WO2005101029A1 - 力学量センサ - Google Patents

力学量センサ Download PDF

Info

Publication number
WO2005101029A1
WO2005101029A1 PCT/JP2005/001498 JP2005001498W WO2005101029A1 WO 2005101029 A1 WO2005101029 A1 WO 2005101029A1 JP 2005001498 W JP2005001498 W JP 2005001498W WO 2005101029 A1 WO2005101029 A1 WO 2005101029A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
piezoelectric vibrator
capacitor
physical quantity
series
Prior art date
Application number
PCT/JP2005/001498
Other languages
English (en)
French (fr)
Inventor
Muneharu Yamashita
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to JP2006512268A priority Critical patent/JP4449978B2/ja
Publication of WO2005101029A1 publication Critical patent/WO2005101029A1/ja
Priority to US11/468,796 priority patent/US7343802B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • G01L1/162Measuring force or stress, in general using properties of piezoelectric devices using piezoelectric resonators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/09Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by piezoelectric pick-up

Definitions

  • the present invention relates to a physical quantity sensor for detecting physical quantities such as acceleration, angular acceleration, angular velocity, and load.
  • FIG. 1 the configuration of the acceleration sensor of Patent Document 1 is shown in FIG.
  • a bridge circuit 110 including two piezoelectric vibrators SI, S2 and capacitors CI, C2 in which the directions of stress applied by acceleration are opposite to each other is formed, and connection points p2 and p3 are connected to each other.
  • a voltage dividing impedance circuit 120 is provided between the two, and a signal at a voltage dividing point p5 of the voltage dividing impedance circuit 120 is fed back to a connection point pi by a feedback signal processing circuit 130 to form an oscillation circuit.
  • the phase difference signal processing circuit 140 detects the oscillation output phase difference between the connection points p2 and p3, and outputs the phase difference as an acceleration detection signal.
  • Fig. 14 shows a configuration of a physical quantity sensor of Patent Document 2.
  • the two piezoelectric vibrators Sa and Sb are provided so that the directions of stress applied by mechanical quantities such as acceleration are opposite to each other.
  • the current-voltage conversion-signal addition circuit 11 converts a current signal flowing through the two piezoelectric vibrators Sa and Sb into a voltage signal.
  • the voltage amplification amplitude limiting circuit 12 amplifies the added signal Sab of the two voltage signals, and performs positive feedback on the voltage signal Vosc having the same phase as the current signal to perform an oscillation operation.
  • the phase difference voltage conversion circuit 13 generates a voltage signal proportional to the phase difference between the voltage-converted signals Sa and Sb.
  • Amplifying filter circuit 14 amplifies the direct current and removes unnecessary frequency components.
  • Patent document 1 Japanese Patent Application Laid-Open No. 2002-243757
  • Patent Document 2 JP 2003-254991
  • a dynamic quantity sensor for detecting such a dynamic quantity such as acceleration has been strongly required to have a low cost with a variety of applications and an increase in the number of applications.
  • the acceleration sensor disclosed in Patent Document 1 requires two sets of circuits for detecting the phase difference, and requires an addition circuit (averaging circuit) such as a voltage dividing impedance circuit to determine the oscillation frequency. It is difficult to reduce the size and cost of a large number of components.
  • the dynamic quantity sensor disclosed in Patent Document 2 also requires a relatively large-scale circuit for driving two piezoelectric vibrators in parallel, such as a current-to-voltage conversion “f-word addition circuit” and a voltage amplification amplitude limiting circuit. Therefore, it was difficult to reduce the size and cost.
  • an object of the present invention is to provide a dynamic quantity sensor that is improved in circuit configuration for detecting a dynamic quantity and that is smaller and less costly than a conventional dynamic quantity sensor. Means for solving the problem
  • a mechanical quantity sensor includes a piezoelectric vibrator series circuit 10 in which two piezoelectric vibrators Sa and Sb, in which the directions of stress applied by mechanical quantities are opposite to each other, are connected in series.
  • the amplification circuit 21 and the load impedance circuit are connected to the piezoelectric vibrator series circuit 10 to form a Colpitts-type oscillation circuit 30, and the voltage Vp2 at the point P2 of the series connection of the two piezoelectric vibrators Sa and Sb of the piezoelectric vibrator series circuit
  • a phase difference voltage conversion circuit 40 for converting a phase difference between the output voltage Vpl of the oscillation circuit 30 and a voltage.
  • the first capacitor C1 is connected between the first end Pa of the piezoelectric vibrator series circuit 10 and the ground in (1)
  • a second capacitor C2 is connected between the second end Pb of the slave series circuit 10 and the ground
  • an input of the amplifier circuit 21 is connected to the first end Pa of the piezoelectric vibrator series circuit 10.
  • An output resistor R2 is connected between the output section P1 of the amplifier circuit 21 and the second end Pb of the piezoelectric vibrator series circuit 10 to constitute the oscillation circuit 30;
  • the impedance of the output-side resistor R2 is higher than the output impedance of the amplifier circuit 21 and the oscillation frequency of the oscillation circuit 30 is represented by f
  • the product of the impedance of the output-side resistor R2 and the capacitance of the second capacitor C2 is represented by f
  • the characteristic is that the impedance of the resistor R2 and the capacitance of the second capacitor C2 are determined so that the output is greater than the value of 1Z (2 ⁇ f).
  • a series circuit of an input-side resistor Rd and a third capacitor Cd is connected in parallel to the first capacitor C1, 2 is characterized in that the respective capacitances of the capacitors CI and C2 are substantially equal, and the impedance of the output-side resistor R2 is substantially equal to the impedance of the input-side resistor Rd.
  • the dynamic quantity sensor according to the present invention is characterized in that in (2) and (3), the first capacitor C1 is connected between the first end Pa of the piezoelectric vibrator series circuit 10 and the ground. It is characterized by inserting a series resistor Rq in series! / Puru.
  • the oscillation frequency f of the oscillation circuit is determined by the capacitances CI and C2 and the inductance between the anti-resonance frequency of the piezoelectric vibrator series circuit 10 and the resonance frequency.Therefore, these are expressed as C2'R2> 1Z (2 By setting such a relationship, the dynamic range of the phase difference change with respect to the mechanical quantity can be widened.
  • a series circuit of an input-side resistor Rd and a third capacitor Cd is connected to the first capacitor C1, the capacitances of CI and C2 are made substantially equal, and the output-side resistor R2 And the input side resistance Rd, the phase difference between the output section P1 of the amplifier circuit 21 and the series connection point P2 of the piezoelectric vibrator series circuit is corrected.
  • the voltage phase difference between P1 and P2 can be made flat regardless of the oscillation frequency, and noise due to fluctuations in the oscillation frequency can be prevented. Therefore, it is possible to measure the mechanical quantity with high accuracy.
  • FIG. 1 is a block diagram showing an overall configuration of a physical quantity sensor according to a first embodiment.
  • FIG. 2 is a circuit diagram of the physical quantity sensor.
  • FIG. 3 is a characteristic diagram of an oscillation circuit of the physical quantity sensor.
  • FIG. 4 is a waveform chart showing an operation of a phase difference voltage conversion circuit of the physical quantity sensor.
  • FIG. 5 is a diagram showing a configuration of an oscillation circuit portion of a physical quantity sensor according to a second embodiment.
  • FIG. 6 is a characteristic diagram of the oscillation circuit.
  • FIG. 7 is a diagram showing a configuration of an oscillation circuit portion of a physical quantity sensor according to a third embodiment.
  • FIG. 8 is a diagram showing a configuration of an oscillation circuit portion of another physical quantity sensor according to the third embodiment.
  • FIG. 9 is a diagram showing a configuration of an oscillation circuit part of a physical quantity sensor according to a fourth embodiment.
  • FIG. 10 is an external perspective view and an exploded perspective view of an acceleration sensor constituting a piezoelectric vibrator series circuit.
  • FIG. 11 is an exploded perspective view of an acceleration detecting element portion of the acceleration sensor.
  • FIG. 12 is a plan view of the acceleration sensor with a cover member removed.
  • FIG. 13 is a diagram showing a configuration of a physical quantity sensor of Patent Document 1.
  • FIG. 14 is a diagram showing a configuration of a physical quantity sensor of Patent Document 2.
  • FIG. 1 is a block diagram of a physical quantity sensor.
  • the two piezoelectric vibrators Sa and Sb are arranged in such a way that the directions of the stresses applied by the mechanical quantities are opposite to each other.
  • Circuit 10 is formed.
  • This piezoelectric vibrator series A Colpitts-type oscillation circuit 30 is constituted by the circuit 10 and the amplification circuit'load impedance circuit 20.
  • the phase difference voltage conversion circuit 40 detects a voltage phase difference between the voltages Vpl and Vp2 output from the oscillation circuit 30 as a voltage signal, and uses it as an output signal of the dynamic quantity sensor.
  • FIG. 2 is a specific circuit diagram of the physical quantity sensor shown in FIG.
  • the amplification circuit 21 includes an inverting amplifier IC1 and a resistor R1 connected between its input and output.
  • a first capacitor C1 is connected between the first end Pa of the piezoelectric vibrator series circuit 10 and ground, and a second capacitor C1 is connected between the second end Pb of the piezoelectric vibrator series circuit 10 and ground.
  • Capacitor C2 is connected.
  • the input of the amplifier circuit 21 is connected to the first end Pa of the piezoelectric vibrator series circuit 10, and the output P1 of the amplifier 21 and the second end Pb of the piezoelectric vibrator series circuit 10 are connected. Output side resistor R2 is connected between them.
  • the oscillation circuit 30 is constituted by the amplification circuit 21, the piezoelectric vibrator series circuit 10, and other circuit parts (load impedance circuit).
  • This oscillation circuit 30 is a Colpitts type oscillation circuit in which a feedback circuit by a reactance circuit is provided in an amplification circuit 21 by an inverting amplifier IC1 and an oscillation signal is output from an output section P1 of the amplification circuit 21. Since the piezoelectric vibrator series circuit 10 becomes inductive between its anti-resonance frequency and the resonance frequency, it oscillates at a frequency determined by its inductance and the capacitance of the capacitors CI and C2. That is, if the inductance of the piezoelectric resonator series circuit 10 at the above inductive frequency is L and the capacitances of the capacitors CI and C2 are CI and C2, the oscillation frequency f is
  • the output-side resistor R2 is a number so as not to be affected by the output impedance fluctuation of the inverting amplifier IC1, and the output-side resistor R2 is set so that the voltage phase difference between P1 and P2 is almost 90 degrees.
  • the multiplication value of the resistance value of R2 and the capacitance of capacitor C2 is determined to be at least about 10 times the value of 1 / (2 ⁇ f). If the above multiplication value is 1Z (2 ⁇ f), the phase difference between Vpl and Vp2 is 45 degrees.
  • phase difference voltage conversion circuit 40 Even if the phase difference between Vpl and Vp2 is 45 degrees, the phase difference voltage conversion circuit 40 operates stably, but this phase difference voltage conversion circuit 40 Since the signal is converted into a voltage signal with the phase difference as the center, the dynamic range of the phase difference voltage conversion circuit 40 can be used effectively by setting the phase difference between PI and P2 near 90 degrees in advance, and detection can be performed with a predetermined accuracy. The detection range of possible mechanical quantities can be extended.
  • the first capacitor C1 and the second capacitor C2 have the same capacitance.
  • a logic circuit inverter was used for the inverting amplifier IC1.
  • the resistance R1 connected between the input and output was 1 ⁇ .
  • the method of connecting a resistor between the input and output of a logic circuit inverter and using it as a linear amplifier is widely used in Colpitts oscillator circuits.
  • the present invention is not limited to this method, and other methods on the circuit configuration used for the Colpitts oscillation circuit can be used.
  • the phase difference voltage conversion circuit 40 converts the phase difference between the output voltage Vpl of the oscillation circuit 30 and the voltage Vp2 of the series connection point P2 of the piezoelectric vibrator series circuit 10 into a voltage signal.
  • an amplifier circuit preamplifier
  • the inverters IC3 and IC4 amplify the voltage signal Vpl and the output signal of the inverting amplifier IC2, respectively, and convert them to a rectangular wave signal. That is, the input signals of the inverters IC3 and IC4 are converted into rectangular wave signals that take low and high logic signal levels by amplifying the input signals as sine wave signals with a very large gain.
  • An exclusive OR gate (exclusive OR circuit) IC5 outputs a PWM (phase width modulation) signal Vpo by taking an exclusive OR of output signals of IC3 and IC4.
  • the resistor Rm and the capacitor Cm constitute a low-pass filter, and remove (smooth) the fundamental frequency component of the rectangular wave signal output from the IC 5 to transmit the signal component.
  • the non-inverting amplifier circuit IC6 forms a voltage follower circuit by directly feeding back its output terminal to the inverting input terminal. This makes it possible to output with low output impedance without affecting the integration circuit by the resistor Rm and the capacitor Cm. In addition, since the capacitance of the capacitor Cm can be reduced, the capacitor Cm can also be incorporated in the semiconductor integrated circuit.
  • FIG. 2 is a circuit diagram for simulation of the oscillation circuit 30.
  • the voltage Vi which is the output signal of the oscillator OSC
  • the capacitance value of this DC cut capacitor Cc is set to a value that is sufficiently larger than the capacitance values of capacitors CI and C2 (F order).
  • This voltage Vi was kept constant, and the acceleration applied to the piezoelectric vibrator series circuit 10 was changed while sweeping the OSC frequency, and the simulation was performed.
  • FIG. 3A shows the phase difference between the terminals P1> and P2> shown in FIG. 2B
  • FIG. 3B shows the phase of the voltage Vf of the capacitor C1
  • FIG. (C) is the gain.
  • N is when mark Caro the 100G
  • Z is a characteristic in the state without application of an acceleration.
  • the characteristics in the three acceleration states are overlapped, so that they can be seen as one curve.
  • the phase and gain of the feedback voltage Vf do not change, and the phase difference between Vpl and Vp2 changes at the oscillation frequency or a frequency in the vicinity thereof according to the magnitude of the caro speed.
  • FIG. 4 is a waveform diagram illustrating the operation of the phase difference voltage conversion circuit 40 shown in FIG.
  • the output signals of the inverters IC3 and IC4 are rectangular wave signals equal to the period of the output signal of the oscillation circuit 30, and the output signal Vpo of the exclusive OR gate IC5 is a PWM signal corresponding to the phase difference between Vpl and Vp2 '. Signal. Then, the on-duty ratio of Vpo changes according to the phase difference between Vpl and Vp2 ', and the voltage signal Vo obtained by the integration result of the low-pass filter becomes a voltage signal proportional to the phase difference.
  • the phase difference between Vpl and Vp2 at the oscillation frequency is about 90 degrees. Therefore, as shown in FIG. 2A, an inexpensive phase difference voltage conversion circuit using an exclusive OR gate can be adopted, and a small-sized and low-cost circuit can be achieved. Also, by configuring the exclusive OR gate IC5 with a CMOS circuit, the output voltage of the exclusive OR gate IC5 when the applied acceleration is 0G becomes 1Z2 of the power supply voltage, so that the analog circuit (IC6 Voltage follower circuit).
  • the phase difference voltage conversion circuit 40 can be constituted by a low-cost circuit.
  • phase difference voltage conversion circuit 40 does not require the phase adjustment circuit conventionally required, so that a compact and low cost can be achieved.
  • an exclusive OR gate IC 5 is used for the phase difference voltage conversion circuit 40, but an exclusive NOR (EX—NOR) that outputs an exclusive OR inverted signal is used.
  • a gate may be used. AND gate, NAND gate, OR gate, NOR gate Combine logic circuits such as a logic circuit to generate a PWM signal according to the phase difference.
  • FIG. 10 (A) is an external perspective view of the acceleration detecting element 1 included in the piezoelectric vibrator series circuit 10
  • FIG. 10 (B) is an exploded perspective view thereof.
  • FIG. 11 is a further exploded perspective view of FIG. 10 (B)
  • FIG. 12 is a plan view showing the internal structure.
  • the acceleration detecting element 1 is a device in which a bimorph type piezoelectric vibrator 2 is housed and supported in a cantilever structure in an insulating case member 6 and a cover member 7 having the same strength as an insulating ceramic. As shown in FIGS. 10 and 11, when the application direction of the acceleration G is the Y direction, the length direction of the piezoelectric vibrator 2 is the X direction, and the height direction is the Z direction.
  • the piezoelectric vibrator 2 is obtained by bonding the vibrators 3 and 4 to both ends of both sides of the base plate 5 in the acceleration application direction (Y direction) via a spacer 51-54 by bonding. is there.
  • the vibrators 3 and 4 are energy trapping type thickness shear vibration mode vibrators in which electrodes 3a, 3b and 4a and 4b are formed on both upper and lower main surfaces of a strip-shaped piezoelectric ceramic plate, respectively.
  • One of the electrodes 3 a and 4 a of the vibrators 3 and 4 is exposed above the piezoelectric vibrator 2, and the other electrodes 3 b and 4 b are exposed below the piezoelectric vibrator 2.
  • One ends of the electrodes 3a, 3b and 4a, 4b on the front and back main surfaces face each other at an intermediate portion in the longitudinal direction, and the other ends are drawn out to different ends of the transducers 3, 4.
  • the heights HI of the oscillators 3 and 4 in the Z direction are the same as each other, and the height HI is determined by the resonance frequency of the oscillators 3 and 4.
  • HI is set to 1Z5 or less of H2.
  • Electrodes 3a, 3b and 4a, 4b Force ⁇
  • the opposing portions are provided in portions where spacers 31, 32 and 41, 42 are not fixed.
  • the vibrators 3 and 4 are joined to opposing positions on both sides of the base plate 5 so that the same stress acts on both vibrators with respect to the radius of the other axis, thereby reducing detection variations.
  • the base plate 5 is an insulating plate formed to have the same length as the vibrators 3 and 4, and is a front surface during bending caused by the application of the acceleration G of the piezoelectric vibrator 2 (indicated by a broken line N1 in FIG. 12). Is located at the center of the base plate 5 in the thickness direction (Y direction). On the surface of the base plate 5 facing the vibrators 3 and 4, a gap 5a is formed wider than the range of the confined vibration of the vibrators 3 and 4.
  • the base-side spacers 51 and 52 have the same length as the base-side spacers 31 and 41 of the vibrators 3 and 4, and their height (in the Z direction) is the same as that of the base plate 5. Height equal to H2.
  • the spacers 53, 54 on the free end side have the same length as the spacers 32, 42 on the free end side of the vibrators 3, 4, and the height (in the Z direction) of the base plate is Height of 5 equals H2.
  • the vibrators 3 and 4, spacers 31, 32, 41 and 42, base plate 5 and spacers 51 and 54 constituting the piezoelectric vibrator 2 have the same coefficient of thermal expansion as the vibrators 3 and 4. (For example, ceramics such as PZT). Therefore, it is possible to prevent the oscillators 3 and 4 from generating stress due to a difference in thermal expansion due to a temperature change.
  • an extraction electrode 5b is formed over the entire length.
  • the extraction electrode 5b is electrically connected to the internal electrode 61 formed continuously on the upper surface of the base end of the piezoelectric vibrator 2 to which the vibrators 3 and 4 are joined.
  • An internal electrode 64 is continuously formed on the upper surface on the free end side of the base plate 5 and on the upper surfaces of the spacers 53, 54, 32, and 42.
  • the internal electrode 64 is formed on one side surface of the base plate 5.
  • the extracted extraction electrode 5b and the connection electrodes 3d and 4d formed on the side surfaces of the vibrators 3 and 4 are electrically connected to each other.
  • Both side surfaces of the piezoelectric vibrator 2 in the application direction of the acceleration G are covered by a pair of left and right case members 6.
  • the case member 6 is formed in a U-shaped cross section, and the protruding portion 6a at one end side is bonded and fixed to both side surfaces of the base end portion of the piezoelectric vibrator 2. Further, the other end side protruding portion 6b of the case member 6 is bonded and fixed with the spacer member 2a interposed therebetween.
  • the spacer member 2a is a cut end of the piezoelectric vibrator 2 that has been cut in the longitudinal direction and is formed by cutting the tip end of the piezoelectric vibrator 2.
  • a concave portion 6c is formed between the protruding portions 6a and 6b to form a space in which the piezoelectric vibrator 2 can extend.
  • Storno 6d is provided inside the other end side protruding portion 6b of the case member 6, the displacement of the piezoelectric vibrator 2 when an excessive acceleration G is applied is limited to prevent deformation and breakage of the piezoelectric vibrator 2. Storno 6d is provided.
  • lead electrodes 62a, 62b and 63a, 63b which are mutually conductive.
  • the joining between the case member 6 and the piezoelectric vibrator 2 is performed by using a conductive adhesive to perform the electrical connection between the electrodes 3c and 62a and the electrodes 4c and 63a.
  • An anisotropic conductive adhesive is used to prevent a short circuit between the internal electrode 61 and the external electrode 71 formed continuously on the upper surface of the base end.
  • the extraction electrodes 62b, 63b formed on the upper surface of the case member 6 are aligned with the internal electrodes 64 formed on the upper surface on the free end side of the piezoelectric vibrator 2, and these electrodes 62b, 63b, 64 Is formed at the same time by bonding the case member 6 to the piezoelectric vibrator 2 and then performing sputtering or vapor deposition on the upper surface thereof. Note that the internal electrode 61 is also formed at the same time.
  • the upper and lower open surfaces formed by the piezoelectric vibrator 2 and the case member 6 are covered by a pair of upper and lower cover members 7 and 7.
  • a cavity forming recess 7a for preventing contact with the piezoelectric vibrator 2 is formed on the inner surface of the cover member 7, and the outer peripheral portion thereof is bonded and fixed to the open surface.
  • the displacement part of the piezoelectric vibrator 2 due to the acceleration G is completely sealed by the case member 6 and the cover member 7.
  • an external electrode 71 located on the base end side of the piezoelectric vibrator 2 and two external electrodes 72, 73 located on the free end side of the piezoelectric vibrator 2 are provided.
  • the external electrodes 72 and 73 are located at positions separated from the external electrode 71 in the length direction (X direction), and are provided on two sides facing each other in the acceleration application direction (Y direction).
  • the conductive path of the piezoelectric vibrator 2 having the above structure is as follows.
  • the upper electrode 3a of one vibrator 3 is electrically connected to the external electrode 72 via the connection electrode 3c and the extraction electrodes 62a and 62b.
  • the upper electrode 4a of the other vibrator 4 is electrically connected to the external electrode 73 via the connection electrode 4c and the extraction electrodes 63a and 63b.
  • the lower electrodes 3b, 4b of the vibrators 3, 4 are electrically connected to each other by the connection electrodes 3d, 4d and the internal electrode 64. Accordingly, conduction is provided to the external electrode 71 via the extraction electrode 5 b provided on one side surface of the base plate 5 and the internal electrode 61.
  • the surface-mounted chip-type acceleration detecting element 1 is configured as described above.
  • FIG. 5A shows the configuration of the oscillation circuit 30.
  • a series circuit of the input-side resistor Rd and the third capacitor Cd is connected in parallel to the capacitor C1.
  • This third capacitor Cd is provided for DC cut to remove the DC component of the inverting amplifier IC1, and the impedance at the oscillation frequency is set to be sufficiently small (less than 1Z10) with respect to the resistance of the input side resistor Rd. are doing.
  • Others are the same as those of the first embodiment.
  • FIG. 5B shows a circuit for simulation of the oscillation circuit 30 shown in FIG.
  • the voltage Vi from the oscillator OSC is applied to the inverting amplifier IC1 via the DC cut capacitor Cc.
  • FIG. 6A shows the phase difference between the terminals P1> and P2> shown in FIG. 5B
  • FIG. 6B shows the phase of the voltage Vf of the capacitor C1
  • N is the characteristic when 100G is applied
  • Z is the characteristic when no acceleration is applied.
  • the characteristics in the three acceleration states are overlapped, so that they appear as one curve.
  • the phase and gain of the feedback voltage Vf are not affected by the applied acceleration, and between Vpl and Vp2 according to the magnitude of the acceleration at or near the oscillation frequency. Changes.
  • the phase of the feedback voltage Vf is adjusted according to the values of the capacitors CI, C2, Cd and the resistor Rd shown in FIG.
  • the phase difference between Vpl and Vp2 is made flat regardless of frequency in the ⁇ state (applied acceleration of 0G). At this time, the change in the phase difference with respect to the frequency change when the acceleration is applied is symmetric.
  • FIG. 7 shows the oscillation circuit 30. Oscillation times of the physical quantity sensor shown in Fig. 2 Unlike the path 30, a series resistor Rq is inserted in series with the first capacitor C1 between the first end Pa of the piezoelectric vibrator series circuit 10 and the ground. By inserting the series resistor Rq in this manner, the Q of the tank circuit composed of the piezoelectric vibrator series circuit 10 and the capacitors CI and C2 is reduced, and the sensitivity to the dynamic quantity is reduced. The influence of the mechanical Q (Qm) variation of the series circuit 10 is less likely to appear, and the sensitivity change rate (the phase difference change rate between Vpl and Vp2) due to the Qm change is reduced. Therefore, the temperature characteristic of the sensitivity of detecting the physical quantity such as acceleration can be stabilized, and the change with time can be reduced.
  • Qm the mechanical Q
  • FIG. 8 shows another configuration of the oscillation circuit 30. As described above, a similar effect can be obtained by inserting the series resistor Rq in series with the capacitor C1 between the input section of the amplifier circuit 21 and the ground. In this case, it is natural that C1 and Rq are interchanged.
  • FIG. 9 shows the configuration of the oscillation circuit 30 of the physical quantity sensor according to the fourth embodiment.
  • This oscillation circuit has both the configuration shown in FIG. 5 in the second embodiment and the configuration shown in FIG. 7 in the third embodiment. That is, a series circuit of the input-side resistor Rd and the third capacitor Cd is connected in parallel to the capacitor C1. Further, a series resistor Rq is inserted in series with the first capacitor C1 between the first end Pa of the piezoelectric vibrator series circuit 10 and the ground.
  • the phase difference between the output Vpl and Vp2 of the oscillation circuit 30 can be made independent of the oscillation frequency, and noise due to oscillation frequency fluctuation does not appear.
  • the series resistance Rq the temperature characteristics of the dynamic quantity detection sensitivity such as acceleration can be stabilized, and the change with time can be reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Gyroscopes (AREA)

Abstract

 力学量によって加わる応力の方向が互いに逆である2つの圧電振動子(Sa),(Sb)を直列接続した圧電振動子直列回路(10)を用い、この圧電振動子直列回路(10)と増幅回路・負荷インピーダンス回路(20)とによってコルピッツ型発振回路(30)を構成する。そして、この発振回路(30)の出力電圧Vp1と圧電振動子直列回路(10)の圧電振動子直列接続点(P2)の電圧Vp2との位相差を電圧信号に変換する位相差電圧変換回路(40)を設ける。

Description

明 細 書
力学量センサ 技術分野
[0001] この発明は、加速度、角加速度、角速度、荷重等の力学量を検出する力学量セン サに関するものである。
背景技術
[0002] 圧電振動子を備えた力学量センサとして、本願出願人は特許文献 1, 2を出願して いる。
ここで、特許文献 1の加速度センサの構成を図 13に示す。同図に示すように、加速 度によってカ卩わる応力の方向が互いに逆である 2つの圧電振動子 SI, S2とコンデン サ CI, C2を含むブリッジ回路 110を構成し、接続点 p2と p3との間に分圧インピーダ ンス回路 120を設け、その分圧インピーダンス回路 120の分圧点 p5の信号を帰還信 号処理回路 130によって接続点 piに帰還させて発振回路を構成している。そして、 接続点 p2と p3との発振出力位相差を位相差信号処理回路 140で検出して、その位 相差を加速度検出信号として出力する。
[0003] また、特許文献 2の力学量センサの構成を図 14に示す。 2つの圧電振動子 Sa, Sb は加速度等の力学量によって加わる応力の方向が互いに逆となるように設けて 、る。 電流電圧変換 -信号加算回路 11は、 2つの圧電振動子 Sa, Sbに流れる電流信号を 電圧信号に変換する。電圧増幅 振幅制限回路 12は、その 2つの電圧信号の加算 信号 Sabを増幅し、電流信号と同位相の電圧信号 Voscを正帰還させて発振動作さ せる。位相差電圧変換回路 13は、電圧変換された信号 Sa, Sbの位相差に比例した 電圧信号を発生する。増幅 フィルタ回路 14はそれを直流増幅するとともに、不要な 周波数成分を除去する。
特許文献 1:特開 2002— 243757号公報
特許文献 2 :特開 2003— 254991号公報
発明の開示
発明が解決しょうとする課題 [0004] このような加速度などの力学量を検出する力学量センサは、用途の多様化や-一 ズの増大に伴って低コストィ匕が強く求められるようになつてきた。ところが、特許文献 1 の加速度センサでは、位相差を検出する回路が 2組必要であること、発振周波数を 決定するために、分圧インピーダンス回路などによる加算回路 (平均化回路)が必要 であることなど力 部品点数が多ぐ小型低コストィ匕が困難である。同様に特許文献 2 の力学量センサにおいても、電流電圧変換" f言号加算回路や電圧増幅 振幅制限 回路といった、 2つの圧電振動子を並列に駆動するための比較的大規模な回路が必 要であり、小型低コストィヒが困難であった。
[0005] そこで、この発明の目的は、力学量検出のための回路構成を改善して、従来の力 学量センサよりさらに小型低コストィ匕を図った力学量センサを提供することにある。 課題を解決するための手段
[0006] (1)この発明の力学量センサは、力学量によってカ卩わる応力の方向が互いに逆で ある 2つの圧電振動子 Sa, Sbを直列に接続した圧電振動子直列回路 10と、該圧電 振動子直列回路 10に増幅回路 21と負荷インピーダンス回路を接続してコルピッツ型 発振回路 30を構成し、圧電振動子直列回路 10の 2つの圧電振動子 Sa, Sbの直列 接続点 P2の電圧 Vp2と、前記発振回路 30の出力電圧 Vplとの位相差を電圧に変 換する位相差電圧変換回路 40とを備えたことを特徴としている。
[0007] (2)また、この発明の力学量センサは、 (1)において圧電振動子直列回路 10の第 1 の端部 Paと接地との間に第 1のコンデンサ C1を接続し、圧電振動子直列回路 10の 第 2の端部 Pbと接地との間に第 2のコンデンサ C2を接続し、圧電振動子直列回路 1 0の第 1の端部 Paに増幅回路 21の入力部を接続し、該増幅回路 21の出力部 P1と 圧電振動子直列回路 10の第 2の端部 Pbとの間に出力側抵抗 R2を接続して前記発 振回路 30を構成し、
出力側抵抗 R2のインピーダンスを増幅回路 21の出力インピーダンスより高くし、発 振回路 30の発振周波数を fで表したとき、出力側抵抗 R2のインピーダンスと第 2のコ ンデンサ C2のキャパシタンスとの乗算値が 1Z (2 π f)の値より大きくなるように出力 佃 J抵抗 R2のインピーダンスと第 2のコンデンサ C2のキャパシタンスを定めたことを特 徴としている。 [0008] (3)また、この発明の力学量センサは、(2)において第 1のコンデンサ C1に対して 入力側抵抗 Rdと第 3のコンデンサ Cdの直列回路を並列接続し、第 1 ·第 2のコンデン サ CI, C2のそれぞれのキャパシタンスをほぼ等しくし、前記出力側抵抗 R2と前記入 力側抵抗 Rdのインピーダンスをほぼ等しくしたことを特徴としている。
[0009] (4)また、この発明の力学量センサは、 (2) , (3)において圧電振動子直列回路 10 の第 1の端部 Paと接地との間で第 1のコンデンサ C1に対して直列に直列抵抗 Rqを 挿入したことを特徴として!/ヽる。
発明の効果
[0010] (1)特許文献 1, 2のように、 2つの圧電振動子を並列駆動するのではなぐ直列接 続した 2つの圧電振動子を直列駆動することになり、その圧電振動子直列回路を含 んだ発振回路全体を少ない部品点数で構成でき、小型低コストィ匕が図れる。すなわ ち、発振周波数を制御するための加算回路 (分圧インピーダンスによる平均回路)が 不要となり、また、 2つの圧電振動子の加速度による特性差電圧が直接 2つの圧電振 動子の直列接続点に発生するため、特許文献 1の力学量センサのような第 1 ·第 2の 位相差検出回路や差動増幅回路が不要となる。更に 2つの圧電振動子を直列接続 状態で用いるので、合成インピーダンスが高くなり、発振回路の増幅回路への負荷 が小さくなつて、その分小型化および低消費電力化が図れる。
[0011] (2)圧電振動子直列回路 10の第 2の端子 Pbと接地との間に接続した第 2のコンデ ンサ C2のキャパシタンスを C2、圧電振動子直列回路 10の第 2の端子 Pbと増幅回路 21の出力部 P1との間に接続した出力側抵抗 R2の抵抗値を R2、発振回路の発振周 波数を fでそれぞれ表したとき、増幅回路 21の出力部 P1に対する圧電振動子直列 回路 10の第 2の端部 Pbの位相差は、 C2'R2= lZ (2 w f)のとき 45度となり、 C2-R 2> 1/ (2 π ί)のとき 45度より大きくなる。発振回路の発振周波数 fは上記キャパシタ ンス CI, C2と圧電振動子直列回路 10の反共振周波数-共振周波数間でのインダク タンスとによって定まるので、これらを C2'R2> 1Z (2 π f)の関係となるように設定す ることによって、力学量に対する位相差変化のダイナミックレンジが広くとれる。
[0012] (3)前記第 1のコンデンサ C 1に対して入力側抵抗 Rdと第 3のコンデンサ Cdの直列 回路を接続し、 CI, C2のそれぞれのキャパシタンスをほぼ等しくし、出力側抵抗 R2 と入力側抵抗 Rdのインピーダンスをほぼ等しくすることによって、増幅回路 21の出力 部 P1と圧電振動子直列回路の直列接続点 P2との間の位相差が修正され、この力学 量センサに対する印加力学量力 SOのとき P1— P2間の電圧位相差が発振周波数に依 存せず平坦にでき、発振周波数の変動によるノイズの発生が防止できる。そのため 高精度な力学量の測定が可能となる。
[0013] (4)前記圧電振動子直列回路 10の第 1の端部 Paと接地との間で第 1のコンデンサ C1に対して直列に直列抵抗 Rqを接続したことにより、圧電振動子直列回路 10と C1 , C2で構成されるタンク回路の Qが制限される。その結果、力学量に対する感度が 低下するが、圧電振動子直列回路 10の機械的な Q (Qm)のばらつきの影響が現れ 難くなり、 Qmの変動に起因する感度変化率 (P1— P2間の位相差変化率)が小さくな る。そのため、加速度等の力学量検出感度の温度特性が安定ィ匕でき経時変化の低 減が図れる。
図面の簡単な説明
[0014] [図 1]第 1の実施形態に係る力学量センサの全体の構成を示すブロック図である。
[図 2]同力学量センサの回路図である。
[図 3]同力学量センサの発振回路の特性図である。
[図 4]同力学量センサの位相差電圧変換回路の作用を示す波形図である。
[図 5]第 2の実施形態に係る力学量センサの発振回路部分の構成を示す図である。
[図 6]同発振回路の特性図である。
[図 7]第 3の実施形態に係る力学量センサの発振回路部分の構成を示す図である。
[図 8]第 3の実施形態に係る別の力学量センサの発振回路部分の構成を示す図であ る。
[図 9]第 4の実施形態に係る力学量センサの発振回路部分の構成を示す図である。
[図 10]圧電振動子直列回路を構成する加速度センサの外観斜視図および分解斜視 図である。
[図 11]同加速度センサの加速度検出素子部分の分解斜視図である。
[図 12]同加速度センサのカバー部材を取り外した状態の平面図である。
[図 13]特許文献 1の力学量センサの構成を示す図である。 [図 14]特許文献 2の力学量センサの構成を示す図である。
符号の説明
[0015] 1一加速度検出素子
10- -圧電振動子直列回路
20- -増幅回路'負荷インピーダンス回路
21- -増幅回路
30- -発振回路
40- -位相差電圧変換回路
P1- -増幅回路の出力部
P2- -圧電振動子直列回路の直列接続点
Pa- -圧電振動子直列回路の第 1の端部
Pb- -圧電振動子直列回路の第 2の端部
Sa, Sb -圧電振動子
CI- -第 1のコンデンサ
C2- -第 2のコンデンサ
R2- -出力側抵抗
Rd- -入力側抵抗
Cd- -第 3のコンデンサ
Rq- -直列抵抗
IC1, IC2 -反転増幅器
IC3, IC4一インバータ
IC5—イクスクルーシブオアゲート
発明を実施するための最良の形態
[0016] 第 1の実施形態に係る力学量センサの構成を図 1一図 4,図 10— 12を参照して説 明する。
図 1は力学量センサのブロック図である。 2つの圧電振動子 Sa, Sbは力学量によつ て加わる応力の方向が互いに逆となる関係に配置していて、この 2つの圧電振動子 S a, Sbを直列接続して圧電振動子直列回路 10を構成している。この圧電振動子直列 回路 10と増幅回路'負荷インピーダンス回路 20とによってコルピッツ型発振回路 30 を構成している。位相差電圧変換回路 40は発振回路 30から出力される電圧 Vplと Vp2の電圧位相差を電圧信号として検出し、それをこの力学量センサの出力信号と する。
[0017] 図 2は図 1に示した力学量センサの具体的な回路図である。発振回路 30において 増幅回路 21は反転増幅器 IC1とその入出力間に接続した抵抗 R1とによって構成し ている。圧電振動子直列回路 10の第 1の端部 Paと接地との間に第 1のコンデンサ C 1を接続し、圧電振動子直列回路 10の第 2の端部 Pbと接地との間に第 2のコンデン サ C2を接続している。また、圧電振動子直列回路 10の第 1の端部 Paに増幅回路 21 の入力部を接続し、更に増幅回路 21の出力部 P1と圧電振動子直列回路 10の第 2 の端部 Pbとの間に出力側抵抗 R2を接続している。
[0018] この増幅回路 21と、圧電振動子直列回路 10と、それ以外の回路部分 (負荷インピ 一ダンス回路)とによって発振回路 30を構成している。この発振回路 30は反転増幅 器 IC1による増幅回路 21にリアクタンス回路による帰還回路を設けたものであり、増 幅回路 21の出力部 P1から発振信号を出力するコルピッツ型発振回路である。圧電 振動子直列回路 10は、その反共振周波数から共振周波数の間でインダクティブに なるので、そのインダクタンスとコンデンサ CI, C2のキャパシタンスとによって定まる 周波数で発振する。すなわち圧電振動子直列回路 10の上記インダクティブになる周 波数でのインダクタンスを L、コンデンサ CI, C2のキャパシタンスを CI, C2とすれば 、発振周波数 fは
ί= ΐΖ[2 π {L'C1 'C2Z (C1 + C2) }]
で表される。
[0019] 発振回路 30において出力側抵抗 R2は反転増幅器 IC1の出力インピーダンス変動 の影響を受けないようにするため数 とし、 P1と P2の電圧位相差をほぼ 90度にす るため、出力側抵抗 R2の抵抗値とコンデンサ C2のキャパシタンスとの乗算値が 1/ ( 2 π f)の値の 10倍程度以上となるように定める。因みに上記乗算値が 1Z (2 π f)で あれば Vplと Vp2の位相差は 45度となる。 Vpl— Vp2間の位相差が 45度であっても 位相差電圧変換回路 40は安定に動作するが、この位相差電圧変換回路 40は 90度 位相差を中心として電圧信号に変換するものであるので、 PI— P2間の位相差を予め 90度付近としておくことによって位相差電圧変換回路 40のダイナミックレンジを有効 に利用でき、所定精度で検出可能な力学量の検出範囲を広げることができる。
[0020] なお、第 1のコンデンサ C1と第 2のコンデンサ C2のキャパシタンスは等しくした。ま た反転増幅器 IC1にはロジック回路用のインバータを用いた。入出力間に接続した 抵抗 R1は 1Μ Ωとした。ロジック回路用インバータの入出力間に抵抗を接続して、そ れをリニアアンプとして用いる手法はコルピッツ発振回路で多用されている。この発明 は当該手法に限定されるものではなぐコルピッツ発振回路に用いられる回路構成上 の他の手法も利用できる。
[0021] 位相差電圧変換回路 40は、発振回路 30の出力電圧 Vplと圧電振動子直列回路 10の直列接続点 P2の電圧 Vp2との位相差を電圧信号に変換する。ここで反転増幅 器 IC2とその入出力間に接続した帰還抵抗 Rfとによって所定ゲインの増幅回路 (プリ アンプ)を構成している。この増幅回路を設けることによって、後段へ与える信号レべ ルを、発振回路 30の P1点の出力信号 Vplの信号レベルに揃えている。インバータ I C3, IC4は電圧信号 Vplと反転増幅器 IC2の出力信号をそれぞれ増幅して矩形波 信号に変換する。すなわち、このインバータ IC3, IC4の入力信号は正弦波信号であ る力 非常に大きなゲインで増幅することによって、論理信号レベルのローレベルと ハイレベルを採る矩形波信号に変換する。
[0022] イクスクルーシブオアゲート (排他的論理和回路) IC5は IC3, IC4の出力信号の排 他的論理和をとることによって、 PWM (位相幅変調)信号 Vpoを出力する。抵抗 Rm とコンデンサ Cmはローパスフィルタを構成して 、て、 IC5から出力される矩形波信号 の基本波周波数成分を除去して (平滑化して)信号成分を透過させる。非反転増幅 回路 IC6はその出力端を反転入力端に直接帰還させることによって電圧フォロワ回 路を構成している。これにより抵抗 Rm,コンデンサ Cmによる積分回路に影響を与え ることなく低出力インピーダンスで出力可能としている。またこれによりコンデンサ Cm の容量を小さくできるので、このコンデンサ Cmも半導体集積回路内に組み込むこと も可能となる。
[0023] 次に、上記発振回路 30の動作について、図 2の(B)と図 3を参照して説明する。図 2の(B)は上記発振回路 30のシミュレーション用回路図である。ここで、反転増幅器 I C1のバイアスに影響を与えないように直流カット用コンデンサ Ccを介して発振器 OS Cの出力信号である電圧 Viを与えている。この直流カット用コンデンサ Ccの容量値 は、コンデンサ CI, C2の容量値に対して十分に大きな値 Fオーダ)に設定する。 この電圧 Viを一定にし、 OSCの周波数をスイープさせながら圧電振動子直列回路 1 0に印加する加速度を変化させシミュレーションした。
[0024] 図 3の(A)は図 2の(B)に示した端子く Pl〉一く P2〉間の位相差、図 3の(B)はコンデ ンサ C1の電圧 Vfの位相、図 3の(C)はそのゲインである。
[0025] 図 3の(A)において Pは + 100G (1G = 9. 80665 [mZs2 ])、 Nは 100Gを印カロ したとき、 Zは加速度を印加しない状態での特性である。図 3の(B) , (C)では 3つの 加速度状態での特性が重なって 、るため 1つの曲線として見える。このように帰還電 圧 Vfの位相とゲインは変化せず、発振周波数またはその付近の周波数にお!、てカロ 速度の大きさに応じて Vpl— Vp2間の位相差が変化する。
[0026] 図 2の (A)に示した発振回路 30は帰還電圧 Vfの位相が 0となる周波数で発振する ので、結局図 2の(A)に示した Vpl— Vp2間の位相差を検出すれば印加加速度が測 定できることがわ力る。
[0027] 図 4は図 2の (A)に示した位相差電圧変換回路 40の作用を説明する波形図である 。このようにインバータ IC3, IC4の出力信号は発振回路 30の出力信号の周期に等 しい矩形波信号であり、イクスクルーシブオアゲート IC5の出力信号 Vpoは Vpl と Vp2' の位相差に応じた PWM信号となる。そして、 Vpl と Vp2' の位相差に応じ て Vpoのオンデューティ比が変化し、上記ローパスフィルタでの積分結果によって得 られる電圧信号 Voは上記位相差に比例した電圧信号となる。
[0028] なお、印加加速度が 0Gの時、発振周波数での Vpl— Vp2間の位相差は約 90度で ある。そのため図 2の (A)に示したようにイクスクルーシブオアゲートを用いた安価な 位相差電圧変換回路を採用することができ、小型'低コストィ匕が図れる。また、イクス クルーシブオアゲート IC5を C MOS回路で構成することにより、印加加速度が 0G のときのイクスクルーシブオアゲート IC5の出力電圧は電源電圧の 1Z2となるので、 後段のアナログ回路 (IC6による電圧フォロワ回路等)との整合性を高めることができ る。
[0029] 以上に示した力学量センサによれば、
2つの圧電振動子の直列接続点以外の端子に増幅回路と負荷インピーダンス回路 を接続してコルピッツ型発振回路を構成し、圧電振動子直列回路の直列接続点電 圧と発振出力電圧との位相差を電圧信号に変換するようにしたことにより、
(a)従来方式で必要だった発振周波数制御のための加算回路 (分圧インピーダン スによる平均回路)が不要となる。
[0030] (b) 2つの圧電振動子 Sa, Sbの加速度による特性差電圧がその直列接続点に発 生するため、差動的な信号処理回路が不要となって回路規模がほぼ半分となる。
[0031] (c)圧電振動子直列回路を用いるので、圧電振動子部分のインピーダンスが高くな つて、発振回路の増幅器への負荷が 1Z4となって安価な増幅器が利用でき、更に 発熱による増幅器の特性変動が少な 、ので温度特性に優れ、また温度補償のため の回路も不要となって、その分更に小型低コストィ匕が図れる。
といった効果が得られる。
[0032] また、発振回路 30の P1— P2間の電圧位相差に予め初期位相差をもたせたことに より、
(d)増幅回路 21の出力インピーダンスの変動の影響を受けに《なる。
[0033] (e)位相差電圧変換回路 40が低コストな回路で構成できる。
[0034] (f)位相差電圧変換回路 40に従来必要であった位相調整回路が不要となって小 型低コストィ匕が図れる。
[0035] (g)位相差電圧変換回路 40のイクスクルーシブオアゲート IC5を、電源に対しフル スイングする C MOSタイプの回路で構成することにより、後段に接続するアナログ 回路との整合性が高まり、整合用の回路が不要となり、その分更に小型低コストィ匕が 図れる。
といった効果が得られる。
[0036] なお、図 2に示した例では位相差電圧変換回路 40にイクスクルーシブオアゲート I C5を用いたが、排他的論理和の反転信号を出力するイクスクルーシブノア (EX— N OR)ゲートを用いてもよい。更に ANDゲート、 NANDゲート、 ORゲート、 NORゲー トなどの論理回路を組み合わせて、位相差に応じた PWM信号を発生する回路を構 成してちょい。
[0037] ここで、上記圧電振動子直列回路 10の構造上の構成例を図 10—図 12を基に説 明する。
図 10の (A)は上記圧電振動子直列回路 10を構成する加速度検出素子 1の外観 斜視図、(B)はその分解斜視図である。図 11は図 10の(B)のさらなる分解斜視図、 図 12は内部構造を示す平面図である。
[0038] この加速度検出素子 1は、バイモルフ型の圧電振動子 2を絶縁性セラミック等力 な る絶縁性のケース部材 6およびカバー部材 7内に片持ち梁構造で収納支持したもの である。図 10·図 11に示すように、加速度 Gの印加方向を Y方向とした場合、圧電振 動子 2の長さ方向が X方向、高さ方向が Z方向となる。
[0039] 圧電振動子 2は、ベース板 5の加速度印加方向(Y方向)の両面の両端部にスぺー サ 51— 54を介して振動子 3, 4を接着により接合一体ィ匕したものである。
[0040] 振動子 3, 4は、短冊形状の圧電セラミック板の上下両主面にそれぞれ電極 3a, 3b および 4a, 4bを形成したエネルギー閉じ込め型厚みすベり振動モードの振動子であ る。
[0041] 振動子 3, 4の一方の電極 3a, 4aは圧電振動子 2の上方側に露出しており、他方の 電極 3b, 4bは圧電振動子 2の下方側に露出している。表裏主面の電極 3a, 3bおよ び 4a, 4bの一端部は、長さ方向中間部で対向しており、他端部を振動子 3, 4の異な る端部へ引き出している。振動子 3, 4の Z方向の高さ HIは互いに同一寸法であり、 高さ HIは振動子 3, 4の共振周波数によって決定する。振動子 3, 4の高さ HIはべ ース板 5の Z方向の高さ H2より小さいため、 HI =H2の場合より加速度印加によつ て振動子 3, 4に発生する応力を大きくできる。ここで HIは H2の 1Z5以下に設定し ている。
[0042] 振動子 3, 4の長さ方向両端部の上下主面には、振動子 3, 4と同一厚みのスぺー サ 31, 32および 41, 42をそれぞれ固定して!/ヽて、電極 3a, 3bおよび 4a, 4b力 ^対向 した部分 (エネルギー閉じ込め部)は、スぺーサ 31, 32および 41, 42を固定してい ない部分に設けている。 [0043] 振動子 3, 4はベース板 5の両面の対向位置に接合して、他軸橈みに対して両方の 振動子に同一の応力が働くようにし、検出ばらつきを小さくしている。また、ベース板 5の全高の中央位置に接合して、加速度の印加方向以外の外力によって圧電振動 子が橈んだ時 (他軸橈み)、 2つの振動子 3, 4から信号を差動的に取り出すことで、 他軸橈みに対しても検出ばらつきを吸収できるようにして 、る。
[0044] ベース板 5は振動子 3, 4と同一長さに形成された絶縁板であり、圧電振動子 2の加 速度 Gの印加に伴う曲げ中正面(図 12に破線 N 1で示す)がベース板 5の厚み方向( Y方向)の中心部に位置している。ベース板 5の振動子 3, 4との対向面には、振動子 3, 4の閉じ込め振動の範囲より広 、空隙 5aを形成して 、る。
[0045] 基端側のスぺーサ 51, 52は振動子 3, 4の基端側のスぺーサ 31, 41と同一長さで あり、かつその高さ (Z方向)寸法はベース板 5の高さ H2と等しい。同様に、 自由端側 のスぺーサ 53, 54は振動子 3, 4の自由端側のスぺーサ 32, 42と同一長さであり、 かつその高さ(Z方向)寸法は、ベース板 5の高さ H2と等しい。
[0046] 圧電振動子 2を構成する振動子 3, 4、スぺーサ 31, 32, 41, 42、ベース板 5、スぺ ーサ 51— 54は、振動子 3, 4と同じ熱膨張係数の材料 (例えば PZTなどのセラミック ス)で形成している。そのため、温度変化に伴う熱膨張差により、振動子 3, 4に応力 が発生するのを防止できる。
[0047] スぺーサ 51, 53を接合したベース板 5の一側面には、引出電極 5bを全長に亘つて 形成している。この引出電極 5bは、振動子 3, 4を接合した圧電振動子 2の基端部の 上面に連続的に形成される内部電極 61と導通する。ベース板 5の自由端側の上面 およびスぺーサ 53, 54, 32, 42の上面には、内部電極 64を連続的に形成しており 、この内部電極 64はベース板 5の一側面に形成された引出電極 5bと振動子 3, 4の 側面に形成された接続電極 3d, 4dとを相互に導通させている。
[0048] 圧電振動子 2の加速度 Gの印加方向の両側面は、左右一対のケース部材 6によつ て覆っている。ケース部材 6は断面コ字形状に形成していて、その一端側の突出部 6 aを圧電振動子 2の基端部両側面に接着固定している。また、ケース部材 6の他端側 突出部 6bは、スぺーサ部材 2aを間にして接着固定している。ここでスぺーサ部材 2a は、長さ方向に連続した圧電振動子 2の先端部をカットした後の切れ端であり、ベー ス板 5や振動子 3, 4、スぺーサ 53, 54の一部で構成している。上記突出部 6a, 6bの 間には、圧電振動子 2が橈み得る空間を形成するための凹部 6cを形成している。ま た、ケース部材 6の他端側突出部 6bの内側には、過大な加速度 Gが印加された時の 圧電振動子 2の変位を制限し、圧電振動子 2の変形や破壊を防止するためのストッ ノ 6dを設けている。
[0049] ケース部材 6の内壁面および上面には、相互に導通する引出電極 62a, 62bおよ び 63a, 63bを形成している。ケース部材 6と圧電振動子 2との接合は、電極 3cと 62a 、および電極 4cと 63aとの電気的接続を兼ねるため、導電性接着剤で行っている力 ケース部材 6および圧電振動子 2の基端部の上面に連続的に形成される内部電極 6 1および外部電極 71との短絡を防止するため、異方性導電性接着剤が用いている。
[0050] 上記ケース部材 6の上面に形成した引出電極 62b, 63bは、圧電振動子 2の自由 端側の上面に形成した内部電極 64と一直線上に並んでいて、これら電極 62b, 63b , 64は、圧電振動子 2にケース部材 6を接合した後で、その上面にスパッタリングや 蒸着などを行うことで同時に形成する。なお、内部電極 61も同時に形成する。
[0051] 圧電振動子 2とケース部材 6とで形成される上下の開放面は上下一対のカバー部 材 7, 7によって覆っている。カバー部材 7の内面には、圧電振動子 2との接触を防止 するための空洞形成用凹部 7aを形成していて、その外周部を開放面に接着固定し ている。これにより、圧電振動子 2の加速度 Gによる変位部分は、ケース部材 6および カバー部材 7によって完全に密閉している。
[0052] カバー部材 7の外表面には、圧電振動子 2の基端側に位置する外部電極 71と、圧 電振動子 2の自由端側に位置する 2個の外部電極 72, 73とを設けている。図 10に 示すように、外部電極 72, 73は外部電極 71から長さ方向(X方向)に離れた位置に あり、且つ互いに加速度印加方向(Y方向)に対向する 2辺に設けている。
[0053] 上記構造よりなる圧電振動子 2の導電経路は次のとおりである。
すなわち、一方の振動子 3の上側電極 3aは、接続電極 3c、引出電極 62a, 62bを 経由して外部電極 72へと導通している。他方の振動子 4の上側電極 4aは、接続電 極 4c、引出電極 63a, 63bを経由して外部電極 73へと導通している。振動子 3, 4の 下側電極 3b, 4bは、接続電極 3d, 4dおよび内部電極 64によって相互に導通してい て、ベース板 5の一側面に設けられた引出電極 5b、内部電極 61を経由して外部電 極 71へと導通している。
上記のようにして表面実装型のチップ型の加速度検出素子 1を構成して 、る。
[0054] 次に、第 2の実施形態に係る力学量センサについて図 5 ·図 6を参照して説明する。
図 5の (A)は発振回路 30の構成を示して 、る。図 2の (A)に示した発振回路 30と 異なり、入力側抵抗 Rdと第 3のコンデンサ Cdの直列回路をコンデンサ C1に対して並 列接続している。この第 3のコンデンサ Cdは反転増幅器 IC1の直流成分を除去する DCカット用に設けて 、て、発振周波数でのインピーダンスが入力側抵抗 Rdの抵抗 値に対して十分に小さく(1Z10以下に)設定している。その他は第 1の実施形態の 場合と同様である。
[0055] 図 5の(B)は (A)の発振回路 30のシミュレーション用回路である。第 1の実施形態 の場合と同様に、直流カット用コンデンサ Ccを介して反転増幅器 IC1に発振器 OSC からの電圧 Viを印加する。
[0056] 図 6の(A)は図 5の(B)に示した端子く Pl〉一く P2〉間の位相差、(B)はコンデンサ C 1の電圧 Vfの位相、(C)はそのゲインである。 図 6の(A)において Pは + 100G (1G = 9. 80665 [m/s2 ])、 Nは 100Gを印加したとき、 Zは加速度を印加しない状態 での特性である。図 6の(B) , (C)では 3つの加速度状態での特性が重なって 、るた め 1つの曲線として見える。このように第 1の実施形態の場合と同様に、帰還電圧 Vf の位相とゲインは印加加速度の影響を受けず、発振周波数またはその付近の周波 数において加速度の大きさに応じて Vpl— Vp2間の位相差が変化する。
[0057] 第 1の実施形態と異なり、この例では、図 5に示したコンデンサ CI, C2, Cd,抵抗 R dの値によって帰還電圧 Vfの位相を調整し、加速度を印加して!/ヽな!ヽ状態(印加加 速度 0G)で、 Vpl— Vp2間の位相差が周波数に依存せず平坦となるようにしている。 このとき、加速度印加時の周波数変化に対する位相差の変化は対称形となる。
[0058] このような特性にすれば、発振周波数が変動しても、それがノイズとして表れないの で、より高精度な測定が可能となる。
[0059] 次に、第 3の実施形態に係る力学量センサの構成を図 7 ·図 8を参照して説明する。
図 7はその発振回路 30につ 、て示して 、る。図 2に示した力学量センサの発振回 路 30と異なり、圧電振動子直列回路 10の第 1の端部 Paと接地との間で第 1のコンデ ンサ C1に対して直列に直列抵抗 Rqを挿入して 、る。このように直列抵抗 Rqを挿入 したことにより、圧電振動子直列回路 10とコンデンサ CI, C2とで構成されるタンク回 路の Qが低下して、力学量に対する感度が低下するが、圧電振動子直列回路 10の 機械的な Q (Qm)のばらつきの影響が現れ難くなり、 Qmの変動に起因する感度変 化率 (Vpl - Vp2間の位相差変化率)が小さくなる。そのため、加速度等の力学量検 出感度の温度特性が安定ィ匕でき経時変化の低減が図れる。
[0060] 図 8は発振回路 30の別の構成を示している。このように増幅回路 21の入力部と接 地との間にコンデンサ C1に対して直列に直列抵抗 Rqを挿入してもよぐ同様の効果 が得られる。この場合当然 C1と Rqは入れ替えても同様である。
[0061] 図 9は第 4の実施形態に係る力学量センサの発振回路 30の構成を示している。こ の発振回路は、第 2の実施形態で図 5に示したものと第 3の実施形態で図 7に示した 構成とを併せ持つ。すなわち、入力側抵抗 Rdと第 3のコンデンサ Cdの直列回路をコ ンデンサ C1に対して並列接続している。また、圧電振動子直列回路 10の第 1の端部 Paと接地との間で第 1のコンデンサ C1に対して直列に直列抵抗 Rqを挿入している。
[0062] この構造により、圧電振動子直列回路 10に対する加速度非印加時に発振回路 30 の出力 Vpl— Vp2間の位相差が発振周波数に依存しないようにでき、発振周波数変 動によるノイズが表れない。また、直列抵抗 Rqを挿入したことにより、加速度等の力 学量検出感度の温度特性が安定化でき、経時変化の低減が図れる。

Claims

請求の範囲
[1] 力学量によって加わる応力の方向が互いに逆である 2つの圧電振動子を直列に接 続した圧電振動子直列回路と、該圧電振動子直列回路に増幅回路と負荷インピー ダンス回路を接続してコルピッツ型発振回路を構成し、前記圧電振動子直列回路の 前記 2つの圧電振動子の直列接続点の電圧と、前記発振回路の出力電圧との位相 差を電圧に変換する位相差電圧変換回路とを備えたことを特徴とする力学量センサ
[2] 前記発振回路を、前記圧電振動子直列回路の第 1の端部と接地との間に第 1のコ ンデンサを接続し、前記圧電振動子直列回路の第 2の端部と接地との間に第 2のコ ンデンサを接続し、前記圧電振動子直列回路の第 1の端部に前記増幅回路の入力 部を接続し、該増幅回路の出力部と前記圧電振動子直列回路の第 2の端部との間 に出力側抵抗を接続して構成し、
前記出力側抵抗のインピーダンスを前記増幅回路の出力インピーダンスより高くし 、前記発振回路の発振周波数を fで表したとき、前記出力側抵抗のインピーダンスと 前記第 2のコンデンサのキャパシタンスとの乗算値が 1Z (2 π f)の値より大きくなるよ うに前記出力側抵抗のインピーダンスと前記第 2のコンデンサのキャパシタンスを定 めた請求項 1に記載の力学量センサ。
[3] 第 1のコンデンサに対して前記入力側抵抗と第 3のコンデンサの直列回路を並列接 続し、第 1 ·第 2のコンデンサのそれぞれのキャパシタンスをほぼ等しくし、前記出力 側抵抗と前記入力側抵抗のインピーダンスをほぼ等しくした請求項 2に記載の力学 量センサ。
[4] 前記圧電振動子直列回路の第 1の端部と接地との間で前記第 1のコンデンサに対 して直列に直列抵抗を挿入した請求項 2または 3に記載の力学量センサ。
[5] 前記力学量は加速度である請求項 1一 4のいずれかに記載の力学量センサ。
[6] 前記力学量は角加速度である請求項 1一 4のいずれかに記載の力学量センサ。
[7] 前記力学量は角速度である請求項 1一 4のいずれかに記載の力学量センサ。
[8] 前記力学量は荷重である請求項 1一 4のいずれかに記載の力学量センサ。
PCT/JP2005/001498 2004-03-30 2005-02-02 力学量センサ WO2005101029A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006512268A JP4449978B2 (ja) 2004-03-30 2005-02-02 力学量センサ
US11/468,796 US7343802B2 (en) 2004-03-30 2006-08-31 Dynamic-quantity sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-100725 2004-03-30
JP2004100725 2004-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/468,796 Continuation US7343802B2 (en) 2004-03-30 2006-08-31 Dynamic-quantity sensor

Publications (1)

Publication Number Publication Date
WO2005101029A1 true WO2005101029A1 (ja) 2005-10-27

Family

ID=35150127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001498 WO2005101029A1 (ja) 2004-03-30 2005-02-02 力学量センサ

Country Status (3)

Country Link
US (1) US7343802B2 (ja)
JP (1) JP4449978B2 (ja)
WO (1) WO2005101029A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026303A (ja) * 2007-01-24 2008-02-07 Epson Toyocom Corp 加速度センサ
JP2008076166A (ja) * 2006-09-20 2008-04-03 Epson Toyocom Corp 速度センサおよびその調整方法
JP2008107316A (ja) * 2006-07-20 2008-05-08 Epson Toyocom Corp 加速度センサ

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009021530A1 (de) * 2007-08-11 2009-02-19 Festo Ag & Co. Kg Elektronische steuerungseinrichtung für einen als trimorph ausgebildeten piezokeramischen biegewandler
FI121898B (fi) * 2008-07-01 2011-05-31 Valtion Teknillinen Menetelmä ja laite impedanssin mittaamiseksi
US8610517B2 (en) * 2010-11-02 2013-12-17 Raytheon Company Surface acoustic wave resonator mounting with low acceleration sensitivity
FR2969279B1 (fr) * 2010-12-21 2012-12-28 Yzatec Capteur comprenant un detecteur piezoelectrique a compensation de defauts de masse
WO2013132842A1 (ja) * 2012-03-07 2013-09-12 パナソニック株式会社 荷重センサ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002122614A (ja) * 2000-10-12 2002-04-26 Murata Mfg Co Ltd 加速度センサ
JP2002243757A (ja) * 2001-02-19 2002-08-28 Murata Mfg Co Ltd 加速度センサ
JP2003254991A (ja) * 2001-12-28 2003-09-10 Murata Mfg Co Ltd 力学量センサ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5190549A (ja) * 1975-02-06 1976-08-09
JPS59100604A (ja) * 1982-11-30 1984-06-09 Sony Corp 発振器
JP3752737B2 (ja) * 1996-08-12 2006-03-08 トヨタ自動車株式会社 角速度検出装置
JPH10197255A (ja) * 1997-01-10 1998-07-31 Sony Corp 角速度センサー
JP4066916B2 (ja) * 2003-09-08 2008-03-26 株式会社村田製作所 力学量センサ
JP4279167B2 (ja) * 2004-02-04 2009-06-17 株式会社タムラ製作所 圧電振動子の発振回路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002122614A (ja) * 2000-10-12 2002-04-26 Murata Mfg Co Ltd 加速度センサ
JP2002243757A (ja) * 2001-02-19 2002-08-28 Murata Mfg Co Ltd 加速度センサ
JP2003254991A (ja) * 2001-12-28 2003-09-10 Murata Mfg Co Ltd 力学量センサ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008107316A (ja) * 2006-07-20 2008-05-08 Epson Toyocom Corp 加速度センサ
JP2008076166A (ja) * 2006-09-20 2008-04-03 Epson Toyocom Corp 速度センサおよびその調整方法
JP2008026303A (ja) * 2007-01-24 2008-02-07 Epson Toyocom Corp 加速度センサ

Also Published As

Publication number Publication date
US7343802B2 (en) 2008-03-18
US20070063617A1 (en) 2007-03-22
JPWO2005101029A1 (ja) 2008-03-06
JP4449978B2 (ja) 2010-04-14

Similar Documents

Publication Publication Date Title
JP4449978B2 (ja) 力学量センサ
JP4757026B2 (ja) 加速度センサの特性調整方法
JP4026074B2 (ja) 水晶振動子と水晶ユニットと水晶発振器
US5550516A (en) Integrated resonant microbeam sensor and transistor oscillator
US6763726B2 (en) Mechanical force sensor
US20070163345A1 (en) Angular velocity sensor
JP2001308677A (ja) 電気信号用フィルタ
CN107515336A (zh) 一种低功耗谐振型电场传感器
US6588276B2 (en) Acceleration sensor
US8978473B2 (en) Electrodes and associated electronic circuits for a piezoelectric vibrating gyrometer
US5339698A (en) Vibrating beam force transducer with automatic adjustment of its electromagnetic drive
JP4379119B2 (ja) 水晶振動子
JP2012156946A (ja) 発振回路およびそれを用いた振動式センサ
WO2013132842A1 (ja) 荷重センサ
US8373513B2 (en) Compensated micro/nano-resonator with improved capacitive detection and method for producing same
JPH11271066A (ja) 角速度センサ
JP3665131B2 (ja) 音叉型角速度検出センサ
JP4411495B2 (ja) 屈曲水晶振動子を備えた水晶ユニット
JP4411494B2 (ja) 水晶振動子
JP4963662B2 (ja) 振動子駆動回路
JP3450077B2 (ja) 電磁変換型振動子の制動インダクタンス低減回路
JP5282715B2 (ja) 力検出ユニット及び力検出装置
JP3762814B2 (ja) 焦電型赤外線センサ用の圧電チョッパの駆動方法
JP4411496B2 (ja) 水晶発振器を搭載した携帯機器とその製造方法
JP2008190884A (ja) 加速度検出装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512268

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11468796

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 11468796

Country of ref document: US

122 Ep: pct application non-entry in european phase