WO2007043503A1 - 振動型慣性力検知センサの検出信号処理方法及び振動型慣性力検知センサ - Google Patents

振動型慣性力検知センサの検出信号処理方法及び振動型慣性力検知センサ Download PDF

Info

Publication number
WO2007043503A1
WO2007043503A1 PCT/JP2006/320164 JP2006320164W WO2007043503A1 WO 2007043503 A1 WO2007043503 A1 WO 2007043503A1 JP 2006320164 W JP2006320164 W JP 2006320164W WO 2007043503 A1 WO2007043503 A1 WO 2007043503A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
signal
inertial force
drive
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2006/320164
Other languages
English (en)
French (fr)
Japanese (ja)
Inventor
Takeshi Uemura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to CN2006800380057A priority Critical patent/CN101287961B/zh
Priority to US12/065,200 priority patent/US7673529B2/en
Priority to EP06811477.6A priority patent/EP1936324B1/en
Publication of WO2007043503A1 publication Critical patent/WO2007043503A1/ja
Anticipated expiration legal-status Critical
Priority to US12/646,266 priority patent/US7886622B2/en
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5607Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating tuning forks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5607Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating tuning forks
    • G01C19/5614Signal processing

Definitions

  • the present invention relates to a detection signal processing method of a vibration type inertial force detection sensor and a vibration type inertial force detection sensor employing this method.
  • a vibration type angle sensor which is an example of a conventional vibration type inertial force detection sensor includes a sensor element 203 provided with a drive unit 201 and a detection unit 202, as shown in a block diagram of FIG.
  • the configuration includes a drive control circuit 204 that applies a control voltage to the unit 201 to vibrate the sensor element 203 and controls the vibration, and a detection system circuit 205 that processes a detection signal output from the detection unit 202.
  • the detection signal output from the detection unit 202 is differentially amplified using the differential amplifier 206, and the differentially amplified signal and this detection signal are inverted using the inverting amplifier 207.
  • the signal is synchronously detected using the synchronous detector 208. Thereafter, a method of outputting a signal in which disturbance noise such as an external impact is suppressed by performing smoothing using a low-pass filter 209 is known.
  • the conventional low-pass filter 209 first amplifies the signal after synchronous detection by the inverting amplifier 220 as a preamplifier and smoothes the force using the smoothing circuit 221 or an active filter (not shown). Smoothed while amplifying with.
  • the signal after the synchronous detection in the synchronous detector 208 becomes a sawtooth waveform as shown by the synchronous detection output 208a in FIG. I'm stuck. Therefore, in this waveform switching portion 210, the amplification processing capability of the inverting amplifier 220, which is the preamplifier of the low-pass filter 209, and the active filter cannot fully follow, and the waveform is shown as the inverting amplifier output 220a in FIG. I was in trouble.
  • the horizontal axis represents time
  • the vertical axis represents the potential of each output signal. As shown in FIG.
  • the inverting amplifier output 220a after the amplification processing includes a waveform error 212 that causes an offset 211 in the sensor output 205a after smoothing.
  • the smoothing circuit 221 of the low-pass filter 209 cannot perform smoothing processing with high accuracy, and as a result, the performance of the vibration type inertial force detection sensor is reduced by internal processing of the detection system circuit 205! I have a problem!
  • the present invention provides a detection signal processing method for solving such problems and improving the detection accuracy of the vibration type inertial force detection sensor, and a vibration type inertial force detection sensor employing this method. .
  • the present invention removes harmonic components from a signal that has been synchronously detected, particularly in a detection system circuit of a vibration type inertial force detection sensor, amplifies the signal from which this harmonic component has been removed, The signal was smoothed.
  • the detection accuracy of the vibration type inertial force detection sensor can be improved.
  • FIG. 1 is a block diagram showing a vibration type inertial force detection sensor according to an embodiment of the present invention.
  • FIG. 2 is a top view showing a sensor element used in a vibration type inertial force detection sensor.
  • FIG. 3 is a waveform diagram showing a transition of a detection waveform in the vibration type inertial force detection sensor.
  • FIG. 4 is a waveform diagram showing the transition of the detected waveform in the processing after synchronous detection in the vibration type inertial force detection sensor.
  • FIG. 5 is a schematic diagram showing waveform components after synchronous detection.
  • FIG. 6 is a block diagram of a vibration type angle sensor which is an example of a conventional vibration type inertial force detection sensor.
  • FIG. 7 is a waveform diagram showing a transition of a waveform after synchronous detection in a conventional vibration type inertial force detection sensor.
  • FIG. 1 is a block diagram showing a vibration type angular velocity sensor which is an example of a vibration type inertial force detection sensor of the present invention.
  • the basic configuration includes a sensor element 103, a drive control circuit 104 that controls vibration of the sensor element 103, and a detection system circuit 105 that processes a signal output from the sensor element 103.
  • FIG. 2 is a top view showing a detailed configuration of the sensor element 103 used in the vibration type angular velocity sensor of the present embodiment.
  • the sensor element 103 is connected to a pair of drive arms 114 extended from a tuning fork type vibrator 113 having a silicon substrate force as shown in FIG. )
  • a driving electrode 101a serving as a driving unit 101 and an detecting electrode 102a serving as a detecting unit 102 are provided.
  • the base portion of the drive arm 114 is also provided with a monitor electrode 115a connected to the monitor unit 115, with the upper and lower surfaces of the piezoelectric thin film made of PZT sandwiched between electrodes.
  • the drive arm 114 vibrates laterally as indicated by an arrow 116.
  • Coriolis causes the drive arm 114 to stagnate in the front-rear direction in FIG. 2, and this detection causes the detection signal from the detection electrode 102a to be detected as shown in FIG. This is output to the output circuit 105.
  • the monitor electrode 115a shown in FIG. 2 detects the amplitude amount of the drive arm 114, and feeds back the information to the drive control circuit 104 via the monitor unit 115, so that the amplitude described above is obtained.
  • FIG. 3 shows the transition of the waveform of each signal in each vibration type speed sensor of the present embodiment.
  • the horizontal axis represents time
  • the vertical axis represents the potential of each signal. The same applies to Figs. 4 and 5.
  • the detection signals (detection outputs 102b and 102c shown in FIG. 3) output from the two detection electrodes 102a provided in the sensor element 103 are first converted into current amplifiers. Amplification is performed using an amplifier 110 configured by a charge amplifier or the like. Next, the two amplified signals are differentially amplified using the differential amplifier 106, and the phase of the differentially amplified signal (the differential amplifier output 106a in FIG. 3) is adjusted by the phase shifter 117. Delay 0 degrees. The phase-delayed signal (phase shifter output 117a in FIG.
  • the detection clock unit 118 converts the monitor signal 115b output from the monitor unit 115 into the detection CLK output (detection clock output) 118a of FIG.
  • the configuration of the low-pass filter 109 shown in FIG. 1 that smooths the sawtooth synchronous detection output 108a is a passive filter that removes the harmonic components of the synchronous detection output 108a. Then, the signal is amplified by an amplifier 120 and then smoothed by using a smoothing circuit 121 such as an integrator. As a result, a decrease in detection accuracy in the detection system circuit 105 can be suppressed as compared with the conventional case where the synchronous detection output 208a of FIG. As a result, the detection accuracy of the vibration type inertial force detection sensor can be improved.
  • a noisy filter is a filter composed of only passive components such as capacitors.
  • a sawtooth synchronous detection output 208a is obtained as shown in FIG. Is amplified by a preamplifier or an active filter, resulting in a time lag 210a in the waveform switching portion 210 due to the followability of the amplifier.
  • a waveform error 212 is generated between the actual waveform and the amplified waveform, and smoothing in a state including the waveform error 212 results in an offset 211 in the output.
  • the synchronous detection outputs 108a and 208a output from the synchronous detector 108 shown in Fig. 1 and the synchronous detector 208 shown in Fig. 6 are fundamentally applied to the fundamental wave component 219a as shown in Fig. 5.
  • This is a signal in which harmonic components such as second harmonic component 219b and third harmonic component 219c are synthesized. Therefore, as shown in FIG. 4, the synchronous detection output 108a is input to a passive filter 119 that removes harmonic components, and after the harmonic components are removed through this passive filter 119, a sinusoidal and smooth fundamental wave remains. Passive filter output 119a containing only component 219a is output.
  • the passive filter output 119 a is amplified by the amplifier 120 as shown in FIG. 4, and the amplified amplifier output 120 a is smoothed by the smoothing circuit 121.
  • the output of this vibration type angular velocity sensor becomes the sensor output 105a shown in FIG. 4 and does not include the waveform error 212 as shown in FIG. Can be suppressed.
  • a decrease in detection accuracy in the detection system circuit 105 can be suppressed, and as a result, the detection accuracy of the vibration type inertial force detection sensor can be improved.
  • the configuration of the noisy filter 119 for removing the harmonic component of the detection signal is not shown, but a resistance element is arranged in series with the detection signal path. This can be realized by using a general harmonic suppression circuit in which a capacitor element is arranged at least between one end and a reference potential.
  • the vibration type angular velocity sensor is described as an example of the vibration type inertial force detection sensor.
  • the present invention is not limited to this, and the drive arm is vibrated. By doing so, the same action and effect can be achieved in any configuration that detects inertial force, such as acceleration.
  • the present invention enables higher detection accuracy in a vibration-type inertial force detection sensor, and is particularly useful for applications for electronic devices that require high detection accuracy with respect to inertial force. [0026] Therefore, the industrial applicability of the present invention is extremely high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Gyroscopes (AREA)
PCT/JP2006/320164 2005-10-11 2006-10-10 振動型慣性力検知センサの検出信号処理方法及び振動型慣性力検知センサ Ceased WO2007043503A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800380057A CN101287961B (zh) 2005-10-11 2006-10-10 振动型惯性力检测传感器的检测信号处理方法及振动型惯性力检测传感器
US12/065,200 US7673529B2 (en) 2005-10-11 2006-10-10 Method for processing detection signal of vibratory inertial force sensor and vibratory inertial force sensor
EP06811477.6A EP1936324B1 (en) 2005-10-11 2006-10-10 Method for processing detection signal of vibratory inertial force sensor and vibratory inertial force sensor
US12/646,266 US7886622B2 (en) 2005-10-11 2009-12-23 Method for processing detection signal of vibratory inertial force sensor and vibratory inertial force sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005296283A JP5458462B2 (ja) 2005-10-11 2005-10-11 振動型慣性力検知センサ
JP2005-296283 2005-10-11

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/065,200 A-371-Of-International US7673529B2 (en) 2005-10-11 2006-10-10 Method for processing detection signal of vibratory inertial force sensor and vibratory inertial force sensor
US12/646,266 Division US7886622B2 (en) 2005-10-11 2009-12-23 Method for processing detection signal of vibratory inertial force sensor and vibratory inertial force sensor

Publications (1)

Publication Number Publication Date
WO2007043503A1 true WO2007043503A1 (ja) 2007-04-19

Family

ID=37942739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320164 Ceased WO2007043503A1 (ja) 2005-10-11 2006-10-10 振動型慣性力検知センサの検出信号処理方法及び振動型慣性力検知センサ

Country Status (6)

Country Link
US (2) US7673529B2 (enExample)
EP (1) EP1936324B1 (enExample)
JP (1) JP5458462B2 (enExample)
KR (1) KR100985315B1 (enExample)
CN (1) CN101287961B (enExample)
WO (1) WO2007043503A1 (enExample)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100126271A1 (en) * 2008-01-08 2010-05-27 Fumihito Inukai Inertial velocity sensor signal processing circuit and inertial velocity sensor device including the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4935069B2 (ja) * 2005-12-28 2012-05-23 パナソニック株式会社 角速度センサ
JP5338211B2 (ja) * 2008-09-08 2013-11-13 株式会社村田製作所 振動ジャイロ
FR2954489B1 (fr) * 2009-12-23 2014-08-01 Onera (Off Nat Aerospatiale) Electrodes et circuits electroniques associes pour gyrometre vibrant pizoelectrique
CN102753936B (zh) * 2010-02-17 2015-11-25 株式会社村田制作所 振动型惯性力传感器
WO2013132842A1 (ja) * 2012-03-07 2013-09-12 パナソニック株式会社 荷重センサ
JP6171380B2 (ja) * 2013-02-14 2017-08-02 株式会社リコー アクチュエータ駆動システムと映像機器
US20140303907A1 (en) * 2013-04-05 2014-10-09 Kevin M. Roughen Systems and methods for dynamic force measurement
JP2014202616A (ja) * 2013-04-05 2014-10-27 セイコーエプソン株式会社 振動素子、電子デバイス、電子機器および移動体
CN105180915B (zh) * 2014-06-18 2018-05-04 立锜科技股份有限公司 多微机电元件讯号处理方法与用此方法的复合微机电装置
JP6492949B2 (ja) * 2015-05-14 2019-04-03 セイコーエプソン株式会社 回路装置、物理量検出装置、電子機器及び移動体
JP6354892B2 (ja) * 2017-05-18 2018-07-11 株式会社リコー 位置検出装置と映像機器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH109872A (ja) * 1996-06-21 1998-01-16 Kinseki Ltd 角速度センサ
JPH1183495A (ja) * 1997-09-12 1999-03-26 Nikon Corp 圧電振動子およびこの圧電振動子を用いた圧電振動角速度計
JPH11258355A (ja) * 1998-03-12 1999-09-24 Taiheiyo Cement Corp 金属検出装置及びその調整方法及びコンピュータ読み取りが可能な記憶媒体
JP2002267448A (ja) 2001-03-09 2002-09-18 Matsushita Electric Ind Co Ltd 角速度センサ

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129514A (ja) * 1988-11-10 1990-05-17 Canon Inc 角速度センサー
US6705151B2 (en) * 1995-05-30 2004-03-16 Matsushita Electric Industrial Co., Ltd. Angular velocity sensor
CN1142436C (zh) * 1995-05-30 2004-03-17 松下电器产业株式会社 具有自检功能的角速度传感器
JP3536497B2 (ja) * 1995-12-21 2004-06-07 株式会社デンソー 振動型角速度検出装置
JPH1144540A (ja) * 1997-07-25 1999-02-16 Denso Corp 振動型角速度センサ
JP3932661B2 (ja) * 1998-03-31 2007-06-20 松下電器産業株式会社 角速度センサ駆動回路
JP4019504B2 (ja) * 1998-06-15 2007-12-12 松下電器産業株式会社 角速度センサ
JP3937589B2 (ja) * 1998-06-16 2007-06-27 松下電器産業株式会社 角速度センサ
JP3664950B2 (ja) * 2000-06-15 2005-06-29 株式会社村田製作所 角速度センサ
JP4032681B2 (ja) * 2001-08-27 2008-01-16 株式会社デンソー 同期検波方法及び装置並びにセンサ信号検出装置
JP3964875B2 (ja) * 2004-02-16 2007-08-22 株式会社ジャイトロニクス 角速度センサ
US7520184B2 (en) * 2004-02-20 2009-04-21 Panasonic Corporation Angular velocity sensor
US7134336B2 (en) * 2004-03-19 2006-11-14 Denso Corporation Vibration type angular velocity sensor
JP4980063B2 (ja) * 2004-10-07 2012-07-18 パナソニック株式会社 角速度センサ
US20090165555A1 (en) * 2005-10-11 2009-07-02 Panasonic Corporation Vibration-Type Inertia Force Sensor And Electronic Apparatus Using The Same
JP2007205803A (ja) * 2006-01-31 2007-08-16 Fujitsu Ltd センサ信号処理システムおよびディテクタ
KR101169123B1 (ko) * 2006-04-26 2012-09-13 가부시키가이샤 무라타 세이사쿠쇼 각속도 센서 인터페이스 회로 및 각속도 검출장치
US7891245B2 (en) * 2006-11-22 2011-02-22 Panasonic Corporation Inertial force sensor including a sense element, a drive circuit, a sigma-delta modulator and a signal processing circuit
US7779688B2 (en) * 2006-12-20 2010-08-24 Epson Toyocom Corporation Vibration gyro sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH109872A (ja) * 1996-06-21 1998-01-16 Kinseki Ltd 角速度センサ
JPH1183495A (ja) * 1997-09-12 1999-03-26 Nikon Corp 圧電振動子およびこの圧電振動子を用いた圧電振動角速度計
JPH11258355A (ja) * 1998-03-12 1999-09-24 Taiheiyo Cement Corp 金属検出装置及びその調整方法及びコンピュータ読み取りが可能な記憶媒体
JP2002267448A (ja) 2001-03-09 2002-09-18 Matsushita Electric Ind Co Ltd 角速度センサ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100126271A1 (en) * 2008-01-08 2010-05-27 Fumihito Inukai Inertial velocity sensor signal processing circuit and inertial velocity sensor device including the same

Also Published As

Publication number Publication date
CN101287961B (zh) 2011-03-23
US7673529B2 (en) 2010-03-09
US7886622B2 (en) 2011-02-15
EP1936324A4 (en) 2011-09-14
KR20080028474A (ko) 2008-03-31
CN101287961A (zh) 2008-10-15
EP1936324B1 (en) 2014-03-19
JP5458462B2 (ja) 2014-04-02
EP1936324A1 (en) 2008-06-25
JP2007107909A (ja) 2007-04-26
KR100985315B1 (ko) 2010-10-04
US20100095772A1 (en) 2010-04-22
US20090145224A1 (en) 2009-06-11

Similar Documents

Publication Publication Date Title
CN111551162B (zh) 一种用于常压封装mems陀螺仪解调相角补偿的系统和方法
US7886622B2 (en) Method for processing detection signal of vibratory inertial force sensor and vibratory inertial force sensor
JP5552976B2 (ja) 角速度検出装置及び電子機器
CN101308022B (zh) 检测装置、检测方法和电子装置
JP5556806B2 (ja) 角速度センサ
JPWO2008032415A1 (ja) 角速度センサ
JP4449128B2 (ja) 角速度センサ
WO2005085758A1 (ja) 角速度センサ用音叉型振動子、この振動子を用いた角速度センサ及びこの角速度センサを用いた自動車
JP5348408B2 (ja) 物理量検出装置、物理量検出装置の異常診断システム及び物理量検出装置の異常診断方法
JP2007107909A5 (enExample)
WO2001036910A1 (en) Angular speed sensor
JP5589171B2 (ja) 物理量検出装置用回路
JP2006010408A (ja) 振動ジャイロ
JP2005308530A (ja) 角速度・加速度複合センサ
JP3261650B2 (ja) 角速度センサ用検出回路
JP3035161B2 (ja) 振動ジャイロスコープ
US20260002782A1 (en) Physical Quantity Detection Device
JP4935069B2 (ja) 角速度センサ
JP2006153715A (ja) 振動ジャイロ
JP3122925B2 (ja) 圧電振動ジャイロ用の圧電振動子
JPH02212711A (ja) 振動ジャイロとその零点調整装置
JPH0359414A (ja) 角速度センサ
JPWO2005103619A1 (ja) 振動ジャイロおよび振動ジャイロの角速度検出方法
JPH09145377A (ja) 圧電振動子を用いた検出装置
JP2002228451A (ja) 振動ジャイロおよび振動ジャイロの自己診断方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680038005.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087002684

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006811477

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12065200

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE