WO2013132842A1 - 荷重センサ - Google Patents

荷重センサ Download PDF

Info

Publication number
WO2013132842A1
WO2013132842A1 PCT/JP2013/001386 JP2013001386W WO2013132842A1 WO 2013132842 A1 WO2013132842 A1 WO 2013132842A1 JP 2013001386 W JP2013001386 W JP 2013001386W WO 2013132842 A1 WO2013132842 A1 WO 2013132842A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive
vibrator
load sensor
electrode
output signal
Prior art date
Application number
PCT/JP2013/001386
Other languages
English (en)
French (fr)
Inventor
孔明 藤田
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201380012747.2A priority Critical patent/CN104160255A/zh
Publication of WO2013132842A1 publication Critical patent/WO2013132842A1/ja
Priority to US14/450,293 priority patent/US20140338469A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/10Measuring force or stress, in general by measuring variations of frequency of stressed vibrating elements, e.g. of stressed strings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/10Measuring force or stress, in general by measuring variations of frequency of stressed vibrating elements, e.g. of stressed strings
    • G01L1/106Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes

Definitions

  • the present invention relates to a load sensor that detects an applied load.
  • FIG. 13 is a perspective view of a conventional sensor 501 that measures ambient atmospheric pressure.
  • the sensor 501 includes a vibrator 1 made of quartz, a container 2 that houses the vibrator 1, an electrode pattern 3 provided inside the container 2, and an oscillator output signal that is electrically connected to the vibrator 1 and is externally connected. Are provided.
  • the electrode pattern 3 is electrically connected to the vibrator 1 with a conductive paste 4.
  • FIG. 14 is a circuit block diagram of the sensor 501 and shows a circuit for extracting an oscillation output signal from the vibrator 1.
  • the sensor 501 includes an oscillation circuit 6, a gate 12 connected to the oscillation circuit 6, and a counter 13 connected to the gate 12.
  • the vibrator 1 is electrically connected to the oscillation circuit 6 by electrically connecting the lead 5 shown in FIG. 13 to the oscillation circuit 6.
  • FIG. 15 is a circuit diagram of the oscillation circuit 6.
  • the vibrator 1 is electrically connected to the ground 8 through a pair of capacitors 7 and grounded.
  • the resistor 9 and the Colpitts oscillation inverter 10 are connected in parallel with the vibrator 1, and both are connected to the ground 8 through a pair of capacitors 7 and are grounded.
  • the waveform shaping inverter 11 shapes the output signal output from the Colpitts oscillation inverter 10 and outputs it.
  • FIG. 16 shows the vibration frequency of the vibrator 1.
  • the vertical axis indicates the atmospheric pressure around the vibrator 1, and the vertical axis indicates the fluctuation of the vibration frequency.
  • the oscillation circuit 6 oscillates at the oscillation frequency, and an oscillation signal is output from the waveform shaping inverter 11 to the gate 12 shown in FIG.
  • the gate 12 is opened for a predetermined time from the closed state to pass the oscillation signal.
  • the number of peaks of the oscillation signal that has passed is counted by the counter 13, and the atmospheric pressure around the sensor 501 is measured by detecting the vibration frequency of the vibrator 1.
  • Patent Document 1 a conventional sensor similar to the sensor 501 is described in Patent Document 1, for example.
  • the accuracy of the output signal from the sensor 501 deteriorates when the capacitance of the vibrator 1 fluctuates.
  • the load sensor includes a vibrator, a drive electrode provided on the vibrator, a drive circuit that supplies a drive voltage that vibrates the vibrator to the drive electrode, a detection electrode that outputs a current corresponding to the vibration of the vibrator, And an IV converter that converts a current output from the detection electrode into a voltage.
  • the driving circuit includes an operational amplifier that outputs a driving voltage and a resistor connected to the operational amplifier, and has a small internal resistance.
  • the IV converter has an inverting input terminal to which current is input and which is virtually grounded to form a negative feedback circuit.
  • FIG. 1 is a side sectional view of a load sensor according to an embodiment.
  • FIG. 2A is a top view of a strain detection member in the load sensor according to the embodiment.
  • 2B is a cross-sectional view of the strain detection member shown in FIG. 2A along line 2B-2B.
  • FIG. 3 is a circuit diagram of a part of the processing circuit in the load sensor according to the embodiment.
  • FIG. 4 is a diagram showing the relationship between the internal resistance of the operational amplifier and the phase variation in the processing circuit of the load sensor in the embodiment.
  • FIG. 5 is a diagram illustrating a waveform of a signal of the load sensor in the embodiment.
  • FIG. 6 is a schematic diagram showing a state in which the load sensor according to the embodiment is attached to the bicycle.
  • FIG. 1 is a side sectional view of a load sensor according to an embodiment.
  • FIG. 2A is a top view of a strain detection member in the load sensor according to the embodiment.
  • 2B is a cross-sectional
  • FIG. 7 is an enlarged view of the load sensor shown in FIG.
  • FIG. 8 is a diagram illustrating the frequency of the vibrator in the load sensor according to the embodiment.
  • FIG. 9 is a circuit diagram of a processing circuit in the load sensor in the embodiment.
  • FIG. 10 is a diagram illustrating fluctuations in the vibration frequency of the sensor of the comparative example.
  • FIG. 11 is a diagram illustrating fluctuations in the vibration frequency of the output signal accompanying fluctuations in the capacity of the vibrator of the load sensor according to the embodiment.
  • FIG. 12 is a circuit diagram of another processing circuit in the load sensor according to the embodiment.
  • FIG. 13 is a perspective view of a conventional sensor.
  • FIG. 14 is a circuit block diagram of a conventional sensor.
  • FIG. 15 is a circuit diagram of an oscillation circuit of a conventional sensor.
  • FIG. 16 is a diagram showing the vibration frequency of a vibrator of a conventional sensor.
  • FIG. 1 is a side sectional view of a load sensor 1001 in the embodiment.
  • the rolling bearing 21 rotatably supports a shaft that rotates about a rotating shaft 21a, and has a cylindrical shape centered on the rotating shaft 21a.
  • a rolling bearing 21 is attached to the inside of the stress transmission member 22 having a cylindrical shape.
  • the stress transmission member 22 is disposed in the radial direction around the rotation shaft 21 a over the entire circumference of the rolling bearing 21.
  • Three support portions 22 a are provided inside the stress transmission member 22.
  • the three support portions 22 a support the rolling bearing 21 inside the stress transmission member 22.
  • two contact portions 23 having a step shape are provided on the outer peripheral side of the stress transmission member 22.
  • a linear deformation portion 24 is provided on the outer surface of the stress transmission member 22.
  • the strain detection member 25 is attached to the deformed portion 24 of the stress transmission member 22.
  • FIG. 2A is a top view of the strain detection member 25.
  • the strain detection member 25 extends in the longitudinal direction D25 perpendicular to the rotation shaft 21a shown in FIG.
  • the strain detection member 25 is composed of vibrators 26 and 27 each consisting of a both-end supported beam and a processing circuit 28.
  • the processing circuit 28 is composed of an integrated circuit (IC).
  • the vibrator 26 has a shape of a doubly supported beam extending in the longitudinal direction D25.
  • the vibrator 27 has a doubly supported beam shape extending in a direction D26 perpendicular to the longitudinal direction D25.
  • the processing circuit 28 drives both the vibrators 26 and 27 and processes the output signal.
  • Both the vibrators 26 and 27 are provided with a drive electrode 29 and a detection electrode 30.
  • the drive electrode 29 and detection electrode 30 of the vibrator 26 and the drive electrode 29 and detection electrode 30 of the vibrator 27 and the processing circuit 28 are electrically connected by a wiring pattern made of Au.
  • FIG. 2B is a cross-sectional view taken along line 2B-2B of the strain detection member 25 shown in FIG. 2A.
  • the drive electrode 29 is provided on the piezoelectric layer 229, the lower electrode layer 129 made of a conductive material provided on the vibrator 26 (27), the piezoelectric layer 229 made of a piezoelectric material provided on the lower electrode layer 129, and the piezoelectric layer 229.
  • the upper electrode layer 329 is made of the conductive material formed.
  • the detection electrode 30 includes a lower electrode layer 130 made of a conductive material provided on the vibrator 26 (27), a piezoelectric layer 230 made of a piezoelectric material provided on the lower electrode layer 130, and a piezoelectric layer 230.
  • the upper electrode layer 330 is made of a conductive material provided thereon.
  • the lower electrode layer 130 is made of Pt
  • the piezoelectric layer 230 is made of PZT
  • the upper electrode layer 330 is made of Au.
  • the drive electrode 29 and the detection electrode 30 have a capacitance formed between the lower electrode layer 130 and the upper electrode layer 330.
  • FIG. 3 is a circuit diagram of a part of the processing circuit 28 of the load sensor 1001.
  • the processing circuit 28 includes an IV converter 31, amplifiers 33 and 36, a drive source switch 34, an oscillation circuit 35, a comparator 37, and a drive circuit 38.
  • the IV converter 31 converts a current composed of charges output from the detection electrode 30 into a voltage.
  • the IV converter 31 includes an operational amplifier having an inverting input terminal 32, a non-inverting input terminal 32a, and an output terminal 32c.
  • the non-inverting input terminal 32a of the IV converter 31 is connected to the reference potential and grounded, whereby the inverting input terminal 32 is virtually grounded.
  • the amplifier 33 amplifies the output signal output from the IV converter 31.
  • the oscillation circuit 35 outputs a signal having a frequency of 200 kHz, and is composed of a CR oscillation circuit in the embodiment.
  • An output signal from the amplifier 33 is input to the drive source switch 34.
  • the drive source switch 34 inputs the output signal from the oscillation circuit 35 to the amplifier 36 when the frequency of the output signal from the amplifier 33 is less than 200 kHz.
  • the output signal from the amplifier 33 is input to the amplifier 36.
  • the subsequent circuit can be operated from the output of the comparator 37 until the vibrators 26 and 27 vibrate at their natural frequencies, and the activation time of the load sensor 1001 can be shortened.
  • the amplifier 36 amplifies the input signal and outputs it as an output signal.
  • An output signal from the amplifier 36 is output to the comparator 37.
  • the comparator 37 compares the output signal from the amplifier 36 with a predetermined threshold value, shapes the output signal from the amplifier 36 into a rectangular waveform, and outputs it.
  • An output signal from the amplifier 36 is input to the drive circuit 38.
  • the drive circuit 38 supplies a drive voltage for vibrating the vibrators 26 and 27 to the drive electrode 29.
  • the drive circuit 38 generates a drive voltage based on the output signal output from the detection electrode 30.
  • the drive circuit 38 includes an operational amplifier 39 and a resistor 40.
  • the internal resistance R1 of the operational amplifier 39 includes the angular frequency ⁇ (rad / sec) of the drive signal (drive voltage), the allowable phase difference ⁇ (degrees), and the capacitance C of the drive electrode 29 of the vibrator 26 or 27 ( F) and Equation 1 is satisfied.
  • FIG. 4 shows the relationship between the internal resistance R1 of the operational amplifier 39 of the load sensor 1001 and the amount of phase fluctuation.
  • the capacity of the drive electrode 29 of the vibrator 26 and the vibrator 27 is 400 pF, and the allowable phase difference ⁇ of the detected frequency when the drive frequency is 200 kHz is 1.35 degrees.
  • the internal resistance R1 of the operational amplifier 39 is set to a small value of 47 ⁇ or less as shown in FIG.
  • the method for calculating the allowable phase difference ⁇ will be described below. It is assumed that the resonance frequency fr of the vibrator 26 (27) is 200 kHz, the resonance sharpness Q is 600, and the frequency fluctuation amount df when full-scale strain is applied is 1000 Hz. Furthermore, the predetermined allowable error rate Er required from the intended use is 0.5%.
  • the half-value width hf in the resonance characteristic of the amplitude of vibration of the vibrator 26 is obtained by the following equation.
  • the phase gradient dp near the resonance frequency fr is obtained by the following equation.
  • the allowable frequency error Ef calculated from the allowable error rate Er is obtained by the following equation.
  • the allowable phase difference ⁇ is obtained by the following equation.
  • An output signal from the drive circuit 38 is input to a drive electrode 29 provided on the vibrators 26 and 27, and the vibrators 26 and 27 are driven to vibrate.
  • the support member 42 is provided on the outer peripheral side of the stress transmission member 22 and has a protrusion 44 protruding inward. The protrusion 44 comes into contact with the contact portion 23 in the stress transmission member 22.
  • vibrators 26 and 27 are formed by etching a semiconductor substrate made of Si.
  • PZT is vapor-deposited on the upper surfaces of the lower electrode layers 129 and 130 to form the piezoelectric layers 229 and 230.
  • Au is vapor-deposited on the upper surfaces of the piezoelectric layers 229 and 230 to form the upper electrode layers 329 and 330, and the drive electrode 29 and the detection electrode 30 are formed on the upper surfaces of the vibrators 26 and 27.
  • the processing circuit 28 is mounted, and the processing circuit 28 is electrically connected to the drive electrodes 29 and the detection electrodes 30 of both the vibrators 26 and 27 to form the strain detection member 25.
  • the strain detection member 25 rolls inside the stress transmission member 22 so that the support portion 22 a of the stress transmission member 22 and the outer peripheral side of the rolling bearing 21 abut.
  • the bearing 21 is fitted.
  • the stress transmission member 22 is housed inside the support member 42 so that the contact portion 23 of the stress transmission member 22 and the protrusion 44 of the support member 42 contact each other.
  • FIG. 5 shows waveforms of signals at various parts of the load sensor 1001.
  • FIG. 6 is a schematic view showing a state in which the load sensor 1001 is attached to the bicycle 1002 with an electric motor.
  • FIG. 7 is an enlarged view of the load sensor 1001 shown in FIG.
  • a driving system using human power and a driving system using an electric motor are provided in parallel. The driving force of the electric motor is controlled in response to a change in driving force due to human power.
  • the oscillation circuit 35 outputs a signal S35 having a sinusoidal waveform with a frequency of 200 kHz to the drive source switch 34.
  • the signal S35 is output from the drive source switch 34 as the output signal S34.
  • the output signal is amplified by an amplifier 36 including a comparator, and is compared with a predetermined threshold value to be converted into a rectangular wave output signal S36.
  • the amplitude of the output signal S36 from the amplifier 36 is limited by the operational amplifier 39, and a drive signal (drive voltage) S39 that is a rectangular wave is input to the drive electrode 29 of the vibrator 26 and the vibrator 27.
  • the vibrator 26 performs string vibration at the natural frequency fa, while the vibrator 27 performs string vibration at the natural frequency fb.
  • the frequency fa is detected.
  • the frequency fb is detected from the detection electrode 30 in the second vibrator 27. Is done.
  • FIG. 8 shows the natural frequencies fa and fb of the vibrators 26 and 27.
  • the strain detection member 25 when a compressive load in the longitudinal direction D25 is applied to the strain detection member 25, the strain detection member 25 generates a tensile load in the direction D26. That is, when the compressive load in the longitudinal direction D25 acts on the strain detection member 25, the natural frequency fa of the vibrator 26 decreases while the natural frequency fb of the vibrator 27 increases.
  • Output signals from the detection electrodes 30 of both the vibrators 26 and 27 are input to the inverting input terminal 32 of the IV converter 31 in the processing circuit 28. Since the inverting input terminal 32 of the IV converter 31 is virtually grounded, the potential V32 of the inverting input terminal 32 is constant as shown in FIG.
  • the IV converter 31 converts the current due to the charges output from the detection electrodes 30 of both the vibrators 26 and 27 into voltage, and according to the frequency of the vibrators 26 and 27.
  • An output signal S31 is output.
  • the amplifier 33 amplifies the output signal S31 from the IV converter 31 while inverting it, and outputs an output signal S33 as shown in FIG.
  • the frequency of the output signal S33 from the amplifier 33 is 200 kHz or more
  • the output signal S33 from the amplifier 33 is further amplified by the amplifier 36 and then converted into a rectangular wave shown in FIG. Output as S37. That is, it is possible to detect the pedal effort by obtaining the output signal S37 composed of a rectangular wave as the amount of change in frequency.
  • the processing circuit 28 shown in FIG. 3 is connected to one drive electrode 29 and the detection electrode 30 of the vibrators 26 and 27, but the load sensor 1001 detects and detects both the drive electrodes 29 of the vibrators 26 and 27. It is connected to the electrode 30.
  • the processing circuit 28 will be described in detail below.
  • FIG. 9 is a circuit diagram of the processing circuit 28 in the load sensor 1001. 9, the same parts as those of the processing circuit 28 shown in FIG.
  • the operational amplifier 39 and the IV converter 31 are connected to the drive electrode 29 and the detection electrode 30 of the vibrator 26, respectively.
  • the processing circuit 28 shown in FIG. 9 includes a driving circuit 138 and an IV converter that operate in the same manner as the driving circuit 38, the IV converter 31, the driving source switch 34, the oscillation circuit 35, the amplifiers 33 and 36, and the comparator 37 shown in FIG. It further includes a converter 131, a drive source switch 134, an oscillation circuit 135, amplifiers 133 and 136, and a comparator 137.
  • the drive circuit 138 includes an operational amplifier 139 and a resistor 140 that operate in the same manner as the operational amplifier 39 and the resistor 40 of the drive circuit 38.
  • the operational amplifier 139 has an internal resistance R101 similar to the internal resistance R1 of the operational amplifier 39.
  • the drive circuit 138 and the IV converter 131 are connected to the drive electrode 29 and the detection electrode 30 of the vibrator 27, respectively.
  • the processing circuit 28 shown in FIG. 9 further includes frequency counters 51 and 151, multipliers 52, 152 and 153, and a subtractor 53.
  • the vibrators 26 and 27 have different natural frequencies in order to prevent interference of those vibrations. As shown in FIG. 8, when strains are applied to the vibrators 26 and 27, their natural frequencies fa and fb change, and the distortions are detected by measuring changes in these frequencies fa and fb.
  • the mechanical vibrations of the vibrators 26 and 27 are converted into electric charges by the piezoelectric layer 230 of the detection electrode 30 shown in FIG.
  • the processing circuit 28 detects the current and mainly performs a function of performing IV conversion for converting the current due to the charge into a voltage, a function of amplification for satisfying the oscillation conditions of the vibrators 26 and 27, and the vibrator 26, 27 has a function of limiting the drive voltage in order to drive within the allowable amplitude.
  • the piezoelectric material constituting the piezoelectric layers 229 and 230 is also a dielectric, a capacitance is generated between the lower electrode layer 129 and the upper electrode layer 329 of the drive electrode 29, and the lower electrode layer 130 and the upper electrode of the detection electrode 30 are generated. A capacitance is created between the layer 330. Due to these capacitors, an error described below occurs in the drive frequency. Since the dielectric has a temperature characteristic in which the dielectric constant changes with temperature, the capacitance changes with temperature, and the drive frequency also changes with the change in capacitance, resulting in an error.
  • the upper electrode layer 330 of the detection electrode 30 provided in the vibrator 26 (27) is connected to the inverting input terminal 32 (132) of the IV converter 31 (131), and the lower electrode layer 130 is the reference potential. Connected to Vref.
  • the non-inverting input terminal 32a (132a) of the IV converter 31 (131) which is an operational amplifier is connected to the reference potential Vref. Therefore, the inverting input terminal 32 (132) of the IV converter 31 (131) is connected to the reference potential Vref. Is virtually grounded.
  • the potential difference between the lower electrode layer 130 and the upper electrode layer 330 of the detection electrode 30 of the vibrators 26 and 27 can be made zero, and the inflow of current to the capacitor formed by the piezoelectric layer 230 is suppressed.
  • the internal resistances R1 and R101 of the operational amplifiers 39 and 139 constituting the drive circuits 38 and 138, that is, the output impedance, and the capacitance of the drive electrode 29 provided in the vibrators 26 and 27 constitute a low-pass filter.
  • the internal resistances R1 and R101 of the operational amplifiers 39 and 139 that is, the output impedance
  • the phase by the low-pass filter generated by the capacitance of the drive electrode 29 and the output impedance of the drive circuits 38 and 138 is changed to the natural frequency of the vibrators 26 and 27. It can be made not to fluctuate near. Thereby, the fluctuation
  • a rectangular wave having the same frequency as the vibration of the vibrators 26 and 27 is output from the comparators 37 and 137.
  • the frequency counters 51 and 151 measure the frequency of the rectangular wave output from the comparators 37 and 137, that is, the vibration frequencies fa and fb of the vibrators 26 and 27, and output them as digital data.
  • the distortion applied to the vibrators 26 and 27 is proportional to the square of the frequencies fa and fb. Since the natural frequencies of the vibrators 26 and 27 are different, the sensitivity of the vibrators 26 and 27, that is, the square values of the natural frequencies fa and fb per unit size of the distortion are different from each other.
  • the multipliers 52, 152, and 153 and the subtractor 53 calculate a difference Id expressed by the following Expression 2.
  • Id fa 2 ⁇ K ⁇ fb 2 (Formula 2)
  • the difference Id shown in Equation 2 does not fluctuate ideally for factors such as thermal expansion that cause the same amount of distortion in the vibrators 26 and 27.
  • the vibrators 26 and 27 are installed at locations where the polarities of the frequency fluctuation amounts of the vibrators 26 and 27 are opposite to the distortion caused by the external force to be detected. Therefore, the cancellation effect as described above does not occur. Distortion can be detected.
  • the oscillation circuit 6 is configured by a voltage detection method including Colpitts oscillation, so that the capacitance of the vibrator 1 changes when the temperature around the sensor 501 changes. Fluctuates.
  • FIG. 10 shows the fluctuation of the vibration frequency with respect to the fluctuation of the capacity of the vibrator 1 of the sensor 501 of the comparative example. As shown in FIG. 10, when the capacitance of the vibrator 1 fluctuates, the vibration frequency fluctuates, so that the accuracy of the output signal from the sensor 501 deteriorates.
  • FIG. 11 shows the fluctuation of the vibration frequency of the output signal accompanying the fluctuation of the capacity of the vibrators 26 and 27 of the load sensor 1001 in the embodiment.
  • the internal resistance R1 of the drive circuit 38 is reduced, even if the capacitance of the drive electrode 29 fluctuates due to a change in ambient temperature, the internal resistance R1 (R101) and the drive electrode 29 The phase difference between the drive voltage due to the capacitance and the current from the IV converter 31 (131) can be reduced.
  • the inverting input terminal 32 (132) of the IV converter 31 (131) is virtually grounded, the current from the IV converter 31 (131) is a capacitance of the detection electrode 30 provided in the vibrators 26 and 27.
  • the capacitances of the drive electrodes 29 and the detection electrodes 30 of the vibrators 26 and 27 do not affect the natural frequencies of the vibrators 26 and 27. Therefore, even if the capacitances of the drive electrodes 29 and the detection electrodes 30 of the vibrators 26 and 27 change due to changes in the ambient temperature, the frequency of the output signal does not change and the accuracy is stable.
  • FIG. 12 is a circuit diagram of another processing circuit 28a in the load sensor 1001. 12, the same reference numerals are assigned to the same portions as those of the processing circuit 28 shown in FIG.
  • the processing circuit 28 a further includes phase adjusters 80 and 180 that adjust the phase of the signals output from the amplifiers 33 and 133.
  • the drive electrodes 29 and 129 and the detection electrodes 30 and 130 have a capacity as described above. Due to these capacitances, the drive signals generated based on the signals output from the detection electrodes 30 and 130 generate phase differences with respect to the mechanical vibrations of the vibrators 26 and 27, respectively. In the processing circuit 28 shown in FIGS. 3 and 9, it may be difficult to efficiently vibrate the vibrators 26 and 27 due to these phase differences.
  • the phase adjusters 80 and 180 shift the output signals output from the amplifiers 33 and 133, adjust the phases of these signals, and output them.
  • the drive circuits 38 and 138 generate drive signals based on the output signals output from the phase adjusters 80 and 180 and supply them to the drive electrodes 29 of the vibrators 26 and 27, respectively. Thereby, the vibrator 26.27 can be vibrated efficiently.
  • the load sensor of the present invention has the effect of providing a load sensor with improved characteristics that does not deteriorate the accuracy of the output signal even when the ambient temperature fluctuates. It is useful in a load sensor used in

Abstract

 荷重センサは、振動子と、振動子に設けられた駆動電極と、振動子を振動させる駆動電圧を駆動電極に供給する駆動回路と、振動子の振動に応じた電流を出力する検出電極と、検出電極から出力される電流を電圧に変換するIV変換器とを備える。駆動回路は、駆動電圧を出力するオペアンプと、そのオペアンプに接続された抵抗とを有して小さい内部抵抗を有する。IV変換器は、電流が入力されてかつ仮想接地された反転入力端子を有して負帰還回路を構成する。この荷重センサでは、周囲の温度が変動しても出力信号の精度が安定している。

Description

荷重センサ
 本発明は、印加された荷重を検出する荷重センサに関する。
 図13は周囲の気圧を測定する従来のセンサ501の斜視図である。センサ501は、水晶からなる振動子1と、振動子1を収納する容器2と、容器2の内側に設けられた電極パターン3と、振動子1と電気的に接続されて外部に発振出力信号を出力するリード5とを備える。電極パターン3は導電ペースト4で振動子1と電気的に接続されている。
 図14はセンサ501の回路ブロック図であり、振動子1から発振出力信号を取り出す回路を示す。センサ501は、発振回路6と、発振回路6に接続されたゲート12と、ゲート12に接続されたカウンタ13とを備える。図13に示すリード5が発振回路6に電気的に接続されることで、振動子1は発振回路6に電気的に接続されている。
 図15は発振回路6の回路図である。振動子1は一対のコンデンサ7を介してグランド8に電気的に接続されて接地されている。抵抗9とコルピッツ発振インバータ10とは振動子1と並列に接続されており、共に一対のコンデンサ7を介してグランド8に接続されて接地されている。波形整形用インバータ11は、コルピッツ発振インバータ10から出力される出力信号を波形整形して出力する。
 従来のセンサ501について、次にその動作を説明する。図16は振動子1の振動周波数を示す。図16において、縦軸は振動子1の周囲の気圧を示し、縦軸は振動周波数の変動を示す。気圧が変化すると、図16に示すように、振動子1の振動周波数が変化する。そうすると、発振回路6がその振動周波数にて発振し、波形整形用インバータ11から、図14に示すゲート12に発振信号が出力される。ゲート12は閉じた状態から所定の時間だけ開いて発振信号を通過させる。通過した発振信号のピークの数をカウンタ13によりカウントし、振動子1の振動周波数を検知することにより、センサ501の周囲の気圧を測定する。
 なお、センサ501に類似する従来のセンサは、例えば、特許文献1に記載されている。
 従来のセンサ501においては、周囲の温度が変化すると振動子1の容量が変動すると、センサ501からの出力信号の精度が劣化する。
特開昭57-136130号公報
 荷重センサは、振動子と、振動子に設けられた駆動電極と、振動子を振動させる駆動電圧を駆動電極に供給する駆動回路と、振動子の振動に応じた電流を出力する検出電極と、検出電極から出力される電流を電圧に変換するIV変換器とを備える。駆動回路は、駆動電圧を出力するオペアンプと、そのオペアンプに接続された抵抗とを有して小さい内部抵抗を有する。IV変換器は、電流が入力されてかつ仮想接地された反転入力端子を有して負帰還回路を構成する。
 この荷重センサでは、周囲の温度が変動しても出力信号の精度が安定している。
図1は実施の形態における荷重センサの側断面図である。 図2Aは実施の形態における荷重センサにおける歪検出部材の上面図である。 図2Bは図2Aに示す歪検出部材の線2B-2Bにおける断面図である。 図3は実施の形態における荷重センサにおける処理回路の一部の回路図である。 図4は実施の形態における荷重センサの処理回路におけるオペアンプの内部抵抗と位相の変動量との関係を示す図である。 図5は実施の形態における荷重センサの信号の波形を示す図である。 図6は実施の形態における荷重センサを自転車に取り付けた状態を示す模式図である。 図7は図6に示す荷重センサの拡大図である。 図8は実施の形態における荷重センサにおける振動子の周波数を示す図である。 図9は実施の形態における荷重センサにおける処理回路の回路図である。 図10は比較例のセンサの振動周波数の変動を示す図である。 図11は実施の形態における荷重センサの振動子の容量変動に伴う出力信号の振動周波数の変動を示す図である。 図12は実施の形態における荷重センサにおける他の処理回路の回路図である。 図13は従来のセンサの斜視図である。 図14は従来のセンサの回路ブロック図である。 図15は従来のセンサの発振回路の回路図である。 図16は従来のセンサの振動子の振動周波数を示す図である。
 図1は実施の形態における荷重センサ1001の側断面図である。転がり軸受21は回転軸21aを中心に回転する軸を回転可能に支持し、回転軸21aを中心とする円筒形状を有する。円筒形状を有する応力伝達部材22の内側には転がり軸受21が取付けられる。応力伝達部材22は転がり軸受21の全周にわたって回転軸21aを中心とするラジアル方向に配設されている。応力伝達部材22の内側には3つの支持部22aが設けられている。3つの支持部22aは転がり軸受21を応力伝達部材22の内側で支持する。また、応力伝達部材22の外周側には、段差形状の2つの当接部23が設けられている。応力伝達部材22の外側面には直線状の変形部24が設けられている。歪検出部材25は応力伝達部材22における変形部24に貼着されている。
 図2Aは歪検出部材25の上面図である。歪検出部材25は、図1に示す回転軸21aと直角の長手方向D25に延びる。歪検出部材25は、両持梁からなる振動子26、27と処理回路28とにより構成されている。処理回路28は集積回路(IC)で構成されている。振動子26は長手方向D25に延びる両持梁の形状を有する。振動子27は、長手方向D25と直角の方向D26に延びる両持梁形状を有する。処理回路28は振動子26、27の双方を振動駆動させるとともに出力信号を処理する。振動子26、27の双方には、駆動電極29および検出電極30が設けられている。振動子26の駆動電極29、検出電極30と、振動子27における駆動電極29、検出電極30と、処理回路28とはAuからなる配線パターンにより、電気的に接続されている。
 図2Bは図2Aに示す歪検出部材25の線2B-2Bにおける断面図である。駆動電極29は、振動子26(27)上に設けられた導電材料よりなる下部電極層129と、下部電極層129上に設けられた圧電材料よりなる圧電層229と、圧電層229上に設けられた導電材料よりなる上部電極層329よりなる。同様に、検出電極30は、振動子26(27)上に設けられた導電材料よりなる下部電極層130と、下部電極層130上に設けられた圧電材料よりなる圧電層230と、圧電層230上に設けられた導電材料よりなる上部電極層330よりなる。実施の形態では、下部電極層130はPtよりなり、圧電層230はPZTよりなり、上部電極層330はAuよりなる。駆動電極29および検出電極30は、下部電極層130と上部電極層330との間に形成される静電容量を有する。
 図3は荷重センサ1001の処理回路28の一部の回路図である。処理回路28は、IV変換器31と、増幅器33、36と、駆動源切替器34と、発振回路35と、コンパレータ37と、駆動回路38とを有する。IV変換器31は検出電極30から出力される電荷よりなる電流を電圧に変換する。IV変換器31は、反転入力端子32と、非反転入力端子32aと、出力端子32cとを有するオペアンプを有する。IV変換器31の非反転入力端子32aは基準電位に接続されて接地されており、これにより反転入力端子32は仮想接地されている。増幅器33はIV変換器31から出力される出力信号を増幅している。発振回路35は200kHzの周波数の信号を出力し、実施の形態ではCR発振回路よりなる。駆動源切替器34は増幅器33からの出力信号が入力される。駆動源切替器34は、増幅器33からの出力信号の周波数が200kHz未満の場合には発振回路35から出力信号を増幅器36に入力する。一方、増幅器33からの出力信号の周波数が200kHz以上の場合には増幅器33からの出力信号を増幅器36に入力する。これにより、振動子26、27がそれらの固有周波数で振動するまでの間にコンパレータ37の出力から後段の回路を動作させることができ、荷重センサ1001の起動時間を短くすることができる。増幅器36は入力された信号を増幅して出力信号として出力する。増幅器36からの出力信号はコンパレータ37に出力される。コンパレータ37は、増幅器36からの出力信号を予め決められた閾値と比較し、増幅器36からの出力信号を矩形波形に成形して出力する。増幅器36からの出力信号は駆動回路38に入力されている。駆動回路38は、振動子26、27を振動させる駆動電圧を駆動電極29に供給する。駆動回路38は検出電極30から出力される出力信号に基づいて駆動電圧を生成する。駆動回路38はオペアンプ39と抵抗40とで構成されている。オペアンプ39の内部抵抗R1は、駆動信号(駆動電圧)の角周波数ω(rad/sec)と、許容される位相差φ(度)と振動子26または振動子27の駆動電極29の容量C(F)とにより式1を満たす。
R1≦-(1/ωC)×tan(φ×(π/180)) …(式1)
 図4は荷重センサ1001のオペアンプ39の内部抵抗R1と位相の変動量との関係を示す。実施の形態における荷重センサ1001においては、振動子26、振動子27の駆動電極29の容量が400pFであり、駆動周波数が200kHzとしたときの検出する周波数の許容位相差φを1.35度としたときの、オペアンプ39の内部抵抗R1は、図4に示すように、47Ω以下と小さい値に設定する。
 許容される位相差φの算出法を以下に説明する。振動子26(27)の共振周波数frが200kHzであり、共振尖鋭度Qが600であり、フルスケール歪印加時での周波数変動量dfが1000Hzであるとする。さらに、使用用途からの要求される所定の許容誤差率Erが0.5%とする。
 上記の条件に基づき、振動子26(27)の振動の振幅の共振特性において半値幅hfは以下の式で求められる。
Q=fr/hf
hf=fr/Q=200×10/600=333(Hz)
 半値幅hfにて位相は45度から-45度まで90度変化するので、共振周波数fr付近での位相傾きdpは以下に式で求められる。
dp=hf/90=333/90=3.7(Hz/度)
 図2Aに示す実施の形態における歪検出部材25では、外力の印加時は振動子26の共振周波数である固有周波数faの変動が支配的で振動子27の共振周波数である固有周波数fbはほぼ変動しない。したがって、以降、固有周波数faの変動量のみで説明する。
 許容誤差率Erから算出される許容周波数誤差Efは以下の式で求められる。
Er=Ef/df
0.5(%)=Ef/1000
Ef=1000×0.5%=5(Hz)
 許容される位相差φは以下の式で求められる。
φ=Ef/dp
=5(Hz)/3.7(Hz/度)≒1.35(度)
 駆動回路38からの出力信号は振動子26、27に設けられた駆動電極29に入力され、振動子26、27を振動駆動させる。支持部材42は応力伝達部材22の外周側に設けられるとともに、内側に突出する突部44を有する。突部44は応力伝達部材22における当接部23と当接する。
 実施の形態における荷重センサ1001について、次にその製造方法を説明する。
 まず、Siからなる半導体基板をエッチングすることにより振動子26、27を形成する。
 次に、半導体基板の上面に、Auからなる配線パターンを蒸着した後、振動子26、27の駆動電極29および検出電極30を設ける箇所にPtを蒸着して下部電極層129、130を形成する。
 次に、下部電極層129、130の上面にPZTを蒸着して圧電層229、230を形成する。その後、圧電層229、230の上面にAuを蒸着して上部電極層329、330を形成し、振動子26、27の上面に駆動電極29および検出電極30を形成する。
 次に、処理回路28を載置して、処理回路28を、振動子26、27の双方の駆動電極29および検出電極30と電気的に接続し、歪検出部材25を形成する。
 次に、歪検出部材25を応力伝達部材22における変形部24に貼着した後、応力伝達部材22における支持部22aと転がり軸受21の外周側が当接するように、応力伝達部材22の内側に転がり軸受21を嵌合させる。
 最後に、応力伝達部材22における当接部23と、支持部材42における突部44が互いに当接するように、支持部材42の内側に応力伝達部材22を収納する。
 実施の形態における荷重センサ1001について、次にその動作を説明する。図5は荷重センサ1001の各部の信号の波形を示す。図6は荷重センサ1001を電動モータ付き自転車1002に取り付けた状態を示す模式図である。図7は図6に示す荷重センサ1001の拡大図である。自転車1002では、人力による駆動系と電動モータによる駆動系とを並列に設けられている。電動モータの駆動力が人力による駆動力の変化に対応して制御される。
 発振回路35は200kHzの周波数の正弦波形の信号S35を駆動源切替器34に出力する。駆動源切替器34の切り替えにより、信号S35が駆動源切替器34から出力信号S34として出力される。そして、この出力信号はコンパレータからなる増幅器36により増幅されるとともに、予め定められた閾値と比較されて矩形波の出力信号S36に変換される。そして、増幅器36からの出力信号S36は、オペアンプ39により、振幅が制限され、矩形波である駆動信号(駆動電圧)S39が振動子26、振動子27における駆動電極29に入力される。そうすると、振動子26は固有周波数faで弦振動し、一方、振動子27は固有周波数fbで弦振動する。この状態において、振動子26における検出電極30からの出力信号S30を処理回路28により、処理すると、周波数faが検出され、同様に、第2の振動子27における検出電極30からは周波数fbが検出される。
 図6に示すように、人が自転車のペダルを踏み込むと、この踏み込みにより、チェーン46に張力が発生した状態で、図7に示すように、回転軸45が回転する。この回転により、回転軸45から転がり軸受21に、転がり軸受21が後輪側に向かって移動する力が作用する。その力は、支持部22aを介して転がり軸受21から応力伝達部材22に作用し、応力伝達部材22を後輪側に向かって付勢する。そして、支持部材42の突部44から応力伝達部材22の当接部23に反力が作用し、この反力が応力伝達部材22における変形部24に伝達されて、変形部24に長手方向D25の圧縮荷重が作用する。
 図8は振動子26、27の固有周波数fa、fbを示す。図8に示すように、長手方向D25の圧縮荷重が歪検出部材25に印加されると、歪検出部材25は方向D26の引張荷重を生じる。すなわち、長手方向D25の圧縮荷重が歪検出部材25に作用すると、振動子26の固有周波数faは減少し、一方、振動子27の固有周波数fbは増加する。振動子26、27の双方の検出電極30からの出力信号が処理回路28におけるIV変換器31の反転入力端子32に入力される。IV変換器31における反転入力端子32は仮想接地されているので、反転入力端子32の電位V32は図5に示すように一定である。そして、IV変換器31からは図5に示すように、振動子26、27の双方の検出電極30からの出力される電荷による電流を電圧に変換し、振動子26、27の周波数に応じた出力信号S31が出力される。増幅器33はIV変換器31からの出力信号S31を反転させながら増幅して、図5に示すように出力信号S33を出力する。増幅器33からの出力信号S33の周波数が200kHz以上の場合には、増幅器33からの出力信号S33は増幅器36によりさらに増幅された後、コンパレータ37により、図5に示す矩形波に変換されて出力信号S37として出力される。すなわち、矩形波からなる出力信号S37を周波数の変化量として得て、踏力を検出することができる。
 図3に示す処理回路28は振動子26、27のうちの一方の駆動電極29と検出電極30に接続されているが、荷重センサ1001では、振動子26、27の双方の駆動電極29と検出電極30に接続されている。以下に処理回路28を詳述する。
 図9は荷重センサ1001における処理回路28の回路図である。図9において図3に示す処理回路28と同じ部分には同じ参照番号を付す。処理回路28では、オペアンプ39とIV変換器31は振動子26の駆動電極29と検出電極30にそれぞれ接続されている。図9に示す処理回路28は、図3に示す駆動回路38とIV変換器31と駆動源切替器34と発振回路35と増幅器33、36とコンパレータ37とそれぞれ同様に動作する駆動回路138とIV変換器131と駆動源切替器134と発振回路135と増幅器133、136とコンパレータ137とをさらに備える。駆動回路138は、駆動回路38のオペアンプ39と抵抗40と同様に動作するオペアンプ139と抵抗140とを有する。オペアンプ139はオペアンプ39の内部抵抗R1と同様の内部抵抗R101を有する。駆動回路138とIV変換器131は振動子27の駆動電極29と検出電極30にそれぞれ接続されている。図9に示す処理回路28は周波数カウンタ51、151と乗算器52、152、153と減算器53とをさらに備える。
 図9に示す処理回路28を有する荷重センサ1001の動作を説明する。振動子26、27はそれらの振動の干渉を防ぐために、互いに異なる固有周波数を有する。図8に示すように、振動子26、27に歪が印加されるとそれらの固有周波数fa、fbが変化し、この周波数fa、fbの変化を測定することにより歪を検出する。
 振動子26、27の機械的な振動を図2Bに示す検出電極30の圧電層230が電荷に変換して電流として出力する。処理回路28はその電流を検知し、主に、その電荷による電流を電圧に変換するIV変換を行う機能と、振動子26、27の発振条件を満たすための増幅の機能と、振動子26、27が許容振幅内で駆動するために駆動電圧を制限する機能とを有する。
 圧電層229、230を構成する圧電材料は誘電体でもあるので、駆動電極29の下部電極層129と上部電極層329との間に容量が生成され、検出電極30の下部電極層130と上部電極層330との間に容量が生成される。これらの容量により駆動周波数に以下に説明する誤差が発生する。誘電体は温度によりその誘電率が変化する温度特性を有するので、温度により容量が変化し駆動周波数も容量の変化に伴い変化して誤差となる。
 荷重センサ1001では、振動子26(27)に設けられた検出電極30の上部電極層330がIV変換器31(131)の反転入力端子32(132)に接続され、下部電極層130が基準電位Vrefに接続されている。オペアンプであるIV変換器31(131)の非反転入力端子32a(132a)は基準電位Vrefに接続されており、したがって、IV変換器31(131)の反転入力端子32(132)は基準電位Vrefに仮想接地されている。これにより、振動子26、27の検出電極30の下部電極層130と上部電極層330との間の電位差をゼロにすることができ、圧電層230で形成される容量への電流の流入を抑制し、歪に起因して発生する電荷による電流が検出電極30から流出する時の容量に起因による駆動周波数の変動を抑制することができる。
 さらに、駆動回路38、138を構成するオペアンプ39、139の内部抵抗R1、R101すなわち出力インピーダンスと、振動子26、27に設けられた駆動電極29の容量とはローパスフィルタを構成する。オペアンプ39、139の内部抵抗R1、R101すなわち出力インピーダンスを下げることにより、駆動電極29の容量と駆動回路38、138の出力インピーダンスとで生成されるローパスフィルタによる位相が振動子26、27の固有周波数の付近で変動しないようにすることができる。これにより、駆動電圧を印加した時の容量に起因する駆動周波数の変動を抑制できる。
 処理回路28では、コンパレータ37、137から振動子26、27の振動と同じ周波数を有する矩形波が出力される。周波数カウンタ51、151はコンパレータ37、137から出力された矩形波の周波数すなわち振動子26、27の振動の周波数fa、fbを計測してデジタルデータとして出力する。振動子26、27に印加された歪は周波数fa、fbの自乗に比例する。振動子26、27の固有周波数は異なっているので、振動子26,27の感度すなわち歪の単位大きさあたりの固有周波数fa、fbの自乗の値は互いに異なる。振動子26、27の感度の比Kを用いて、乗算器52、152、153と減算器53は以下の式2で示す差分Idを算出する。
Id=fa-K×fb …(式2)
 式2に示す差分Idは、振動子26、27に同一量の歪が発生する熱膨張などの要因に対しては理想的には変動しない。検出すべき外力に起因する歪に対しては振動子26、27の周波数変動量の極性が反対になるような箇所に振動子26、27が設置される。したがって、上記のようなキャンセル効果は発生せず。歪を検出することができる。
 図13から図15に示す比較例としての従来のセンサ501においては、発振回路6がコルピッツ発振からなる電圧検知方式により構成されているため、センサ501の周囲の温度が変化すると振動子1の容量が変動する。図10は比較例のセンサ501の振動子1の容量の変動に対する振動周波数の変動を示す。図10に示すように、振動子1の容量が変動すると振動周波数が変動するため、センサ501からの出力信号の精度が劣化する。
 図11は実施の形態における荷重センサ1001の振動子26、27の容量変動に伴う出力信号の振動周波数の変動を示す。実施の形態における荷重センサ1001においては、駆動回路38の内部抵抗R1を小さくしたので、周囲の温度の変化により駆動電極29の容量が変動しても、内部抵抗R1(R101)と駆動電極29の容量による駆動電圧とIV変換器31(131)からの電流との位相差を小さくすることができる。さらに、IV変換器31(131)の反転入力端子32(132)が仮想接地されているので、IV変換器31(131)からの電流が振動子26、27に設けられた検出電極30の容量成分に流れる電流に影響を及ぼさなくなる。これにより、図11に示すように、振動子26、27の駆動電極29や検出電極30の容量が、振動子26、27の固有周波数に影響を及ぼさない。したがって、周囲の温度が変動することにより振動子26、27の駆動電極29や検出電極30の容量が変化しても、出力信号の周波数は変動せず、精度が安定している。
 図12は荷重センサ1001における他の処理回路28aの回路図である。図12において図9に示す処理回路28と同じ部分には同じ参照番号を付す。処理回路28aは、増幅器33、133の出力する信号の位相を調整する位相調整器80、180をさらに有する。駆動電極29、129と検出電極30、130は前述のように容量を有する。これらの容量により、検出電極30、130から出力される信号に基づいて生成された駆動信号は振動子26、27の機械的な振動に対してそれぞれ位相差が発生する。図3や図9に示す処理回路28では、これらの位相差により振動子26、27を効率的に振動させることが困難になる場合がある。
 図12は処理回路28aでは、位相調整器80、180が増幅器33、133の出力する出力信号を移相してそれらの信号の位相を調整して出力する。駆動回路38、138は位相調整器80、180が出力する出力信号に基づいて駆動信号を生成し、振動子26、27の駆動電極29にそれぞれ供給する。これにより、振動子26.27を効率よく振動させることができる。
 本発明の荷重センサは、周囲の温度が変動しても、出力信号の精度が劣化するということのない特性の向上した荷重センサを提供できるという効果を有するものであり、特に、電動モータ付き自転車に使用される荷重センサにおいて有用である。
26  振動子
27  振動子
29  駆動電極
30  検出電極
31  IV変換器
32  反転入力端子
38  駆動回路
39  オペアンプ
40  抵抗
R1  内部抵抗

Claims (3)

  1. 振動子と、
    前記振動子に設けられた駆動電極と、
    前記振動子を振動させる駆動電圧を前記駆動電極に供給する駆動回路と、
    前記振動子の振動に応じた電流を出力する検出電極と、
    前記検出電極から出力される前記電流を電圧に変換して出力信号を出力するIV変換器と、
    を備え、
    前記駆動回路は前記駆動電圧を出力するオペアンプを有し、
    前記駆動回路は前記出力信号に基づいて前記駆動電圧を生成し、
    前記オペアンプの内部抵抗R1(Ω)と、前記駆動電圧の角周波数ω(rad/sec)と、許容される位相差φ(度)と、前記駆動電極の容量C(F)とは以下の式:
    R1≦-(1/ωC)×tan(φ×(π/180))
    を満たす、荷重センサ。
  2. 前記IV変換器は、前記電流が入力されてかつ仮想接地された反転入力端子を有して負帰還回路を構成する、請求項1に記載の荷重センサ。
  3. 前記出力信号の位相を調整して信号を出力する位相調整器をさらに備え、
    前記駆動回路は前記位相調整器から出力される前記信号に基づいて前記駆動電圧を生成する、請求項1または2に記載の荷重センサ。
PCT/JP2013/001386 2012-03-07 2013-03-06 荷重センサ WO2013132842A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380012747.2A CN104160255A (zh) 2012-03-07 2013-03-06 载荷传感器
US14/450,293 US20140338469A1 (en) 2012-03-07 2014-08-04 Load sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-050042 2012-03-07
JP2012050042 2012-03-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/450,293 Continuation US20140338469A1 (en) 2012-03-07 2014-08-04 Load sensor

Publications (1)

Publication Number Publication Date
WO2013132842A1 true WO2013132842A1 (ja) 2013-09-12

Family

ID=49116337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001386 WO2013132842A1 (ja) 2012-03-07 2013-03-06 荷重センサ

Country Status (4)

Country Link
US (1) US20140338469A1 (ja)
JP (1) JPWO2013132842A1 (ja)
CN (1) CN104160255A (ja)
WO (1) WO2013132842A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136388A1 (ja) * 2013-03-08 2014-09-12 パナソニック株式会社 歪検出装置
CN113188690A (zh) * 2020-01-10 2021-07-30 横河电机株式会社 谐振压力传感器
JP2023041752A (ja) * 2020-01-10 2023-03-24 横河電機株式会社 振動式圧力センサ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9455672B2 (en) * 2012-03-19 2016-09-27 Panasonic Intellectual Property Management Co., Ltd. IV converter and inertial force sensor using IV converter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130326A (ja) * 1985-12-02 1987-06-12 Seiko Electronic Components Ltd 水晶式気体圧力計
JPH03140004A (ja) * 1989-10-26 1991-06-14 Sumitomo Electric Ind Ltd 圧電振動子の励振回路
JPH07333077A (ja) * 1994-06-10 1995-12-22 Fujitsu Ltd 振動素子、振動素子の使用方法及び振動素子の製造方法
WO2010137303A1 (ja) * 2009-05-27 2010-12-02 パナソニック株式会社 物理量センサ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3521089A (en) * 1968-06-05 1970-07-21 Atomic Energy Commission Piezoelectric feedthrough device
US5313023A (en) * 1992-04-03 1994-05-17 Weigh-Tronix, Inc. Load cell
NZ248606A (en) * 1992-09-11 1995-07-26 Arthur Kellenbach Shear beam loadcell: lateral groove present between lower surface of mounting portion and lower surface of coplanar free strain sensing portion
JP4066786B2 (ja) * 2001-12-28 2008-03-26 株式会社村田製作所 力学量センサ
WO2005101029A1 (ja) * 2004-03-30 2005-10-27 Murata Manufacturing Co., Ltd. 力学量センサ
JP5458462B2 (ja) * 2005-10-11 2014-04-02 パナソニック株式会社 振動型慣性力検知センサ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130326A (ja) * 1985-12-02 1987-06-12 Seiko Electronic Components Ltd 水晶式気体圧力計
JPH03140004A (ja) * 1989-10-26 1991-06-14 Sumitomo Electric Ind Ltd 圧電振動子の励振回路
JPH07333077A (ja) * 1994-06-10 1995-12-22 Fujitsu Ltd 振動素子、振動素子の使用方法及び振動素子の製造方法
WO2010137303A1 (ja) * 2009-05-27 2010-12-02 パナソニック株式会社 物理量センサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOSHIO SHIRATO ET AL., ZUKAI ANALOG IC NO SUBETE OPERATIONAL AMPLIFIER KARA SWITCHED CAPACITOR MADE, 20 March 2005 (2005-03-20), pages 37 - 38 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136388A1 (ja) * 2013-03-08 2014-09-12 パナソニック株式会社 歪検出装置
CN113188690A (zh) * 2020-01-10 2021-07-30 横河电机株式会社 谐振压力传感器
JP2021110637A (ja) * 2020-01-10 2021-08-02 横河電機株式会社 振動式圧力センサ
JP7216921B2 (ja) 2020-01-10 2023-02-02 横河電機株式会社 振動式圧力センサ
US11592347B2 (en) 2020-01-10 2023-02-28 Yokogawa Electric Corporation Resonant pressure sensor with imporved linearity
JP2023041752A (ja) * 2020-01-10 2023-03-24 横河電機株式会社 振動式圧力センサ
CN113188690B (zh) * 2020-01-10 2023-07-04 横河电机株式会社 谐振压力传感器
JP7327695B2 (ja) 2020-01-10 2023-08-16 横河電機株式会社 振動式圧力センサ

Also Published As

Publication number Publication date
US20140338469A1 (en) 2014-11-20
CN104160255A (zh) 2014-11-19
JPWO2013132842A1 (ja) 2015-07-30

Similar Documents

Publication Publication Date Title
JP5578810B2 (ja) 静電容量型の電気機械変換装置
US6532824B1 (en) Capacitive strain sensor and method for using the same
WO2013132842A1 (ja) 荷重センサ
US7343802B2 (en) Dynamic-quantity sensor
US7673529B2 (en) Method for processing detection signal of vibratory inertial force sensor and vibratory inertial force sensor
JPH10512046A (ja) 一体化共振マイクロビームセンサ及びトランジスタ発振器
JP4696996B2 (ja) 慣性力センサ
JP2007256233A5 (ja)
JP5859056B2 (ja) 静電容量型の電気機械変換装置
JP2012156946A (ja) 発振回路およびそれを用いた振動式センサ
JP5409138B2 (ja) 電気機械変換装置、電気機械変換装置の感度ばらつき検出方法、及び補正方法
US7997135B2 (en) Angular velocity sensor
JP5745834B2 (ja) 容量検出が改善された補償型マイクロ/ナノ共振器及びその製造方法
US9880063B2 (en) Pressure sensor stabilization
JP2012163477A (ja) 角速度センサ
US9032797B2 (en) Sensor device and method
JP6392679B2 (ja) ガスセンサ
JP2013088272A (ja) 物理量センサ
JPH08205279A (ja) 電磁変換型振動子の制動インダクタンス低減回路
JP2001099725A (ja) 荷重測定装置
JP2008190884A (ja) 加速度検出装置
JPH07113816A (ja) 加速度センサ
JP2008157767A (ja) 加速度検出装置
JP2009284375A (ja) 振動子
JPH1030971A (ja) ひずみ検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13757152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014503488

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13757152

Country of ref document: EP

Kind code of ref document: A1