WO2007013464A1 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
WO2007013464A1
WO2007013464A1 PCT/JP2006/314687 JP2006314687W WO2007013464A1 WO 2007013464 A1 WO2007013464 A1 WO 2007013464A1 JP 2006314687 W JP2006314687 W JP 2006314687W WO 2007013464 A1 WO2007013464 A1 WO 2007013464A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
semiconductor device
manufacturing
processing chamber
silicon
Prior art date
Application number
PCT/JP2006/314687
Other languages
English (en)
French (fr)
Inventor
Yasuhiro Inokuchi
Atsushi Moriya
Katsuhiko Yamamoto
Yoshiaki Hashiba
Takashi Yokogawa
Original Assignee
Hitachi Kokusai Electric Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc. filed Critical Hitachi Kokusai Electric Inc.
Priority to US11/921,562 priority Critical patent/US8466049B2/en
Priority to JP2007528480A priority patent/JP4635051B2/ja
Publication of WO2007013464A1 publication Critical patent/WO2007013464A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device for selective silicon epitaxial growth on a source Z drain in, for example, a MOSFET (Metax Oxide-Semiconductor Field Effect Transistor).
  • MOSFET Metal Oxide-Semiconductor Field Effect Transistor
  • a main object of the present invention is to improve the yield by improving the selectivity in the selective growth process, expanding the process margin, generating a high-quality selective growth film, and improving the yield. It is in providing the manufacturing method of.
  • a silicon substrate having a silicon nitride film or a silicon oxide film on at least a part of the surface and having the silicon surface exposed is inserted into the processing chamber,
  • a method of manufacturing a semiconductor device is provided in which the second step precedes the first step and the alternating repetition is started.
  • FIG. 1 is a schematic perspective view for explaining a low pressure CVD apparatus according to a preferred embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view of a schematic structure for explaining a low pressure CVD apparatus in a preferred embodiment of the present invention.
  • FIG. 3 is a schematic structural longitudinal sectional view for explaining a processing furnace of a low pressure CVD apparatus in a preferred embodiment of the present invention.
  • FIG. 4 is a diagram for explaining an example of a process sequence in a preferred embodiment of the present invention.
  • a silicon substrate having a silicon nitride film or a silicon oxide film on at least a part of the surface and having the silicon surface exposed is inserted into the processing chamber,
  • a method of manufacturing a semiconductor device is provided in which the second step precedes the first step and the alternating repetition is started.
  • the silane-based gas is a monosilane gas or a disilane gas.
  • the etching gas power is preferably chlorine gas, fluorine gas, or salty hydrogen gas.
  • the method further includes a step of introducing a hydrogen gas after each of the first step and the second step is performed, and the chlorine or fluorine atoms attached to the silicon surface in the hydrogen gas introduction step. Remove.
  • chlorine gas, fluorine gas, or salty hydrogen gas hydrogen gas or inert gas such as nitrogen gas, helium gas, or argon gas is introduced at the same time.
  • hydrogen gas or inert gas such as nitrogen gas, helium gas, or argon gas
  • an etch introduced in a second step that is executed first among the second steps that are executed a plurality of times.
  • the introduction time of the etching gas is longer than the introduction time of the etching gas in the second step executed thereafter.
  • an etch introduced in the second step that is executed first among the second steps that are executed a plurality of times.
  • the flow rate of the etching gas is higher than the flow rate of the etching gas introduced in the second step executed thereafter.
  • FIG. 1 is a schematic perspective view for explaining a low pressure CVD apparatus in a preferred embodiment of the present invention
  • FIG. 2 is a schematic view for explaining a low pressure CVD apparatus in a preferred embodiment of the present invention
  • FIG. 3 is a structural longitudinal sectional view
  • FIG. 3 is a schematic structural longitudinal sectional view for explaining a processing furnace of a low pressure CVD apparatus in a preferred embodiment of the present invention.
  • a cassette stage as a holder transfer member that transfers a cassette 100 as a substrate storage container to and from an external transfer device (not shown).
  • 105 is provided, and a cassette elevator 115 as lifting means is provided on the rear side of the cassette stage 105, and a cassette transfer machine 114 as transport means is attached to the cassette elevator 115.
  • a cassette shelf 109 as a means for placing the cassette 100 is provided, and the cassette shelf 109 is provided on the slide stage 122 so as to be able to traverse.
  • a buffer cassette shelf 110 as a means for placing the cassette 100 is provided above the cassette shelf.
  • a clean unit 118 is provided on the rear side of the notch cassette shelf 110 so as to distribute clean air through the inside of the casing 101.
  • a processing furnace 202 is provided above the rear part of the casing 101.
  • a processing chamber 201 for performing predetermined processing on the wafer 200 is formed.
  • a load lock chamber 102 as an airtight chamber is connected to a lower side of the processing furnace 202 by a gate valve 244 as a gate valve, and a partition means is provided on the front surface of the load lock chamber 102 at a position facing the cassette shelf 109. All load lock doors 123 are provided.
  • a boat 217 as a substrate holding means for holding wafers 200 as substrates in a multi-stage in a horizontal posture
  • a boat elevator as a lifting means for moving up and down between the processing chamber 201 and the load lock chamber 102.
  • a transfer elevator (not shown) is provided between the load lock chamber 102 and the cassette shelf 109, and a wafer transfer machine 112 as a transfer means is attached to the transfer elevator.
  • the transfer operation of the cassette transfer machine 114 and the like is controlled by the transfer control means 124.
  • a lower substrate 145 is provided on the outer surface of the load lock chamber 102 as an airtight chamber, an upper substrate 147 is provided on the upper end of a guide shaft 146 erected on the lower substrate 145, and between the lower substrate 145 and the upper substrate 147 A ball screw 144 is provided so as to be rotatable. The ball screw 144 is rotated by a lift motor 148 provided on the upper substrate 147.
  • An elevating base 149 is fitted to the guide shaft 146 so as to be movable up and down, and the elevating base 149 is screwed into a ball screw 144.
  • a hollow elevating shaft 150 is vertically suspended from the elevating platform 149, and the support portions of the elevating platform 149 and the elevating shaft 150 are airtight.
  • the lift shaft 150 passes through the top plate 151 of the load lock chamber 102 and reaches near the bottom surface of the load lock chamber 102.
  • the penetrating part of the top plate 151 does not come into contact with the lifting movement of the lifting shaft 150, so that there is a sufficient margin, and the protruding part of the lifting shaft 150 is provided between the load lock chamber 102 and the lifting platform 149.
  • a covering wall for example, bellows 119
  • the bellows 119 has a sufficient amount of expansion and contraction to accommodate the amount of lifting of the lifting platform 149.
  • the bellows 119 is not large enough to make contact with the expansion and contraction.
  • An elevating board 152 is fixed horizontally to the lower end of the elevating shaft 150.
  • a drive unit cover 153 is attached to the lower surface of the elevating board 152, and a drive unit storage case 154 is configured.
  • the joint between the elevating board 152 and the drive unit cover 153 is hermetically sealed by a seal member such as an O-ring. Therefore, the inside of the drive unit storage case 154 is separated from the atmosphere in the load lock chamber 102.
  • a rotating mechanism 156 of the boat 217 is provided on the lower surface of the elevating board 152, and the rotating mechanism 1
  • the periphery of 52 is cooled by the cooling means 157.
  • a power supply cable 158 is led from the upper end of the lifting shaft 150 through the hollow portion of the lifting shaft 150 to the rotating mechanism 156 and connected thereto.
  • a cooling water passage 159 is formed in the cooling means 157 and the seal cap 219, and a cooling water pipe 160 for supplying cooling water is connected to the cooling water passage 159, and the cooling water pipe 160 is connected to the upper end of the lifting shaft 150. From there, it passes through the hollow part of the lifting shaft 150.
  • a seal cap 219 is airtightly provided on the upper surface of the elevating board 152.
  • the drive unit storage case 154 is raised via the lifting platform 149 and the lifting shaft 150.
  • the elevating motor 148 is driven, the boat 217 is lowered, and the wafer can be unloaded.
  • the processing furnace 202 includes a reaction tube composed of an outer tube 205, a gas exhaust tube 231, a gas supply tube 232, a gas supply tube 234, Mayu Honoré 209, Mayu Honoré, 2009.
  • a seal cap 219 that covers the lower end (furnace port 161) and seals the processing chamber 201; a boat 217 that is provided on the seal cap 219 and is mounted in multiple stages in the vertical direction;
  • a rotating mechanism 156 for rotating the boat 217, a heater 207 for heating the wafer 200 having a heater element wire and a heat insulating member (not shown), and the like are provided.
  • the processing chamber 201 is constituted by the outer tube 205, the manifold 209, the seal cap 219, and the like.
  • the processing gas is supplied from the first gas supply source 180, the second gas supply source 181, and the third gas supply source 182, and MFC (Mass flow controller) 183, MFC 184 and MFC 185, the flow rates of which are respectively controlled, and then introduced from the upper part of processing chamber 201 through one gas supply pipe 232 through valves 177, 178 and 179, respectively.
  • the gas supply pipe 232 is a 9 extends through the water tube 205 to the upper part of the processing chamber 201.
  • a valve 176 is provided in the gas supply pipe 232.
  • a cleaning gas supply pipe 243 is also provided so as to penetrate the marker 209. Tally Jung gas is supplied from a fourth gas supply source 187, and its flow rate is controlled by MFC 188 as a gas flow rate control means, and then introduced into cleaning gas supply pipe 243 processing chamber 201 via valves 186 and 235. Is done.
  • a gas exhaust pipe 231 is provided in communication with the hold 209.
  • the gas exhaust pipe 231 is provided with an exhaust valve 175, a vacuum pump 246 as an exhaust system, and an abatement device 248 in this order toward the downstream side.
  • the atmosphere in the processing chamber 201 is exhausted from the processing chamber 201 by a vacuum pump 246 connected to a gas exhaust pipe 231.
  • An inert gas supply system 251 is provided in communication with the gas exhaust pipe 231 between the exhaust nozzle 175 and the vacuum pump 246.
  • the inert gas 252 heated from the inert gas supply system 251 is supplied to the gas exhaust pipe 231 between the exhaust valve 175 and the vacuum pump 246.
  • An inert gas supply system 253 is provided in communication with a gas exhaust pipe 231 between the vacuum pump 246 and the abatement apparatus.
  • the inert gas 254 heated from the inert gas supply system 253 is supplied to the gas exhaust pipe 231 between the vacuum pump 246 and the abatement apparatus.
  • heater 207 In addition, heater 207, rotation mechanism 156, MFC183, 184, 185, 187, Nonreb 175, 176, 177, 178, 179, 235, 263, lift motor 148, load lock door 123, gate nore 244
  • the vacuum pump 246, the detoxification device 248, the inert gas supply system 251, 253, etc. are controlled by the control device 162, and are moved up and down between the processing chamber 201 of the boat 217 loaded with the wafer 200 and the low-mouth chamber 102.
  • the semiconductor wafer 200 in the low pressure CVD apparatus which is the substrate processing apparatus of the present embodiment 200
  • an epitaxial Si film is selectively formed on a silicon exposed surface of a semiconductor silicon wafer using monosilane gas, chlorine gas, and hydrogen gas.
  • the cassette 100 which has also been transported with an external conveyance device force (not shown), is placed on the cassette stage 105, the orientation of the cassette 100 is changed by 90 ° by the cassette stage 105, and the cassette elevator 115 is moved up and down, traversed, and The cassette transfer device 114 is transported to the cassette shelf 109 or the koffa cassette shelf 110 in cooperation with the advance / retreat operation.
  • the wafer 200 is transferred from the cassette shelf 109 to the boat 217 by the wafer transfer device 112.
  • the boat 217 In preparation for transferring the wafer 200 to the boat 217, the boat 217 is lowered by the boat elevator 121, the processing chamber 201 is closed by the gate valve 244, and a purge gas of nitrogen gas from the purge nozzle 234 is placed inside the load lock chamber 102. Is introduced. After the load lock chamber 102 is restored to atmospheric pressure, the load lock door 123 is opened.
  • the horizontal slide mechanism 122 moves the cassette shelf 109 horizontally and positions the cassette 100 to be transferred so as to face the wafer transfer device 112.
  • the wafer transfer device 112 transfers the wafer 200 from the cassette 100 to the boat 217 by cooperation of the raising / lowering operation and the rotation operation. Ueno, 200 is transferred to several cassettes 100, and after the transfer of a predetermined number of wafers to boat 217 is completed, the load lock door 123 is closed and the load lock chamber 102 is exhausted. Is evacuated through.
  • the gate valve 244 is opened and the elevator motor 148 is driven.
  • the boat 217 is inserted into the processing chamber 201 by the boat elevator 121, and the processing chamber 201 is closed by closing the furnace rod 161 that is the opening of the processing furnace 202 with the seal cap 219.
  • the temperature in the processing chamber 201 is maintained at 200 ° C.
  • the load lock chamber 102 is maintained at substantially atmospheric pressure by nitrogen gas until the processing of the wafer 200 is completed and the boat 217 descends again to the load lock chamber 102.
  • the exhaust valve 175 is opened to evacuate the atmosphere in the processing chamber 201, and the pressure in the processing chamber 201 is reduced to about 0.1 lPa. Then, the control device 162 controls the heater 207 to perform processing. The temperature in the chamber 201 and thus the temperature of the wafer 200 is maintained at 750 ° C. Thereafter, the rotation mechanism 156 is driven to rotate the boat 217 at a predetermined rotation speed.
  • the first gas supply source 180, the second gas supply source 181, and the third gas supply source 182 include monosilane gas, chlorine gas (or salty hydrogen gas), and hydrogen gas as processing gases. Each flow rate is controlled by MFC183, MFC184, and MFC185.
  • the valves 177, 178, and 179 for opening and closing the gas supply pipe are opened, the valve 176 is opened, and the processing gas is supplied to the processing chamber 201 through the gas supply pipe 232 by the method described later, while the gas exhaust pipe 231 is used.
  • the pressure in the processing chamber 201 is kept at lOOPa, and an epitaxial Si film is formed on the silicon exposed surface of the wafer 200 by low pressure CVD.
  • N gas which is inert gas 252 heated to 100 to 200 ° C. from the inert gas supply system 251, is gas between the exhaust valve 175 and the vacuum pump 246.
  • the gas exhaust pipe 231 between the vacuum pump 246 and the detoxification device is supplied with the inert gas 254 supplied to the exhaust pipe 231 and heated to 100 to 200 ° C from the inert gas supply system 253.
  • the inside of the processing chamber 201 is replaced with nitrogen gas as a purge gas. That is, after film formation, (1) the inside of the processing chamber 201 is depressurized to about 0.1 lPa through the gas exhaust pipe 231 and then nitrogen gas (N) is supplied with a gas supply (not shown).
  • the inside of the load lock chamber 102 is evacuated to below lOTorr through the exhaust pipe, Thereafter, nitrogen gas is introduced into the processing chamber 201 from the purge nozzle 234, and the inside of the load lock chamber 102 is returned to atmospheric pressure with nitrogen gas.
  • the load lock door 123 is opened, and the processed wafer 200 is transferred from the boat 217 to the cassette stage 105 through the cassette shelf 109 by the reverse procedure of the above-described operation, and is transferred by an external transfer device (not shown). It is carried out.
  • the boat 217 is inserted into the processing chamber 201 by the boat elevator 121 without the wafer 200 mounted, and the seal cap 219 is inserted.
  • the processing chamber 201 is closed by closing the furnace rod 161 that is the opening of the processing furnace 202.
  • the exhaust valve 175 is opened, the atmosphere in the processing chamber 201 is exhausted, and the inside of the processing chamber 201 is decompressed. Then, the control device 162 controls the heater 207 to maintain the temperature in the processing chamber 201 at 400 ° C. Thereafter, the rotation mechanism 156 is driven to rotate the boat 217 at a predetermined rotation speed.
  • the fourth gas supply source 187 is filled with C1F as a cleaning gas.
  • the flow rate is controlled by MFC188.
  • the valve 186 is opened, the valve 235 is opened, and C1F as a tail gas is supplied to the processing chamber 201 through the gas supply pipe 243.
  • the cleaning is performed while the pressure in the processing chamber 201 is maintained at a predetermined pressure by exhausting through the gas exhaust pipe 231.
  • the inert gas 2 52 heated to 50 to 150 ° C. from the inert gas supply system 251 is supplied to the gas exhaust pipe 231 between the exhaust valve 175 and the vacuum pump 246.
  • the inert gas 254 heated to 50 to 150 ° C. is supplied from the inert gas supply system 253 to the gas exhaust pipe 231 between the vacuum pump 246 and the abatement apparatus.
  • the selective growth of the silicon epitaxial film on the wafer 200 is performed as follows.
  • a silicon substrate having a silicon nitride film or a silicon oxide film on at least a part of its surface and having a silicon surface exposed is inserted into the processing chamber 201, and at least in the processing chamber 201.
  • the second step of introducing more hydrogen gas is repeated several times in order to selectively grow an epitaxial film on the silicon surface. In this case, before repeating the first step and the second step multiple times in order, first, the second step is performed to improve the selectivity.
  • the first step is a film growth process
  • the second step is an etching process for removing silicon nuclei and silicon film grown on an insulating film such as a silicon nitride film.
  • the force that delays the growth start of the silicon film than on the silicon film is called the incubation time, and the film growth time in the first step is the incubation time. Do not exceed the setting.
  • the substrate is pretreated to bring the silicon surface into a highly clean state.
  • the film growth amount on both the insulating film and the silicon film is compared with the film growth amount in the repetition of the first step and the second step. And big.
  • the second step is performed to make a state in which chlorine or fluorine atoms are attached to the substrate surface, and the selection is performed. Improves sex.
  • the etching gas is supplied under the same conditions for the second step including the initial supply. Taking the case of using chlorine gas as an etching gas, for example, if there are few C1 terminations, selective breakage occurs, and if there are too many C1 terminations, the growth rate decreases, which is preferable.
  • the conditions of the etching gas supply process in the first second step may be the following i) or ii).
  • First supply of the etching gas in the second step should be performed for at least the etching gas supply time in the second and subsequent second steps. This is because the initial growth process in the first step after flowing an excessive etching gas slows the growth on the Si surface, but does not cause selective failure.
  • FIG. 4 shows an example of a process sequence in the present embodiment.
  • the wafer 200 is loaded into the processing chamber 201 (step 101).
  • the temperature is set so that the wafer 200 has a predetermined temperature (step 102).
  • chlorine gas is introduced into the processing chamber 201 in the second step (step 103).
  • monosilane gas is introduced into the processing chamber 201 in the first step (step 104).
  • chlorine gas is introduced into the processing chamber 201 in the second step (step 105).
  • step 104 to step 106 are repeated a predetermined number of times to perform selective growth of silicon.
  • the wafer 200 is unloaded from the processing chamber 201 (step 107).
  • the first step is performed by performing the etching treatment (step 103) in the second step.
  • Step 104 there was no longer a selection violation and the process margin was expanded.
  • a purge process using hydrogen gas may be performed before performing (Step 104).
  • the second step (step 10) is performed.
  • a purge process with hydrogen gas may be performed.
  • the growth conditions in the present example are as follows.
  • step 102 the growth temperature is set to 500 to 700 ° C.
  • SiH4 flow rate l to 1000 sccm (preferably l to 300 sccm;), H2 flow rate: 500 to: LOOOOsccm, pressure: 1 to: LOOOPa, time: 30
  • C12 flow rate 1 to: LOOOsccm (preferably 1 to 500 sccm)
  • H2 flow rate 500 to: L0000sccm
  • pressure 1 to: L000pa
  • time 30 to 180 s te
  • H2 flow rate 10 to 50000 sccm (preferably, 500 to: L0000 sccm), time: 60 to 300 sec, pressure: 1 to: LOOOpa.
  • the purge process (which is also performed with evacuation) may be N2 instead of H2.
  • H2 is used as a base in Step 104 and Step 105, it is more preferable to use H2.
  • Chlorine gas irradiation in step 105 is performed under the same conditions as in step 105, or at a C12 flow rate of l to 1000 sccm and an irradiation time of 30 to 600 seconds. Considering the cleanliness of the interface, a longer time is better, for example, 300 seconds is preferable.
  • the present invention can be particularly suitably used for a method of manufacturing a semiconductor device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 表面の少なくとも一部にシリコン窒化膜またはシリコン酸化膜を有し、かつシリコン表面が露出したシリコン基板を処理室内に挿入し、処理室内に少なくともシラン系のガスを導入する第1ステップと、少なくともエッチングガスを導入する第2ステップとを交互に複数回繰り返して、シリコン表面に選択的にエピタキシャル膜を成長させる半導体装置の製造方法であって、第1ステップより第2ステップが先行して、交互の繰り返し処理を開始する。

Description

明 細 書
半導体装置の製造方法
技術分野
[0001] 本発明は、半導体装置の製造方法に関し、特に、例えば MOSFET (Meta卜 Oxide-S emiconductor Field Effect Transistor)におけるソース Zドレイン上へ選択シリコンェ ピタキシャル成長するための半導体装置の製造方法に関する。
背景技術
[0002] MOSFETの高集積ィ匕および高性能化に伴 、、半導体装置 (半導体デバイス)特性 の向上と微細化の両立が要求されている。この両立を実現するために、 MOSFETの ソース/ドレインの課題として、コンタクト抵抗の低抵抗ィ匕などが求められている。これ らの問題を解決するための方法の一つとして、ソース/ドレイン上にシリコンェピタキ シャル膜を選択成長させる方法がある(例えば、 日本国特許公開公報 2005— 1835 14号参照)。
[0003] し力しながら、シリコン窒化膜等の絶縁膜上にもシリコン膜が成長してしまい、選択 破れ現象を起こす問題があり、プロセス制御が難しいという問題があった。
[0004] 従って、本発明の主な目的は、選択成長プロセスにおいて選択性を向上させプロ セスマージンを拡大し、高品質な選択成長膜を生成して、歩留まりの向上を図ること ができる半導体装置の製造方法を提供することにある。
発明の開示
[0005] 本発明の一態様によれば、
表面の少なくとも一部にシリコン窒化膜またはシリコン酸ィ匕膜を有し、かつシリコン 表面が露出したシリコン基板を処理室内に挿入し、
前記処理室内に少なくともシラン系のガスを導入する第 1ステップと、少なくともエツ チングガスを導入する第 2ステップとを交互に複数回繰り返して、前記シリコン表面に 選択的にェピタキシャル膜を成長させる半導体装置の製造方法であって、
前記第 1ステップより第 2ステップが先行して、前記交互の繰り返しが開始される半 導体装置の製造方法が提供される。 図面の簡単な説明
[0006] [図 1]本発明の好ま ヽ実施例における減圧 CVD装置を説明するための概略斜視 図である。
[図 2]本発明の好ましい実施例における減圧 CVD装置を説明するための概略構造 縦断面図である。
[図 3]本発明の好ましい実施例における減圧 CVD装置の処理炉を説明するための 概略構造縦断面図である。
[図 4]本発明の好ましい実施例におけるプロセスシーケンス例を説明するための図で ある。
発明を実施するための好ましい形態
[0007] 本発明の好ましい実施形態によれば、
表面の少なくとも一部にシリコン窒化膜またはシリコン酸ィ匕膜を有し、かつシリコン 表面が露出したシリコン基板を処理室内に挿入し、
前記処理室内に少なくともシラン系のガスを導入する第 1ステップと、少なくともエツ チングガスを導入する第 2ステップとを交互に複数回繰り返して、前記シリコン表面に 選択的にェピタキシャル膜を成長させる半導体装置の製造方法であって、
前記第 1ステップより第 2ステップが先行して、前記交互の繰り返しが開始される半 導体装置の製造方法が提供される。
[0008] 好ましくは、前記シラン系のガスは、モノシランガスまたはジシランガスである。
[0009] また、好ましくは、前記エッチングガス力 塩素ガスまたはフッ素ガスまたは塩ィ匕水 素ガスである。
[0010] また、好ましくは、前記第 1ステップと第 2ステップのそれぞれが実行された後に水 素ガスを導入するステップを更に備え、該水素ガス導入ステップにてシリコン表面に 付着した塩素もしくはフッ素原子を取り除く。
[0011] また、好ましくは、塩素ガスまたはフッ素ガスまたは塩ィ匕水素ガスを導入する時に、 水素ガスまたは、窒素ガス、ヘリウムガス、アルゴンガスなどの不活性ガスを同時に導 入する。
[0012] また、好ましくは、前記第 1ステップと第 2ステップとを交互に複数回繰り返す際、複 数回実行される前記第 2ステップのそれぞれは同じ条件で実行される。
[0013] また、好ましくは、前記第 1ステップと第 2ステップとを交互に複数回繰り返す際、複 数回実行される第 2ステップの内、最初に実行される第 2ステップで導入されるエッチ ングガスの導入時間は、それ以後に実行される第 2ステップでのエッチングガスの導 入時間よりも長い。
[0014] また、好ましくは、前記第 1ステップと第 2ステップとを交互に複数回繰り返す際、複 数回実行される第 2ステップの内、最初に実行される第 2ステップで導入されるエッチ ングガスの流量は、それ以後に実行される第 2ステップで導入されるエッチングガス の流量よりも多い。
[0015] 本発明の好ましい実施例を図面を参照してさらに詳細に説明する。
[0016] 図 1は、本発明の好ましい実施例における減圧 CVD装置を説明するための概略斜 視図であり、図 2は、本発明の好ましい実施例における減圧 CVD装置を説明するた めの概略構造縦断面図であり、図 3は、本発明の好ましい実施例における減圧 CVD 装置の処理炉を説明するための概略構造縦断面図である。
[0017] 図 1に示すように、筐体 101内部の前面側には、図示しない外部搬送装置との間で 基板収納容器としてのカセット 100の授受を行う保持具授受部材としてのカセットステ ージ 105が設けられ、カセットステージ 105の後側には昇降手段としてのカセットエレ ベータ 115が設けられ、カセットエレベータ 115には搬送手段としてのカセット移載機 114が取りつけられている。カセットエレベータ 115の後側には、カセット 100の載置 手段としてのカセット棚 109が設けられ、カセット棚 109はスライドステージ 122上に 横行可能に設けられている。又、カセット棚の上方にはカセット 100の載置手段として のバッファカセット棚 110が設けられている。更に、ノ ッファカセット棚 110の後側には クリーンユニット 118が設けられ、クリーンエアを筐体 101の内部を流通させるように 構成されている。
[0018] 筐体 101の後部上方には、処理炉 202が設けられている。この処理炉 202内には 、ウェハ 200に所定の処理を行う処理室 201が形成されている。処理炉 202の下側 には、気密室としてのロードロック室 102が仕切弁としてのゲートバルブ 244により連 接され、ロードロック室 102の前面にはカセット棚 109と対向する位置に仕切手段とし てのロードロックドア 123が設けられている。ロードロック室 102内には、基板としての ウェハ 200を水平姿勢で多段に保持する基板保持手段としてのボート 217を、処理 室 201とロードロック室 102との間で昇降させる昇降手段としてのボートエレベータ 1 21が内設され、ボートエレベータ 121には蓋体としてのシールキャップ 219が取りつ けられボート 217を垂直に支持している。ロードロック室 102とカセット棚 109との間に は図示しな 、昇降手段としての移載エレベータが設けられ、移載エレベータには搬 送手段としてのウェハ移載機 112が取りつけられて 、る。
[0019] カセット移載機 114等の搬送動作は、搬送制御手段 124により制御される。
[0020] 次に、本実施例の基板処理装置である減圧 CVD装置の処理炉周辺の構成を図 2 を参照して説明する。
[0021] 気密室としてのロードロック室 102の外面に下基板 145が設けられ、下基板 145に 立設したガイドシャフト 146の上端に上基板 147が設けられ、下基板 145と上基板 14 7間に掛渡してボール螺子 144が回転自在に設けられる。ボール螺子 144は上基板 147に設けられた昇降モータ 148により回転される。ガイドシャフト 146には昇降台 1 49が昇降自在に嵌合し、昇降台 149はボール螺子 144に螺合している。
[0022] 昇降台 149には中空の昇降シャフト 150が垂設され、昇降台 149と昇降シャフト 15 0の支持部は気密となっている。昇降シャフト 150はロードロック室 102の天板 151を 遊貫し、ロードロック室 102の底面近くに到達する。天板 151の貫通部は昇降シャフ ト 150の昇降動に対して接触することがな 、様充分な余裕があり、又ロードロック室 1 02と昇降台 149間には昇降シャフト 150の突出部を覆う伸縮性を有する壁 (例えば ベローズ 119)が気密に設けられ、ベローズ 119は昇降台 149の昇降量に対応でき る充分な伸縮量を有し、ベローズ 119の内径は昇降シャフト 150の外形に比べ充分 に大きくベローズ 119の伸縮で接触することがな 、様になって 、る。
[0023] 昇降シャフト 150の下端には昇降基板 152が水平に固着される。昇降基板 152の 下面には駆動部カバー 153が取付けられ、駆動部収納ケース 154が構成されている 。昇降基板 152と駆動部カバー 153との接合部には Oリング等のシール部材により密 閉される。従って、駆動部収納ケース 154内部はロードロック室 102内の雰囲気と隔 離される。 [0024] また、昇降基板 152の下面にはボート 217の回転機構 156が設けられ、回転機構 1
52の周辺は、冷却手段 157により、冷却される。
[0025] 電力供給ケーブル 158が昇降シャフト 150の上端から昇降シャフト 150の中空部を 通って回転機構 156に導かれて接続されている。また、冷却手段 157およびシール キャップ 219には冷却水経路 159が形成されており、冷却水経路 159には冷却水を 供給する冷却水配管 160が接続され、冷却水配管 160は昇降シャフト 150の上端か ら昇降シャフト 150の中空部を通っている。
[0026] 昇降基板 152の上面には、シールキャップ 219が気密に設けられる。昇降モータ 1
48を駆動し、ボール螺子 144を回転することで昇降台 149、昇降シャフト 150を介し て駆動部収納ケース 154を上昇させる。
[0027] 昇降台 149の上死点近傍でシールキャップ 219が処理炉 202の開口部である炉口
161を閉塞し、ウェハ処理が可能な状態とする。ウェハ処理が完了すると、昇降モー タ 148が駆動されて、ボート 217が降下され、ウェハを外部に搬出できる状態となる。
[0028] 次に、本実施例の基板処理装置である減圧 CVD装置の処理炉の詳細を図 3を参 照して説明する。
[0029] 図 3に示すように、処理炉 202は、ァウタチューブ 205よりなる反応管と、ガス排気 管 231と、ガス供給管 232と、ガス供給管 234と、マユホーノレ、 209と、マユホーノレ、 2 09の下端部(炉口 161)を蓋し処理室 201を密閉するシールキャップ 219と、シール キャップ 219上に設けられウェハ 200を垂直方向に多段に搭載するウェハ搭載体と してのボート 217と、ボート 217を回転する回転機構 156と、図示しないヒータ素線と 断熱部材を有しウェハ 200を加熱するヒータ 207等を備えている。
ァウタチューブ 205、マ二ホールド 209およびシールキャップ 219等により処理室 2 01を構成している。
[0030] この処理炉 202の構成において、処理ガスは、第 1のガス供給源 180、第 2のガス 供給源 181および第 3のガス供給源 182から供給され、ガス流量制御手段としての MFC (マスフローコントローラー) 183、 MFC184および MFC185でその流量がそ れぞれ制御された後、バルブ 177、 178、 179をそれぞれ介して一本のガス供給管 2 32より処理室 201の上部から導入される。なお、ガス供給管 232は、マ-ホールド 20 9を貫通し、ァウタチューブ 205内を処理室 201の上部まで延在して設けられている 。ガス供給管 232にはバルブ 176が設けられている。
[0031] クリーニングガス供給管 243もマ-ホールド 209を貫通して設けられている。タリー ユングガスは、第 4のガス供給源 187から供給され、ガス流量制御手段としての MFC 188でその流量が制御された後、バルブ 186、 235を介してクリーニングガス供給管 243処理室 201内に導入される。
[0032] マ-ホールド 209には、ガス排気管 231が連通して設けられている。ガス排気管 23 1には排気バルブ 175、排気システムとしての真空ポンプ 246および除害装置 248 が下流側に向かってこの順序で設けられている。処理室 201内の雰囲気はガス排気 管 231に接続された真空ポンプ 246により、処理室 201から排気される。
[0033] 排気ノ レブ 175と真空ポンプ 246との間のガス排気管 231には、不活性ガス供給 システム 251が連通して設けられて 、る。不活性ガス供給システム 251から加熱され た不活性ガス 252が排気バルブ 175と真空ポンプ 246との間のガス排気管 231に供 給される。真空ポンプ 246と除害装置との間のガス排気管 231には、不活性ガス供 給システム 253が連通して設けられて 、る。不活性ガス供給システム 253から加熱さ れた不活性ガス 254が真空ポンプ 246と除害装置との間のガス排気管 231に供給さ れる。
[0034] なお、ヒータ 207、回転機構 156、 MFC183、 184、 185、 187、 ノ ノレブ 175、 176 、 177、 178、 179、 235、 263、昇降モータ 148、ロードロックドア 123、ゲー卜ノ レブ 244、真空ポンプ 246、除害装置 248、不活性ガス供給システム 251、 253等は制御 装置 162によって制御され、ウェハ 200を搭載したボート 217の処理室 201とロー口 ック室 102との間の昇降、ゲートバルブ 244やロードロックドア 123の開閉、処理炉 2 02内の温度制御、処理室 201内への処理ガスやクリーニングガスの供給、処理室 2 01の排気、ロードロック室 102への不活性ガスとしての窒素ガスの供給、ロードロック 室 102の排気、冷却水経路 159への冷却水の供給および停止、加熱された不活性 ガス 252、 254のガス排気管 231への供給やこれらの不活性ガスの温度等が制御装 置 162によって制御される。
[0035] 次に、本実施例の基板処理装置である減圧 CVD装置における半導体ウェハ 200 の処理の一例として、半導体シリコンウェハのシリコン露出面にモノシランガス、塩素 ガスおよび水素ガスを用いてェピタキシャル Si膜を選択的に成膜する場合を説明す る。
[0036] 図示しない外部搬送装置力も搬送されたカセット 100は、カセットステージ 105に載 置され、カセットステージ 105でカセット 100の姿勢を 90° 変換され、更に、カセット エレベータ 115の昇降動作、横行動作及び、カセット移載機 114の進退動作の協働 によりカセット棚 109又は、ノッファカセット棚 110に搬送される。
[0037] ウェハ移載機 112によりカセット棚 109からボート 217へウェハ 200が移載される。
ボート 217へウェハ 200を移載する準備として、ボート 217がボートエレベータ 121に より降下され、ゲートバルブ 244により処理室 201が閉塞され、更にロードロック室 10 2の内部にパージノズル 234から窒素ガスのパージガスが導入される。ロードロック室 102が大気圧に復圧された後、ロードロックドア 123が開かれる。
[0038] 水平スライド機構 122はカセット棚 109を水平移動させ、移載の対象となるカセット 1 00をウェハ移載機 112に対畤する様に位置決めする。ウェハ移載機 112は昇降動 作、回転動作の協働によりウェハ 200をカセット 100よりボート 217へと移載する。ゥ エノ、 200の移載はいくつかのカセット 100に対して行われ、ボート 217へ所定枚数ゥ ェハの移載が完了した後、ロードロックドア 123が閉じられ、ロードロック室 102が排 気管を介して真空引きされる。
[0039] 真空引き完了後にガスパージノズル 234より窒素ガスが導入され、ロードロック室 1 02内部が窒素ガスにより大気圧に復圧されるとゲートバルブ 244が開かれ、昇降モ ータ 148を駆動することによりボートエレベータ 121によりボート 217が処理室 201内 に挿入され、シールキャップ 219により処理炉 202の開口部である炉ロ 161を閉塞 することによって処理室 201を閉塞する。ボート 217を処理室 201内に挿入する際に は、処理室 201内の温度は 200°Cに保たれている。ロードロック室 102は、ウェハ 20 0の処理が終了して再びボート 217がロードロック室 102に下降してくるまでは窒素ガ スによりほぼ大気圧に保たれて 、る。
[0040] 次に、排気バルブ 175を開けて、処理室 201内の雰囲気を排気し、処理室 201の 圧力を 0. lPa程度に減圧する。そして、制御装置 162によりヒータ 207を制御し、処 理室 201内の温度、ひいてはウェハ 200の温度を 750°Cに維持する。その後、回転 機構 156が駆動してボート 217を所定の回転数で回転する。
[0041] 第 1のガス供給源 180、第 2のガス供給源 181、第 3のガス供給源 182には、処理 ガスとして、モノシランガス、塩素ガス (または塩ィ匕水素ガス)および水素ガスがそれぞ れ封入されており、それぞれの流量は MFC183、 MFC184、 MFC185によってそ れぞれ制御される。ガス供給管を開閉するバルブ 177, 178, 179を開き、バルブ 17 6を開いて、処理ガスをガス供給管 232を通じて、処理室 201に後述する方法で供給 し、一方では、ガス排気管 231によって排気することによって処理室 201内の圧力を lOOPaに保って、減圧 CVD法により、ウェハ 200のシリコン露出面にェピタキシャル Si膜を成膜する。この際に、不活性ガス供給システム 251から 100〜200°Cに加熱さ れた不活性ガス 252である Nガスを排気バルブ 175と真空ポンプ 246との間のガス
2
排気管 231に供給し、不活性ガス供給システム 253から 100〜200°Cに加熱された 不活性ガス 254である Nガスを真空ポンプ 246と除害装置との間のガス排気管 231
2
に供給する。
[0042] 処理室 201内でウェハ 200に所定の成膜処理がなされた後、処理室 201内をパー ジガスとしての窒素ガスで置換する。すなわち、成膜後、(1)処理室 201内を 0. lPa 程度までガス排気管 231を介して減圧し、その後窒素ガス (N )を図示しないガス供
2
給源よりガス供給管 232を介して処理室 201内が 30Pa程度になるまで流して処理室 201内をパージし、その後、(2)窒素ガスを止めて、再度処理室 201内を 0. lPa程 度までガス排気管 231を介して減圧し、その後窒素ガスをガス供給管 232より処理室 201内が 30Pa程度になるまで流して処理室 201内をパージする。この(1)、 (2)の操 作をパージ 3min、減圧 3minで 4回繰り返す。その後ガス供給管 232より窒素ガスを 処理室 201内に導入し、窒素ガスで処理室 201内をほぼ大気圧まで戻す。なお、口 ードロック室 102は、上述のとおり、窒素ガスによりほぼ大気圧に保たれている。
[0043] この状態で、昇降モータ 148を駆動することによりボートエレベータ 121によりゥェ ノ、 200を搭載したボート 217が処理室 201からロードロック室 102内に下降し、ゲート バルブ 244が閉じられる。
[0044] その後、排気管を介してロードロック室 102内を lOTorr以下まで真空引きし、その 後、窒素ガスをパージノズル 234より処理室 201内に導入してロードロック室 102内 を大気圧まで窒素ガスで戻す。
[0045] その後、ロードロックドア 123を開き、処理後のウェハ 200は上記した操作の逆の手 順によりボート 217からカセット棚 109を経てカセットステージ 105に移載され、図示し ない外部搬送装置により搬出される。
[0046] 以上のようにして、ェピタキシャル Si膜の成膜を所定回数行う毎に、ウェハ 200を搭 載しない状態でボート 217をボートエレベータ 121により処理室 201内に挿入し、シ ールキャップ 219により処理炉 202の開口部である炉ロ 161を閉塞することによって 処理室 201を閉塞する。
[0047] 次に、排気バルブ 175を開けて、処理室 201内の雰囲気を排気し、処理室 201内 を減圧する。そして、制御装置 162によりヒータ 207を制御し、処理室 201内の温度 を 400°Cに維持する。その後、回転機構 156が駆動してボート 217を所定の回転数 で回転する。
[0048] 第 4のガス供給源 187には、クリーニングガスとしての C1Fが封入されており、その
3
流量は MFC188によって制御される。バルブ 186を開き、ノ レブ 235を開いて、タリ 一ユングガスとしての C1Fをガス供給管 243を通じて、処理室 201に供給し、一方で
3
は、ガス排気管 231によって排気することによって処理室 201内の圧力を所定の圧 力に保って、クリーニングを行う。
[0049] この際に、不活性ガス供給システム 251から 50〜150°Cに加熱された不活性ガス 2 52である Nガスを排気バルブ 175と真空ポンプ 246との間のガス排気管 231に供給
2
し、不活性ガス供給システム 253から 50〜 150°Cに加熱された不活性ガス 254であ る Nガスを真空ポンプ 246と除害装置との間のガス排気管 231に供給する。
2
[0050] ここで、ウェハ 200へのシリコンェピタキシャル膜の選択成長においては、次の通り 行われる。
[0051] 即ち、表面の少なくとも一部にシリコン窒化膜またはシリコン酸ィ匕膜を有し、かつシリ コン表面が露出したシリコン基板を処理室 201内に挿入し、処理室 201内に少なくと もシラン系ガスまたはゲルマン系ガスの少なくとも一方、または必要により水素ガスも 導入する第 1ステップと、塩素ガスまたはフッ素ガスまたは塩化水素ガス、また必要に より水素ガスも導入する第 2ステップとを、順に複数回繰り返して、選択的にシリコン 表面にェピタキシャル膜を成長させる。この際には、第 1ステップと第 2ステップを順 に複数回繰り返す前に、まず、第 2ステップを行い、選択性を向上させる。
[0052] 第 1ステップは膜成長の工程であり、第 2ステップはシリコン窒化膜等の絶縁膜上に 成長したシリコン核やシリコン膜を除去するエッチングの工程である。
[0053] シリコン窒化膜等の絶縁膜上では、シリコン膜上よりもシリコン膜の成長開始が遅れ る力 この成長遅れ時間をインキュベーション時間と呼んでおり、第 1ステップでの膜 成長時間はインキュベーション時間を超えな 、ように設定して 、る。
[0054] また、第 2ステップの後、基板表面に塩素またはフッ素原子が付着し、膜の成長阻 害となり、絶縁膜上、シリコン膜上共に膜成長量が減少する。従って、第 1ステップと 第 2ステップを順に複数回繰り返して選択成長を行う場合の第 1ステップの膜成長時 間は塩素またはフッ素原子が付着している状態を前提として値を設定することになる
[0055] 一方、一連の選択ェピタキシャル成長を行う前には基板の前処理を行いシリコン表 面を高清浄な状態にする。この時、膜の成長阻害要因となる塩素またはフッ素原子 は存在していないため、絶縁膜上、シリコン膜上共に、膜成長量は上記第 1ステップ と第 2ステップの繰り返しにおける膜成長量と比較して大きい。
[0056] これらの理由から、基板の前処理の後、第 1ステップと第 2ステップを、第 1ステップ 力 始めて順に複数回繰り返す処理を行った場合、初回の第 1ステップで絶縁膜上 に膜が成長してしまい、選択破れを起こす問題があり、プロセス制御が難し力つた。
[0057] そこで、本実施例では、第 1ステップと第 2ステップを順に複数回繰り返す前に、ま ず、第 2ステップを行い、基板表面に塩素またはフッ素原子が付着している状態とし、 選択性を向上させている。
[0058] また、本実施例では、第 2ステップの後、基板表面に塩素またはフッ素原子が付着 し、膜の成長阻害となるため、これら原子を減少させるために水素ガスを導入してパ ージを行うことが好ましい。ところが、これら原子を完全に取り除くことは難しく絶縁膜 上、シリコン膜上共に膜成長量が減少する。従って、第 2ステップの後、水素ガスを導 入してパージを行う場合にも、まず、第 2ステップを行い、その後、第 1ステップと第 2 ステップを順に複数回繰り返して、シリコンの選択ェピタキシャル成長を行う。
[0059] さらに、第 1ステップの後にも水素ガスを導入してパージを行うことが好ましい。
[0060] また、第 2ステップによるエッチングガスの供給については、初回供給分も含め、全 て同じ条件にて供給するのがより好ましい。エッチングガスとして、塩素ガスを用いる 場合を例にとると、 C1終端が少ないと選択破れ生じやすぐ C1終端が多いと成長速度 が落ちて好ましくな 、からである。
[0061] なお、初回の第 2ステップによるエッチングガス供給工程の条件としては、次の i)ま たは ii)のようにしてもよい。
i)初回の第 2ステップによるエッチングガス供給は、 2回目以降の第 2ステップによる エッチングガス供給時間以上流す。過度のエッチングガスを流した後の第 1ステップ による初回成長工程では、 Si表面での成長は遅くなるが、 選択破れは生じないから である。
ii) 2回目以降の第 2ステップによるエッチングガス供給流量よりも、初回の流量を多 くして、時間を 2回目以降と同じにする。
[0062] 本実施例おけるプロセスシーケンス例を図 4に示す。
[0063] まず、ウェハ 200を処理室 201内にロードする(ステップ 101)。
[0064] 次に、ウェハ 200が所定の温度となるように温度設定を行う (ステップ 102)。
[0065] 次に、上記第 2ステップにより、塩素ガスを処理室 201内に導入する (ステップ 103)
[0066] 次に、上記第 1ステップにより、モノシランガスを処理室 201内に導入する (ステップ 104)。
[0067] 次に、上記第 2ステップにより、塩素ガスを処理室 201内に導入する (ステップ 105)
[0068] 次に、水素ガスを処理室 201内に導入する(ステップ 106)。
[0069] その後、上記ステップ 104〜ステップ 106を所定回数繰り返して、シリコンの選択成 長を行う。
[0070] 選択成長が終了したら、ウェハ 200を処理室 201からアンロードする(ステップ 107
) o [0071] ここで、本実施例では、基板の前処理の後、第 1ステップと第 2ステップの繰り返し に入る前に、第 2ステップによるエッチング処理 (ステップ 103)を行うことにより、初回 の第 1ステップ (ステップ 104)で選択破れが発生することが無くなり、プロセスマージ ンが拡大した。
[0072] なお、第 2ステップによるエッチング処理 (ステップ 103)の後に、初回の第 1ステップ
(ステップ 104)を行う前に、水素ガスによるパージ処理を行ってもよい。
[0073] また、第 1ステップによる成長処理 (ステップ 104)の後に、第 2ステップ (ステップ 10
5)を行う前に、水素ガスによるパージ処理を行ってもよい。
[0074] 本実施例における好ま 、成長条件は次のとおりである。
ステップ 102において成長温度を 500〜700°Cに設定する。
[0075] ステップ 104におけるモノシランガス照射では、 SiH4流量: l〜1000sccm (好まし くは、 l〜300sccm;)、 H2流量: 500〜: LOOOOsccm、圧力: 1〜: LOOOPa、時間: 30
〜180secである。
[0076] ステップ 105における塩素ガス照射では、 C12流量: 1〜: LOOOsccm (好ましくは、 1 〜500sccm)、 H2流量: 500〜: L0000sccm、圧力: 1〜: L000pa、時間: 30〜180s ecで teる。
[0077] ステップ 106における水素ガス照射では、 H2流量: 10〜50000sccm (好ましくは 、 500〜: L0000sccm)、時間: 60〜300sec、圧力: 1〜: LOOOpaである。なお、上記 パージ工程 (真空排気も伴わせて行う)は、 H2ではなく N2でも良いが、ステップ 104 、ステップ 105において H2をベースにしているので、 H2を用いた方がより好ましい。
[0078] ステップ 105における塩素ガス照射では、ステップ 105と同じ条件で行うか、または 、 C12流量: l〜1000sccm、照射時間: 30〜600secで行う。なお、界面の清浄を考 えると、長い時間の方が良ぐ例えば、 300secで行うことが好ましい。
[0079] 明細書、特許請求の範囲、図面および要約書を含む 2005年 7月 29日提出の日本 国特許出願 2005— 221842号の開示内容全体は、本国際出願で指定した指定国 、又は選択した選択国の国内法令の許す限り、そのまま引用してここに組み込まれる
[0080] 種々の典型的な実施の形態を示しかつ説明してきたが、本発明はそれらの実施の 形態に限定されない。従って、本発明の範囲は、次の請求の範囲によってのみ限定 されるちのである。
産業上の利用可能性
以上説明したように、本発明の好ましい形態によれば、選択成長プロセスにおいて 選択性を向上させプロセスマージンを拡大し、高品質な選択成長膜を生成して、歩 留まりの向上を図ることができる。
その結果、本発明は、半導体装置の製造方法に特に好適に利用できる。

Claims

請求の範囲
[1] 表面の少なくとも一部にシリコン窒化膜またはシリコン酸ィ匕膜を有し、かつシリコン 表面が露出したシリコン基板を処理室内に挿入し、
前記処理室内に少なくともシラン系のガスを導入する第 1ステップと、少なくともエツ チングガスを導入する第 2ステップとを交互に複数回繰り返して、前記シリコン表面に 選択的にェピタキシャル膜を成長させる半導体装置の製造方法であって、
前記第 1ステップより第 2ステップが先行して、前記交互の繰り返しが開始される半 導体装置の製造方法。
[2] 前記シラン系のガスは、モノシランガスまたはジシランガスである請求項 1に記載の 半導体装置の製造方法。
[3] 前記エッチングガス力 塩素ガスまたはフッ素ガスまたは塩ィ匕水素ガスである請求 項 1記載の半導体装置の製造方法。
[4] 前記第 1ステップと第 2ステップのそれぞれが実行された後に水素ガスを導入する ステップを更に備え、該水素ガス導入ステップにてシリコン表面に付着した塩素もしく はフッ素原子を取り除く請求項 1記載の半導体装置の製造方法。
[5] 塩素ガスまたはフッ素ガスまたは塩ィ匕水素ガスを導入する時に、水素ガスを同時に 導入する請求項 3記載の半導体装置の製造方法。
[6] 前記第 1ステップと第 2ステップとを交互に複数回繰り返す際、複数回実行される前 記第 2ステップのそれぞれは同じ条件で実行される請求項 1記載の半導体装置の製 造方法。
[7] 前記第 1ステップと第 2ステップとを交互に複数回繰り返す際、複数回実行される第 2ステップの内、最初に実行される第 2ステップで導入されるエッチングガスの導入時 間は、それ以後に実行される第 2ステップでのエッチングガスの導入時間よりも長い 請求項 1記載の半導体装置の製造方法。
[8] 前記第 1ステップと第 2ステップとを交互に複数回繰り返す際、複数回実行される第 2ステップの内、最初に実行される第 2ステップで導入されるエッチングガスの流量は 、それ以後に実行される第 2ステップで導入されるエッチングガスの流量よりも多い請 求項 1記載の半導体装置の製造方法。
PCT/JP2006/314687 2005-07-29 2006-07-25 半導体装置の製造方法 WO2007013464A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/921,562 US8466049B2 (en) 2005-07-29 2006-07-25 Semiconductor device producing method with selective epitaxial growth
JP2007528480A JP4635051B2 (ja) 2005-07-29 2006-07-25 半導体装置の製造方法および基板処理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-221842 2005-07-29
JP2005221842 2005-07-29

Publications (1)

Publication Number Publication Date
WO2007013464A1 true WO2007013464A1 (ja) 2007-02-01

Family

ID=37683359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314687 WO2007013464A1 (ja) 2005-07-29 2006-07-25 半導体装置の製造方法

Country Status (4)

Country Link
US (1) US8466049B2 (ja)
JP (1) JP4635051B2 (ja)
TW (1) TWI424496B (ja)
WO (1) WO2007013464A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277777A (ja) * 2007-04-02 2008-11-13 Hitachi Kokusai Electric Inc 半導体装置の製造方法
JP2009094384A (ja) * 2007-10-11 2009-04-30 Tokyo Electron Ltd ガス供給装置及び薄膜形成装置
JP2010092979A (ja) * 2008-10-06 2010-04-22 Hitachi Kokusai Electric Inc 半導体装置の製造方法
WO2012029661A1 (ja) * 2010-09-01 2012-03-08 株式会社日立国際電気 半導体装置の製造方法及び基板処理装置
US8282733B2 (en) 2007-04-02 2012-10-09 Hitachi Kokusai Electric Inc. Manufacturing method of semiconductor apparatus
JP2017183508A (ja) * 2016-03-30 2017-10-05 東京エレクトロン株式会社 シリコン膜の形成方法および形成装置
JP2018142575A (ja) * 2017-02-27 2018-09-13 ルネサスエレクトロニクス株式会社 半導体装置の製造方法および半導体装置
JP2018160516A (ja) * 2017-03-22 2018-10-11 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
KR20210038830A (ko) * 2019-09-30 2021-04-08 도쿄엘렉트론가부시키가이샤 성막 방법 및 성막 장치

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5564311B2 (ja) * 2009-05-19 2014-07-30 株式会社日立国際電気 半導体装置の製造方法、基板処理装置及び基板の製造方法
JP5632687B2 (ja) 2010-09-10 2014-11-26 株式会社日立国際電気 半導体装置の製造方法及び基板処理装置
JP6349234B2 (ja) * 2014-02-19 2018-06-27 東京エレクトロン株式会社 シリコン酸化膜の形成方法、及び、シリコン酸化膜の形成装置
US9653282B2 (en) 2014-07-29 2017-05-16 Applied Materials, Inc. Silicon-containing substrate cleaning procedure
JP6391171B2 (ja) * 2015-09-07 2018-09-19 東芝メモリ株式会社 半導体製造システムおよびその運転方法
KR102458309B1 (ko) 2015-12-28 2022-10-24 삼성전자주식회사 SiOCN 물질막의 형성 방법 및 반도체 소자의 제조 방법
JP6584348B2 (ja) * 2016-03-07 2019-10-02 東京エレクトロン株式会社 凹部の埋め込み方法および処理装置
JP6541591B2 (ja) 2016-03-07 2019-07-10 東京エレクトロン株式会社 凹部内の結晶成長方法および処理装置
WO2018052471A1 (en) * 2016-09-14 2018-03-22 Applied Materials, Inc. A degassing chamber for arsenic related processes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08153688A (ja) * 1994-09-13 1996-06-11 Toshiba Corp 半導体装置の製造方法および半導体装置
JP2003086511A (ja) * 2001-09-05 2003-03-20 Hynix Semiconductor Inc 半導体素子の選択エピタキシャル成長法
JP2005183514A (ja) * 2003-12-17 2005-07-07 Hitachi Kokusai Electric Inc 半導体装置の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05217921A (ja) * 1991-09-13 1993-08-27 Motorola Inc 材料膜のエピタキシアル成長を行うための温度制御された処理
US6489241B1 (en) * 1999-09-17 2002-12-03 Applied Materials, Inc. Apparatus and method for surface finishing a silicon film
JP4215447B2 (ja) * 2002-04-17 2009-01-28 信越半導体株式会社 シリコンエピタキシャルウェーハの製造方法
US7468311B2 (en) * 2003-09-30 2008-12-23 Tokyo Electron Limited Deposition of silicon-containing films from hexachlorodisilane
US7312128B2 (en) * 2004-12-01 2007-12-25 Applied Materials, Inc. Selective epitaxy process with alternating gas supply
US7358194B2 (en) * 2005-08-18 2008-04-15 Tokyo Electron Limited Sequential deposition process for forming Si-containing films

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08153688A (ja) * 1994-09-13 1996-06-11 Toshiba Corp 半導体装置の製造方法および半導体装置
JP2003086511A (ja) * 2001-09-05 2003-03-20 Hynix Semiconductor Inc 半導体素子の選択エピタキシャル成長法
JP2005183514A (ja) * 2003-12-17 2005-07-07 Hitachi Kokusai Electric Inc 半導体装置の製造方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277777A (ja) * 2007-04-02 2008-11-13 Hitachi Kokusai Electric Inc 半導体装置の製造方法
JP2012169668A (ja) * 2007-04-02 2012-09-06 Hitachi Kokusai Electric Inc 半導体装置の製造方法
US8282733B2 (en) 2007-04-02 2012-10-09 Hitachi Kokusai Electric Inc. Manufacturing method of semiconductor apparatus
TWI421938B (zh) * 2007-10-11 2014-01-01 Tokyo Electron Ltd 用於半導體製程之薄膜形成裝置
JP2009094384A (ja) * 2007-10-11 2009-04-30 Tokyo Electron Ltd ガス供給装置及び薄膜形成装置
JP2010092979A (ja) * 2008-10-06 2010-04-22 Hitachi Kokusai Electric Inc 半導体装置の製造方法
US9666430B2 (en) 2010-09-01 2017-05-30 Hitachi Kokusai Electric Inc. Method of manufacturing semiconductor device and substrate processing apparatus
JP5393895B2 (ja) * 2010-09-01 2014-01-22 株式会社日立国際電気 半導体装置の製造方法及び基板処理装置
WO2012029661A1 (ja) * 2010-09-01 2012-03-08 株式会社日立国際電気 半導体装置の製造方法及び基板処理装置
JP2017183508A (ja) * 2016-03-30 2017-10-05 東京エレクトロン株式会社 シリコン膜の形成方法および形成装置
JP2018142575A (ja) * 2017-02-27 2018-09-13 ルネサスエレクトロニクス株式会社 半導体装置の製造方法および半導体装置
JP2018160516A (ja) * 2017-03-22 2018-10-11 株式会社日立国際電気 半導体装置の製造方法、基板処理装置およびプログラム
KR20210038830A (ko) * 2019-09-30 2021-04-08 도쿄엘렉트론가부시키가이샤 성막 방법 및 성막 장치
JP2021057439A (ja) * 2019-09-30 2021-04-08 東京エレクトロン株式会社 成膜方法、及び成膜装置
JP7221187B2 (ja) 2019-09-30 2023-02-13 東京エレクトロン株式会社 成膜方法、及び成膜装置
KR102591376B1 (ko) 2019-09-30 2023-10-19 도쿄엘렉트론가부시키가이샤 성막 방법 및 성막 장치

Also Published As

Publication number Publication date
JP4635051B2 (ja) 2011-02-16
US8466049B2 (en) 2013-06-18
TWI424496B (zh) 2014-01-21
TW200746297A (en) 2007-12-16
US20090104740A1 (en) 2009-04-23
JPWO2007013464A1 (ja) 2009-02-05

Similar Documents

Publication Publication Date Title
WO2007013464A1 (ja) 半導体装置の製造方法
KR101066136B1 (ko) 기판 처리 방법 및 기판 처리 장치
WO2006049225A1 (ja) 半導体装置の製造方法および基板処理装置
US20120312235A1 (en) Manufacturing method of semiconductor apparatus
KR100996689B1 (ko) 반도체장치의 제조방법, 막생성방법 및 기판처리장치
JP5235142B2 (ja) 半導体装置の製造方法及び基板処理装置
US8012885B2 (en) Manufacturing method of semiconductor device
TWI497610B (zh) Semiconductor device manufacturing method and substrate processing device
US8293592B2 (en) Method of manufacturing semiconductor device and substrate processing apparatus
TW201735272A (zh) 凹部之填埋方法及處理裝置
JP4324632B2 (ja) 半導体装置の製造方法および基板処理装置
JP4324418B2 (ja) 基板処理装置および半導体デバイスの製造方法
JP5214778B2 (ja) 基板処理装置及び半導体デバイスの製造方法
JP2005340283A (ja) 基板処理装置
JP2007077455A (ja) 半導体デバイスの製造方法
JP2006059938A (ja) 基板処理装置
JP5032059B2 (ja) 半導体装置の製造方法、基板処理方法、及び基板処理装置
JP2009289807A (ja) 半導体装置の製造方法
JP2007056288A (ja) 半導体デバイスの製造方法
JP2010073860A (ja) 基板処理装置
JP2007088225A (ja) 半導体デバイスの製造方法
JP2010073714A (ja) 基板処理方法
JP2011009752A (ja) 基板処理装置、半導体デバイスの製造方法及び半導体デバイス
JP2005259927A (ja) 基板処理装置
JP2007234937A (ja) 半導体装置の製造方法および基板処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007528480

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11921562

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06781599

Country of ref document: EP

Kind code of ref document: A1