WO2007032321A1 - 多孔性素材をプラズマ処理する方法及び装置 - Google Patents

多孔性素材をプラズマ処理する方法及び装置 Download PDF

Info

Publication number
WO2007032321A1
WO2007032321A1 PCT/JP2006/318004 JP2006318004W WO2007032321A1 WO 2007032321 A1 WO2007032321 A1 WO 2007032321A1 JP 2006318004 W JP2006318004 W JP 2006318004W WO 2007032321 A1 WO2007032321 A1 WO 2007032321A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous
plasma
gas
porous material
generator
Prior art date
Application number
PCT/JP2006/318004
Other languages
English (en)
French (fr)
Inventor
Koichi Kono
Kotaro Kimishima
Kazuki Kiso
Original Assignee
Tonen Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Chemical Corporation filed Critical Tonen Chemical Corporation
Priority to US12/066,447 priority Critical patent/US8475724B2/en
Priority to EP06797811A priority patent/EP1933608A4/en
Priority to CA002622229A priority patent/CA2622229A1/en
Publication of WO2007032321A1 publication Critical patent/WO2007032321A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/009After-treatment of organic or inorganic membranes with wave-energy, particle-radiation or plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/02Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements ultrasonic or sonic; Corona discharge
    • D06M10/025Corona discharge or low temperature plasma
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/18Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation
    • D06M14/26Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation on to materials of synthetic origin
    • D06M14/28Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation on to materials of synthetic origin of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/26Spraying processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/34Use of radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/42Details of membrane preparation apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/62Plasma-deposition of organic layers

Definitions

  • the present invention relates to a method and apparatus for plasma processing a porous material, and more particularly to a method and apparatus for plasma processing the surface and the inside of pores of a porous plastic film.
  • U.S. Pat.No. 5,430,017 discloses a method for performing a glow discharge plasma treatment of a plastic material under atmospheric pressure by disposing the plastic material between a pair of electrodes coated with an insulating coating in at least one of the plasma reactors (a ) A mixed gas of argon, argon 'helium mixed gas or argon' hydrogen mixed gas and (b) about 18% saturated water vapor or water vapor / ketone mixed gas is introduced into the plasma reactor at a predetermined temperature, Describes how to generate a plasma by applying a voltage to cause a glow discharge at atmospheric pressure.
  • JP-A-11-128634 discloses a method of hydrophilizing a non-woven fabric without damaging it by placing a hydrophobic non-woven fabric between a pair of electrode tubes coated with a dielectric, and a mixed gas atmosphere containing a rare gas. A method for generating a plasma between a pair of electrode tubes in an atmosphere is described.
  • US Pat. No. 6,399,159 discloses a method for effectively plasma-treating a material having a polyolefin coating layer by: (a) sending a gas to a treatment zone; (b) t (t: charging time for exposing the surface of the material to the ion current in the plasma) to a high voltage with a frequency of 2 MHz or less to generate plasma in the processing zone, and (c) the material in the processing zone. And (d) a method of generating active species on the surface of the polyolefin coating layer of the above material by a processing gas.
  • Tokyo Metropolitan Industrial Technology Research Institute Research Report No. 3 (2000) is a sample on the lower electrode plate of a pair of electrodes as a method of imparting continuous hydrophilicity to polyethylene (PE) and polypropylene (PP).
  • PE polyethylene
  • PP polypropylene
  • a high-frequency glow discharge is caused in an oxygen atmosphere, and PE and PP plates are treated with oxygen plasma and then treated with a polar solvent.
  • PE and PP plates are treated with oxygen plasma and then treated with a polar solvent.
  • US Pat. No. 5,403,453 generates a continuous and uniform glow discharge plasma between a pair of electrodes in a gas maintained at atmospheric pressure, and a polymer material is placed in the plasma for a certain period of time. Describes a method of passing active species through a polymer material such as a nonwoven fabric by differentially controlling the pressure in the chamber with a bellows or a piston. However, even with this method, it is difficult to perform plasma treatment to the inside of the pores of the thermoplastic resin microporous membrane having a pore diameter of about several ⁇ m.
  • Japanese Patent Application Laid-Open No. 2003-7497 has a columnar high-voltage electrode and a cylindrical ground electrode disposed on the outer periphery of the columnar high-voltage electrode via a cylindrical insulator.
  • the atmospheric pressure plasma processing apparatus is described in which a plurality of linear grooves extending to the tip of the electrode are formed, and a gas passage also serving as a discharge gap is formed by covering the linear grooves with a cylindrical insulator.
  • a gas is introduced into a gas passage at atmospheric pressure, and a high-frequency voltage is applied to both electrodes to generate glow discharge plasma. Therefore, by ejecting the plasma gas, only a necessary part of the object to be processed can be processed in a pinpoint manner.
  • it is difficult for this apparatus to efficiently perform plasma treatment even within the pores of a porous material having a large sheet-like area.
  • an object of the present invention is to provide a method and an apparatus for efficiently plasma-treating the surface and the inside of pores of a porous material.
  • the present inventors have (a) sprayed plasma gas on the porous material at a predetermined flow rate, or (b) sucked the porous material in a plasma gas atmosphere.
  • the inventors have found that the surface of the porous material and the inside of the pores can be efficiently plasma-treated, and have arrived at the present invention.
  • the porous material plasma treatment method of the present invention comprises an inert gas or the inert gas.
  • Plasma is generated using a mixed gas of reactive gas and reactive gas, and (a) the obtained plasma gas is supplied to the porous material at a flow rate of 0.002 to 2 L / min / cm 2 per unit area of the porous material.
  • a plasma gas is allowed to pass through the porous material.
  • Such a method is suitable for plasma treatment of a porous plastic film, particularly a polyolefin microporous film.
  • the plasma processing method of the present invention preferably satisfies the following conditions.
  • the amount of plasma gas sprayed onto the porous material is preferably 0.02 to 1.2 LZminZcm 2 per unit area of the porous material.
  • the pressure of the plasma gas flow sprayed onto the porous material is 1 to 100 Pa.
  • the pressure for sucking the porous material is preferably 1 to 100 Pa.
  • the porosity of the porous support described in (4) above is preferably 20 to 80%.
  • the porous support according to (4) or (5) is preferably in the form of a plate or a roll.
  • the porous material is plasma-treated by a batch method using the plate-like porous support described in (6) above, or the roll-shaped porous support described in (6) above is used. It is preferable to carry out plasma treatment by a continuous method while transporting the above porous material.
  • the porous material and the plasma gas generation region (between the high-pressure electrode and the ground electrode of the plasma gas generator) and It is preferable to arrange the porous support and plasma treatment.
  • the ground electrode of the apparatus is formed of the porous support and the plasma treatment is performed in a state where the porous material is in contact with the ground electrode (porous support).
  • a first plasma processing apparatus of the present invention plasma-processes a porous material in a chamber, and includes a plasma gas generator, an inert gas for generating plasma, or the inert gas and reaction.
  • Such an apparatus preferably further has means for sucking the porous material or the porous support, whereby the processing can be performed more efficiently.
  • a second plasma processing apparatus of the present invention plasma-processes a porous material in a chamber, and includes a plasma gas generator, an inert gas for generating plasma, or the inert gas and reaction.
  • a pipe for supplying a mixed gas of a reactive gas to the generator, the generator having a high-pressure electrode and a porous ground electrode, and the porous ground electrode is made of a porous dielectric surface.
  • a porous metal or a porous metal force coated with and also serving as a support for the porous material, and a means for sucking the porous ground electrode is provided.
  • a plasma gas is generated by the generator while sucking the porous ground electrode while being in contact with the electrode.
  • a third plasma processing apparatus of the present invention plasma-processes a porous material in a chamber, and comprises a plasma gas generator, an inert gas for generating plasma, or the inert gas and reaction.
  • a pipe for supplying a mixed gas of a reactive gas to the generator, the generator having a high-pressure electrode and a porous ground electrode, and the porous ground electrode is made of a porous dielectric surface. Porous metal or porous metal force coated with It also serves as a support for the material, and while the porous material is in contact with the porous ground electrode, the plasma generating gas is supplied to the porous ground electrode while supplying the plasma generating gas to the porous ground electrode. It is made to produce.
  • a fourth plasma processing apparatus of the present invention plasma-processes a porous material in a chamber, and includes first and second plasma gas generators, an inert gas for generating plasma, A pipe for supplying a mixed gas of the inert gas and the reactive gas to each generator, the first generator includes a high voltage electrode and a porous ground electrode, and the porous ground
  • the electrode is a porous metal or a porous metal cover whose surface is covered with a porous dielectric, and also serves as a support for the porous material, and the porous material is brought into contact with the porous ground electrode.
  • a plasma gas is generated by the first generator, and a second generator force plasma gas is sprayed on the porous ground electrode.
  • plasma treatment can be efficiently performed not only on the surface of a porous material but also in the pores. It is particularly useful for plasma treatment of a polyolefin microporous membrane having a large area and a pore diameter of several / zm or less.
  • the polyolefin microporous membrane obtained by the plasma treatment method of the present invention is hydrophilized not only on the surface but also in the pores, and is useful as a battery separator, various filters, a carrier for various functional materials, and the like.
  • FIG. 1 is a schematic view showing an example of an apparatus for plasma processing a porous material.
  • FIG. 2 is a schematic view showing another example of an apparatus for plasma processing a porous material.
  • FIG. 3 is a schematic view showing still another example of an apparatus for plasma processing a porous material.
  • FIG. 4 is a schematic view showing still another example of an apparatus for plasma-treating a porous material.
  • FIG. 5 is a schematic view showing still another example of an apparatus for plasma-treating a porous material.
  • FIG. 6 is a schematic view showing still another example of an apparatus for plasma-treating a porous material.
  • FIG. 7 is a schematic view showing still another example of an apparatus for plasma processing a porous material.
  • FIG. 8 is a schematic view showing still another example of an apparatus for plasma-treating a porous material.
  • FIG. 9 is a schematic view showing still another example of an apparatus for plasma processing a porous material.
  • FIG. 10 is a schematic view showing still another example of an apparatus for plasma processing a porous material.
  • FIG. 11 is a schematic view showing still another example of an apparatus for plasma processing a porous material.
  • Examples of the material of the porous material to which the plasma processing method of the present invention is applied include plastics, glass, ceramics, metal, and semiconductor.
  • the shape of the porous material is not particularly limited, but a film shape or a plate shape is preferable.
  • a porous plastic film is preferred as the porous material.
  • Examples of the porous plastic film include a thermoplastic resin microporous film and a thermoplastic resin nonwoven fabric.
  • Examples of the thermoplastic resin constituting these microporous membranes and nonwoven fabrics include polyolefins (eg, polyethylene, polypropylene, etc.), polyesters, polyamides, polyarylene ethers, polyarylene sulfides, etc. Among them, polyolefins are preferred.
  • Examples of the polyolefin microporous membrane include those produced by the method disclosed in Japanese Patent No. 2132327, for example.
  • a film-forming solvent is added to a polyethylene composition having ultra-high molecular weight polyethylene and high-density polyethylene strength, and melt-kneaded to prepare a polyethylene solution.
  • a polyethylene microporous membrane can be produced by drying the resulting membrane, and the polyethylene microporous membrane thus produced usually has an average through-pore diameter of 0.005 to 1 ⁇ m, porosity is 25 to 95%, air permeability (JIS P8117) when converted to 25 m is 50 to 10,000 seconds, Z100 ml, thickness is 5 to 200 ⁇ m.
  • a high pressure bomb force plasma generating gas is supplied to a plasma gas generator having a high voltage electrode and a ground electrode, and the plasma gas generator And a method of ejecting plasma gas.
  • the plasma gas generated by the generator is preferably blown by a nozzle, blower, etc.
  • the plasma treatment may be performed under atmospheric pressure or under reduced pressure.
  • the pressure in the system is preferably 1 to 100 Pa.
  • the plasma generating gas a force inert gas that is appropriately selected according to the material of the porous material is essential.
  • the plasma generating gas may be not only an inert gas but also a mixed gas of an inert gas and a reactive gas.
  • the inert gas include He, Ne, Ar, Xe, and Kr.
  • reactive gases include O, H, and N. These gases can be used alone or as appropriate
  • the gas for generating plasma is an inert gas composed of He, Ar, or a mixture thereof, or He, Ar, or a mixture thereof and 0, H, or a mixture thereof. It is preferable to use a mixed gas.
  • FIG. 1 shows an example of a first plasma processing apparatus of the present invention.
  • the film-like porous material 1 is plasma-treated by an indirect method.
  • This apparatus includes: (a) a plasma gas generator 2a having a pair of opposed plate-like high-voltage electrodes 20a and a plate-like ground electrode 21a housed in the chamber 4, and (b) sending a plasma-generating gas to the generator 2a. (C) a vacuum pump P for depressurizing the inside of the chamber 4, (d) a parallel-movable sample table 41 provided at the bottom of the chamber 4, and (e) a sample table 41.
  • the plate-shaped high-voltage electrode 20 a is connected to the high-frequency power source 22, and the plate-shaped ground electrode 21 a is connected to the ground 23.
  • Film-like porous material 1 is fixed on porous support 3a, and a gas for generating plasma is supplied to generator 2a while adjusting the flow rate by mass flow (M / F) 44.
  • M / F mass flow
  • a high frequency voltage is applied between 20a and 21a, glow discharge plasma is generated. Since the film-like porous material 1 is fixed on the porous support 3a arranged at a position to receive the pressure of the plasma gas flow, the generated plasma gas passes through the film-like porous material 1 be able to. Therefore, the entire surface of the film-like porous material 1 and the inside of the pores can be subjected to plasma treatment.
  • a frame plate, a clip or the like is used.
  • the frequency at which the output of the plasma generator 2a is preferably 100 to 30,000 W is preferably 10 kHz to 500 MHz.
  • the film-like porous material 1 of polyolefin microporous film if 0.002 ⁇ 2LZminZcm 2 per unit area of the flow rate of the plasma gas blown be plasma treated sufficiently pores. This flow rate is arbitrary preferred is 0.02 ⁇ 1.2 LZminZcm 2.
  • the pressure of the plasma gas flow to be sprayed is preferably 1 to 100 Pa, more preferably 5 to 50 Pa. The pressure of the plasma gas flow was measured by installing a pressure sensor in the plasma gas flow (the same applies hereinafter).
  • Plasma gas blowout loca Film-like porous material 1 Length to top surface d is 0.1
  • the porous support 3a is preferably sucked by the decompression means 43, which increases the amount of plasma gas passing through the film-like porous material 1, and makes the film-like porous material 1 more efficient.
  • Plasma treatment can be performed.
  • the pressure reducing means 43 include an aspirator, a vacuum pump, and a blower.
  • the suction pressure may be appropriately set according to the porosity of the film-like porous material 1 and the like.
  • the suction pressure is preferably 1 to 100 Pa, more preferably 5 to 50 Pa.
  • the suction pressure was measured by providing a pressure sensor on the tube 42 (the same applies hereinafter).
  • This passing plasma gas amount was measured by installing a wet gas meter after the decompression means 43 (the same applies hereinafter).
  • suction is performed from the side surface of the porous support 3a, but suction may be performed from the lower surface of the porous support 3a.
  • any force on the lower surface and the side surface of the porous material 1 may be directly sucked.
  • the material of the porous support 3a is not particularly limited, and metal (eg, aluminum), ceramic status, plastics, or the like can be used.
  • the porosity of the porous support 3a is preferably 20 to 80%. If the porosity is less than 20%, the time required for the plasma gas to pass through the film-like porous material 1 becomes longer. On the other hand, if the porosity exceeds 80%, the film-like porous material 1 having a small contact area with the film-like porous material 1 cannot be stably supported. This porosity is more preferably 30 to 60%.
  • the size and shape of the porous support 3a may be appropriately set according to the size of the film-like porous material 1 to be plasma-treated.
  • the sample stage 41 on which the porous support 3a is placed is preferably movable in parallel, whereby the film-like porous material 1 can be uniformly plasma-treated while being translated.
  • the moving speed is preferably 1 to 2,000 mmZ seconds.
  • the sample stage 41 may be moved in parallel by being interlocked with a direct acting actuator or the like.
  • FIG. 2 shows another example of the first plasma processing apparatus of the present invention.
  • the film-like porous material 1 is plasma-treated by the indirect method.
  • a cylindrical high-voltage electrode 20b connected to a high-frequency power source 22 and a cylindrical ground electrode 21b arranged on the outer periphery via a gas passage 24 serving also as a discharge gap are provided.
  • the apparatus is the same as the apparatus shown in FIG. 1 except that the plasma gas generator 2b is provided in the upper part of the chamber 4.
  • an insulator layer (not shown) is provided on the inner surface of the cylindrical ground electrode 21b.
  • the tube 40 for introducing the plasma generating gas passes through the cylindrical ground electrode 21 b and communicates with the gas passage 24.
  • a nozzle 25 is provided at the outlet of the electrode (the end of the gas passage 24).
  • the film-like porous material 1 is fixed on the porous support 3a, a plasma generating gas is introduced into the gas passage 24, a high-frequency voltage is applied between the electrodes 20b and 21b, and plasma is generated from the nozzle 25. Gas is blown out.
  • the output and frequency of the plasma gas generator 2b are the same as those of the plasma gas generator 2a shown in FIG.
  • the flow rate and pressure of plasma gas sprayed on the film-like porous material 1 and the porosity of the porous support 3a may be the same as described above. Even when this apparatus is used, the porous support 3a is preferably sucked by the decompression means 43.
  • the suction pressure and the amount of plasma gas passed through the film-like porous material 1 may be the same as described above.
  • FIG. 3 shows still another example of the first plasma processing apparatus of the present invention.
  • the film-like porous material 1 is plasma-treated by the indirect method.
  • This apparatus has a plasma gas generator 2b at the bottom of the cello, and a porous support 3a is installed at a position almost opposite to the plasma gas generator 2b.
  • the film-like porous material 1 is fixed on the porous support 3a, the plasma gas flow is also sprayed on the lower surface of the porous support 3a, and the upper surface of the film-like porous material 1 is decompressed through the hood 45.
  • the plasma gas can be passed through the film-like porous material 1.
  • the flow rate and pressure of the plasma gas sprayed onto the porous support 3a, the suction pressure, and the amount of plasma gas passed through the film-like porous material 1 may be the same as described above.
  • the porosity of the porous support 3a may be the same as described above.
  • the film-like porous material 1 is fixed to the porous support 3a with tension applied to the film-like porous material 1 so that the film-like porous material 1 is processed in a state of being in full contact with the porous support 3a.
  • the length d from the plasma gas outlet to the lower surface of the porous support 3a is preferably 0.1 to 10 mm.
  • FIG. 4 shows still another example of the first plasma processing apparatus of the present invention.
  • the film-like porous material 1 is plasma-treated by the indirect method.
  • This apparatus has a porous roll 3b for transporting the film-like porous material 1 at a position almost opposite to the plasma gas generator 2b.
  • Reel 10 force
  • the film-like porous material 1 which has been rewound passes through the guide roll 47, is sprayed with plasma gas at the above flow rate while being conveyed by the porous roll 3 b, and is wound around the reel 11 through the guide roll 47.
  • Plasma gas can pass through the film-like porous material 1 on the porous roll 3b.
  • the porous roll 3b preferably has a suction function.
  • the porous suction roll 3b is made of (0 porous material, has a cavity 31b that can be vacuum-loaded inside, and is connected to the cavity 31b on the peripheral surface.
  • a cylindrical shaft body (porous support) 30b having a large number of pores therethrough, and (ii) a pair of through holes provided at both ends of the shaft body 30b and in communication with the cavity 31b.
  • Side plate 32b and (iii) a pair of bearing portions 33b provided with through holes communicating with the through holes of the side plate 32b.
  • the bearing portion 33b includes a bearing (not shown) for rotatably supporting the shaft body 30b.
  • the porous suction roll 3b has a bearing portion 33b supported by a base 46.
  • the hollow portion 31b is depressurized by being sucked by the depressurizing means 43 that communicates with the through hole of the bearing portion 33b through the pipe 42, and the porous roll 3b is rotated while being rotated by a motor (not shown).
  • the film-like porous material 1 can be sucked at the outer peripheral surface.
  • the diameter of the porous suction roll 3b is preferably 15 to 60 cm.
  • the conveying speed by the porous suction roll 3b is preferably 1 to 2,000 mmZ seconds, and more preferably 2 to 1,000 mmZ seconds.
  • the flow rate and pressure of the plasma gas sprayed onto the film-like porous material 1 on the porous suction roll 3b, and the suction pressure and the amount of plasma gas allowed to pass through the film-like porous material 1 may be the same as described above.
  • the porosity of the porous suction roll 3b may be the same as described above.
  • FIG. 5 shows still another example of the first plasma processing apparatus of the present invention.
  • the film-like porous material 1 is plasma-treated by the indirect method.
  • the plasma gas generator 2b communicates with the hollow portion 31b of the porous roll 3b through the pipe 48, the through-hole of the bearing portion 33b, and the through-hole of the side plate 32b. Plasma gas is fed and the porous roll 3b force also ejects the plasma gas.
  • the generator 2b force plasma gas is fed, and the upper surface of the film-like porous material 1 is reduced by the decompression means 43 via the hood 45.
  • the plasma gas can pass through the film-like porous material 1.
  • the conveyance speed by the porous roll 3b, the amount of plasma gas passed through the film-like porous material 1, and the suction pressure may be the same as described above.
  • the contact pressure of the film-like porous material 1 with respect to the porous roll 3b is appropriately adjusted so that the film-like porous material 1 is conveyed in contact with the porous roll 3b.
  • FIG. 6 shows an example of the second plasma processing apparatus of the present invention.
  • the film-like porous material 1 is plasma treated by a direct method.
  • the plate-like ground electrode 21c of the plasma gas generator 2c serves as a porous material force, and also serves as a support for the film-like porous material 1.
  • the porous ground electrode 21c (porous support 3c) preferably has a porous metal force whose surface is covered with a porous dielectric.
  • the porous dielectric material include porous plastics (for example, polyurethane foam sheet, porous silicon rubber, etc.), porous ceramics, and the like.
  • the porous ground electrode 21c (porous support 3c) is preferably made of a porous metal. The porosity of the porous support 3c may be the same as described above.
  • Film-like porous material 1 is fixed on porous ground electrode 21c (porous support 3c), high-frequency voltage is applied between both electrodes 20c and 21c in a plasma generating gas atmosphere, and the porous material is porous.
  • the ground electrode 21 c is sucked by the decompression means 43, the film-like porous material 1 can be processed in the plasma gas generation region, and the generated plasma gas can be passed through the film-like porous material 1.
  • the suction pressure, the amount of plasma gas flow passed through the film-like porous material 1, the output and frequency of the plasma gas generator 2c may be the same as described above.
  • FIG. 7 shows another example of the second plasma processing apparatus of the present invention.
  • the plasma gas generator 2d of this apparatus also has a force with a plate-like high-voltage electrode 20d and a ground electrode 21d composed of a porous metal suction roll 3d.
  • the porous metal suction roll 3d is provided at a position substantially opposite to the plate-like high-voltage electrode 20d in the chamber 4.
  • the configuration of the porous metal suction roll 3d (the shaft main body 30d, the cavity 31d, the side plate 32d, and the bearing 33d) itself may be the same as the porous roll 3b of the apparatus shown in FIG.
  • the porous metal suction roll 3d is covered with a porous dielectric.
  • the film-like porous material 1 unwound from the reel 10 is conveyed by the porous metal suction roll 3d (ground electrode 21d), the plasma treatment is performed in the plasma gas generation region, and the plasma gas is turned into a film shape. Pass through porous material 1 and take up on reel 11. The conveyance speed by the porous metal suction roll 3d may be the same as described above. Film-like porous material 1 The amount of plasma gas flow to be passed, the porosity of the porous metal suction roll 3d, and the suction pressure may be the same as described above.
  • FIG. 8 shows an example of the third plasma processing apparatus of the present invention.
  • the film-like porous material 1 is plasma-treated by the direct method.
  • This apparatus is the same as the apparatus shown in FIG. 6 except that it has a mass flow 44 ′ instead of the decompression means 43.
  • the film-like porous material 1 is fixed on the porous ground electrode 21c (porous support 3c), and the gas for generating plasma is supplied between the electrodes 20c and 21c via the mass flow 44.
  • a high-frequency voltage is applied between the electrodes 20c and 21c while supplying a gas for generating plasma to the porous ground electrode 21c via ', the generated plasma gas passes through the porous film material 1 be able to.
  • Suction is preferably performed by a vacuum pump P provided at a position almost opposite to the tube 40.
  • the flow rate of the plasma gas sprayed on the film-like porous material 1 is the same as above V. What is necessary is just to set suitably the ratio of the flow volume of the plasma generating gas sent from the pipes 40 and 40 '.
  • either or both of the forces including the mass flow 44 and the vacuum pump P can be omitted. If the vacuum pump P is omitted, provide a drain tube.
  • FIG. 9 shows another example of the third plasma processing apparatus of the present invention.
  • the film-like porous material 1 is subjected to plasma treatment by a direct method.
  • This apparatus is the same as the apparatus shown in FIG. 7 except that it has a mass flow 44 ′ instead of the decompression means 43.
  • the gas for generating plasma is fed between the electrodes 20d and 21d via the mass flow 44, and the mass flow 44 '
  • the plasma generating gas is supplied to the porous metal roll 3d through the high frequency voltage between the electrodes 20d and 21d, the generated plasma gas can be passed through the film-like porous material 1.
  • the vacuum pump P provided at a position almost opposite to the tube 40.
  • the amount of plasma gas flow sprayed on the film-like porous material 1 is the same as above.
  • the ratio of the flow rate of the plasma generating gas supplied from the tubes 40 and 40 ′ may be set as appropriate.
  • the force provided with the mass flow 44 and the vacuum pump P can be omitted.
  • a drain tube is provided.
  • FIG. 10 shows an example of the fourth plasma processing apparatus of the present invention.
  • the film-like porous material 1 is plasma-treated by the direct method.
  • This apparatus includes a first plasma generator 2c comprising a pair of plate-like high-voltage electrodes 20c and a plate-like porous ground electrode 21c (porous support 3c), and a second plasma generator provided at the lower part of the chamber 4.
  • a first plasma generator 2c comprising a pair of plate-like high-voltage electrodes 20c and a plate-like porous ground electrode 21c (porous support 3c)
  • a second plasma generator provided at the lower part of the chamber 4.
  • the film-like porous material 1 is in contact with the porous support 3c, and between the pair of plate-like high-voltage electrodes 20c and the plate-like porous ground electrode 21c (porous support 3c).
  • the plasma treatment is performed in the plasma gas generation region, and the plasma gas blown by the downward force generation device 2b of the porous support 3c is passed through the film-like porous material 1. It is preferable to perform processing while sucking with a vacuum pump P provided at the top of the chamber 4.
  • the amount of plasma gas sprayed on the film-like porous material 1 and the material and porosity of the porous ground electrode 21c may be the same as described above.
  • FIG. 11 shows another example of the fourth plasma processing apparatus of the present invention. Even in this continuous apparatus, the film-like porous material 1 is subjected to plasma treatment by a direct method.
  • This apparatus includes a first plasma gas generator 2d composed of a plate-shaped high-pressure electrode 20d and a ground electrode 2 Id (porous metal roll 3d), and plasma gas is supplied to the cavity 31d of the porous metal roll 3d. And a second plasma generator 2b for feeding.
  • the film-like porous material 1 is processed in the plasma gas generation region between the plate-like high-voltage electrode 20d and the metal ejection roll 3d while being transported by the porous metal roll 3d.
  • plasma treatment is performed by passing the plasma gas ejected from the roll 3d through the film-like porous material 1. It is preferable to perform processing while suctioning with a vacuum pump P provided at the top of the chamber 4.
  • the conveyance speed by the roll 3d and the amount of plasma gas sprayed on the film-like porous material 1 are the same as above.
  • the plasma treatment as described above not only the surface of the porous material 1 but also the inside of the pores can be treated.
  • oxygen-containing functional groups such as carboxyl groups and carbo carboxylic groups can be introduced, and hydrophilicity is improved.
  • the treated polyolefin microporous membrane is useful as a battery separator, various filters, a carrier for various functional materials, and the like.
  • the porous material 1 When the porous material 1 is also a plastic ska, it can be further treated with a monomer graph after the plasma treatment, thereby further improving the hydrophilicity.
  • the monomer is preferably an acrylic monomer.
  • Examples of a method for subjecting a plasma-treated polyolefin microporous membrane to monomer grafting include the method described in JP-A-9-31226. According to the method described in JP-A-9-31226, an acrylic monomer (for example, methacrylate) may be brought into contact with the plasma-treated polyolefin microporous membrane, and the acrylic monomer may be graft polymerized.
  • the polyolefin microporous membrane subjected to the plasma treatment and the monomer graft treatment of the present invention can provide excellent characteristics when used as a battery separator, various filters, a carrier for various functional materials, and the like.
  • the contact angle of pure water (hereinafter simply referred to as "water contact angle” unless otherwise specified) was measured on both surfaces of the polyethylene microporous membrane 1 treated with atmospheric pressure plasma. It was 32 ° on the surface (2a side) and 48 ° on the lower surface (surface on the porous support 3a side).
  • a contact angle meter (Drop Master 100) manufactured by Kyowa Interface Science Co., Ltd. was used. Furthermore, when FT-IR measurement was performed on both sides of the polyethylene microporous membrane 1 that had been plasma-treated, it was confirmed that mainly carboxylic acid groups were introduced on both sides, and the plasma treatment was effectively performed to the bottom. It has been divided.
  • the polyethylene microporous membrane was plasma-treated at atmospheric pressure in the same manner as in Example 1 except that the polyethylene microporous membrane was not attracted.
  • the water contact angle on both sides of the obtained polyethylene microporous membrane was measured, it was 30 ° on the upper surface and 80 ° on the lower surface.
  • FT-IR measurement was performed on both sides of the plasma-treated polyethylene microporous membrane, it was confirmed that carboxylic acid groups were mainly introduced on both sides, and the plasma treatment was effectively performed to the bottom surface! I was divided.
  • the polyethylene microporous membrane was plasma treated under atmospheric pressure in the same manner as in Example 1 except that a non-porous aluminum block was used as a support and the polyethylene microporous membrane was attracted.
  • the water contact angle on both sides of the obtained polyethylene microporous membrane was measured, it was 36 ° on the upper surface and 123 ° on the lower surface.
  • FT-IR measurement was performed on both sides of the plasma-treated polyethylene microporous membrane, carboxylic acid groups were mainly introduced on the upper surface, but no peaks indicating chemical species other than polyethylene were observed on the lower surface. Until the plasma treatment until, it was divided.
  • the plasma generating gas is a mixed gas of helium (flow rate: 3,000 mlZmin) and oxygen (flow rate: 10 ml / min), a non-porous aluminum block is used as the support, and the polyethylene microporous membrane is not sucked.
  • the pore membrane was plasma treated.
  • the water contact angle on both sides of the obtained polyethylene microporous membrane was measured, it was 52 ° on the top surface and 127 ° on the bottom surface.
  • FT-IR measurement was performed on both sides of the plasma-treated polyethylene microporous membrane, but a strong rubonic acid group was introduced on the upper surface, but a peak indicating chemical species other than polyethylene was confirmed on the lower surface.
  • the plasma treatment was carried out to the lower surface, so that it became a component.
  • the plasma generating gas is a mixed gas of helium (flow rate: 2,500 mlZmin) and argon (flow rate: 500 ml / min), a non-porous aluminum block is used as the support, and the polyethylene microporous membrane is sucked.
  • the polyethylene microporous membrane was plasma treated under atmospheric pressure in the same manner as in Example 1 except that it was strong. When the water contact angle on both sides of the obtained polyethylene microporous membrane was measured, it was 30 ° on the upper surface and 129 ° on the lower surface.
  • FT-IR measurement was performed on both sides of the plasma-treated polyethylene microporous membrane, but carboxylic acid groups were mainly introduced on the upper surface, but peaks indicating chemical species other than polyethylene were confirmed on the lower surface. However, the plasma treatment was carried out to the lower surface, so that it became a component.
  • a polyethylene microporous membrane was plasma-treated at atmospheric pressure.
  • the same porous support as in Example 1 (aluminum block having a porous upper surface. Porosity of the porous portion: 50%)
  • the upper surface of the support 3c was entirely covered with a polyurethane foam sheet. It was.
  • the same polyethylene microporous membrane 1 as in Example 1 was fixed on the coated surface of the porous support 3c. This was placed on the sample table 41 at the bottom of the apparatus so that the porous support 3c became the ground electrode 21c.
  • the water contact angle of both surfaces of the polyethylene microporous membrane 1 treated with atmospheric pressure plasma was measured and found to be 29 ° on the upper surface and 37 ° on the lower surface. Furthermore, plasma-treated po When FT-IR measurement was performed on both sides of the polyethylene microporous membrane 1, it was confirmed that mainly rubonic acid groups were introduced on both sides, and that it was effectively plasma-treated to the lower surface. .
  • the polyethylene microporous membrane treated with atmospheric pressure plasma obtained in Example 3 was immediately immersed in 1% by volume of methanolic water-methanol [50:50 (volume)] solution at a temperature of 50 ° C. for 30 minutes. After washing with water.
  • the FT-IR measurement power of the polyethylene microporous membrane obtained after drying was also confirmed to be graft polymerized with polymethyl acrylate.
  • Mass enhancement of graft-polymerized polyethylene microporous membrane The calculated graft amount was 11% by mass.
  • the water contact angle of both surfaces of the grafted polyethylene microporous membrane was measured and found to be 25 ° on the top surface and 28 ° on the bottom surface.
  • the polyethylene microporous membrane was plasma treated under atmospheric pressure in the same manner as in Example 3 except that a non-porous aluminum block was used as the support and the polyethylene microporous membrane was not attracted.
  • the water contact angle on both sides of the obtained polyethylene microporous membrane was measured, it was 31 ° on the upper surface and 114 ° on the lower surface.
  • FT-IR measurement was performed on both sides of the plasma-treated polyethylene microporous membrane, carboxylic acid groups were mainly introduced on the upper surface, but no peaks indicating chemical species other than polyethylene were observed on the lower surface. Until the plasma treatment until, it was divided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

 多孔性素材をプラズマ処理する際に、不活性ガス又は上記不活性ガス及び反応性ガスの混合ガスを用いてプラズマを発生させ、(a) 得られたプラズマガスを、上記多孔性素材の単位面積当たり0.002~2L/min/cm2の流量で上記多孔性素材に吹き付けるか、(b) 上記プラズマガスの雰囲気で上記多孔性素材を吸引するか、(c) 上記プラズマガスを上記流量で上記多孔性素材に吹き付けながら上記多孔性素材を吸引し、もって上記多孔性素材の表面及び細孔内をプラズマ処理する方法。

Description

明 細 書
多孔性素材をプラズマ処理する方法及び装置
技術分野
[0001] 本発明は、多孔性素材をプラズマ処理する方法及び装置に関し、特に多孔性ブラ スチックフィルムの表面及び細孔内をプラズマ処理する方法及び装置に関する。 背景技術
[0002] プラスチックス、ガラス、セラミックス、金属、半導体等の疎水性材料の表面を親水 化する方法として、プラズマ処理する方法がある。例えば米国特許第 5543017号は、 プラスチック材料を大気圧下でグロ一放電プラズマ処理する方法として、プラズマリア クタ中で、少なくとも一方が絶縁コートされた一対の電極間にプラスチック材料を配置 し、 (a)アルゴン、アルゴン 'ヘリウム混合ガス、又はアルゴン '水素混合ガスと、 (b)約 1 8%の飽和水蒸気又は水蒸気 ·ケトン混合ガスとの混合ガスを、所定の温度でプラズ マリアクタに導入し、高周波電圧を加えて大気圧下でグロ一放電を起こし、プラズマ を生じさせる方法を記載して 、る。
[0003] 特開平 11-128634号は、損傷を伴わずに不織布を親水化する方法として、誘電体 を被覆した一対の電極管の間に疎水性不織布を配置し、希ガスを含む混合ガス雰 囲気で、電極管対の間でプラズマを生じさせる方法を記載して 、る。
[0004] 米国特許第 6399159号は、ポリオレフイン被覆層を有する素材を効果的にプラズマ 処理する方法として、 (a)処理ゾーンにガスを送給し、 (b)処理電極又は対向電極に、 1/t (t:プラズマ中のイオン電流に上記素材表面を曝すチャージング時間)以上〜 2MHz以下の周波数の高電圧をかけて処理ゾーンにプラズマを発生させ、(c)処理ゾ ーン中に上記素材を通し、 (d)処理ガスにより上記素材のポリオレフイン被覆層表面 に活性種を生じさせる方法を記載して ヽる。
[0005] 東京都立産業技術研究所研究報告第 3号 (2000)は、ポリエチレン (PE)やポリプロ ピレン (PP)に持続的な親水性を付与する方法として、一対の電極の下方電極板に 試料を載置し、酸素雰囲気下で高周波グロ一放電を起こし、 PE板及び PP板を酸素 プラズマ処理した後、極性溶媒で処理する方法を記載している。しかし上記各文献 の 、ずれの方法を用いても、多孔性素材の細孔内までプラズマ処理するのは困難で ある。
[0006] そこで米国特許第 5403453号は、大気圧に保持したガス中で、一対の電極間に、持 続的で均一なグロ一放電プラズマを生じさせ、その中にポリマー素材を一定時間入 れ、ふいご又はピストンによりチャンバ中の圧力を差動的に制御して活性種を不織布 等のポリマー素材に通過させる方法を記載している。しかしこの方法でも、細孔径が 数 μ m程度の熱可塑性榭脂微多孔膜の細孔内までプラズマ処理するのは困難であ る。
[0007] 特開 2003-7497号は、円柱状高圧電極と、その外周に円筒状絶縁体を介して配置 された円筒状接地電極とを有し、円柱状高圧電極の外周面には軸方向に電極先端 まで延びる複数の直線状溝が形成されており、直線状溝が円筒状絶縁体により覆わ れることにより放電ギャップを兼ねるガス通路が形成された大気圧プラズマ処理装置 を記載している。この大気圧プラズマ処理装置では、ガス通路に大気圧下でガスを 導入し、両電極に高周波電圧を印加することによりグロ一放電プラズマを発生させ、 電極先端の複数の吹出口(ガス通路の終端)から、プラズマガスを噴出させることによ り、被処理物の必要な部位のみをピンポイント的に処理することができる。しかしこの 装置は、シート状の広い面積を有する多孔性素材の細孔内まで、効率的にプラズマ 処理するのは困難である。
発明の開示
発明が解決しょうとする課題
[0008] 従って、本発明の目的は、多孔性素材の表面及び細孔内を効率的にプラズマ処理 する方法及び装置を提供することである。
課題を解決するための手段
[0009] 上記目的に鑑み鋭意研究の結果、本発明者らは、 (a)プラズマガスを所定の流量 で多孔性素材に吹き付けるか、 (b)プラズマガス雰囲気で多孔性素材を吸引すること により、多孔性素材の表面及び細孔内を効率的にプラズマ処理できることを見出し、 本発明に想到した。
[0010] すなわち、本発明の多孔性素材のプラズマ処理方法は、不活性ガス又は前記不活 性ガス及び反応性ガスの混合ガスを用いてプラズマを発生させ、(a)得られたプラズ マガスを、前記多孔性素材の単位面積当たり 0.002〜2L/min/cm2の流量で前記 多孔性素材に吹き付けるか、 (b)前記プラズマガスの雰囲気で前記多孔性素材を吸 引するか、 (c)前記プラズマガスを前記流量で前記多孔性素材に吹き付けながら前 記多孔性素材を吸引し、もって前記多孔性素材にプラズマガスを通過させることを特 徴とする。かかる方法は、多孔性プラスチックフィルム、中でもポリオレフイン微多孔膜 のプラズマ処理に好適である。
[0011] 多孔性素材を一層効率的にプラズマ処理するために、本発明のプラズマ処理方法 は下記条件を満たすのが好ま 、。
[0012] (1)上記多孔性素材に吹き付けるプラズマガスの量を、多孔性素材の単位面積当た り 0.02〜1.2 LZminZcm2とするのが好ましい。
[0013] (2)上記多孔性素材に吹き付けるプラズマガス流の圧力を 1〜100 Paとするのが好ま しい。
[0014] (3)上記多孔性素材を吸引する圧力を 1〜100 Paとするのが好ましい。
[0015] (4)上記多孔性素材を多孔性の支持体に接触させた状態で、 (a)上記多孔性素材に 0.002〜2LZminZcm2の流量でプラズマガスを吹き付ける力、 (b)上記多孔性支持 体を吸引する力、 (c)上記多孔性素材に 0.002〜2LZminZcm2の流量でプラズマガ スを吹き付けながら上記多孔性支持体を吸引するか、 (d)上記多孔性支持体にブラ ズマガスを吹き付けながら上記多孔性素材を吸引するのが好ましい。
[0016] (5)上記 (4)に記載の多孔性支持体の空孔率は 20〜80%が好ましい。
[0017] (6)上記 (4)又は (5)に記載の多孔性支持体は板状又はロール状であるのが好ま U、。
[0018] (7)上記 (6)に記載の板状多孔性支持体を用いて上記多孔性素材をバッチ法により プラズマ処理するか、上記 (6)に記載のロール状多孔性支持体を用いて上記多孔性 素材を搬送しながら連続法によりプラズマ処理するのが好ま U、。
[0019] (8)上記 (4)〜 )のいずれかに記載のプラズマ処理方法において、プラズマガス発生 領域 (プラズマガス発生装置の高圧電極及び接地電極の間)の外に上記多孔性素 材及び上記多孔性支持体を配置し、プラズマ処理するのが好ま 、。
[0020] (9)上記 (4)〜 )のいずれかに記載のプラズマ処理方法において、プラズマガス発生 装置の接地電極を上記多孔性支持体により形成し、上記多孔性素材を接地電極 ( 多孔性支持体)に接触させた状態で、プラズマ処理するのが好ましい。
[0021] (10)上記 (4)〜 )のいずれかに記載のプラズマ処理方法において、プラズマガス発 生装置を 2つ用い、一方の発生装置の接地電極を上記多孔性支持体により形成し、 その装置のプラズマガス発生領域内で上記多孔性素材を処理するとともに、他方の 発生装置から上記多孔性支持体にプラズマガスを吹き付けるのが好ましい。
[0022] 本発明の第一のプラズマ処理装置は、チャンバ内で多孔性素材をプラズマ処理す るものであって、プラズマガス発生装置と、プラズマ発生用の不活性ガス又は前記不 活性ガス及び反応性ガスの混合ガスを前記発生装置に送給する管と、前記チャンバ に収容された多孔性支持体とを有し、前記多孔性支持体が前記発生装置から送給 されるプラズマガス流の圧力を受けるように配置されており、前記多孔性素材を前記 多孔性支持体に接触させた状態で、前記多孔性素材又は前記多孔性支持体に前 記プラズマガス流の圧力を掛けることを特徴とする。かかる装置は、前記多孔性素材 又は前記多孔性支持体を吸引する手段をさらに有するのが好ましく、これにより一層 効率的に処理できる。
[0023] 本発明の第二のプラズマ処理装置は、チャンバ内で多孔性素材をプラズマ処理す るものであって、プラズマガス発生装置と、プラズマ発生用の不活性ガス又は前記不 活性ガス及び反応性ガスの混合ガスを前記発生装置に送給する管とを有し、前記発 生装置が高圧電極と、多孔性の接地電極とを有し、前記多孔性接地電極が多孔質 誘電体により表面を被覆した多孔性金属又は多孔性金属力 なり、かつ前記多孔性 素材の支持体を兼ねており、前記多孔性接地電極を吸引する手段が設けられており 、前記多孔性素材を前記多孔性接地電極に接触させた状態で、前記多孔性接地電 極を吸引しながら、前記発生装置でプラズマガスを生じさせることを特徴とする。
[0024] 本発明の第三のプラズマ処理装置は、チャンバ内で多孔性素材をプラズマ処理す るものであって、プラズマガス発生装置と、プラズマ発生用の不活性ガス又は前記不 活性ガス及び反応性ガスの混合ガスを前記発生装置に送給する管とを有し、前記発 生装置が高圧電極と、多孔性の接地電極とを有し、前記多孔性接地電極が多孔質 誘電体により表面を被覆した多孔性金属又は多孔性金属力 なり、かつ前記多孔性 素材の支持体を兼ねており、前記多孔性素材を前記多孔性接地電極に接触させた 状態で、前記多孔性接地電極に前記プラズマ発生用ガスを送給しながら、前記発生 装置でプラズマガスを生じさせることを特徴とする。
[0025] 本発明の第四のプラズマ処理装置は、チャンバ内で多孔性素材をプラズマ処理す るものであって、第一及び第二のプラズマガス発生装置と、プラズマ発生用の不活性 ガス又は前記不活性ガス及び反応性ガスの混合ガスを各発生装置に送給する管と を有し、第一の発生装置が高圧電極と、多孔性の接地電極とを有し、前記多孔性接 地電極が多孔質誘電体により表面を被覆した多孔性金属又は多孔性金属カゝらなり、 かつ前記多孔性素材の支持体を兼ねており、前記多孔性素材を前記多孔性接地電 極に接触させた状態で、第一の発生装置でプラズマガスを発生させるとともに、前記 多孔性接地電極に第二の発生装置力 プラズマガスを吹き付けることを特徴とする。 発明の効果
[0026] 本発明によれば、多孔性素材の表面のみならず細孔内も効率的にプラズマ処理す ることができる。特に広い面積を有し、かつ細孔径が数/ z m以下のポリオレフイン微多 孔膜をプラズマ処理するのに有用である。本発明のプラズマ処理方法により得られた ポリオレフイン微多孔膜は、表面のみならず細孔内も親水化されており、電池用セパ レータ、各種フィルタ、各種機能性素材の担体等として有用である。
図面の簡単な説明
[0027] [図 1]多孔性素材をプラズマ処理する装置の一例を示す概略図である。
[図 2]多孔性素材をプラズマ処理する装置の別の例を示す概略図である。
[図 3]多孔性素材をプラズマ処理する装置のさらに別の例を示す概略図である。
[図 4]多孔性素材をプラズマ処理する装置のさらに別の例を示す概略図である。
[図 5]多孔性素材をプラズマ処理する装置のさらに別の例を示す概略図である。
[図 6]多孔性素材をプラズマ処理する装置のさらに別の例を示す概略図である。
[図 7]多孔性素材をプラズマ処理する装置のさらに別の例を示す概略図である。
[図 8]多孔性素材をプラズマ処理する装置のさらに別の例を示す概略図である。
[図 9]多孔性素材をプラズマ処理する装置のさらに別の例を示す概略図である。
[図 10]多孔性素材をプラズマ処理する装置のさらに別の例を示す概略図である。 [図 11]多孔性素材をプラズマ処理する装置のさらに別の例を示す概略図である。 発明を実施するための最良の形態
[0028] [1]多孔性素材
本発明のプラズマ処理方法を適用する多孔性素材の材質として、例えばプラスチッ タス、ガラス、セラミックス、金属、半導体等が挙げられる。多孔性素材の形状は特に 制限されないが、フィルム状又は板状が好ましい。多孔性素材としては多孔性プラス チックフィルムが好ましい。多孔性プラスチックフィルムとしては、熱可塑性榭脂微多 孔膜、熱可塑性榭脂不織布等が挙げられる。これらの微多孔膜及び不織布を構成 する熱可塑性榭脂としては、ポリオレフイン (例えばポリエチレン、ポリプロピレン等)、 ポリエステル、ポリアミド、ポリアリーレンエーテル、ポリアリーレンスルフイド等が挙げら れ、中でもポリオレフインが好ましい。
[0029] ポリオレフイン微多孔膜としては、例えば特許第 2132327号に開示の方法により製 造されるものが挙げられる。特許第 2132327号に開示の方法を利用すると、 (0超高分 子量ポリエチレン及び高密度ポリエチレン力 なるポリエチレン組成物に成膜用溶剤 を添加し、溶融混練してポリエチレン溶液を調製し、 (ii)ポリエチレン溶液をダイリップ より押し出し、得られたゲル状成形物を冷却してゲル状シートを形成し、 (iii)得られた ゲル状シートを延伸し、 (iv)延伸物から洗浄溶媒により成膜用溶剤を除去し、 (v)得ら れた膜を乾燥することにより、ポリエチレン微多孔膜を製造することができる。このよう にして製造したポリエチレン微多孔膜は、通常平均貫通孔径が 0.005〜1 μ mであり、 空孔率が 25〜95%であり、厚さを 25 mに換算した場合の透気度 (JIS P8117)が 50 〜10,000秒 Z100 mlであり、厚さが 5〜200 μ mである。
[0030] [2]プラズマ処理方法及び装置
本発明の方法では、 (a)プラズマガスを、多孔性素材の単位面積当たり 0.002〜2L ZminZcm2の流量で多孔性素材に吹き付ける力、 (b)プラズマガスの雰囲気で多孔 性素材を吸引するか、 (c)プラズマガスを上記流量で多孔性素材に吹き付けながら 多孔性素材を吸引し、もって多孔性素材の表面及び細孔内をプラズマ処理する。
[0031] プラズマガスの発生方法に特に制限はな!/、が、プラズマ発生用ガス雰囲気で、一 対の高圧電極及び接地電極間でグロ一放電を起こすことにより生じさせる方法 (グロ 一放電法)が好ましい。多孔性素材をプラズマ処理する方法としては、両電極間のプ ラズマガス発生領域内で処理する方法 (直接法)、及びプラズマガス発生領域外で 処理する方法(間接法)の!ヽずれでもよ!ヽ。またプラズマ処理はバッチ式及び連続式 のいずれでもよい。
[0032] プラズマガスを上記流量で多孔性素材に吹き付ける方法として、高圧電極及び接 地電極を有するプラズマガス発生装置に、高圧ボンべ力 プラズマ発生用ガスを送 給し、プラズマガス発生装置カゝらプラズマガスを噴出させる方法が挙げられる。発生 装置で生じたプラズマガスはノズル、ブロワ一等により吹き付けるのが好ま U、。
[0033] 直接法及び間接法の!/ヽずれにぉ 、ても、プラズマ処理は大気圧下で行っても、減 圧下で行ってもよい。減圧下でプラズマ処理する場合、系内の圧力を 1〜100 Paとす るのが好ましい。
[0034] プラズマ発生用ガスは、多孔性素材の材質に応じて適宜選択する力 不活性ガス を必須とする。プラズマ発生用ガスは、不活性ガスのみならず、不活性ガス及び反応 性ガスの混合ガスでもよい。不活性ガスとしては He、 Ne、 Ar、 Xe、 Kr等が挙げられる。 反応性ガスとしては O、 H、 N等が挙げられる。これらのガスは単独で又は適宜混合
2 2 2
して使用する。多孔性素材がポリオレフイン微多孔膜の場合、プラズマ発生用ガスと して、 He、 Ar又はこれらの混合物からなる不活性ガス、あるいは He、 Ar又はこれらの 混合物と 0、 H又はこれらの混合物との混合ガスを用いるのが好ましい。以下フィル
2 2
ム状の多孔性素材をプラズマ処理する場合を例にとり、図面を参照して詳細に説明 する。
[0035] (1)第一の装置
図 1は、本発明の第一のプラズマ処理装置の一例を示す。このバッチ式装置では、 フィルム状多孔性素材 1を間接法によりプラズマ処理する。この装置は、 (a)チャンバ 4に収容され、一対の対向する板状高圧電極 20a及び板状接地電極 21aを有するプ ラズマガス発生装置 2aと、 (b)発生装置 2aにプラズマ発生用ガスを送給する管 40と、 ( c)チャンバ 4内を減圧にする真空ポンプ Pと、 (d)チャンバ 4内底部に設けられた平行 移動可能な試料台 41と、 (e)試料台 41上に載置され、厚さ方向及び面方向に連通す る細孔を有する板状の多孔性支持体 3aと、 (D多孔性支持体 3aに配管 42を介して接 続された減圧手段 43とを有する。板状高圧電極 20aは高周波電源 22に接続されてお り、板状接地電極 21aはアース 23に接続されている。
[0036] フィルム状多孔性素材 1を多孔性支持体 3a上に固定し、マスフロー (M/F) 44によ り流量を調節しながら発生装置 2aにプラズマ発生用ガスを送給し、両電極 20a, 21a間 に高周波電圧を印加すると、グロ一放電プラズマが発生する。フィルム状多孔性素材 1は、プラズマガス流の圧力を受ける位置に配置された多孔性支持体 3a上に固定さ れて 、るので、発生したプラズマガスがフィルム状多孔性素材 1中を通過することが できる。そのためフィルム状多孔性素材 1の全表面及び細孔内をプラズマ処理するこ とができる。フィルム状多孔性素材 1を多孔性支持体 3a上に固定するには、例えば枠 板、クリップ等を用いる。
[0037] プラズマ発生装置 2aの出力を 100〜30,000 Wとするのが好ましぐ周波数を 10 kHz 〜500 MHzとするのが好ましい。フィルム状多孔性素材 1がポリオレフイン微多孔膜の 場合、吹き付けるプラズマガスの流量を単位面積当たり 0.002〜2LZminZcm2とすれ ば、十分に細孔内をプラズマ処理できる。この流量は 0.02〜1.2 LZminZcm2が好ま しい。フィルム状多孔性素材 1がポリオレフイン微多孔膜の場合、吹き付けるプラズマ ガス流の圧力は 1〜100 Paが好ましぐ 5〜50 Paがより好ましい。プラズマガス流の圧 力は、プラズマガス流中に圧力センサを設けることにより測定した (以下同様)。ブラ ズマガス吹き出しロカ フィルム状多孔性素材 1上面までの長さ dは 0.1
1 〜10 mmが 好ましい。
[0038] 多孔性支持体 3aは減圧手段 43により吸引するのが好ましぐこれによりフィルム状 多孔性素材 1を通過するプラズマガスの量が増加し、フィルム状多孔性素材 1を一層 効率的にプラズマ処理することができる。減圧手段 43としては、ァスピレータ、真空ポ ンプ、ブロワ一等を挙げることができる。吸引圧力は、フィルム状多孔性素材 1の空孔 率等に応じて適宜設定すればよい。フィルム状多孔性素材 1がポリオレフイン微多孔 膜の場合、吸引圧力を 1〜100 Paとするのが好ましぐ 5〜50 Paとするのがより好まし い。吸引圧力は管 42に圧力センサを設けることにより測定した (以下同様)。フィルム 状多孔性素材 1に通過させるプラズマガスの量は、フィルム状多孔性素材 1の単位面 積当たり 0.002〜2L/min/cm2とするのが好ましぐ 0.02〜1.2 L/min/cm2とするの 力 り好ましい。この通過プラズマガス量は、減圧手段 43の後段に湿式ガスメータを 設けることにより測定した (以下同様)。図示の例では、多孔性支持体 3aの側面から 吸引しているが、多孔性支持体 3aの下面から吸引してもよい。なお多孔性素材 1がブ ロック状である場合、多孔性素材 1の下面及び側面のいずれ力を直接吸引してもよ い。
[0039] 多孔性支持体 3aの材質は特に制限されず、金属 (例えばアルミニウム等)、セラミツ タス、プラスチックス等が使用できる。多孔性支持体 3aの空孔率は 20〜80%が好まし い。空孔率が 20%未満では、プラズマガスがフィルム状多孔性素材 1を通過するのに 要する時間が長くなる。一方空孔率が 80%超では、フィルム状多孔性素材 1との接触 面積が少なぐフィルム状多孔性素材 1を安定的に支持できない。この空孔率は 30〜 60%がより好ましい。多孔性支持体 3aのサイズ及び形状は、プラズマ処理するフィル ム状多孔性素材 1のサイズ等に応じて適宜設定すればよい。
[0040] 多孔性支持体 3aを載置する試料台 41は平行移動可能であるのが好ましぐこれに よりフィルム状多孔性素材 1を平行移動させながら均一にプラズマ処理することがで きる。移動速度は、フィルム状多孔性素材 1がポリオレフイン微多孔膜である場合、 1 〜2,000 mmZ秒が好ましい。試料台 41は、例えば直動ァクチユエータ等に連動させ ることにより平行移動可能とすればよい。
[0041] 図 2は、本発明の第一のプラズマ処理装置の別の例を示す。このバッチ式装置でも 、フィルム状多孔性素材 1を間接法によりプラズマ処理する。この装置は、プラズマ発 生装置 2aの代わりに、高周波電源 22に接続された円柱状高圧電極 20bと、その外周 に放電ギャップを兼ねるガス通路 24を介して配置された円筒状接地電極 21bとを有す るプラズマガス発生装置 2bを、チャンバ 4の上部に有する以外、図 1に示す装置と同 じである。円筒状接地電極 21bの内側表面には、通常絶縁体層(図示せず)が設けら れている。プラズマ発生用ガスを導入する管 40は、円筒状接地電極 21bを貫通し、ガ ス通路 24に連通している。電極先端の吹出口(ガス通路 24の終端)にはノズル 25が設 けられている。
[0042] フィルム状多孔性素材 1を多孔性支持体 3a上に固定し、ガス通路 24にプラズマ発 生用ガスを導入し、両電極 20b, 21b間に高周波電圧を印加し、ノズル 25からプラズマ ガスを噴出させる。このプラズマガス発生装置 2bの出力及び周波数は、図 1に示すプ ラズマガス装置 2aの場合と同じでょ 、。フィルム状多孔性素材 1に吹き付けるプラズ マガスの流量及び圧力、並びに多孔性支持体 3aの空孔率は上記と同じでよい。この 装置を用いる場合も、多孔性支持体 3aは減圧手段 43により吸引するのが好ましい。 吸引圧力及びフィルム状多孔性素材 1に通過させるプラズマガスの量は上記と同じ でよい。
[0043] 図 3は、本発明の第一のプラズマ処理装置のさらに別の例を示す。このバッチ式装 置でも、フィルム状多孔性素材 1を間接法によりプラズマ処理する。この装置は、チヤ ンノ の底部にプラズマガス発生装置 2bを有し、プラズマガス発生装置 2bにほぼ対 向する位置に多孔性支持体 3aが設置されて 、る。
[0044] フィルム状多孔性素材 1を多孔性支持体 3a上に固定し、プラズマガス流を多孔性 支持体 3aの下面力も吹き付けるとともに、フィルム状多孔性素材 1の上面をフード 45 を介して減圧手段 43により吸引すると、プラズマガスをフィルム状多孔性素材 1に通 過させることができる。多孔性支持体 3aに吹き付けるプラズマガスの流量及び圧力、 並びに吸引圧力及びフィルム状多孔性素材 1に通過させるプラズマガスの量は上記 と同じでよい。多孔性支持体 3aの空孔率は上記と同じでよい。但しフィルム状多孔性 素材 1が多孔性支持体 3aに全面的に接触した状態で処理されるように、フィルム状多 孔性素材 1に張力をかけた状態で多孔性支持体 3aに固定するのが好ま 、。プラズ マガス吹き出し口から多孔性支持体 3a下面までの長さ dは 0.1〜10 mmが好ましい。
2
[0045] 図 4は、本発明の第一のプラズマ処理装置のさらに別の例を示す。この連続式装置 でも、フィルム状多孔性素材 1を間接法によりプラズマ処理する。この装置は、フィル ム状多孔性素材 1を搬送する多孔質ロール 3bを、プラズマガス発生装置 2bにほぼ対 向する位置に有する。リール 10力 巻き戻したフィルム状多孔性素材 1は、ガイドロー ル 47を経て、多孔質ロール 3bで搬送しながら上記流量でプラズマガスを吹き付け、ガ イドロール 47を経て、リール 11に巻き取る。多孔質ロール 3b上で、プラズマガスがフィ ルム状多孔性素材 1中を通過することができる。
[0046] 多孔質ロール 3bは吸引機能を有するのが好ましい。多孔質吸引ロール 3bは、(0多 孔質材料からなり、内側に真空負荷可能な空洞部 31bを有し、周面に空洞部 31bと連 通する多数の細孔を有する筒状の軸本体 (多孔性支持体) 30bと、 (ii)軸本体 30bの 両端に設けられ、かつ空洞部 31bに連通する貫通孔を少なくとも一方に開設した一対 の側板 32bと、 (iii)側板 32bの貫通孔に連通する貫通孔を開設した一対の軸受け部 3 3bとを備えている。軸受け部 33bは、軸本体 30bを回転自在に軸支するために、ベアリ ング(図示せず)を具備する。多孔質吸引ロール 3bは軸受け部 33bが台 46により支持 されている。空洞部 31bは、軸受け部 33bの貫通孔カも配管 42を介して連通する減圧 手段 43で吸引することにより減圧になり、多孔質ロール 3bはモーター(図示せず)によ り回転しながらその外周面でフィルム状多孔性素材 1を吸引できる。多孔質吸引ロー ル 3bの直径は 15〜60 cmが好ましい。
[0047] 多孔質吸引ロール 3bによる搬送速度は、 1〜2,000 mmZ秒が好ましぐ 2〜1,000 mmZ秒がより好ましい。多孔質吸引ロール 3b上のフィルム状多孔性素材 1に吹き付 けるプラズマガスの流量及び圧力、並びに吸引圧力及びフィルム状多孔性素材 1に 通過させるプラズマガスの量は上記と同じでよい。多孔質吸引ロール 3bの空孔率は 上記と同じでよい。
[0048] 図 5は、本発明の第一のプラズマ処理装置のさらに別の例を示す。この連続式装置 でも、フィルム状多孔性素材 1を間接法によりプラズマ処理する。この装置では、ブラ ズマガス発生装置 2bから、配管 48、軸受け部 33bの貫通孔、及び側板 32bの貫通孔を 介して、多孔質ロール 3bの空洞部 31bまで連通しており、多孔質ロール 3bにプラズマ ガスが送給され、多孔質ロール 3b力もプラズマガスを噴出させる。
[0049] フィルム状多孔性素材 1を多孔質ロール 3bで搬送しながら、発生装置 2b力 プラズ マガスを送給するとともに、フィルム状多孔性素材 1の上面をフード 45を介して減圧手 段 43により吸引すると、プラズマガスをフィルム状多孔性素材 1に通過させることがで きる。多孔質ロール 3bによる搬送速度、フィルム状多孔性素材 1に通過させるプラズ マガスの量、及び吸引圧力は上記と同じでよい。但し、フィルム状多孔性素材 1が多 孔質ロール 3bに接触した状態で搬送されるように、多孔質ロール 3bに対するフィルム 状多孔性素材 1の接触圧力を適宜調節する。
[0050] (2)第二の装置
図 6は、本発明の第二のプラズマ処理装置の一例を示す。このバッチ式装置では、 フィルム状多孔性素材 1を直接法によりプラズマ処理する。この装置は、プラズマガス 発生装置 2cの板状接地電極 21cが多孔性材料力 なり、フィルム状多孔性素材 1の 支持体を兼ねている。
[0051] 処理するフィルム状多孔性素材 1が絶縁性である場合、多孔性接地電極 21c (多孔 性支持体 3c)は多孔質誘電体により表面を被覆した多孔性金属力 なるのが好まし い。多孔質誘電体としては、多孔質プラスチックス (例えばポリウレタン製発泡シート、 多孔質シリコンゴム等)、多孔質セラミックス等が挙げられる。処理するフィルム状多孔 性素材 1が導電性である場合、多孔性接地電極 21c (多孔性支持体 3c)は多孔性金 属からなるのが好ましい。多孔性支持体 3cの空孔率は上記と同じでよい。
[0052] フィルム状多孔性素材 1を多孔性接地電極 21c (多孔性支持体 3c)上に固定し、プ ラズマ発生用ガス雰囲気で両電極 20c, 21c間に高周波電圧を印加し、かつ多孔性 接地電極 21 cを減圧手段 43により吸引すると、フィルム状多孔性素材 1をプラズマガ ス発生領域内で処理でき、かつ発生したプラズマガスをフィルム状多孔性素材 1に通 過させることができる。吸引圧力、フィルム状多孔性素材 1に通過させるプラズマガス 流の量、プラズマガス発生装置 2cの出力及び周波数は上記と同じでよい。
[0053] 図 7は、本発明の第二のプラズマ処理装置の別の例を示す。この連続式装置でも、 フィルム状多孔性素材 1を直接法によりプラズマ処理する。この装置のプラズマガス 発生装置 2dは、板状の高圧電極 20dと、多孔質金属製吸引ロール 3dからなる接地電 極 21dと力もなる。多孔質金属製吸引ロール 3dは、チャンバ 4内の板状高圧電極 20d にほぼ対向する位置に設けられている。多孔質金属製吸引ロール 3dの構成 (軸本体 30d、空洞部 31d、側板 32d及び軸受け部 33d)自体は、図 4に示す装置の多孔質ロー ル 3bと同じでよい。上記のように、処理するフィルム状多孔性素材 1が絶縁性である 場合、多孔質金属製吸引ロール 3dは多孔質誘電体により表面を被覆したものとする
[0054] リール 10から巻き戻したフィルム状多孔性素材 1を多孔質金属製吸引ロール 3d (接 地電極 21d)で搬送しながら、プラズマガス発生領域内でプラズマ処理するとともに、 プラズマガスをフィルム状多孔性素材 1に通過させ、リール 11に巻き取る。多孔質金 属製吸引ロール 3dによる搬送速度は上記と同じでよい。フィルム状多孔性素材 1に 通過させるプラズマガス流の量、多孔質金属製吸引ロール 3dの空孔率、及び吸引圧 力は上記と同じでよい。
[0055] (3)第三の装置
図 8は、本発明の第三のプラズマ処理装置の一例を示す。このバッチ式装置でも、 フィルム状多孔性素材 1を直接法によりプラズマ処理する。この装置は、減圧手段 43 の代わりにマスフロー 44'を有する以外、図 6に示す装置と同じである。フィルム状多 孔性素材 1を多孔性接地電極 21c (多孔性支持体 3c)上に固定し、マスフロー 44を介 して両電極 20c, 21c間にプラズマ発生用ガスを送給するとともに、マスフロー 44'を介 して多孔性接地電極 21 cにプラズマ発生用ガスを送給しながら電極 20c, 21 c間に高 周波電圧を印加すると、発生したプラズマガスをフィルム状多孔性素材 1に通過させ ることができる。管 40とほぼ対向する位置に設けた真空ポンプ Pにより吸引するのが好 ま 、。フィルム状多孔性素材 1に吹き付けるプラズマガスの流量は上記と同じでよ V、。管 40及び 40'から送給するプラズマ発生用ガスの流量の割合は適宜設定すれば よい。なお図示の装置では、マスフロー 44と真空ポンプ Pを具備している力 これらの いずれか一方又は両方を省略することができる。真空ポンプ Pを省略する場合、ドレ イン用の管を設ける。
[0056] 図 9は、本発明の第三のプラズマ処理装置の別の例を示す。この連続式装置でも、 フィルム状多孔性素材 1を直接法によりプラズマ処理する。この装置は、減圧手段 43 の代わりにマスフロー 44'を有する以外、図 7に示す装置と同じである。フィルム状多 孔性素材 1を多孔質金属製ロール 3d (接地電極 21d)で搬送しながら、マスフロー 44 を介して両電極 20d, 21d間にプラズマ発生用ガスを送給するとともに、マスフロー 44' を介して多孔質金属製ロール 3dにプラズマ発生用ガスを送給し、電極 20d, 21d間に 高周波電圧を印加すると、発生したプラズマガスをフィルム状多孔性素材 1に通過さ せることができる。管 40とほぼ対向する位置に設けた真空ポンプ Pにより吸引するのが 好ま 、。フィルム状多孔性素材 1に吹き付けるプラズマガス流の量は上記と同じで ょ 、。管 40及び 40'から送給するプラズマ発生用ガスの流量の割合は適宜設定すれ ばよい。なお図示の装置では、マスフロー 44及び真空ポンプ Pを具備している力 こ れらの 、ずれか一方又は両方を省略することができる。真空ポンプ Pを省略する場合 、ドレイン用の管を設ける。
[0057] (4)第四の装置
図 10は、本発明の第四のプラズマ処理装置の一例を示す。このバッチ式装置でも、 フィルム状多孔性素材 1を直接法によりプラズマ処理する。この装置は、一対の板状 高圧電極 20c及び板状多孔性接地電極 21c (多孔性支持体 3c)からなる第一のプラズ マ発生装置 2cと、チャンバ 4下部に設けられた第二のプラズマ発生装置 2bとを有する
[0058] この装置では、フィルム状多孔性素材 1を多孔性支持体 3cに接触させた状態で、一 対の板状高圧電極 20c及び板状多孔性接地電極 21c (多孔性支持体 3c)間のプラズ マガス発生領域内でプラズマ処理するとともに、多孔性支持体 3cの下方力 発生装 置 2bにより吹き付けられたプラズマガスをフィルム状多孔性素材 1に通過させることに よりプラズマ処理する。チャンバ 4上部に設けた真空ポンプ Pにより吸引しながら処理 するのが好ましい。フィルム状多孔性素材 1に吹き付けるプラズマガスの量、並びに 多孔性接地電極 21cの材質及び空孔率は上記と同じでよい。
[0059] 図 11は、本発明の第四のプラズマ処理装置の別の例を示す。この連続式装置でも 、フィルム状多孔性素材 1を直接法によりプラズマ処理する。この装置は、板状の高 圧電極 20d及び接地電極 2 Id (多孔質金属製ロール 3d)からなる第一のプラズマガス 発生装置 2dと、多孔質金属製ロール 3dの空洞部 31dにプラズマガスを送給する第二 のプラズマ発生装置 2bとを有する。
[0060] この装置では、フィルム状多孔性素材 1を多孔質金属製ロール 3dで搬送しながら、 板状の高圧電極 20dと、金属製噴出ロール 3dとの間のプラズマガス発生領域内で処 理するとともに、ロール 3dから噴出させたプラズマガスをフィルム状多孔性素材 1に通 過させることによりプラズマ処理する。チャンバ 4上部に設けた真空ポンプ Pにより吸 引しながら処理するのが好ましい。ロール 3dによる搬送速度、フィルム状多孔性素材 1に吹き付けるプラズマガスの量は上記と同じでょ 、。
[0061] 以上のようなプラズマ処理により、多孔性素材 1の表面のみならず細孔内を処理す ることができる。ポリオレフイン微多孔膜を処理した場合、カルボキシル基、カルボ- ル基等の含酸素官能基を導入でき、親水性が向上する。特に本発明のプラズマ処 理を受けたポリオレフイン微多孔膜は、電池用セパレータ、各種フィルタ、各種機能 性素材の担体等として有用である。
[0062] [3]モノマーグラフト処理
多孔性素材 1がプラスチックスカもなる場合、プラズマ処理した後、さらにモノマーグ ラフト処理してもよぐこれにより親水性が一層向上する。多孔性素材 1がポリオレフィ ン微多孔膜である場合、モノマーとしてはアクリル系モノマーが好ましい。プラズマ処 理したポリオレフイン微多孔膜をモノマーグラフト処理する方法として、例えば特開平 9-31226号に記載の方法が挙げられる。特開平 9-31226号に記載の方法に従えば、 プラズマ処理したポリオレフイン微多孔膜に、アクリル系モノマー(例えばメタタリレート 等)を接触させ、アクリル系モノマーをグラフト重合すればよい。このようなモノマーグ ラフト処理により、ポリオレフイン微多孔膜の親水性のみならず、各種有機溶媒に対 する親和性が一層向上する。そのため本発明のプラズマ処理及びモノマーグラフト 処理を施したポリオレフイン微多孔膜は、電池用セパレータ、各種フィルタ、各種機 能性素材の担体等として用いると、優れた特性が得られる。
[0063] 以上の通り図面を参照して本発明を説明したが、本発明はそれらに限定されず、本 発明の趣旨を変更しない限り種々の変更を加えることができる。
実施例
[0064] 本発明を以下の実施例によりさらに詳細に説明する力 本発明はこれらの例に限 定されるものではない。
[0065] 実施例 1
図 1に示すバッチ式装置を用いて、大気圧下でポリエチレン微多孔膜 [商品名:セ ティーラ、東燃化学 (株)製、縦 5cm X横 5cm、厚さ:30 /ζ πι、空孔率: 63%、透気度: 80 秒 Z100 mKGurey値)]をプラズマ処理した。チャンバ 4内底部の試料台 41上に載置 した多孔性支持体 (上面を多孔質としたアルミニウム製ブロック。多孔質部分の空孔 率: 50%) 3aの上に、ポリエチレン微多孔膜 1を固定した。高圧電極 20aと接地電極 21 aの間にヘリウムを 3,000 mlZminの流量で送給しながら 13.56 MHzの高周波電圧を 5 00 Wの出力で印加し、発生したプラズマガス(3LZmin)をポリエチレン微多孔膜 1の lmm上方力 送給した。支持体 3aの多孔質部分に接続したァスピレータ 43で吸引し ながら(吸引圧力: 28 Pa、微多孔膜 1に通過させたプラズマガス量: 3LZmin)、試料 台 41を 3mmZsecの速度で移動させた。
[0066] 大気圧プラズマ処理したポリエチレン微多孔膜 1の両面について、純水の接触角( 以下特段の断りがない限り、単に「水接触角」という)を測定したところ、上面 (ブラズ マ発生装置 2a側の面)では 32° であり、下面(多孔性支持体 3a側の面)では 48° で あった。測定機としては、協和界面科学株式会社製の接触角計 (Drop Master 100) を用いた。さらにプラズマ処理したポリエチレン微多孔膜 1の両面につ!、て FT-IR測 定を行ったところ、両面に主としてカルボン酸基が導入されていることが確認され、下 面まで効果的にプラズマ処理されていることが分力つた。
[0067] 施例 2
ポリエチレン微多孔膜を吸引しな力つた以外実施例 1と同様にして、大気圧下でポ リエチレン微多孔膜をプラズマ処理した。得られたポリエチレン微多孔膜の両面の水 接触角を測定したところ、上面では 30° であり、下面では 80° であった。さらにプラズ マ処理したポリエチレン微多孔膜の両面について FT-IR測定を行ったところ、両面に 主としてカルボン酸基が導入されて ヽることが確認され、下面まで効果的にプラズマ 処理されて!、ることが分力つた。
[0068] 比較例 1
支持体として非多孔質のアルミ製ブロックを用い、かつポリエチレン微多孔膜を吸 引しな力つた以外実施例 1と同様にして、大気圧下でポリエチレン微多孔膜をプラズ マ処理した。得られたポリエチレン微多孔膜の両面の水接触角を測定したところ、上 面では 36° であったが、下面では 123° であった。プラズマ処理したポリエチレン微 多孔膜の両面について FT-IR測定を行ったところ、上面には主としてカルボン酸基が 導入されて ヽたものの、下面ではポリエチレン以外の化学種を示すピークが確認され ず、下面までプラズマ処理されて 、な 、ことが分力つた。
[0069] 比較例 2
プラズマ発生用ガスを、ヘリウム(流量: 3,000 mlZmin)及び酸素(流量: 10 ml/min )の混合ガスとし、支持体として非多孔質のアルミ製ブロックを用い、かつポリエチレン 微多孔膜を吸引しな力つた以外実施例 1と同様にして、大気圧下でポリエチレン微多 孔膜をプラズマ処理した。得られたポリエチレン微多孔膜の両面の水接触角を測定 したところ、上面では 52° であったが、下面では 127° であった。プラズマ処理したポ リエチレン微多孔膜の両面について FT-IR測定を行ったところ、上面には主として力 ルボン酸基が導入されて ヽたものの、下面ではポリエチレン以外の化学種を示すピ ークが確認されず、下面までプラズマ処理されて 、な 、ことが分力つた。
[0070] 比較例 3
プラズマ発生用ガスをへリウム(流量: 2,500 mlZmin)及びアルゴン(流量: 500 ml/ min)の混合ガスとし、支持体として非多孔質のアルミ製ブロックを用い、かつポリェチ レン微多孔膜を吸引しな力つた以外実施例 1と同様にして、大気圧下でポリエチレン 微多孔膜をプラズマ処理した。得られたポリエチレン微多孔膜の両面の水接触角を 測定したところ、上面では 30° であったが、下面では 129° であった。プラズマ処理し たポリエチレン微多孔膜の両面について FT-IR測定を行ったところ、上面には主とし てカルボン酸基が導入されて ヽたものの、下面ではポリエチレン以外の化学種を示 すピークが確認されず、下面までプラズマ処理されて 、な 、ことが分力つた。
[0071] 施例 3
図 6に示すバッチ式装置を用いて、大気圧下でポリエチレン微多孔膜をプラズマ処 理した。実施例 1と同じ多孔性支持体 (上面を多孔質としたアルミニウム製ブロック。 多孔質部分の空孔率: 50%)の上面をポリウレタン製発泡シートにより全面的に被覆 した支持体 3cを用 、た。多孔性支持体 3cの被覆面上に実施例 1と同じポリエチレン 微多孔膜 1を固定した。多孔性支持体 3cが接地電極 21cとなるように、これを装置内 底部の試料台 41上に設置した。高圧電極 20cとポリエチレン微多孔膜 1の間にへリウ ムを 3,000 mlZminの流量で送給しながら、高圧電極 20cと接地電極 21c (支持体 3c) の間に 13.56 MHzの高周波電圧を 500 Wの出力で印加してプラズマガスを発生させ た。支持体 3cの多孔質部分に接続したァスピレータ 43で吸引しながら(吸引圧力:28 Pa、微多孔膜に通過させたプラズマガス量: 3 LZmin)、試料台 41を 3mmZsecの速 度で移動させた。
[0072] 大気圧プラズマ処理したポリエチレン微多孔膜 1の両面について、水接触角を測定 したところ、上面では 29° であり、下面では 37° であった。さらにプラズマ処理したポ リエチレン微多孔膜 1の両面について FT-IR測定を行ったところ、両面に主として力 ルボン酸基が導入されて ヽることが確認され、下面まで効果的にプラズマ処理されて いることが分力つた。
[0073] 実施例 4
実施例 3で得られた大気圧プラズマ処理したポリエチレン微多孔膜を、直ちに 1容 量%のメタタリレートの水一メタノール [50 : 50 (容量)]溶液に 50°Cの温度で 30分間浸 漬した後、水洗した。乾燥後に得られたポリエチレン微多孔膜の FT-IR測定力もポリメ チルアタリレートがグラフト重合していることを確認した。グラフト重合されたポリエチレ ン微多孔膜の質量増力 計算されるグラフト量は 11質量 %であった。グラフト処理した ポリエチレン微多孔膜の両面について、水接触角を測定したところ、上面では 25° で あり、下面では 28° であった。
[0074] 比較例 4
支持体として非多孔質のアルミ製ブロックを用い、かつポリエチレン微多孔膜を吸 引しな力 た以外実施例 3と同様にして、大気圧下でポリエチレン微多孔膜をプラズ マ処理した。得られたポリエチレン微多孔膜の両面の水接触角を測定したところ、上 面では 31° であったが、下面では 114° であった。プラズマ処理したポリエチレン微 多孔膜の両面について FT-IR測定を行ったところ、上面には主としてカルボン酸基が 導入されて ヽたものの、下面ではポリエチレン以外の化学種を示すピークが確認され ず、下面までプラズマ処理されて 、な 、ことが分力つた。

Claims

請求の範囲
[1] 多孔性素材をプラズマ処理する方法において、不活性ガス又は前記不活性ガス及 び反応性ガスの混合ガスを用いてプラズマを発生させ、(a)得られたプラズマガスを、 前記多孔性素材の単位面積当たり 0.002〜2LZminZcm2の流量で前記多孔性素材 に吹き付ける力、 (b)前記プラズマガスの雰囲気で前記多孔性素材を吸引する力 (c )前記プラズマガスを前記流量で前記多孔性素材に吹き付けながら前記多孔性素 材を吸引し、もって前記多孔性素材にプラズマガスを通過させることを特徴とする方 法。
[2] チャンバ内で多孔性素材をプラズマ処理する装置であって、プラズマガス発生装置と 、プラズマ発生用の不活性ガス又は前記不活性ガス及び反応性ガスの混合ガスを前 記発生装置に送給する管と、前記チャンバに収容された多孔性支持体とを有し、前 記多孔性支持体が前記発生装置力 送給されるプラズマガス流の圧力を受けるよう に配置されており、前記多孔性素材を前記多孔性支持体に接触させた状態で、前記 多孔性素材又は前記多孔性支持体に前記プラズマガス流の圧力を掛けることを特 徴とするプラズマ処理装置。
[3] 請求項 2に記載のプラズマ処理装置において、前記多孔性素材又は前記多孔性支 持体を吸引する手段をさらに有し、前記多孔性素材を前記多孔性支持体に接触さ せた状態で、前記多孔性素材又は前記多孔性支持体を吸引することを特徴とするプ ラズマ処理装置。
[4] チャンバ内で多孔性素材をプラズマ処理する装置であって、プラズマガス発生装置と 、プラズマ発生用の不活性ガス又は前記不活性ガス及び反応性ガスの混合ガスを前 記発生装置に送給する管と、減圧手段とを有し、前記発生装置が高圧電極と、多孔 性の接地電極とを有し、前記多孔性接地電極が多孔質誘電体により表面を被覆した 多孔性金属又は多孔性金属力 なり、かつ前記多孔性素材の支持体を兼ねており、 前記多孔性素材を前記多孔性接地電極に接触させた状態で、前記多孔性接地電 極を前記減圧手段により吸引しながら、前記発生装置でプラズマガスを生じさせるこ とを特徴とするプラズマ処理装置。
[5] チャンバ内で多孔性素材をプラズマ処理する装置であって、プラズマガス発生装置と 、プラズマ発生用の不活性ガス又は前記不活性ガス及び反応性ガスの混合ガスを前 記発生装置に送給する管とを有し、前記発生装置が高圧電極と、多孔性の接地電 極とを有し、前記多孔性接地電極が多孔質誘電体により表面を被覆した多孔性金属 又は多孔性金属からなり、かつ前記多孔性素材の支持体を兼ねており、前記多孔性 素材を前記多孔性接地電極に接触させた状態で、前記多孔性接地電極に前記ブラ ズマ発生用ガスを送給しながら、前記発生装置でプラズマガスを生じさせることを特 徴とするプラズマ処理装置。
チャンバ内で多孔性素材をプラズマ処理する装置であって、第一及び第二のプラズ マガス発生装置と、プラズマ発生用の不活性ガス又は前記不活性ガス及び反応性ガ スの混合ガスを各発生装置に送給する管とを有し、第一の発生装置が高圧電極と、 多孔性の接地電極とを有し、前記多孔性接地電極が多孔質誘電体により表面を被 覆した多孔性金属又は多孔性金属からなり、かつ前記多孔性素材の支持体を兼ね ており、前記多孔性素材を前記多孔性接地電極に接触させた状態で、第一の発生 装置でプラズマガスを発生させるとともに、前記多孔性接地電極に第二の発生装置 カゝらプラズマガスを吹き付けることを特徴とするプラズマ処理装置。
PCT/JP2006/318004 2005-09-12 2006-09-11 多孔性素材をプラズマ処理する方法及び装置 WO2007032321A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/066,447 US8475724B2 (en) 2005-09-12 2006-09-11 Method and apparatus for plasma-treating porous body
EP06797811A EP1933608A4 (en) 2005-09-12 2006-09-11 METHOD AND DEVICE FOR PLASMA PROCESSING OF POROUS MATERIAL
CA002622229A CA2622229A1 (en) 2005-09-12 2006-09-11 Method and apparatus for plasma-treating porous body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005264269A JP4930913B2 (ja) 2005-09-12 2005-09-12 多孔性素材のプラズマ処理方法及び処理装置
JP2005-264269 2005-09-12

Publications (1)

Publication Number Publication Date
WO2007032321A1 true WO2007032321A1 (ja) 2007-03-22

Family

ID=37864914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318004 WO2007032321A1 (ja) 2005-09-12 2006-09-11 多孔性素材をプラズマ処理する方法及び装置

Country Status (9)

Country Link
US (1) US8475724B2 (ja)
EP (1) EP1933608A4 (ja)
JP (1) JP4930913B2 (ja)
KR (1) KR20080044325A (ja)
CN (1) CN101263749A (ja)
CA (1) CA2622229A1 (ja)
RU (1) RU2402374C2 (ja)
TW (1) TWI418258B (ja)
WO (1) WO2007032321A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130104918A1 (en) * 2011-10-27 2013-05-02 Creepservice Sarl Filter and method of making same
US8980190B2 (en) * 2009-11-03 2015-03-17 The University Court Of The University Of Glasgow Plasma generation and use of plasma generation apparatus
JPWO2021020427A1 (ja) * 2019-07-31 2021-02-04
WO2021072502A1 (en) * 2019-10-16 2021-04-22 David R Mckenzie Plasma ion processing of substrates

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222404A (ja) * 2010-04-13 2011-11-04 Akitoshi Okino プラズマ処理方法およびプラズマ処理装置ならびにプラズマ処理された処理対象物
US8723423B2 (en) * 2011-01-25 2014-05-13 Advanced Energy Industries, Inc. Electrostatic remote plasma source
KR20140051239A (ko) * 2011-06-13 2014-04-30 닛토덴코 가부시키가이샤 비수전해질 축전 디바이스용 세퍼레이터의 제조 방법 및 비수전해질 축전 디바이스의 제조 방법
JP6044545B2 (ja) * 2011-10-20 2016-12-14 東レバッテリーセパレータフィルム株式会社 多孔質膜の製造方法及びその多孔質膜、電池用セパレーター及び電池
GB201215098D0 (en) * 2012-08-24 2012-10-10 Fujifilm Mfg Europe Bv Method of treating a porous substrate and manufacture of a membrane
US11326255B2 (en) * 2013-02-07 2022-05-10 Uchicago Argonne, Llc ALD reactor for coating porous substrates
JP6020483B2 (ja) * 2014-02-14 2016-11-02 トヨタ自動車株式会社 表面処理装置と表面処理方法
EP2937890B1 (en) * 2014-04-22 2020-06-03 Europlasma nv Plasma coating apparatus with a plasma diffuser and method preventing discolouration of a substrate
TWI701292B (zh) * 2014-06-20 2020-08-11 日商東京應化工業股份有限公司 醯亞胺系樹脂膜製造系統及醯亞胺系樹脂膜製造方法
TWI673154B (zh) * 2014-06-20 2019-10-01 日商東京應化工業股份有限公司 多孔性之醯亞胺系樹脂膜製造系統、分隔膜及多孔性之醯亞胺系樹脂膜製造方法
JP2016083658A (ja) 2014-10-24 2016-05-19 パナソニックIpマネジメント株式会社 プラズマ生成装置
WO2016158054A1 (ja) 2015-03-30 2016-10-06 東京エレクトロン株式会社 処理装置および処理方法、ならびにガスクラスター発生装置および発生方法
JP6545053B2 (ja) * 2015-03-30 2019-07-17 東京エレクトロン株式会社 処理装置および処理方法、ならびにガスクラスター発生装置および発生方法
JP6779300B2 (ja) * 2016-08-22 2020-11-04 株式会社Fuji プラズマ照射装置、および、プラズマ照射方法
JP6988522B2 (ja) * 2018-01-30 2022-01-05 トヨタ自動車株式会社 光照射装置
KR102243998B1 (ko) * 2019-06-06 2021-04-23 박봄이 유수 분리 기재의 표면 처리 장치
JP7334259B2 (ja) * 2019-11-01 2023-08-28 東京エレクトロン株式会社 基板洗浄装置および基板洗浄方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02132327A (ja) 1988-11-14 1990-05-21 Toshiba Corp 高温用超音波センサー
JPH02232373A (ja) * 1989-03-06 1990-09-14 Zenhachi Okumi 薄膜の製造方法
US5403453A (en) 1993-05-28 1995-04-04 The University Of Tennessee Research Corporation Method and apparatus for glow discharge plasma treatment of polymer materials at atmospheric pressure
US5543017A (en) 1992-12-24 1996-08-06 E.C. Chemical Co., Ltd. Atmospheric pressure glow discharge plasma treatment method
JPH08337767A (ja) * 1995-04-12 1996-12-24 Sanyo Chem Ind Ltd 水性接着剤組成物
JPH0931226A (ja) 1995-07-20 1997-02-04 Tonen Chem Corp 親水性ポリエチレン微多孔膜、その製造方法及びそれを用いた電池用セパレータ
JPH11128634A (ja) 1997-11-04 1999-05-18 Nippon Millipore Kk 不織布フィルタおよびその製造方法並びに不織布フィルタカートリッジ
US6399159B1 (en) 1999-07-07 2002-06-04 Eastman Kodak Company High-efficiency plasma treatment of polyolefins
JP2003007497A (ja) 2001-06-19 2003-01-10 Pearl Kogyo Kk 大気圧プラズマ処理装置
JP2003142415A (ja) * 2001-11-02 2003-05-16 Sharp Corp プラズマ処理装置
JP2005203166A (ja) * 2004-01-14 2005-07-28 Pioneer Electronic Corp プラズマ処理方法およびプラズマ処理装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5254688A (en) * 1975-10-30 1977-05-04 Sumitomo Chem Co Ltd Method of producing semipermeable memebrane
DE3337763A1 (de) * 1983-10-18 1985-05-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München Verfahren und vorrichtung zur oberflaechenmodifizierung der poreninnenwaende von membranen
AU679237B2 (en) * 1993-05-28 1997-06-26 University Of Tennessee Research Corporation, The Method and apparatus for glow discharge plasma treatment of polymer materials at atmospheric pressure
DE4432919C2 (de) 1994-07-22 1997-10-23 Fraunhofer Ges Forschung Verfahren und Vorrichtung zur Plasmamodifizierung von flächigen porösen Gegenständen
JP3455610B2 (ja) * 1995-06-09 2003-10-14 森 勇蔵 多孔体の改質処理方法およびその装置
JP3455611B2 (ja) * 1995-06-09 2003-10-14 森 勇蔵 多孔体の改質処理方法およびその装置
TW429280B (en) * 1998-06-05 2001-04-11 Ind Tech Res Inst A method of surface treatment and modification on fibrous products and making the same
JP2000208124A (ja) * 1999-01-11 2000-07-28 Sekisui Chem Co Ltd 2次電池用セパレ―タ及びその製造方法
JP2003518430A (ja) 1999-12-15 2003-06-10 スティーヴンズ・インスティテュート・オブ・テクノロジー セグメント化電極キャピラリー放電非熱プラズマ装置、及び化学反応促進方法
US6955794B2 (en) * 1999-12-15 2005-10-18 Plasmasol Corporation Slot discharge non-thermal plasma apparatus and process for promoting chemical reaction
AU2002354775A1 (en) * 2001-07-02 2003-01-21 Plasmasol Corporation A novel electrode for use with atmospheric pressure plasma emitter apparatus and method for using the same
NZ543027A (en) * 2003-05-05 2007-06-29 Commw Scient Ind Res Org Plasma treatment apparatus and method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02132327A (ja) 1988-11-14 1990-05-21 Toshiba Corp 高温用超音波センサー
JPH02232373A (ja) * 1989-03-06 1990-09-14 Zenhachi Okumi 薄膜の製造方法
US5543017A (en) 1992-12-24 1996-08-06 E.C. Chemical Co., Ltd. Atmospheric pressure glow discharge plasma treatment method
US5403453A (en) 1993-05-28 1995-04-04 The University Of Tennessee Research Corporation Method and apparatus for glow discharge plasma treatment of polymer materials at atmospheric pressure
JPH08337767A (ja) * 1995-04-12 1996-12-24 Sanyo Chem Ind Ltd 水性接着剤組成物
JPH0931226A (ja) 1995-07-20 1997-02-04 Tonen Chem Corp 親水性ポリエチレン微多孔膜、その製造方法及びそれを用いた電池用セパレータ
JPH11128634A (ja) 1997-11-04 1999-05-18 Nippon Millipore Kk 不織布フィルタおよびその製造方法並びに不織布フィルタカートリッジ
US6399159B1 (en) 1999-07-07 2002-06-04 Eastman Kodak Company High-efficiency plasma treatment of polyolefins
JP2003007497A (ja) 2001-06-19 2003-01-10 Pearl Kogyo Kk 大気圧プラズマ処理装置
JP2003142415A (ja) * 2001-11-02 2003-05-16 Sharp Corp プラズマ処理装置
JP2005203166A (ja) * 2004-01-14 2005-07-28 Pioneer Electronic Corp プラズマ処理方法およびプラズマ処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1933608A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8980190B2 (en) * 2009-11-03 2015-03-17 The University Court Of The University Of Glasgow Plasma generation and use of plasma generation apparatus
US20130104918A1 (en) * 2011-10-27 2013-05-02 Creepservice Sarl Filter and method of making same
JPWO2021020427A1 (ja) * 2019-07-31 2021-02-04
JP7203979B2 (ja) 2019-07-31 2023-01-13 株式会社ユポ・コーポレーション エネルギー変換フィルム、エネルギー変換素子及びエネルギー変換フィルムの製造方法
WO2021072502A1 (en) * 2019-10-16 2021-04-22 David R Mckenzie Plasma ion processing of substrates

Also Published As

Publication number Publication date
RU2008114322A (ru) 2009-10-20
US20090277776A1 (en) 2009-11-12
US8475724B2 (en) 2013-07-02
TW200718291A (en) 2007-05-01
TWI418258B (zh) 2013-12-01
CN101263749A (zh) 2008-09-10
JP2007080588A (ja) 2007-03-29
EP1933608A4 (en) 2011-02-16
EP1933608A1 (en) 2008-06-18
JP4930913B2 (ja) 2012-05-16
CA2622229A1 (en) 2007-03-22
KR20080044325A (ko) 2008-05-20
RU2402374C2 (ru) 2010-10-27

Similar Documents

Publication Publication Date Title
WO2007032321A1 (ja) 多孔性素材をプラズマ処理する方法及び装置
EP0295752B1 (en) Apparatus suitable for plasma surface treating and process for preparing membrane layers
US5069926A (en) Method for modifying the surface of a polymer article
US20140208949A1 (en) Gas separation membrane, method of producing the same, and gas separating membrane module using the same
WO2003051498A1 (en) Plasma treatment of porous materials
JP2004509432A (ja) グロー放電プラズマ処理装置及びグロー放電プラズマ処理方法
JPH062149A (ja) プラズマ処理方法およびその装置
US5215636A (en) Pulsed discharge surface treatment apparatus and process
JP3455611B2 (ja) 多孔体の改質処理方法およびその装置
JP3593168B2 (ja) シートの連続表面処理方法及び装置
JP3455610B2 (ja) 多孔体の改質処理方法およびその装置
JP4341149B2 (ja) 表面処理方法
US8778080B2 (en) Apparatus for double-plasma graft polymerization at atmospheric pressure
JPS62235339A (ja) プラスチツク表面改質方法
JP3551319B2 (ja) 多孔質材料表面を親水性化する乾式表面処理方法
TWI761906B (zh) 多孔質材料之改質裝置、改質方法
JPH1053657A (ja) 非導電性多孔質体の総表面の処理方法、総表面の処理装置、及び新規の非導電性多孔質改質体
KR100217538B1 (ko) 플라즈마 이온 주입에 의한 고분자 소재의 표면 개질 방법 및 그 장치
KR100442309B1 (ko) 필름상 중합체의 연속 표면처리장치 및 연속 표면처리방법
JP6170559B2 (ja) 多孔質基材の処理方法および膜の製造
JP2007520569A (ja) 立体状重合体の連続表面処理装置及び連続表面処理方法
JP2009195786A (ja) 多孔性素材の紫外線処理方法及び処置装置
JP2004244759A (ja) 材料表面の親水化処理方法
JP2003022900A (ja) 常圧パルスプラズマ処理方法
JP2005089888A (ja) スルホン化処理方法及びその方法を実施するスルホン化処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680033323.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2622229

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12066447

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006797811

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2290/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020087008063

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2008114322

Country of ref document: RU