WO2007010746A1 - 可変抵抗素子を備えた半導体記憶装置 - Google Patents

可変抵抗素子を備えた半導体記憶装置 Download PDF

Info

Publication number
WO2007010746A1
WO2007010746A1 PCT/JP2006/313397 JP2006313397W WO2007010746A1 WO 2007010746 A1 WO2007010746 A1 WO 2007010746A1 JP 2006313397 W JP2006313397 W JP 2006313397W WO 2007010746 A1 WO2007010746 A1 WO 2007010746A1
Authority
WO
WIPO (PCT)
Prior art keywords
memory device
semiconductor memory
electrode
film
reaction
Prior art date
Application number
PCT/JP2006/313397
Other languages
English (en)
French (fr)
Inventor
Shinobu Yamazaki
Takuya Otabe
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to US11/995,876 priority Critical patent/US20090102598A1/en
Publication of WO2007010746A1 publication Critical patent/WO2007010746A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/026Formation of switching materials, e.g. deposition of layers by physical vapor deposition, e.g. sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/063Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8836Complex metal oxides, e.g. perovskites, spinels

Definitions

  • the present invention provides a semiconductor memory including a variable resistance element in which a variable resistor is provided between a first electrode and a second electrode, and an electric resistance is changed by applying a voltage pulse between the two electrodes. Concerning equipment.
  • NVRAM non-volatile random access memory
  • FeRAM Feroelectric RAM
  • MRAM Magnetic RAM
  • OUM Olet Ultra Mem
  • various device structures such as ory
  • these current memory devices have their merits and demerits, and it is still far from the ideal realization of “universal memory” that combines the advantages of SRAM, DRAM, and flash memory.
  • the basic structure of an actual variable resistance element is very simple, and is a structure in which a lower electrode material, a variable resistor, and an upper electrode material are stacked in this order in the direction perpendicular to the substrate.
  • LAO lanthanum aluminum oxide
  • the film is a variable resistor and is a crystalline prasedium 'force lucum' manganese oxide Pr Ca MnO (PCMO) film, which is a bottom buxite oxide, and the upper electrode material is a spl l- XX 3
  • variable resistor material is a ZnSe-Ge tapered structure, or Ti, Nb, Hf, Zr, Ta, Ni, V, Zn, Sn, In, Th Also, it is known that the resistance value of metal oxides such as Al is variable although it is small depending on the applied voltage pulse condition.
  • FIG. 17 shows a schematic cross-sectional structure diagram of a resistive semiconductor memory device as an example of the prior art provided with this variable resistance element.
  • a select transistor T and a variable resistance element R formed on a semiconductor substrate 101 constitute one memory cell.
  • the selection transistor T includes a gate electrode 104, a gate insulating film 103, and a drain region 105 and a source region 106 which are diffusion layers, and is electrically isolated from adjacent memory cells by an element isolation region 102.
  • the variable resistance element R has a laminated structure of the first electrode 112 as the upper electrode, the variable resistor 111 and the second electrode 110 as the lower electrode.
  • variable resistance element R is electrically connected to the drain region 105 of the selection transistor T through a contact hole 108 that penetrates the first interlayer insulating film 107 formed on the selection transistor T.
  • the noria film 109 between the second electrode 110 and the first interlayer insulating film 107 ensures a stable connection resistance between the variable resistance element R and the conductive contact plug embedded in the contact hole 108. Speak for the purpose.
  • the source region 106 of the selection transistor T and the first electrode 112 of the variable resistance element R are electrically connected.
  • a second metal wiring 119 is formed on the third interlayer insulating film 118, and a nossi as a surface protective film is further formed on the upper surface.
  • a base film 120 is formed.
  • Patent Document 1 US Patent No. 6204139
  • the passivation film 120 that is a surface protective film is formed by a plasma CVD method (plasma chemical method) having moisture resistance against external moisture and blocking action against external contamination.
  • a SiNx film or a SiOxNy film formed by vapor deposition (plasma activated chemical vapor deposition) is generally used.
  • plasma CVD method radical hydrogen atoms are generated at the time of film formation, so that a large amount of hydrogen atoms are contained in the film of the noisy film 120.
  • W film As a material for the conductive contact plug embedded in the contact holes 114 and 115, a W film having excellent embedded coverage is generally used. W membrane is usually with WF
  • the film is formed by thermal CVD method using SiH thermal reaction.
  • variable resistor when a reduction reaction or an oxidation reaction occurs after the formation of the variable resistor, the variable resistor is affected by the reduction reaction or the acid-acid reaction. It was. For example, when hydrogen is generated as described above, a phenomenon occurs in which the resistance value of the variable resistor changes due to the reduction reaction. On the other hand, the phenomenon in which the resistance value of the variable resistance element changes also in the oxidation reaction with respect to the variable resistor similarly occurs. Whether or not the force that increases the resistance value due to the reduction reaction or the oxidation reaction decreases depends on the material used for the variable resistor. It depends on the fee.
  • the resistance value increases when the variable resistor undergoes a reduction reaction, and the resistance value decreases when the acid resistor reaction occurs.
  • a variable resistor is generally used as the second interlayer insulating film 113 and the third interlayer insulating film 118, and there is a small amount of oxygen that does not depend on the film formation reaction when the silicon oxide film is formed. Therefore, a phenomenon occurs in which the resistance value of the variable resistor decreases due to the oxidation reaction promoted by the oxygen.
  • variable resistor In order to guarantee a stable operation as a semiconductor memory device, it is necessary to accurately control the resistance value of the variable resistance element.
  • hydrogen which is a reducing species that promotes the reduction reaction existing in the manufacturing process
  • oxygen which is an oxidizing species that promotes the oxidation reaction.
  • the resistance value of the variable resistance element fluctuates, resulting in a large variation, making it difficult to stably produce a semiconductor memory device having variable resistance elements having the same resistance value with good reproducibility.
  • the present invention has an object to provide a resistive semiconductor memory device including a stable variable resistance element that prevents a resistance change of the variable resistance element due to a process in the middle of a manufacturing process. .
  • a variable resistor is provided between the first electrode and the second electrode, and a voltage pulse is applied between the first electrode and the second electrode.
  • the semiconductor device includes a variable resistance element that changes the electrical resistance between the first electrode and the second electrode when applied.
  • the body memory device is characterized by having at least one reaction blocking film.
  • the semiconductor memory device of the present invention is characterized in that the reaction blocking film prevents diffusion of reducing species and suppresses the reduction reaction of the variable resistor! / Speak.
  • the semiconductor memory device of the present invention is characterized in that the reaction blocking film prevents diffusion of oxidized species and suppresses the oxidation reaction of the variable resistor.
  • the semiconductor memory device of the present invention is characterized in that the reaction blocking film is disposed in close contact with the variable resistance element! /! /
  • the reaction blocking film is disposed between the variable resistance element and a surface protective film! RU
  • the conductive material force embedded in the contact hole formed on the first electrode or the second electrode is at least one of reducing species and oxidizing species. It is characterized by comprising a material having a function of suppressing the diffusion of the above.
  • the conductive material embedded in the contact hole includes at least one element selected from internal forces of Si, Al, Ti, Ta, Hf, and W.
  • Conductive nitride, or conductive oxide composed of at least one element selected from Ir and Ru, or simple metal selected from Ti, Ta, Ir and Ru Or an alloy comprising at least one element selected from Ti, Ta, Ir, Ru, and W.
  • the reaction blocking film has an internal force of Al, Ti, Ta, Hf, Pb, La, Zr, Sr, Bi, Pr, Ca, Mn, Si, Mg, Ce.
  • variable resistor is at least one selected from an internal force of Pr, Ca, La, Sr, Gd, Nd, Bi, Ba, Y, Ce, Pb, Sm, and Dy. It contains at least one selected element and the internal force of Ta, Ti, Cu, Mn, Cr, Co, Fe, Ni, and Ga. It is characterized by the fact that it is an acid oxide having a perovskite structure.
  • variable resistor is a Pr Ca [Mn M] 0 system
  • M is any element selected from Ta, Ti, Cu, Cr, Co, Fe, Ni, Ga
  • La AE MnO system (However, AE is in Ca, Sr, Pb, Ba) Any bivalent selected from l -XX 3
  • RE Sr MnO system Anorekari earth metal
  • RE is Sm, La, Pr, Nd, Gd, Dy
  • variable resistor is a ZnSe—Ge heterostructure, or Ti, Nb, Hf, Zr, Ta, Ni, V, Zn, Sn, In, Th, It is characterized by being a metal oxide composed of at least one element selected from Al.
  • a variable resistor is provided between the first electrode and the second electrode, and a voltage pulse is applied between the first electrode and the second electrode, whereby the first In a semiconductor memory device having a variable resistance element in which the electrical resistance between one electrode and the second electrode changes, a conductive material embedded in a contact hole formed on the first electrode or the second electrode is It is characterized by comprising a material having a function of suppressing the diffusion of reducing species or oxidizing species.
  • Conductive material force embedded in contact hole Conductive nitride containing at least one element selected from Si, Al, Ti, Ta, Hf, W, or Ir, Ru A conductive oxide comprising at least one element selected from the group consisting of Ti, Ta, Ir, Ru, or a single metal selected from Ti, Ta, Ir, Ru, or Ti, Ta, Ir, Ru, It is characterized by being an alloy comprising at least one element selected from W.
  • the semiconductor memory device provided with the variable resistance element of the present invention has a structure having at least one reaction blocking film.
  • This reaction blocking film has an action of blocking the permeation of the reducing species that promote the reduction reaction of the variable resistor and the oxidizing species that promote the oxidation reaction of the variable resistor. Therefore, an increase in resistance value due to the reduction reaction of the variable resistor or a decrease in resistance value due to the acid-oxidation reaction of the variable resistor is suppressed.
  • the reaction blocking film between the variable resistance element and the passivation, it is possible to avoid the influence of the process during the manufacturing process after the variable resistance antibody film formation.
  • the semiconductor memory device including the variable resistance element of the present invention it is possible to realize a semiconductor memory device with little variation in resistance value and good controllability with good reproducibility.
  • FIG. 1 is a schematic cross-sectional view of a semiconductor memory device including a variable resistance element according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view illustrating the method of manufacturing the semiconductor memory device according to the embodiment of the present invention in the order of steps.
  • FIG. 3 is a schematic cross-sectional view illustrating the method of manufacturing the semiconductor memory device according to the embodiment of the present invention in the order of steps.
  • FIG. 4 is a schematic cross-sectional view illustrating the method of manufacturing the semiconductor memory device according to the embodiment of the present invention in the order of steps.
  • FIG. 5 is a schematic cross-sectional view illustrating the method of manufacturing the semiconductor memory device according to the embodiment of the present invention in the order of steps.
  • FIG. 6 is a schematic cross-sectional view illustrating the method of manufacturing the semiconductor memory device according to the embodiment of the present invention in the order of steps.
  • FIG. 7 is a schematic cross-sectional view illustrating the method of manufacturing the semiconductor memory device according to the embodiment of the present invention in the order of steps.
  • FIG. 8 is a schematic cross-sectional view illustrating the method of manufacturing the semiconductor memory device according to the embodiment of the present invention in the order of steps.
  • FIG. 9 is a diagram showing a resistance measurement result of a variable resistance element in a conventional semiconductor memory device.
  • FIG. 10 is a diagram showing a resistance measurement result of a variable resistance element in the semiconductor memory device according to the embodiment of the present invention.
  • FIG. 11 is a schematic cross-sectional view showing Modification Example 1 of the semiconductor memory device including the variable resistance element according to the embodiment of the present invention.
  • FIG. 12 is a schematic sectional view showing Modification Example 2 of the semiconductor memory device including the variable resistance element according to the embodiment of the present invention.
  • FIG. 13 is a schematic cross-sectional view showing Modification Example 3 of the semiconductor memory device including the variable resistance element according to the embodiment of the present invention.
  • FIG. 14 is a schematic cross-sectional view showing Modification Example 4 of the semiconductor memory device including the variable resistance element according to the embodiment of the present invention.
  • FIG. 15 is a schematic cross-sectional view showing Modification Example 5 of the semiconductor memory device including the variable resistance element according to the embodiment of the present invention.
  • FIG. 16 is a schematic cross-sectional view showing Modification 6 of the semiconductor memory device including the variable resistance element according to the embodiment of the present invention.
  • FIG. 17 is a schematic sectional view of a semiconductor memory device including a conventional variable resistance element.
  • FIG. 1 shows a schematic cross-sectional structure diagram of a resistive semiconductor memory device provided with the variable resistance element of the present invention.
  • the semiconductor memory device according to the embodiment of the present invention is obtained by adding reaction blocking films 201 and 202 to the conventional resistive semiconductor memory device shown in FIG. That is, the reaction blocking film 201 is disposed on the variable resistance element R, and the reaction blocking film 202 is disposed immediately below the passivation film 120.
  • the reaction blocking film 201 blocks the entry of hydrogen, which is a reducing species, or oxygen, which is an oxygen species, into the variable resistance element R.
  • the reaction blocking film 202 is a hydrogen, which is a reducing species, from the passivation film 120.
  • FIG. 2 to FIG. 8 are schematic cross-sectional structure diagrams showing the manufacturing process of the semiconductor memory device of this embodiment in the order of the process flow.
  • the semiconductor memory device having the structure of the present embodiment can be formed through the steps described in detail with reference to the drawings.
  • a selective transistor T is formed on the semiconductor substrate 101 according to a known procedure. That is, the selection transistor T including the gate insulating film 103, the gate electrode 104, and the drain region 105 and the source region 106 as diffusion layers is formed on the semiconductor substrate 101 on which the element isolation region 102 is formed. Thereafter, a first interlayer insulating film 107 is formed thereon.
  • the surface is further gated by a so-called CMP method (chemical mechanical polishing method). The surface was flattened by polishing until the thickness force of the BPSG film on the electrode 104 reached S400 nm.
  • the contact hole 108 reaching the drain region 105 of the select transistor T is opened by etching the first interlayer insulating film 107 using a resist patterned by a known photolithography technique as a mask. To do. Then, after depositing a conductive polysilicon film, the conductive polysilicon film on the first interlayer insulating film 107 is completely removed by polishing by the CMP method, so that the conductive polysilicon film only in the contact hole 108 is obtained. Remain. Through this process, a contact plug embedded with conductive polysilicon is formed only in the contact hole 108.
  • a noble metal layer 109 for ensuring electrical connection between the conductive contact plug embedded in the contact hole 108 and the lower electrode 110, and the lower electrode A film 110 serving as a material, a film 111 serving as a material of a variable resistor, and a film 112 serving as a material of an upper electrode are sequentially formed.
  • barrier metal layer 109 a 20 nm thick Ti film and a 50 nm thick TiN film were sequentially laminated by a sputtering method (TiNZTi film).
  • the Pt film 110 as an example of the second electrode as the lower electrode was deposited with a thickness of 100 to 200 nm.
  • the PCMO film 111 as an example of the variable resistor was formed with a film thickness of lOOnm by sputtering.
  • the PCMO film 111 is formed by heating the substrate to 300 to 500 ° C, sputtering the target of the PCMO sintered body with Ar ions at a film forming pressure of 5 to 20 mTorr, and reacting with oxygen introduced as a reactive gas. To form a film on the substrate.
  • a PCMO film was formed with a composition ratio of Pr Ca MnO.
  • a variable resistance element R is formed. That is, the upper electrode 112 is formed by dry-etching the Pt film 112, which is the material of the first electrode, using a resist patterned by the photolithography method as a mask, and the resistance antibody film 111, The lower electrode 110 and the barrier metal film 109 were sequentially etched.
  • a reaction blocking film 201 is formed on the variable resistance element R.
  • an AlOx film was formed with a thickness of 50 nm by sputtering.
  • a silicon oxide film having a thickness of lOOOnm is further formed as a second interlayer insulating film 113 on the reaction blocking film 201 by the CVD method, and then for the flatness.
  • the surface was polished by CMP until the thickness of the silicon oxide film on the upper electrode 112 reached S400 nm.
  • the second interlayer insulating film 113 is etched using a resist patterned by photolithography as a mask, thereby opening a contact hole 115 reaching the upper electrode 112.
  • the second interlayer insulating film 113, the reaction blocking film 201, and the first interlayer insulating film 107 are sequentially etched using a resist patterned by photolithography as a mask, so that the source region of the select transistor T A contact hole 114 reaching 106 is opened.
  • the WZTiNZTi film is deposited and then polished by CMP to completely remove the WZTiNZTi film on the second interlayer insulating film 107 and leave the WZTiNZTi film only in the contact holes 114 and 115.
  • a conductive contact plug having a conductive material strength is formed only in the contact holes 114 and 115.
  • a TiNZTi film having a thickness of 50 nm, Z20 nm was formed by a sputtering method, and a W film having a thickness of 600 nm was formed by a CVD method.
  • a material film of the first metal wirings 116 and 117 is deposited.
  • a laminated structure TiNZAl-SiZTiN film
  • a TiN film having a thickness of 50 ⁇ m was sequentially depositing a TiN film having a thickness of 50 ⁇ m, an A1-Si film having a thickness of 400 nm, and a TiN film having a thickness of 50 nm by a sputtering method.
  • the metal wiring material is etched using the resist patterned by the photolithography method as a mask, thereby forming first metal wirings 116 and 117 as shown in FIG.
  • a third interlayer insulating film 118 is formed on the first metal wirings 116 and 117.
  • the surface is further subjected to CMP to planarize the silicon oxide on the first metal wirings 116 and 117. Polishing was performed until the thickness of the film reached 500 nm. Then, after forming a contact hole (not shown) reaching the first metal wiring, as shown in FIG. 7, the material film of the second metal wiring 119 is deposited and processed (not shown).
  • a reaction blocking film 202 is formed on the second metal wiring 119.
  • an AIO X film was formed with a thickness of 50 nm by sputtering.
  • a passivation film 120 as a surface protective film is deposited.
  • a SiNx film having a thickness of 1500 ⁇ m was deposited by the plasma C VD method.
  • the AlOx film formed as the reaction blocking film 201 has a function of blocking the permeation of hydrogen and oxygen, and thus is variable.
  • Resistor element R in particular, has a function of preventing entry of hydrogen, which is a reducing species that promotes the reduction reaction to variable resistor 111, and oxygen, which is an oxidizing species that promotes the oxidation reaction.
  • the AlOx film formed as the reaction blocking film 202 has a function of blocking the permeation of hydrogen and oxygen, the hydrogen generated during the formation of the nose basin film 120 is transferred to the variable resistor R. Has the effect of suppressing the diffusion of
  • reaction blocking films 201 and 202 can suppress the entry of oxygen and hydrogen generated in the manufacturing process into the variable resistor element R, so that the reduction reaction or acid reaction of the variable resistor 111 can be suppressed. ⁇ Reaction can be avoided.
  • reaction blocking film 201 when an interlayer insulating film such as a silicon oxide film is present between the reaction blocking film 201 and the variable resistor R, the reaction blocking film 201 is affected by oxygen or hydrogen in the film. It is more desirable to arrange them closely to the variable resistance element R.
  • FIG. 9 is a distribution of resistance values in the low resistance state of one million variable resistance elements by a semiconductor memory device in which the reaction blocking films 201 and 202 are not formed
  • FIG. 10 is the same as FIG. Is due to.
  • the horizontal axis shows the resistance value of the variable resistance element
  • the vertical axis shows the cumulative frequency of the variable resistance element on a normal distribution scale.
  • the conventional semiconductor memory device has a resistance value variation of one digit or more, but the semiconductor memory device of the present invention has a resistance value variation of about 3 minutes as shown in FIG. It is suppressed to about 1 of.
  • the improvement in the fluttering is an effect obtained by structurally adding the reaction blocking films 201 and 202.
  • the reaction blocking films 201 and 202 prevent diffusion of oxygen and hydrogen to the variable resistor generated during the manufacturing process. This is because the increase fluctuation of the resistance value due to the reduction reaction of the variable resistor and the decrease fluctuation of the resistance value due to the acid-acid reaction of the variable resistance antibody were suppressed.
  • the level of the stored information can be easily determined, and a highly reliable storage device can be configured. .
  • the semiconductor memory device of the present invention is not limited to the structure of the embodiment described above. As in Modifications 1 to 6 shown in FIGS. 11 to 16, it is possible to appropriately change the application of the reaction blocking film that is a feature of the present invention. Hereinafter, the modified example will be described in detail with reference to the drawings.
  • the number of force reaction blocking films having a structure having two reaction blocking films 201 and 202 is not limited to this.
  • the reaction blocking film may have three layers. That is, a reaction blocking film 203 may be further disposed in the third interlayer insulating film 118 with respect to the embodiment shown in FIG. In this case, particularly when the passivation film 120 is formed, the three reaction blocking films 201, 202, and 203 serve as a protective film. Therefore, the film per layer is different from the embodiment of FIG. 1 (in the case of two layers).
  • the thickness can be set thin, there is an advantage that processing involving the reaction blocking film (for example, etching of the contact holes 114 and 115) is facilitated.
  • processing involving the reaction blocking film for example, etching of the contact holes 114 and 115
  • the blocking ability of each layer can be made somewhat weak and the material can be made, there is an advantage that the selectivity of the material for the reaction blocking film is increased.
  • the reaction blocking film may have only one layer.
  • the reaction blocking film 201 in FIG. 1 or FIG. 11 in order to suppress the reduction of the variable resistor and the acid-rich reaction, it is more preferable that the variable resistance element R is disposed closely.
  • the reaction blocking film 201 is required to have a film thickness, a material, and the like necessary for producing the same effect as in the embodiment of FIG.
  • the reaction blocking film 201 When the reaction blocking film 201 is disposed in close contact with the variable resistor R, there are steps due to processing of the first electrode 112, the variable resistor 111, and the second electrode 110. In order to prevent the thickness of the film from being extremely reduced, a good covering property is required for the formation of the reaction blocking film 201.
  • the variable resistance element film 204 is disposed in the second interlayer insulating film 113, and the step of the variable resistor R is relaxed. Since the reaction blocking film 204 is formed on the surface, it is possible to apply even a film with poor coverage.
  • variable resistance element R is slightly affected by a part of the interlayer insulating film 113 between the reaction blocking film 204 and the variable resistance element R.
  • this structure it is also possible to select this structure, taking into account this effect and the reduction in reaction stopping ability due to the above-mentioned problem of coverage.
  • a WZTiNZTi film is used as a conductive contact plug for filling the contact hole 115.
  • the TiN film also has a function of blocking the permeation of oxygen and hydrogen, even if the opening 115 is provided on the reaction blocking film 201, the contact plug eventually plays a role of blocking oxygen and hydrogen.
  • a reaction element film 205 having TiN force may be disposed in the contact hole 115.
  • the selection of the material embedded in the contact hole 115 is not limited.
  • the reaction blocking film 205 must be a conductive material.
  • the reaction blocking film 206 may be provided only on the side surface in the contact hole 115.
  • the reaction blocking film 206 does not necessarily need to be a conductive material, but may be an insulating material such as AlOx.
  • the drain region of the second electrode 110 as the lower electrode and the selection transistor T via the conductive contact plug 105 is not limited to this.
  • the reaction blocking films 201 and 202 may be similarly applied.
  • a Pt film is used as an example of the second electrode as in the embodiment of FIG.
  • the Pt film cannot block the permeation of oxygen and hydrogen. Therefore, as in Modification 6 of the present embodiment shown in FIG. 16, a reaction blocking film 207 is disposed under the second electrode, which is the lower electrode. You may do it.
  • the material of the reaction blocking film 207 may be an insulating material such as AlOx or a conductive material including a TiN film.
  • the variable resistance element R is completely formed of the reaction blocking film (in this case, 201, 205, and 207). May be included.
  • the variable resistance element R has a structure in which the first electrode, the variable resistor, and the second electrode are sequentially processed. If the reaction blocking film is not limited to this and is provided for the purpose of protecting the variable resistance element, the shape of the variable resistance element is! Does not damage the configuration.
  • the memory cell configuration is the memory cell configuration having the selection transistor T, but is not limited to this. For example, a memory cell configuration that directly selects the first electrode and the second electrode and directly reads the data of the variable resistor at the intersection (cross point), that is, a so-called cross point configuration memory cell Membranes may be applied in the same way.
  • an aluminum oxide film (AlOx film) or a titanium nitride film (TiN film) is used as the reaction blocking films 201 to 207.
  • an insulating material having an action of blocking permeation of oxygen or hydrogen that can be applied to the reaction blocking films 201 to 205 and 207 includes titanium oxide, tantalum oxide, zirconium oxide, strontium oxide, magnesium oxide, selenium oxide, Acids and oxynitrides such as acid lanthanum, acid titanium aluminum, acid tantalum aluminum, silicified titanium oxide, silica silicate tantalum, and titanium oxynitride are known.
  • Perovskite type oxides have similar functions.
  • Silicon nitride films (SiNx films) and silicon oxynitride films (SiOxNy films) also have excellent oxygen and hydrogen blocking properties, and the LPCV D method (reduced pressure gas) is less likely to generate hydrogen than the plasma CVD method. It can be applied as a reaction-preventing film by forming a film by the phase growth method: Low Pressure Chemical Vapor Deposition. However, since the deposition temperature is as high as before and after 700 ° C, the reaction blocking film 201, which is deposited before the formation of the metal wirings 116 and 117, Must be 204, 206 and 207.
  • Examples of the conductive material that can be applied to the reaction blocking films 205 to 207 and has an action of blocking the permeation of oxygen or hydrogen include metals such as titanium, tantalum, iridium, and ruthenium. Alternatively, alloys such as titanium aluminum, tantalum aluminum, ruthenium silicide, tungsten boride, titanium boride, tungsten carbide, titanium carbide, etc.
  • conductive materials such as titanium nitride, tantalum nitride, aluminum nitride, tungsten nitride, titanium nitride aluminum, tantalum aluminum nitride, titanium silicide nitride, tantalum silicide nitride, tungsten silicide nitride, silicide iridium nitride, platinum silicide nitride, etc.
  • Nitrides Alternatively, conductive oxides such as iridium oxide, ruthenium oxide, and strontium ruthenate (SRO) are known.
  • variable resistor 111 is represented by “ABO” in the chemical formula, and lead titanate (Pb
  • perovskite type oxides such as TiO 2) and barium titanate (BaTiO 3).
  • Pr and Mn-based perovskite oxides are also represented by the chemical formula “ABO” in the position of “A”.
  • A is at least one element selected from the internal forces of Ca, La, Sr, Gd, Nd, Bi, Ce, and B is selected from Ta, Ti, Cu, Cr, Co, Fe, Ni, Ga At least one element can be used.
  • oxides of perovskite structure to be the variable resistor 111 typically, (Pr, Ca) MnO, SrTiO, (Ba, Sr) TiO, LaMnO, LaTiO, (Nd, Sr) MnO, (La, Sr
  • This type of material exhibits a phenomenon in which the electrical resistance changes when a voltage pulse is applied.
  • a Pr Ca MnO-based material PCMO film
  • PCMO film has a resistance caused by a larger voltage pulse.
  • variable resistor 111 the electrical resistance change is smaller than that of the perovskite structure, ZnSe-Ge heterostructure, Ti, Nb, Hf, Zr, Ta, Ni, V, Zn, Sn, In, Th, Al Oxidation of metals such as A thing can also be used as the variable resistor 111. Note that, regardless of the material that can be used as the variable resistor, the present invention can be applied if the resistance value of the variable resistor changes due to an oxidation reaction or a reduction reaction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Hall/Mr Elements (AREA)

Abstract

 第1電極と第2電極の間に可変抵抗体を設けてなり、両電極間に電圧パルスを印加することにより電気抵抗が変化する可変抵抗素子を備えた半導体記憶装置において、可変抵抗体の還元反応を促進する還元種、及び酸化反応を促進する酸化種の透過をブロックする作用を有する材料から構成される反応阻止膜を少なくとも1層有する構造とする。これにより、製造工程途中で存在する水素若しくは酸素の影響による可変抵抗体の還元反応若しくは酸化反応で、可変抵抗素子の抵抗値が変動するのを抑制でき、抵抗値のばらつきの少ない且つ制御性の良好な半導体記憶装置を再現性良く安定に製造可能となる。

Description

明 細 書
可変抵抗素子を備えた半導体記憶装置
技術分野
[0001] 本発明は、第 1電極と第 2電極の間に可変抵抗体を設けてなり、両電極間に電圧パ ルスを印加することにより電気抵抗が変化する可変抵抗素子を備えた半導体記憶装 置に関する。
背景技術
[0002] 近年、フラッシュメモリに代わる高速動作可能な次世代不揮発性ランダムアクセスメ モリ (NVRAM : Nonvolatile Random Access Memory)として、 FeRAM (Fer roelectric RAM)、 MRAM (Magnetic RAM)、 OUM (Ovonic Unified Me mory)等の様々なデバイス構造が提案され、高性能化、高信頼性化、低コスト化、及 び、プロセス整合性という観点から、激しい開発競争が行われている。しかしながら、 現状のこれらメモリデバイスには各々一長一短があり、 SRAM, DRAM,フラッシュメ モリの各利点を併せ持つ「ユニバーサルメモリ」の理想実現には未だ遠 、。
[0003] これら既存技術に対し、米国ヒューストン大の Shangquing Liuや Alex Ignatiev 等によって、超巨大磁気抵抗効果で知られるぺロブスカイト材料に電圧パルスを印 加することにより可逆的に電気抵抗を変化させる方法が下記特許文献 1及び非特許 文献 1に開示されて ヽる。これは超巨大磁気抵抗効果で知られるぺロブスカイト材料 を用いながらも、磁場の印加なしに室温においても数桁にわたる抵抗変化が現れる という極めて画期的なものである。この現象を利用した可変抵抗素子を用いた抵抗 性不揮発性メモリ: RRAM (Resistance Random Access Memory) (登録商標 )は MRAMと異なり磁場を一切必要としないため消費電力が極めて低ぐ微細化、 高集積化も容易であり、抵抗変化のダイナミックレンジが MRAMに比べ格段に広い ため多値記憶が可能であるという優れた特徴を有する。
[0004] 実際の可変抵抗素子の基本構造は極めて単純で、基板垂直方向に下部電極材料 、可変抵抗体、上部電極材料の順に積層された構造となっている。尚、特許文献 1に 例示する素子構造では、ランタン'アルミニウム酸ィ匕物 LaAlO (LAO)の単結晶基板 上に堆積された下部電極材料はイットリウム 'バリウム '銅酸ィ匕物 YBa Cu O (YBC
2 3 7 o)膜であり、可変抵抗体はべ口ブスカイト型酸ィ匕物である結晶性プラセォジゥム '力 ルシゥム'マンガン酸化物 Pr Ca MnO (PCMO)膜であり、上部電極材料はスパ l -X X 3
ッタリングで堆積された Ag膜で、夫々形成されている。この可変抵抗素子の動作とし て、上部及び下部電極間に印加する電圧パルスを 51ボルトとして正、負に印加する ことにより、抵抗を可逆的に変化させることができることが報告された。この可逆的な 抵抗変化動作における抵抗値を読み出すことによって、新規な抵抗性記憶装置が 実現できるとしている。
[0005] また、可変抵抗体の材料としては、上記ぺロブスカイト材料以外に ZnSe— Geへテ 口構造、或いは、 Ti, Nb, Hf, Zr, Ta, Ni, V, Zn, Sn, In, Th, Alなどの金属の酸 化物についても、印加電圧パルス条件によって小さいながらも抵抗値が可変であるこ とが知られている。
[0006] この可変抵抗素子を備えた従来の一例としての抵抗性半導体記憶装置の概略断 面構造図を図 17に示す。
[0007] この半導体記憶装置は、半導体基板 101上に形成された選択トランジスタ Tと可変 抵抗素子 Rとからひとつのメモリセルを構成している。選択トランジスタ Tは、ゲート電 極 104とゲート絶縁膜 103、及び拡散層であるドレイン領域 105とソース領域 106か ら成り、素子分離領域 102を以つて隣接のメモリセルと電気的に分離されている。ま た、可変抵抗素子 Rは上述したように、上部電極である第 1電極 112と可変抵抗体 1 11と下部電極である第 2電極 110の積層構造で構成されて 、る。
[0008] 可変抵抗素子 Rは、選択トランジスタ T上に形成した第 1の層間絶縁膜 107を貫通 したコンタクトホール 108を介して、選択トランジスタ Tのドレイン領域 105と電気的に 接続している。なお、第 2電極 110と第 1の層間絶縁膜 107間にあるノリア膜 109は、 可変抵抗素子 Rとコンタクトホール 108に埋め込まれた導電性コンタクトプラグとの間 の安定な接続抵抗を確保するのを目的として ヽる。
[0009] 可変抵抗素子 Rと選択トランジスタ Tに電気信号を印加するための第 1のメタル配線 116及び 117が、第 2の層間絶縁膜 113及び第 1の層間絶縁膜 107を貫通したコン タクトホール 114と、第 2の層間絶縁膜 113内を貫通したコンタクトホール 115で、夫 々、選択トランジスタ Tのソース領域 106と可変抵抗素子 Rの第 1電極 112に電気的 に接続されている。
[0010] また、高速化'高集積ィ匕のための多層配線プロセスとして、第 2のメタル配線 119が 第 3の層間絶縁膜 118上に形成され、さらにその上面に、表面保護膜としてのノッシ ベーシヨン膜 120が形成されて 、る。
特許文献 1 :米国特許第 6204139号明細書
特干文献 1 : Liu, Q. ま Electric― pulse― induced reversible Resis tance change effect m magnetoresistive films , Applied Physics Let ter, Vol. 76, pp. 2749— 2751, 2000年
発明の開示
発明が解決しょうとする課題
[0011] 上述した可変抵抗素子 Rを備えた抵抗性半導体記憶装置では、表面保護膜である パッシベーシヨン膜 120としては、外部水分に対する耐湿性及び外部汚染に対する ブロック作用のあるプラズマ CVD法(プラズマ化学的気相成長法: Plasma activat ed Chemical Vapor Deposition)により成膜した SiNx膜或いは SiOxNy膜等 が一般的に用いられている。プラズマ CVD法では、成膜時にラジカルな水素原子を 発生させるので、ノッシベーシヨン膜 120の膜中には多量の水素原子が含まれてい る。
[0012] また、コンタクトホール 114、 115に埋め込まれる導電性コンタクトプラグの材料とし ては埋め込み被覆性に優れた W膜が一般的に用いられている。 W膜は通常、 WFと
6
SiHの熱反応による熱 CVD法により成膜されており、該成膜時の熱反応では水素
4
が生成される。
[0013] ここで、可変抵抗体の形成後に還元反応或いは酸化反応が生じる状態となると、そ の還元反応或いは酸ィ匕反応の影響を可変抵抗体が受けることを発明者らのグルー プが見出した。例えば、上記のように水素が発生すると還元反応により可変抵抗体の 抵抗値が変化するという現象が起きる。一方、可変抵抗体に対する酸化反応でも可 変抵抗素子の抵抗値が変化する現象は同様に発生する。なお、還元反応或いは酸 化反応によって抵抗値が上昇する力減少するかは、可変抵抗体に用いられている材 料によって異なる。
[0014] 上記した従来の半導体記憶装置では、可変抵抗体が還元反応されると抵抗値が 上昇し、酸ィ匕反応されると抵抗値が減少する。例えば、上述したようにプラズマ CVD 法による成膜及び W膜等の成膜工程中に水素が発生した場合は、還元反応により 可変抵抗体の抵抗値が上昇してしまうという現象が生じる。また、可変抵抗体が第 2 の層間絶縁膜 113及び第 3の層間絶縁膜 118として一般的に用いられて 、るシリコ ン酸化膜の成膜時には、成膜反応によらない酸素が微量に存在しており、該酸素に より促進される酸化反応により、可変抵抗体の抵抗値が減少してしまうという現象が 生じる。
[0015] さらに、半導体基板上での水素や酸素の発生量は、成膜される膜厚に概ね比例す るので、半導体基板面内、半導体基板間、及び処理間の成膜膜厚のばらつきに応じ て、可変抵抗素子の抵抗値のばらつきが大きくなつてしまうという問題が生じる。
[0016] 半導体記憶装置としての安定な動作を保証するためには、可変抵抗素子の抵抗値 を正確に制御する必要がある。し力しながら、可変抵抗体を半導体記憶装置に適用 すると、上述したようにその製造工程中で存在する還元反応を促進する還元種であ る水素、或いは酸化反応を促進する酸化種である酸素により可変抵抗素子の抵抗 値が変動したりするため、ばらつきが大きくなつてしまい、抵抗値が同じ可変抵抗素 子を備えた半導体記憶装置を再現性良く安定に作成することは困難であった。
[0017] また、成膜膜厚などの製造プロセス条件の僅かな変更が可変抵抗素子の抵抗値の 変動をもたらすので、その変更に制約を与えることになり、限定的な製造プロセスでし か製造できなくなってしまうという問題もあった。
[0018] そこで本発明では上記問題に鑑み、製造工程途中でのプロセスによる可変抵抗素 子の抵抗変化を防ぎ、安定な可変抵抗素子を備えた抵抗性半導体記憶装置を提供 することを目的としている。
課題を解決するための手段
[0019] 上記目的を達成させるために、本発明の半導体記憶装置では、第 1電極と第 2電 極の間に可変抵抗体を設けてなり、第 1電極と第 2電極間に電圧パルスを印加するこ とにより、第 1電極と第 2電極間の電気抵抗が変化する可変抵抗素子を備えた半導 体記憶装置において、少なくとも 1層の反応阻止膜を有することを特徴としている。
[0020] また、本発明の半導体記憶装置では、反応阻止膜が還元種の拡散を阻止し、可変 抵抗体の還元反応を抑制することを特徴として!/ヽる。
[0021] また、本発明の半導体記憶装置では、反応阻止膜が酸化種の拡散を阻止し、可変 抵抗体の酸化反応を抑制することを特徴として!ヽる。
[0022] また、本発明の半導体記憶装置では、反応阻止膜が、可変抵抗素子に密接して配 設されて!/、ることを特徴として!/、る。
[0023] また、本発明の半導体記憶装置では、前記反応阻止膜が、前記可変抵抗素子と表 面保護膜との間に配設されて 、ることを特徴として!、る。
[0024] また、本発明の半導体記憶装置では、前記第 1電極上若しくは前記第 2電極上に 形成されたコンタクトホール内に埋め込まれる導電性材料力 還元種と酸化種の少な くとも何れか一方の拡散を抑制する機能を有する材料を含んで成ることを特徴として いる。
[0025] また、本発明の半導体記憶装置では、前記コンタクトホール内に埋め込まれる導電 性材料が、 Si, Al, Ti, Ta, Hf, Wの内力 選択された少なくとも 1種の元素を含ん で構成される導電性窒化物、若しくは Ir, Ruの内から選択された少なくとも 1種の元 素を含んで構成される導電性酸化物、若しくは Ti, Ta, Ir, Ruの中から選択された 金属単体、若しくは Ti, Ta, Ir, Ru, Wの中カゝら選択された少なくとも 1種の元素を含 んで構成される合金であることを特徴として 、る。
[0026] また、本発明の半導体記憶装置では、反応阻止膜が、 Al, Ti, Ta, Hf, Pb, La, Z r, Sr, Bi, Pr, Ca, Mn, Si, Mg, Ceの内力 選択された少なくとも 1種の元素を含 んで構成される酸化物、若しくは、 Si, Al, Ti, Ta, Hf, Wの内から選択された少なく とも 1種の元素を含んで構成される窒化物、若しくは Ti, Ta, Ir, Ruの中カゝら選択さ れた金属単体、若しくは Ti, Ta, Ir, Ru, Wの中力 選択された少なくとも 1種の元素 を含んで構成される合金であることを特徴として 、る。
[0027] また、本発明の半導体記憶装置では、可変抵抗体が、 Pr, Ca, La, Sr, Gd, Nd, Bi, Ba, Y, Ce, Pb, Sm, Dyの内力 選択された少なくとも 1種の元素と、 Ta, Ti, Cu, Mn, Cr, Co, Fe, Ni, Gaの内力 選択された少なくとも 1種の元素を含んで構 成されるぺロブスカイト構造の酸ィ匕物であること特徴としている。
[0028] また、本発明の半導体記憶装置では、可変抵抗体が、 Pr Ca [Mn M ] 0系
1 -X X 1 -Z Z 3
(但し、 Mは Ta, Ti, Cu, Cr, Co, Fe, Ni, Gaの中から選択される何れかの元素)、 La AE MnO系(但し、 AEは Ca, Sr, Pb, Baの中から選択される何れかの 2価 l -X X 3
のァノレカリ土類金属)、 RE Sr MnO系(但し、 REは Sm, La, Pr, Nd, Gd, Dy
l -X X 3
の中力 選択される何れかの 3価の希土類元素)、 La Co [Mn Co ] 0系、 G l -X X 1 -Z Z 3 d Ca MnO系、及び、 Nd Gd MnO系、の内の何れか 1つの一般式(0≤X l -X X 3 l -X X 3
≤ 1, 0≤Z< 1)で表される系のぺロブスカイト構造の酸ィ匕物であることを特徴として いる。
[0029] また、本発明の半導体記憶装置では、可変抵抗体が、 ZnSe— Geヘテロ構造、若 しくは、 Ti, Nb, Hf, Zr, Ta, Ni, V, Zn, Sn, In, Th, Alの内から選択された少な くとも 1種の元素を含んで構成される金属酸ィ匕物であることを特徴として ヽる。
[0030] また、本発明の半導体記憶装置では、第 1電極と第 2電極の間に可変抵抗体を設 けてなり、第 1電極と第 2電極間に電圧パルスを印加することにより、第 1電極と第 2電 極間の電気抵抗が変化する可変抵抗素子を備えた半導体記憶装置において、第 1 電極上若しくは第 2電極上に形成されたコンタクトホール内に埋め込まれる導電性材 料が、還元種若しくは酸化種の拡散を抑制する機能を有する材料を含んで成ること を特徴としている。
[0031] コンタクトホール内に埋め込まれる導電性材料力 Si, Al, Ti, Ta, Hf, Wの内から 選択された少なくとも 1種の元素を含んで構成される導電性窒化物、若しくは Ir, Ru の内から選択された少なくとも 1種の元素を含んで構成される導電性酸化物、若しく は Ti, Ta, Ir, Ruの中から選択された金属単体、若しくは Ti, Ta, Ir, Ru, Wの中か ら選択された少なくとも 1種の元素を含んで構成される合金であることを特徴としてい る。
発明の効果
[0032] 本発明の可変抵抗素子を備えた半導体記憶装置では、少なくとも 1層の反応阻止 膜を有する構造とした。この反応阻止膜は、可変抵抗体の還元反応を促進する還元 種、及び可変抵抗体の酸化反応を促進する酸化種の透過をブロックする作用を有す る材料から構成されて ヽるので、可変抵抗体の還元反応による抵抗値の増加変動、 若しくは可変抵抗体の酸ィ匕反応による抵抗値の低下変動が抑制される。また、特に 該反応阻止膜を可変抵抗素子とパッシベーシヨンとの間に配設することで、可変抵 抗体成膜以降の製造工程途中でのプロセスの影響を回避することが可能となる。
[0033] 従って、本発明の可変抵抗素子を備えた半導体記憶装置によれば、抵抗値のばら つきの少ないかつ制御性の良好な半導体記憶装置を再現性良く実現させることがで きる。
図面の簡単な説明
[0034] [図 1]本発明の実施形態による可変抵抗素子を備えた半導体記憶装置の概略断面 図である。
[図 2]本発明の実施形態の半導体記憶装置の製造方法を工程順に記載した概略断 面図である。
[図 3]本発明の実施形態の半導体記憶装置の製造方法を工程順に記載した概略断 面図である。
[図 4]本発明の実施形態の半導体記憶装置の製造方法を工程順に記載した概略断 面図である。
[図 5]本発明の実施形態の半導体記憶装置の製造方法を工程順に記載した概略断 面図である。
[図 6]本発明の実施形態の半導体記憶装置の製造方法を工程順に記載した概略断 面図である。
[図 7]本発明の実施形態の半導体記憶装置の製造方法を工程順に記載した概略断 面図である。
[図 8]本発明の実施形態の半導体記憶装置の製造方法を工程順に記載した概略断 面図である。
[図 9]従来の半導体記憶装置における可変抵抗素子の抵抗測定結果を示す図であ る。
[図 10]本発明の実施形態の半導体記憶装置における可変抵抗素子の抵抗測定結 果を示す図である。 [図 11]本発明の実施形態による可変抵抗素子を備えた半導体記憶装置の変形例 1 を示す概略断面図である。
[図 12]本発明の実施形態による可変抵抗素子を備えた半導体記憶装置の変形例 2 を示す概略断面図である。
[図 13]本発明の実施形態による可変抵抗素子を備えた半導体記憶装置の変形例 3 を示す概略断面図である。
[図 14]本発明の実施形態による可変抵抗素子を備えた半導体記憶装置の変形例 4 を示す概略断面図である。
[図 15]本発明の実施形態による可変抵抗素子を備えた半導体記憶装置の変形例 5 を示す概略断面図である。
[図 16]本発明の実施形態による可変抵抗素子を備えた半導体記憶装置の変形例 6 を示す概略断面図である。
圆 17]従来の可変抵抗素子を備えた半導体記憶装置の概略断面図である。
符号の説明
T 選択トランジスタ
R 可変抵抗素子
101 半導体基板
102 素子分離領域
103 ゲート絶縁膜
104 ゲート電極
105 ドレイン領域
106 ソース領域
107 第 1の層間絶縁膜
108, 114, 115 コンタクトホール
109 ノ リア層
110 下部電極
111 可変抵抗体
112 上部電極 113 第 2の層間絶縁膜
116, 117 第 1の配線層
118 第 3の層間絶縁膜
119 第 2の配線層
120 パッシベーシヨン膜
201, 202, 203, 204, 205, 206, 207 反応阻止膜
発明を実施するための最良の形態
[0036] 以下、本発明に係る半導体記憶装置の実施の形態を、図面に基づいて説明する。
本発明の可変抵抗素子を備えた抵抗性半導体記憶装置の概略断面構造図を図 1 に示す。本発明の実施の形態である半導体記憶装置は、図 17に示した従来の抵抗 性半導体記憶装置に対して、反応阻止膜 201及び 202を追加したものである。即ち 、可変抵抗素子 R上に反応阻止膜 201を、ノ¾シベーシヨン膜 120の直下に反応阻 止膜 202を配設したものである。反応阻止膜 201は可変抵抗素子 Rへの還元種であ る水素若しくは酸ィ匕種である酸素の侵入を阻止するものであり、反応阻止膜 202は、 パッシベーシヨン膜 120からの還元種である水素の拡散を抑制する働きを有する。な お、図 17に示した抵抗性半導体記憶装置と同一の構成については同一の符号を付 し説明を省略している。
[0037] 図 2から図 8は、本実施例の半導体記憶装置の製造工程を工程フロー順に示した 概略断面構造図である。本実施形態の構造の半導体記憶装置は、以下、図面に従 つて詳細に説明する工程を経て形成することができる。
[0038] まず、図 2に示すように、公知の手順に従って、半導体基板 101上に選択トランジス タ Tを形成する。即ち、素子分離領域 102を形成した半導体基板 101上にゲート絶 縁膜 103、ゲート電極 104、及び拡散層であるドレイン領域 105及びソース領域 106 力も構成される選択トランジスタ Tを形成する。その後、その上に第 1の層間絶縁膜 1 07を形成する。本実施例では、膜厚 1200nmの厚みで BPSG (borophosphosilica te glass)膜を堆積させた後、さらにその表面を所謂 CMP法 (ィ匕学的機械的研磨法 : Chemical Mechanical Polishing Method)にて、ゲート電極 104上の BPSG 膜の厚み力 S400nmとなるまで研磨することにより表面を平坦ィ匕した。 [0039] 次に、公知のフォトリソグラフィの手法によってパターユングしたレジストをマスクとし て第 1の層間絶縁膜 107をエッチングすることにより、選択トランジスタ Tのドレイン領 域 105に到達するコンタクトホール 108を開口する。そして、導電性ポリシリコン膜を 堆積した後 CMP法により研磨することで、第 1の層間絶縁膜 107上の導電性ポリシリ コン膜を完全に除去してコンタクトホール 108内のみに導電性ポリシリコン膜を残存さ せる。当該工程により、コンタクトホール 108内のみに導電性ポリシリコンで埋め込ん だコンタクトプラグを形成する。
[0040] 次に、図 3に示すように、コンタクトホール 108内に埋め込まれた導電性コンタクトプ ラグと下部電極 110との電気的接続を確保するためのノ リアメタル層 109と、下部電 極の材料となる膜 110と、可変抵抗体の材料となる膜 111と、上部電極の材料となる 膜 112を順次成膜する。
[0041] 本実施例では、バリアメタル層 109として、厚さ 20nmの Ti膜と厚さ 50nmの TiN膜 とを、夫々スパッタリング法にて順次堆積した積層構造 (TiNZTi膜)とした。
[0042] また本実施例では、下部電極である第 2電極の一例としての Pt膜 110を膜厚 100 〜200nmの厚みで堆積した。
[0043] また本実施例では、可変抵抗体の一例としての PCMO膜 111をスパッタリング法に より膜厚 lOOnmで形成した。 PCMO膜 111の成膜は 300〜500°Cに基板を加熱し 、成膜圧力 5〜20mTorr.において、 PCMO焼結体のターゲットを Arイオンでスパ ッタリングし、反応性ガスとして導入した酸素と反応させて基板上に成膜する。本実施 例では、 PCMO膜を Pr Ca MnOの組成比で成膜した。
0. 7 0. 3 3
[0044] また本実施例では、スパッタリング法にて上部電極である第 1電極の一例としての P t膜 112を膜厚 1 OOnmで堆積した。
[0045] 次に、図 4に示すように、可変抵抗素子 Rを形成する。即ち、フォトリソグラフィの手 法によってパターユングしたレジストをマスクとして第 1電極の材料である Pt膜 112を ドライエッチングすることにより上部電極 112を形成し、さらに、同様な手順により、抵 抗体膜 111、下部電極 110及びバリアメタル膜 109を順次エッチングした。
[0046] 次に、 1%の水素ガスを含んだ窒素雰囲気中で、急速加熱法 (RTA:Rapid Ther mal Annealing)〖こより、基板加熱温度 400°Cで、 15min間熱処理を施した。当該 工程の目的は、可変抵抗素子の抵抗値を上昇させて所定の値に制御することを目 的としたものである。
[0047] 次に、反応阻止膜 201を可変抵抗素子 R上に成膜する。本実施例では、 AlOx膜 をスパッタリング法を用いて 50nmの厚みで成膜した。そして、図 5に示すように、該 反応阻止膜 201上に第 2の層間絶縁膜 113として厚さ lOOOnmのシリコン酸ィ匕膜を CVD法にてさらに成膜した後、平坦ィ匕のために表面を CMP法にて、上部電極 112 上のシリコン酸ィ匕膜の厚み力 S400nmとなるまで研磨した。
[0048] 次に、フォトリソグラフィの手法によってパターユングしたレジストをマスクとして第 2 の層間絶縁膜 113をエッチングすることにより、上部電極 112に到達するコンタクトホ ール 115を開口する。また、同じくフォトリソグラフィの手法によってパターユングした レジストをマスクとして第 2の層間絶縁膜 113、反応阻止膜 201、及び第 1の層間絶 縁膜 107を順次エッチングすることにより、選択トランジスタ Tのソース領域 106に到 達するコンタクトホール 114を開口する。引き続き、 WZTiNZTi膜を堆積した後 C MP法により研磨することで、第 2の層間絶縁膜 107上の WZTiNZTi膜を完全に除 去してコンタクトホール 114及び 115内のみに WZTiNZTi膜を残存させる。当該ェ 程により、コンタクトホール 114及び 115内のみに導電性材料力もなる導電性コンタク トプラグを形成する。なお本実施例では、厚さ 50nmZ20nmの TiNZTi膜をスパッ タリング法にて成膜した上に、厚さ 600nmの W膜を CVD法により成膜した。
[0049] 次に、第 1のメタル配線 116、 117の材料膜を堆積する。本実施例では、厚さ 50η mの TiN膜と厚さ 400nmの A1 - Si膜と厚さ 50nmの TiN膜とを、夫々スパッタリング 法にて順次堆積した積層構造 (TiNZAl— SiZTiN膜)とした。そして、フォトリソダラ フィの手法によってパターユングしたレジストをマスクとして当該メタル配線材料をエツ チングすることにより、図 6に示すように、第 1のメタル配線 116及び 117を形成する。
[0050] 次に、第 1のメタル配線 116及び 117上に第 3の層間絶縁膜 118を成膜する。本実 施例では、厚さ 1300nmのシリコン酸ィ匕膜をプラズマ CVD法により堆積した後、平坦 化のために表面をさらに CMP法にて、第 1のメタル配線 116及び 117上のシリコン酸 化膜の厚みが 500nmとなるまで研磨した。そして、第 1のメタル配線に到達するコン タクトホール(図示せず)を形成した後、図 7に示すように、第 2のメタル配線の材料膜 119を堆積し、その加工(図示せず)を行う。
[0051] 次に、反応阻止膜 202を第 2のメタル配線 119上に成膜する。本実施例では、 AIO X膜をスパッタリング法を用いて 50nmの厚みで成膜した。そして、図 8に示すように、 表面保護膜としてのパッシベーシヨン膜 120を堆積する。本実施例では、厚さ 1500η mの SiNx膜をプラズマ C VD法により堆積した。
[0052] なお、以上の説明では、フォトレジストを塗布、露光、及び現像する工程や、エッチ ング後にフォトレジストを除去する工程や、エッチング及びレジスト除去後の洗浄工程 などの一般的な工程にっ 、ては省略して記述して 、る。
[0053] 以上説明した本発明の実施の形態である半導体記憶装置では、反応阻止膜 201 として成膜した AlOx膜は、水素及び酸素の透過をブロックする作用を有して 、るの で、可変抵抗体素子 R、特に可変抵抗体 111への還元反応を促進する還元種であ る水素、及び酸化反応を促進する酸化種である酸素の侵入を阻止する働きがある。
[0054] また、反応阻止膜 202として成膜した AlOx膜は、水素及び酸素の透過をブロック する作用を有しているので、ノッシベーシヨン膜 120の成膜時に発生する水素の可 変抵抗体 Rへの拡散を抑制する働きがある。
[0055] 従って、反応阻止膜 201及び 202により、製造工程中で発生する酸素及び水素の 可変抵抗体素子 Rへの侵入を抑制することができるので、可変抵抗体 111の還元反 応若しくは酸ィ匕反応を回避することができる。
[0056] ここで、反応阻止膜 201と可変抵抗体 Rとの間にシリコン酸ィ匕膜等の層間絶縁膜が 存在すると、該膜中の酸素若しくは水素の影響を受けるので、反応阻止膜 201は可 変抵抗素子 Rに密接して配設するのがより望ましい。
[0057] 次に、本発明の半導体記憶装置の優位性を電気特性データにより以下に説明する 。図 9は反応阻止膜 201、 202を形成していない半導体記憶装置による 100万個の 可変抵抗素子の低抵抗状態の抵抗値の分布であり、同じぐ図 10は本発明の半導 体記憶装置によるものである。横軸は可変抵抗素子の抵抗値を、縦軸は可変抵抗素 子の累積度数を正規分布スケールで示している。図 9に示すように、従来の半導体 記憶装置では、 1桁以上の抵抗値ばらつきがあつたが、本発明の半導体記憶装置で は、図 10に示すように、抵抗値のばらつきが約 3分の 1程度に抑制されている。本ば らつきの改善は、反応阻止膜 201及び 202を構造的に付加した効果であり、該反応 阻止膜 201及び 202が製造工程中で発生する酸素及び水素の可変抵抗体に対す る拡散を阻止して、可変抵抗体の還元反応による抵抗値の増加変動、及び可変抵 抗体の酸ィ匕反応による抵抗値の減少変動が抑制されたためである。その結果、一つ の可変抵抗体に異なる抵抗値を設定して多値情報を記憶させる記憶装置において は、記憶情報のレベル判定が容易になり、信頼性の高い記憶装置を構成することが できる。
[0058] 本発明の半導体記憶装置は、以上説明した実施例の構造に限定されるものではな い。図 11から図 16に示した変形例 1から変形例 6のように、本発明の特徴である反応 阻止膜の適用を適宜変更することが可能である。以下、本図面に基づいてその変形 例について詳細に説明する。
[0059] 図 1に示した実施例では 2層の反応阻止膜 201及び 202を有する構造とした力 反 応阻止膜の層数はこれに限定されるものではない。例えば、図 11で示した本実施形 態の変形例 1に示すように、反応阻止膜を 3層としても良い。即ち、図 1で示した実施 例に対して、第 3の層間絶縁膜 118中に反応阻止膜 203をさらに配置しても良い。こ の場合、特にパッシベーシヨン膜 120の成膜時には 3層の反応阻止膜 201、 202及 び 203が保護膜となるので、図 1の実施例(2層の場合)に対して 1層当たりの膜厚を 薄く設定することが可能となるので、反応阻止膜が関与する加工 (例えば、コンタクト ホール 114及び 115のエッチング)がし易くなるという利点がある。また、各層の阻止 能力をある程度弱 、材料とすることもできるので、反応阻止膜の材料の選択度が増 すという利点がある。
[0060] また、これとは反対に可変抵抗素子 Rとパッシベーシヨン膜の間であれば、反応阻 止膜を 1層のみとしても構わない。この場合、図 1若しくは図 11における反応阻止膜 2 01のように、可変抵抗体の還元及び酸ィヒ反応を抑制するためには、可変抵抗素子 Rに密接して配設するのがより望ましい。ただしこの場合、図 1の実施例(2層の場合) と同等の効果を出すために必要な膜厚、材料等が反応阻止膜 201には要求される。
[0061] 反応阻止膜 201を可変抵抗体 Rに密接して配設する場合、第 1電極 112、可変抵 抗体 111及び第 2電極 110の加工による段差が存在するので、可変抵抗体 Rの側面 での成膜厚が極端に薄くならないように、反応阻止膜 201の成膜には良好な被覆性 が要求される。これに対して、図 12に示した本実施形態の変形例 2では、第 2の層間 絶縁膜 113中に可変抵抗素子膜 204を配置しており、可変抵抗体 Rの段差が緩和さ れた表面に反応阻止膜 204を成膜するので、被覆性の劣る膜でも適用することが可 能となる。この場合、反応阻止膜 204と可変抵抗素子 Rの間にある層間絶縁膜 113 の一部の部分によって、可変抵抗素子 Rは僅かながらも影響を受けてしまう。しかし、 この影響と上記被覆性の問題による反応阻止能力の低下とを斟酌して、本構造の方 を選択することも可能である。
[0062] また、図 1に示した実施例では、コンタクトホール 115を埋め込む導電性コンタクトプ ラグとして、 WZTiNZTi膜を材料とした。ここで、 TiN膜も酸素及び水素の透過をブ ロックする作用を有するので、反応阻止膜 201上に開口部分 115があっても、結果的 にコンタクトプラグが酸素及び水素を遮断する役目を果たしていた。そこで、図 13に 示した本実施形態の変形例 3のように、例えば TiN力も成る反応素子膜 205をコンタ タトホール 115内に配設しても良い。この場合、コンタクトホール 115内に埋め込まれ る材料の選択に制限を与えることがなくなる。ただし、反応阻止膜 205は導電性材料 でなければならない。
[0063] また、図 14に示した本実施形態の変形例 4のように、コンタクトホール 115内の側面 のみに反応阻止膜 206を配設しても良い。この場合、反応阻止膜 206は必ずしも導 電性材料である必要は無ぐ AlOx等の絶縁材料でも構わな 、。
[0064] 以上説明した図 1から図 8及び図 11から図 14の実施例及び変形例では、導電性コ ンタクトプラグを介して下部電極である第 2電極 110と選択トランジスタ Tのドレイン領 域 105とを接続する構造としたがこれに限定されるものではない。例えば、図 15に示 した本実施形態の変形例 5のように、上部電極である第 1電極 112と選択トランジスタ Tのドレイン領域 105をメタル配線 122で吊り上げて接続する構成のメモリセルに対し て、反応阻止膜 201, 202を同様に適用しても構わない。
[0065] 図 15の変形例 5では、図 1の実施例と同様に第 2電極の一例として Pt膜が使用さ れる。ここで、 Pt膜は酸素及び水素の透過を阻止できない。そこで、図 16に示した本 実施形態の変形例 6のように、下部電極である第 2電極の下に反応阻止膜 207を配 しても良い。反応阻止膜 207の材料としては、 AlOx等の絶縁材料でも構わないし、 TiN膜等を含む導電性材料でも構わない。また、図 13の変形例 3と同様に、反応阻 止膜 205をコンタクトホール 115内に配することで、可変抵抗素子 Rを反応阻止膜 (こ の場合、 201、 205、及び 207)で完全に包含するようにしても良い。
[0066] 以上説明した図 1から図 8及び図 11から図 16の実施例及び変形例では、可変抵 抗素子 Rを第 1電極、可変抵抗体及び第 2電極を順次加工する構造としたがこれに 限定されるものではなぐ反応阻止膜が可変抵抗素子を保護する目的で配設される ものであれば、可変抵抗素子の形状は!、かなる構造であっても本発明の発明要件の 構成を損なわない。また同様に、メモリセル構成についても、選択トランジスタ Tを有 するメモリセル構成としたがこれに限定されるものではない。例えば、第 1電極と第 2 電極を直接選択して、その交点(クロスポイント)にある可変抵抗体のデータを直接読 み出すメモリセル構成、所謂クロスポイント構成のメモリセルに対して、反応阻止膜を 同様に適用しても構わない。
[0067] 以上説明した実施例及び変形例 1から 6では、反応阻止膜 201から 207として、酸 化アルミニウム膜 (AlOx膜)或いは窒化チタン膜 (TiN膜)を用いたがこれに限定さ れるものではない。例えば、反応阻止膜 201から 205及び 207に適用できうる、酸素 若しくは水素の透過をブロックする作用を有する絶縁性材料としては、酸化チタン、 酸化タンタル、酸化ジルコニウム、酸化ストロンチウム、酸化マグネシウム、酸化セレン 、酸ィ匕ランタン、酸ィ匕チタンアルミニウム、酸ィ匕タンタルアルミニウム、珪化酸化チタン 、珪ィ匕酸ィ匕タンタル、及び酸窒化チタンなどの酸ィ匕物及び酸窒化物が知られている 。また、タンタノレ酸ストロンチウムビスマス(SBT)、チタン酸ノ リウムストロンチウム(BS T)、ジルコンチタン酸鉛(PZT)、チタン酸鉛(PTO)、チタン酸ストロンチウム(STO) 、チタン酸ビスマス (BIT)などのぺロブスカイト型酸ィ匕物も同様の機能を有して 、る。 また、シリコン窒化膜 (SiNx膜)及びシリコン酸窒化膜 (SiOxNy膜)も優れた酸素及 び水素のブロック性を有しており、プラズマ CVD法よりも水素の発生しにくい LPCV D法(減圧気相成長法: Low Pressure Chemical Vapor Deposition)で成膜 することにより反応阻止膜として適用することができる。ただし、成膜温度が 700°C前 後と高温であるため、メタル配線 116、 117の形成以前に成膜する反応阻止膜 201、 204、 206及び 207でなければならない。
[0068] また、反応阻止膜 205から 207に適用できうる、酸素若しくは水素の透過をブロック する作用を有する導電性材料としては、チタン、タンタル、イリジウム、ルテニウムなど の金属。或いは、チタンアルミニウム、タンタルアルミニウム、ルテニウムシリサイド、タ ングステンボライド、チタンボライド、タングステンカーノ イド、チタンカーノ イドなどの 合金。或いは、窒化チタン、窒化タンタル、窒化アルミニウム、窒化タングステン、窒 化チタンアルミニウム、窒化タンタルアルミニウム、珪化窒化チタン、珪化窒化タンタ ル、珪ィ匕窒化タングステン、珪ィ匕窒化イリジウム、珪化窒化白金などの導電性窒化物 。或いは、酸化イリジウム、酸化ルテニウム、ルテニウム酸ストロンチウム(SRO)など の導電性酸化物が知られて 、る。
[0069] また、可変抵抗体 111としては、化学式では「ABO」で表示され、チタン酸鉛 (Pb
3
TiO )、チタン酸バリウム(BaTiO )等で代表されるぺロブスカイト型酸ィ匕物がある。
3 3
例えば、 Pr, Mn系ぺロブスカイト型酸化物も上記「ABO」の化学式で、「A」の位置
3
に Prがー部または全部置換され、「B」の位置に Mnがー部または全部置換された場 合となり、例えば、 Pr A MnO系(0≤X≤ 1)のような簡単な形態となることもでき
1 -X X 3
、また、(Pr A ) (Mn B ) 0系(0≤X≤1, 0≤Z< 1)等のような Aまたは Bに置
1 -X X 1 -Z Z 3
換される原子の数が増加する形態となることもできる。 Aは、 Ca, La, Sr, Gd, Nd, B i, Ceの内力 選択した少なくとも 1種の元素、 Bは Ta, Ti, Cu, Cr, Co, Fe, Ni, G aの内から選択した少なくとも 1種の元素を用いることができる。
[0070] 可変抵抗体 111となるぺロブスカイト型構造の酸ィ匕物として、代表的には、(Pr, Ca ) MnO , SrTiO , (Ba, Sr)TiO , LaMnO , LaTiO , (Nd, Sr) MnO , (La, Sr
3 3 3 3 3 3
) MnO等が挙げられる。
3
[0071] この種の材料は、電圧パルスの印加により電気抵抗が変化する現象を呈するが、 その中でも Pr Ca MnO系の材料(PCMO膜)がより大きな電圧パルスによる抵
1 -X X 3
抗値変化を示し、更に、 X=0. 3付近の組成が、本発明の可変抵抗体 111として好 ましい。
[0072] また、電気抵抗変化がぺロブスカイト型構造に比べ小さいが、 ZnSe— Geヘテロ構 造、或いは、 Ti, Nb, Hf, Zr, Ta, Ni, V, Zn, Sn, In, Th, Alなどの金属の酸化 物を可変抵抗体 111として用いることもできる。なお、可変抵抗体として適用できるど の材料を用いた場合でも、可変抵抗体の抵抗値が酸化反応又は還元反応によって 変化する場合は、本発明を適用することが可能である。

Claims

請求の範囲
[1] 第 1電極と第 2電極の間に可変抵抗体を設けてなり、前記第 1電極と前記第 2電極 間に電圧パルスを印加することにより、前記第 1電極と前記第 2電極間の電気抵抗が 変化する可変抵抗素子を備えた半導体記憶装置において、
少なくとも 1層の反応阻止膜を有することを特徴とする半導体記憶装置。
[2] 前記反応阻止膜が、還元種の拡散を阻止し、前記可変抵抗体の還元反応を抑制 することを特徴とする請求項 1に記載の半導体記憶装置。
[3] 前記反応阻止膜が、酸化種の拡散を阻止し、前記可変抵抗体の酸化反応を抑制 することを特徴とする請求項 1に記載の半導体記憶装置。
[4] 前記反応阻止膜が、前記可変抵抗素子に密接して配設されて!/、ることを特徴とす る請求項 1から請求項 3の何れか 1項に記載の半導体記憶装置。
[5] 前記反応阻止膜が、前記可変抵抗素子と表面保護膜との間に配設されていること を特徴とする請求項 1から請求項 3の何れか 1項に記載の半導体記憶装置。
[6] 前記第 1電極上若しくは前記第 2電極上に形成されたコンタクトホール内に埋め込 まれる導電性材料が、還元種と酸化種の少なくとも何れか一方の拡散を抑制する機 能を有する材料を含んで成ることを特徴とする請求項 1から請求項 3の何れか 1項に 記載の半導体記憶装置。
[7] 前記コンタクトホール内に埋め込まれる導電性材料力 Si, Al, Ti, Ta, Hf, Wの 内から選択された少なくとも 1種の元素を含んで構成される導電性窒化物、若しくは I r, Ruの内から選択された少なくとも 1種の元素を含んで構成される導電性酸化物、 若しくは Ti, Ta, Ir, Ruの中から選択された金属単体、若しくは Ti, Ta, Ir, Ru, W の中から選択された少なくとも 1種の元素を含んで構成される合金であることを特徴と する請求項 6に記載の半導体記憶装置。
[8] 前記反応阻止膜力 Al, Ti, Ta, Hf, Pb, La, Zr, Sr, Bi, Pr, Ca, Mn, Si, Mg
, Ceの内から選択された少なくとも 1種の元素を含んで構成される酸ィ匕物、若しくは、 Si, Al, Ti, Ta, Hf, Wの内力 選択された少なくとも 1種の元素を含んで構成され る窒化物、若しくは Ti, Ta, Ir, Ruの中から選択された金属単体、若しくは Ti, Ta, Ir , Ru, Wの中カゝら選択された少なくとも 1種の元素を含んで構成される合金であること を特徴とする請求項 1から請求項 3の何れか 1項に記載の半導体記憶装置。
[9] 前記可変抵抗体力 Pr, Ca, La, Sr, Gd, Nd, Bi, Ba, Y, Ce, Pb, Sm, Dyの 内から選択された少なくとも 1種の元素と、 Ta, Ti, Cu, Mn, Cr, Co, Fe, Ni, Ga の内から選択された少なくとも 1種の元素を含んで構成されるぺロブスカイト構造の酸 化物であること特徴とする請求項 1から請求項 3の何れか 1項に記載の半導体記憶装 置。
[10] 前記可変抵抗体が、 Pr Ca [Mn M ]0系(但し、 Mは Ta, Ti, Cu, Cr, Co
l -X X 1 -Z Z 3
, Fe, Ni, Gaの中から選択される何れかの元素)、 La AE MnO系(但し、 AEは
l -X X 3
Ca, Sr, Pb, Baの中力 選択される何れかの 2価のアルカリ土類金属)、 RE Sr
l -X X
MnO系(但し、 REは Sm, La, Pr, Nd, Gd, Dvの中から選択される何れかの 3価
3
の希土類元素)、 La Co [Mn Co ]0系、 Gd Ca MnO系、及び、 Nd
l -X X 1 -Z Z 3 l -X X 3 l -X
Gd MnO系、の内の何れか 1つの一般式(0≤X≤1, 0≤Z< 1)で表される系のぺ
X 3
口ブスカイト構造の酸化物であることを特徴とする請求項 1から請求項 3の何れか 1項 に記載の半導体記憶装置。
[11] 前記可変抵抗体が、 ZnSe— Geヘテロ構造、若しくは、 Ti, Nb, Hf, Zr, Ta, Ni, V, Zn, Sn, In, Th, Alの内力 選択された少なくとも 1種の元素を含んで構成され る金属酸ィ匕物であることを特徴とする請求項 1から請求項 3の何れ力 1項に記載の半 導体記憶装置。
[12] 第 1電極と第 2電極の間に可変抵抗体を設けてなり、前記第 1電極と前記第 2電極 間に電圧パルスを印加することにより、前記第 1電極と前記第 2電極間の電気抵抗が 変化する可変抵抗素子を備えた半導体記憶装置において、
前記第 1電極上若しくは前記第 2電極上に形成されたコンタクトホール内に埋め込 まれる導電性材料が、還元種と酸化種の少なくとも何れか一方の拡散を抑制する機 能を有する材料を含んで成ることを特徴とする半導体記憶装置。
[13] 前記コンタクトホール内に埋め込まれる導電性材料力 Si, Al, Ti, Ta, Hf, Wの 内から選択された少なくとも 1種の元素を含んで構成される導電性窒化物、若しくは I r, Ruの内から選択された少なくとも 1種の元素を含んで構成される導電性酸化物、 若しくは Ti, Ta, Ir, Ruの中から選択された金属単体、若しくは Ti, Ta, Ir, Ru, W の中から選択された少なくとも 1種の元素を含んで構成される合金であることを特徴と する請求項 12に記載の半導体記憶装置。
PCT/JP2006/313397 2005-07-20 2006-07-05 可変抵抗素子を備えた半導体記憶装置 WO2007010746A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/995,876 US20090102598A1 (en) 2005-07-20 2006-07-05 Semiconductor memory device with variable resistance element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-209697 2005-07-20
JP2005209697A JP2007027537A (ja) 2005-07-20 2005-07-20 可変抵抗素子を備えた半導体記憶装置

Publications (1)

Publication Number Publication Date
WO2007010746A1 true WO2007010746A1 (ja) 2007-01-25

Family

ID=37668628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313397 WO2007010746A1 (ja) 2005-07-20 2006-07-05 可変抵抗素子を備えた半導体記憶装置

Country Status (4)

Country Link
US (1) US20090102598A1 (ja)
JP (1) JP2007027537A (ja)
TW (1) TW200742041A (ja)
WO (1) WO2007010746A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009038032A1 (ja) * 2007-09-18 2009-03-26 Nec Corporation 抵抗変化素子および半導体記憶装置
EP2139054A3 (en) * 2008-06-25 2011-08-31 Samsung Electronics Co., Ltd. Memory device and method of manufacturing the same
US8049204B2 (en) * 2007-02-19 2011-11-01 Nec Corporation Semiconductor memory device having variable resistance element and method for manufacturing the same
US8169053B2 (en) 2008-01-22 2012-05-01 Samsung Electronics Co., Ltd. Resistive random access memories and methods of manufacturing the same
US20120286231A1 (en) * 2010-01-21 2012-11-15 Nec Corporation Semiconductor device and method of manufacturing the same
US8458841B2 (en) 2007-06-20 2013-06-11 Braun Gmbh Brush head for a toothbrush

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042784A (ja) * 2005-08-02 2007-02-15 Nippon Telegr & Teleph Corp <Ntt> 金属酸化物素子及びその製造方法
US8395199B2 (en) 2006-03-25 2013-03-12 4D-S Pty Ltd. Systems and methods for fabricating self-aligned memory cell
US7932548B2 (en) 2006-07-14 2011-04-26 4D-S Pty Ltd. Systems and methods for fabricating self-aligned memory cell
WO2008123139A1 (ja) * 2007-03-26 2008-10-16 Murata Manufacturing Co., Ltd. 抵抗記憶素子
WO2008126365A1 (ja) * 2007-03-29 2008-10-23 Panasonic Corporation 不揮発性記憶装置、不揮発性記憶素子および不揮発性記憶素子アレイ
JP5526776B2 (ja) * 2007-04-17 2014-06-18 日本電気株式会社 抵抗変化素子及び該抵抗変化素子を含む半導体装置
WO2008146461A1 (ja) 2007-05-18 2008-12-04 Panasonic Corporation 不揮発性記憶素子およびその製造方法、並びにその不揮発性記憶素子を用いた不揮発性半導体装置
KR101326077B1 (ko) * 2007-08-24 2013-11-07 삼성전자주식회사 저항성 메모리 소자
CN101568971B (zh) 2007-09-28 2012-11-07 松下电器产业株式会社 非易失性存储元件和半导体存储装置及其读写方法
WO2009057211A1 (ja) * 2007-10-31 2009-05-07 Fujitsu Microelectronics Limited 半導体装置及びその製造方法
JP5175525B2 (ja) * 2007-11-14 2013-04-03 株式会社東芝 不揮発性半導体記憶装置
KR20090081153A (ko) * 2008-01-23 2009-07-28 삼성전자주식회사 저항성 메모리 소자 및 그 제조방법
JP4555397B2 (ja) 2008-08-20 2010-09-29 パナソニック株式会社 抵抗変化型不揮発性記憶装置
JP5357532B2 (ja) * 2008-12-22 2013-12-04 シャープ株式会社 可変抵抗素子及びその製造方法
WO2010125780A1 (ja) * 2009-04-30 2010-11-04 パナソニック株式会社 不揮発性記憶素子及び不揮発性記憶装置
JP4763858B2 (ja) * 2009-08-03 2011-08-31 パナソニック株式会社 半導体メモリの製造方法
JP2011040483A (ja) * 2009-08-07 2011-02-24 Toshiba Corp 抵抗変化メモリ
JP4975887B2 (ja) * 2010-03-08 2012-07-11 パナソニック株式会社 不揮発性記憶素子およびその製造方法
US20130009128A1 (en) * 2010-03-31 2013-01-10 Gilberto Ribeiro Nanoscale switching device
CN102237309B (zh) * 2010-05-06 2013-06-12 复旦大学 氧化锰基电阻型存储器与铜互连后端工艺集成的方法
WO2012036685A1 (en) * 2010-09-16 2012-03-22 Hewlett-Packard Development Company, L.P. Nanoscale switching device
CN103168359B (zh) 2010-12-03 2016-05-04 松下知识产权经营株式会社 非易失性存储元件和非易失性存储装置及它们的制造方法
TWI508341B (zh) 2014-04-02 2015-11-11 Winbond Electronics Corp 電阻式隨機存取記憶體及其製造方法
WO2015198573A1 (ja) * 2014-06-25 2015-12-30 日本電気株式会社 半導体装置、および半導体装置の製造方法
WO2015199706A1 (en) * 2014-06-26 2015-12-30 Intel Corporation Oxide-based three-terminal resistive switching logic devices
JP2015065459A (ja) * 2014-11-17 2015-04-09 スパンション エルエルシー 不揮発性メモリ用可変抵抗およびその製造方法並びに不揮発性メモリ
US9972779B2 (en) * 2015-12-14 2018-05-15 Winbond Electronics Corp. Resistive random access memory
US10593877B2 (en) * 2015-12-14 2020-03-17 Winbond Electronics Corp. Resistive random access memory
US20190181337A1 (en) * 2016-09-25 2019-06-13 Intel Corporation Barriers for metal filament memory devices
US10454026B2 (en) * 2016-12-06 2019-10-22 Arm Ltd. Controlling dopant concentration in correlated electron materials
JP6922202B2 (ja) * 2016-12-07 2021-08-18 富士電機株式会社 半導体装置および半導体装置の製造方法
US11063209B2 (en) * 2017-05-30 2021-07-13 Samsung Electronics Co., Ltd. Method and system for providing magnetic junctions utilizing oxygen blocking, oxygen adsorber and tuning layer(s)
CN109994603B (zh) * 2017-12-29 2023-01-13 长鑫存储技术有限公司 半导体器件结构及制备方法
TWI702744B (zh) * 2018-04-30 2020-08-21 華邦電子股份有限公司 電阻式隨機存取記憶體結構及其製造方法
JP7386805B2 (ja) 2018-11-07 2023-11-27 ソニーセミコンダクタソリューションズ株式会社 磁気抵抗素子及び半導体装置
FI20205101A1 (en) * 2020-01-31 2021-08-01 Turun Yliopisto New thin film material for memristor and memristor with such material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0997883A (ja) * 1995-09-29 1997-04-08 Sony Corp 半導体メモリ素子のキャパシタ構造及びその形成方法
JPH11297942A (ja) * 1998-04-08 1999-10-29 Nec Corp 強誘電体メモリ装置およびその製造方法
JP2002537627A (ja) * 1999-02-17 2002-11-05 インターナショナル・ビジネス・マシーンズ・コーポレーション 情報を保存するマイクロ電子デバイスとその方法
JP2005092912A (ja) * 2003-09-12 2005-04-07 Sharp Corp 不揮発性半導体記憶装置
JP2005123361A (ja) * 2003-10-16 2005-05-12 Sony Corp 抵抗変化型不揮発性メモリおよびその製造方法ならびに抵抗変化層の形成方法
JP2005175457A (ja) * 2003-12-08 2005-06-30 Sharp Corp Rramメモリセル電極
JP2006120707A (ja) * 2004-10-19 2006-05-11 Matsushita Electric Ind Co Ltd 可変抵抗素子および半導体装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW421858B (en) * 1997-06-30 2001-02-11 Texas Instruments Inc Integrated circuit capacitor and memory
US6204139B1 (en) * 1998-08-25 2001-03-20 University Of Houston Method for switching the properties of perovskite materials used in thin film resistors
JP3331334B2 (ja) * 1999-05-14 2002-10-07 株式会社東芝 半導体装置の製造方法
US6611014B1 (en) * 1999-05-14 2003-08-26 Kabushiki Kaisha Toshiba Semiconductor device having ferroelectric capacitor and hydrogen barrier film and manufacturing method thereof
JP2001210798A (ja) * 1999-12-22 2001-08-03 Texas Instr Inc <Ti> コンデンサ構造の保護のための絶縁性と導電性の障壁の使用
KR100396879B1 (ko) * 2000-08-11 2003-09-02 삼성전자주식회사 동일 물질로 이루어진 이중막을 포함하는 다중막으로캡슐화된 캐패시터를 구비한 반도체 메모리 소자 및 그의제조 방법
KR100829556B1 (ko) * 2002-05-29 2008-05-14 삼성전자주식회사 자기 저항 램 및 그의 제조방법
JP3972128B2 (ja) * 2002-12-06 2007-09-05 松下電器産業株式会社 半導体装置およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0997883A (ja) * 1995-09-29 1997-04-08 Sony Corp 半導体メモリ素子のキャパシタ構造及びその形成方法
JPH11297942A (ja) * 1998-04-08 1999-10-29 Nec Corp 強誘電体メモリ装置およびその製造方法
JP2002537627A (ja) * 1999-02-17 2002-11-05 インターナショナル・ビジネス・マシーンズ・コーポレーション 情報を保存するマイクロ電子デバイスとその方法
JP2005092912A (ja) * 2003-09-12 2005-04-07 Sharp Corp 不揮発性半導体記憶装置
JP2005123361A (ja) * 2003-10-16 2005-05-12 Sony Corp 抵抗変化型不揮発性メモリおよびその製造方法ならびに抵抗変化層の形成方法
JP2005175457A (ja) * 2003-12-08 2005-06-30 Sharp Corp Rramメモリセル電極
JP2006120707A (ja) * 2004-10-19 2006-05-11 Matsushita Electric Ind Co Ltd 可変抵抗素子および半導体装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BECK A. ET AL.: "Reproducible switching effect in thin oxide films for memory applications", APPLIED PHYSICS LETTERS, vol. 77, no. 1, 3 July 2000 (2000-07-03), pages 139 - 141, XP000958527 *
ZHUANG W.W. ET AL.: "Novell Collossal Magnetoresistive Thin Film Nonvolatile Resistance Random Access Memory (RRAM)", INTERNATIONAL ELECTRON DEVICES MEETING 2002 TECHNICAL DIGEST, 8 December 2002 (2002-12-08), pages 193 - 196, XP010626021 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8049204B2 (en) * 2007-02-19 2011-11-01 Nec Corporation Semiconductor memory device having variable resistance element and method for manufacturing the same
US8458841B2 (en) 2007-06-20 2013-06-11 Braun Gmbh Brush head for a toothbrush
WO2009038032A1 (ja) * 2007-09-18 2009-03-26 Nec Corporation 抵抗変化素子および半導体記憶装置
US8169053B2 (en) 2008-01-22 2012-05-01 Samsung Electronics Co., Ltd. Resistive random access memories and methods of manufacturing the same
EP2139054A3 (en) * 2008-06-25 2011-08-31 Samsung Electronics Co., Ltd. Memory device and method of manufacturing the same
US8034680B2 (en) 2008-06-25 2011-10-11 Samsung Electronics Co., Ltd. Method of manufacturing a memory device
US20120286231A1 (en) * 2010-01-21 2012-11-15 Nec Corporation Semiconductor device and method of manufacturing the same
US8946668B2 (en) * 2010-01-21 2015-02-03 Nec Corporation Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
TWI311811B (ja) 2009-07-01
TW200742041A (en) 2007-11-01
US20090102598A1 (en) 2009-04-23
JP2007027537A (ja) 2007-02-01

Similar Documents

Publication Publication Date Title
WO2007010746A1 (ja) 可変抵抗素子を備えた半導体記憶装置
JP3373525B2 (ja) シリコン上に集積された多層強誘電体セルおよびペロブスカイト電子へテロ構造
JP4843259B2 (ja) 可変抵抗素子の製造方法
US20060073613A1 (en) Ferroelectric memory cells and methods for fabricating ferroelectric memory cells and ferroelectric capacitors thereof
JP5668303B2 (ja) 半導体装置及びその製造方法
JP2009070926A (ja) ペロブスカイト型酸化物薄膜の成膜方法および積層体
JP2006302975A (ja) 半導体装置及びその製造方法
US11158642B2 (en) Capacitor comprising a bismuth metal oxide-based lead titanate thin film
JP2008010634A (ja) キャパシタを含む半導体装置及びその製造方法
JP2009117768A (ja) 半導体記憶装置およびその製造方法
JP2007088147A (ja) 半導体装置およびその製造方法
US6583507B1 (en) Barrier for capacitor over plug structures
WO1997033316A1 (fr) Composant a semi-conducteur et sa fabrication
WO2007007606A1 (ja) 可変抵抗素子
JP2007053179A (ja) 半導体装置の製造方法
JP2006310637A (ja) 半導体装置
JP2005327847A (ja) 半導体装置及びその製造方法
JP3641142B2 (ja) 強誘電体メモリ
JP2009071144A (ja) 強誘電体メモリの製造方法
US7646073B2 (en) Ferroelectric capacitor and ferroelectric memory
US20110140238A1 (en) Semiconductor device and manufacturing method thereof
WO2007007608A1 (ja) 半導体記憶装置及びその製造方法
JP2008270596A (ja) 強誘電体メモリおよび強誘電体メモリの製造方法
JP2007042870A (ja) 強誘電体キャパシタおよびその製造方法、ならびに強誘電体メモリ装置
Lee et al. Integration of Ferroelectric Random Access Memory Devices with Ir/IrO2/Pb (ZrxTi1-x) O3/Ir Capacitors Formed by Metalorganic Chemical Vapor Deposition-Grown Pb (ZrxTi1-x) O3

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11995876

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06767903

Country of ref document: EP

Kind code of ref document: A1