WO2007052788A1 - 温度補償型発振器およびその製造方法 - Google Patents

温度補償型発振器およびその製造方法 Download PDF

Info

Publication number
WO2007052788A1
WO2007052788A1 PCT/JP2006/322085 JP2006322085W WO2007052788A1 WO 2007052788 A1 WO2007052788 A1 WO 2007052788A1 JP 2006322085 W JP2006322085 W JP 2006322085W WO 2007052788 A1 WO2007052788 A1 WO 2007052788A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
circuit
voltage
signal
frequency
Prior art date
Application number
PCT/JP2006/322085
Other languages
English (en)
French (fr)
Inventor
Rikoku Nakamura
Takuo Furuki
Takashi Masuda
Original Assignee
Citizen Holdings Co., Ltd.
Citizen Miyota Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co., Ltd., Citizen Miyota Co., Ltd. filed Critical Citizen Holdings Co., Ltd.
Priority to CN2006800416044A priority Critical patent/CN101305514B/zh
Priority to US12/092,772 priority patent/US7728685B2/en
Priority to JP2007542834A priority patent/JP4949265B2/ja
Publication of WO2007052788A1 publication Critical patent/WO2007052788A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/02Details
    • H03B5/04Modifications of generator to compensate for variations in physical values, e.g. power supply, load, temperature
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • H03B5/36Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator active element in amplifier being semiconductor device
    • H03B5/366Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator active element in amplifier being semiconductor device and comprising means for varying the frequency by a variable voltage or current
    • H03B5/368Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator active element in amplifier being semiconductor device and comprising means for varying the frequency by a variable voltage or current the means being voltage variable capacitance diodes

Definitions

  • the present invention relates to a temperature compensated oscillator that keeps the frequency of an output signal substantially constant regardless of a change in ambient temperature, and in particular, a temperature compensated oscillator that can disable its temperature compensation function.
  • the present invention relates to an oscillator and a manufacturing method thereof.
  • Temperature compensated oscillators are used in various fields, but in recent years, they are widely used in portable mobile communication devices such as mobile phones. This type of temperature compensated oscillator is generally
  • the oscillation circuit is composed of an AT-cut crystal piece (vibrator) in the 10MHz band as a vibration source, and a temperature compensation circuit is provided for it to stabilize the oscillation frequency by canceling the temperature characteristics of the cubic curve of the AT-cut crystal piece. Many crystal oscillators are used.
  • Fig. 14 shows a package configuration example of a single-type surface-mounted temperature compensated oscillator.
  • a package body 10 is composed of a knock body 11, a welding ring 12, and a cover 13, and a crystal piece 15, an oscillation circuit and a temperature compensation circuit described later are contained therein.
  • the MOS type IC (integrated circuit) chip 16 that constitutes the above is installed in the same room and sealed.
  • a circuit element such as a chip capacitor may be mounted in the package body 11.
  • the circuit configuration of such a temperature compensated oscillator is as shown in FIG.
  • the oscillation circuit 20 is formed by connecting a crystal piece 15 that is a piezoelectric element, an inverter 21, and a feedback resistor 22 in parallel. These inverters are grounded via DC cut capacitors Cc and Cd and voltage variable capacitors (voltage controlled variable capacitors) 23 and 24, which are oscillation capacitors, to form an inverter oscillation circuit. Then, an oscillation output signal is output from the connection point on the output side of the inverter 21 to the output terminal 26.
  • a temperature detection circuit 18 for detecting a temperature state in the vicinity of the crystal piece 15 in the oscillation circuit 20 and an oscillation frequency of the oscillation circuit 20 are kept substantially constant based on a temperature detection signal from the temperature detection circuit 18.
  • a temperature compensation circuit 30 is provided to control as follows.
  • the temperature compensation circuit 30 includes a compensation data storage circuit (non-volatile memory) 31 for storing compensation data, and a voltage as a temperature compensation signal based on the compensation data and the temperature detection signal from the temperature detection circuit 18. It consists of a DZA conversion circuit 32 that generates signals. Then, the voltage signal is applied to the non-grounded terminals of the voltage variable capacitors 23 and 24 via the resistors Rl and R2 provided in the oscillation circuit 20, respectively. By changing the capacitance of 24, the oscillation frequency of the oscillation circuit 20 is controlled to keep the frequency of the oscillation output signal substantially constant.
  • the crystal circuit 15 and the oscillation circuit 20 formed in the IC chip 16 cannot be made completely the same due to manufacturing variations and the like. It has different temperature frequency characteristics. Therefore, not all oscillator circuits 20 can be temperature compensated according to the same standard. Therefore, it is necessary to create different compensation data for each oscillation circuit and store it in the compensation data storage circuit 31. However, if the variation in the characteristics of the crystal piece 15 is large, it cannot be compensated. Therefore, it is necessary to adjust in advance so that the characteristics of the crystal piece 15 are aligned as much as possible.
  • the IC chip that constitutes the oscillation circuit is not mounted, and the resonance frequency is monitored by resonating the external force piezoelectric element with a network analyzer or the like.
  • the temperature-compensated oscillator is provided with a selection means for selecting whether to enable or disable the temperature compensation function of the temperature compensation circuit, and the oscillation frequency is desired at the reference temperature (room temperature).
  • the temperature compensation function is disabled and the oscillator is operated as a simple oscillator.
  • a constant voltage generation circuit and a selection circuit using two sets of transmission gates are provided, and when the temperature compensation function is enabled, the temperature from the temperature compensation circuit is When the compensation signal (voltage signal) is imprinted on the voltage variable capacitor of the oscillation circuit and the capacitance is controlled according to the temperature to disable the temperature compensation function, the constant voltage from the constant voltage generator circuit is The transmission gate of the selection circuit is switched so that the printing force tl is applied to the voltage variable capacity and the capacity is fixed to a predetermined value.
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-218636 (Pages 4-9, Fig. 1)
  • the voltage of the dedicated constant voltage generation circuit and oscillation circuit for invalidating the temperature compensation function by the temperature compensation circuit can be changed. It is necessary to provide a selection circuit for switching the voltage signal applied to the capacitor.
  • the present invention has been made to solve such a problem, and does not require a dedicated constant voltage generation circuit for disabling the temperature compensation function by the temperature compensation circuit.
  • the common objective is to enable easy switching of the effective state, easy and reliable initial frequency adjustment at room temperature, and cost reduction.
  • a temperature-compensated oscillator includes an oscillation circuit having a voltage variable capacitor, a temperature detection circuit that detects a temperature in the vicinity of the oscillation circuit, and a temperature compensation signal based on information of the temperature detection circuit.
  • a temperature-compensated oscillator having a temperature compensation signal generation circuit configured to maintain an oscillation frequency substantially constant by applying the voltage signal to the voltage variable capacitor.
  • control means for setting both terminals of the voltage variable capacitor to the same potential.
  • the control means can apply the voltage signal, which is the temperature compensation signal, to both terminals of the voltage variable capacitor to bring both terminals of the voltage variable capacitor to the same potential.
  • control means can set both terminals of the voltage variable capacitor to the same potential by setting both terminals of the voltage variable capacitor to the ground potential.
  • the voltage variable capacitor has a characteristic that the capacitance value is approximately in the middle of the variable capacitance range when both terminals are at the same potential.
  • These temperature compensated oscillators have a memory circuit, and the control means performs control to make both terminals of the voltage variable capacitor have the same potential according to information stored in the memory circuit. May be.
  • the memory circuit has a plurality of storage elements, and the control means performs control to make both terminals of the voltage variable capacitor have the same potential when the storage state of the plurality of storage elements is in a predetermined state. May be.
  • This temperature compensated oscillator has a constant voltage circuit for keeping the driving voltage of the oscillation circuit constant, and the constant voltage circuit has the storage states of the plurality of storage elements in the predetermined state.
  • the drive voltage may be controlled to a predetermined voltage value.
  • the signal oscillated by the oscillation circuit is separated. It is preferable that the frequency divider has a frequency dividing circuit for controlling the frequency dividing ratio when the storage state of the plurality of storage elements is in the predetermined state.
  • these temperature compensated oscillators have an external terminal for inputting a frequency control signal based on a voltage signal, and the frequency control signal input from the external terminal or the frequency control signal is input.
  • the amplified signal can also be applied to the voltage variable capacitor.
  • a room temperature frequency correction signal generation circuit that generates a room temperature frequency correction signal that is a voltage signal for correcting the deviation of the oscillation frequency at room temperature is provided, and the room temperature frequency correction signal is also supplied to the voltage variable capacitor.
  • an external terminal for inputting the frequency control signal and a room temperature frequency correction signal generation circuit for generating a room temperature frequency correction signal are provided, and the voltage signal applied to the voltage variable capacitor is supplied to the temperature compensation
  • the signal may be a signal obtained by combining one or both of the frequency control signal and the room temperature frequency correction signal.
  • the adjustment of the oscillation frequency of the oscillation circuit at room temperature is performed by setting both terminals of the voltage variable capacitor to the same potential. This is performed by adjusting the thickness of the electrode of the oscillator provided in the oscillation circuit while the oscillation circuit is driven.
  • the memory circuit is not written before the oscillation frequency adjustment work of the oscillation circuit at room temperature, and the memory elements are The memory state is set to the predetermined state, and the oscillation frequency adjustment operation is performed by driving the oscillation circuit with both terminals of the voltage variable capacitor having the same potential and driving the oscillation circuit. It is better to adjust the thickness of the electrode.
  • the temperature-compensated oscillator according to the present invention does not require a dedicated constant voltage generation circuit for disabling the temperature compensation function, and can easily switch between the invalid state and the valid state.
  • the initial adjustment of the oscillation frequency at room temperature can be performed easily and reliably, and the cost can be reduced.
  • the initial frequency adjustment work can always be performed under the same conditions.
  • FIG. 1 is a block circuit diagram showing a configuration of a first embodiment of a temperature compensated oscillator according to the present invention.
  • FIG. 2 is a block circuit diagram showing a configuration of a second embodiment of a temperature compensated oscillator according to the present invention.
  • FIG. 3 is a schematic cross-sectional view showing a structural example of a MOS variable capacitor that is an example of a voltage variable capacitor used in the present invention.
  • FIG. 4 is a characteristic curve diagram showing the relationship between the applied voltage and capacitance value of the MOS variable capacitor.
  • FIG. 5 is a schematic cross-sectional view showing another structural example of a MOS variable capacitor.
  • FIG. 6 is a circuit diagram showing a configuration of a third embodiment of a temperature compensated oscillator according to the present invention.
  • FIG. 7 is a block circuit diagram showing a configuration of a main part of a fourth embodiment of a temperature compensated oscillator according to the present invention.
  • FIG. 8 is a circuit diagram showing the configuration of the main part of a fifth embodiment of the temperature compensated oscillator according to the present invention.
  • FIG. 9 is a block circuit diagram showing a configuration of a main part of a sixth embodiment of the temperature compensated oscillator according to the present invention.
  • FIG. 10 is a circuit diagram showing a configuration of a main part of a seventh embodiment of a temperature compensated oscillator according to the present invention.
  • FIG. 11 is a block diagram showing a configuration of an eighth embodiment of a temperature compensated oscillator according to the present invention.
  • FIG. 12 is a circuit diagram illustrating a configuration example of the constant voltage circuit in FIG. 11.
  • FIG. 13 is a block diagram showing the configuration of the ninth embodiment of the temperature compensated oscillator according to the present invention. is there.
  • FIG. 14 is a schematic cross-sectional view showing a package configuration example of a temperature compensated oscillator.
  • FIG. 15 is a block circuit diagram showing a configuration example of a temperature-compensated oscillator according to the prior art.
  • FIG. 1 First embodiment: FIG. 1
  • FIG. 1 is a block circuit diagram showing a configuration of a first embodiment of a temperature compensated oscillator according to the present invention.
  • the crystal piece 15, the inverter 21 and the feedback resistor 22 are connected in parallel as in the prior art shown in FIG.
  • Capacitors (capacitors) Cc, Cd and the oscillation circuit 20 connected to ground (Gnd) via voltage variable capacitors 23, 24, and the temperature at which the thermistor detects the temperature state near the crystal piece 15
  • a detection circuit 18 and a temperature compensation circuit 30 for controlling the oscillation frequency of the oscillation circuit 20 to be substantially constant based on a temperature detection signal from the temperature detection circuit 18 are provided.
  • the temperature compensation circuit 30 is based on the compensation data storage circuit (nonvolatile memory), the compensation data, and the temperature detection signal from the temperature detection circuit 18, as in the prior art shown in FIG. And a DZA conversion circuit that generates a temperature compensation signal (voltage signal). Then, the voltage signal is applied from the frequency control signal input point a of the oscillation circuit 20 to the non-grounded terminals of the voltage variable capacitors 23 and 24 via the resistors Rl and R2, respectively, and applied to the voltage. Change the capacitance value of each voltage variable capacitor 23, 24 accordingly. Accordingly, the oscillation frequency of the oscillation circuit 20 is controlled to keep the frequency of the oscillation output signal output to the output terminal 26 substantially constant.
  • the temperature-compensated oscillator according to the present invention is provided with control means for setting both terminals of the voltage variable capacitors 23 and 24 to the same potential.
  • the control means The switch element 1 is a MOS transistor, and its source terminal and drain terminal are connected to the frequency control signal input point a and ground (Gnd), respectively, and the non-TCX O mode signal (temperature compensation circuit) is connected to the gate terminal.
  • the signal that disables the temperature compensation function by 30) is input.
  • the switch element 1 When the non-TCXO mode signal is at a high level, the switch element 1 is in a conductive state (ON) and the frequency control signal input point a is grounded, so that both terminals of the voltage variable capacitors 23 and 24 are Both are at the same potential as the ground potential.
  • the voltage variable capacitors 23 and 24 both have the specified capacitance value without variation, and the oscillation circuit 20 oscillates at a frequency close to the specified value using this as the oscillation capacitance, but the oscillation frequency varies slightly depending on the ambient temperature. To do. This state is called non-TCXO mode.
  • the oscillation circuit 20 is operated in this non-TCXO mode at room temperature (generally room temperature: 25 ° C), and the temperature characteristics are accurately adjusted to the specified oscillation frequency by adjusting the thickness of the electrode film of the crystal piece 15.
  • room temperature generally room temperature: 25 ° C
  • the non-TCXO mode signal may be input from the outside, or provided with a memory circuit as will be described later, and may be generated (high level) when the storage state is in a predetermined state.
  • the non-TCXO mode is set when the non-TCXO mode signal is low level “0”.
  • the high level is "1”
  • TCXO mode is set.
  • FIG. 2 is a block circuit diagram showing the configuration of the second embodiment of the temperature compensated oscillator according to the present invention.
  • the temperature compensated oscillator of the second embodiment is slightly different from the oscillation circuit 20 of the first embodiment described above in the configuration of the oscillation circuit 2 (, and the common connection terminals of the voltage variable capacitors 23 and 24 are provided.
  • DC cut capacity (capacitor) Grounded via Ce, and the source terminal and drain terminal of switch element 2 similar to switch element 1 are connected to both terminals of the DC cut capacity Ce, and its gate terminal In this case, a signal obtained by inverting the non-TCXO mode signal through the inverter 5 is applied.
  • the switch element 1 when the non-TCXO mode signal is at a high level, the switch element 1 is in a conductive state (ON) and the switch element 2 is in a non-conductive (OFF) state.
  • a voltage signal which is a temperature compensation signal, is applied to both terminals of the variable capacitors 23 and 24 so that both terminals have the same potential.
  • the voltage variable capacitors 23 and 24 both have a predetermined capacitance value, and the oscillation circuit 20 is in a non-TCXO mode in which the oscillation circuit 20 oscillates at a frequency close to a specified value by using it as an oscillation capacitance.
  • the switch element 1 When the non-TCXO mode signal becomes low level, the switch element 1 is turned off (OFF) and the switch element 2 is turned on (ON), so in the first embodiment, the non-TCXO mode
  • the voltage is the same as when the signal goes low, and the voltage signal that is the temperature compensation signal from the temperature compensation circuit 30 is given to each voltage variable capacitor 23, 24 via resistors Rl, R2, and the surroundings. Even if the temperature changes, the TCXO mode is controlled in which the oscillation frequency of the oscillation circuit 20 is controlled to be approximately constant.
  • the switch elements 1 and 2 controlled by the non-TCXO mode signal and the inverter 5 constitute control means for setting both terminals of the voltage variable capacitors 23 and 24 to the same potential. Yes.
  • FIG. 3 is a schematic cross-sectional view showing a structural example of a MOS variable capacitor which is an example of the voltage variable capacitor.
  • an N-well 42 is formed on a silicon P substrate 41, and an N-type rich layer 43 is formed in a ring shape near the surface. Furthermore, a circular or square insulating film 45 made of SiO is formed so as to overlap the inner peripheral portion of the N-type rich layer 43, and on that,
  • a circular or square metal film (aluminum, etc.) 46 is formed and the terminal G (gate terminal) is connected. Further, the terminal B (Balter terminal) is connected to the N-type rich layer 43.
  • a capacitor (capacitor) is constituted by the butter 44 and the metal film 46 sandwiching the insulating film 45, and the capacitance value changes according to the voltage Vg ⁇ Vb applied between the terminal G and the terminal B. .
  • FIG. 4 is a characteristic curve diagram showing the relationship between the applied voltage (Vg ⁇ Vb) of the MOS variable capacitor and the capacitance value.
  • Vg-Vb applied voltage
  • the capacitance value is variable. Many of the values are in the middle (midpoint).
  • MOS type variable with such characteristics If the capacitors are used as the voltage variable capacitors 23 and 24 in each of the above-described embodiments, the adjustment range of the increase / decrease of the capacitance value can be made evenly wide, and the frequency adjustment by the non-TCXO mode at room temperature can be performed between these capacitors. It will be performed in the oscillation state at the value, and control by the temperature compensation signal in the TCXO mode after that becomes easy.
  • this MOS type variable capacitor is insulated by the insulating film 45 and N-well 42 from the P substrate 41 and the terminals G and B, respectively. Therefore, it is suitable for use as the voltage variable capacitors 23 and 24 in the second embodiment described above and the third to sixth embodiments described later.
  • FIG. 5 is a schematic cross-sectional view showing another structural example of the MOS variable capacitor.
  • the N-well 42 in the MOS variable capacitor shown in FIG. 3 is omitted, and an annular P-type rich layer 47 is formed near the surface of the P substrate 41 instead of the N-type latch layer 43.
  • the terminal B is connected to the P-type rich layer 47 and connected.
  • this MOS type variable capacitor is used as the voltage variable capacitors 23 and 24 in the first embodiment described above and the seventh embodiment described later because the terminal B is grounded together with the P substrate 41. Suitable for
  • variable voltage capacitor in the oscillation circuit of the temperature compensated oscillator according to the present invention is not limited to such a MOS variable capacitor, and a variable capacitor diode or the like can also be used.
  • FIG. 6 is a circuit diagram showing a configuration of the third embodiment of the temperature compensated oscillator according to the present invention.
  • the temperature compensated oscillator according to the third embodiment includes a switch element 1 according to the second embodiment shown in FIG. 2 between the frequency control signal input point a of the oscillation circuit 20 ′ and the ground (Gnd). Connect switch element 2 from the common connection terminal of voltage variable capacitors 23 and 24 to another frequency control signal input point b via resistor R3 and ground, and also to its gate terminal in non-TCXO mode The signal is directly applied. Then, an external input frequency control signal (voltage signal) input from the external terminal 3 is applied to the frequency control signal input point b. When this external input frequency control signal is small, it is amplified by an amplifier circuit (not shown). Let it be input to the frequency control signal input point b.
  • the external input frequency control signal is externally input by the user, and the specified value of the oscillation frequency of the oscillation circuit 20 ′ can be arbitrarily shifted.
  • the voltage when the compensation value of the temperature compensation signal is zero and the voltage when the external input frequency control signal is not controlled are set to the middle (middle point) potential between the power supply voltage Vdd of the oscillation circuit 20 'and the ground potential, respectively. If this is done, the control range of both signals can be widened.
  • both terminals of the voltage variable capacitors 23 and 24 have the same potential, which is the same as in the non-TCXO mode.
  • FIG. 7 is a block circuit diagram showing the configuration of the main part of the fourth embodiment of the temperature compensated oscillator according to the present invention.
  • the temperature compensated oscillator according to the fourth embodiment is a bidirectional analog switch between two frequency control signal input points a and b of the oscillation circuit 20 ′ similar to the third embodiment described above.
  • Connect transmission gate 4 apply the non-TCXO mode signal as it is to the positive logic gate terminal, and apply the signal obtained by inverting the non-TCXO mode signal with inverter 5 to the negative logic gate terminal.
  • the temperature compensation circuit 30 outputs the frequency control signal input point a.
  • the temperature compensation signal (voltage signal) generated by the room temperature frequency correction signal generation circuit 50 is input to the frequency control signal input point b.
  • the temperature compensation signal is applied to the frequency control signal input point a
  • the room temperature frequency correction signal is applied to the frequency control signal input point b.
  • each of the voltage variable capacitors 23 and 24 has a capacitance value corresponding to the difference voltage, and the oscillation frequency of the oscillation circuit 20 ′ is controlled by the temperature compensation signal and the room temperature frequency correction signal.
  • This room temperature frequency correction signal is used to adjust the oscillation frequency of the oscillation circuit 20 'to the nominal value (13MHz, 19.2MHz, etc.) with high precision. Therefore, it is used to further correct the deviation from the nominal value at room temperature after the initial adjustment described above.
  • the voltage when the compensation value of the temperature compensation signal is zero and the voltage when the normal temperature frequency correction signal is not corrected are set to the middle (middle point) potential between the power supply voltage Vdd of the oscillation circuit and the ground potential If this is done, the correction range by both signals can be widened.
  • both terminals of the variable voltage capacitors 23 and 24 are also at the same potential, which is the same as in the non-TCXO mode.
  • FIG. 8 is a circuit diagram showing the configuration of the main part of the fifth embodiment of the temperature compensated oscillator according to the present invention.
  • the temperature-compensated oscillator of the fifth embodiment has almost the same configuration as that of the third embodiment (FIG. 6), but the external input frequency control input from the external terminal 3 to the frequency control signal input point b.
  • a signal (which may be an amplified signal) and a room temperature frequency correction signal generated by the room temperature frequency correction signal generation circuit 50 shown in the fourth embodiment described above
  • the signal synthesized by arithmetic circuit 6 is input.
  • the operation of the temperature compensated oscillator when the non-TCXO mode signal is at the same level is the same as the operation in the non-TCXO mode in the third embodiment described above.
  • each voltage variable capacitor 23, 24 has a capacitance value corresponding to the difference voltage, and the oscillation frequency of the oscillation circuit 20 'is controlled by the temperature compensation signal, the external input frequency control signal, and the room temperature frequency correction signal.
  • FIG. 9 is a block circuit diagram showing the configuration of the main part of the sixth embodiment of the temperature compensated oscillator according to the present invention.
  • the temperature compensated oscillator of the sixth embodiment has almost the same configuration as that of the fifth embodiment (FIG. 8) described above, but a frequency control signal is input to the frequency control signal input point b.
  • This frequency control signal may be the above-mentioned external input frequency control signal or room temperature frequency correction signal, or a voltage signal for controlling other frequencies, or a signal that is a combination of two or more! ! /
  • a memory circuit 7 and a NAND circuit 8 having three inputs are provided, and the output of the NAND circuit 8 is used as a non-TCXO mode signal. It is applied to each gate of switch elements 1 and 2.
  • the memory circuit 7 has a plurality (three in this example) of storage elements.
  • the storage state is other than “101”
  • the output of the NAND circuit 8 becomes “1”
  • the switch elements 1, 2 Are both turned on (ON).
  • both frequency control signal input points a and b are grounded and have the same potential, and Both terminals of the voltage variable capacitors 23 and 24 of the oscillation circuit have the same potential. Therefore, the oscillation circuit 20 ′ oscillates in the same state as in the non-TCXO mode in the fifth embodiment shown in FIG.
  • the memory circuit 7 and the three-input NAND circuit 8 in this embodiment can also be applied to create the non-TCXO mode signal of each embodiment described so far.
  • the output of the AND circuit only when the storage state of the multiple storage elements in the memory circuit 7 is "101"
  • the non-TCXO mode signal is set to “1”
  • both the switch elements 1 and 2 are turned on (ON)
  • the voltage variable capacitors 23 and 24 are controlled to have the same potential.
  • the “predetermined state” is when the storage state of the plurality of storage elements of the memory circuit 7 is “101”.
  • This “predetermined state” is not limited to these examples, and can be set to any combination of “1” and “0” with an arbitrary number of bits.
  • FIG. 10 is a circuit diagram showing a configuration of a main part of a seventh embodiment of the temperature compensated oscillator according to the present invention.
  • the temperature compensated oscillator of the seventh embodiment is almost the same as the first embodiment (FIG. 1) described above. Although it has the same configuration, a voltage signal obtained by synthesizing the temperature compensation signal, the room temperature frequency correction signal, and the external input frequency control signal by the adder circuits 9A and 9B is input to the frequency control signal input point a. As a result, in the TCXO mode in which the non-TCXO mode signal is low level “0”, the oscillation frequency of the oscillation circuit 20 is controlled by any of the temperature compensation signal, the room temperature frequency correction signal, and the external input frequency control signal. Can be controlled.
  • FIGS. 11 and 12 [Eighth embodiment: FIGS. 11 and 12]
  • FIG. 11 is a block diagram showing the configuration of the eighth embodiment of the temperature compensated oscillator according to the invention.
  • This temperature-compensated oscillator includes an oscillation circuit 20 (or 20 ′ Z or less, typically 20), a constant voltage circuit 60, and an output amplification circuit 70.
  • the output amplifier circuit 70 is a circuit that amplifies and outputs the oscillation output signal of the oscillation circuit 20, and the constant voltage circuit 60 is a circuit for keeping the drive voltage between the oscillation circuit 20 and the output amplification circuit 70 constant.
  • the constant voltage circuit 60 is configured, for example, as shown in FIG. 12, and includes four FETs and 1 between a power line 61 to which the power voltage Vdd is applied and a ground line 62 grounded.
  • a reference voltage generator 63 composed of resistors, an amplifier 64 composed of four FETs, and a series circuit including an output FET 65 and a feedback resistor 66 are connected to each other.
  • the feedback resistor 66 is provided with four taps in the middle, and each tap force is connected to the gate of the feedback FET of the amplifying unit 64 via one of the switch elements S1 to S4.
  • the switch elements S1 to S4 are controlled to be ONZOFF by the state (“0” or “1”) of each bit of the 4-bit output of the memory circuit 67.
  • the reference voltage generation unit 63 generates a reference voltage between the power supply voltage Vdd and the ground potential, and amplifies it by the amplification unit 64 to determine the connection point force between the output FET 65 and the feedback resistor 66. Voltage And supplied to the oscillation circuit 20 and the output amplification circuit 70.
  • the memory circuit 67 receives the constant voltage switching signal and the above-described non-TCXO mode signal. When the non-TCXO mode signal is "0", the memory circuit 67 selects multiple stored data by the constant voltage switching signal. The stored data can be rewritten. As a result, one of the switch elements S1 to S4 can be selectively turned on by the output data of the memory circuit 67, the feedback voltage can be controlled in 4 stages, and the output constant voltage can be switched to 4 types.
  • predetermined storage data is selected or rewritten from the plurality of storage data in the memory circuit 67.
  • the memory circuit 67 is selected. Based on the output data, only a predetermined switch element among the switch elements S1 to S4 is turned on, and the constant voltage to be output is controlled to a predetermined voltage value with the feedback voltage set in a predetermined stage.
  • the non-TCXO mode signal power is obtained when the storage state of the plurality of storage elements of the memory circuit 7 is in a predetermined state.
  • the constant voltage output from the constant voltage circuit 60 that is, the drive voltage of the oscillation circuit 20 is controlled to a predetermined voltage value.
  • the oscillation circuit 20 and the output amplifier circuit 70 can be driven by selecting a plurality of constant voltages, but the non-TCXO mode in which the oscillation frequency of the oscillation circuit 20 is initially adjusted at room temperature.
  • the oscillation circuit 20 and the output amplifier circuit 70 can always be operated with a predetermined drive voltage, and initial adjustment can always be performed under the same drive conditions.
  • the predetermined drive voltage is a constant voltage that is as close to the median value as possible among a plurality of constant voltages that can be output from the constant voltage circuit 60.
  • FIG. 13 is a block diagram showing the configuration of the ninth embodiment of the temperature compensated oscillator according to the present invention.
  • This temperature-compensated oscillator includes an oscillation circuit 20 (or 20 ′ Z or less, typically 20), a frequency divider circuit 80, a memory circuit 81, and an output amplifier circuit 70.
  • the oscillation output signal from the oscillation circuit 20 is frequency-divided by the frequency divider circuit 80 as necessary, and is amplified by the output amplifier circuit 70 and output.
  • the internal circuit of the oscillation circuit 20 and the control means for setting both terminals of the voltage control capacitor to the same potential by the input point of the temperature compensation signal and other frequency control signals and the non-TCXO mode signal may be those of any of the embodiments described above.
  • a constant voltage circuit 60 similar to that in the eighth embodiment described above may be provided.
  • the frequency dividing circuit 80 is a known variable frequency dividing circuit, and a plurality of bits output from the memory circuit 81
  • the memory circuit 81 receives the division ratio selection signal and the non-TCXO mode signal described above. When the non-TCXO mode signal power is '0', the memory circuit 81 stores a plurality of memory circuit 81 by the division ratio selection signal. Data can be selected or stored data can be rewritten, so that the output data of the memory circuit 81 can shift the frequency dividing ratio of the frequency dividing circuit 80 between a plurality of different frequency dividing ratios.
  • the non-TCXO mode signal is '1'
  • a predetermined stored data is selected or rewritten from the plurality of stored data of the memory circuit 81.
  • the memory circuit 81 The frequency division ratio of the frequency divider circuit 80 is controlled to a predetermined frequency division ratio based on the output data of the memory circuit 7.
  • the non-TCXO mode signal is generated by the memory circuit 7 and the NAND circuit 8 shown in FIG.
  • the non-TCXO mode signal power is 1 ", and the frequency dividing circuit 80 is controlled to a predetermined frequency dividing ratio.
  • the oscillation output signal output from the oscillation circuit 20 is divided by the frequency dividing circuit 80 with a desired frequency dividing ratio, and is amplified by the output amplifier circuit 70 and output. be able to.
  • the frequency divider circuit 80 can always be operated at a predetermined frequency division ratio and the initial adjustment can always be performed under the same driving conditions.
  • This predetermined frequency division ratio is set to 1 (no frequency division), for example.
  • the temperature-compensated oscillator of each of the above-described embodiments according to the present invention includes the initial adjustment and temperature compensation of the crystal piece that is the resonator of the oscillation circuit 20 (or 20 ′ Z or less, typically 20) during the assembly process. Adjustment work to create and store data It is possible to operate the oscillation circuit 20 in a state where the temperature compensation type oscillator is completed by mounting the crystal chip 15, the oscillation circuit 20, the temperature compensation circuit 30, etc. .
  • the non-TCXO mode signal is set to a high level "1".
  • the storage state of the plurality of storage elements of the memory circuit 7 is set to a predetermined state other than “101”.
  • both terminals of the voltage variable capacitor in the oscillation circuit 20 are set to the same potential, and the oscillation circuit 20 is oscillated with a predetermined oscillation capacitance while the temperature compensation function is disabled. Also disable other frequency control signals such as room temperature frequency correction signals and external input frequency control signals.
  • the constant voltage circuit 60 that makes the drive voltage of the oscillation circuit 20 constant
  • the constant voltage circuit 60 is controlled so as to drive the oscillation circuit 20 at a predetermined constant voltage.
  • the frequency dividing circuit 80 for dividing the signal oscillated by the oscillation circuit 20 is provided, the frequency dividing circuit 80 is controlled to operate at a predetermined frequency dividing ratio.
  • each memory element of the memory circuit 7 is generally in a state of “0” or all “1”. It means that it is in a predetermined state other than “.
  • the oscillation circuit 20 and the IC chip 16 constituting each circuit shown in each of the above-described embodiments are mounted, and then the crystal piece 15 which is a vibrator is mounted.
  • both terminals of the voltage variable capacitor in the oscillation circuit 20 are set to the same potential to invalidate the temperature compensation function, and simple generation While operating as a vibrator, while monitoring the oscillation frequency with a frequency counter or the like, the electrode film on the surface of the crystal piece 15 is removed or added, and the oscillation frequency is adjusted to a desired oscillation frequency fO.
  • a cover 13 is attached to the knock body 11 via a weld ring 12 and the crystal piece 15 is hermetically sealed.
  • the cage 10 After enabling the temperature compensation function by setting the storage state of each storage element of the memory circuit 7 shown in FIG. 9 to “101” other than the predetermined state, the cage 10 is exposed to a plurality of temperatures, Measure the oscillation frequency in the temperature state and measure the difference from the desired oscillation frequency fO.
  • temperature compensation data is created and written to the compensation data storage circuit (nonvolatile memory) of IC chip 16.
  • the temperature characteristics of the crystal piece can be accurately adjusted without being affected by the temperature compensation circuit, and the subsequent creation of compensation data and compensation thereof
  • the work to be stored in the data storage circuit can also be performed appropriately. Therefore, the adjustment process of the temperature compensated oscillator can be simplified and the accuracy can be improved.
  • the package 10 is kept at the reference temperature (room temperature), and the oscillation circuit 20 While monitoring the oscillation frequency with a frequency counter, etc., change the room temperature frequency correction signal to make fine adjustments so that the oscillation frequency matches the nominal value.
  • step 2 to maintain the package body 11 at the reference temperature (generally room temperature: 25 ° C), the package body 11 should be placed in a thermostatic bath and adjusted.
  • the reference temperature generally room temperature: 25 ° C
  • step 4 the knock 10 is exposed to multiple temperature states by changing the set temperature of the thermostat in sequence or by storing the packages 10 in multiple thermostats set at different temperatures.
  • the measured temperature range is the guaranteed operating temperature range of this oscillator, for example, an appropriate point between minus 40 ° C and plus 100 ° C (for example, about 11 points).
  • the adjustment of the reference frequency of the crystal piece 15 is performed by previously depositing a metal film such as silver on the surface of the crystal piece 15 so that the resonance frequency is lower than the reference frequency. That water An ion gun is used for the electrode film on the surface of the crystal piece 15 to irradiate an ion beam or to perform sputter etching to decrease the mass of the electrode film little by little.
  • the film thickness of the metal film is formed so that the resonance frequency is higher than the reference frequency (thin), and a metal such as silver is further deposited on the electrode film on the surface of the crystal piece 15. And by increasing the mass of the electrode film little by little.
  • the temperature compensation data required to generate the temperature compensation signal (voltage signal) for making the difference zero is generated by the temperature compensation circuit 30, and the same as in the prior art shown in FIG. Write to the compensation data storage circuit (non-volatile memory) 31 in accordance with the temperature data.
  • the compensation data storage circuit non-volatile memory
  • a non-TCXO mode signal is generated based on the information stored in the memory circuit 7, and the voltage variable capacitors 23 and 24 of the oscillation circuit 20 ′ are connected to the same terminal.
  • the temperature compensation function is disabled by using a potential. For example, when the storage state of a plurality of storage elements of the memory circuit 7 is “101”, the force that makes the temperature compensation function effective by setting the non-TCXO mode signal to “0” is not limited to this.
  • the temperature compensation function may be enabled or disabled in the TCXO mode when the memory state of the element is in any state.
  • the number of digits of the stored data is also arbitrary.
  • the non-TCXO mode It is preferable to disable the temperature compensation function by setting the signal to “1” and enable the temperature compensation function by setting the non-TCX O mode signal to “0” when some other data is written.
  • memory element 7 is written with specific data such as “101”
  • the memory compensation state is set to non-TCXO mode and the temperature compensation function is disabled, and memory circuit 7 is identified with “101”.
  • the temperature compensation function may be enabled by entering the TCXO mode.
  • the temperature-compensated oscillator and the manufacturing method thereof according to the present invention can be applied to various temperature-compensated oscillators and the manufacture thereof, or are particularly frequently used in portable mobile communication devices such as mobile phones. It is extremely effective for improving the accuracy and diversification of ultra-compact temperature-compensated oscillators that use AT-cut quartz crystal as a resonator and the efficiency of initial adjustment of the oscillation frequency at room temperature in the manufacturing process. .

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

 電圧可変容量(23,24)を備えた発振回路(20)の近傍の温度を温度検出回路18によって検出し、その温度検知信号に基づいて温度補償回路(30)が温度補償信号として電圧信号を生成し、その電圧信号を電圧可変容量に(23,24)に与えることよって、発振回路20の発振周波数を略一定に保つ。しかし、非TCXOモード信号によってスイッチ素子(1)をONにすると、各電圧可変容量(23,24)はいずれも両端子が同電位(接地電位)にされて所定の容量になり、温度補償機能が無効になる。この状態で常温での初期周波数調整を行う。

Description

明 細 書
温度補償型発振器およびその製造方法
技術分野
[0001] 本発明は、周囲温度の変化に係わらず出力信号の周波数を略一定に保つようにし た温度補償型発振器に関し、特にその温度補償機能を無効状態にすることも可能に した温度補償型発振器とその製造方法に関する。
背景技術
[0002] 温度補償型発振器 (TCXO)は種々の分野で使用されているが、近年携帯電話機 等の携帯用移動通信機器に多用されている。この種の温度補償型発振器は一般に
、 10MHz帯の ATカット水晶片 (振動子)を振動源として発振回路を構成し、これに 温度補償回路を設け、 ATカット水晶片の 3次曲線の温度特性を打ち消すことにより 発振周波数を安定化させるようにした水晶発振器が多用されて ヽる。
[0003] この種の温度補償型発振器に対しては、発振出力信号の安定性とともに、小型軽 量化と低価格化とが求められている。これらの要求に対しては、いくつかのタイプの パッケージが知られている。例えば、パッケージ中に振動子となる水晶片 (圧電素子) と温度補償回路を構成する集積回路とを同室に実装するシングルタイプ、水晶片と 集積回路とを別々にパッケージングして張り合わせるダブルタイプ、中央の仕切りを 挟んで水晶片と集積回路とを表裏別室に実装する Hタイプなどである。
ここで、シングルタイプの表面実装用温度補償型発振器のパッケージ構成例を図 1 4に示す。
この温度補償型発振器は、ノ ッケージ本体 11と溶接リング 12とカバー 13とによつ てパッケージ (容器) 10を構成しており、その内部に水晶片 15と、後述する発振回路 および温度補償回路を構成する MOS型の IC (集積回路)チップ 16を同室に取り付 けて密封している。なお、パッケージ本体 11中に ICチップ 16の他にチップ容量等の 回路素子を実装する場合もある。
[0004] このような温度補償型発振器の回路構成は図 15に示すようになつている。発振回 路 20は、圧電素子である水晶片 15とインバータ 21と帰還抵抗 22とを並列に接続し 、その両接続点をそれぞれ直流カット容量 Cc, Cdと発振容量である電圧可変容量( 電圧制御型可変容量コンデンサ) 23, 24とを介して接地して、インバータ発振回路を 構成している。そして、インバータ 21の出力側の接続点から発振出力信号を出力端 子 26に出力する。
さらに、この発振回路 20における水晶片 15の近傍の温度状態を検出する温度検 出回路 18と、その温度検出回路 18からの温度検出信号に基いて発振回路 20の発 振周波数を略一定に保つように制御する温度補償回路 30とを設けて 、る。
[0005] その温度補償回路 30は、補償データを記憶する補償データ記憶回路 (不揮発性メ モリ) 31と、その補償データと温度検出回路 18からの温度検出信号とに基いて温度 補償信号として電圧信号を発生する DZA変換回路 32とからなる。そして、その電圧 信号を、発振回路 20に設けた抵抗 Rl, R2を介してそれぞれ各電圧可変容量 23, 2 4の非接地側の端子に印加し、その電圧に応じて各電圧可変容量 23, 24の容量を 変化させ、発振回路 20の発振周波数を制御して発振出力信号の周波数を略一定に 保つ。
[0006] このような温度補償型発振器において、水晶片 15および ICチップ 16内に形成され る発振回路 20は、製造上のバラツキ等によって、全てを完全に同一に作ることはでき ないため、それぞれ異なる温度 周波数特性を有してしまう。したがって、全ての発 振回路 20を同一の基準によって温度補償することはできない。そのため、個々の発 振回路毎に異なる補償データを作成して補償データ記憶回路 31に記憶させることが 必要になる。しかし、水晶片 15の特性のバラツキが大きいと補償しきれなくなるので、 予め水晶片 15の特性をできるだけ揃えるように調整する必要がある。
[0007] そのため、水晶片等の圧電素子の特性を調整する際には、発振回路を構成する IC チップは実装せず、ネットワークアナライザなどで外部力 圧電素子を共振させてそ の共振周波数をモニタし、その周波数が所望の値になるように圧電素子表面の電極 膜を除去または追加する調整方法がある。
しかし、この調整方法では、ノ^ケージに ICチップも実装して発振動作をさせた時 の発振周波数と、予め調整した共振周波数との間にずれが生じてしまうという問題が あった。し力も、調整ステップも多くなり、調整コストが余分に力かっていた。 [0008] このような問題を解決するため、パッケージ内に水晶片等の圧電素子と ICチップな どを実装して温度補償型発振器を構成した状態で、その発振回路を動作させて圧電 素子自体の温度特性を正確に調整できるようにし、且つその後の補償データの作成 とそれを補償データ記憶回路に記憶させる作業も、続けて適切に行なえるようにし、 調整工程の簡素化と高精度化を図れるようにした温度補償型発振器が提案されて!ヽ る (例えば、特許文献 1参照。 ) o
その温度補償型発振器は、温度補償回路の温度補償機能を有効状態にするか無 効状態にするかを選択する選択手段を設けたものであり、基準温度(常温)で発振周 波数が所望の周波数になるように圧電素子の電極膜を調整する際には、温度補償 機能を無効状態にして単純な発振器として動作させる。
[0009] 具体的には、温度補償回路の他に定電圧発生回路と 2組のトランスミッションゲート を用いた選択回路とを設け、温度補償機能を有効状態にするときは、温度補償回路 からの温度補償信号 (電圧信号)を発振回路の電圧可変容量に印カ卩してその容量を 温度に応じて制御し、温度補償機能を無効状態にするときは、定電圧発生回路から の定電圧を上記電圧可変容量に印力 tlしてその容量を所定値に固定するように、選択 回路のトランスミッションゲートを切り換えるようにして 、る。
特許文献 1 :特開 2003— 218636号公報 (第 4— 9頁、第 1図)
発明の開示
発明が解決しょうとする課題
[0010] し力しながら、このような温度補償型発振器では、温度補償回路の他に温度補償回 路による温度補償機能を無効状態にするための専用の定電圧発生回路や発振回路 の電圧可変容量に印加する電圧信号を切り換えるための選択回路を設ける必要が めつに。
[0011] 本発明はこのような問題を解決するためになされたものであり、温度補償回路によ る温度補償機能を無効状態にするための専用の定電圧発生回路を不要にし、無効 状態と有効状態の切り換えも簡単に行えるようにして、常温での初期周波数調整を 容易且つ確実に行えるようにし、コスト低減も図ることを共通の目的とする。
さらに、発振周波数のより高精度な調整や、発振回路の電源電圧の調整、用途に 応じた発振周波数の変更、あるいはユーザによる発振周波数の調整なども行えるよう にし、その場合にも常に同一条件で初期の周波数調整作業を行えるようにすることも 他の目的とする。
課題を解決するための手段
[0012] この発明による温度補償型発振器は、電圧可変容量を備えた発振回路と、その発 振回路近傍の温度を検出する温度検出回路と、この温度検知回路の情報に基づい て温度補償信号として電圧信号を生成する温度補償信号生成回路とを有し、上記電 圧信号が上記電圧可変容量に与えられることよって発振周波数を略一定に保つ構 成の温度補償型発振器であって、上記の目的を達成するため、上記電圧可変容量 の両端子を同電位にする制御手段を設けたことを特徴とする。
[0013] 上記制御手段は、上記電圧可変容量の両端子のいずれにも上記温度補償信号で ある電圧信号を印加することによって上記電圧可変容量の両端子を同電位にするこ とがでさる。
あるいは、上記制御手段は、上記電圧可変容量の両端子のいずれも接地電位に することによって上記電圧可変容量の両端子を同電位にすることもできる。
上記電圧可変容量は、両端子が同電位の状態では可変容量範囲の略中間の容 量値になる特性を有するのが望まし ヽ。
[0014] これらの温度補償型発振器が、メモリ回路を有し、上記制御手段は、そのメモリ回 路に記憶している情報によって上記電圧可変容量の両端子を同電位にする制御を 行うようにしてもよい。
上記メモリ回路が複数の記憶素子を有し、上記制御手段は、その複数の記憶素子 の記憶状態が所定の状態にあるとき、上記電圧可変容量の両端子を同電位にする 制御を行うようにしてもよい。
[0015] この温度補償型発振器において、上記発振回路の駆動電圧を一定に保っための 定電圧回路を有し、その定電圧回路は、上記複数の記憶素子の記憶状態が上記所 定の状態にあるとき、上記駆動電圧を所定の電圧値にする制御を行うようにしてもよ い。
これらの温度補償型発振器において、上記発振回路によって発振された信号を分 周するための分周回路を有し、その分周回路は、上記複数の記憶素子の記憶状態 が上記所定の状態にあるとき、所定の分周比にする制御を行うようにするとよい。
[0016] また、これらの温度補償型発振器にお!ヽて、電圧信号による周波数制御信号を入 力するための外部端子を備え、その外部端子から入力する周波数制御信号又はそ の周波数制御信号を増幅した信号も上記電圧可変容量に与えられるようにすること ができる。
あるいは、発振周波数の常温での偏差を補正するための電圧信号である常温周波 数補正信号を生成する常温周波数補正信号生成回路を備え、その常温周波数補正 信号も上記電圧可変容量に与えられるようにしてもょ ヽ。
[0017] さらに、上記周波数制御信号を入力するための外部端子と、常温周波数補正信号 を生成する常温周波数補正信号生成回路とを設け、上記電圧可変容量に与える上 記電圧信号を、上記温度補償信号と、上記周波数制御信号および上記常温周波数 補正信号の一方又は両方とが合成された信号にすることもできる。
[0018] この発明による温度補償型発振器の製造方法は、上記温度補償型発振器の組み 立て工程中、常温における上記発振回路の発振周波数調整作業は、上記電圧可変 容量の両端子を同電位にして上記発振回路を駆動させた状態で、その発振回路に 備えた発振子の電極の厚みを調整することによって行うことを特徴とする。
[0019] また、上記メモリ回路を有する温度補償型発振器の組み立て工程中、常温におけ る上記発振回路の発振周波数調整作業の前には上記メモリ回路の書き込みを行わ ず、上記複数の記憶素子の記憶状態が上記所定の状態になるようにし、上記発振周 波数調整作業は、上記電圧可変容量の両端子を同電位にして上記発振回路を駆動 させた状態で、その発振回路に備えた発振子の電極の厚みを調整することによって 行うようにするとよい。
発明の効果
[0020] この発明による温度補償型発振器は、温度補償機能を無効状態にするために専用 の定電圧発生回路を必要とせず、無効状態と有効状態の切換えも簡単に行うことが でき、その製造工程において、常温での発振周波数の初期調整作業を容易且つ確 実に行うことができ、し力もコスト低減を図ることができる。 さらに、発振周波数のより高精度な調整や、発振回路の電源電圧の調整、用途に 応じた発振周波数の変更、あるいはユーザによる発振周波数の調整なども行えるよう にすることが可能であり、その場合にも常に同一条件で初期の周波数調整作業を行 うことができる。
図面の簡単な説明
[図 1]本発明による温度補償型発振器の第 1の実施形態の構成を示すブロック回路 図である。
[図 2]本発明による温度補償型発振器の第 2の実施形態の構成を示すブロック回路 図である。
[図 3]本発明に使用する電圧可変容量の一例である MOS型可変容量の構造例を示 す模式的な断面図である。
[図 4]その MOS型可変容量の印加電圧と容量値との関係を示す特性曲線図である
[図 5]MOS型可変容量の他の構造例を示す模式的な断面図である。
[図 6]本発明による温度補償型発振器の第 3の実施形態の構成を示す回路図である
[図 7]本発明による温度補償型発振器の第 4の実施形態の要部の構成を示すブロッ ク回路図である。
[図 8]本発明による温度補償型発振器の第 5の実施形態の要部の構成を示す回路 図である。
[図 9]本発明による温度補償型発振器の第 6の実施形態の要部の構成を示すブロッ ク回路図である。
[図 10]本発明による温度補償型発振器の第 7の実施形態の要部の構成を示す回路 図である。
[図 11]本発明による温度補償型発振器の第 8の実施形態の構成を示すブロック図で ある。
[図 12]図 11における定電圧回路の構成例を回路図である。
[図 13]本発明による温度補償型発振器の第 9の実施形態の構成を示すブロック図で ある。
[図 14]温度補償型発振器のパッケージ構成例を示す概略断面図である。
[図 15]従来技術の温度補償型発振器の構成例を示すブロック回路図である。
符号の説明
[0022] 1 2 :スィッチ素子 (MOS型トランジスタ) 3 外部端子
4 トランスミッションゲート(双方向アナログスィッチ) 5 インバータ
6 加算回路 7 メモリ回路 8 NAND回路
9A, 9B 加算回路 10 ノ ッケージ (容器) 11 パッケージ本体
12 溶接リング 13 カバー 15 水晶片 (圧電素子)
16 MOS型の IC (集積回路)チップ 18 温度検出回路
20, 20' 発振回路 21 インバータ 22 帰還抵抗
26 出力端子 30 温度補償回路 31 補償データ記憶回路
32 DZA変換回路 41 シリコンの P基板 42 Nゥエル
43 N型リッチ層 44 バルタ 45 絶縁膜(SiO )
2
46 金属膜 47 P型リッチ層 50 常温周波数補正信号生成回路
60 定電圧回路 61 電源ライン 62 接地ライン
63 基準電圧生成部 64 増幅部 65 出力 FET
66 帰還抵抗 67 メモリ回路 70 出力増幅回路
80 分周回路 81 メモリ回路
Cc, Cd, Ce 直流カット容量(コンデンサ)
Rl, R2, R3 抵抗 S1〜S4 スィッチ素子
発明を実施するための最良の形態
[0023] 以下、この発明を実施するための最良の形態を図面に基づいて具体的に説明する
。なお、以下の各図において、前述した図 15の各部と対応する部分には同一の符号 を付してあり、それらの説明は簡単にする。
[0024] 〔第 1の実施形態:図 1〕
図 1は、本発明による温度補償型発振器の第 1の実施形態の構成を示すブロック 回路図である。 この図 1に示す温度補償型発振器は、図 15に示した従来技術と同様に、水晶片 1 5とインバータ 21と帰還抵抗 22とを並列に接続し、その両接続点をそれぞれ直流力 ット容量 (コンデンサ) Cc, Cdと発振容量である電圧可変容量 23, 24を介して接地( Gnd)に接続した発振回路 20と、その水晶片 15の近傍の温度状態をサーミスタ等に よって検出する温度検出回路 18と、その温度検出回路 18からの温度検出信号に基 V、て発振回路 20の発振周波数を略一定に保つように制御する温度補償回路 30とを 設けている。
[0025] その温度補償回路 30は、図 15に示した従来技術と同様に、補償データ記憶回路( 不揮発性メモリ)と、その補償データと温度検出回路 18からの温度検出信号とに基い て温度補償信号 (電圧信号)を発生する DZA変換回路とを有している。そして、その 電圧信号を発振回路 20の周波数制御信号入力点 aから抵抗 Rl, R2を介して、それ ぞれ各電圧可変容量 23, 24の非接地側の端子に印加して与え、その電圧に応じて 各電圧可変容量 23, 24の容量値を変化させる。それによつて、発振回路 20の発振 周波数を制御して出力端子 26に出力する発振出力信号の周波数を略一定に保つ。
[0026] 本発明による温度補償型発振器は、各電圧可変容量 23, 24の両端子を同電位に する制御手段を設けているが、この図 1に示す第 1の実施形態では、その制御手段と して MOS型トランジスタによるスィッチ素子 1を設け、そのソース端子とドレイン端子と をそれぞれ周波数制御信号入力点 aと接地 (Gnd)とに接続し、ゲート端子に非 TCX Oモード信号 (温度補償回路 30による温度補償機能を無効にする信号)を入力させ るようにしている。
[0027] そして、非 TCXOモード信号がハイレベルのときは、スィッチ素子 1が導通状態(O N)になり、周波数制御信号入力点 aが接地されるため、電圧可変容量 23, 24の両 端子はいずれも接地電位と同電位になる。それによつて、電圧可変容量 23, 24はい ずれもバラツキなく所定の容量値になり、それを発振容量として発振回路 20は規定 値に近い周波数で発振するが、その発振周波数は周囲温度によって若干変動する 。この状態を非 TCXOモードという。
[0028] 常温 (一般に室温: 25°C)で発振回路 20をこの非 TCXOモードで動作させ、水晶 片 15の電極膜の厚さを調整して規定の発振周波数になるように温度特性を正確に 調整することができ、且つその後周囲温度を段階的に変化させて補償データを作成 し、それを温度補償回路 30の補償データ記憶回路に記憶させる作業も続けて容易 に行なうことができる。この周波数調整作業にっ 、ては後で詳述する。
[0029] 非 TCXOモード信号がローレベルになると、スィッチ素子 1が非導通状態(OFF)に なり、周波数制御信号入力点 aが接地されなくなり、前述したように温度補償回路 30 からの温度補償信号 (電圧信号)が、抵抗 Rl, R2を介して各電圧可変容量 23, 24 に与えられ、周囲温度が変化しても発振回路 20の発振周波数が略一定になるように 制御される。この状態を TCXOモードという。
非 TCXOモード信号は、外部から入力させるか、内部に後述するようなメモリ回路 を設けて、その記憶状態が所定の状態にあるときに発生する (ハイレベルになる)よう にしてもよい。
[0030] なお、スィッチ素子 1のゲート端子がローレベルのときに ONになるタイプの場合は、 非 TCXOモード信号がローレベルのときに非 TCXOモードになり、非 TCXOモード 信号がハイレベルのときに TCXOモードになる。
以下の各実施形態においても、各スィッチ素子やトランスミッションゲートがローレ ベル" 0"のときに ONになるタイプの場合は、非 TCXOモード信号がローレベル" 0" のときに非 TCXOモードになり、ハイレベル" 1 "のときに TCXOモードになる。
[0031] 〔第 2の実施形態:図 2〕
図 2は、本発明による温度補償型発振器の第 2の実施形態の構成を示すブロック 回路図である。
この第 2の実施形態の温度補償型発振器は、その発振回路 2( の構成が上述し た第 1の実施形態の発振回路 20と若干相違し、電圧可変容量 23, 24の共通接続端 子を直流カット容量 (コンデンサ) Ceを介して接地している。そして、その直流カット容 量 Ceの両端子にスィッチ素子 1と同様なスィッチ素子 2のソース端子とドレイン端子と を接続し、そのゲート端子には非 TCXOモード信号をインバータ 5を通して反転した 信号を印加するようにして 、る。
[0032] この第 2の実施形態では、非 TCXOモード信号がハイレベルのときは、スィッチ素 子 1が導通状態 (ON)になり、スィッチ素子 2は非導通 (OFF)状態になるので、電圧 可変容量 23, 24の両端子にはいずれも温度補償信号である電圧信号が印加されて 両端子が同電位になる。それによつて、電圧可変容量 23, 24はいずれも所定の容 量値になり、それを発振容量として発振回路 20は規定値に近い周波数で発振する 非 TCXOモードとなる。
[0033] 非 TCXOモード信号がローレベルになると、スィッチ素子 1が非導通状態(OFF)に なり、スィッチ素子 2が導通状態 (ON)になるので、前述の第 1の実施形態において 非 TCXOモード信号がローレベルになったときと同じ状態になり、温度補償回路 30 力ゝらの温度補償信号である電圧信号が、抵抗 Rl, R2を介して各電圧可変容量 23, 24に与えられ、周囲温度が変化しても発振回路 20の発振周波数が略一定になるよ うに制御される TCXOモードになる。
したがって、この第 2の実施形態では非 TCXOモード信号によって制御されるスイツ チ素子 1, 2とインバータ 5とによって、電圧可変容量 23, 24の両端子を同電位にす る制御手段を構成している。
[0034] 〔電圧可変容量の具体例:図 3〜図 5〕
ここで、本発明に使用する電圧可変容量 23, 24の具体例について説明する。 図 3は、その電圧可変容量の一例である MOS型可変容量の構造例を示す模式的 な断面図である。
この MOS型可変容量は、シリコンの P基板 41に Nゥエル 42を形成し、その表面付 近に N型リッチ層 43を環状に形成している。さらに、その N型リッチ層 43の内周部に オーバラップするように SiOによる円形もしくは方形の絶縁膜 45を形成し、その上に
2
円形もしくは方形の金属膜 (アルミニウム等) 46を形成して端子 G (ゲート端子)を接 続している。また、 N型リッチ層 43には端子 B (バルタ端子)を接続している。そして、 絶縁膜 45を挟むバルタ 44と金属膜 46とによって容量 (コンデンサ)を構成しており、 その容量値は端子 Gと端子 Bとの間に印加される電圧 Vg—Vbに応じて変化する。
[0035] 図 4は、その MOS型可変容量の印加電圧 (Vg— Vb)と容量値との関係を示す特 性曲線図である。この特性曲線に示されるように、端子 G— B間の印加電圧 (Vg—V b)が 0V、すなわち MOS型可変容量の端子 Gと端子 Bが同電位のときに、その容量 値が可変幅の略中間(中点)の値になるものが多い。このような特性の MOS型可変 容量を前述した各実施形態における電圧可変容量 23, 24として使用すれば、容量 値の増減の調整幅を均等に広くとることができ、常温での非 TCXOモードによる周波 数調整をこの中間の容量値での発振状態で行うことになり、その後の TCXOモード での温度補償信号による制御が容易になる。
[0036] また、この MOS型可変容量は、端子 Gと端子 Bとがそれぞれ接地される P基板 41 カゝら絶縁膜 45と Nゥエル 42とにより絶縁されており、各端子に任意の電圧信号を印 加することができるので、前述した第 2の実施形態や後述する第 3〜第 6の実施形態 における電圧可変容量 23, 24として使用するのに適している。
[0037] 図 5は、 MOS型可変容量の他の構造例を示す模式的な断面図である。この MOS 型可変容量は、図 3に示した MOS型可変容量における Nゥエル 42を省略し、 N型リ ツチ層 43に代えて P基板 41の表面付近に直接環状の P型リッチ層 47を形成し、その P型リッチ層 47に端子 Bを接続して 、る。
[0038] 但し、この MOS型可変容量は端子 Bが P基板 41と共に接地されるので、前述した 第 1の実施形態や後述する第 7の実施形態における電圧可変容量 23, 24として使 用するのに適している。
なお、この発明による温度補償型発振器の発振回路における電圧可変容量はこの ような MOS型可変容量に限るものではなぐ可変容量ダイオードなども使用すること ができる。
[0039] 〔第 3の実施形態:図 6〕
図 6は、本発明による温度補償型発振器の第 3の実施形態の構成を示す回路図で ある。
この第 3の実施形態の温度補償型発振器は、図 2に示した第 2の実施形態におけ るスィッチ素子 1を発振回路 20' の周波数制御信号入力点 aと接地 (Gnd)との間に 接続し、スィッチ素子 2を電圧可変容量 23, 24の共通接続端子から抵抗 R3を介した もう一つの周波数制御信号入力点 bと接地との間に接続し、そのゲート端子にも非 T CXOモード信号を直接印加するようにしている。そして、周波数制御信号入力点 bに 、外部端子 3から入力する外部入力周波数制御信号 (電圧信号)を印加する。この外 部入力周波数制御信号が小さい場合には、図示しない増幅回路によって増幅して 周波数制御信号入力点 bに入力させるようにしてもょ 、。
[0040] この温度補償型発振器は、非 TCXOモード信号がハイレベルのときには、スィッチ 素子 1, 2がいずれも導通状態 (ON)になるので、周波数制御信号入力点 aと bとがい ずれも接地電位になるので、電圧可変容量 23, 24の両端子も接地電位で同電位に なり、発振回路 2( は第 1の実施形態における発振回路 20が非 TCXOモードの場 合と同じ状態で発振する。
[0041] 非 TCXOモード信号がローレベルになると、スィッチ素子 1, 2がいずれも非導通状 態 (OFF)になるので、周波数制御信号入力点 aには温度補償信号が、周波数制御 信号入力点 bには外部入力周波数制御信号がそれぞれ印加され、その差電圧が各 電圧可変容量 23, 24の両端子間に印加される。そのため、各電圧可変容量 23, 24 はその差電圧に応じた容量値になり、発振回路 2( の発振周波数が温度補償信号 と外部入力周波数制御信号とによって制御されることになる。
[0042] 外部入力周波数制御信号はユーザによって外部力 入力され、発振回路 20' の 発振周波数の規定値を任意にシフトさせることができる。温度補償信号の補償値ゼロ のときの電圧と、外部入力周波数制御信号の非制御時の電圧とをそれぞれ発振回 路 20' の電源電圧 Vddと接地電位との中間(中点)の電位にしておけば、両信号に よる制御範囲を広くとることができ、両信号の電位が同じときは各電圧可変容量 23, 24の両端子も同電位になり、非 TCXOモードの状態と同じになる。
発振回路 2( の実際の発振周波数を検出して、所望の周波数との誤差に応じて 外部入力周波数制御信号をフィードバック制御することもできる。
[0043] 〔第 4の実施形態:図 7〕
図 7は、本発明による温度補償型発振器の第 4の実施形態の要部の構成を示すブ ロック回路図である。
この第 4の実施形態の温度補償型発振器は、上述した第 3の実施形態と同様な発 振回路 20' の 2つの周波数制御信号入力点 aと bとの間に、双方向アナログスィッチ であるトランスミッションゲート 4を接続し、その正論理ゲート端子に非 TCXOモード信 号をそのまま印加し、負論理ゲート端子に非 TCXOモード信号をインバータ 5で反転 した信号を印加する。そして、周波数制御信号入力点 aには温度補償回路 30が出力 する温度補償信号を入力させ、周波数制御信号入力点 bには、常温周波数補正信 号生成回路 50によって生成された常温周波数補正信号 (電圧信号)を入力させる。
[0044] この温度補償型発振器は、非 TCXOモード信号がハイレベルのときには、トランスミ ッシヨンゲート 4が導通状態 (ON)になり、周波数制御信号入力点 aと bとが短絡され るので、温度補償信号と常温周波数補正信号は同電位になり、発振回路 20' の電 圧可変容量 23, 24の両端子も同電位になる。したがって、図 2に示した第 2の実施 形態における非 TCXOモードの場合と同じ状態で発振回路 20' が発振する。
[0045] 非 TCXOモード信号がローレベルになると、トランスミッションゲート 4が非導通状態
(OFF)になるので、周波数制御信号入力点 aには温度補償信号が、周波数制御信 号入力点 bには常温周波数補正信号がそれぞれ印加され、その差電圧が各電圧可 変容量 23, 24の両端子間に印加される。そのため、各電圧可変容量 23, 24はその 差電圧に応じた容量値になり、発振回路 20' の発振周波数が温度補償信号と常温 周波数補正信号とによって制御されることになる。
[0046] この常温周波数補正信号は、発振回路 20' の発振周波数を公称値(13MHz、 1 9. 2MHzなど)に厳密にあわせるように高精度に調整する必要がある場合、水晶片 15の電極の膜厚調整だけでは対応できな 、ため、前述した初期調整後に常温での 公称値に対する偏差をさらに補正するために使用する。この場合も、温度補償信号 の補償値ゼロのときの電圧と、常温周波数補正信号の非補正時の電圧とをそれぞれ 発振回路 の電源電圧 Vddと接地電位との中間(中点)の電位にしておけば、両 信号による補正範囲を広くとることができ、両信号の電位が同じときは各電圧可変容 量 23, 24の両端子も同電位になり、非 TCXOモードの状態と同じになる。
[0047] 〔第 5の実施形態:図 8〕
図 8は、本発明による温度補償型発振器の第 5の実施形態の要部の構成を示す回 路図である。
この第 5の実施形態の温度補償型発振器は、前述した第 3の実施形態(図 6)と殆ど 同じ構成であるが、周波数制御信号入力点 bに、外部端子 3から入力する外部入力 周波数制御信号 (それを増幅した信号でもよい)と、上述した第 4の実施形態に示し た常温周波数補正信号生成回路 50によって生成される常温周波数補正信号とをカロ 算回路 6によって合成した信号を入力させる。
[0048] 非 TCXOモード信号カ 、ィレベルのときのこの温度補償型発振器の動作は、前述 した第 3の実施形態における非 TCXOモードの動作と同じである。
非 TCXOモード信号がローレベルになると、スィッチ素子 1, 2がいずれも非導通状 態 (OFF)になるので、周波数制御信号入力点 aには温度補償信号が、周波数制御 信号入力点 bには外部入力周波数制御信号と常温周波数補正信号との合成信号が それぞれ印加され、その差電圧が各電圧可変容量 23, 24の両端子間に印加される 。そのため、各電圧可変容量 23, 24はその差電圧に応じた容量値になり、発振回路 20' の発振周波数が温度補償信号と外部入力周波数制御信号および常温周波数 補正信号とによって制御されることになる。
[0049] この実施形態によれば、常温周波数補正信号による常温における規定周波数の偏 差の補正と、使用時における温度補償および外部入力周波数制御信号による発振 周波数のシフトを行うことができる。
[0050] 〔第 6の実施形態:図 9〕
図 9は、本発明による温度補償型発振器の第 6の実施形態の要部の構成を示すブ ロック回路図である。
この第 6の実施形態の温度補償型発振器は、上述した第 5の実施形態(図 8)と殆ど 同じ構成であるが、周波数制御信号入力点 bには周波数制御信号を入力する。この 周波数制御信号は、前述した外部入力周波数制御信号または常温周波数補正信 号、あるいはそれ以外の周波数を制御するための電圧信号、それらの 2つ以上を合 成した信号の!/ヽずれでもよ!/、。
[0051] また、非 TCXOモード信号を作るためにメモリ回路 7と 3入力(中央の入力端子は負 論理)の NAND回路 8とを設け、その NAND回路 8の出力を非 TCXOモード信号と してスィッチ素子 1, 2の各ゲートに印加するようにしている。
メモリ回路 7は複数 (この例では 3個)の記憶素子を有し、その記憶状態が" 101"以 外の状態のときには、 NAND回路 8の出力が" 1"になり、スィッチ素子 1, 2がいずれ も導通状態 (ON)になる。
[0052] そのため、周波数制御信号入力点 aと bとがいずれも接地されて同電位になり、発 振回路 の電圧可変容量 23, 24の両端子も同電位になる。したがって、図 8に 示した第 5の実施形態における非 TCXOモードの場合と同じ状態で発振回路 20' が発振する。
メモリ回路 7に何も書き込んでいない初期状態では、複数の記憶素子は全て" 0"ま たは全て" 1"の状態になっているのが普通であり、このような記憶状態を「所定の状 態」とすると、メモリ回路 7の複数の記憶素子の記憶状態が「所定の状態」にあるとき に、電圧可変容量 23, 24の両端子を同電位にする制御を行うことになる。
[0053] メモリ回路 7の複数の記憶素子の記憶状態が" 101"になると、 NAND回路 8の出 力が" 0"になり、スィッチ素子 1, 2がいずれも非導通状態 (OFF)になるので、周波 数制御信号入力点 aには温度補償信号が、周波数制御信号入力点 bには前述した 周波数制御信号がそれぞれ印加され、その差電圧が各電圧可変容量 23, 24の両 端子間に印加される。そのため、各電圧可変容量 23, 24はその差電圧に応じた容 量値になり、発振回路 20' の発振周波数が温度補償信号と前述の周波数制御信号 とによって制御されること〖こなる。
[0054] この実施形態におけるメモリ回路 7と 3入力の NAND回路 8とは、これまでに説明し てきた各実施形態の非 TCXOモード信号を作るためにも適用できる。
また、 NAND回路 8を 3入力(中央の入力端子は負論理)の AND回路に代えること によって、メモリ回路 7の複数の記憶素子の記憶状態が" 101"になっているときだけ AND回路の出力すなわち非 TCXOモード信号が "1 "になり、スィッチ素子 1, 2をい ずれも導通状態 (ON)にして、電圧可変容量 23, 24の両端子を同電位にする制御 を行うようにすることができる。この場合は、メモリ回路 7の複数の記憶素子の記憶状 態が" 101 "のときが「所定の状態」である。
この「所定の状態」はこれらの例に限るものではなぐ任意のビット数で" 1"ど' 0"と の任意の組み合わせに設定することができる。
[0055] 〔第 7の実施形態:図 10〕
図 10は、本発明による温度補償型発振器の第 7の実施形態の要部の構成を示す 回路図である。
この第 7の実施形態の温度補償型発振器は、前述した第 1の実施形態(図 1)と殆ど 同じ構成であるが、周波数制御信号入力点 aに、温度補償信号と常温周波数補正信 号と外部入力周波数制御信号とを加算回路 9A, 9Bによって合成した電圧信号を入 力する。これによつて、非 TCXOモード信号がローレベル" 0"の TCXOモードでは、 温度補償信号と常温周波数補正信号と外部入力周波数制御信号とのいずれによつ ても、発振回路 20の発振周波数を制御することができる。
なお、周波数制御信号入力点 aへの入力、温度補償信号と、常温周波数補正信号 または外部入力周波数制御信号の ヽずれか一方とを合成した電圧信号にしてもょ 、
[0056] 〔第 8の実施形態:図 11と図 12〕
図 11は、本発明による温度補償型発振器の第 8の実施形態の構成を示すブロック 図である。この温度補償型発振器は、発振回路 20 (または 20' Z以下代表して 20と する)と定電圧回路 60と出力増幅回路 70とを備えている。出力増幅回路 70は発振 回路 20の発振出力信号を増幅して出力する回路であり、定電圧回路 60は発振回路 20と出力増幅回路 70との駆動電圧を一定に保っための回路である。
なお、この図 11では発振回路 20の内部回路、および温度補償信号とその他の周 波数制御信号の入力点、非 TCXOモード信号により電圧制御容量の両端子を同電 位にする制御手段等の図示を省略している力 それらは前述したいずれの実施形態 のものを用いてもよい。
[0057] 定電圧回路 60は、例えば、図 12に示すように構成されており、電源電圧 Vddが印 カロされる電源ライン 61と接地された接地ライン 62との間に 4個の FETと 1個の抵抗か らなる基準電圧生成部 63と、 4個の FETからなる増幅部 64と、出力 FET65と帰還抵 抗 66とによる直列回路とが接続されて設けられている。
帰還抵抗 66には途中に 4ケ所のタップが設けられ、その各タップ力もそれぞれスィ ツチ素子 S1〜S4のいずれかを介して増幅部 64の帰還用 FETのゲートに接続され ている。そのスィッチ素子 S1〜S4は、メモリ回路 67の 4ビットの出力の各ビットの状態 ("0"か" 1")によって ONZOFFが制御される。
[0058] 基準電圧生成部 63は電源電圧 Vddと接地電位との間の基準電圧を生成し、それ を増幅部 64で帰還増幅して、出力 FET65と帰還抵抗 66との接続点力ゝら定電圧を出 力し、発振回路 20と出力増幅回路 70とに供給する。
メモリ回路 67には定電圧切換信号と前述した非 TCXOモード信号とが入力されて おり、非 TCXOモード信号が" 0"のときは定電圧切換信号によってメモリ回路 67の複 数の記憶データを選択するか記憶データを書換えることができる。それによつて、メモ リ回路 67の出力データによりスィッチ素子 S1〜S4のいずれかを選択的に ON状態 にし、帰還電圧を 4段階に制御して、出力する定電圧を 4種類に切り換えることができ る。
[0059] 非 TCXOモード信号カ '1"のときは、メモリ回路 67の複数の記憶データのうち予め 決められた記憶データを選択するかその記憶データに書換える。それによつて、メモ リ回路 67の出力データによりスィッチ素子 S1〜S4のうちの所定のスィッチ素子だけ を ON状態にし、帰還電圧を所定の段階にして出力する定電圧を所定の電圧値に制 御する。
非 TCXOモード信号を図 9に示したメモリ回路 7と NAND回路 8とによって生成する 場合には、メモリ回路 7の複数の記憶素子の記憶状態が所定の状態にあるとき、非 T CXOモード信号力 になり、定電圧回路 60が出力する定電圧すなわち発振回路 20の駆動電圧を所定の電圧値に制御することになる。
[0060] この実施形態によれば、発振回路 20および出力増幅回路 70を複数の定電圧を選 択して駆動することができるが、発振回路 20の発振周波数を常温で初期調整する非 TCXOモードのときは、発振回路 20および出力増幅回路 70を常に所定の駆動電圧 で動作させることができ、常に同じ駆動条件で初期調整を行うことができる。
この所定の駆動電圧は、定電圧回路 60が出力し得るそれぞれ電圧が異なる複数 の定電圧のうちのなるべく中央値に近 ヽ電圧の定電圧にするとよ 、。
[0061] 〔第 9の実施形態:図 13〕
図 13は、本発明による温度補償型発振器の第 9の実施形態の構成を示すブロック 図である。この温度補償型発振器は、発振回路 20 (または 20' Z以下代表して 20と する)と、分周回路 80およびメモリ回路 81と、出力増幅回路 70とを備えている。
そして、発振回路 20による発振出力信号を必要に応じて分周回路 80によって分周 し、出力増幅回路 70で増幅して出力する。 [0062] なお、この図 13でも発振回路 20の内部回路、および温度補償信号とその他の周 波数制御信号の入力点、非 TCXOモード信号により電圧制御容量の両端子を同電 位にする制御手段等の図示を省略している力 それらは前述したいずれの実施形態 のものを用いてもよい。さらに、前述した第 8の実施形態と同様な定電圧回路 60も設 けるようにしてもよい。
[0063] 分周回路 80は公知の可変分周回路であり、メモリ回路 81から出力される複数ビット
(この例では 4ビット)のデータによって所定の分周比(例えば、 1. 00や 0. 50など)に 制御される。そのメモリ回路 81には分周比選択信号と前述した非 TCXOモード信号 とが入力されており、非 TCXOモード信号力 '0"のときは分周比選択信号によってメ モリ回路 81の複数の記憶データを選択するか記憶データを書換えることができる。そ れによって、メモリ回路 81の出力データにより分周回路 80の分周比を複数の異なる 分周比の 、ずれかにすることができる。
[0064] 非 TCXOモード信号カ '1"のときは、メモリ回路 81の複数の記憶データのうち予め 決められた記憶データを選択するかその記憶データに書換える。それによつて、メモ リ回路 81の出力データにより分周回路 80の分周比を所定の分周比に制御する。 非 TCXOモード信号を図 9に示したメモリ回路 7と NAND回路 8とによって生成する 場合には、メモリ回路 7の複数の記憶素子の記憶状態が所定の状態にあるとき、非 T CXOモード信号力 1"になり、分周回路 80を所定の分周比に制御することになる。
[0065] この実施形態によれば、発振回路 20が出力する発振出力信号を分周回路 80によ つて所望の分周比で分周して、それを出力増幅回路 70で増幅して出力することがで きる。しかし、発振回路 20の発振周波数を常温で初期調整する非 TCXOモードのと きは、分周回路 80を常に所定の分周比で動作させ、常に同じ駆動条件で初期調整 を行うことができる。
この所定の分周比は、例えば、 1 (分周なし)に設定する。
[0066] 〔温度補償型発振器の製造方法の実施形態〕
本願発明による上述した各実施形態の温度補償型発振器は、その組み立て工程 中における発振回路 20 (または 20' Z以下代表して 20とする)の振動子である水晶 片の初期調整、および温度補償データを作成して記憶させる調整作業は、パッケ一 ジ内に水晶片 15と発振回路 20および温度補償回路 30等を構成する ICチップなど を実装して温度補償型発振器を完成した状態で、その発振回路 20を動作させて行 なうことができる。
[0067] 初期調整時には、非 TCXOモード信号をハイレベル" 1"にしておく。非 TCXOモー ド信号を図 9に示したメモリ回路 7と NAND回路 8とによって生成する場合には、メモ リ回路 7の複数の記憶素子の記憶状態を" 101"以外の所定の状態にしておくことに より、発振回路 20内の電圧可変容量の両端子を同電位にし、温度補償機能を無効 にした状態で、発振回路 20を所定の発振容量で発振動作させる。その他の常温周 波数補正信号や外部入力周波数制御信号などの周波数制御信号も無効にする。
[0068] 発振回路 20の駆動電圧を一定にする定電圧回路 60を有する場合は、所定の定電 圧で発振回路 20を駆動するように定電圧回路 60を制御する。発振回路 20によって 発振された信号を分周する分周回路 80を有する場合には、その分周回路 80を所定 の分周比で動作するように制御する。
このようにすることによって、常に同じ条件で上記調整作業を行うことができる。 この発振周波数の調整作業の前にはメモリ回路 7に何も書き込みを行わなければ、 メモリ回路 7の各記憶素子は、一般に全て" 0"か全て" 1"の状態になっており、 "101 "以外の所定の状態になっていることになる。
[0069] その調整作業のステップは次のようになる。従来技術の説明に用いたシングルタイ プのパッケージ構成例である図 14を参照しながら説明する。
ステップ 1
パッケージ本体 11内に、発振回路 20および前述した各実施形態に示した各回路 を構成する ICチップ 16を実装し、次いで振動子である水晶片 15を実装する。
ステップ 2
ノ¾ /ケージ本体 11を基準温度(一般に室温:25°C)に保ち、上述のように発振回路 20内の電圧可変容量の両端子を同電位にして温度補償機能を無効にし、単純な発 振器として動作させ、その発振周波数を周波数カウンタなどでモニタしながら、水晶 片 15の表面の電極膜を除去または追加して所望の発振周波数 fOになるように調整 する。 [0070] ステップ 3
ノ ッケージ本体 11に溶接リング 12を介してカバー 13を取付け、水晶片 15を気密 封止する。
ステップ 4
図 9に示したメモリ回路 7の各記憶素子の記憶状態を所定の状態以外の" 101"に して温度補償機能を有効にさせた後、ノ^ケージ 10を複数の温度にさらし、その各 温度状態で発振周波数を測定して、所望の発振周波数 fOとの差を測定する。
ステップ 5
その測定値に基 ヽて温度補償データを作成し、それを ICチップ 16の補償データ記 憶回路 (不揮発性メモリ)に書き込む。
[0071] したがって、発振回路を実際の使用状態と同様に発振させながら、水晶片の温度 特性を温度補償回路の影響を受けずに正確に調整でき、且つその後の補償データ の作成とそれを補償データ記憶回路に記憶させる作業も、続けて適切に行なうことが できる。そのため、温度補償型発振器の調整工程の簡素化と高精度化を図ることが できる。
[0072] 常温における発振周波数を公称値により厳密に合わせるためには、水晶片 15の電 極の膜厚調整だけでは不十分なため、パッケージ 10を基準温度(常温)に保ち、発 振回路 20の発振周波数を周波数カウンタなどでモニタしながら、常温周波数補正信 号を変化させてその発振周波数が公称値と一致するように微調整する。
[0073] ステップ 2で、ノ ッケージ本体 11を基準温度(一般に室温: 25°C)に保つのは、パッ ケージ本体 11を恒温槽に入れて調整作業を行なうとよ ヽ。
ステップ 4で、ノ ッケージ 10を複数の温度状態にさらすのも、恒温槽の設定温度を 順次変化させるか、異なる温度に設定した複数の恒温槽に順次パッケージ 10を収 納すればよい。その測定温度範囲は、この発振器の動作保証温度範囲であり、例え ば、マイナス 40°C〜プラス 100°Cの間の適宜のポイント(例えば、 11ポイント程度)と する。
[0074] 水晶片 15の基準周波数の調整は、予め水晶片 15の表面に銀等の金属膜を蒸着 して、共振周波数を基準周波数より低めにする膜厚 (厚め)に形成しておき、その水 晶片 15表面の電極膜にイオンガンを用 、てイオンビームを照射したり、スパッタエツ チングを行ったりして、電極膜の質量を僅かずつ減少させることによって行う。
あるいは、逆に金属膜の膜厚を、共振周波数を基準周波数より高めにする膜厚 (薄 め)に形成しておき、その水晶片 15表面の電極膜に更に銀等の金属を蒸着させるこ とで、電極膜の質量を僅かずつ増加させることによって行う。
なお、発振回路の振動子として、水晶片に代えて他の圧電素子を使用する場合も 同様である。
[0075] ATカット水晶片を振動子とする発振回路の発振周波数の温度特性はほぼ 3次曲 線になるため、基準温度で発振周波数が所望の周波数 fOになるように調整しても、 環境温度が変化すると発振周波数がずれてしまう。そのため、動作保証温度範囲の 下限から上限までの間で実際に温度を変化させて、その各温度状態 (測定ポイント) で発振回路の実際の発振周波数すなわち出力端子 26に出力される発振出力信号 の周波数を測定し、所望の発振周波数 fOとの差を測定する。
[0076] そして、その差を 0にするための温度補償信号 (電圧信号)を温度補償回路 30で発 生させるのに必要な温度補償データを算出して、図 15に示した従来技術と同様に有 する補償データ記憶回路 (不揮発性メモリ) 31に温度データに対応させて書き込む。 なお、測定ポイントは多い方が精度の高い温度補償データを作成できるが、測定時 間が長くなつてしまうので、適当数 (例えば、 11ポイント程度)の温度状態での測定結 果カ その発振回路の温度特性の 3次曲線を推定して、各測定ポイント間の温度に 対する温度補償データも補間して作成し、それを補償データ記憶回路に書き込むよ うにするとよい。
[0077] 前述した第 6の実施形態(図 9)では、メモリ回路 7に記憶している情報によって非 T CXOモード信号を生成し、発振回路 20' の電圧可変容量 23, 24両端子を同電位 にして温度補償機能を無効にしている。そして、例えば、メモリ回路 7の複数の記憶 素子の記憶状態が" 101"のときに、非 TCXOモード信号を" 0"にして温度補償機能 を有効にしている力 これに限定するものではなぐ記憶素子の記憶状態がどのよう な状態のときに TCXOモードにして温度補償機能を有効あるいは無効にするようにし てもよい。その記憶データの桁数も任意である。 [0078] 但し、一般に不揮発性メモリ等は、初期状態でのデータがすべて" 1"またはすベて "0"になる確率が高いので、 "111"や" 000"の場合には非 TCXOモード信号を" 1" にして温度補償機能を無効にし、それ以外のあるデータを書き込んだときに非 TCX Oモード信号が" 0"になって温度補償機能を有効にするようにするのが好ましい。 しかし、メモリ回路 7に" 101"のような特定のデータを書き込んだときの記憶素子の 記憶状態で、非 TCXOモードにして温度補償機能を無効にし、メモリ回路 7に" 101" のような特定のデータ以外のデータを書き込んだり特定のデータを消去したときに、 TCXOモードにして温度補償機能を有効にするようにしても差し支えない。
産業上の利用可能性
[0079] この発明による温度補償型発振器およびその製造方法は、各種の温度補償型発 振器およびその製造に適用することができるか、特に携帯電話機等の携帯型移動通 信機器に多用されている ATカット水晶片を振動子として用いた超小型の温度補償 型発振器の高精度化や多様化と、その製造工程における常温での発振周波数の初 期調整作業の効率ィ匕に極めて有効である。

Claims

請求の範囲
[1] 電圧可変容量を備えた発振回路と、該発振回路近傍の温度を検出する温度検出 回路と、該温度検知回路の情報に基づ!/、て温度補償信号として電圧信号を生成す る温度補償信号生成回路とを有し、前記電圧信号が前記電圧可変容量に与えられ ることによって発振周波数を略一定に保つ構成の温度補償型発振器であって、 前記電圧可変容量の両端子を同電位にする制御手段を設けたことを特徴とする温 度補償型発振器。
[2] 前記制御手段は、前記電圧可変容量の両端子の!、ずれにも前記温度補償信号で ある電圧信号を印加する手段であることを特徴とする請求項 1に記載の温度補償型 発振器。
[3] 前記制御手段は、前記電圧可変容量の両端子のいずれも接地電位にする手段で あることを特徴とする請求項 1に記載の温度補償型発振器。
[4] 前記電圧可変容量は、両端子が同電位の状態では可変容量範囲の略中間の容 量値になる特性を有することを特徴とする請求項 1から 3のいずれ力 1つに記載の温 度補償型発振器。
[5] 請求項 1から 3のいずれ力 1つに記載の温度補償型発振器において、
メモリ回路を有し、前記制御手段は、該メモリ回路に記憶している情報によって前記 電圧可変容量の両端子を同電位にする制御を行うことを特徴とする温度補償型発振
[6] 前記メモリ回路は、複数の記憶素子を有し、
前記制御手段は、該複数の記憶素子の記憶状態が所定の状態にあるとき、前記電 圧可変容量の両端子を同電位にする制御を行うことを特徴とする請求項 5に記載の 温度補償型発振器。
[7] 請求項 6記載の温度補償型発振器にお 、て、
前記発振回路の駆動電圧を一定に保っための定電圧回路を有し、
該定電圧回路は、前記複数の記憶素子の記憶状態が前記所定の状態にあるとき、 前記駆動電圧を所定の電圧値にする制御を行うことを特徴とする温度補償型発振器
[8] 請求項 6または 7に記載の温度補償型発振器にぉ 、て、
前記発振回路によって発振された信号を分周するための分周回路を有し、 該分周回路は、前記複数の記憶素子の記憶状態が前記所定の状態にあるとき、所 定の分周比にする制御を行うことを特徴とする温度補償型発振器。
[9] 請求項 1から 8のいずれ力 1つに記載の温度補償型発振器において、
電圧信号による周波数制御信号を入力するための外部端子を備え、該外部端子 から入力する周波数制御信号又は該周波数制御信号を増幅した信号も前記電圧可 変容量に与えられるようにしたことを特徴とする温度補償型発振器。
[10] 請求項 1から 9のいずれ力 1つに記載の温度補償型発振器において、
発振周波数の常温での偏差を補正するための電圧信号である常温周波数補正信 号を生成する常温周波数補正信号生成回路を有し、前記常温周波数補正信号も前 記電圧可変容量に与えられるようにしたことを特徴とする温度補償型発振器。
[11] 請求項 1から 8のいずれ力 1つに記載の温度補償型発振器において、
電圧信号による周波数制御信号を入力するための外部端子と、
発振周波数の常温での偏差を補正するための電圧信号である常温周波数補正信 号を生成する常温周波数補正信号生成回路とを有し、
前記電圧可変容量に与える前記電圧信号は、前記温度補償信号と、前記周波数 制御信号および前記常温周波数補正信号の一方又は両方とが合成された信号であ ることを特徴とする温度補償型発振器。
[12] 電圧可変容量を備えた発振回路と、該発振回路近傍の温度を検出する温度検出 回路と、該温度検知回路の情報に基づ!、て温度補償信号として電圧信号を生成す る温度補償信号生成回路とを有し、前記電圧信号が前記電圧可変容量に与えられ ることによって発振周波数を略一定に保つ構成の温度補償型発振器の製造方法で あって、
該温度補償型発振器の組み立て工程中、常温における前記発振回路の発振周波 数調整作業を、前記電圧可変容量の両端子を同電位にして前記発振回路を駆動さ せた状態で、該発振回路に備えた振動子の電極の厚みを調整することによって行う ことを特徴とする温度補償型発振器の製造方法。 [13] 電圧可変容量を備えた発振回路と、該発振回路近傍の温度を検出する温度検出 回路と、該温度検知回路の情報に基づ!、て温度補償信号として電圧信号を生成す る温度補償信号生成回路と、メモリ回路とを有し、前記電圧信号が前記電圧可変容 量に与えられることによって発振周波数を略一定に保つ構成の温度補償型発振器 の製造方法であって、
該温度補償型発振器の組み立て工程中、常温における前記発振回路の発振周波 数調整作業の前には前記メモリ回路の書き込みを行わず、該メモリ回路の記憶状態 が所定の状態になるようにし、それによつて前記電圧可変容量の両端子を同電位に して前記発振回路を駆動させた状態で、該発振回路に備えた振動子の電極の厚み を調整することによって、前記発振周波数調整作業を行うことを特徴とする温度補償 型発振器の製造方法。
PCT/JP2006/322085 2005-11-07 2006-11-06 温度補償型発振器およびその製造方法 WO2007052788A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2006800416044A CN101305514B (zh) 2005-11-07 2006-11-06 温度补偿型振荡器以及其制造方法
US12/092,772 US7728685B2 (en) 2005-11-07 2006-11-06 Temperature compensation oscillator and method for manufacturing the same
JP2007542834A JP4949265B2 (ja) 2005-11-07 2006-11-06 温度補償型発振器およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005322523 2005-11-07
JP2005-322523 2005-11-07

Publications (1)

Publication Number Publication Date
WO2007052788A1 true WO2007052788A1 (ja) 2007-05-10

Family

ID=38005939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322085 WO2007052788A1 (ja) 2005-11-07 2006-11-06 温度補償型発振器およびその製造方法

Country Status (4)

Country Link
US (1) US7728685B2 (ja)
JP (1) JP4949265B2 (ja)
CN (1) CN101305514B (ja)
WO (1) WO2007052788A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011109227A (ja) * 2009-11-13 2011-06-02 Nippon Dempa Kogyo Co Ltd 水晶発振器
CN112235219A (zh) * 2020-10-14 2021-01-15 紫光展锐(重庆)科技有限公司 定时同步检测方法及装置

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8174330B2 (en) * 2008-02-01 2012-05-08 Broadcom Corporation Method and system for an energy efficient temperature sensing crystal integrated circuit
US8766736B2 (en) * 2010-02-01 2014-07-01 Tacettin Isik Methods of frequency versus temperature compensation of existing crystal oscillators
CN102332891A (zh) * 2010-07-14 2012-01-25 鸿富锦精密工业(深圳)有限公司 具有可调频功能的晶振电路
US8884718B2 (en) * 2011-08-09 2014-11-11 Si-Ware Systems Method and apparatus to control the LC tank temperature null characteristic in a highly stable LC oscillator
DE102013200353A1 (de) * 2012-02-03 2013-09-05 Agilent Technologies Inc. Ladungskorrektur für einen piezoelektrischen Aktuator
WO2014058328A1 (en) 2012-10-08 2014-04-17 Rakon Limited A multi-function frequency control device
CN103248358A (zh) * 2013-05-30 2013-08-14 上海贝岭股份有限公司 实时时钟补偿装置及方法
JP2015088931A (ja) 2013-10-30 2015-05-07 セイコーエプソン株式会社 発振回路、発振器、発振器の製造方法、電子機器及び移動体
JP6226127B2 (ja) 2013-10-30 2017-11-08 セイコーエプソン株式会社 発振回路、発振器、発振器の製造方法、電子機器及び移動体
JP6206664B2 (ja) * 2013-10-30 2017-10-04 セイコーエプソン株式会社 発振回路、発振器、発振器の製造方法、電子機器及び移動体
JP2015088876A (ja) 2013-10-30 2015-05-07 セイコーエプソン株式会社 振動素子、振動子、電子デバイス、電子機器及び移動体
JP2015088930A (ja) 2013-10-30 2015-05-07 セイコーエプソン株式会社 発振回路、発振器、発振器の製造方法、電子機器及び移動体
JP2016072790A (ja) * 2014-09-30 2016-05-09 ソニー株式会社 伝送装置、伝送方法、及び、フィルタ回路
JP6686329B2 (ja) * 2015-08-28 2020-04-22 セイコーエプソン株式会社 発振回路、電子機器及び移動体
JP6728598B2 (ja) 2015-08-28 2020-07-22 セイコーエプソン株式会社 発振回路、電子機器及び移動体
JP6728652B2 (ja) * 2015-11-30 2020-07-22 セイコーエプソン株式会社 回路装置、発振器、電子機器、移動体及び発振器の製造方法
EP3200347B1 (en) * 2016-01-28 2019-11-13 Nxp B.V. Temperature-compensated oscillator
CN106124797B (zh) * 2016-06-13 2020-02-14 安徽容知日新科技股份有限公司 振荡器的漂移补偿装置、方法及转速传感器
JP6834579B2 (ja) * 2017-02-23 2021-02-24 セイコーエプソン株式会社 回路装置、発振器、電子機器、移動体及び回路装置の製造方法
JP6877252B2 (ja) * 2017-06-12 2021-05-26 ルネサスエレクトロニクス株式会社 半導体装置及びその制御方法
JP2019097014A (ja) * 2017-11-22 2019-06-20 セイコーエプソン株式会社 温度補償型水晶発振器及びそれを用いた電子機器
WO2019111113A1 (ja) * 2017-12-06 2019-06-13 株式会社半導体エネルギー研究所 半導体装置
JP7039986B2 (ja) * 2017-12-15 2022-03-23 セイコーエプソン株式会社 回路装置、発振器、電子機器及び移動体
US10823693B2 (en) * 2018-01-04 2020-11-03 Silicon Laboratories Inc. System, apparatus and method for accurate measurement of off-chip temperature
JP7151085B2 (ja) * 2018-01-26 2022-10-12 セイコーエプソン株式会社 集積回路装置、発振器、電子機器及び移動体
JP7069968B2 (ja) * 2018-03-29 2022-05-18 セイコーエプソン株式会社 回路装置並びにそれを用いた物理量測定装置、発振器、電子機器及び移動体
CN112054768B (zh) * 2020-09-02 2023-10-27 重庆西南集成电路设计有限责任公司 一种带振荡频率温度补偿的低相噪压控振荡器电路
CN114826155B (zh) * 2022-05-05 2022-12-30 深圳市金科泰通信设备有限公司 一种温度补偿方法、系统及终端设备
US20230396215A1 (en) * 2022-06-01 2023-12-07 Mediatek Inc. Reconfigurable crystal oscillator and method for reconfiguring crystal oscillator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151957A (ja) * 2000-11-08 2002-05-24 Toyo Commun Equip Co Ltd 圧電発振器
WO2003063335A1 (fr) * 2002-01-21 2003-07-31 Citizen Watch Co., Ltd. Oscillateur du type a compensation de temperature
JP2004147180A (ja) * 2002-10-25 2004-05-20 Nippon Dempa Kogyo Co Ltd 温度補償水晶発振器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1778034A (zh) * 2003-08-21 2006-05-24 株式会社村田制作所 温度补偿压电振荡器及包含其的电子装置
US7123105B2 (en) * 2003-12-19 2006-10-17 Infineon Technologies North American Corporation Oscillator with temperature control

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151957A (ja) * 2000-11-08 2002-05-24 Toyo Commun Equip Co Ltd 圧電発振器
WO2003063335A1 (fr) * 2002-01-21 2003-07-31 Citizen Watch Co., Ltd. Oscillateur du type a compensation de temperature
JP2004147180A (ja) * 2002-10-25 2004-05-20 Nippon Dempa Kogyo Co Ltd 温度補償水晶発振器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011109227A (ja) * 2009-11-13 2011-06-02 Nippon Dempa Kogyo Co Ltd 水晶発振器
CN112235219A (zh) * 2020-10-14 2021-01-15 紫光展锐(重庆)科技有限公司 定时同步检测方法及装置

Also Published As

Publication number Publication date
CN101305514B (zh) 2011-09-28
US20090115542A1 (en) 2009-05-07
US7728685B2 (en) 2010-06-01
JPWO2007052788A1 (ja) 2009-04-30
JP4949265B2 (ja) 2012-06-06
CN101305514A (zh) 2008-11-12

Similar Documents

Publication Publication Date Title
JP4949265B2 (ja) 温度補償型発振器およびその製造方法
US7583157B2 (en) Method of manufacturing a temperature compensated oscillator
JP6540943B2 (ja) 半導体回路装置、発振器、電子機器および移動体
JP6536780B2 (ja) 半導体回路装置、発振器、電子機器および移動体
JP2003218636A5 (ja)
JPH0918234A (ja) 温度補償圧電発振器
JP2014072715A (ja) 発振回路、振動デバイス、電子機器、移動体、振動デバイスの調整方法及び感度調整回路
JPWO2003021765A1 (ja) 発振器及び通信機器
US10027331B2 (en) Oscillator, electronic apparatus, and moving object
JP6561487B2 (ja) 発振回路、発振器、電子機器および移動体
JP6123979B2 (ja) 発振装置及び電子機器
JP2007318397A (ja) 電圧制御型発振器及びその周波数制御方法
JP6665408B2 (ja) 発振回路、電子機器、移動体及び発振回路の調整方法
JP4545769B2 (ja) 温度補償型発振器
CN114696792A (zh) 电路装置以及振荡器
JP6508457B2 (ja) 発振器、電子機器および移動体
JP2013192217A (ja) 温度補償型水晶発振器
JP2013017074A (ja) 温度補償発振器および電子機器
US10469089B2 (en) Oscillation circuit, circuit device, oscillator, electronic apparatus, and vehicle
JP2009081494A (ja) 温度補償型発振器
CN114430251A (zh) 振荡电路、振荡器和振荡电路的控制方法
JP6540942B2 (ja) 発振回路、発振器、電子機器及び移動体
CN114696793A (zh) 电路装置以及振荡器
JP2023127679A (ja) 発振器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680041604.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007542834

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12092772

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06822999

Country of ref document: EP

Kind code of ref document: A1