WO2015198573A1 - 半導体装置、および半導体装置の製造方法 - Google Patents

半導体装置、および半導体装置の製造方法 Download PDF

Info

Publication number
WO2015198573A1
WO2015198573A1 PCT/JP2015/003082 JP2015003082W WO2015198573A1 WO 2015198573 A1 WO2015198573 A1 WO 2015198573A1 JP 2015003082 W JP2015003082 W JP 2015003082W WO 2015198573 A1 WO2015198573 A1 WO 2015198573A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
semiconductor device
variable resistance
film
hard copy
Prior art date
Application number
PCT/JP2015/003082
Other languages
English (en)
French (fr)
Inventor
宗弘 多田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2016529064A priority Critical patent/JP6717192B2/ja
Priority to US15/318,792 priority patent/US10249643B2/en
Publication of WO2015198573A1 publication Critical patent/WO2015198573A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology
    • H01L27/11807CMOS gate arrays
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology
    • H01L27/11807CMOS gate arrays
    • H01L2027/11809Microarchitecture
    • H01L2027/11835Degree of specialisation for implementing specific functions
    • H01L2027/11837Implementation of digital circuits
    • H01L2027/11838Implementation of memory functions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology
    • H01L27/11807CMOS gate arrays
    • H01L2027/11868Macro-architecture
    • H01L2027/11874Layout specification, i.e. inner core region
    • H01L2027/11875Wiring region, routing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/101Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including resistors or capacitors only
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/30Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/253Multistable switching devices, e.g. memristors having three or more terminals, e.g. transistor-like devices

Definitions

  • the present invention relates to a semiconductor device and a method for manufacturing the semiconductor device, and more particularly to a method for manufacturing a hard copy from a semiconductor device in which a memory having a variable resistance nonvolatile element and a field programmable gate array are mounted inside a multilayer wiring layer. .
  • the resistance variable nonvolatile element is hereinafter referred to as “resistance variable element”.
  • Semiconductor devices including silicon devices, have been developed at a pace of "4 times integration in 3 years" as device integration and low power have been promoted by miniaturization of the scaling law known by Moore's law. Has been.
  • MOSFET Metal Oxide Semiconductor Semiconductor Field Effect Transistor
  • MOSFET Metal Oxide Semiconductor Semiconductor Field Effect Transistor
  • the soaring lithography process includes soaring manufacturing equipment and mask set prices.
  • physical limits of device dimensions include operating limits and dimensional variation limits.
  • FPGA Field Programmable Gate Array
  • PLD Programmable Logic Device
  • a method that rewrites the same logical operation function into ASIC (Application Specific Integrated Circuit) may be used. is there. Since the hard copy determines the circuit function based on the layout of the wiring and via plug in the manufacturing process, a programming process after the chip manufacturing is not required, thereby reducing the cost.
  • ASIC Application Specific Integrated Circuit
  • the resistance change element can be used for a routing switch or a memory.
  • ReRAM Resistance ⁇ ⁇ RAM [Random Access Memory]
  • a transition metal oxide or NanoBridge using an ion conductor
  • An ionic conductor is a solid in which ions can move freely by application of an electric field or the like.
  • Non-Patent Document 1 discloses a switching element using metal ion migration and an electrochemical reaction in an ion conductor as a variable resistance element that is highly likely to improve the degree of freedom of a circuit.
  • the switching element disclosed in Non-Patent Document 1 has a configuration including three layers of an ion conductive layer and a first electrode and a second electrode provided in contact with each of two surfaces of the ion conductive layer. .
  • the 1st electrode has played the role for supplying a metal ion to an ion conductive layer. Metal ions are not supplied from the second electrode.
  • this switching element When the first electrode is grounded and a negative voltage is applied to the second electrode, the metal of the first electrode becomes metal ions and dissolves in the ion conductive layer. And the metal ion in an ion conductive layer turns into a metal and precipitates in an ion conductive layer, The metal bridge
  • the switch is turned on by electrically connecting the first electrode and the second electrode by metal bridge.
  • the switch is turned off. It should be noted that the electrical characteristics change from the stage before the electrical connection is completely cut off, such as the resistance between the first electrode and the second electrode is increased, or the capacitance between the electrodes is changed. Cut out. In order to change from the off state to the on state, the first electrode is grounded again and a negative voltage is applied to the second electrode.
  • Non-Patent Document 1 discloses a configuration and operation in the case of a two-terminal switching element in which two electrodes are arranged via an ion conductor and the conduction state between them is controlled.
  • variable resistance elements By using a reconfigurable circuit using these variable resistance elements, the chip size can be reduced and the power consumption can be reduced as compared with conventional FPGAs.
  • ASIC requires a special mask set, so it has a feature that initial investment (100 to 200 million yen) is large, and it is effective when a large number of chips are required.
  • initial investment 100 to 200 million yen
  • the fixed cost of the mask set is higher than the variable cost of chip manufacturing.
  • the FPGA field-programmable gate array
  • a type of FPGA using a resistance change element has advantages of a small area and low power consumption as compared with conventional FPGAs.
  • at least one programming is still required for each chip, if the number of chips required is large, the test cost will be higher than that of the ASIC, and the chip unit price will increase. Had.
  • a hard copy semiconductor device includes a semiconductor substrate that includes the same circuit configuration as the reconfigurable circuit including the variable resistance element and does not include a program mechanism for programming the variable resistance element.
  • the position where the resistance change element which is made of the base and is necessary for the desired arithmetic processing is programmed in advance is identified, and the resistance change element in the low resistance state is manufactured as a via plug by a semiconductor process.
  • the hard copy semiconductor device can be manufactured using a technology node that is more miniaturized than a reconfigurable circuit including the variable resistance element.
  • a method for manufacturing a semiconductor device is a method for manufacturing a semiconductor device, in which a hard copy is manufactured from a reconfigurable circuit chip using a variable resistance nonvolatile element formed in a multilayer wiring layer on a semiconductor substrate.
  • a method The hard copy is manufactured using a semiconductor substrate base including the same circuit configuration as that of the semiconductor substrate on which the reconfigurable circuit chip is formed and not including a program mechanism for programming the resistance change element.
  • the hard copy semiconductor device uses the same semiconductor substrate substrate as that of the reconfigurable circuit including the variable resistance element, and has a desired configuration at the time of mapping in advance.
  • the position where the variable resistance element necessary for the arithmetic processing is programmed is identified, and the variable resistance element in the low resistance state is manufactured as a via plug without forming the variable resistance element by a semiconductor process.
  • a semiconductor device includes a lower wiring formed on a semiconductor substrate, an interlayer insulating film formed above the lower wiring, and the lower wiring above the interlayer insulating film. And a resistance change element formed between the lower wiring and the interlayer insulating film at a position where the lower wiring and the upper wiring are planarly overlapped with each other.
  • the variable resistance nonvolatile element having a variable resistance layer is formed at a position where the lower wiring and the upper wiring overlap in a plane,
  • the variable resistance nonvolatile element includes a lower electrode / wiring, the variable resistance layer, and an upper electrode, and the variable resistance layer includes an opening of an insulating barrier film provided on the lower electrode / wiring.
  • the upper electrode is connected to the upper wiring through a contact plug, Among the positions where the lower wiring and the upper wiring overlap in a plane, the variable resistance nonvolatile element is not formed at the first location, and the lower wiring and the upper wiring are short-circuited.
  • a method for manufacturing a semiconductor device is a method for manufacturing a semiconductor device, in which a hard copy is manufactured from a reconfigurable circuit chip using a variable resistance nonvolatile element formed in a multilayer wiring layer on a semiconductor substrate.
  • a method A hard copy is manufactured using the same semiconductor substrate base as the semiconductor substrate on which the reconfigurable circuit chip is formed.
  • a hard copy of a reconfigurable circuit using a resistance change element can be formed at low cost, and both low power consumption and low cost of the chip can be achieved.
  • FIG. 1 is a cross-sectional view schematically showing a configuration example of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 2 is an enlarged view of the variable resistance element and its peripheral portion in FIG.
  • FIG. 3 shows a modification of the semiconductor device according to the first embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a reconfigurable logic cell when a resistance change element is used.
  • FIG. 5 is a schematic diagram illustrating an example of a programming state of the resistance change element when an arithmetic function in the reconfigurable logic cell is mapped.
  • 6A is a cross-sectional view showing the configuration of the variable resistance element in the reconfigurable circuit, and FIGS.
  • FIG. 6B and 6C are cross-sectional views showing the configuration of the original variable resistance element at the time of hard copy production. It is. 7A is a cross-sectional view showing the configuration of the variable resistance element in the reconfigurable circuit, and FIGS. 7B and 7C are cross-sectional views showing the configuration of the original variable resistance element at the time of hard copy production. It is. FIG. 8A is a cross-sectional view showing the configuration of the variable resistance element in the reconfiguration circuit, and FIGS. 8B and 8C are cross-sectional views showing the configuration of the original variable resistance element at the time of hard copy production. It is. FIG. 9 shows an application example of the crossbar switch in the reconfiguration circuit using the resistance change element. FIG.
  • FIG. 10 is a circuit diagram in the case where a hard copy is produced from the reconstruction circuit shown in FIG. 9 using the method according to the present invention.
  • FIG. 11A is a schematic diagram showing an element cross section of the reconstruction circuit according to the second embodiment of the present invention
  • FIG. 11B is a schematic diagram showing an element cross section of the reconstruction circuit at the corresponding location at the time of hard copy production.
  • FIG. 11A is a schematic diagram showing an element cross section of the reconstruction circuit according to the second embodiment of the present invention
  • FIG. 11B is a schematic diagram showing an element cross section of the reconstruction circuit at the corresponding location at the time of hard copy production.
  • the present invention is a method for producing a hard copy of a reconfigurable circuit chip using a resistance change element formed in a multilayer wiring layer on a semiconductor substrate.
  • configuration information is acquired from a reconfigurable circuit chip to obtain a desired arithmetic function, and a hard copy is manufactured on another semiconductor substrate base having the same circuit configuration as the semiconductor substrate It is.
  • the configuration information that realizes a desired calculation function from the reconfigurable circuit chip is, for example, the position of the wiring that is connected or disconnected by the arrangement of the resistance change element to be programmed.
  • a hard copy may be manufactured by using a semiconductor substrate base.
  • the present invention provides a method for manufacturing a semiconductor device, characterized in that, in the hard copy manufacturing method, only one mask in a multilayer wiring process is changed.
  • CMOS Complementary Metal Oxide Semiconductor
  • a semiconductor device can be formed in a short TAT (Turn-around-Time) and can be realized only by changing one mask of various arithmetic devices.
  • CMOS substrate at the time of hard copy production can not only use the same semiconductor substrate substrate as the reconfigurable circuit chip, but also can be formed by diverting most of the existing reticle set, so the initial investment is reduced, and the chip Cost can be reduced.
  • variable resistance element 1 is used as a routing switch or a memory. These functions can be electrically realized as an on / off state or a 0/1 state by creating an electrical short circuit / insulation state in the manufacturing process.
  • variable resistance element 2 is programmed through a cell transistor.
  • a switch programmed to a low resistance state is electrically short-circuited, and a switch programmed to a high resistance state is provided. It is manufactured in the manufacturing process so as to be electrically insulated.
  • the position of the variable resistance element to be programmed to the low resistance state is specified when mapping the reconfigurable circuit. Then, a circuit layout at the time of producing a hard copy is formed so that via plugs are formed at the element positions in the low resistance state and no via plugs are formed at the element positions in the high resistance state.
  • the semiconductor substrate substrate used for hard copy may be the same as that used for forming the reconfigurable circuit using the resistance change element, or another semiconductor substrate substrate from which the program mechanism is deleted may be used.
  • the design layout can be diverted, and when the one without the program mechanism is used, a smaller layout can be used.
  • connection state that realizes the function in the hard copy is realized by the via plug, which is much better than the reliability when the resistance change element is used.
  • the guaranteed temperature for long-term storage reliability of a chip when a resistance change element is used is about 80 to 125 ° C., whereas hard copy can be up to 180 ° C.
  • the variable resistance element includes a lower electrode / wiring, a variable resistance layer, and an upper electrode.
  • the variable resistance layer is connected to the lower electrode / wiring through the opening of the insulating barrier film provided on the lower electrode / wiring, and the upper electrode is connected to the upper wiring through the contact plug. is there.
  • the mask that forms the opening in the insulating barrier film or the mask that forms the via plug that connects the upper electrode and the upper wiring is changed, and only the electrode layer excluding the resistance change layer is used as the resistance change element portion. Realizes circuit operation in the mounted state.
  • the variable resistance element includes a lower electrode / wiring, a variable resistance layer, and an upper electrode.
  • the variable resistance layer is connected to the lower electrode / wiring through the opening of the insulating barrier film provided on the lower electrode / wiring, and the upper electrode is connected to the upper wiring through the contact plug. is there.
  • the manufacturing process of the variable resistance element is deleted, and a hard copy is produced by a method of changing a mask for forming a via plug that connects the upper electrode and the upper wiring.
  • the variable resistance element is mounted in advance so that the lower electrode / wiring and the upper wiring overlap each other in the vertical direction so as to form a via plug.
  • the via for connecting the upper wiring and the cell transistor is deleted during hard copy production. It is characterized by. As a result, since the cell transistor and the routing switch unit or the memory unit are electrically disconnected, the parasitic capacitance is reduced, the operating speed of the chip is improved, and the power consumption is reduced.
  • the reconfiguration circuit that performs hard copy according to the present invention has a variable resistance element on a semiconductor substrate.
  • This resistance change element is a metal bridge-forming / disappearance type resistance change element.
  • the resistance change element has a copper wiring as a lower electrode and wiring, has an opening on the copper wiring, and an ion conductive layer is in contact with the opening.
  • An upper electrode is provided on the upper surface of the ion conductive layer. The side and bottom surfaces of the copper wiring are surrounded by barrier metal.
  • FIG. 1 is a cross-sectional view schematically showing a configuration example of the semiconductor device according to the first embodiment of the present invention.
  • a variable resistance element 1 is mounted in a multilayer wiring layer on a CMOS (Complementary Metal Oxide Semiconductor) substrate.
  • CMOS Complementary Metal Oxide Semiconductor
  • the CMOS substrate base in the formation of the reconfigurable circuit refers to a layer below the resistance change element 1.
  • This semiconductor device includes a silicon substrate 100 as an example of a semiconductor substrate, a MOSFET 99 formed on the silicon substrate 100, a multilayer wiring structure formed on the silicon substrate 100 and the MOSFET 99, and a resistance incorporated in the multilayer wiring structure. And a change element 1.
  • the multilayer wiring structure of FIG. 1 includes a plurality of silicon oxide films 111 and 119 and SiOCH films 112 to 118 as insulating films stacked in the vertical direction. Further, the multilayer wiring structure of FIG. 1 is formed in the uppermost layer with silicon carbonitride (SiCN) films 121 to 128 formed between each of these silicon oxide films or SiOCH films. And a silicon oxynitride film 120 as a protective film.
  • SiCN silicon carbonitride
  • the multilayer wiring structure of FIG. 1 includes a tungsten plug 129 formed penetrating in the thickness direction of the lowermost silicon oxide film 111. Further, the multilayer wiring structure of FIG. 1 includes a copper wiring 130 formed of a Cu layer 134 and a barrier metal layer 133 formed so as to penetrate in the thickness direction of the SiOCH film 112 which is a layer immediately above the lowermost layer. Further, the multilayer wiring structure of FIG. 1 includes a copper wiring 130 made of a Cu layer 136 and a barrier metal layer 135 formed on the SiOCH film 113 above the copper wiring 130 made of the Cu layer 134 and the barrier metal layer 133. 1 includes a dual damascene pattern formed on each of the SiOCH films 112 to 118 and an uppermost wiring formed over the silicon oxide film 119 and the uppermost silicon oxynitride film 120.
  • the tungsten plug 129 includes a tungsten layer 132 and a TiN layer 131 that covers the side and bottom surfaces of the tungsten layer 132.
  • dual damascene grooves are formed in each of the SiOCH films 112 to 118.
  • the dual damascene pattern includes Cu layers 140, 142, 144, and 146 buried in the dual damascene trench, and Ta / TaN films 139, 141, 143 that cover the side and bottom surfaces of the Cu layers 140, 142, 144, and 146, 145.
  • the Ta / TaN films 139, 141, 143, and 145 are barrier metal films.
  • the uppermost layer wiring includes an Al—Cu layer 148 embedded in a groove-shaped via formed over the silicon oxide film 119 and the uppermost silicon oxynitride film 120. Further, the uppermost layer wiring is Ti / TiN as a barrier metal film that covers the side and bottom surfaces of the Al—Cu layer 148 in the silicon oxide film 119 and the boundary surface between the silicon oxide film 119 and the silicon oxynitride film 120. Layer 147 is included. Further, the uppermost layer wiring includes a Ti / TiN layer 149 as a barrier metal film covering the upper surface of the Al—Cu layer 148 in the silicon oxynitride film 120.
  • the Ti / TiN layer 147 and the Ti / TiN layer 149 of the uppermost layer wiring can be omitted as necessary.
  • a recess for a connection pad is formed on the upper surface of the Al—Cu layer 148 that constitutes the uppermost layer wiring.
  • the uppermost layer wiring, each dual damascene pattern, the copper wiring 130 and the tungsten plug 129 are aligned in the vertical direction, and the uppermost layer wiring, tungsten plug 129 and each pattern are electrically connected to the upper layer and lower layer wirings, plugs or patterns. Connected.
  • FIG. 2 is an enlarged view of the resistance change element 1 in FIG. 1 and its peripheral portion, showing a two-terminal switch.
  • the opening is provided in the SiCN film 207 as an example of the barrier insulating film, and the solid electrolyte film 209 as an example of the ion conductive layer is, for example, an oxide or, for example, mainly composed of carbon, oxygen, hydrogen, and silicon. It consists of the material.
  • the resistance change element 201 changes its resistance state when metal ions are deposited in the solid electrolyte membrane 209.
  • the upper electrode is an inert electrode that does not react with copper, for example, an electrode (Ru film 210) containing ruthenium (Ru) as a main component.
  • the upper electrode is connected to the upper wiring via the via plug 218 and may be a copper dual damascene wiring.
  • the copper dual damascene wiring is surrounded by a laminated barrier metal such as a Ta / TaN film 220 on its side surface and bottom surface, and the upper surface is covered with an insulating barrier film such as SiN or SiCN film 221.
  • the multilayer wiring layer has an insulating laminated body including a SiOCH film 202, a SiCN film 207, a SiN film 214, a SiO 2 film 217, a SiOCH film 216, and a SiCN film 221 sequentially stacked above the semiconductor substrate. is doing.
  • a wiring groove is formed in the SiOCH film 202.
  • the side surface and the bottom surface of the wiring groove are covered with a Ta / TaN film 206 as an example of a barrier metal film.
  • Cu as a first wiring is formed on the Ta / TaN film 206 so as to fill the wiring groove.
  • a layer 205 is formed.
  • the first wiring is the lower wiring.
  • contact holes are formed in the SiN film 214 and the SiCN film 212.
  • wiring grooves are formed in the SiOCH film 216 and the SiO 2 film 217.
  • the contact holes and the side and bottom surfaces of the wiring trench are covered with a Ta / TaN film 220 as an example of a barrier metal film.
  • the via plug 218 is in contact with the TiN film 211 of the resistance change element 201 through the Ta / TaN film 220 in the contact hole.
  • a via plug 218 is formed so as to fill the contact hole, and a Cu layer 219 serving as a second wiring is formed so as to fill the wiring groove.
  • the second wiring is the upper wiring.
  • the Cu layer 219 and the via plug 218 are integrated.
  • a resistance change element 201 in FIG. 2 includes a solid electrolyte film 209, a Ru film 210, and a TiN film 211.
  • the two-terminal switch of FIG. 2 configured as described above is switched and programmed to an on state or an off state by application of a voltage or current.
  • FIG. 3 shows a modification of the semiconductor device according to the present embodiment and shows a three-terminal switch.
  • the variable resistance elements are installed so as to face each other in series and share the upper electrode.
  • the multilayer wiring layer includes a pair of first wirings 305 a and 305 b, a via plug 319, and a resistance change element 301.
  • the pair of first wirings 305a and 305b are lower wirings.
  • the pair of first wires 305a and 305b also serves as the lower electrode of the three-terminal switch.
  • the resistance change element 301 is formed by sequentially laminating a solid electrolyte film 309, a Ru film 310, and a TiN film 311.
  • the solid electrolyte film 309 is connected to the pair of first wirings 305 a and 305 b through one opening of the SiCN film 307. The opening is formed so as to reach a portion between the interlayer insulating film 304 and the first wirings 305a and 305b.
  • the interlayer insulating film 302 includes the interlayer insulating film 302, the barrier insulating film 303, the interlayer insulating film 304, the SiCN film 307, the SiN film 314, the SiO 2 film 315, and the interlayer insulating film 317, which are sequentially stacked above the semiconductor substrate. And an insulating laminate including the SiOCH film 316.
  • a pair of wiring grooves are formed in the interlayer insulating film 304 and the barrier insulating film 303. The side and bottom surfaces of the wiring groove are covered with barrier metal films 306a and 306b, respectively, and a pair of first wirings 305a and 305b are formed so as to fill the pair of wiring grooves.
  • contact holes are formed in the SiO 2 film 315, the SiN film 314, and the hard mask film 312. Furthermore, wiring trenches are formed in the interlayer insulating film 317 and the SiOCH film 316. The contact holes and the side and bottom surfaces of the wiring grooves are covered with a barrier metal film 320. A via plug 319 is formed so as to bury the contact hole, and a second wiring 318 is formed so as to bury the wiring groove. The via plug 319 is in contact with the TiN film 311 of the resistance change element 301 through the barrier metal film 320. The second wiring 318 and the via plug 319 are integrated. In FIG. 3, the second wiring is the upper wiring.
  • openings communicating with the first wirings 305a and 305b are formed.
  • the solid electrolyte film 309, the Ru film 310, and the TiN so as to cover the portion of the first wiring 305a, 305b located inside the opening, the side surface of the SiCN film 307, and a part of the upper surface of the SiCN film 307.
  • Films 311 are sequentially stacked.
  • the three-terminal switch configured as described above is switched to an on state or an off state by application of a voltage or a current, and is programmed.
  • FIG. 4 is a schematic diagram of a reconfigurable logic cell when a resistance change element is used.
  • 3 shows an example of a reconfigurable logic cell to which the semiconductor device and the resistance change element shown in FIG. 1 and FIG. 2 are applied.
  • the reconfigurable logic cell in FIG. 4 includes a logic block 402, a connection block 403 made of a crossbar, and a switch block 404 made of a crossbar.
  • a programmable resistance change element 401 is disposed at each intersection of the cross bars of the connection block 403 and the switch block 404.
  • the logic block 402 includes two 4-input 1-output LUTs (Look-up-Tables). Further, the logic block 402 includes a flip-flop (D-FF) that inputs the output of the LUT, and a multiplexer (MUX) that selects and outputs the output of the LUT and the output of the flip-flop.
  • the lookup table includes a multiplexer (MUX) having a configuration in which pass transistors are arranged in a tree shape, and an SRAM connected to the end of the tree. The output of one SRAM is output from the multiplexer according to the value given to the input of the multiplexer.
  • FIG. 5 is a schematic diagram showing an example of the programming state of the resistance change element when the arithmetic function in the reconfigurable logic cell of FIG. 4 is mapped.
  • the variable resistance elements 401 in the crossbar blocks of the switch block 404 and the connection block 403 are programmed to realize a desired logic function.
  • the resistance change element in FIG. 4 is in either the low resistance state resistance change element 501 or the high resistance state resistance change element 502.
  • a plurality of reconfigurable logic cells in FIG. 4 can be laid out in tiles.
  • FIG. 4 illustrates an example in which two LUTs are provided.
  • the number of LUTs is not limited to two, and may be four, six, eight, or the like.
  • FIG. 5 illustrates an example in which the resistance change element to be programmed is located on the crossbar, it may be used to fix the potential to the power source or the ground.
  • FIGS. 6A and 6C are cross-sectional views showing the configuration of the variable resistance element in the reconfigurable circuit
  • FIGS. 6B and 6C are cross-sectional views showing the configuration of the original variable resistance element at the time of hard copy production. It is.
  • the resistance change element is programmed to form a low resistance state (short circuit state) and a high resistance state (insulation state).
  • the variable resistance element in the reconfiguration circuit of FIG. 6A includes the same variable resistance element as in FIG.
  • an SiOCH film 602, an SiCN film 607, an SiN film 614, an SiO 2 film 617, an SiOCH film 616, and an SiCN film 621 as an example of an insulating barrier film are sequentially stacked above the semiconductor substrate. It has an insulation laminate provided.
  • a wiring groove is formed in the SiOCH film 602.
  • the side surface and the bottom surface of the wiring groove are covered with a Ta / TaN film 606 as an example of a barrier metal film.
  • Cu as a first wiring is formed on the Ta / TaN film 606 so as to fill the wiring groove.
  • a layer 605 is formed.
  • the first wiring is a lower wiring.
  • contact holes are formed in the SiN film 614 and the SiCN film 612, and wiring grooves are formed in the SiOCH film 616 and the SiO 2 film 617.
  • the contact hole and the side and bottom surfaces of the wiring trench are covered with a Ta / TaN film 620 as an example of a barrier metal film.
  • a via plug 618 is formed to bury the contact hole, and a Cu layer 619 as a second wiring is formed to bury the wiring groove.
  • the second wiring is an upper wiring.
  • the Cu layer 619 and the via plug 618 are integrated.
  • the solid electrolyte film 609, the Ru film 610, and the TiN film 611 are formed so as to cover a portion located inside the opening of the Cu layer 605, a side surface of the opening of the SiCN film 607, and a part of the upper surface of the SiCN film 607. They are sequentially stacked.
  • the resistance change element includes a solid electrolyte film 609, a Ru film 610, and a TiN film 611.
  • a mask for forming a via plug 618 connected to the upper electrode (Ru film 610 or TiN film 611) of the resistance change element at the time of making a hard copy of the reconfigurable circuit including the resistance change element is deleted.
  • the resistance change element existing in the crossbar block is not formed during hard copy production according to the present embodiment. Since the variable resistance element is not formed, the mask is changed so that the opening where the solid electrolyte film 609 of the variable resistance element communicates with the Cu layer 605 is not formed in the SiCN film 607 as shown in FIG.
  • the via plug shown in FIG. 6A is used at a location where the connection of the upper and lower wirings is electrically disconnected (insulated state) where the resistance change element 502 in the high resistance state of FIG. 5 is arranged.
  • the mask is changed so that 618 is not formed.
  • the structure shown in FIG. 6C is obtained.
  • the upper and lower wirings are insulated by the SiO 2 film 617 and the SiCN film 607 interposed therebetween.
  • an opening of the SiCN film 607 is also formed by a mask for forming the via plug 618. . Manufacturing in this way results in the structure shown in FIG.
  • the upper and lower wirings are connected via via plugs 618.
  • a location where the upper and lower wirings are connected by via plugs (short circuit state) and a location where the upper and lower wirings are electrically disconnected (insulation state) can be created separately in the manufacturing process.
  • a hard copy of the reconfigurable circuit including the variable resistance element can be produced.
  • the resistance state to be created can be made to correspond by reflecting the position mapped by the reconfiguration circuit as shown in FIG. 5 in the mask layout. For example, in the location where the resistance change element 501 in the low resistance state of FIG. 5 is located, the upper and lower wirings are connected by via plugs, and in the location where the resistance change element 502 in the high resistance state is located, the connection of the upper and lower wirings is electrically disconnected. As shown in FIG. When producing this hard copy, by using the same CMOS substrate as the reconfigurable circuit, it is possible to produce a hard copy only by changing one mask for producing a via plug.
  • FIG. 7A is a cross-sectional view showing the configuration of the variable resistance element in the reconfigurable circuit
  • FIGS. 7B and 7C are cross-sectional views showing the configuration of the original variable resistance element at the time of hard copy production. It is.
  • FIG. 7A shows a variable resistance element having the same configuration as that of the variable resistance element in the reconfiguration circuit of FIG.
  • the same constituent elements are given the same reference numerals, and the description thereof is omitted.
  • the mask of the opening formed in the insulating barrier film located on the copper wiring is changed, and the solid electrolyte layer is changed from the resistance change element. Is deleted.
  • FIG. 7C shows a state where the SiN film 614 of FIG. 7A is not formed.
  • the upper and lower wirings are insulated by a SiCN film 607 or the like interposed therebetween.
  • the opening of the SiCN film 607 shown in FIG. 7A is formed and the solid electrolyte film 609 of the resistance change element is not formed.
  • the upper and lower wirings have a structure shown in FIG. 7B in which the upper and lower wirings are electrically connected through the electrode films such as the via plug 618, the Ru film 610, and the TiN film 611.
  • contact holes are formed in the SiO 2 film 617, the SiN film 614, and the SiCN film 612. Therefore, the via plug 618 contacts the TiN film 611 through the Ta / TaN film 620. is doing.
  • the mask of the opening formed in the insulating barrier film located on the copper wiring is changed, and the solid electrolyte is removed from the variable resistance element, and the device is formed by the process of only the electrodes.
  • FIG. 8A is a cross-sectional view showing the configuration of the variable resistance element in the reconfigurable circuit
  • FIGS. 8B and 8C are cross-sectional views showing the configuration of the original variable resistance element at the time of hard copy production.
  • the semiconductor device in FIG. 8A includes a variable resistance element similar to that in FIG.
  • the multilayer wiring layer includes a pair of first wirings 805a and 805b, a via plug 819, and a resistance change element.
  • the pair of first wirings 805a and 805b are lower wirings.
  • the pair of first wires 805a and 805b also serves as a lower electrode of the three-terminal switch.
  • the variable resistance element is formed by sequentially laminating a solid electrolyte film 809, a Ru film 810, and a TiN film 811.
  • the solid electrolyte film 809 is connected to the pair of first wirings 805a and 805b through one opening of the SiCN film 807. The opening is formed so as to reach a portion between the interlayer insulating film 804 and the first wirings 805a and 805b.
  • an interlayer insulating film 802 includes an interlayer insulating film 804, a SiCN film 807, a SiN film 814, an interlayer insulating film 815, an interlayer insulating film 817, and a SiOCH layer that are sequentially stacked above the semiconductor substrate.
  • An insulating laminate including a film 816 is provided.
  • a pair of wiring grooves is formed in the interlayer insulating film 804. The side and bottom surfaces of the wiring groove are covered with barrier metal films 806a and 806b, respectively, and a pair of first wirings 805a and 805b are formed so as to fill the pair of wiring grooves.
  • contact holes are formed in the SiOCH film 816, the interlayer insulating film 817, the interlayer insulating film 815, the SiN film 814, and the hard mask film 812, and further, wiring grooves are formed in the interlayer insulating film 817 and the SiOCH film 816.
  • the side and bottom surfaces of the contact hole and the wiring groove are covered with a barrier metal film 820.
  • a via plug 819 is formed so as to fill the contact hole, and a second wiring 818 is formed so as to fill the wiring groove.
  • the second wiring 818 and the via plug 819 are integrated. In FIG. 8A, the second wiring 818 is an upper wiring.
  • openings communicating with the first wirings 805a and 805b are formed.
  • the solid electrolyte film 809, the Ru film 810, and the TiN so as to cover a portion of the first wiring 805a, 805b located inside the opening, a side surface of the SiCN film 807, and a part of the upper surface of the SiCN film 807 Films 811 are sequentially stacked.
  • the resistance change element includes lower electrode / wirings 805a and 805b, a resistance change layer, and an upper electrode.
  • the resistance change layer is connected to the lower electrode / wirings 805a, 805b through an opening of an insulating barrier film 807 provided on the lower electrode / wirings 805a, 805b.
  • the upper electrode is connected to the upper wiring 818 through a via plug 819. Further, the lower electrode / wirings 805a and 805b and the upper wiring 818 are previously arranged so as to overlap with the substrate so that a via plug can be formed.
  • the outline of the upper wiring 818 and the outline of the lower electrode / wiring 805a are arranged so as to overlap in the substantially vertical direction.
  • the external line of the double wiring 805b overlaps in the vertical direction.
  • the manufacturing process of the resistance change element is deleted, and a mask for forming a via plug that connects the upper electrode and the upper wiring of the resistance change element is changed. To do. Thereby, a short circuit state and an insulation state are made separately in a manufacturing process.
  • the resistance change element existing in the crossbar block of the switch block 404 and the connection block 403 in FIG. 5 is not formed at the time of hard copy production. Since the resistance change element is not formed, an opening where the solid electrolyte film 809 of the resistance change element communicates with the pair of lower electrode and wirings 805a and 805b shown in FIG. 8A is not formed in the insulating barrier film 807. The mask is changed.
  • the mask is changed so as not to form the via plug 819 shown in FIG.
  • the structure shown in FIG. 8C is obtained.
  • the upper and lower wirings are insulated by an interlayer insulating film 815 and a SiCN film 807.
  • the via plug 819a is not at the via plug 819 shown in FIG. 8A but at a position where the upper wiring 818 and the lower electrode / wirings 805a and 805b overlap in the vertical direction. , 819b to change the mask.
  • the structure shown in FIG. 8B is obtained.
  • Two openings of the SiCN film 807 are also formed by a mask for forming the via plugs 819a and 819b.
  • the upper wiring 818 is connected to the lower electrode / wiring 805a via the via plug 819a, and the upper wiring 818 is connected to the lower electrode / wiring 805b via the via plug 819b.
  • the advantage of the method of this embodiment is that when the reconfigurable chip on which the variable resistance element is previously mounted is laid out, the arrangement where the upper and lower wirings overlap in the vertical direction in consideration of the connection position of the via plug at the time of hard copy production It is to devise to have. As a result, both the reconfigurable circuit chip and the hard copy can be made separately using the same CMOS substrate only by changing one mask for forming the via plug.
  • FIG. 9 shows an application example of the crossbar switch in the reconfiguration circuit using the resistance change element.
  • two bipolar variable resistance elements 901 and 902 are connected in series so as to face each other, and a cell transistor (program transistor) is arranged at an intermediate node.
  • a cell transistor program transistor
  • FIG. 10 is a circuit diagram when a hard copy is produced from the reconstruction circuit shown in FIG. 9 using the method according to the present embodiment.
  • variable resistance element 901 and variable resistance element 902 of the reconfigurable circuit shown in FIG. 9 are programmed to a low resistance state, the same state as that of the short-circuited portion 1001 in FIG. 10 is obtained.
  • variable resistance element 901 or the variable resistance element 902 of the reconfigurable circuit shown in FIG. 9 is programmed to a high resistance state, a state similar to that of the insulating portion 1002 of FIG. 10 is obtained.
  • cell transistor (program transistor) of the reconfigurable circuit shown in FIG. 9 is turned off, a state similar to that of the transistor disconnection portion 1003 can be obtained.
  • FIG. 11A is a schematic diagram showing an element cross section of a reconstruction circuit according to the second embodiment of the present invention
  • FIG. 11B is a schematic diagram showing an element cross section of the location reconstruction circuit at the time of hard copy production. It is.
  • the multilayer wiring layer includes a pair of first wirings 1104a and 1104b, a via plug 1102, and a resistance change element.
  • the pair of first wirings 1104a and 1104b are lower wirings.
  • the pair of first wirings 1104a and 1104b also serves as the lower electrode of the three-terminal switch. Further, as in the semiconductor device of FIG.
  • contact holes are formed in the interlayer insulating film, the SiN film, and the hard mask film, and the via plug 1102 is in contact with the upper electrode of the variable resistance element through the barrier metal film. .
  • a via plug 1102 is formed so as to fill the contact hole, and a second wiring 1106 is formed so as to fill the wiring groove.
  • the second wiring 1106 and the via plug 1102 are integrated.
  • the second wiring 1106 is an upper wiring.
  • the upper electrode serving as the intermediate node is once pulled up to the upper layer wiring via the via plug 1102.
  • the other end is connected to a lower layer wiring via a via plug 1101 and further connected to a cell transistor (program transistor) transistor (not shown).
  • the upper wiring is connected to one end of a via plug 1105 formed in a lower interlayer insulating film through a via plug 1101 provided at a location different from the via plug 1102.
  • the other end of the via plug 1105 is connected to a cell transistor (program transistor) (not shown).
  • a via plug is previously provided between the first wirings 1104a and 1104b serving as the lower electrode and wiring and the second wiring 1106 serving as the upper wiring. So that the substrate can be formed perpendicularly to the substrate.
  • variable resistance elements 901 and 902 shown in FIG. 9 are not formed during hard copy production. Since the resistance change element is not formed, the mask is changed so that the opening where the resistance change element communicates with the pair of first wirings 1104a and 1104b is not formed in the insulating barrier film, as shown in FIG. .
  • FIG. 10 can be realized by changing the mask so that the via plug 1102 shown in FIG. 11A is not formed (not shown). When manufactured using the mask thus changed, the structure shown in FIG. 8C is obtained. The pair of first wirings 1104a and 1104b are not connected to each other, and the insulating portion 1002 in FIG. 10 is realized.
  • the short-circuit portion 1001 in FIG. 10 does not form the via plug 1102 shown in FIG. 11A, and the via plugs 1103a and 1103b are formed at positions where the second wiring 1106 and the first wirings 1104a and 1104b overlap in the vertical direction.
  • This can be realized by changing the mask.
  • the mask is changed so as to form the via plugs 1103a and 1103b.
  • a structure as shown on the right side of FIG. 11B is obtained.
  • Two openings of the insulating barrier film are also formed by a mask for forming the via plugs 1103a and 1103b.
  • the second wiring 1106 is connected to the first wiring 1104a via the via plug 1103a, and the second wiring 1106 is connected to the first wiring 1104b via the via plug 1103b.
  • the first wiring 1104a and the first wiring 1104b are connected via the second wiring 1106 as the upper wiring, and the short circuit portion 1001 in FIG. 10 is realized.
  • the 10 can be realized by changing the mask so that the via plug 1102 shown in FIG. 11A is not formed and the via plug 1101 shown in FIG. 11A is not formed.
  • the structure shown in FIG. 11B is obtained.
  • the mask is changed so that the via plugs 1103a and 1103b are formed at positions where the second wiring 1106 and the first wirings 1104a and 1104b overlap in the vertical direction.
  • the second wiring 1106 is insulated from the via plug 1105 formed in the lower interlayer insulating film and is not connected to the cell transistor (program transistor). In this way, the separation portion 1003 from the transistor of FIG. 10 is realized.
  • the resistance change element is replaced with a shorted or insulated via plug by the method of the present embodiment. This state is clarified by mapping the functions, and changes depending on the calculation function to be installed.
  • the parasitic capacitance of the cell transistor can be reduced at the time of hard copy, so that high speed operation and low power operation can be performed. For example, if the parasitic capacitance of the cell transistor is 1 fF and the number of mounted resistance change elements is 10 Mbit, the total amount reaches 10 nF, so that the power consumption of the chip can be reduced accordingly. Become.
  • the via plugs 1101, 1102, 1103, and 1104 of this embodiment are the same layer.
  • the reconfiguration circuit using the resistance change element and the hard copy can be made separately by changing only one mask for forming the via plug, and the cost can be reduced.
  • the semiconductor substrate base on which a hard copy is formed in the present invention is composed of a crossbar switch block and a logic block (for example, Look-up-Table (LUT)), which is the same as the reconfigurable circuit chip.
  • LUT Look-up-Table
  • the connection state of the switch block and the configuration information of the LUT are arbitrarily programmed by the resistance change element.
  • the semiconductor substrate base without the program mechanism is produced by allowing the selection of whether or not the via is formed at the position of the variable resistance element with one mask while maintaining the same configuration. Keep it. Since the programming mechanism is eliminated, a high breakdown voltage transistor for programming the variable resistance element is not necessary, and the chip area can be reduced.
  • a reconfigurable circuit chip using a resistance change element uses a high-voltage transistor for programming of the resistance change element, and therefore has a small merit of using a state-of-the-art technology node (28 nm or later). Therefore, it is formed with a technology node of 65 to 40 nm generation. Thereby, the manufacturing cost for forming the reconfigurable circuit can be kept low.
  • the semiconductor substrate in the case of forming a hard copy can be reduced in size as the semiconductor substrate is miniaturized because the high voltage transistor for programming of the variable resistance element is deleted.
  • the 28 nm generation and the 14 nm generation which are generations ahead of the 40 nm generation, can be used, and the power consumption can be reduced.
  • the resistance change element in the present invention has been mainly described as a metal bridge type resistance change element, the present invention is not limited to the material of the resistance change element.
  • it can also be used when hard-copying a circuit using resistance change elements such as MRAM (Magnetic RAM), PRAM (Phase change Random Access Memory), and ReRAM.
  • MRAM Magnetic RAM
  • PRAM Phase change Random Access Memory
  • ReRAM ReRAM
  • CMOS circuit which is a field of use that has been the background of the invention made by the present inventor, has been described in detail, and an example in which a variable resistance element is formed on a copper wiring on a semiconductor substrate has been described.
  • the present invention is not limited thereto.
  • the present invention can also be applied to a semiconductor product having a memory circuit, a semiconductor product having a logic circuit such as a microprocessor, or a copper wiring of a board or package on which these are listed simultaneously.
  • Examples of the memory circuit here include DRAM (Dynamic RAM), SRAM, flash memory, FRAM (registered trademark) (Ferro Electric RAM), MRAM, resistance change memory, bipolar transistor, and the like.
  • the present invention can also be applied to junctions of electronic circuit devices, optical circuit devices, quantum circuit devices, micromachines, MEMS (Micro Electro Mechanical Systems), etc., to semiconductor devices.
  • the example of the switch function has been mainly described.
  • the present invention can be used for a memory element using both non-volatility and resistance change characteristics.
  • (Supplementary note 1) A method of manufacturing a semiconductor device, wherein a hard copy is manufactured from a reconfigurable circuit chip using a variable resistance nonvolatile element formed in a multilayer wiring layer on a semiconductor substrate, the reconfigurable circuit A method of manufacturing a semiconductor device, wherein a hard copy is manufactured using a semiconductor substrate base identical to a semiconductor substrate on which a chip is formed.
  • Appendix 3 Identifying the position of the variable resistance nonvolatile element programmed to a low resistance state during mapping of the reconfigurable circuit, forming a via plug in the multilayer wiring layer at the element position of the low resistance state, The method for manufacturing a semiconductor device according to appendix 2, wherein a circuit layout at the time of hard copy is formed so as not to form a via plug in the multilayer wiring layer at the element position in a high resistance state.
  • the manufactured hard copy includes the variable resistance nonvolatile element, and the variable resistance nonvolatile element includes a lower electrode / wiring, a variable resistance layer, and an upper electrode, and the variable resistance The layer is connected to the lower electrode and wiring through an opening of an insulating barrier film provided on the lower electrode and wiring, and the upper electrode is connected to the upper wiring through a contact plug, At the time of hard copy production, a mask for forming an opening in the insulating barrier film or a mask for forming a via plug for connecting the upper electrode and the upper wiring is changed to change the resistance change layer from the variable resistance nonvolatile element.
  • the manufactured hard copy includes the variable resistance nonvolatile element, and the variable resistance nonvolatile element includes a lower electrode / wiring, a variable resistance layer, and an upper electrode, and the variable resistance The layer is connected to the lower electrode and wiring through an opening of an insulating barrier film provided on the lower electrode and wiring, and the upper electrode is connected to the upper wiring through a contact plug,
  • the hard copy is manufactured by changing any one of a mask for forming an opening in the insulating barrier film or a mask for forming a via plug for connecting the upper electrode and the upper wiring. The manufacturing method of the semiconductor device of description.
  • variable resistance nonvolatile element includes a lower electrode / wiring, a variable resistance layer, and an upper electrode, and the variable resistance layer is an insulating barrier film provided on the lower electrode / wiring. It is connected to the lower electrode / wiring through an opening, and the upper electrode is connected to the upper wiring through a contact plug.
  • variable resistance nonvolatile element manufacturing process The method of manufacturing a semiconductor device according to any one of appendix 1 to appendix 5, wherein a hard copy is produced by changing a mask for forming a via plug that connects the upper electrode and the upper wiring. (Appendix 9) At the time of hard copy production, a mask for forming an opening in the insulating barrier film or a mask for forming a via plug for connecting the upper electrode and the upper wiring is changed, 8. The method of manufacturing a semiconductor device according to any one of appendix 1 to appendix 7, wherein the circuit operation is realized in a state where only the electrode layer excluding the variable resistance layer is mounted from the variable resistance nonvolatile element.
  • (Supplementary note 10) The semiconductor device manufacturing method according to any one of supplementary notes 1 to 7, wherein the variable resistance nonvolatile element is used as a routing switch or a memory.
  • (Supplementary note 11) The method of manufacturing a semiconductor device according to any one of supplementary notes 1 to 8, wherein the variable resistance nonvolatile element is programmed through a cell transistor.
  • (Supplementary Note 12) The first lower electrode / wiring and the second lower electrode are arranged separately from each other and connected via the resistance change layer of the variable resistance nonvolatile element.
  • a mask for forming the contact plug that connects the upper electrode and the upper wiring is changed by deleting a via for connecting the upper wiring and the cell transistor at the time of hard copy.
  • the manufacturing method of the semiconductor device as described in one. (Supplementary note 15)
  • the first lower electrode / wiring and the second lower electrode / wiring are short-circuited via the upper wiring by forming a via plug that short-circuits the upper wiring and the lower electrode / wiring. 14.
  • FIG. 16 Lower wiring formed on a semiconductor substrate, an interlayer insulating film formed above the lower wiring, and an upper part formed above the interlayer insulating film and overlapping the lower wiring in a plane
  • a semiconductor device including a wiring and a resistance change element formed between the lower wiring and the interlayer insulating film at a position where the lower wiring and the upper wiring are planarly overlapped, and the lower wiring and the upper wiring
  • the variable resistance nonvolatile element having a variable resistance layer is formed at a position where the upper wiring overlaps in plan view, and the variable resistance nonvolatile element includes a lower electrode and wiring, the variable resistance layer,
  • the resistance change layer is connected to the lower electrode / wiring through an opening of an insulating barrier film provided on the lower electrode / wiring, and the upper electrode is connected to the upper electrode via a contact plug.
  • variable resistance nonvolatile element is not formed at the first location, and the lower wiring and the upper wiring are not formed.
  • a semiconductor device in which the upper wiring is short-circuited. In a second location different from the first location, an opening is not formed in the insulating barrier film, and the variable resistance nonvolatile element and the lower electrode / wiring are insulated.
  • the semiconductor device according to appendix 16 wherein the semiconductor device is insulated by a conductive barrier film.
  • the first lower electrode / wiring of the variable resistance nonvolatile element is spaced apart from each other and connected via the variable resistance layer of the variable resistance nonvolatile element 18.
  • the semiconductor device wherein the semiconductor device includes a structure that includes an electrode / wiring and a second lower electrode / wiring, and two bipolar variable resistance nonvolatile elements are connected in series.
  • the variable resistance nonvolatile element is not formed, and the first lower electrode / wiring and the second lower electrode / wiring are The semiconductor device according to appendix 18, which is short-circuited through the upper wiring.
  • the semiconductor device In a fourth place different from the first place, no opening is formed in the insulating barrier film, and the first lower electrode and wiring and the second lower electrode and wiring are 20.
  • Appendix 21 A semiconductor having the same function by acquiring configuration information from a reconfigurable circuit chip that realizes an arithmetic function according to a program state of a variable resistance nonvolatile element formed in a multilayer wiring layer on a semiconductor substrate A method of manufacturing a hard copy chip, comprising manufacturing a substrate.
  • Additional remark 22 The semiconductor device manufactured by the manufacturing method of Additional remark 21 characterized by having the same number of logic blocks as the number of logic blocks mounted in the said reconfigurable circuit chip.
  • a reconfigurable circuit chip having a variable resistance nonvolatile element formed in a multilayer wiring layer on a semiconductor substrate and having an arbitrary logical operation function programmed in the variable resistance nonvolatile element has the same logic
  • the reconfigurable circuit chip includes a logic block and a switch block. 24.
  • (Supplementary note 25) The semiconductor device according to supplementary note 24, wherein logic cells including the switch block and the logic block are tiled.
  • Appendix 29 A manufacturing method for a semiconductor device according to appendix 27 or appendix 28, A position of the variable resistance nonvolatile element programmed to a low resistance state during mapping of the reconfigurable circuit is identified, and at least one via plug is formed in the multilayer wiring layer at the element position of the low resistance state, A method for manufacturing a semiconductor device, wherein a layout at the time of copying is formed.
  • the said hard copy is a manufacturing method of the semiconductor device of Additional remark 29 manufactured by changing only one mask of a multilayer wiring process.
  • the manufacturing method of the semiconductor device of Additional remark 29 or Additional remark 30 which manufactures a hard copy using the same semiconductor substrate base
  • the variable resistance nonvolatile element includes a lower electrode / wiring, a variable resistance layer, and an upper electrode, and the variable resistance layer is an insulating barrier film provided on the lower electrode / wiring.

Abstract

 抵抗変化素子を用いた再構成回路のハードコピーを低コストで形成可能な、半導体装置、および半導体装置の製造方法を提供する。半導体装置の製造方法は、半導体基板上の多層配線層内に形成された抵抗変化型不揮発性素子を用いている再構成回路チップからハードコピーを製造する、半導体装置の製造方法であって、上記再構成回路チップを形成する半導体基板と同一の半導体基板下地を用いてハードコピーを製造する。

Description

半導体装置、および半導体装置の製造方法
 本発明は、半導体装置、および半導体装置の製造方法に関し、特に多層配線層の内部に抵抗変化型不揮発性素子を有するメモリやフィールドプログラマブルゲートアレイを搭載した半導体装置からの、ハードコピーの製造方法に関する。
 抵抗変化型不揮発性素子を、以下では「抵抗変化素子」と称する。シリコンデバイスを含む半導体デバイスは、Mooreの法則で知られるスケーリング則の微細化によってデバイスの集積化・低電力化が進められ、「3年で4倍の集積化を図る」というペースで開発が進められてきた。近年、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)のゲート長は20nm以下となり、リソグラフィプロセスの高騰、およびデバイス寸法の物理的限界が生じている。これにより、これまでのスケーリング則とは異なるアプローチでのデバイス性能の改善が求められている。
 リソグラフィプロセスの高騰には、製造装置価格およびマスクセット価格の高騰が挙げられる。また、デバイス寸法の物理的限界には、動作限界および寸法ばらつき限界が挙げられる。
 近年、ゲートアレイとスタンダードセルの中間的な位置づけとしてFPGA(Field Programmable Gate Array)、あるいはPLD(Programmable Logic Device)と呼ばれる再書き換え可能なプログラマブルロジックデバイスが開発されている。FPGAは、顧客自身がチップの製造後に任意の回路構成を行うことを可能とするものであり、チップ1個からの購入が可能である。一般的なFPGAは再構成回路におけるルーティングスイッチにSRAM(Static Random Access Memory)とパストランジスタ(もしくはフラッシュタイプのトランジスタ)を用いることが多いため、チップ面積が大きく消費電力が大きい。またチップ製造後に、チップ一つ一つにプログラミングを行う必要があり、このため、チップコストが高いという問題を有する。
 そのため、一度FPGAで機能検証したチップが一定数必要な場合には、同一の論理演算機能をASIC(Application Specific Integrated Circuit)に焼き直す手法(ハードコピー、マスタースライスなどと呼ばれる)が用いられる場合がある。ハードコピーは製造工程における配線とビアプラグのレイアウトで回路機能を確定するため、チップ製造後におけるプログラミング工程が不要となり、これによりコスト低減が可能である。
 ハードコピーの手法としては、(1)再構成回路のレイアウトをそのまま使用する手法と、(2)同じ機能を実現するASICとして回路レイアウトを再設計する手法の二通りがある。(1)ではプログラミング工程が不要となった分だけチップコストは低いが、ハードコピー前の再構成回路に比べてチップの消費電力はほぼ同等となる。(2)ではASIC設計のためのコスト増加、および新規なレチクルセット分のコストがかかるがチップサイズが小さくなり、消費電力が小さくなるメリットがある。
 一方、FPGAの消費電力を低減する手法として、多層配線層の内部に抵抗変化素子を有するタイプのFPGAが研究されており、ルーティングスイッチやメモリに抵抗変化素子を用いることができる。
 多層配線層の内部に抵抗変化素子を有するタイプのFPGAに関しては、抵抗変化素子としては、遷移金属酸化物を用いたReRAM(Resistance RAM [Random Access Memory])や、イオン伝導体を用いたNanoBridge(登録商標)などがある。イオン伝導体は、イオンが電界などの印加によって自由に動くことのできる固体である。
 回路の自由度を向上させる可能性の高い抵抗変化素子として、イオン伝導体中における金属イオン移動と電気化学反応とを利用したスイッチング素子が非特許文献1に開示されている。非特許文献1に開示されたスイッチング素子は、イオン伝導層と、このイオン伝導層の2つの面のそれぞれに接して設けられた第1電極および第2電極との3つ層からなる構成である。このうち、第1電極はイオン伝導層に金属イオンを供給するための役割を果たしている。第2電極からは金属イオンは供給されない。
 このスイッチング素子の動作を簡単に説明する。第1の電極を接地して第2電極に負電圧を印加すると、第1電極の金属が金属イオンになってイオン伝導層に溶解する。そして、イオン伝導層中の金属イオンがイオン伝導層中に金属になって析出し、析出した金属により第1電極と第2電極を接続する金属架橋が形成される。金属架橋で第1電極と第2電極が電気的に接続することで、スイッチがオン状態になる。
 一方、上記オン状態で第1電極を接地して第2電極に正電圧を印加すると、金属架橋の一部が切れる。これにより、第1電極と第2電極との電気的接続が切れ、スイッチがオフ状態になる。なお、電気的接続が完全に切れる前の段階から第1電極および第2電極間の抵抗が大きくなったり、電極間容量が変化したりするなど電気特性が変化し、最終的に電気的接続が切れる。また、上記オフ状態からオン状態にするには、再び第1の電極を接地して第2電極に負電圧を印加すればよい。
 非特許文献1では、イオン伝導体を介して2個の電極が配置され、それらの間の導通状態を制御する2端子型のスイッチング素子の場合の構成および動作が開示されている。
 これらの抵抗変化素子を用いた再構成回路を用いることでこれまでのFPGAに比べて、チップサイズが小さくなり、消費電力も小さくすることができるようになる。
M. Tada, K. Okamoto, T. Sakamoto, M. Miyamura, N. Banno, and H. Hada, "Polymer Solid-Electrolyte (PSE) Switch Embedded on CMOS for Nonvolatile Crossbar Switch", IEEE Transactions on Electron Devices, vol. 58, no. 12, pp. 4398-4405, (2011).
 一般にASICは専用のマスクセットが必要であるため、初期投資額(1~2億円)が大きいという特徴を有しており、多数のチップが必要な場合には有効である。その一方で、例えば数千~数万個程度の少数のチップが欲しい場合には、チップ製造の変動費に比べてマスクセットの固定費が高いため、チップサイズが小さいにも関わらずチップ単価がFPGAよりも高くなってしまうという問題点を有する。
 一方、ASICを用いずFPGAを使い続ける場合には、設計した回路を実チップでテスト検証できる、チップ1つから購入できるというメリットがある。その反面、チップ単価が高く、1万個のチップが欲しい場合には、1万個のFPGAを個々にプログラミングする必要があり、そのためのテスト費用がかさむため、チップ数が増えても低コスト化できないという課題がある。
 これに対して、抵抗変化素子を用いたタイプのFPGAは、これまでのFPGAと比較して、小面積、低消費電力というメリットはある。しかしながら、依然としてチップ一つ一つに対して少なくとも一回のプログラミングが必要であるため、必要なチップ数が多い場合には、ASICに比べるとテストコストが高くなるのでチップ単価は高くなるという、課題を有していた。
 したがって、いわゆるロングテールに分類される数千~数万チップ規模が必要とされる製品において、低コストかつ低電力なチップの製造方法が求められていた。
 本発明は、抵抗変化素子を用いた再構成回路のハードコピーを低コストで形成可能な、半導体装置、および半導体装置の製造方法を提供することを目的とする。
 前記目的を達成するため、本発明に係るハードコピー半導体装置は、前記抵抗変化素子を備えた再構成回路と同じ回路構成を含み、かつ抵抗変化素子をプログラムするためのプログラム機構を含まない半導体基板下地からなり、あらかじめ所望の演算処理に必要な抵抗変化素子をプログラムする位置を同定し、半導体プロセスによって低抵抗状態の抵抗変化素子をビアプラグとして作製する。
 前記ハードコピー半導体装置は、前記抵抗変化素子を備えた再構成回路よりも微細化の進んだテクノロジーノードを用いて製造することができる。
 また、本発明に係る半導体装置の製造方法は、半導体基板上の多層配線層内に形成された抵抗変化型不揮発性素子を用いている再構成回路チップからハードコピーを製造する、半導体装置の製造方法であって、
 前記ハードコピーは、上記再構成回路チップを形成する半導体基板と同一の回路構成を含み、かつ抵抗変化素子をプログラムするためのプログラム機構を含まない半導体基板下地を用いて製造する。
 あるいは、前記目的を達成するための別の実施の形態としては、本発明に係るハードコピー半導体装置は、前記抵抗変化素子を備えた再構成回路と同じ半導体基板下地を用い、あらかじめマッピング時に所望の演算処理に必要な抵抗変化素子をプログラムする位置を同定し、半導体プロセスによって抵抗変化素子を形成することなく、低抵抗状態の抵抗変化素子をビアプラグとして作製する。
 前記目的を達成するため、本発明に係る半導体装置は、半導体基板上に形成された下部配線、上記下部配線の上方に形成された層間絶縁膜、上記層間絶縁膜の上方であって上記下部配線と平面的に重なる位置に形成された上部配線、および上記下部配線と上記上部配線とが平面的に重なる位置の、上記下部配線と上記層間絶縁膜との間に形成された抵抗変化素子を含む半導体装置であって、
 上記下部配線と上記上部配線とが平面的に重なる位置に、抵抗変化層を有する上記抵抗変化型不揮発性素子が形成されており、
 上記抵抗変化型不揮発性素子は、下部電極兼配線と、上記抵抗変化層と、上部電極とからなり、上記抵抗変化層は上記下部電極兼配線上に設けられた絶縁性バリア膜の開口部を介して上記下部電極兼配線と接続され、上記上部電極はコンタクトプラグを介して上部配線と接続される構造をなしており、
 上記下部配線と上記上部配線とが平面的に重なる位置のうち、第1の箇所では、上記抵抗変化型不揮発性素子が形成されておらず、下部配線と上記上部配線とが短絡している。
 また、本発明に係る半導体装置の製造方法は、半導体基板上の多層配線層内に形成された抵抗変化型不揮発性素子を用いている再構成回路チップからハードコピーを製造する、半導体装置の製造方法であって、
 上記再構成回路チップを形成する半導体基板と同一の半導体基板下地を用いてハードコピーを製造する。
 本発明によれば、抵抗変化素子を用いた再構成回路のハードコピーを低コストで形成できるようになり、チップの低電力化と低コスト化を両立することができるようになる。
 さらに、抵抗変化素子を用いた再構成回路を用いて、事前に所望の演算処理が行われるかどうかを正確に動作確認することができるため、ハードコピーを行う場合の再設計コスト(Non-recurring Cost)を低減することができる。
図1は、本発明の第1実施形態の半導体装置の一構成例を模式的に示した断面図である。 図2は、図1における抵抗変化素子とその周辺部分の拡大図である。 図3は、本発明の第1実施形態の半導体装置の変形例である。 図4は、抵抗変化素子を用いた場合の再構成ロジックセルの模式図である。 図5は、再構成ロジックセルにある演算機能をマッピングした場合の抵抗変化素子のプログラミング状態の一例を示す模式図である。 図6(A)は再構成回路における抵抗変化素子の構成を示す断面図であり、図6(B)および図6(C)はハードコピー作製時の元抵抗変化素子部の構成を示す断面図である。 図7(A)は再構成回路における抵抗変化素子の構成を示す断面図であり、図7(B)および図7(C)はハードコピー作製時の元抵抗変化素子部の構成を示す断面図である。 図8(A)は再構成回路における抵抗変化素子の構成を示す断面図であり、図8(B)および図8(C)はハードコピー作製時の元抵抗変化素子部の構成を示す断面図である。 図9は、抵抗変化素子を用いた再構成回路における、クロスバースイッチの適用例である。 図10は、図9に示した再構成回路から、本発明による手法を用いてハードコピーを作製した場合の回路図である。 図11(A)は本発明の第2実施形態による再構成回路の素子断面を示す模式図であり、図11(B)はハードコピー作製時の当該箇所の再構成回路の素子断面を示す模式図である。
 本発明の実施形態について説明する前に、本発明の概要について説明する。
 (抵抗変化素子を有する再構成回路をハードコピーする概念)
 本発明は、半導体基板上の多層配線層内に形成された抵抗変化素子を用いている再構成回路チップのハードコピーの作製方法である。本発明の一つの態様として、再構成回路チップから所望の演算機能を実現するための、構成情報を取得し、半導体基板と同一の回路構成を有する別の半導体基板下地にハードコピーを製造するものである。再構成回路チップから所望の演算機能を実現する、上記構成情報とは、例えばプログラムされる抵抗変化素子の配置によって接続、あるいは切断される配線の位置である。
 本発明の別の態様として、半導体基板上の多層配線層内に形成された抵抗変化素子を用いている再構成回路チップのハードコピーの作製方法において、再構成回路チップを形成する半導体基板と同一の半導体基板下地を用いてハードコピーを製造してもよい。
 これにより、抵抗変化素子を用いた再構成チップの低電力性と、ハードコピーによるプログラミングコストの削減との両立が可能となる。抵抗変化素子を用いた再構成チップを用いて予め機能検証を行い、検証された機能をハードコピーすることができるため、設計コストも低減することができるようになる。また、再構成回路チップとハードコピーは同一の半導体基板下地を用いることもできるため、ハードコピー作製時の初期コスト(レチクルセット費用)をゼロにすることができる利点もある。
 本発明は別の態様として、上記ハードコピーの製造方法において、多層配線工程の一枚のマスクのみを変更することを特徴とする半導体装置の製造方法を提供する。ハードコピー作製時のCMOS(Complementary Metal Oxide Semiconductor)下地は、あらかじめ再構成回路チップと同一の回路機構を有する半導体基板下地を準備しておき、不揮発抵抗変化素子を配置していた箇所にビアプラグを形成できるようにしておく。これにより、短TAT(Turn-around-Time)で半導体装置を形成できるとともに、さまざまな演算装置をマスク1枚変更するだけで、実現することができるようになる。
 (抵抗変化素子の使われ方の限定)
 本発明は別の態様として、上記ハードコピーの製造方法において、多層配線工程の一枚のマスクのみを変更することを特徴とする半導体装置の製造方法を提供する。これにより、ハードコピー作製時のCMOS下地は、再構成回路チップと同一の半導体基板下地を使うことができるだけでなく、既存のレチクルセットの大半を流用して形成できるため初期投資が少なくなり、チップコストの低減が可能である。
 (抵抗変化素子の使われ方1)
 本発明はさらに別の態様として、上記抵抗変化素子はルーティングスイッチ、あるいはメモリとして用いられていることを特徴とする。これらの機能は製造工程において、電気的な短絡/絶縁状態を作製することで、オン/オフ状態、あるいは0/1状態として電気的に実現することが可能である。
 (抵抗変化素子の使われ方2)
 本発明はさらに別の態様として、上記抵抗変化素子はセルトランジスタを介してプログラミングされることを特徴とする。
 (ハードコピーの手法の基本構成)
 本発明はさらに別の態様として、抵抗変化素子を用いた再構成回路のハードコピーする製造方法において、低抵抗状態にプログラムされたスイッチを電気的に短絡させ、高抵抗状態にプログラムされたスイッチを電気的に絶縁するよう、製造工程で作製する。
 より具体的には、上記抵抗変化素子の短絡状態と絶縁状態の形成方法において、再構成回路のマッピング時に低抵抗状態にプログラムする抵抗変化素子の位置を特定する。そして、低抵抗状態の素子位置にはビアプラグを形成し、高抵抗状態の素子位置にはビアプラグを形成しないよう、ハードコピー作製時の回路レイアウトを形成する。
 ハードコピーに用いられる半導体基板下地は、抵抗変化素子を用いた再構成回路を形成する場合と同じものを用いてもよく、あるいはプログラム機構を削除した別の半導体基板下地を用いてもよい。同じものを用いた場合は設計レイアウトを流用することができ、プログラム機構を削除したものを用いた場合にはより小面積なレイアウトを用いることができる。
 これにより、ハードコピーでは機能を実現する接続状態はビアプラグで実現されるため、抵抗変化素子を用いた場合の信頼性に比べて格段に良くなる。例えば温度安定性に関しては、抵抗変化素子を用いた場合のチップの長期保管信頼性の保証温度は80~125℃程度であるのに対して、ハードコピーでは180℃まで可能となる。
 (抵抗変化素子部を搭載したままのハードコピー方法)
 本発明はさらに別の態様として、上記抵抗変化素子は、下部電極兼配線と、抵抗変化層と、上部電極とからなる。抵抗変化層は下部電極兼配線上に設けられた絶縁性バリア膜の開口部を介して下部電極兼配線と接続されており、上部電極はコンタクトプラグを介して上部配線と接続している構成である。ハードコピー作製時には、絶縁性バリア膜に開口部を形成するマスク、もしくは上部電極と上部配線を接続するビアプラグを形成するマスクを変更し、抵抗変化素子部は抵抗変化層を除いた電極層のみを搭載した状態で回路動作を実現する。
 (抵抗変化素子を搭載しないハードコピー方法)
 本発明はさらに別の態様として、上記抵抗変化素子は、下部電極兼配線と、抵抗変化層と、上部電極とからなる。抵抗変化層は下部電極兼配線上に設けられた絶縁性バリア膜の開口部を介して下部電極兼配線と接続されており、上部電極はコンタクトプラグを介して上部配線と接続している構成である。ハードコピー作製時には、上記抵抗変化素子の製造工程を削除し、上記上部電極と上部配線を接続するビアプラグを形成するマスクを変更する方法でハードコピーを作製する。さらに、上記半導体装置において、予め下部電極兼配線と上部配線とがビアプラグを形成できるように基板に垂直方向に重なった配置を有することを特徴とする抵抗変化素子を搭載する半導体装置である。
 (ハードコピー作製時のセルトランジスタの切り離し)
 本発明はさらに別の態様として、上記上部電極と上部配線を接続するコンタクトプラグを形成するマスクを変更する方法において、上記上部配線とセルトランジスタを接続するためのビアをハードコピー作製時に削除することを特徴とする。これによりセルトランジスタとルーティングスイッチ部、あるいはメモリ部が電気的に切り離されるため、寄生容量が低減し、チップの動作速度が向上し、消費電力が低減する。
 以下に、本発明の好ましい実施形態について、図面を参照しながら詳細に説明する。
 〔第1実施形態〕
 初めに、本発明の第1実施形態による半導体装置、および半導体装置の製造方法について、説明する。本発明の第1実施形態では、まず抵抗変化素子を搭載した半導体装置、およびその製造方法について説明し、どのようにハードコピーを形成するかについて説明する。
 本発明でハードコピーを行う再構成回路は、半導体基板上に抵抗変化素子を有する。この抵抗変化素子は、金属架橋形成・消失型の抵抗変化素子であって、下部電極兼配線に銅配線を備え、銅配線上には開口部を有し、開口部にはイオン伝導層が接し、イオン伝導層の上面には上部電極を備えている。銅配線の側面と底面はバリアメタルで囲まれている。
 図1は、本発明の第1実施形態の半導体装置の一構成例を模式的に示した断面図である。CMOS(Complementary Metal Oxide Semiconductor)基板上の多層配線層内に抵抗変化素子1が搭載されている。本発明の実施形態における、再構成回路形成におけるCMOS基板下地とは、抵抗変化素子1よりも下のレイヤを指す。
 この半導体装置は、半導体基板の一例としてのシリコン基板100と、シリコン基板100上に形成されたMOSFET99と、シリコン基板100およびMOSFET99上に形成された多層配線構造と、多層配線構造に組み込まれた抵抗変化素子1とを有する。
 図1の多層配線構造は、上下方向に積層された絶縁膜としての複数のシリコン酸化膜111、119およびSiOCH膜112~118を含む。さらに図1の多層配線構造は、これらの複数のシリコン酸化膜またはSiOCH膜の各膜の間に挟まれて形成されているシリコン炭窒化(SiCN)膜121~128と、最上層に形成された保護膜としてのシリコン酸窒化膜120とを含む。
 さらに図1の多層配線構造は、最下層のシリコン酸化膜111の厚さ方向に貫通して形成されたタングステンプラグ129を含む。さらに図1の多層配線構造は、最下層の直上の層であるSiOCH膜112の厚さ方向に貫通して形成されたCu層134およびバリアメタル層133からなる銅配線130を含む。さらに図1の多層配線構造は、Cu層134およびバリアメタル層133からなる銅配線130より上層のSiOCH膜113に形成された、Cu層136およびバリアメタル層135からなる銅配線130を含む。さらに図1の多層配線構造は、SiOCH膜112~118の各々に形成されたデュアルダマシンパターンと、シリコン酸化膜119および最上層のシリコン酸窒化膜120にわたって形成された最上層配線とを含む。
 タングステンプラグ129は、タングステン層132と、タングステン層132の側面および底面を覆うTiN層131と、からなる。SiOCH膜112~118の各々には、デュアルダマシン溝が形成されている。上記デュアルダマシンパターンは、このデュアルダマシン溝に埋められたCu層140、142、144、146と、Cu層140、142、144、146の側面および底面を覆うTa/TaN膜139、141、143、145と、からなる。Ta/TaN膜139、141、143、145は、バリアメタル膜である。
 最上層配線は、シリコン酸化膜119および最上層のシリコン酸窒化膜120にわたって形成された溝状ビアに埋め込まれたAl-Cu層148を含む。さらに最上層配線は、シリコン酸化膜119内におけるAl-Cu層148の側面および底面と、シリコン酸化膜119とシリコン酸窒化膜120との間の境界面とを覆うバリアメタル膜としてのTi/TiN層147を含む。さらに最上層配線は、シリコン酸窒化膜120内におけるAl-Cu層148の上面を覆うバリアメタル膜としてのTi/TiN層149を含む。最上層配線のTi/TiN層147およびTi/TiN層149は、必要に応じて、省略することが可能である。最上層配線を構成するAl-Cu層148の上面には、接続パッド用の凹部が形成されている。
 最上層配線、各デュアルダマシンパターン、銅配線130、タングステンプラグ129は上下方向に整列して形成されており、最上層配線、タングステンプラグ129および各パターンは上層および下層の配線、プラグまたはパターンと電気的に接続されている。
 図2は、図1における抵抗変化素子1とその周辺部分の拡大図であり、二端子スイッチを示している。開口部はバリア絶縁膜の一例としてのSiCN膜207に設けられており、イオン伝導層の一例としての固体電解質膜209は例えば、酸化物であったり、例えば炭素、酸素、水素、シリコンを主成分とする材料からなる。抵抗変化素子201は、固体電解質膜209中に金属イオンが析出することで抵抗状態が変化する。上部電極は銅とは反応をしない不活性電極であって、例えばルテニウム(Ru)を主成分とする電極(Ru膜210)である。図2に示すような、例えばTiN膜211、やTaNなどの高融点窒素化合物をさらに上部に有していてもよい。上記上部電極はビアプラグ218を介して上部配線と接続されており、銅デュアルダマシン配線であってよい。銅デュアルダマシン配線はTa/TaN膜220などの積層バリアメタルで側面と底面が囲まれており、上面は絶縁性バリア膜、例えばSiNやSiCN膜221で覆われている。
 図2では多層配線層が、半導体基板の上方に順次に積層されたSiOCH膜202、SiCN膜207、SiN膜214、SiO膜217、SiOCH膜216およびSiCN膜221を備えた絶縁積層体を有している。当該多層配線層においては、SiOCH膜202に配線溝が形成されている。該配線溝の側面および底面は、バリアメタル膜の一例としてのTa/TaN膜206で被覆されており、更に、該配線溝を埋め込むようにTa/TaN膜206の上に第1配線としてのCu層205が形成されている。図2では、第1配線は下部配線である。また、SiN膜214およびSiCN膜212にコンタクトホールが形成されている。さらに、SiOCH膜216およびSiO膜217に配線溝が形成されている。該コンタクトホールと配線溝の側面および底面は、バリアメタル膜の一例としてのTa/TaN膜220によって被覆される。該コンタクトホール内でビアプラグ218は、Ta/TaN膜220を介して抵抗変化素子201のTiN膜211に接触している。ビアプラグ218が該コンタクトホールを埋め込むように形成され、第2配線としてのCu層219が該配線溝を埋め込むように形成されている。図2では、第2配線は上部配線である。Cu層219とビアプラグ218とは、一体となっている。
 SiCN膜207には、Cu層205に連通する開口が形成されている。Cu層205の該開口の内部に位置する部分、SiCN膜207の該開口の側面およびSiCN膜207の上面の一部を被覆するように、固体電解質膜209、Ru膜210、およびTiN膜211が順次に積層されている。図2の抵抗変化素子201は、固体電解質膜209、Ru膜210、およびTiN膜211を含む。このように構成された図2の二端子スイッチは、電圧または電流の印加によってオン状態またはオフ状態にスイッチングされ、プログラムされる。
 図3は、本実施形態の半導体装置の変形例であり、三端子スイッチを示している。抵抗変化素子が直列して対向するように設置され、上部電極を共有している構造である。この構造を採用することで、絶縁状態(高抵抗状態)において、素子にロジック電圧が印加された場合のストレス電圧耐性を改善することができる特徴を有する。
 図3の半導体装置は、多層配線層が、一対の第1配線305a、305bと、ビアプラグ319と、抵抗変化素子301とを含む。図3では、一対の第1配線305a、305bは下部配線である。一対の第1配線305a、305bは、三端子スイッチの下部電極を兼ねている。抵抗変化素子301は、固体電解質膜309、Ru膜310、およびTiN膜311が順次に積層されて形成されている。固体電解質膜309は、SiCN膜307の一つの開口を通じ一対の第1配線305a、305bと接続されている。該開口は、層間絶縁膜304と第1配線305a、305bとの間の部分に到達するように形成されている。
 図3の多層配線層は、半導体基板の上方に順次に積層された層間絶縁膜302、バリア絶縁膜303、層間絶縁膜304、SiCN膜307、SiN膜314、SiO膜315、層間絶縁膜317、SiOCH膜316を備えた絶縁積層体を有している。当該多層配線層においては、層間絶縁膜304およびバリア絶縁膜303に一対の配線溝が形成されている。該配線溝の側面および底面は、それぞれ、バリアメタル膜306a、306bで被覆されており、更に、一対の配線溝を埋め込むように一対の第1配線305a、305bが形成されている。
 また、SiO膜315、SiN膜314およびハードマスク膜312にコンタクトホールが形成されている。さらに、層間絶縁膜317およびSiOCH膜316に配線溝が形成されている。該コンタクトホールと配線溝の側面および底面は、バリアメタル膜320によって被覆されている。ビアプラグ319が該コンタクトホールを埋め込むように形成され、第2配線318が該配線溝を埋め込むように形成されている。ビアプラグ319は、バリアメタル膜320を介して抵抗変化素子301のTiN膜311に接触している。第2配線318とビアプラグ319とは、一体となっている。図3では、第2配線は上部配線である。
 SiCN膜307には、第1配線305a、305bに連通する開口が形成されている。第1配線305a、305bの該開口の内部に位置する部分、SiCN膜307の該開口の側面およびSiCN膜307の上面の一部を被覆するように、固体電解質膜309、Ru膜310、およびTiN膜311が順次に積層されている。このように構成された三端子スイッチは、電圧または電流の印加によってオン状態またはオフ状態にスイッチングされ、プログラムされる。
 図4は、抵抗変化素子を用いた場合の再構成ロジックセルの模式図である。図1や図2に示される半導体装置や抵抗変化素子が適用される、再構成ロジックセルの一例を示す。図4の再構成ロジックセルは、ロジックブロック402と、クロスバーからなるコネクションブロック403と、クロスバーからなるスイッチブロック404とを含む。コネクションブロック403およびスイッチブロック404のクロスバーの各交点には、プログラム可能な抵抗変化素子401が配置されている。
 図4では、ロジックブロック402は、4入力1出力のLUT(Look-up-Table)を二つ備える。さらに、ロジックブロック402は、LUTの出力を入力するフリップフロップ(D-FF)と、LUTの出力とフリップフロップの出力とを選択して出力するマルチプレクサ(MUX)とを備える。ルックアップテーブルは例えば、パストランジスタをツリー状に並べた構成のマルチプレクサ(MUX)と、ツリーの端に接続されたSRAMから構成される。マルチプレクサの入力に与えた値によって、一つのSRAMの出力がマルチプレクサから出力される。
 図5は、図4の再構成ロジックセルにある演算機能をマッピングした場合の抵抗変化素子のプログラミング状態の一例を示す模式図である。スイッチブロック404やコネクションブロック403のクロスバーブロック内の抵抗変化素子401は、所望の論理機能を実現するためプログラムされる。図4の抵抗変化素子は、図5に示すように低抵抗状態の抵抗変化素子501あるいは高抵抗状態の抵抗変化素子502のいずれかの状態となる。
 実現したい回路の規模によもよるが、図4の再構成ロジックセルは複数個タイル状に敷き詰めることができる。
 図4ではLUTを二つ備える例を説明したが、二つに限定される必要はなく、四つ、六つ、八つなどであっても良い。
 図5ではプログラムされる抵抗変化素子がクロスバーに位置する例について説明したが、電源やグラウンドへの電位固定に用いても良い。
 つづいて、本発明の本実施形態における半導体装置、および半導体装置の製造方法について、ハードコピーの作製方法について具体的に説明する。
 図6(A)は再構成回路における抵抗変化素子の構成を示す断面図であり、図6(B)および図6(C)はハードコピー作製時の元抵抗変化素子部の構成を示す断面図である。再構成回路においては抵抗変化素子をプログラミングすることで、低抵抗状態(短絡状態)と高抵抗状態(絶縁状態)を形成する。
 図6(A)の再構成回路における抵抗変化素子は、図2と同様な抵抗変化素子を含む。図6(A)では、半導体基板の上方に順次に積層されたSiOCH膜602、絶縁性バリア膜の一例としてのSiCN膜607、SiN膜614、SiO膜617、SiOCH膜616およびSiCN膜621を備えた絶縁積層体を有している。当該多層配線層においては、SiOCH膜602に配線溝が形成されている。該配線溝の側面および底面は、バリアメタル膜の一例としてのTa/TaN膜606で被覆されており、更に、該配線溝を埋め込むようにTa/TaN膜606の上に第1配線としてのCu層605が形成されている。図6(A)では、第1配線は下部配線である。また、SiN膜614およびSiCN膜612にコンタクトホールが形成され、更に、SiOCH膜616およびSiO膜617に配線溝が形成されている。該コンタクトホールと配線溝の側面および底面は、バリアメタル膜の一例としてのTa/TaN膜620によって被覆される。ビアプラグ618が該コンタクトホールを埋め込むように形成され、第2配線としてのCu層619が該配線溝を埋め込むように形成されている。図6(A)では、第2配線は上部配線である。Cu層619とビアプラグ618とは、一体となっている。
 SiCN膜607には、Cu層605に連通する開口が形成されている。Cu層605の該開口の内部に位置する部分、SiCN膜607の該開口の側面およびSiCN膜607の上面の一部を被覆するように、固体電解質膜609、Ru膜610、およびTiN膜611が順次に積層されている。抵抗変化素子は、固体電解質膜609、Ru膜610、およびTiN膜611を含む。
 これに対して本実施形態では、抵抗変化素子を含む再構成回路のハードコピー作製時において、抵抗変化素子の上部電極(Ru膜610やTiN膜611)に接続しているビアプラグ618を形成するマスクを変更する。さらに本実施形態では、抵抗変化素子の製造工程を削除する。
 図5のスイッチブロック404やコネクションブロック403を例にとって説明すると、本実施形態によるハードコピー作製時には、クロスバーブロック内に存在する抵抗変化素子が形成されない。抵抗変化素子を形成しないので、図6(A)に示される、抵抗変化素子の固体電解質膜609がCu層605に連通する開口もSiCN膜607に形成されないように、マスクが変更される。
 より具体的には、図5の高抵抗状態の抵抗変化素子502が配置されているような、上下配線の接続を電気的に切り離す箇所(絶縁状態)では、図6(A)に示されるビアプラグ618を形成しないように、マスクを変更する。このように変更したマスクを使用して製造すると、図6(C)に示される構造となる。上下配線間は、その間に介在するSiO膜617およびSiCN膜607で絶縁される。
 図5の低抵抗状態の抵抗変化素子501が配置されているような、上下配線をビアプラグ618で接続する箇所(短絡状態)では、ビアプラグ618を形成するマスクでSiCN膜607の開口も形成される。こうして製造すると、図6(B)に示される構造となる。上下配線間は、ビアプラグ618を介して接続されている。
 こうして、上下配線をビアプラグで接続する箇所(短絡状態)と上下配線の接続を電気的に切り離す箇所(絶縁状態)とを製造工程で作り分けることができる。このようにして本実施形態によれば、抵抗変化素子を含む再構成回路のハードコピーを作製することができる。
 作り分ける抵抗状態は、図5に示すような再構成回路でマッピングされた位置をマスクレイアウトに反映することで対応させることができる。例えば、図5の低抵抗状態の抵抗変化素子501が位置する箇所では、上下配線をビアプラグで接続し、高抵抗状態の抵抗変化素子502が位置する箇所では、上下配線の接続を電気的に切り離すように、反映させ対応させる。このハードコピーを作製する場合に、再構成回路と同じCMOS基板を用いることにより、ビアプラグを作製するマスク1枚を変更するだけでハードコピーを作製することができるようになる。
 (実施例1)
 次に、第1実施形態の実施例1として、ハードコピーの作製方法に関する変形例を説明する。図7(A)は再構成回路における抵抗変化素子の構成を示す断面図であり、図7(B)および図7(C)はハードコピー作製時の元抵抗変化素子部の構成を示す断面図である。図7(A)は、図6(A)の再構成回路における抵抗変化素子と同じ構成の抵抗変化素子である。同じ構成要素には同じ参照番号を付けて、説明を省略する。
 本実施例では、抵抗変化素子を含む再構成回路のハードコピー作製時においては、銅配線上に位置する絶縁性バリア膜に形成する開口部のマスクを変更し、かつ抵抗変化素子から固体電解質層を削除する。
 上下配線の接続を電気的に切り離す箇所(絶縁状態)では、図7(A)に示される、Cu層605上に位置するSiCN膜607に開口部を形成しないように、マスクを変更する。さらに、抵抗変化素子の固体電解質膜609を形成しない。このように変更したマスクを使用して製造すると、図7(C)に示される構造となる。図7(C)では、図7(A)のSiN膜614も形成していない状態を示している。上下配線間は、その間に介在するSiCN膜607などで絶縁される。
 上下配線をビアプラグ618で接続する箇所(短絡状態)では、図7(A)に示されるSiCN膜607の開口部を形成すると共に、抵抗変化素子の固体電解質膜609を形成しないようにする。これにより上下配線は、ビアプラグ618、Ru膜610、およびTiN膜611など電極膜を介して電気的に接続された、図7(B)に示される構造となる。この構造では図7(A)と同様に、SiO膜617、SiN膜614およびSiCN膜612にコンタクトホールが形成されているので、ビアプラグ618はTa/TaN膜620を介してTiN膜611に接触している。
 このように本実施例では、銅配線上に位置する絶縁性バリア膜に形成する開口部のマスクを変更し、かつ抵抗変化素子から固体電解質を削除し、電極のみのプロセスでデバイスを形成する。これにより、抵抗変化素子を含む再構成回路のハードコピー作製時には、製造工程において短絡状態と絶縁状態とを作り分けることができるようになる。さらに本実施例によれば、図6(B)および図6(C)に示されるハードコピーとは異なる構造で、短絡状態と絶縁状態とを作り分けることができる。本実施例の構造の利点は、抵抗変化素子を用いた再構成回路の製造工程から変更を少なくして、ハードコピーを作ることができることである。
 (実施例2)
 次に、第1実施形態の実施例2として、ハードコピーの作製方法に関する別の変形例を説明する。図8(A)は再構成回路における抵抗変化素子の構成を示す断面図であり、図8(B)および(C)はハードコピー作製時の元抵抗変化素子部の構成を示す断面図である。図8(A)の半導体装置は、図3と同様な抵抗変化素子を含む。
 多層配線層が、一対の第1配線805a、805bと、ビアプラグ819と、抵抗変化素子とを含む。図8(A)では、一対の第1配線805a、805bは下部配線である。一対の第1配線805a、805bは、三端子スイッチの下部電極を兼ねている。抵抗変化素子は、固体電解質膜809、Ru膜810、およびTiN膜811が順次に積層されて形成されている。固体電解質膜809は、SiCN膜807の一つの開口を通じ一対の第1配線805a、805bと接続されている。該開口は、層間絶縁膜804と第1配線805a、805bとの間の部分に到達するように形成されている。
 図8(A)の多層配線層は、半導体基板の上方に順次に積層された層間絶縁膜802、層間絶縁膜804、SiCN膜807、SiN膜814、層間絶縁膜815、層間絶縁膜817、SiOCH膜816を備えた絶縁積層体を有している。当該多層配線層においては、層間絶縁膜804に一対の配線溝が形成されている。該配線溝の側面および底面は、それぞれ、バリアメタル膜806a、806bで被覆されており、更に、一対の配線溝を埋め込むように一対の第1配線805a、805bが形成されている。
 また、SiOCH膜816、層間絶縁膜817、層間絶縁膜815、SiN膜814およびハードマスク膜812にコンタクトホールが形成され、更に、層間絶縁膜817およびSiOCH膜816に配線溝が形成されている。該コンタクトホールと配線溝の側面および底面は、バリアメタル膜820によって被覆されている。ビアプラグ819が該コンタクトホールを埋め込むように形成され、第2配線818が該配線溝を埋め込むように形成されている。第2配線818とビアプラグ819とは、一体となっている。図8(A)では、第2配線818は上部配線である。
 SiCN膜807には、第1配線805a、805bに連通する開口が形成されている。第1配線805a、805bの該開口の内部に位置する部分、SiCN膜807の該開口の側面およびSiCN膜807の上面の一部を被覆するように、固体電解質膜809、Ru膜810、およびTiN膜811が順次に積層されている。
 本実施例では、抵抗変化素子は、下部電極兼配線805a、805bと、抵抗変化層と、上部電極とからなる。抵抗変化層は、下部電極兼配線805a、805b上に設けられた絶縁性バリア膜807の開口部を介して下部電極兼配線805a、805bと接続されている。上部電極はビアプラグ819を介して上部配線818と接続している。さらに、予め下部電極兼配線805a、805bと上部配線818とがビアプラグを形成できるように、基板に垂直方向に重なった配置を有することを特徴とする。
 図8(A)に点線で示すように、上部配線818の外形線と下部電極兼配線805aの外形線とがほぼ垂直方向に重なった配置となっており、上部配線818の外形線と下部電極兼配線805bの外形線とがほぼ垂直方向に重なった配置となっている。
 本実施例では、抵抗変化素子を含む再構成回路のハードコピー作製時には、上記抵抗変化素子の製造工程を削除し、抵抗変化素子の上部電極と上部配線とを接続するビアプラグを形成するマスクを変更する。これにより、製造工程において短絡状態と絶縁状態とを作り分ける。
 例えば本実施例では、図5のスイッチブロック404やコネクションブロック403のクロスバーブロック内に存在する抵抗変化素子が、ハードコピー作製時に形成されない。抵抗変化素子を形成しないので、図8(A)に示される、抵抗変化素子の固体電解質膜809が一対の下部電極兼配線805a、805bに連通する開口部が絶縁性バリア膜807に形成されないように、マスクが変更される。
 上下配線の接続を電気的に切り離す箇所(絶縁状態)では、図8(A)に示されるビアプラグ819を形成しないように、マスクを変更する。このように変更したマスクを使用して製造すると、図8(C)に示される構造となる。上下配線間は、層間絶縁膜815およびSiCN膜807で絶縁されている。
 上下配線をビアプラグで接続する箇所(短絡状態)では、図8(A)に示されるビアプラグ819ではなく、上部配線818と下部電極兼配線805a、805bとが垂直方向に重なった位置に、ビアプラグ819a、819bを形成するよう、マスクを変更する。このように変更したマスクを使用して製造すると、図8(B)に示される構造となる。ビアプラグ819a、819bを形成するマスクでSiCN膜807の二つの開口も形成される。上部配線818はビアプラグ819aを介して下部電極兼配線805aに接続されており、上部配線818はビアプラグ819bを介して下部電極兼配線805bに接続されている。これにより、上下配線をビアプラグで接続する箇所(短絡状態)と上下配線の接続を電気的に切り離す箇所(絶縁状態)とを製造工程で作り分ける。このようにして、抵抗変化素子を含む再構成回路のハードコピーを作製することができる。
 本実施例の手法の利点は、予め抵抗変化素子を搭載した再構成チップをレイアウトする際に、ハードコピー作製時のビアプラグの接続位置を考慮して、上下配線が基板に垂直方向に重なった配置を有するよう、工夫しておくことである。これにより、ビアプラグを形成するためのマスク1枚を変更するだけで、同一のCMOS基板を用いて、再構成回路チップとハードコピーの双方を作り分けることができるようになる。
 〔第2実施形態〕
 次に、本発明の第2実施形態による半導体装置、および半導体装置の製造方法について、説明する。本実施形態では、抵抗変化素子を搭載した半導体装置からハードコピーを形成する場合において、セルトランジスタと抵抗変化素子とを接続するビアプラグを削除することで、チップの動作速度、および消費電力をさらに改善する手法について説明する。
 図9は、抵抗変化素子を用いた再構成回路における、クロスバースイッチの適用例である。この場合、二つのバイポーラ型の抵抗変化型素子901、902を直列して対向するように接続し、中間ノードにセルトランジスタ(プログラムトランジスタ)を配置している。実装する演算機能に応じて、抵抗変化素子の抵抗状態をプログラムすることで、クロスバースイッチによる信号の伝搬先を任意に変更することができる。
 図10は、図9に示した再構成回路から本実施形態による手法を用いてハードコピーを作製した場合の回路図である。
 図9に示した再構成回路の抵抗変化素子901および抵抗変化素子902をいずれも低抵抗状態にプログラムした場合、図10の短絡部1001と同様な状態が得られる。図9に示した再構成回路の抵抗変化素子901または抵抗変化素子902を高抵抗状態にプログラムした場合、図10の絶縁部1002と同様な状態が得られる。図9に示した再構成回路のセルトランジスタ(プログラムトランジスタ)をオフ状態にした場合、トランジスタとの切り離し部1003と同様な状態が得られる。
 図11(A)は本発明の第2実施形態による再構成回路の素子断面を示す模式図であり、図11(B)はハードコピー作製時の当該箇所再構成回路の素子断面を示す模式図である。図11(A)は、図8(A)の半導体装置と同様に、多層配線層が、一対の第1配線1104a、1104bと、ビアプラグ1102と、抵抗変化素子とを含む。図11(A)では、一対の第1配線1104a、1104bは下部配線である。一対の第1配線1104a、1104bは、三端子スイッチの下部電極を兼ねている。さらに図8(A)の半導体装置と同様に、層間絶縁膜、SiN膜およびハードマスク膜にコンタクトホールが形成され、ビアプラグ1102はバリアメタル膜を介して抵抗変化素子の上部電極に接触している。ビアプラグ1102が該コンタクトホールを埋め込むように形成され、第2配線1106が該配線溝を埋め込むように形成されている。第2配線1106とビアプラグ1102とは、一体となっている。図11(A)では、第2配線1106は上部配線である。
 本実施形態の抵抗変化素子を用いた再構成回路においては、中間ノードとなる上部電極は一度、ビアプラグ1102を介して上層配線へ引き上げられている。その先は、ビアプラグ1101を介して下層配線へ接続され、さらに図示しないセルトランジスタ(プログラムトランジスタ)トランジスタに接続される。言い換えると、図11(A)では、上部配線は、ビアプラグ1102とは別の箇所に設けられたビアプラグ1101を介して、下層の層間絶縁膜に形成されたビアプラグ1105の一端に接続されている。ビアプラグ1105の他端は、図示しないセルトランジスタ(プログラムトランジスタ)に接続されている。このような構造により、図9に示す二つのバイポーラ型の抵抗変化型素子901、902を直列して対向に接続し、中間ノードにセルトランジスタ(プログラムトランジスタ)が接続された回路構成が実現される。
 本実施形態の半導体装置では、図8(A)に示される半導体装置と同様に、予め下部電極兼配線としての第1配線1104a、1104bと、上部配線としての第2配線1106との間にビアプラグを形成できるよう、基板に対し垂直方向に重なった配置を有する。
 次に、このような抵抗変化素子を含む再構成回路のハードコピー作製について、具体的に説明する。本実施形態では、抵抗変化素子を含む再構成回路のハードコピー作製時においては、抵抗変化素子の製造工程を削除し、抵抗変化素子の上部電極に接続しているビアプラグ1102のマスクを変更する。これにより、製造工程において短絡状態と絶縁状態とを作り分ける。
 本実施形態では、図9に示される抵抗変化素子901、902が、ハードコピー作製時に形成されない。抵抗変化素子を形成しないので、図11(A)に示される、抵抗変化素子が一対の第1配線1104a、1104bに連通する開口部が絶縁性バリア膜に形成されないように、マスクが変更される。
 図10の絶縁部1002は、図11(A)に示されるビアプラグ1102を形成しないように、マスクを変更することで実現できる(図示せず)。このように変更したマスクを使用して製造すると、図8(C)に示されるような構造となる。一対の第1配線1104a、1104bはお互いに接続されず、図10の絶縁部1002が実現される。
 図10の短絡部1001は、図11(A)に示されるビアプラグ1102を形成せず、第2配線1106と第1配線1104a、1104bとが垂直方向に重なった位置に、ビアプラグ1103a、1103bを形成するよう、マスクを変更することで実現できる。トランジスタへ接続するビアプラグ1101、および抵抗変化素子の上部電極に接続するビアプラグ1102の双方を削除し、特に短絡状態を実現するためには、ビアプラグ1103a、1103bを形成するように、マスクを変更する。このように変更したマスクを使用して製造すると、図11(B)の紙面右側に示されるような構造となる。ビアプラグ1103a、1103bを形成するマスクで絶縁性バリア膜の二つの開口も形成される。第2配線1106はビアプラグ1103aを介して第1配線1104aに接続されており、第2配線1106はビアプラグ1103bを介して第1配線1104bに接続されている。こうして、上部配線としての第2配線1106を経由して第1配線1104aと第1配線1104bとが接続され、図10の短絡部1001が実現される。
 図10のトランジスタとの切り離し部1003は、図11(A)に示されるビアプラグ1102を形成せず、かつ図11(A)のビアプラグ1101を形成しないように、マスクを変更することで実現できる。このように変更したマスクを使用して製造すると、図11(B)に示される構造となる。この際、第2配線1106と第1配線1104a、1104bとが垂直方向に重なった位置に、ビアプラグ1103a、1103bを形成するように、マスクを変更する。これにより、第2配線1106は下層の層間絶縁膜に形成されたビアプラグ1105と絶縁されて、セルトランジスタ(プログラムトランジスタ)に接続されない。こうして、図10のトランジスタとの切り離し部1003が実現される。
 本実施形態の手法によって、抵抗変化素子は短絡状態、あるいは絶縁状態のビアプラグに置き換えられる。この状態は機能をマッピングすることで明らかとなり、搭載したい演算機能に応じて変化する。
 さらにプログラミングトランジスタに接続しているビアプラグを削除することで、ハードコピー時にセルトランジスタの寄生容量分を削減することができるので、高速動作、および低電力動作をすることができるようになる。例えば、セルトランジスタの寄生容量が1fFである場合には、搭載していた抵抗変化素子数が10Mbitである場合には、総量で10nFに達するため、この分のチップの消費電力の削減が可能となる。
 本実施形態のビアプラグ1101、1102、1103、1104は、同じレイヤである。これにより、ビアプラグを作製するマスク1枚を変更するだけで、抵抗変化素子を用いた再構成回路とハードコピーとを作り分けることができるようになり、コストを低減することができるようになる。
 以上、好適な実施形態および実施例に関連付けして本発明を説明したが、これら実施形態および実施例は単に実例を挙げて発明を説明するためのものであって、限定することを意味するものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 例えば、本発明におけるハードコピーを形成する半導体基板下地は、再構成回路チップと同じ、クロスバースイッチブロックとロジックブロック(例えば、Look-up-Table(LUT))などから構成される。この半導体基板下地では、スイッチブロックの接続状態とLUTの構成情報が、抵抗変化素子によって任意にプログラムされる。このとき、ハードコピーチップにおいては、同じ構成のまま、抵抗変化素子の位置にビアを形成する、しないをマスク1枚によって選択できるようにしておくことで、プログラム機構を削除した半導体基板下地を作製しておく。プログラム機構は削除されているため、抵抗変化素子をプログラムするための高耐圧トランジスタは不要となり、チップ面積を低減することができるようになる。
 例えば、抵抗変化素子を用いた再構成回路チップは、抵抗変化素子のプログラミングのために高耐圧トランジスタを用いているため、最先端のテクノロジーノード(28nm以降)を用いるメリットが小さい。そのため、65~40nm世代のテクノロジーノードで形成する。これにより再構成回路を形成するための製造コストは低く抑えることができる。
 一方、ハードコピーを形成する場合の半導体基板は、抵抗変化素子のプログラムのための高耐圧トランジスタが削除されていることから、微細化するほどチップサイズを小さくすることができる。これにより、40nm世代よりも先の世代である、28nm世代や14nm世代を用いることができ、消費電力を低減することができるようになる。
 例えば、本発明における抵抗変化素子は、金属架橋型の抵抗変化素子を主に説明したが、本発明は抵抗変化素子の材料に限定されるものではない。例えば、MRAM(Magnetic RAM)、PRAM(Phase change Random Access Memory)、ReRAMなどの抵抗変化素子を用いた回路をハードコピーする場合にも用いることができる。
 例えば、本発明者によってなされた発明の背景となった利用分野であるCMOS回路を有する半導体製造装置技術に関して詳しく説明し、半導体基板上の銅配線上部に抵抗変化素子を形勢する例について説明したが、本発明はそれに限定されるものではない。本発明を、メモリ回路を有する半導体製品、マイクロプロセッサなどの論理回路を有する半導体製品、あるいはそれらを同時に掲載したボードやパッケージの銅配線上へも適用することができる。ここでのメモリ回路としては、例えば、DRAM(Dynamic RAM)、SRAM、フラッシュメモリ、FRAM(登録商標)(Ferro Electric RAM)、MRAM、抵抗変化型メモリ、バイポーラトランジスタ等が挙げられる。
 また、本発明を、半導体装置に対する、電子回路装置、光回路装置、量子回路装置、マイクロマシン、MEMS(Micro Electro Mechanical Systems)などの接合にも適用することができる。また、本発明ではスイッチ機能での実施例を中心に説明したが、不揮発性と抵抗変化特性の双方を利用したメモリ素子などに用いることもできる。
 また、ハードコピーにおいては、明細書中に示したようなルーティングスイッチの構成を用いているかで確認することができる。
 上記の実施形態または実施例の一部または全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)半導体基板上の多層配線層内に形成された抵抗変化型不揮発性素子を用いている再構成回路チップからハードコピーを製造する、半導体装置の製造方法であって、前記再構成回路チップを形成する半導体基板と同一の半導体基板下地を用いてハードコピーを製造する、半導体装置の製造方法。
(付記2)前記再構成回路チップの前記抵抗変化型不揮発性素子が低抵抗状態にプログラムされた箇所では、平面的に重なる下部配線と上部配線とを短絡させ、前記再構成回路チップの前記抵抗変化型不揮発性素子が高抵抗状態にプログラムされた箇所では、平面的に重なる下部配線と上部配線とを電気的に絶縁させるようにハードコピーを製造する、付記1に記載の半導体装置の製造方法。
(付記3)再構成回路のマッピング時に低抵抗状態にプログラムされた前記抵抗変化型不揮発性素子の位置を特定し、前記低抵抗状態の素子位置の前記多層配線層にはビアプラグを形成し、前記高抵抗状態の素子位置の前記多層配線層にはビアプラグを形成しないようにハードコピー時の回路レイアウトを形成する、付記2に記載の半導体装置の製造方法。
(付記4)前記製造されたハードコピーは前記抵抗変化型不揮発性素子を含み、前記抵抗変化型不揮発性素子は、下部電極兼配線と、抵抗変化層と、上部電極とからなり、前記抵抗変化層は前記下部電極兼配線上に設けられた絶縁性バリア膜の開口部を介して前記下部電極兼配線と接続されており、前記上部電極はコンタクトプラグを介して上部配線と接続しており、ハードコピー作製時には、前記絶縁性バリア膜に開口部を形成するマスク、もしくは前記上部電極と前記上部配線を接続するビアプラグを形成するマスクを変更し、前記抵抗変化型不揮発性素子から抵抗変化層を除いて電極層のみを搭載した状態で回路動作を実現する、付記1乃至付記3のいずれか一つに記載の半導体装置の製造方法。
(付記5)前記ハードコピーは、多層配線工程の一枚のマスクのみを変更して製造される、付記1乃至付記3のいずれか一つに記載の半導体装置の製造方法。
(付記6)前記製造されたハードコピーは前記抵抗変化型不揮発性素子を含み、前記抵抗変化型不揮発性素子は、下部電極兼配線と、抵抗変化層と、上部電極とからなり、前記抵抗変化層は前記下部電極兼配線上に設けられた絶縁性バリア膜の開口部を介して前記下部電極兼配線と接続されており、前記上部電極はコンタクトプラグを介して上部配線と接続しており、前記ハードコピーは、前記絶縁性バリア膜に開口部を形成するマスク、もしくは前記上部電極と前記上部配線を接続するビアプラグを形成するマスクのいずれか一つを変更して製造される、付記5に記載の半導体装置の製造方法。
(付記7)ハードコピー作製時に、前記抵抗変化型不揮発性素子から抵抗変化層を除いて電極層のみを搭載した状態で回路動作を実現する、付記6に記載の半導体装置の製造方法。
(付記8)前記抵抗変化型不揮発性素子は、下部電極兼配線と、抵抗変化層と、上部電極とからなり、前記抵抗変化層は前記下部電極兼配線上に設けられた絶縁性バリア膜の開口部を介して前記下部電極兼配線と接続され、前記上部電極はコンタクトプラグを介して上部配線と接続される構造をなしており、ハードコピー作製時には、前記抵抗変化型不揮発性素子の製造工程を削除し、前記上部電極と上部配線を接続するビアプラグを形成するマスクを変更してハードコピーを作製する、付記1乃至付記5のいずれか一つに記載の半導体装置の製造方法。
(付記9)ハードコピー作製時には、前記絶縁性バリア膜に開口部を形成するマスク、もしくは前記上部電極と前記上部配線を接続するビアプラグを形成するマスクを変更し、
前記抵抗変化型不揮発性素子から抵抗変化層を除いた電極層のみを搭載した状態で回路動作を実現する、付記1乃至付記7のいずれか一つに記載の半導体装置の製造方法。
(付記10)前記抵抗変化型不揮発性素子は、ルーティングスイッチ、あるいはメモリとして用いられている、付記1乃至付記7のいずれか一つに記載の半導体装置の製造方法。
(付記11)前記抵抗変化型不揮発性素子はセルトランジスタを介してプログラミングされる、付記1乃至付記8のいずれか一つに記載の半導体装置の製造方法。
(付記12)下部電極兼配線は、お互いに離間して配置され、前記抵抗変化型不揮発性素子の前記抵抗変化層を介して接続された、第1の下部電極兼配線と第2の下部電極兼配線を含み、二つのバイポーラ型の抵抗変化型不揮発性素子が直列して接続された構造体を構成しており、前記構造体の中間ノードには前記抵抗変化型不揮発性素子をプログラミングする前記セルトランジスタが接続される、付記11に記載の半導体装置の製造方法。
(付記13)前記上部配線とセルトランジスタを接続するためのビアをハードコピー時に削除することにより、前記上部電極と前記上部配線とを接続する前記コンタクトプラグを形成するマスクを変更する、付記11又は付記12に記載の半導体装置の製造方法。
(付記14)ハードコピー作製時に、前記抵抗変化型不揮発性素子を形成するマスクを変更し、前記上部配線と前記下部電極兼配線とを短絡するビアプラグを形成する、付記11乃至付記13のいずれか一つに記載の半導体装置の製造方法。
(付記15)前記上部配線と前記下部電極兼配線とを短絡するビアプラグの形成により、第1の下部電極兼配線と第2の下部電極兼配線とが前記上部配線を介して短絡される、付記14に記載の半導体装置の製造方法。
(付記16)半導体基板上に形成された下部配線、前記下部配線の上方に形成された層間絶縁膜、前記層間絶縁膜の上方であって前記下部配線と平面的に重なる位置に形成された上部配線、及び前記下部配線と前記上部配線とが平面的に重なる位置の、前記下部配線と前記層間絶縁膜との間に形成された抵抗変化素子を含む半導体装置であって、前記下部配線と前記上部配線とが平面的に重なる位置に、抵抗変化層を有する前記抵抗変化型不揮発性素子が形成されており、前記抵抗変化型不揮発性素子は、下部電極兼配線と、前記抵抗変化層と、上部電極とからなり、前記抵抗変化層は前記下部電極兼配線上に設けられた絶縁性バリア膜の開口部を介して前記下部電極兼配線と接続され、前記上部電極はコンタクトプラグを介して上部配線と接続される構造をなしており、前記下部配線と前記上部配線とが平面的に重なる位置のうち、第1の箇所では、前記抵抗変化型不揮発性素子が形成されておらず、下部配線と前記上部配線とが短絡している、半導体装置。
(付記17)前記第1の箇所とは異なる第2の箇所では、前記絶縁性バリア膜に開口部が形成されておらず、前記抵抗変化型不揮発性素子と前記下部電極兼配線とは、絶縁性バリア膜で絶縁されている、付記16に記載の半導体装置。
(付記18)前記抵抗変化型不揮発性素子の前記下部電極兼配線は、お互いに離間して配置され、前記抵抗変化型不揮発性素子の前記抵抗変化層を介して接続された、第1の下部電極兼配線と第2の下部電極兼配線を含み、二つのバイポーラ型の抵抗変化型不揮発性素子が直列して接続された構造体を構成している、付記16に記載の半導体装置。
(付記19)前記第1の箇所とは異なる第3の箇所では、前記抵抗変化型不揮発性素子が形成されておらず、前記第1の下部電極兼配線と第2の下部電極兼配線とが前記上部配線を介して短絡されている、付記18に記載の半導体装置。
(付記20)前記第1の箇所とは異なる第4の箇所では、前記絶縁性バリア膜に開口部が形成されておらず、前記第1の下部電極兼配線及び第2の下部電極兼配線と前記上部配線とは絶縁されている、付記18又は付記19に記載の半導体装置。
(付記21)半導体基板上の多層配線層内に形成された抵抗変化型不揮発性素子のプログラム状態によって演算機能を実現する再構成回路チップから、構成情報を取得して、同一の機能を有する半導体基板を製造することを特徴とするハードコピーチップの製造方法。
(付記22)前記再構成回路チップに搭載されているロジックブロック数と、同一のロジックブロック数を有することを特徴とする、付記21に記載の製造方法により製造された半導体装置。
(付記23)半導体基板上の多層配線層内に形成された抵抗変化型不揮発性素子を備え、任意の論理演算機能が前記抵抗変化型不揮発素子にプログラムされた再構成回路チップと、同一の論理演算機能を有するようにハードコピーした半導体装置。
(付記24)前記再構成回路チップはロジックブロックと、スイッチブロックとを備え、
前記抵抗変化型不揮発性素子はその双方に用いられている、付記23に記載の半導体装置。
(付記25)前記スイッチブロックと前記ロジックブロックからなるロジックセルがタイル状に敷き詰められている、付記24に記載の半導体装置。
(付記26)前記スイッチブロックはクロスバースイッチからなる、付記23乃至付記25のいずれか一つに記載の半導体装置。
(付記27)前記再構成回路チップの前記抵抗変化型不揮発性素子が低抵抗状態にプログラムされた箇所では、平面的に重なる下部配線と上部配線とが短絡され、前記再構成回路チップの前記抵抗変化型不揮発性素子が高抵抗状態にプログラムされた箇所では、平面的に重なる下部配線と上部配線とを電気的に絶縁されている、付記23乃至付記26のいずれか一つに記載の半導体装置。
(付記28)前記低抵抗状態にプログラムされた箇所は、少なくとも一つのビアプラグを形成する、付記27に記載の半導体装置。
(付記29)付記27又は付記28に記載の半導体装置のための製造方法であって、
再構成回路のマッピング時に低抵抗状態にプログラムされた前記抵抗変化型不揮発性素子の位置を特定し、前記低抵抗状態の素子位置の前記多層配線層には少なくとも一つのビアプラグを形成して、ハードコピー時のレイアウトを形成する、半導体装置の製造方法。
(付記30)前記ハードコピーは、多層配線工程の一枚のマスクのみを変更して製造される、付記29に記載の半導体装置の製造方法。
(付記31)前記再構成回路チップを形成する半導体基板と同一の半導体基板下地を用いてハードコピーを製造する、付記29又は付記30に記載の半導体装置の製造方法。
(付記32)前記抵抗変化型不揮発性素子は、下部電極兼配線と、抵抗変化層と、上部電極とからなり、前記抵抗変化層は前記下部電極兼配線上に設けられた絶縁性バリア膜の開口部を介して前記下部電極兼配線と接続され、前記上部電極はコンタクトプラグを介して上部配線と接続される構造をなしており、
ハードコピー作製時には、前記抵抗変化型不揮発性素子の製造工程を削除し、前記上部電極と上部配線を接続するビアプラグを形成するマスクを変更してハードコピーを作製する、付記29乃至付記31のいずれか一つに記載の半導体装置の製造方法。
 以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。
 この出願は、2014年6月25日に出願された日本出願特願2014-130223号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1、201、301、401、901、902  抵抗変化素子
 402  ロジックブロック
 403  コネクションブロック
 404  スイッチブロック
 501  低抵抗状態の抵抗変化素子
 502  高抵抗状態の抵抗変化素子
 1001  短絡部
 1002  絶縁部
 1003  トランジスタとの切り離し部

Claims (10)

  1.  半導体基板上の多層配線層内に形成された抵抗変化型不揮発性素子を備え、任意の論理演算機能が前記抵抗変化型不揮発性素子にプログラムされた再構成回路チップと、
    同一の論理演算機能を有するようにハードコピーした半導体装置。
  2.  前記再構成回路チップは、ロジックブロックと、スイッチブロックとを備え、
     前記抵抗変化型不揮発性素子はその双方に用いられていることを特徴とする、請求項1に記載の半導体装置。
  3.  前記スイッチブロックと前記ロジックブロックからなるロジックセルがタイル状に敷き詰められていることを特徴とする、請求項2に記載の半導体装置。
  4.  前記スイッチブロックはクロスバースイッチからなることを特徴とする、請求項1乃至請求項3のいずれか一項に記載の半導体装置。
  5.  前記再構成回路チップの前記抵抗変化型不揮発性素子が低抵抗状態にプログラムされた箇所では、平面的に重なる下部配線と上部配線とが短絡され、前記再構成回路チップの前記抵抗変化型不揮発性素子が高抵抗状態にプログラムされた箇所では、平面的に重なる下部配線と上部配線とを電気的に絶縁されていることを特徴とする、請求項1乃至請求項4のいずれか一項に記載の半導体装置。
  6.  前記低抵抗状態にプログラムされた箇所は、少なくとも一つのビアプラグを形成することを特徴とする、請求項5に記載の半導体装置。
  7.  請求項5又は請求項6に記載の半導体装置のための製造方法であって、
     再構成回路のマッピング時に低抵抗状態にプログラムされた前記抵抗変化型不揮発性素子の位置を特定し、前記低抵抗状態の素子位置の前記多層配線層には少なくとも一つのビアプラグを形成して、ハードコピー時のレイアウトを形成する、半導体装置の製造方法。
  8.  前記ハードコピーは、多層配線工程の一枚のマスクのみを変更して製造される、請求項7に記載の半導体装置の製造方法。
  9.  前記再構成回路チップを形成する半導体基板と同一の半導体基板下地を用いてハードコピーを製造する、請求項7又は請求項8に記載の半導体装置の製造方法。
  10.  前記抵抗変化型不揮発性素子は、下部電極兼配線と、抵抗変化層と、上部電極とからなり、前記抵抗変化層は前記下部電極兼配線上に設けられた絶縁性バリア膜の開口部を介して前記下部電極兼配線と接続され、前記上部電極はコンタクトプラグを介して上部配線と接続される構造をなしており、
     ハードコピー作製時には、前記抵抗変化型不揮発性素子の製造工程を削除し、前記上部電極と上部配線を接続するビアプラグを形成するマスクを変更してハードコピーを作製する、請求項7乃至請求項9のいずれか一項に記載の半導体装置の製造方法。
PCT/JP2015/003082 2014-06-25 2015-06-19 半導体装置、および半導体装置の製造方法 WO2015198573A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016529064A JP6717192B2 (ja) 2014-06-25 2015-06-19 半導体装置、および半導体装置の製造方法
US15/318,792 US10249643B2 (en) 2014-06-25 2015-06-19 Hard copied semiconductor device having a resistance-variable non-volatile element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-130223 2014-06-25
JP2014130223 2014-06-25

Publications (1)

Publication Number Publication Date
WO2015198573A1 true WO2015198573A1 (ja) 2015-12-30

Family

ID=54937681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003082 WO2015198573A1 (ja) 2014-06-25 2015-06-19 半導体装置、および半導体装置の製造方法

Country Status (3)

Country Link
US (1) US10249643B2 (ja)
JP (1) JP6717192B2 (ja)
WO (1) WO2015198573A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195509A1 (en) * 2016-05-13 2017-11-16 Nec Corporation Reconfigurable circuit and the method for using the same
WO2018051931A1 (ja) * 2016-09-13 2018-03-22 日本電気株式会社 半導体装置およびそのプログラミング方法
WO2018051946A1 (ja) * 2016-09-16 2018-03-22 日本電気株式会社 集積回路
WO2018207353A1 (en) * 2017-05-12 2018-11-15 Nec Corporation Writing apparatus and method for complementary resistive switch
JP2020530700A (ja) * 2017-08-10 2020-10-22 日本電気株式会社 再構成可能回路のためのルーティングネットワーク
US10879902B2 (en) 2017-03-17 2020-12-29 Nec Corporation Reconfigurable circuit using nonvolatile resistive switches

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102454877B1 (ko) * 2016-08-08 2022-10-17 에스케이하이닉스 주식회사 전자 장치 및 그 제조 방법
US11810854B2 (en) * 2019-05-15 2023-11-07 Tokyo Electron Limited Multi-dimensional vertical switching connections for connecting circuit elements
US11069616B2 (en) * 2019-05-16 2021-07-20 Tokyo Electron Limited Horizontal programmable conducting bridges between conductive lines
TWI682533B (zh) * 2019-06-21 2020-01-11 華邦電子股份有限公司 記憶體裝置及其製造方法
US20210272347A1 (en) * 2020-02-28 2021-09-02 Advanced Micro Devices, Inc. Fully utilized hardware in a multi-tenancy graphics processing unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068378A (ja) * 1998-08-19 2000-03-03 Rohm Co Ltd プログラマブルゲートアレイによる半導体装置の製造方法
JP2007005580A (ja) * 2005-06-24 2007-01-11 Sanyo Electric Co Ltd メモリ
JP2008219011A (ja) * 2007-02-28 2008-09-18 Toshiba Corp 再構成可能回路およびそのプログラミング方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5474272B2 (ja) * 2005-03-15 2014-04-16 ピーエスフォー ルクスコ エスエイアールエル メモリ装置及びその製造方法
JP2007027537A (ja) * 2005-07-20 2007-02-01 Sharp Corp 可変抵抗素子を備えた半導体記憶装置
JP4800017B2 (ja) * 2005-11-25 2011-10-26 エルピーダメモリ株式会社 半導体記憶装置
US7605079B2 (en) * 2005-12-05 2009-10-20 Macronix International Co., Ltd. Manufacturing method for phase change RAM with electrode layer process
JP2009135219A (ja) * 2007-11-29 2009-06-18 Renesas Technology Corp 半導体装置およびその製造方法
JP4531863B2 (ja) * 2008-11-19 2010-08-25 パナソニック株式会社 不揮発性記憶素子および不揮発性記憶装置
KR20100090449A (ko) * 2009-02-06 2010-08-16 삼성전자주식회사 균일한 컨택 플러그들을 포함하는 반도체 소자 및 그 제조 방법
CN102272927B (zh) * 2009-08-03 2014-09-10 松下电器产业株式会社 半导体存储器的制造方法
JP4945609B2 (ja) * 2009-09-02 2012-06-06 株式会社東芝 半導体集積回路装置
JP2011100775A (ja) * 2009-11-04 2011-05-19 Renesas Electronics Corp 半導体装置およびその製造方法
JP5521612B2 (ja) * 2010-02-15 2014-06-18 ソニー株式会社 不揮発性半導体メモリデバイス
CN102918647B (zh) * 2010-04-21 2015-04-01 松下电器产业株式会社 非易失性存储装置及其制造方法
JP5899474B2 (ja) * 2011-09-16 2016-04-06 パナソニックIpマネジメント株式会社 不揮発性記憶素子、不揮発性記憶装置、不揮発性記憶素子の製造方法、及び不揮発性記憶装置の製造方法
JP5823833B2 (ja) * 2011-11-25 2015-11-25 ルネサスエレクトロニクス株式会社 半導体記憶装置
US10103329B2 (en) * 2012-06-22 2018-10-16 Nec Corporation Switching element and method for manufacturing switching element
US8981327B1 (en) * 2013-12-23 2015-03-17 Intermolecular, Inc. Carbon-doped silicon based selector element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068378A (ja) * 1998-08-19 2000-03-03 Rohm Co Ltd プログラマブルゲートアレイによる半導体装置の製造方法
JP2007005580A (ja) * 2005-06-24 2007-01-11 Sanyo Electric Co Ltd メモリ
JP2008219011A (ja) * 2007-02-28 2008-09-18 Toshiba Corp 再構成可能回路およびそのプログラミング方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195236A1 (en) * 2016-05-13 2017-11-16 Nec Corporation Reconfigurable circuit and the method for using the same
WO2017195509A1 (en) * 2016-05-13 2017-11-16 Nec Corporation Reconfigurable circuit and the method for using the same
US11018671B2 (en) 2016-05-13 2021-05-25 Nec Corporation Reconfigurable circuit and the method for using the same
JP2019512950A (ja) * 2016-05-13 2019-05-16 日本電気株式会社 再構成可能回路およびその使用方法
JP2019512951A (ja) * 2016-05-13 2019-05-16 日本電気株式会社 再構成可能回路およびその使用方法
US10748614B2 (en) 2016-09-13 2020-08-18 Nec Corporation Semiconductor device and programming method therefor
WO2018051931A1 (ja) * 2016-09-13 2018-03-22 日本電気株式会社 半導体装置およびそのプログラミング方法
WO2018051946A1 (ja) * 2016-09-16 2018-03-22 日本電気株式会社 集積回路
US10720925B2 (en) 2016-09-16 2020-07-21 Nec Corporation Integrated circuit
US10879902B2 (en) 2017-03-17 2020-12-29 Nec Corporation Reconfigurable circuit using nonvolatile resistive switches
WO2018207353A1 (en) * 2017-05-12 2018-11-15 Nec Corporation Writing apparatus and method for complementary resistive switch
JP2020530700A (ja) * 2017-08-10 2020-10-22 日本電気株式会社 再構成可能回路のためのルーティングネットワーク
US10855283B2 (en) 2017-08-10 2020-12-01 Nec Corporation Routing network for reconfigurable circuit

Also Published As

Publication number Publication date
JP6717192B2 (ja) 2020-07-01
US10249643B2 (en) 2019-04-02
US20170141125A1 (en) 2017-05-18
JPWO2015198573A1 (ja) 2017-04-20

Similar Documents

Publication Publication Date Title
WO2015198573A1 (ja) 半導体装置、および半導体装置の製造方法
CN101872788B (zh) 集成电路3d存储器阵列及其制造方法
US7494849B2 (en) Methods for fabricating multi-terminal phase change devices
US8183551B2 (en) Multi-terminal phase change devices
CN102272916B (zh) 具有熔丝型硅通孔的3d芯片叠层
US7253659B2 (en) Field programmable structured arrays
US7579616B2 (en) Four-terminal programmable via-containing structure and method of fabricating same
US9666641B2 (en) Compact three-dimensional memory
TWI429061B (zh) 積體電路三維記憶體陣列及製造方法
TWI530953B (zh) 三維記憶體及解碼技術
KR20080044287A (ko) 재생가능 가변 저항 절연 메모리 장치 및 그 형성 방법
CN103904109B (zh) 半导体器件以及用于制造半导体器件的方法
US20130094273A1 (en) 3d memory and decoding technologies
JP6901686B2 (ja) スイッチング素子、半導体装置及びその製造方法
US20100038619A1 (en) Variable resistance element, manufacturing method thereof, and electronic device
WO2021135924A1 (zh) 一种阻变存储器和制造方法
US10079239B2 (en) Compact three-dimensional mask-programmed read-only memory
CN113826192B (zh) 用于连接电路元件的多维垂直开关连接
US10199432B2 (en) Manufacturing methods of MOSFET-type compact three-dimensional memory
US10304495B2 (en) Compact three-dimensional memory with semi-conductive address line portion
US8860095B2 (en) Interconnect wiring switches and integrated circuits including the same
KR102510740B1 (ko) 전도성 라인 사이의 수평 프로그래밍 가능 전도성 브리지
TWI834909B (zh) 磁阻裝置及其製造方法
JP2009164373A (ja) 半導体装置
US10211258B2 (en) Manufacturing methods of JFET-type compact three-dimensional memory

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811871

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529064

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15318792

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15811871

Country of ref document: EP

Kind code of ref document: A1