JP3972128B2 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
JP3972128B2
JP3972128B2 JP2002355904A JP2002355904A JP3972128B2 JP 3972128 B2 JP3972128 B2 JP 3972128B2 JP 2002355904 A JP2002355904 A JP 2002355904A JP 2002355904 A JP2002355904 A JP 2002355904A JP 3972128 B2 JP3972128 B2 JP 3972128B2
Authority
JP
Japan
Prior art keywords
film
hydrogen
semiconductor device
disposed
capacitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002355904A
Other languages
English (en)
Other versions
JP2004193176A (ja
Inventor
徹 那須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002355904A priority Critical patent/JP3972128B2/ja
Publication of JP2004193176A publication Critical patent/JP2004193176A/ja
Application granted granted Critical
Publication of JP3972128B2 publication Critical patent/JP3972128B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Memories (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属酸化物を含む容量膜を有する容量素子とトランジスタとを含む半導体装置、およびその製造方法に関する。
【0002】
【従来の技術】
強誘電体は自発分極を生じる物質であり、これを含む容量膜を用いることにより、強誘電体メモリと呼ばれる低電圧および高速動作が可能な不揮発性メモリが実現できる。近年、既に小容量でありながら信頼性の高い強誘電体メモリ(半導体装置)が実用化されており、現在、さらに高集積化を目指した開発が進められている。
【0003】
図9に、従来の半導体装置の一例を示す。図9に示すように、トランジスタ101,101′が形成された半導体基板100より上方には、強誘電体を含む容量膜103bを有する容量素子103が配置されている。容量素子103より上層には、容量膜103bを覆うように水素バリア膜109が配置され、水素バリア膜109より上層には、耐湿性保護膜110が配置されている。図9において、102および104は層間絶縁膜、106は配線層、111は外部電極取り出し口、105はコンタクトプラグ、103cは容量素子の上部電極、103aは容量素子の下部電極である。トランジスタ101,101′は電極部(ゲート101a,101a′、ソース101b,101b′およびドレイン101c,101c′)を含んでいる。
【0004】
上記した強誘電体メモリに用いられる容量膜103bは、通常、鉛やビスマスなどの低融点金属を含む金属酸化物である。これらは水素が存在する雰囲気中で熱処理すると容易に還元し、電気伝導性などの特性が劣化する。ところで、耐湿性保護膜110は、通常、窒化シリコンを含むが、窒化シリコンを含む耐湿性保護膜110を化学気相堆積法(プラズマCVD法)にて形成する際の雰囲気中には若干の水素が含まれる。図9に示したように、容量素子103より上層に、容量膜103bを覆うように水素バリア膜109を配置すれば、耐湿性保護膜110を形成する際の雰囲気中に含まれる水素が容量膜103bにまで到達しにくくなり、容量膜103bの特性の劣化を抑制できる。
【0005】
しかしながら上記した方法では、半導体装置の微細化に対応できない。現在、半導体装置において主として用いられているトランジスタは、MOSFETと呼ばれる電界効果型トランジスタである。このような構造のトランジスタの上層に配線層などを形成する際に、プラズマエッチングなどすることによって半導体基板のチャンネル部に結晶欠陥が形成されることがある。チャンネル部に結晶欠陥が形成されると、トランジスタの最も重要な特性である閾値電圧が変動する。半導体装置の微細化を進めると、トランジスタの閾値電圧も低くなるため、上記変動を許容できず、トランジスタの動作に支障をきたすことが重大な問題となっていた。
【0006】
この問題は、半導体基板に水素を供給し、結晶欠陥を水素で補償すれば解決できる。具体的には、水素を含有する窒化シリコン膜を耐湿性保護膜110として用い、耐湿性保護膜110を加熱することにより発生する水素を半導体基板100の結晶欠陥に供給して、トランジスタ101,101′の特性を安定化していた。図10にその様子を示している。耐湿性保護膜110を加熱すると、耐湿性保護膜110から発生する水素が半導体基板100にまで拡散し、トランジスタ101,101′の特性を安定化できる。
【0007】
【特許文献1】
特開2000−91512号公報(第3−4頁、図1)
【0008】
【発明が解決しようとする課題】
しかしながら、上記の方法では多量の水素が発生するため、水素の一部が容量膜103bに回り込み、容量膜103bの特性劣化を充分に抑制できないという問題がある。
【0009】
【課題を解決するための手段】
本発明の半導体装置は、半導体基板と、前記半導体基板に形成されたトランジスタと、前記トランジスタより上層に配置され、金属酸化物を含む容量膜を有する容量素子と、前記容量素子より上層において、前記容量膜を覆うように配置された水素バリア膜と、前記水素バリア膜より上層に配置された耐湿性保護膜とを含む積層構造を含み、前記積層構造が、前記水素バリア膜より下層において、前記容量膜の直上および直下を避けて配置された水素含有膜をさらに含み、前記積層構造において、前記容量膜よりも下層には水素バリア膜が存在しないことを特徴とする。
【0010】
本発明の半導体装置の製造方法は、金属酸化物を含む容量膜を有する容量素子と、水素含有膜とを含む積層体を、トランジスタが形成された半導体基板上に形成する第1の工程と、前記積層体が形成された前記半導体基板を、酸化性ガスを含む雰囲気中にて熱処理する第2の工程と、前記第2の工程後に、水素バリア膜を前記容量素子より上層において前記容量膜を覆うように形成し、耐湿性保護膜を前記水素バリア膜より上層に形成する第3の工程とを含み、前記第1の工程において、前記水素含有膜を、前記容量膜の直上および直下を避けて形成し、前記容量膜よりも下層には水素バリア膜を形成しないことを特徴とする。
【0011】
【発明の実施の形態】
本発明の半導体装置では、水素含有膜が、水素バリア膜より下層において、容量膜の直上および直下を避けて配置されている。本発明の半導体装置の作製過程において、水素バリア膜を形成する前に、水素含有膜と容量素子とを含む積層体が形成された半導体基板を、酸化性ガスを含む雰囲気中で熱処理すれば、水素含有膜から発生する水素をトランジスタへ選択的に供給でき、かつ、水素含有膜から発生した水素による容量膜の還元を酸化性ガスにより抑制できる。したがって、半導体基板に形成された結晶欠陥を水素により補償してトランジスタの特性を安定化でき、かつ、水素による容量膜の特性の劣化を抑制できる。また、水素バリア膜を、容量素子より上層において容量膜を覆うように配置しており、水素バリア膜より上層に耐湿性保護膜を配置しているので、耐湿性保護膜を形成する際の雰囲気中に水素が含まれていても、その水素が下層へ拡散することを水素バリア膜により抑制できる。したがって、耐湿性保護膜を形成する際の雰囲気中に含まれる水素が容量膜にまで達しにくくなり、容量膜の特性の劣化を抑制できる。
【0012】
本発明の半導体装置では、積層構造が、容量素子と水素含有膜との間に配置された1層以上の絶縁層をさらに含んでいることが好ましい。容量素子と水素含有膜との間に1層以上の絶縁層を配置すれば、容量素子と水素含有膜とが相互に反応する材料から形成されていても、水素含有膜を形成する過程において、水素含有膜と容量素子との反応を防止できる。
【0013】
積層構造が、容量素子と水素含有膜との間に1層の絶縁層を含み、その絶縁層の半導体基板側の面に容量素子が接して配置され、その面の反対面に水素含有膜が接して配置されていることが好ましい。このように、水素含有膜が容量素子より上層に配置された形態では、水素含有膜と容量素子とが1層の絶縁層を介して配置されていると、容量素子の上層に1層の絶縁層のみが存在する状態で、水素含有膜と容量素子とを含む積層体が形成された半導体基板を、酸化性ガスを含む雰囲気中で熱処理できる。したがって、容量膜に酸素が供給され易く、水素による容量膜の特性劣化を効果的に抑制できる。さらに、容量素子と水素含有膜とが相互に反応する材料から形成されていても、水素含有膜を形成する過程において、水素含有膜と容量素子との反応を防止できる。
【0014】
水素含有膜は、容量膜より下層であって容量膜と接して配置された層上に配置されていることが好ましい。容量膜と水素含有膜とを同一面上に配置すれば、容量膜が露出した状態で、水素含有膜と容量膜とを含む積層体が形成された半導体基板を、酸化性ガスを含む雰囲気中で容易に熱処理できる。容量膜を酸化性ガスに曝しながら熱処理すると、水素含有膜から発生する水素による容量膜の還元が酸化性ガスにより効果的に抑制されるので、容量膜の特性の劣化をより効果的に抑制できる。
【0015】
水素含有膜は、容量膜より下層に配置されていることが好ましい。水素含有膜をトランジスタのより近くに配置すれば、水素含有膜から発生する水素が半導体基板に供給されやすく、トランジスタの特性を効果的に安定化できる。さらに、容量膜が露出した状態で、水素含有膜と容量膜とを含む積層体が形成された半導体基板を、酸化性ガスを含む雰囲気中で熱処理することもできるので、水素含有膜から発生した水素による容量膜の特性の劣化を効果的に抑制できる。
【0016】
水素含有膜は、トランジスタの直上の領域内に配置されていることが好ましい。水素含有膜から発生する水素による容量膜への影響を低減し、かつ、トランジスタの特性を効果的に安定化できるからである。
【0017】
水素バリア膜は、耐湿性保護膜の直下の全域に配置されていることが好ましい。耐湿性保護膜を形成する際の雰囲気中に水素が含まれていても、その水素による容量膜の特性の劣化をより効果的に抑制できるからである。
【0018】
積層構造は、水素バリア膜と耐湿性保護膜との間に配置された1層以上の配線層をさらに含んでいてもよい。水素バリア膜より上層に配線層や耐湿性保護膜を形成する際の雰囲気中に水素が含まれていても、その水素による容量膜の劣化を抑制できるからである。
【0019】
積層構造が、水素バリア膜と耐湿性保護膜との間に配置された1層以上の配線層と、耐湿性保護膜を貫通する外部電極取出し口と、水素バリア膜を貫通して上記配線層とトランジスタの電極部とを接続するコンタクトプラグとをさらに含む場合、水素バリア膜は、耐湿性保護膜および外部電極取出し口の直下の全域からコンタクトプラグが配置された領域を除いた領域に配置されていることが好ましい。水素バリア膜より上層に配線層や耐湿性保護膜を形成する際の雰囲気中に水素が含まれていても、その水素による容量膜の劣化を効果的に抑制できるからである。
【0020】
水素バリア膜より下層であって水素バリア膜と接して配置された層の水素バリア膜と接した面は、平面であることが好ましい。水素バリア膜を平面上に形成すれば、水素バリア膜の結晶の均一性が増し、水素バリア性能を高めることができるからである。
【0021】
耐湿性保護膜は、窒化シリコンを含んでいてもよい。水素バリア膜は、酸化アルミニウムを含むことが好ましい。酸化アルミニウムを含む水素バリア膜は高い水素バリア性能を有するからである。水素含有膜は、窒化シリコンを含むことが好ましい。窒化シリコンを含む水素含有膜は、水素を多く含むことができるからである。容量膜は、ビスマス層状構造を有する強誘電体を含むことが好ましい。ビスマス層状構造を有する強誘電体は、分極反転による膜疲労の耐久性に優れ、容量膜としての信頼性が高いからである。
【0022】
次に、本発明の半導体装置の製造方法について説明する。
【0023】
本発明の半導体装置の製造方法では、水素含有膜を、容量膜の直上および直下の領域を避けて形成した後、水素含有膜と容量素子とを含む積層体が形成された半導体基板を、酸化性ガスを含む雰囲気中で熱処理する。これにより、水素含有膜から発生する水素をトランジスタに選択的に供給でき、かつ、水素含有膜から発生した水素による容量膜の還元を酸化性ガスにより抑制できる。したがって、半導体基板に形成された結晶欠陥を水素により補償してトランジスタの特性を安定化でき、かつ、水素による容量膜の特性の劣化を抑制できる。また、水素バリア膜を、容量素子より上層において容量膜を覆うように形成し、水素バリア膜より上層に耐湿性保護膜を形成するので、耐湿性保護膜を形成する際の雰囲気中に水素が含まれていても、水素の下層への拡散を水素バリア膜により抑制できる。したがって、耐湿性保護膜を形成する際の雰囲気中に含まれる水素が容量膜にまで達しにくくなり、容量膜の特性の劣化を抑制できる。
【0024】
以下に、本発明の半導体装置の一例を、図面を参照しながら説明する。
【0025】
(実施の形態1)
本実施の形態の半導体装置は、図1に示すように、半導体基板30と、半導体基板30に形成されたトランジスタ1,1´とを含んでいる。半導体基板30にはトランジスタ1とトランジスタ1´とを分離する、例えば酸化シリコンからなる素子分離膜22が形成されている。トランジスタ1,1′は、電極部(ゲート1a,1a´、ソース1b,1b′およびドレイン1c,1c´)を含んでいる。トランジスタ1,1´の上層には、例えば、酸化シリコンを主成分とする第1の層間絶縁膜2が配置され、第1の層間絶縁膜2上には、例えば、タングステンを主成分とする第1の配線層4が配置されている。第1の層間絶縁膜2の内部には、第1の配線層4とソース1bなどとを接続する、主成分が例えばタングステンの第1のコンタクトプラグ3が配置されている。
【0026】
第1の配線層4および第1の層間絶縁膜2上には、例えば、酸化シリコンを主成分とする第2の層間絶縁膜5が配置され、第2の層間絶縁膜5上には、容量素子を構成する下部電極7aが配置されている。下部電極7aは、例えば、上層よりPt/IrO2/Ir/TiAlNで構成された積層膜であり、Ptはキャパシタ電極、IrO2/Irは酸素バリア、TiAlNはタングステンの拡散バリアとしての役割を果たす。尚、TiAlNは、TiとAlとNとが任意の比率で混合された窒化物を意味する。下部電極7aは、例えばタングステンを主成分とする第2のコンタクトプラグ6を介してドレイン1c´と電気的に接続している。
【0027】
第2の層間絶縁膜5上には、例えば、酸化シリコンを主成分とするスペーサー層8が配置されており、スペーサー層8は下部電極7aとほぼ面一となるように形成されている。スペーサー層8および下部電極7a上には、例えば、SrBi2Ta2O9(ビスマス層状構造を有する強誘電体)を主成分とする容量膜7bが配置され、容量膜7b上には、例えば、Ptからなる上部電極7cが配置されている。下部電極7a、容量膜7bおよび上部電極7cにより容量素子7が構成される。
【0028】
容量膜7b、上部電極7cおよびスペーサー層8上には、例えば、酸化シリコンを主成分とする第3の層間絶縁膜9が配置され、第3の層間絶縁膜9上には、例えば、アルミニウムを主成分とする第2の配線層11が配置されている。第2の配線層11は、第2の層間絶縁膜5、スペーサー層8および第3の層間絶縁膜9を貫通して配置された、例えばタングステンを主成分とする第3のコンタクトプラグ10を介して、第1の配線層4と電気的に接続している。
【0029】
第2の配線層11および第3の層間絶縁膜9上には、例えば、酸化シリコンを主成分とする第4の層間絶縁膜12が配置され、第4の層間絶縁膜12上には、例えば、アルミニウムを主成分とする第3の配線層14が配置されている。第3の配線層14は、第4の層間絶縁膜12の内部を貫通して配置された、例えばタングステンを主成分とする第4のコンタクトプラグ13を介して、第2の配線層11と電気的に接続している。
【0030】
容量素子7、第2のコンタクトプラグ6、トランジスタ1´および第1の配線層4によりメモリセルが構成される。以下、半導体装置がこのメモリセルを含む領域を「メモリセル領域15」という。このメモリセル領域15において、第1の配線層4はビット線の役割を果たし、上部電極7cはセルプレートの役割を果たす。一方、トランジスタ1を含む領域を「周辺回路領域16」という。
【0031】
周辺回路領域16において、第3の配線層14および第4の層間絶縁膜12上には、例えば窒化シリコンを含む水素含有膜17が配置されている。水素含有膜17、第3の配線層14および第4の層間絶縁膜12上には、例えば酸化アルミニウムを含む水素バリア膜18が配置され、水素バリア膜18上には、例えば窒化シリコンを含む耐湿性保護膜19が配置されている。水素バリア膜18と耐湿性保護膜19とを貫通して外部電極取出し口21が形成されており、外部電極取出し口21において、第3の配線層14の一部が露出している。
【0032】
本実施の形態の半導体装置では、水素含有膜17が、水素バリア膜18より下層において、容量膜7bの直上および直下を避け、さらには、メモリセル領域15を避けて配置されている。本実施の形態の半導体装置の作製過程において、水素バリア膜18を形成する前に、水素含有膜17と容量素子7とを含む積層体が形成された半導体基板30を、酸化性ガスを含む雰囲気中で熱処理すれば、水素含有膜17から発生した水素をトランジスタ1,1′に選択的に供給でき、かつ水素含有膜17から発生した水素による容量膜7bの還元を酸化性ガスにより抑制できる。したがって、半導体基板30の表面に形成された結晶欠陥を水素により補償してトランジスタ1,1′の特性を安定化でき、かつ水素による容量膜7bの特性の劣化を抑制できる。ここで、酸化性ガスとは、酸素元素を含む物質の気体であり、例えば、酸素、オゾン、一酸化二窒素(N2O)などが挙げられる。
【0033】
また、容量素子7と水素含有膜17とが相互に反応する材料から形成されている場合、例えば、窒化シリコンの水素含有膜に対して、容量素子7の上部電極7cがPt、Ir、Ru、Ti、Taを含む場合、図1に示したように、容量素子7と水素含有膜17との間に1層以上の絶縁層が配置されていれば、水素含有膜17を形成する過程において、水素含有膜と上部電極7bとの反応、例えばシリサイド反応を防止できる。
【0034】
水素含有膜17は、周辺回路領域16の全域に配置されているが、水素含有膜をトランジスタの直上の領域内に配置すれば、水素含有膜から発生する水素による容量膜への影響を低減し、かつ、トランジスタの特性を効果的に安定化できる。
【0035】
水素バリア膜18は、水素バリア性能の高い酸化アルミニウムを含んでいるが、酸化チタンや酸化タンタルなどの他の金属酸化物をさらに含んでいてもよい。酸化アルミニウムに換えて、窒化チタン、窒化タンタル、窒化アルミニウムあるいはこれら複数種を含んでいてもよい。上記した材料を含む水素バリア膜18が導電性を有する場合、例えば、窒化チタン、窒化タンタルを含む場合は、第3の配線層14と水素バリア膜18との間に1層以上のバッファ層(絶縁層)を配置する必要がある。このバッファ層の水素バリア膜と接する面は平面であることがさらに好ましい。水素バリア膜を平面上に形成すれば、水素バリア膜の結晶の均一性が増し、水素バリア性能を高めることができるからである。水素バリア膜と接する面は、例えば化学機械研磨(CMP)法などを用いて平坦化できる。
【0036】
金属酸化物を含む容量膜7は、SrBi2Ta2O9を主成分とするビスマス層状構造を有する強誘電体の他に、他のビスマス層状構造を有する強誘電体、例えば、Bi3.25La0.75Ti3O12などでもよい。ビスマス層状構造を有する強誘電体は、分極反転による膜疲労耐性に優れるため、信頼性の高い強誘電体メモリを実現できる。また、容量膜7は、ビスマス層状構造を有する強誘電体に制限されず、Pb(Zr1-xTix)O3(0≦x≦1)などのペロブスカイト構造を有する強誘電体、(Bi1-xSrx)TiO3(0≦x≦1)、Ta2O5などの高誘電率の金属酸化物でもよい。
【0037】
図1に示した半導体装置は、容量素子7より下層に配置された1層の配線層(第1の配線層4)と、容量素子7より上層に配置された2層の配線層(第2の配線層11、第3の配線層14)を含んでいるが、容量素子7より下層において、配線層はかならずしも必要ではなく、あるいは2層以上の配線層を備えていてもよい。容量素子7より上層には、1層以上の配線層を備えていればよい。
【0038】
次に、図1に示した半導体装置の製造方法の一例について、図2を用いて説明する。
【0039】
まず、図2(a)に示すように、半導体基板30に、トランジスタ1,1´と、トランジスタ1,1´を分離する酸化シリコンからなる素子分離膜22を形成する。トランジスタ1,1´は電極部(ゲート1a,1a´、ソース1b,1b′およびドレイン1c,1c´)を含んでいる。
【0040】
次に、トランジスタ1,1′が形成された半導体基板30上に、酸化シリコンを主成分とする第1の層間絶縁膜2を形成する。次に、第1の層間絶縁膜2の一部をプラズマエッチングにより除去してソース1bなどに到達するコンタクト孔を形成し、このコンタクト孔内にタングステンを主成分とする金属を埋め込んで、第1のコンタクトプラグ3を形成する。
【0041】
次に、タングステンを主成分とする金属膜を第1の層間絶縁膜2上に形成した後、所定の形状にパターニングして第1の配線層4を形成する。次に、第1の配線層4および第1の層間絶縁膜2上に、酸化シリコンを主成分とする第2の層間絶縁膜5を形成する。次に、第1の層間絶縁膜2および第2の層間絶縁膜5の内部にドレイン1c´に到達するコンタクト孔をプラズマエッチングにより形成し、このコンタクト孔内にタングステンを主成分とする金属を埋め込んで、第2のコンタクトプラグ6を形成する。
【0042】
次に、上層からPt/IrO2/Ir/TiAlNの順で積層された積層膜を用意し、この積層膜を第2のコンタクトプラグ6を覆うように第2の層間絶縁膜5上に配置して下部電極7aを形成する。次に、下部電極7aおよび第2の層間絶縁膜5上に、酸化シリコンを主成分とする膜を形成し、この膜をCMP法により下部電極7aが露出するまで研磨して、スペーサー層8を形成する。
【0043】
次に、下部電極7aおよびスペーサー層8上に、化学溶液塗布(CSD)法により、SrBi2Ta2O9を主成分とする強誘電体膜を形成し、所定の形状にパターニングして容量膜7bを形成する。次に、容量膜7b上にPt膜を形成し、所定の形状にパターニングして上部電極7cを形成する。
【0044】
次に、容量膜7b、上部電極7cおよびスペーサー層8上に、酸化シリコンを主成分とする第3の層間絶縁膜9を形成する。次に、第2の層間絶縁膜5、スペーサー層8および第3の層間絶縁膜9の内部に、第1の配線層4に到達するコンタクト孔をプラズマエッチングにより形成し、このコンタクト孔内にタングステンを主成分とする金属を埋め込んで、第3のコンタクトプラグ10を形成する。
【0045】
次に、第3の層間絶縁膜9上にアルミニウムを主成分とする金属膜を形成した後、所定の形状にパターニングして第2の配線層11を形成する。次に、第2の配線層11および第3の層間絶縁膜9上に、酸化シリコンを主成分とする第4の層間絶縁膜12を形成する。次に、第4の層間絶縁膜12の内部に、第2の配線層11に到達するコンタクト孔をプラズマエッチングにより形成し、このコンタクト孔内にタングステンを主成分とする金属を埋め込んで、第4のコンタクトプラグ13を形成する。次に、第4の層間絶縁膜12上にアルミニウムを主成分とする金属膜を形成した後、所定の形状にパターニングして、第3の配線層14を形成する。
【0046】
次に、図2(b)に示すように、第3の配線層14および第4の層間絶縁膜12上の全面に、プラズマCVD法により窒化シリコン膜を形成した後、メモリセル領域15の部分をドライエッチングにより除去して水素含有膜17を形成する。プラズマCVD法により窒化シリコン膜を形成すれば、水素を多く含む水素含有膜17を形成できる。
【0047】
以上のようにして、金属酸化物を含む容量膜7bを有する容量素子7と水素含有膜17とを含む積層体を、トランジスタ1,1′が形成された半導体基板30上に形成する。
【0048】
次に、水素含有膜17と容量素子7とを含む積層体が形成された半導体基板30を、100%酸素雰囲気中で、450℃、30分間、熱処理する。
【0049】
次に、図2(c)に示すように、水素含有膜17、第3の配線層14および第4の層間絶縁膜12上に酸化アルミニウムを主成分とする膜を形成し、この膜上に、プラズマCVD法により窒化シリコン膜を形成する。次に、酸化アルミニウムを主成分とする膜と窒化シリコン膜を、プラズマエッチングにより第3の配線層14の一部が露出するように除去して、外部電極取出し口21を形成する。外部電極取出し口21となる箇所が除去された酸化アルミニウムを主成分とする膜が、水素バリア膜18となり、外部電極取出し口21となる箇所が除去された窒化シリコン膜が耐湿性保護膜19となる。酸化アルミニウムを主成分とする膜を、酸化性ガスを含む雰囲気中にてアルミニウムを含むターゲットをスパッタリングして形成すれば、水素バリア性能の高い水素バリア膜18を形成できる。
【0050】
尚、第1〜第4の層間絶縁膜、スペーサー層8などの絶縁層の成膜方法は、プラズマCVD法、熱CVD法、SOG(Spin-On-Grass)法などの通常の成膜方法でよいが、容量素子7より上層の第3の層間絶縁膜9および第4の層間絶縁膜12については、水素を放出しないスパッタ法を用いることもある。
【0051】
図3(a)に、図2(b)を用いて説明した100%酸素雰囲気中での熱処理の様子を示している。図3(a)に示すように、水素含有膜17と容量素子7とを含む積層体が形成された半導体基板30を、100%酸素雰囲気中で熱処理すると、水素含有膜17から発生した水素が下方に拡散する。この水素により半導体基板30に形成された結晶欠陥が補償されるので、トランジスタ1,1′の特性を安定化できる。この熱処理に際して、水素含有膜17から発生した水素の一部がメモリ領域15に回り込んでも、水素による容量膜7bの還元を酸素が抑制するので、容量膜7bの特性の劣化を抑制できる。また、第3の層間絶縁膜9、第4の層間絶縁膜12、第2の配線層11および第3の配線層14などを形成する際の雰囲気中に水素が含まれ、その水素により容量膜7bの一部が還元されていても、還元された容量膜7bを酸素により酸化して、容量膜7bの特性を回復できる。
【0052】
図2(b)および図3(a)を用いて説明した熱処理は、100%酸素雰囲気中で行っているが、雰囲気中には、酸素などの酸素性ガスの他に、窒素、アルゴンなどの不活性ガスを含んでいてもよい。また、水素含有膜17と容量素子7とを含む積層体が形成された半導体基板30を、まず、窒素などの不活性ガスのみを含む雰囲気中で熱処理をして水素含有膜17から水素を発生させた後、酸化性ガス含む雰囲気中で熱処理をしてもよい。
【0053】
図2(b)および図3(a)を用いて説明した熱処理は、雰囲気温度が450℃であるが、雰囲気温度は350〜500℃の範囲であればよい。350℃より低いと十分な量の水素が水素含有膜17から発生せず、酸化性ガスによる容量膜7bの特性劣化の抑制も充分でない。500℃より高いと、アルミニウムを含む場合に、アルミニウムが溶融するため好ましくない。
【0054】
図3(b)に、窒化シリコンを含む耐湿性保護膜19をプラズマCVD法により形成する過程を示している。耐湿性保護膜19をプラズマCVD法にて形成する際、雰囲気中に若干の水素が含まれる。水素バリア膜18を、耐湿性保護膜19の直下の全域に配置しているので、耐湿性保護膜19を形成する際の雰囲気中に含まれる水素が下層へ拡散することを水素バリア膜18により効果的に抑制でき、水素による容量膜7bの特性の劣化を効果的に抑制できる。尚、水素バリア膜18を、少なくとも容量膜7bを覆う範囲にのみ配置した場合でも、耐湿性保護膜19を形成する際の雰囲気中の水素が容量膜7bにまで到達しにくくなり、容量膜7bの特性の劣化を抑制できる。
【0055】
(実施の形態2)
本実施の形態の半導体装置は、図4(a)に示すように、水素含有膜17の配置位置が異なること以外は実施の形態1と同様であり、図4において、実施の形態1と同一の部材については同一の符号を付し、その説明を省略する。
【0056】
実施の形態1では、水素含有膜17が、第3の配線層14より上層に配置されているの対し(図1参照)、本実施の形態では、容量素子7上に配置されたバッファ層20(絶縁層)上に配置されている。すなわち、容量素子7と水素含有膜17との間に1層の絶縁層(バッファ層20)が配置され、その絶縁層の半導体基板側の面に容量素子7が接して配置され、その反対面に水素含有膜17が接して配置されている。このように、水素含有膜17が容量素子7より上層に配置された形態では、水素含有膜17と容量素子7とが1層の絶縁層を介して配置されていると、容量素子7の上層に1層の絶縁層(バッファ層20)のみが存在する状態で、水素含有膜17と容量素子7とを含む積層体が形成された半導体基板30を、酸化性ガスを含む雰囲気中で熱処理できる。容量素子7の上層に1層の絶縁層のみが存在する状態で熱処理できるので、実施の形態1に比べて容量膜7bに酸素が供給され易く、水素含有膜17から発生する水素による容量膜7bの劣化を効果的に抑制できる。さらに、容量素子と水素含有膜とが相互に反応する材料から形成されていても、容量素子と水素含有膜との間に1層の絶縁層を配置しているので、水素含有膜と容量素子との反応を防止できる。
【0057】
尚、上部電極7bと水素含有膜17とが、相互に反応しない材料から形成されている場合、例えば、窒化シリコンを含む水素含有膜17に対して上部電極7bがIrO2、RuO2、TiN、TaNを主成分とする場合、バッファ層20は無い方がよい。すなわち、図4(b)に示すように、容量膜7bが、水素含有膜17より下層であって水素含有膜17と接して配置された層(スペーサー層8)上に配置されていることが好ましい。容量膜7bと水素含有膜17とを同一面上に配置した形態では、容量膜7bを酸化性ガスに曝しながら、容量膜7bと水素含有膜17とを含む積層体が形成された半導体基板30を、酸化性ガスを含む雰囲気中で容易に熱処理できるので、容量膜7bに酸素がより供給され易く、水素含有膜17から発生する水素による容量膜7bの特性の劣化を効果的に抑制できる。
【0058】
また、図5に示すように、水素含有膜17は、容量膜7bより下層に配置されていてもよい。水素含有膜17をよりトランジスタ1,1′の近くに配置すれば、水素含有膜17から発生する水素が半導体基板30に供給されやすく、トランジスタ1,1′の特性を効果的に安定化できる。また、容量膜7bが露出した状態で、水素含有膜17と容量膜7bとを含む積層体が形成された半導体基板30を、酸化性ガスを含む雰囲気中で熱処理することもできるので、水素含有膜17から発生した水素による容量膜7bの特性の劣化を効果的に抑制できる。
【0059】
次に、図4(a)に示した半導体装置の製造方法の一例について図6(a)〜(c)を用いて説明する。
【0060】
トランジスタ1,1′および素子分離膜22が形成された半導体基板30上に、第1の層間絶縁膜2、第1のコンタクトプラグ3、第1の配線層4、第2の層間絶縁膜5、第2のコンタクトプラグ6、下部電極7a、スペーサー層8、容量膜7bおよび上部電極7cを形成するまでは、実施の形態1と同様である(図6(a)参照)。
【0061】
次に、図6(b)に示すように、容量膜7b、上部電極7cおよびスペーサー層8上に、例えばプラズマCVD法にて酸化シリコンを主成分とするバッファ層20を形成する。次に、バッファ層20上の全面に、プラズマCVD法にて窒化シリコン膜を形成し、この窒化シリコン膜のメモリセル領域15の部分をドライエッチングにより除去して、水素含有膜17を形成する。このようにして、容量素子7と水素含有膜17とを含む積層体を、トランジスタ1,1′が形成された半導体基板30上に形成する。
【0062】
次に、水素含有膜17と容量素子7とを含む積層体が形成された半導体基板30を、実施の形態1と同様にして、酸化性ガスを含む雰囲気中で熱処理する。
【0063】
次に、図6(c)に示すように、水素含有膜17およびバッファ層20上に、第3の層間絶縁膜9を形成する。次に、第2の層間絶縁膜5、スペーサー層8、バッファ層20、水素含有膜17および第3の層間絶縁膜9の内部に、第1の配線層4に到達するコンタクト孔をプラズマエッチングにより形成し、このコンタクト孔内にタングステンを主成分とする金属を埋め込んで、第3のコンタクトプラグ10を形成する。
【0064】
次に、第3の層間絶縁膜9上に、アルミニウムを主成分とする金属膜を形成した後、所定の形状にパターニングして第2の配線層11を形成する。次に、第2の配線層11および第3の層間絶縁膜9上に、酸化シリコンを主成分とする第4の層間絶縁膜12を形成する。次に、第4の層間絶縁膜12の内部に、第2の配線層11に到達するコンタクト孔をプラズマエッチングにより形成し、このコンタクト孔内にタングステンを主成分とする金属を埋め込んで、第4のコンタクトプラグ13を形成する。次に、第4の層間絶縁膜12上にアルミニウムを主成分とする金属膜を形成した後、所定の形状にパターニングして第3の配線層14を形成する。
【0065】
次に、第3の配線層14および第4の層間絶縁膜12上に、酸化アルミニウムを含む膜を形成する。酸化アルミニウムを含む膜は、酸化性ガスを含む雰囲気中にてアルミニウムを含むターゲットをスパッタリングして形成する。次に、酸化アルミニウムを含む膜上に、プラズマCVD法により窒化シリコン膜を形成する。次に、酸化アルミニウムを主成分とする膜と窒化シリコン膜とを、プラズマエッチングにより、第3の配線層14の一部が露出するように除去して、外部電極取出し口21を形成する。外部電極取出し口21となる箇所が除去された酸化アルミニウムを主成分とする膜が、水素バリア膜18となり、外部電極取出し口21となる箇所が除去された窒化シリコン膜が耐湿性保護膜19となる。
【0066】
尚、図6(b)を用いて説明した酸化性ガスを含む雰囲気中での熱処理は、水素含有膜17の形成直後に行っているが、容量素子7と水素含有膜17とを含む積層体を半導体基板30上に形成した後、水素バリア膜18を形成する前であればこれに制限されない。熱処理回数も1回に制限されず複数回であってもよい。
【0067】
(実施の形態3)
本実施の形態の半導体装置は、図7に示すように、半導体装置における水素バリア膜18の配置位置が異なること以外は実施の形態2と同様であり、図7において、実施の形態2と同一の部材については同一の符号を付してその説明を省略する。
【0068】
実施の形態2では、水素バリア膜18が、最上層に配置された配線層(第3の配線層14)より上層に配置されているのに対し(図4(a)参照)、本実施の形態では、第2の配線層11、第3の配線層14より下層に配置されている。すなわち、水素バリア膜18と耐湿性保護膜19との間に1層以上の配線層が配置されている。このような形態では、水素バリア膜18より上層に配線層(第2の配線層11、第3の配線層14)や耐湿性保護膜19などを形成する際の雰囲気中に水素が含まれていても、その水素の下層への拡散を水素バリア膜18により抑制でき、水素による容量膜7bの劣化を抑制できる。
【0069】
さらに、本実施の形態では、耐湿性保護膜19を貫通する外部電極取出し口21が設けられており、配線層(第2の配線層11)とトランジスタの電極部とを接続するコンタクトプラグ(第3のコンタクトプラグ10)が、水素バリア膜18を貫通して配置されている。また、水素バリア膜18が、耐湿性保護膜19および外部電極取出し口21の直下の全域からコンタクトプラグ(第3のコンタクトプラグ10)が配置された領域を除いた領域に配置されている。このような形態であれば、水素バリア膜18より上層に配線層(第2の配線層11、第3の配線層14)や耐湿性保護膜18などを形成する際の雰囲気中に水素が含まれていても、その水素による容量膜7bの劣化を効果的に抑制できる。
【0070】
尚、水素バリア膜18が導電性を有する場合は、第3のコンタクトプラグ10と水素バリア膜18との導通を防ぐために、水素バリア膜18は、第3のコンタクトプラグ10の周囲を避けて配置される必要がある。また、図4(b)に示した形態において、水素バリア膜18を容量素子7と接するように配置することもできるが、水素バリア膜が導電性を有する場合は、容量素子と水素バリア膜との間に導通を防ぐバッファ層(絶縁層)を配置する必要がある。
【0071】
次に、図7に示した半導体装置の製造方法の一例について、図8を用いて説明する。
【0072】
図8(a)に示すように、トランジスタ1,1′および素子分離膜22が形成された半導体基板30上に、第1の層間絶縁膜2、第1のコンタクトプラグ3、第1の配線層4、第2の層間絶縁膜5、第2のコンタクトプラグ6、下部電極7a、スペーサー層8、容量膜7b、上部電極7c、バッファ層20および水素含有膜17を形成するまでは、実施の形態2と同様である。
【0073】
次に、図6(b)を用いて説明した工程と同様にして、水素含有膜17と容量素子7とを含む積層体が形成された半導体基板30を、実施の形態2と同様にして、酸化性ガスを含む雰囲気中で熱処理する。
【0074】
次に、図8(b)に示すように、水素含有膜17およびバッファ層20上の全面に水素バリア膜18を形成する。水素バリア膜18は、酸化性ガスを含む雰囲気中にてアルミニウムを含むターゲットをスパッタリングして形成する。
【0075】
次に、水素バリア膜18上に、酸化シリコンを主成分とする第3の層間絶縁膜9を形成する。次に、第2の層間絶縁膜5、スペーサー層8、バッファ層20、水素含有膜17、水素バリア膜18および第3の層間絶縁膜9の内部に、第1の配線層4に到達するコンタクト孔をプラズマエッチングにより形成し、そのコンタクト孔内にタングステンを主成分とする金属を埋め込んで、第3のコンタクトプラグ10を形成する。
【0076】
次に、第3の層間絶縁膜9上に、アルミニウムを主成分とする金属膜を形成した後、所定の形状にパターニングして第2の配線層11を形成する。次に、第2の配線層11および第3の層間絶縁膜9上に、酸化シリコンを主成分とする第4の層間絶縁膜12を形成する。次に、第4の層間絶縁膜12の内部に、第2の配線層11に到達するコンタクト孔をプラズマエッチングにより形成し、このコンタクト孔内にタングステンを主成分とする金属を埋め込んで、第4のコンタクトプラグ13を形成する。次に、第4の層間絶縁膜上12に、酸化アルミニウムを主成分とする金属膜を形成した後、所定の形状にパターニングして第3の配線層14を形成する。
【0077】
次に、第4の層間絶縁膜12および第3の配線層14上の全面に、プラズマCVD法により窒化シリコン膜を形成し、この窒化シリコン膜をプラズマエッチングにより第3の配線層14の一部が露出するように除去して、外部電極取出し口21を形成する。外部電極取出し口21となる箇所が除去された窒化シリコン膜が耐湿性保護膜19となる。
【0078】
上記実施の形態1〜3では、酸化性ガスを含む雰囲気中での熱処理後、水素含有膜17を残して水素バリア膜18を形成しているが、水素含有膜17を、例えばドライエッチングして完全に除去しても良い。水素含有膜17を除去すれば段差の増加を防ぐことができ、次の積層工程が容易となる。
【0079】
【発明の効果】
以上のとおり、本発明では、トランジスタの特性が安定化され、金属酸化物を含む容量膜の特性の劣化が抑制された半導体装置を提供できる。
【図面の簡単な説明】
【図1】 本発明の半導体装置の一例を示す要部断面図
【図2】 図1に示した半導体装置の製造方法を示す工程断面図
【図3】 図1に示した半導体装置の製造方法を示す工程断面図
【図4】 本発明の半導体装置の他の例を示す要部断面図
【図5】 本発明の半導体装置の他の例を示す要部断面図
【図6】 図4に示した半導体装置の製造方法を示す工程断面図
【図7】 本発明の半導体装置の他の例を示す要部断面図
【図8】 図7に示した半導体装置の製造方法を示す工程断面図
【図9】 従来の半導体装置を示す要部断面図
【図10】 従来の半導体装置の課題を示す模式図
【符号の説明】
1,1´ トランジスタ
1a, 1a´ ゲート
1b, 1b´ ソース
1c,1c′ ドレイン
2 第1の層間絶縁膜
3 第1のコンタクトプラグ
4 第1の配線層
5 第2の層間絶縁膜
6 第2のコンタクトプラグ
7 容量素子
7a 下部電極
7b 容量膜
7c 上部電極
8 スペーサー層
9 第3の層間絶縁膜
10 第3のコンタクトプラグ
11 第2の配線層
12 第4の層間絶縁膜
13 第4のコンタクトプラグ
14 第3の配線層
15 メモリセル領域
16 周辺回路領域
17 水素含有膜
18 水素バリア膜
19 耐湿性保護膜
20 バッファ層
21 外部電極取出し口
22 素子分離膜
30 半導体基板

Claims (18)

  1. 半導体基板と、前記半導体基板に形成されたトランジスタと、前記トランジスタより上層に配置され、金属酸化物を含む容量膜を有する容量素子と、前記容量素子より上層において、前記容量膜を覆うように配置された水素バリア膜と、前記水素バリア膜より上層に配置された耐湿性保護膜とを含む積層構造を含み、
    前記積層構造が、前記水素バリア膜より下層において、前記容量膜の直上および直下を避けて配置された水素含有膜をさらに含み、
    前記積層構造において、前記容量膜よりも下層には水素バリア膜が存在しないことを特徴とする半導体装置。
  2. 前記積層構造が、前記容量素子と前記水素含有膜との間に配置された1層以上の絶縁層をさらに含む請求項1に記載の半導体装置。
  3. 前記積層構造が1層の前記絶縁層を含み、前記絶縁層の半導体基板側の面に前記容量素子が接して配置され、前記面の反対面に前記水素含有膜が接して配置された請求項2に記載の半導体装置。
  4. 前記水素含有膜が、前記容量膜より下層であって前記容量膜と接して配置された層上に配置された請求項1に記載の半導体装置。
  5. 前記水素含有膜が、前記容量膜より下層に配置された請求項1または2に記載の半導体装置。
  6. 前記水素含有膜が、前記トランジスタの直上の領域内に配置された請求項1〜5のいずれかの項に記載の半導体装置。
  7. 前記水素バリア膜が、前記耐湿性保護膜の直下の全域に配置された請求項1〜6のいずれかの項に記載の半導体装置。
  8. 前記積層構造が、前記水素バリア膜と前記耐湿性保護膜との間に配置された1層以上の配線層をさらに含む請求項1〜6のいずれかの項に記載の半導体装置。
  9. 前記トランジスタが電極部を含み、前記積層構造が、前記耐湿性保護膜を貫通する外部電極取出し口と、前記水素バリア膜を貫通して前記配線層と前記電極部とを接続するコンタクトプラグとをさらに含み、前記水素バリア膜が、前記耐湿性保護膜および前記外部電極取出し口の直下の全域から前記コンタクトプラグが配置された領域を除いた領域に配置された請求項8に記載の半導体装置。
  10. 前記水素バリア膜より下層であって前記水素バリア膜と接して配置された層の前記水素バリア膜と接した面が平面である請求項1〜9のいずれかの項に記載の半導体装置。
  11. 前記耐湿性保護膜が、窒化シリコンを含む請求項1〜10のいずれかの項に記載の半導体装置。
  12. 前記水素バリア膜が、酸化アルミニウムを含む請求項1〜11のいずれかの項に記載の半導体装置。
  13. 前記水素含有膜が、窒化シリコンを含む請求項1〜12のいずれかの項に記載の半導体装置。
  14. 前記容量膜が、ビスマス層状構造を有する強誘電体を含む請求項1〜13のいずれかの項に記載の半導体装置。
  15. 金属酸化物を含む容量膜を有する容量素子と、水素含有膜とを含む積層体を、トランジスタが形成された半導体基板上に形成する第1の工程と、前記積層体が形成された前記半導体基板を、酸化性ガスを含む雰囲気中にて熱処理する第2の工程と、前記第2の工程後に、水素バリア膜を前記容量素子より上層において前記容量膜を覆うように形成し、耐湿性保護膜を前記水素バリア膜より上層に形成する第3の工程とを含み、前記第1の工程において、前記水素含有膜を、前記容量膜の直上および直下を避けて形成し、前記容量膜よりも下層には水素バリア膜を形成しないことを特徴とする半導体装置の製造方法。
  16. 前記第2の工程後、前記第3の工程前に、前記水素含有膜を除去する工程をさらに含む請求項15に記載の半導体装置の製造方法。
  17. 前記第1の工程において、プラズマCVD法にて窒化シリコンを含む前記水素含有膜を形成する請求項15に記載の半導体装置の製造方法。
  18. 前記第3の工程において、酸化性ガスを含む雰囲気中にてアルミニウムを含むターゲットをスパッタリングすることにより、酸化アルミニウムを含む前記水素バリア膜を形成する請求項15に記載の半導体装置の製造方法。
JP2002355904A 2002-12-06 2002-12-06 半導体装置およびその製造方法 Expired - Fee Related JP3972128B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002355904A JP3972128B2 (ja) 2002-12-06 2002-12-06 半導体装置およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002355904A JP3972128B2 (ja) 2002-12-06 2002-12-06 半導体装置およびその製造方法

Publications (2)

Publication Number Publication Date
JP2004193176A JP2004193176A (ja) 2004-07-08
JP3972128B2 true JP3972128B2 (ja) 2007-09-05

Family

ID=32756455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002355904A Expired - Fee Related JP3972128B2 (ja) 2002-12-06 2002-12-06 半導体装置およびその製造方法

Country Status (1)

Country Link
JP (1) JP3972128B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11563017B2 (en) 2020-05-28 2023-01-24 Samsung Electronics Co., Ltd. Semiconductor device and method of fabricating the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082817A1 (ja) * 2005-02-04 2006-08-10 Nec Corporation キャパシタ及びそれを内蔵した配線基板
JP4632843B2 (ja) 2005-04-12 2011-02-16 Okiセミコンダクタ株式会社 強誘電体メモリ装置及びその製造方法
JP2007027537A (ja) * 2005-07-20 2007-02-01 Sharp Corp 可変抵抗素子を備えた半導体記憶装置
WO2007063602A1 (ja) * 2005-12-02 2007-06-07 Fujitsu Limited 半導体装置とその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11563017B2 (en) 2020-05-28 2023-01-24 Samsung Electronics Co., Ltd. Semiconductor device and method of fabricating the same
US12016178B2 (en) 2020-05-28 2024-06-18 Samsung Electronics Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
JP2004193176A (ja) 2004-07-08

Similar Documents

Publication Publication Date Title
US6740531B2 (en) Method of fabricating integrated circuit devices having dielectric regions protected with multi-layer insulation structures
JP4874456B2 (ja) 三重金属配線一つのトランジスター/一つのキャパシタ及びその製造方法
US7531863B2 (en) Semiconductor device and method of fabricating the same
US7518173B2 (en) Semiconductor device having ferroelectric capacitor and its manufacture method
US7232764B1 (en) Semiconductor device fabrication method
JP4930371B2 (ja) 半導体装置及びその製造方法
JP5168273B2 (ja) 半導体装置とその製造方法
JPH11111930A (ja) 半導体記憶素子の製造方法
KR100391987B1 (ko) 강유전체 캐퍼시터를 갖는 반도체 장치 및 그 제조방법
JP3643091B2 (ja) 半導体記憶装置及びその製造方法
US20050205910A1 (en) Semiconductor device having ferroelectric memory and manufacturing method of the semiconductor device
JP4800711B2 (ja) 半導体装置の製造方法
JP3972128B2 (ja) 半導体装置およびその製造方法
JP2004158714A (ja) 半導体製造装置及び半導体装置の製造方法
JP2002203948A (ja) 半導体装置
JP2004128406A (ja) 半導体装置およびその製造方法
JP3906215B2 (ja) 半導体装置
JP2004193430A (ja) 半導体装置及びその製造方法
JP2003209223A (ja) 半導体素子およびその製造方法
JP4067079B2 (ja) 半導体装置及びその製造方法
JP2004165235A (ja) 半導体装置及びその製造方法
US6982455B2 (en) Semiconductor device and method of manufacturing the same
JP2004153293A (ja) 容量素子、半導体記憶装置及びその製造方法
JP2023112910A (ja) 半導体装置および半導体装置の製造方法
JP4332119B2 (ja) 半導体装置および半導体装置の製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070522

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120622

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees