用する慣性力によるモーメントが釣り合うように、車台 16を後方へ傾斜さ せる。車体 12を介在リンク 14に対して後方に移動させているため、制動に寄与する 重力モーメントが増大し、機械式ブレーキ 60、 62による大きな制動力を働力せること ができる。安定な倒立姿勢を維持しながら、短い制動距離で停止することができる。
[0052] また本実施例の走行体 10では、急ブレーキ動作を開始する際に、車体 12を後方 へ移動させるため、制動を開始して力 停止するまでの間に万が一障害物と衝突し てしまう場合であっても、搭乗席 22を後方へ避難させておくことで、搭乗者を危険か ら回避させることができる。
[0053] 本実施例の走行体 10では、急ブレーキによって右駆動輪 18と左駆動輪 20の回転 が弱まると、車台 16を右駆動輪 18と左駆動輪 20と同調して回転させる。これによつ て、急ブレーキ時に後方へ移動させた走行体 10の重心を、慣性を利用して立ち上が らせることができる。静止した倒立姿勢へ移行するために消費するエネルギーを抑制 することができる。
[0054] 本実施例では障害物検知センサ 58からの検知信号に応じて急ブレーキ動作を行 う場合を説明したが、搭乗者による操作モジュール 46からのブレーキ指示に応じて 急ブレーキ動作を行ってもよ!、。
[0055] 本実施例では車体 12に対して介在リンク 14を駆動する手段としてリニアモータ 40 を用いる例を説明したが、車体 12に対して介在リンク 14を駆動する手段はこれに限 定されない。車体 12に対して介在リンク 14を駆動する手段として、例えばボールねじ と通常のモータを併用してもょ 、し、リニアスライド型のモータ機構を用いてもょ 、。
[0056] 本実施例では右駆動輪 18、左駆動輪 20に対するブレーキとして機械式ブレーキ 6 0、 62を用いる場合を説明した力 機械式ブレーキ 60、 62の代わりに電気式ブレー キを用いてもよい。また、機械式ブレーキ 60、 62と電気式ブレーキの双方を併用して ちょい。
[0057] 本実施例では車体 12の介在リンク 14に対する相対変位量 δ、相対変位速度 d δ Zdtを予め記憶された所定の時系列パターンに従って設定する例を説明したが、相 対変位量 δ、相対変位速度 d δ Zdtの設定の仕方はこれに限らない。例えば、フィ ードフォワード制御によって車体 12を後方へ移動させてもよい。 [0058] 本実施例では車体 12の介在リンク 14に対する相対変位量 δを変位計 56を用いて 計測する例を説明したが、相対変位量 δは例えば状態観測器を用いて推定してもよ い。
[0059] (第 2実施例)
図 7を参照しながら、本実施例の走行体 110について説明する。第 1実施例の走行 体 10と同様の構成については、同一の参照符号を付して、詳細な説明を省略する。 本実施例の走行体 110は、車体 12と、介在リンク 114と、車台 16と、右駆動輪 18と 左駆動輪 20を備えている。介在リンク 114は、車体 12のハウジング 24の下部に、車 体 12に対して走行体 110の進行方向を含む鉛直面(図 7の紙面)内で揺動可能に 連結されている。車台 16のロッド 26の上部は、介在リンク 114の下部に、介在リンク 1 14に対して走行体 110の進行方向を含む鉛直面(図 7の紙面)内で揺動可能に連 結されている。介在リンク 114は、介在部材に相当する。
[0060] 走行体 110は、右輪駆動モータ 34と、左輪駆動モータ 36と、車台 16に対して介在 リンク 114を回転軸 115の周りに揺動させる第 1関節駆動モータ 138と、介在リンク 11 4に対して車体 12を回転軸 117の周りに揺動させる第 2関節駆動モータ 140を備え ている。第 1関節駆動モータ 138は、介在リンク 114に搭載されている。第 2関節駆動 モータ 140は、ノ、ウジング 24に搭載されている。第 1関節駆動モータ 138は、第 1ァ クチユエータに相当し、第 2関節駆動モータ 140は、第 2ァクチユエータに相当する。
[0061] 走行体 110は、右輪駆動モータ 34と左輪駆動モータ 36と第 1関節駆動モータ 138 と第 2関節駆動モータ 140に電力を供給するバッテリモジュール 42と、右輪駆動モー タ 34と左輪駆動モータ 36を制御する走行制御モジュール 144と、第 1関節駆動モー タ 138と第 2関節駆動モータ 140を制御する姿勢制御モジュール 145と、走行体 110 の搭乗者が操作する操作モジュール 46を備えて ヽる。走行制御モジュール 144は、 走行体 110の搭乗者が操作モジュール 46に加えた操作に追従して、右輪駆動モー タ 34と左輪駆動モータ 36を制御し、走行体 110の走行を制御する。姿勢制御モジュ ール 145は、第 1関節駆動モータ 138と第 2関節駆動モータ 140を制御し、車台 16 に対する車体 12の相対的位置関係を制御する。走行制御モジュール 144は、倒立 制御装置に相当する。姿勢制御モジュール 145は、制動姿勢制御装置に相当する。 [0062] 走行体 110は、車台 16に対する介在リンク 114の揺動角を検出する第 1関節ェン コーダ 150と、介在リンク 114に対する車体 12の揺動角を検出する第 2関節ェンコ一 ダ 156と、車体 12の傾斜角速度を検出するジャイロセンサ 48を備えている。また走 行体 110は、右駆動輪 18の車台 16に対する相対的な回転角を検出する右輪ェンコ ーダ 52と、左駆動輪 20の車台 16に対する相対的な回転角を検出する左輪ェンコ一 ダ 54と、障害物検知センサ 58、機械式ブレーキ 60、 62を備えている。
[0063] 走行制御モジュール 144と姿勢制御モジュール 145は、第 1実施例の走行体 10の 走行制御モジュール 44と姿勢制御モジュール 145とほぼ同様の構成を備えている。
[0064] 第 1実施例の走行体 10とは異なり、本実施例の走行体 110では車体 12の傾斜角 と介在リンク 114の傾斜角が別個に調整される。本実施例の走行体 110では、車体 1 2の傾斜角と傾斜角速度はゼロとなるように調整される。これによつて、車体 12の傾 斜は、走行中も略水平に維持される。
[0065] 本実施例の走行体 110では、状況に応じて、介在リンク 114の傾斜角および傾斜 角速度、あるいは車台 16の傾斜角および傾斜角速度の一方の組について、目標と する時系列パターンに従って調整する。
[0066] 走行体 110が走行中に急ブレーキ動作を開始する際には、介在リンク 114が後方 へ傾斜するように、介在リンク 114の傾斜角および傾斜角速度を所定の時系列バタ ーンに調整する。これによつて、車体 12が後方へ向けて移動し、走行体 110の重心 が後方へ移動する。この場合には、安定な倒立姿勢を維持することができるように、 車台 16の傾斜角および傾斜角速度が調整される。
[0067] 図 8Aは走行体 110が走行して!/、る状態を示し、図 8Bは走行体 110が走行して!/、 る状態力 制動する状態を示している。制動の開始に伴い、走行体 110は介在リンク 114を後方へ傾斜させ、車体 12を後方へ向けて移動させ、走行体 110の重心の位 置を後方へ移動させる。これによつて、大きな重力モーメントを作用させ、強いブレー キを力けた場合であっても、安定な倒立姿勢を維持することができる。
[0068] 急ブレーキ動作によって右駆動輪 18、左駆動輪 20の回転が弱まると、車台 16が 右駆動輪 18、左駆動輪 20の回転と同調して回転するように、車台 16の傾斜角およ び傾斜角速度を調整する。これによつて、急ブレーキ動作によって後方へ移動して いる重心を、回転軸 C 1の鉛直上方へ向けて慣性を利用して弓 Iき起こす。
[0069] なお本実施例の走行体 110は、図 9に示すように、介在リンク 114と車台 16を屈曲 させて、介在リンク 114と車台 16が連結する部分を路面 Rに接地させて、停止時の補 助具として用いることができる。搭乗席 22が降下した状態とすることができるため、搭 乗者の乗降や荷物の積み降ろしが容易となる。
[0070] 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の 範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した 具体例を様々に変形、変更したものが含まれる。
また、本明細書又は図面に説明した技術要素は、単独であるいは各種の組み合わ せによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに 限定されるものではない。また、本明細書又は図面に例示した技術は複数目的を同 時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性 を持つものである。

Claims

請求の範囲
[1] 一対の車輪と、
一対の車輪を同軸上で回転可能に支持する車台と、
車台に対して車輪を回転させる車輪用ァクチユエータと、
車台に支持されて!ヽる車体と、
車台を倒立させるように、車輪用ァクチユエータを制御する倒立制御装置とを備え る平行二輪倒立振子型の走行体であって、
車体は車台に対して走行体の進行方向に関して相対的に移動可能に車台に支持 されており、
車台に対して車体を走行体の進行方向に関して相対的に移動させる姿勢用ァクチ ユエータと、
進行して!/ヽる走行体の制動を開始する際に車台に対して車体を走行体の進行方 向の逆方向に移動させるように姿勢用ァクチユエータを制御する制動姿勢制御装置 を備えて!/ヽる平行二輪倒立振子型の走行体。
[2] 車体は車台に対して介在部材を介して支持されており、
介在部材は、車台に対して進行方向を含む鉛直面内で揺動可能に接続されてい るとともに、車体を進行方向に沿ってスライド可能に支持しており、
姿勢用ァクチユエータが、車台に対して介在部材を揺動させる第 1ァクチユエータと 、介在部材に対して車体をスライドさせる第 2ァクチユエータを備えている請求項 1の 平行二輪倒立振子型の走行体。
[3] 車体は車台に対して介在部材を介して支持されており、
介在部材は、車台に対して進行方向を含む鉛直面内で揺動可能に接続されてい るとともに、車体を進行方向を含む鉛直面内で揺動可能に支持しており、
姿勢用ァクチユエータが、車台に対して介在部材を揺動させる第 1ァクチユエータと 、介在部材に対して車体を揺動させる第 2ァクチユエータを備えている請求項 1の平 行二輪倒立振子型の走行体。
[4] 車輪を車台に対して制動する機械的ブレーキが設置されている請求項 1の平行二 輪倒立振子型の走行体。 車輪を車台に対して制動する機械的ブレーキが設置されてレ、る請求項 2の平行二 輪倒立振子型の走行体。
車輪を車台に対して制動する機械的ブレーキが設置されている請求項 3の平行二 輪倒立振子型の走行体。
PCT/JP2007/051729 2006-02-03 2007-02-01 平行二輪倒立振子型の走行体 WO2007088944A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800042394A CN101378951B (zh) 2006-02-03 2007-02-01 同轴两轮倒立摆型移动车辆
EP07713757.8A EP1980479B1 (en) 2006-02-03 2007-02-01 Vehicle of parallel two-wheeled inversion pendulum type
US12/278,002 US7823676B2 (en) 2006-02-03 2007-02-01 Coaxial two-wheeled inverted pendulum type moving vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-027481 2006-02-03
JP2006027481A JP4291822B2 (ja) 2006-02-03 2006-02-03 倒立車輪型の走行体

Publications (1)

Publication Number Publication Date
WO2007088944A1 true WO2007088944A1 (ja) 2007-08-09

Family

ID=38327513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051729 WO2007088944A1 (ja) 2006-02-03 2007-02-01 平行二輪倒立振子型の走行体

Country Status (5)

Country Link
US (1) US7823676B2 (ja)
EP (1) EP1980479B1 (ja)
JP (1) JP4291822B2 (ja)
CN (1) CN101378951B (ja)
WO (1) WO2007088944A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028133A1 (ja) * 2007-08-28 2009-03-05 Panasonic Corporation 倒立二輪型搬送車及びその制御方法
WO2009054208A1 (ja) * 2007-10-22 2009-04-30 Toyota Jidosha Kabushiki Kaisha 同軸二輪車及びその制御方法
JP2010125969A (ja) * 2008-11-27 2010-06-10 Toyota Motor Corp 移動体
JP2010132109A (ja) * 2008-12-04 2010-06-17 Toyota Motor Corp 移動体、及びそのメンテナンス方法
US20100280745A1 (en) * 2007-10-12 2010-11-04 Equos Reseach Co., Ltd. Vehicle
US20100305840A1 (en) * 2007-12-27 2010-12-02 Equos Research Co., Ltd. Vehicle
CN102300765A (zh) * 2008-11-06 2011-12-28 塞格威股份有限公司 用于动态自平衡车辆的控制的设备和方法

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4760162B2 (ja) * 2005-06-29 2011-08-31 トヨタ自動車株式会社 移動台車の制御方法及び移動台車
WO2007129505A1 (ja) * 2006-05-09 2007-11-15 Equos Research Co., Ltd. 車両、特性量推定装置及び搭載物判定装置
JP4434186B2 (ja) * 2006-09-04 2010-03-17 トヨタ自動車株式会社 移動体及び移動体の制御方法
JP5018039B2 (ja) * 2006-11-24 2012-09-05 株式会社エクォス・リサーチ 車両
JP4924179B2 (ja) * 2007-04-25 2012-04-25 トヨタ自動車株式会社 倒立車輪型移動体、及びその制御方法
JP4973303B2 (ja) * 2007-04-27 2012-07-11 トヨタ自動車株式会社 倒立型移動体および倒立型移動体の移動停止方法
JP4735598B2 (ja) * 2007-04-27 2011-07-27 トヨタ自動車株式会社 倒立車輪型移動体、及びその制御方法
JP4605204B2 (ja) * 2007-10-24 2011-01-05 トヨタ自動車株式会社 倒立振子型移動体、及びその制御方法
JP4470988B2 (ja) 2007-10-25 2010-06-02 トヨタ自動車株式会社 倒立車輪型移動体、及びその制御方法
JP5327475B2 (ja) * 2007-10-31 2013-10-30 トヨタ自動車株式会社 搬送用自走車及びその停止制御方法
JP5228560B2 (ja) * 2008-03-25 2013-07-03 トヨタ自動車株式会社 倒立走行ロボット及びその制御方法
JP4702414B2 (ja) * 2008-07-29 2011-06-15 トヨタ自動車株式会社 同軸二輪車及び同軸二輪車の制御方法
JP5261081B2 (ja) * 2008-09-02 2013-08-14 トヨタ自動車株式会社 倒立車輪型移動体、及びその制御方法
WO2010032493A1 (ja) * 2008-09-17 2010-03-25 株式会社村田製作所 転倒防止制御装置及びコンピュータプログラム
JP5167077B2 (ja) * 2008-11-12 2013-03-21 トヨタ自動車株式会社 移動体、及びその制御方法
JP2010215064A (ja) * 2009-03-16 2010-09-30 Toyota Motor Corp 移動体
CN101554726B (zh) * 2009-05-15 2011-01-19 北京工业大学 一种柔性两轮自平衡机器人系统及其运动控制方法
JP5267324B2 (ja) * 2009-05-21 2013-08-21 トヨタ自動車株式会社 移動体、補正値の算出方法、及びプログラム
JP4766159B2 (ja) * 2009-07-22 2011-09-07 トヨタ自動車株式会社 倒立振子型移動体、及びその制御方法
US8353378B2 (en) * 2009-09-18 2013-01-15 Honda Motor Co., Ltd. Frictional drive device and inverted pendulum type vehicle using the same
JP5260455B2 (ja) * 2009-09-18 2013-08-14 本田技研工業株式会社 倒立振子型移動体
JP5426681B2 (ja) * 2009-09-18 2014-02-26 本田技研工業株式会社 倒立振子型移動体
WO2011033585A1 (ja) * 2009-09-18 2011-03-24 本田技研工業株式会社 倒立振子型移動体
US8567537B2 (en) * 2009-09-18 2013-10-29 Honda Motor Co., Ltd Inverted pendulum type vehicle
JP5276719B2 (ja) * 2009-09-18 2013-08-28 本田技研工業株式会社 倒立振子型移動体
US8513917B2 (en) * 2009-09-18 2013-08-20 Honda Motor Co., Ltd. Recharging system for a rechargeable battery of an inverted pendulum type vehicle
WO2011033590A1 (ja) * 2009-09-18 2011-03-24 本田技研工業株式会社 倒立振子型車両の制御装置
US8998232B2 (en) * 2010-01-17 2015-04-07 Shane Chen Recumbant style powered unicycle
JP5848266B2 (ja) * 2010-02-26 2016-01-27 セグウェイ・インコーポレイテッド 車両を制御するための装置及び方法
US8467948B2 (en) * 2010-09-29 2013-06-18 Honda Motor Co., Ltd. Omnidirectional moving body operation system and omnidirectional moving body operation method
CN102529574B (zh) * 2010-12-28 2015-12-16 Ge医疗系统环球技术有限公司 移动式医疗设备电磁力矩平衡摩擦脚轮
DE102011084236A1 (de) 2011-10-10 2013-04-11 Technische Universität München Gehhilfe und Verfahren zur Steuerung einer Gehhilfe
JP6081081B2 (ja) * 2012-05-14 2017-02-15 本田技研工業株式会社 倒立振子型車両
JP5644821B2 (ja) * 2012-08-29 2014-12-24 トヨタ自動車株式会社 倒立二輪車及びその制御方法
JP6020328B2 (ja) * 2013-04-18 2016-11-02 トヨタ自動車株式会社 移動体制御装置、移動体制御方法、及び制御プログラム
TWI588053B (zh) * 2014-11-26 2017-06-21 光陽工業股份有限公司 體感式移動載具
CN105730585B (zh) * 2014-12-11 2018-10-12 光阳工业股份有限公司 体感式移动载具
JPWO2017073055A1 (ja) * 2015-10-27 2018-08-16 パナソニックIpマネジメント株式会社 搬送装置
CN106882308A (zh) * 2015-12-15 2017-06-23 陕西承洋电子智能科技有限公司 一种便携折叠式小型智能平衡车
WO2017124120A1 (en) * 2016-01-17 2017-07-20 Chen, Shane Self-balancing load bearing vehicle
US10926756B2 (en) 2016-02-23 2021-02-23 Deka Products Limited Partnership Mobility device
EP4194971A1 (en) 2016-02-23 2023-06-14 DEKA Products Limited Partnership Method for establishing the center of gravity for a mobility device
US11399995B2 (en) 2016-02-23 2022-08-02 Deka Products Limited Partnership Mobility device
US10908045B2 (en) 2016-02-23 2021-02-02 Deka Products Limited Partnership Mobility device
US10802495B2 (en) 2016-04-14 2020-10-13 Deka Products Limited Partnership User control device for a transporter
CN105676858A (zh) * 2016-03-02 2016-06-15 深圳市美莱创新股份有限公司 自平衡两轮平衡车及控制方法
US10772774B2 (en) 2016-08-10 2020-09-15 Max Mobility, Llc Self-balancing wheelchair
CN114802567B (zh) * 2016-11-13 2024-07-26 深圳市贝斯微数码有限公司 一种智能体感电动车的行驶控制方法和主控电路
JP6846798B2 (ja) * 2017-02-07 2021-03-24 公立大学法人大阪 倒立振子型車両
USD846452S1 (en) 2017-05-20 2019-04-23 Deka Products Limited Partnership Display housing
USD829612S1 (en) 2017-05-20 2018-10-02 Deka Products Limited Partnership Set of toggles
JPWO2019111561A1 (ja) * 2017-12-05 2020-11-26 日本電産株式会社 自動装置および通信システム
WO2019237031A1 (en) 2018-06-07 2019-12-12 Deka Products Limited Partnership System and method for distributed utility service execution
WO2022228636A1 (en) * 2021-04-26 2022-11-03 Schaeffler Technologies AG & Co. KG Automated guided vehicle; system; method for transporting a load by means of an agv; method for transporting a load by means of a system
CN114987667B (zh) * 2022-04-13 2024-08-30 谢高伟 一种运动平台和控制方法
CN115655286A (zh) * 2022-11-09 2023-01-31 浙江鼎信航天科技有限公司 一种车载高度与姿态数据融合装置及其方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415713A (ja) * 1990-05-01 1992-01-21 Komatsu Ltd 平行2輪車の姿勢制御方法
JP2003528756A (ja) * 1999-03-15 2003-09-30 デカ・プロダクツ・リミテッド・パートナーシップ バランスをとる個人用乗物の制御
JP2004276727A (ja) * 2003-03-14 2004-10-07 Matsushita Electric Works Ltd 人用移動機器とその制動方法
JP2005039962A (ja) * 2003-07-17 2005-02-10 Sony Corp 搬送体、搬送方法、搬送体の制動装置、搬送体の制動方法、制動装置、制動方法および制動装置機構
JP2005145296A (ja) * 2003-11-17 2005-06-09 Sony Corp 車両装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2530652B2 (ja) 1987-06-05 1996-09-04 シ−ケ−ディ株式会社 同軸二輪車における姿勢制御方法
US5161634A (en) * 1990-03-27 1992-11-10 Kubota Corporation Electric vehicle
US5701965A (en) 1993-02-24 1997-12-30 Deka Products Limited Partnership Human transporter
US6837327B2 (en) 1993-02-24 2005-01-04 Deka Products Limited Partnership Controlled balancing toy
US6543564B1 (en) * 1994-05-27 2003-04-08 Deka Products Limited Partnership Balancing personal vehicle
US6311794B1 (en) 1994-05-27 2001-11-06 Deka Products Limited Partneship System and method for stair climbing in a cluster-wheel vehicle
WO1998002122A1 (en) 1996-07-17 1998-01-22 Deka Products Limited Partnership Anti-tipping mechanism
CN1102513C (zh) 1997-11-04 2003-03-05 德卡产品有限公司 车辆的缓冲装置
US6223104B1 (en) 1998-10-21 2001-04-24 Deka Products Limited Partnership Fault tolerant architecture for a personal vehicle
AU774742B2 (en) * 1999-03-15 2004-07-08 Deka Products Limited Partnership Control system and method for wheelchair
US6302230B1 (en) 1999-06-04 2001-10-16 Deka Products Limited Partnership Personal mobility vehicles and methods
US6789640B1 (en) 2000-10-13 2004-09-14 Deka Products Limited Partnership Yaw control for a personal transporter
JP4162995B2 (ja) * 2000-10-13 2008-10-08 デカ・プロダクツ・リミテッド・パートナーシップ 個人用輸送車の制御
JP2003237665A (ja) * 2002-02-14 2003-08-27 Sigma Solutions:Kk 二重反転ホイールを内蔵する自立式二輪走行装置
JP4296852B2 (ja) * 2003-06-12 2009-07-15 トヨタ自動車株式会社 同軸二輪車
EP1529556B1 (en) * 2003-11-04 2013-02-20 Toyota Jidosha Kabushiki Kaisha Travelling apparatus and method for controlling thereof
US8016060B2 (en) * 2005-03-11 2011-09-13 Equos Research Co., Ltd. Vehicle
JP4849215B2 (ja) * 2005-12-28 2012-01-11 株式会社エクォス・リサーチ 走行車両
JP4888639B2 (ja) * 2005-12-28 2012-02-29 株式会社エクォス・リサーチ 走行車両

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415713A (ja) * 1990-05-01 1992-01-21 Komatsu Ltd 平行2輪車の姿勢制御方法
JP2003528756A (ja) * 1999-03-15 2003-09-30 デカ・プロダクツ・リミテッド・パートナーシップ バランスをとる個人用乗物の制御
JP2004276727A (ja) * 2003-03-14 2004-10-07 Matsushita Electric Works Ltd 人用移動機器とその制動方法
JP2005039962A (ja) * 2003-07-17 2005-02-10 Sony Corp 搬送体、搬送方法、搬送体の制動装置、搬送体の制動方法、制動装置、制動方法および制動装置機構
JP2005145296A (ja) * 2003-11-17 2005-06-09 Sony Corp 車両装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1980479A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028133A1 (ja) * 2007-08-28 2009-03-05 Panasonic Corporation 倒立二輪型搬送車及びその制御方法
JP5028488B2 (ja) * 2007-08-28 2012-09-19 パナソニック株式会社 倒立二輪型搬送車及びその制御方法
US20100280745A1 (en) * 2007-10-12 2010-11-04 Equos Reseach Co., Ltd. Vehicle
US8504282B2 (en) * 2007-10-12 2013-08-06 Equos Research Co., Ltd. Vehicle
WO2009054208A1 (ja) * 2007-10-22 2009-04-30 Toyota Jidosha Kabushiki Kaisha 同軸二輪車及びその制御方法
US8256545B2 (en) 2007-10-22 2012-09-04 Toyota Jidosha Kabushiki Kaisha Coaxial two-wheel vehicle and method of controlling the same
US20100305840A1 (en) * 2007-12-27 2010-12-02 Equos Research Co., Ltd. Vehicle
US8374774B2 (en) * 2007-12-27 2013-02-12 Equos Research Co., Ltd. Vehicle
CN102300765A (zh) * 2008-11-06 2011-12-28 塞格威股份有限公司 用于动态自平衡车辆的控制的设备和方法
JP2010125969A (ja) * 2008-11-27 2010-06-10 Toyota Motor Corp 移動体
JP2010132109A (ja) * 2008-12-04 2010-06-17 Toyota Motor Corp 移動体、及びそのメンテナンス方法

Also Published As

Publication number Publication date
US7823676B2 (en) 2010-11-02
JP4291822B2 (ja) 2009-07-08
CN101378951A (zh) 2009-03-04
CN101378951B (zh) 2011-10-19
JP2007203965A (ja) 2007-08-16
EP1980479A1 (en) 2008-10-15
EP1980479A4 (en) 2014-05-28
US20090051136A1 (en) 2009-02-26
EP1980479B1 (en) 2016-06-29

Similar Documents

Publication Publication Date Title
WO2007088944A1 (ja) 平行二輪倒立振子型の走行体
JP4470988B2 (ja) 倒立車輪型移動体、及びその制御方法
JP4735598B2 (ja) 倒立車輪型移動体、及びその制御方法
KR101340985B1 (ko) 도립 이륜 장치, 그 제어 방법 및 제어 프로그램
JP4605204B2 (ja) 倒立振子型移動体、及びその制御方法
KR101156822B1 (ko) 이동체 및 이동체의 제어 방법
JP7366281B2 (ja) 二輪車
JP2009101484A (ja) 倒立走行ロボット及びその制御方法
JP2010000989A (ja) 二輪自動車
JP2009101898A (ja) 倒立車輪型移動体、及びその制御方法
JP2009101899A (ja) 倒立車輪型移動体、及びその制御方法
JP2009101897A (ja) 倒立車輪型移動体、及びその制御方法
JP2008296909A (ja) 倒立車輪型の走行体
WO2019102997A1 (ja) 車両
JP4877120B2 (ja) 車両
JP2010247741A (ja) 同軸二輪車
JP2010030523A (ja) 二輪自動車
JP4888451B2 (ja) 同軸二輪車及びその制御方法
JP5092683B2 (ja) 倒立車輪型移動体及びその制御方法
JP2009101817A (ja) 倒立車輪型移動体及びその制御方法
JP4882514B2 (ja) 倒立車輪型の移動体及びその制御方法
CN110803242A (zh) 一种概念电动单车
JP2021062733A (ja) 二輪車両
KR20090091258A (ko) 이동시 자동 자세제어 기능을 가진 종방향 2륜형 전동스쿠터
JP2018024389A (ja) 走行装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 12278002

Country of ref document: US

Ref document number: 200780004239.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007713757

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)