WO2006046632A1 - ディジタル無線受信装置 - Google Patents

ディジタル無線受信装置 Download PDF

Info

Publication number
WO2006046632A1
WO2006046632A1 PCT/JP2005/019761 JP2005019761W WO2006046632A1 WO 2006046632 A1 WO2006046632 A1 WO 2006046632A1 JP 2005019761 W JP2005019761 W JP 2005019761W WO 2006046632 A1 WO2006046632 A1 WO 2006046632A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
demodulation
circuit
time
phase
Prior art date
Application number
PCT/JP2005/019761
Other languages
English (en)
French (fr)
Inventor
Haruya Ishizaki
Masayuki Mizuno
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2006543237A priority Critical patent/JP4716032B2/ja
Priority to EP05799346A priority patent/EP1806891A4/en
Priority to US11/718,216 priority patent/US7760819B2/en
Publication of WO2006046632A1 publication Critical patent/WO2006046632A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits

Definitions

  • the present invention relates to a digital radio receiving apparatus.
  • a conventional digital radio receiving apparatus for example, as disclosed in Japanese Patent Laid-Open No. 2002-374181 (Patent Document 1), reduces the number of expensive off-chip elements such as surface acoustic wave filters, so that an existing integrated circuit By manufacturing with manufacturing technology, low price and low power consumption are realized.
  • FIG. 1 is a block diagram of a conventional digital radio receiving apparatus.
  • the conventional digital radio receiver includes an antenna 100, a radio frequency band selection filter 101, an amplifier 102, a sample-and-hold circuit 105, an I-phase bandpass filter 108, a Q-phase bandpass filter 109 and I. It consists of a phase analog 'digital converter' 110 and a Q phase analog 'digital converter 111'.
  • the antenna 100 receives a radio signal.
  • the radio frequency band selection filter 101 selects only a band used for communication from various frequency components included in the received signal.
  • the amplifier 102 amplifies the output signal of the radio frequency band selection filter 101.
  • the sample and hold circuit 105 samples the output signal of the amplifier 102 and holds it for a predetermined time to obtain a discrete time signal.
  • the sample-and-hold circuit 105 is turned on and off by the sampling clocks supplied from the I-phase sampling clock distribution system 114 and the Q-phase sampling clock distribution system 115, respectively, and samples the input signal every predetermined time.
  • a Q-phase sampling switch 104, and an I-phase sampling capacitor 106 and a Q-phase sampling capacitor 107 that hold the sampled I-phase and Q-phase signal levels for a predetermined time are included.
  • the I-phase bandpass filter 108 and the Q-phase bandpass filter 109 are the unnecessary aliasing components generated by the discretization of the signal from the outputs of the I-phase sampling capacitor 106 and Q-phase sampling capacitor 107 of the sample and hold circuit 105, respectively. And unnecessary frequency components such as undesired channels are removed.
  • Phase I analog Converter 110 and Q-phase analog-to-digital converter 111 convert the output signals of I-phase bandpass filter 108 and Q-phase bandpass filter 109 into digital signals. Note that a plurality of RF bandpass filters may be cascode-connected in order to increase frequency band selectivity, and the digital radio receiver is not limited to the configuration shown in FIG.
  • the radio signal is converted into an electrical signal by the antenna 100.
  • the converted electric signal has a very weak damping force when propagating in space, and the radio signal also contains signals used in other communication devices.
  • the receiving device amplifies the signal to a level that can be demodulated while minimizing the occurrence of thermal noise, etc., further eliminates unnecessary mixed signals, and selectively selects only the signal used for communication. Must be extracted.
  • a radio frequency band selection filter 101 and an amplifier 102 that selectively pass a frequency band used in radio communication are connected to the subsequent stage of the antenna 100, and play a role of frequency selection and signal amplification, respectively.
  • the conventional receiver in FIG. 1 includes a sample-and-hold circuit 105, an I-phase bandpass filter 108, and a Q A phase bandpass filter 109 is provided.
  • the sample 'Hold circuit 105, I-phase bandpass filter 108, and Q-phase bandpass filter 109 The reason why the number conversion is performed will be described.
  • the frequency component included in the discrete signal other than the frequency band of the original input signal is called “folding”.
  • an arbitrary time function whose frequency band is limited to W is uniquely expressed by sample values at discrete times every 1Z2W, and when signals are sampled over this time interval, aliasing is mutually Overlapping each other will reduce the signal-to-noise ratio of the modulated signal.
  • this “sample- ⁇ theorem” will be a premise for handling discrete signals, and will not be mentioned in particular below.
  • the baseband signal can be obtained by selecting and extracting only the desired band with a digital filter from a number of aliasing components generated by discretizing the output signal of the amplifier 102 at the required sampling frequency. It is possible to convert the center frequency of the band without damaging the band.
  • the I-phase sampling switch 103 and the Q-phase sampling switch 104 are each turned on by the I-phase sampling clock and the Q-phase sampling clock whose phase is shifted by 90 ° from the sampling clock.
  • the input modulation signal is sampled and held in the I-phase sampling capacitor 106 and the Q-phase sampling capacitor 107 for a predetermined time. This operation separates the input signal into I and Q components, and then converts them into discrete-time signals.
  • the I-phase bandpass filter 108 and the Q-phase bandpass filter 109 select and extract the desired frequency band for each I and Q component.
  • the digital converter 110 and the Q-phase analog digital converter 111 demodulate the digital baseband signal. Each demodulated digital baseband signal is sent to the I-phase physical layer signal processing unit 112 and the Q-phase physical layer signal processing unit 112. As long as the packet signal continues to be input, the above series of operations continues.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-338771
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-338771
  • the prior art there is an example in which the circuit is stopped while packet communication is not being performed to aim for low power consumption.
  • techniques such as completing demodulation quickly while performing demodulation by packet transmission / reception, so it is necessary to operate the circuit throughout the entire symbol period. Therefore, in the prior art, there is no example in which the power is reduced by devising the circuit within the symbol period.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-374181
  • Patent Document 2 JP 2003-338771 A
  • the conventional digital radio receiving apparatus described above has the following problems.
  • An object of the present invention is to provide a small-sized and low-cost digital wireless receiver with low power consumption.
  • the digital radio receiving apparatus of the present invention comprises:
  • a radio frequency band selection filter that selects and outputs a frequency band used for communication from the input signals
  • An amplifier for inputting the signal output from the radio frequency band selection filter and amplifying the signal
  • Amplifier power Input the output signal and at least twice the frequency band of the signal A sample 'hold circuit that converts the signal to a discrete-time signal at a sampling frequency of
  • a digital filter that selects and outputs only the frequency band used for communication from the discrete-time signal output from the sample and hold circuit
  • a demodulating circuit that receives the signal output from the digital filter, activates only the time corresponding to one wavelength of the signal, and demodulates the signal;
  • the power consumption of the digital radio receiving apparatus can be greatly reduced.
  • the reason is that the carrier frequency of digital wireless communication is typically several hundred times and several thousand times the baseband frequency, and the minimum required detection is performed in one modulation period, and the error rate of the demodulated data falls within the standard value. If this is confirmed, it is possible to stop the demodulation circuit and others to reduce power consumption.
  • the digital radio receiving apparatus can be reduced in size.
  • the reason for this is that when a radio signal is processed in discrete time, it is easier to reduce analog circuit elements that hinder circuit reduction and integration compared to the case of demodulating a continuous signal. This is because it is easy to achieve high performance as process technology evolves.
  • FIG. 1 is a block diagram showing a conventional example of a digital radio receiving apparatus.
  • FIG. 2 is a block diagram showing a configuration of the digital radio receiving apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing a specific example of the operation of the demodulation circuit in the first embodiment.
  • FIG. 4 is a flowchart showing a procedure for determining a demodulation time.
  • FIG. 5 is a block diagram showing the configuration of the digital radio receiver according to the second embodiment of the present invention.
  • FIG. 6 is a diagram showing a specific example of the operation of the demodulation circuit in the second embodiment.
  • FIG. 7 is a block diagram showing the configuration of the digital radio receiving apparatus according to the third embodiment of the present invention.
  • FIG. 8 is a diagram showing a specific example of the operation of the demodulation circuit in the third embodiment.
  • FIG. 9 is a block diagram showing the configuration of the digital radio receiving apparatus according to the fourth embodiment of the present invention.
  • FIG. 10 is a diagram showing the concept of the demodulation operation in the fourth embodiment.
  • FIG. 11 is a block diagram showing a configuration of a digital radio receiving apparatus according to a fifth embodiment of the present invention.
  • FIG. 12 is a block diagram showing a configuration of a demodulation unit in the fifth embodiment. Explanation of symbols
  • Narrow band pass filter that passes 401 Fc + ⁇ ⁇
  • FIG. 2 is a block diagram of the digital radio receiving apparatus according to the first embodiment of the present invention.
  • the clock generator 209 generates a sampling clock.
  • the carrier recovery circuit 211A recovers the carrier wave.
  • the sample and hold circuit 201 receives the sampling clock supplied from the clock generator 209 through the sampling clock distribution system 212, samples the input signal (the output signal of the amplifier 102 in FIG. 1), holds it for a predetermined time, and performs discrete processing. It is a time signal.
  • the band pass filter 203 removes unnecessary aliasing components and undesired frequency components generated by discretizing the signal.
  • the demodulating circuit 205 ⁇ compares the input signal of the bandpass filter 203 force with the regenerated carrier wave in a very short time and outputs a baseband signal.
  • the data is sent to the physical layer signal processing unit 210.
  • the stop circuit 204 receives the baseband signal demodulated by the demodulator circuit 205A and consumes the power of the demodulator circuit 205A, the sampling clock distribution system 212, and other receiving devices (filter 102 in FIG. 1). Then, the operation of the radio frequency band filter 101) is stopped as appropriate.
  • the sample-and-hold circuit 201 repeats an on-Z-off operation according to a sampling clock, and stores a sampling switch 200 that samples an input signal every predetermined time and a signal output from the sampling switch 200 for a predetermined time.
  • a sampling capacity unit 202 to be held is included.
  • Stop circuit 204 includes a transmission quality determination unit 206, a sampling time determination unit 207, and a stop signal supply unit 208.
  • the transmission quality judgment unit 206 receives the baseband signal demodulated and output by the demodulation circuit 205A, calculates the demodulation error rate, and judges whether this demodulation error rate satisfies the value specified in the communication standard. To do.
  • the sampling time determination unit 207 satisfies the communication standard based on the demodulation error rate calculated by the transmission quality determination unit 206. Determine the minimum demodulation time for this.
  • Stop signal supply section 208 outputs a signal for stopping demodulation circuit 205, sampling clock distribution system 212, amplifier, filter, and the like based on the demodulation time determined by sampling time determination section 207.
  • offset phase quaternary modulation in which the baseband signal is band-limited to a sine wave is taken as an example.
  • OFPSK offset phase quaternary modulation
  • the carrier phase is moved in four types of 45 degrees, 135 degrees, 225 degrees, and 315 degrees, and the power to transmit digital data corresponding to each binary signal is limited especially to the data transition pattern Has not been added. For this reason, there are three types of phase transition patterns: 90 degree phase shift and 180 degree phase shift.
  • phase transition patterns of ⁇ 90 degree phase shift In the case of offset phase quaternary modulation, data transition of 180 degree phase shift is not allowed, so there are only two types of phase transition patterns of ⁇ 90 degree phase shift.
  • the baseband signal is band-limited to a sine wave, the speed at which the phase moves by modulation is constant, and the envelope of the modulation wave is also constant, which is simple. From this, when the phase is shifted +90 degrees, It can be regarded as frequency modulation in which the frequency is superimposed by a positive value. vice versa
  • This modulation method is adopted in the physical layer of the wireless in-house communication network 802.15.4 standard standardized by the International Federation of Electrical and Electronic Engineers, for example.
  • the symbol rate is Fr.
  • the input signal that has been frequency-selected and amplified after passing through the radio frequency band selection filter 101 and the amplifier 102 in FIG. 1 is input to the sample and hold circuit 201 at the center frequency Fin.
  • the sampling switch 200 which is located at the first stage of the sample and hold circuit 201 and is driven by the sampling clock of the frequency fs supplied from the clock generator 209 and repeats the on-off operation, is used to calculate the voltage amplitude value of the input signal as the sampling clock.
  • One cycle is sampled every lZfs, and this value is sent to the sampling capacitor 202 at the subsequent stage.
  • the sampling capacitor 202 holds (holds) the sampled input signal value for a predetermined time during one sampling clock period lZfs.
  • This held time is a value that can be changed by the duty ratio of the sampling clock, the circuit configuration of the sample / hold circuit 201, and the like.
  • the input signal is converted from a continuous time signal to a discrete time signal and output to the subsequent band-pass filter 203 and demodulation circuit 205A.
  • the hold circuit 201 digital signal-like data processing and circuit operation are possible.
  • the signal output from the sample-and-hold circuit 201 contains a number of frequency components in addition to the original input center frequency Fin as it is converted into a discrete-time signal.
  • the band pass filter 203 in the next stage is used.
  • the band pass filter 203 in the next stage is used.
  • the digital baseband signal is maintained and the Fin force Fc is maintained.
  • the center frequency of the band can be converted.
  • the sample and hold circuit 201 and the band pass Combined with filter 203 frequency selection / conversion is performed.
  • the discrete time signal output from the sample and hold circuit 201 is supplied to the band pass filter 203 at the next stage.
  • This band-pass filter 203 is a digital filter that handles discrete-time signals.
  • the signal output from the filter is further returned to the input (feedback).
  • the filter used here selects and outputs only the signal band used in communication and outputs it to the demodulator circuit 205 A in the next stage. It must be possible to exclude channel signals. From this point, the band pass filter 203 is required to pass a narrow band signal and to have a higher frequency cutoff characteristic. This is because, as will be described later, due to the characteristics of the demodulation circuit 205A, when a signal other than the desired channel is input at the time of demodulation, it cannot be separated and the demodulation operation is hindered.
  • the frequency of the selected modulation signal is compared with a reference reproduction carrier wave in the demodulation circuit 205A, whereby a baseband signal is extracted and demodulated.
  • a baseband signal is extracted and demodulated.
  • the carrier wave recovery In general, digital wireless communication transmits data in a packet format, but it is specified that a fixed training signal called a preamplifier is sent for a certain period of time before the actual data is transmitted. According to this preamble, the receiver can prepare an environment necessary for actual data reception such as frequency locking and phase synchronization in a frequency synthesizer, and can perform demodulation. Therefore, by utilizing the preamble, it is possible to regenerate the carrier wave of the frequency used in communication and input it to the demodulation circuit 205A for demodulation. Noh. It is assumed that the series of operations is performed by the carrier recovery circuit 211A.
  • FIG. 3 is a diagram illustrating the operation of the demodulation circuit 205A. As shown in Figure 3, during 1ZFr, which is the time when modulation is performed with one symbol, only 1Z Fc corresponding to one period of the center frequency of the modulation signal is activated and the demodulator circuit 205A is activated to modulate one wave. Read the signal waveform (step 301). Further, the waveform of the reproduced carrier wave is read at the same time t.
  • phase is 0 at time t. If all the sampling points between lZFc are used and the waveform is read by increasing the number of divisions from the ground point to the power supply voltage, the waveform is compared and demodulated at an arbitrary carrier phase. It is possible to do this. However, time t must be chosen sufficiently later than the symbol start point to avoid intersymbol interference due to multipath delays.
  • the demodulated baseband signal is sent to the transmission quality judgment unit 206 simultaneously with the power sent to the physical layer signal processing unit 210.
  • the demodulation error A rate is obtained, and it is determined whether or not the demodulation error rate satisfies a specified value in the communication standard (step 302).
  • a specified value in the communication standard for example, in the case of packet communication, generally, before actual data transmission is performed, after the preamble is transmitted, a fixed training signal for judging the transmission state is sent in the packet, and the demodulation error rate This can be used when seeking
  • the sampling time determination unit 207 increases the demodulation time from lZFc to 2ZFc to obtain the demodulation time for the next symbol ( Step 303).
  • the signal power for stopping the operation of the demodulation circuit 205A, the sampling clock distribution system 212, and other amplifiers and filters is supplied from the S stop signal supply unit 208 (step 304).
  • the functions of the demodulation circuit 205A and other blocks are activated and stopped.
  • the demodulation time is sequentially extended to 3ZFc, 4 / FC- (steps 305, 306). 307).
  • the circuit stop time can be adaptively changed according to the transmission quality. Then, based on the determined demodulation time, demodulation is performed until the end of the packet (step 308).
  • the minimum time required for demodulation, the sampling clock to the sample / hold circuit 201 and the power to the demodulation circuit 205A and the like are supplied, and the operation of the receiving apparatus is stopped at other times.
  • FIG. 5 is a block diagram of a digital radio receiving apparatus according to the second embodiment of the present invention.
  • the carrier wave regenerated by the carrier wave regenerating circuit 21 IB is input to the demodulating circuit 205B as a sampling clock, and the timing synchronization when reading the modulation waveform is taken. Different from the receiving device.
  • FIG. 6 is a diagram illustrating the operation of the demodulation circuit 205B.
  • the demodulation circuit 505B is activated in synchronization with the rise time Ta of the recovered carrier during lZFr where modulation is performed with one symbol, which corresponds to one period of the center frequency of the modulation signal l Operate only ZFc and read the modulation signal waveform for one wave.
  • the voltage amplitude force of the modulation signal read out is judged to be the force that is phase-modulated in either the positive or negative angle direction, and the modulation is performed.
  • phase modulation is performed in the positive angular direction.
  • the phase of the modulation signal advances with respect to the carrier wave at Ta, and the voltage amplitude of the modulation signal at Ta is 0 at the ground point and the power supply voltage If the value is Vdd, it is considered to be between 0 and VddZ2.
  • the voltage amplitude of the modulation signal at Ta is considered to be between VddZ2 and Vdd because the phase of the modulation signal is delayed with respect to the carrier wave. . Therefore, by comparing the voltage amplitude of the modulation signal at time Ta with VddZ2, it is possible to determine whether phase modulation is being performed in the positive direction and to be demodulated. it can.
  • the reproduced carrier wave is used to indicate the rise time of the wave to the demodulation circuit 205B, and is not used for comparison with the input signal. In other words, voltage amplitude and other information contained in the reproduced carrier wave are not used for the demodulation operation.
  • the circuit configuration of the demodulation circuit 205B is simpler than that of the first embodiment.
  • FIG. 7 is a block diagram of a digital radio receiving apparatus according to the third embodiment of the present invention.
  • the carrier wave recovery circuit 211C reproduces the four-phase carrier wave delayed by 90 degrees, and all these four-phase carrier waves are input to the demodulation circuit 205C in the first embodiment. This is different from the digital radio receiving apparatus.
  • FIG. 8 is a diagram illustrating the operation of the demodulation circuit 205C. As shown in Fig. 8, at a certain time f, the demodulation circuit 205C is activated only during lZFc corresponding to one period of the center frequency of the modulation signal, and the voltage amplitude value ⁇ in (f) of the modulation signal at the time f is read. .
  • the voltage amplitude values ⁇ ⁇ ( ⁇ ) to ⁇ 270 (f) at time f of each of the four-phase reproduced carriers input to the demodulation circuit 205C are also read. Referring to FIG. 8, it can be understood that the waveform of these modulated waves and the 4-phase regenerated carrier wave are read simultaneously.
  • the modulation signal has undergone phase modulation whose phase is delayed from 0 to 90 degrees with respect to the carrier wave, and the phase of ⁇ is 0 at time f.
  • the voltage amplitudes ⁇ in (f), ⁇ 0 (f), 90 (f), ⁇ 180 (f), and ⁇ 270 (f) of the modulated signal and the four-phase recovered carrier are read.
  • the power supply voltage value is Vdd, 0 ⁇ ( ⁇ ) ⁇ (Vdd / 2), and at this time, it can be seen that the phase delay from the carrier wave of the modulation signal is between 0 and 180 degrees.
  • the phase delay of the modulation signal is between 0 and 90 degrees at this stage.
  • the phase modulation that delays the phase between 0 and 90 degrees corresponds to “10” of the binary signal, so that the demodulation is completed at the time of this waveform comparison.
  • the waveform force of ⁇ in (f) is a carrier waveform with a phase shift of 270 degrees or near V. This is an example of demodulation.
  • the operation after the demodulation is the same as in the first embodiment.
  • the phase modulation amount is classified into any of the four sections from 0 degrees to 90 degrees to 180 degrees to 270 degrees to 360 degrees. Can be easily determined.
  • the four sections and binary signals correspond directly, so the software load required for demodulation can be reduced.
  • FIG. 9 is a block diagram of a digital radio receiving apparatus according to the fourth embodiment of the present invention.
  • the force baseband signal is read only for the time change of the phase of the input signal, which is not compared with the carrier waveform. Therefore, the carrier wave regeneration circuit is not required only for the demodulation operation. This is different from the digital wireless receiver of the first embodiment.
  • phase modulation the phase is shifted in the positive angle direction from 0 degrees to 90 degrees in the symbol period from time 0 to time lZFr, and the modulated wave at time f is set with the power supply voltage value Vdd.
  • Vdd the voltage amplitude of A ′ (f)
  • the input signal is input to the demodulation circuit 205D after the Fin force is also frequency-converted to Fc.
  • FIG. 10 is a diagram illustrating the operation of the demodulation circuit 205D.
  • the demodulation circuit 205D is activated only during lZFc at the time and after reading the voltage amplitude of the modulated wave at each sample point, the demodulation circuit 205D and other receiving device elements are immediately stopped.
  • the voltage amplitude of the modulated wave at time f is (VddZ2).
  • the transmission quality judgment unit 206 obtains and judges whether or not the demodulation error rate satisfies the specified value in the communication standard. If the demodulation error rate obtained by the transmission quality judgment unit 206 is sufficient to satisfy the communication standard value, the sampling time determination unit 207 increases the demodulation time from lZFc to 2ZFc, and the demodulation circuit 205D for the next symbol. The startup time of Here, according to the determined demodulation time of the next symbol, a signal for stopping the operation of the demodulation circuit 205D, the sampling clock distribution system 211, and other amplifiers and filters is supplied from the stop signal supply unit 208, and is supplied to the next symbol.
  • the functions of the demodulation circuit 205D and other blocks are stopped.
  • the difference from the first embodiment is that the voltage amplitude of the modulated wave is read a plurality of times within the same symbol period according to the demodulation time increased from lZFc to 2ZFc.
  • the demodulation time is sequentially extended to 3ZFc, 4 / FC-.
  • the circuit stop time can be adaptively changed according to the transmission quality.
  • the receiving device can be simplified as compared with the first embodiment, since the carrier wave does not need to be reproduced.
  • the first embodiment it is possible to demodulate by detecting at one point in principle, but in this embodiment, it is necessary to detect at a plurality of points. From this point, the time to activate the demodulation circuit 205D is longer in this embodiment than in the first embodiment. And power consumption increases.
  • FIG. 11 is a block diagram of a digital radio receiving apparatus according to the fifth embodiment of the present invention.
  • a narrow band pass filter 401 that passes Fc + ⁇ ⁇ and a narrow band pass filter that passes Fc ⁇ ⁇ ⁇ are shown in FIG. 12, in which the phase modulation amount is not detected from the voltage amplitude of the modulation signal. It differs from the digital wireless receiver of the first embodiment in that 402 is used to detect the amount of shift ⁇ f from the carrier frequency Fc to obtain the phase modulation amount and demodulate it.
  • the demodulation band-pass filter 400 shown in FIG. 12 is included in the demodulation circuit 205E shown in FIG.
  • the input signal is subjected to frequency conversion of the Fin force to Fc, and then input to the demodulation band-pass filter 400 in the demodulation circuit 205E.
  • the input signal is simultaneously passed to a narrow band pass filter 401 that passes Fc + ⁇ ⁇ shown in FIG. 12 and a narrow band pass filter 402 that passes Fc ⁇ ⁇ , and a comparison circuit 403 placed after the two filters 403.
  • the voltage output from each filter is compared.
  • the narrow band pass filter 401 is a filter that passes only the frequency shift amount + ⁇ when the phase modulation is performed in the positive angle direction
  • the narrow band pass filter 402 is the phase in the negative angle direction. This is a filter that passes only the frequency shift amount ⁇ ⁇ when modulation is performed.
  • filters 401 and 402 are filters that handle discrete signals, but their transfer functions are fixed. If the comparison circuit 403 determines that the output power of the filter 401 is greater than the output of the S filter 402, it can be determined that phase modulation is being performed in the positive angle direction. If a result that the output is larger than the output is obtained, it can be determined that the phase modulation is performed in the negative angle direction. As described above, the output result force of the comparison circuit 403 can also be demodulated.
  • the data transition of the baseband signal is read out by the frequency shift amount power, it is compared with the first, second, third, and fourth embodiments in which the time waveform degraded by multipath interference is detected. Demodulation with a high signal-to-noise ratio is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

 ディジタル変調された電気信号が入力される無線受信装置が開示される。連続時間信号である無線変調信号はサンプル・ホールド回路によって離散時間信号へと変換され、帯域通過フィルタによって周波数帯域の変換・選択が行なわれる。復調回路は、変調信号の電圧振幅の瞬時値から復調する。さらに、停止回路が、復調されたベースバンド信号の復調誤り率が通信規格に規定された値を満足しつつ、回路起動時間が最小となるよう適応的に回路停止時間を制御する。

Description

明 細 書
ディジタル無線受信装置
技術分野
[0001] 本発明はディジタル無線受信装置に関する。
背景技術
[0002] 従来のディジタル無線受信装置は、例えば特開 2002— 374181号公報 (特許文 献 1)に示されるように、表面弾性波フィルタなどの高価なオフチップ要素を減らして、 既存の集積回路作製技術で製造することにより、低価格かつ低消費電力を実現して いる。
[0003] 図 1は、従来のディジタル無線受信装置のブロック図である。図 1に示すように、従 来のディジタル無線受信装置はアンテナ 100と無線周波数帯域選択フィルタ 101と 増幅器 102とサンプル ·ホールド回路 105と I相帯域通過フィルタ 108と Q相帯域通 過フィルタ 109と I相アナログ 'ディジタル変^ ^110と Q相アナログ 'ディジタル変換 器 111とから構成されている。
[0004] アンテナ 100は無線信号を受信する。無線周波数帯域選択フィルタ 101は受信信 号に含まれる種々の周波数成分の中から、通信に用いられる帯域のみを選択する。 増幅器 102は無線周波数帯域選択フィルタ 101の出力信号を増幅する。サンプル' ホールド回路 105は、増幅器 102の出力信号をサンプルした後、所定時間保持して 離散時間信号とする。サンプル ·ホールド回路 105は、 I相サンプリングクロック分配系 114および Q相サンプリングクロック分配系 115からそれぞれ供給されるサンプリング クロックによりオン Zオフし、入力信号を所定時間ごとにサンプルする I相サンプリング スィッチ 103および Q相サンプリングスィッチ 104と、サンプルされた I相、 Q相それぞ れの信号レベルを所定時間保持する I相サンプリング容量部 106および Q相サンプリ ング容量部 107を含む。 I相帯域通過フィルタ 108および Q相帯域通過フィルタ 109 はそれぞれサンプル 'ホールド回路 105の I相サンプリング容量部 106および Q相サ ンプリング容量部 107の出力から、信号の離散化により発生した不要な折り返し成分 や所望外のチャネルなど不要な周波数成分を除去する。 I相アナログ ·ディジタル変 換器 110および Q相アナログ ·ディジタル変換器 111はそれぞれ I相帯域通過フィル タ 108および Q相帯域通過フィルタ 109の出力信号をアナログ信号力もディジタル信 号へと変換する。なお、周波数帯域の選択性を高めるために複数の RF帯域通過フィ ルタがカスコード接続される場合もあり、ディジタル無線受信装置は図 1に示す構成 に限られるわけではない。
[0005] 次に、上記の従来のディジタル無線受信装置の動作について説明する。最初に、 無線信号はアンテナ 100によって電気信号へと変換される。変換された電気信号は 、空間を伝播する際に受ける減衰力 極めて微弱なものになっており、さらに無線信 号には、他の通信機器などで用いられている信号も混入している。このことから、受信 装置は熱雑音などの発生を極力抑えながら復調可能なレベルまで信号を増幅し、さ らに不必要な混入信号を除去して、通信に用いられている信号のみを選択的に抽出 しなければならない。このため、無線通信で用いられている周波数帯域を選択的に 通過させる無線周波数帯域選択フィルタ 101と増幅器 102がアンテナ 100の後段に 接続されており、それぞれ周波数選択、信号増幅の役割を担う。
[0006] しかし、一般に用いられている無線周波数帯域選択フィルタ 101の帯域通過特性 などから、信号がこれら無線周波数帯域選択フィルタ 101、増幅器 102を出た時点で は、所望外の周波数成分が残留しているのが通例であるため、さらに濾過(フィルタリ ング)を行なって所望外の周波数成分を除去しなければならない。この理由力 行な われる後段の周波数選択は、所望信号の周波数帯域よりも非常に近接した帯域の 信号を除去するため、信号を通過させる帯域と遮断させる帯域とが近接したフィルタ 、つまり遮断特性が高いフィルタを必要とする。この遮断特性が高いほどフィルタ回 路は大規模なものとなり、同じ遮断特性を有するフィルタでも、通過周波数帯域の中 心周波数が高いほどフィルタ回路は大規模となる。ゆえに、回路規模を抑えつつ周 波数選択性を向上させるため、周波数変換の操作が必要となる。
[0007] この周波数変換において、さらに回路規模の増大を抑えつつ低消費電力化を達成 するために、図 1の従来の受信装置はサンプル.ホールド回路 105、 I相帯域通過フィ ルタ 108、および Q相帯域通過フィルタ 109を備えている。ここで、サンプル 'ホール ド回路 105、 I相帯域通過フィルタ 108、および Q相帯域通過フィルタ 109により周波 数変換が行なわれる理由について述べる。ある周波数帯域を有する時間連続な信 号が、サンプル'ホールド回路 105を用いて一定間隔で離散時間信号へと変換され る場合、この離散時間信号からは当初の入力信号以外に、他の周波数成分も再現さ れ得る。このように、当初の入力信号が有する周波数帯域以外に離散信号に含まれ ている周波数成分は、「折り返し」と呼ばれる。一般に、周波数帯域が W以内に制限 された任意の時間関数は、 1Z2Wごとの離散的な時刻における標本値により一意的 に表現され、この時間間隔以上で信号が標本化された場合、折り返しが互いに重な り合ってしまい、変調信号の信号対雑音比を下げることになる。これは「標本化定理」 と呼ばれるディジタル信号処理の基本定理であり、変調信号の有する周波数帯域値 の少なくとも 2倍のサンプリング周波数でサンプルすべきことを要請している。今後、こ の「標本ィ匕定理」は離散信号を扱う上での前提とし、以下では特に言及しない。この 標本ィ匕定理力 要請されるサンプリング周波数で増幅器 102の出力信号を離散化 することにより発生する多数の折り返し成分の中から、所望の帯域のみをディジタル フィルタで選択'抽出すれば、ベースバンド信号を損壊することなく帯域の中心周波 数を変換することが可能である。
[0008] この従来技術の例では、 I相サンプリングクロック、および該サンプリングクロックから 位相が 90° 移された Q相サンプリングクロックにより I相サンプリングスィッチ 103およ び Q相サンプリングスィッチ 104をそれぞれオン Zオフして入力変調信号がサンプリ ングされ、 I相サンプリング容量 106および Q相サンプリング容量 107にそれぞれ所定 時間保持される。この操作により入力信号は I成分、 Q成分へとそれぞれ分離された 上で、離散時間信号へと変換される。さらに、サンプル 'ホールド回路 105の後段に 接続された I相帯域通過フィルタ 108および Q相帯域通過フィルタ 109によってそれ ぞれ I, Q成分ごとに所望周波数帯域が選択 '抽出された後、 I相アナログ,ディジタル 変換器 110および Q相アナログ 'ディジタル変換器 111によってそれぞれディジタル ベースバンド信号へと復調される。復調された各ディジタルベースバンド信号は I相物 理層信号処理部 112および Q相物理層信号処理部 112へ送られる。パケット信号の 入力が続く限り、上記一連の動作は継続される。
[0009] なお、特開 2003— 338771号公報 (特許文献 2)に示されるように、従来技術にお いて、パケット通信を行なっていない間に回路を停止させ、低電力化を目指す例はあ る。しかし、パケット送受信により復調を行なっている間は、速やかに復調を完了させ る等の技術に対する言及はないため、シンボル期間中の全てにわたって始終回路を 動作させる必要がある。したがって、従来技術において、シンボル期間内で回路を停 止させるなどの工夫で低電力化を図った例はない。
特許文献 1:特開 2002— 374181号公報
特許文献 2 :特開 2003— 338771号公報
発明の開示
発明が解決しょうとする課題
[0010] 上述した従来のディジタル無線受信装置は、以下の問題点がある。
[0011] 第 1に、アナログ'ディジタル変換器を用いてディジタル変調信号を復調する場合、 デバイスや回路工夫以外の手法を用いては復調回路の消費電力が下げられない。 その理由は、受信装置はパケット通信を行なって 、る間始終動作して 、るためである
[0012] 第 2に、アナログ 'ディジタル変換器を用いてディジタル変調信号を復調する場合、 システム全体の低コスト化'低電力化が阻害される。その理由は、高分解能のアナ口 グ ·ディジタル回路が必要なため、回路の小型化 ·低消費電力化が難 、ためである 。従来技術は受信信号を離散時間信号として扱っていることから、ディジタル回路特 有の低消費電力化 ·回路小型化のための工夫の余地があると考えられる。
[0013] 本発明の目的は、低消費電力で、小型、低コストのディジタル無線受信装置を提供 することにある。
課題を解決するための手段
[0014] 本発明のディジタル無線受信装置は、
入力された前記信号の中から、通信に用いられている周波数帯域を選択し、出力 する無線周波数帯域選択フィルタと、
無線周波数帯域選択フィルタカゝら出力された信号を入力し、該信号を増幅する増 幅器と、
増幅器力 出力された信号を入力し、該信号の有する周波数帯域の少なくとも 2倍 のサンプリング周波数で該信号を離散時間信号へと変換するサンプル 'ホールド回 路と、
サンプル 'ホールド回路から出力される離散時間信号の中から、通信に用いられて いる周波数帯域のみを選択し出力するディジタルフィルタと、
ディジタルフィルタから出力された信号を入力し、該信号の 1波長分に相当する時 間のみ起動して該信号を復調する復調回路と、
復調回路で復調され、出力されたディジタル信号を入力して復調誤り率を求め、該 誤り率が通信規格で規定された復調誤り率を満足するかどうか確認し、満足しな!ヽ場 合、復調回路の復調時間を変調信号 1波長分から通信規格値を満足するまで順次 延長し、サンプル ·ホールド回路へのサンプリングクロック分配系、ディジタルフィルタ 、増幅器、および無線周波数帯域選択フィルタを復調回路と同時に起動および停止 させる停止回路と
を有する。
[0015] 本発明によれば、ディジタル無線受信装置の消費電力を大幅に下げられる。その 理由は、ディジタル無線通信の搬送波周波数は通例ベースバンド周波数の数百倍 力 数千倍であり、 1つの変調期間において必要最小限の検波を行い、復調データ の誤り率が規格値内に収まることを確認すれば、復調回路その他を停止させ低消費 電力化を図ることが可能なためである。
[0016] また、本発明によれば、ディジタル無線受信装置を小型化できる。その理由は、無 線変調信号を離散時間処理した場合、連続信号のまま復調する場合と比較して回 路縮小'集積ィ匕の障害となるアナログ回路要素を減らすことが容易であり、将来のプ ロセステクノロジ進化に応じた高性能化も容易なためである。
図面の簡単な説明
[0017] [図 1]図 1はディジタル無線受信装置の従来例を示すブロック図である。
[図 2]図 2は本発明の第 1の実施形態のディジタル無線受信装置の構成を示すブロッ ク図である。
[図 3]図 3は第 1の実施形態における復調回路の動作の具体例を示す図である。
[図 4]図 4は復調時間決定の手続きを示す流れ図である。 圆 5]図 5は本発明の第 2実施の形態のディジタル無線受信装置の構成を示すブロッ ク1図—
〇である。
圆 6]図 6は第 2の実施形態における復調回路の動作の具体例を示す図である。 圆 7]図 7は本発明の第 3の実施形態のディジタル無線受信装置の構成を示すブロッ ク図である。
圆 8]図 8は第 3の実施形態における復調回路の動作の具体例を示す図である。 圆 9]図 9は本発明の第 4の実施形態のディジタル無線受信装置の構成を示すブロッ ク図である。
圆 10]図 10は第 4の実施形態における復調動作の概念を示す図である。
[図 11]図 11は本発明の第 5の実施形態のディジタル無線受信装置の構成を示すブ ロック図である。
[図 12]図 12は第 5の実施形態における復調部の構成を示すブロック図である。 符号の説明
アンアナ
101 無線周波数帯域選択フィルタ
102 増幅器
103 I相サンプリングスィッチ
104 <3目サンプリングスィッチ
106 I相サンプリング容量部
107 Q相サンプリング容量部
108 I相帯域通過フィルタ
109 Q相帯域通過フィルタ
110 I相アナログ ·ディジタル変換器
111 Q相アナログ ·ディジタル変換器
112 I相物理層信号処理部
113 Q相物理層信号処理部
114 I相サンプリングクロック分配系
115 Q相サンプリングクロック分配系 105、 201、 501、 701、 901、 1101 サンプル 'ホールド、回路
200 サンプリングスィッチ
202 サンプリング容量部
203 帯域通過フィルタ
204 停止回路
205A、 205B、 205C、 205D 復調回路
206 伝送品質判断部
207 サンプリング時間決定部
208 ストップ信号供給部
209 クロック発生器
210 物理層信号処理部
211A、 211B、 211C 搬送波再生回路
212 サンプリングクロック分配系
400 復調用帯域通過フィルタ
401 Fc+ Δ ίを通過させる狭帯域通過フィルタ
402 Fc— Δ ίを通過させる狭帯域通過フィルタ
403 比較回路
301〜308 ステップ
発明を実施するための最良の形態
(第 1の実施形態)
図 2は本発明の第 1の実施形態によるディジタル無線受信装置のブロック図である 。クロック発生器 209はサンプリングクロックを発生する。搬送波再生回路 211Aは搬 送波を再生する。サンプル 'ホールド回路 201は、クロック発生器 209からサンプリン グクロック分配系 212を通じて供給されるサンプリングクロックを受けて入力信号(図 1 中の増幅器 102の出力信号)をサンプルした後、所定時間保持して離散時間信号と する。帯域通過フィルタ 203は、信号を離散化することにより発生した不要な折り返し 成分や所望外の周波数成分を除去する。復調回路 205Αは、帯域通過フィルタ 203 力 の入力信号と再生搬送波とをごく短時間に比較してベースバンド信号を出力し、 物理層信号処理部 210へ送る。停止回路 204は、復調回路 205Aで復調されたべ ースバンド信号を受けて復調回路 205A、サンプリングクロック分配系 212、およびそ の他受信装置の電力を消費している増幅器'フィルタ(図 1中の増幅器 102、無線周 波数帯域フィルタ 101)などの動作を適宜停止させる。
[0020] サンプル ·ホールド回路 201は、サンプリングクロックによりオン Zオフ動作を繰り返 し、入力信号を所定時間ごとにサンプルするサンプリングスィッチ 200と、サンプリン グスィッチ 200から出力された信号を所定時間蓄積して保持するサンプリング容量部 202を含む。
[0021] 停止回路 204は伝送品質判断部 206とサンプリング時間決定部 207とストップ信号 供給部 208を含む。伝送品質判断部 206は、復調回路 205Aで復調され出力された ベースバンド信号を受けて復調誤り率を算出し、この復調誤り率が通信規格で規定さ れた値を満足するか否かを判断する。サンプリング時間決定部 207は、復調誤り率が 通信規格で規定された値を満足しな!、と判断された場合、伝送品質判断部 206で算 出された復調誤り率に基づいて通信規格を満たすための最低限の復調時間を決定 する。ストップ信号供給部 208は、サンプリング時間決定部 207で決定された復調時 間に基づいて復調回路 205、サンプリングクロック分配系 212、および増幅器、フィル タ等を停止させる信号を出力する。
[0022] 次に、図 2、図 3、図 4を参照して本実施形態の無線信号受信装置の動作について 詳細に説明する。なお、簡単のため、ここではディジタル変調の単純な例としてべ一 スバンド信号が正弦波に帯域制限されたオフセット位相 4値変調 (O— QPSK)を例 に取る。一般の位相 4値変調の場合、搬送波の位相を 45度、 135度、 225度、 315 度の 4種類で動かし、それぞれバイナリ信号を対応させてディジタルデータを伝送す る力 特にデータ遷移パターンに制限は加えられていない。このため、位相遷移パタ 一ンは士 90度移相と 180度移相の 3種類である。しかしオフセット位相 4値変調の場 合、 180度移相のデータ遷移が許されていないため、位相遷移パターンは ± 90度 移相の 2種類のみ、となる。カロえて、ベースバンド信号が正弦波に帯域制限されてい る場合、変調により位相が動く速度は一定であり、変調波の包絡線も一定となるため 、単純である。このことから、位相が + 90度移相される際は搬送波周波数からさらに 正の値だけ周波数が重畳されている周波数変調と見なすことが可能である。逆に
90度移相される際も同様である。つまり、ある規定の速度で位相が移される変調方 式の場合、波形力 周波数変調が行なわれていると見なすことも可能である。
[0023] この変調方式は、例えば国際電気電子技術者連合において規格化された無線家 庭内通信網 802. 15. 4規格の物理層で採用されている。なお、シンボルレ―トは Fr とする。これらの変調条件は第 2の実施の形態以下においても同一とする。
[0024] 図 1の無線周波数帯域選択フィルタ 101、増幅器 102を通過して周波数選択 '増幅 された入力信号は、中心周波数 Finでサンプル ·ホールド回路 201へ入力される。サ ンプル'ホールド回路 201の初段に位置し、クロック発生器 209から供給される周波 数 fsのサンプリングクロックにより駆動されオン Zオフ動作を繰り返すサンプリングスィ ツチ 200は、入力信号の電圧振幅値をサンプリングクロック 1周期 lZfsごとにサンプ ルし、この値を後段のサンプリング容量部 202へ送る。サンプリング容量部 202は、サ ンプルされた入力信号値をサンプリングクロック 1周期 lZfsの間、所定時間保持 (ホ 一ルド)する。この保持される時間はサンプリングクロックのデューティ比、サンプル' ホールド回路 201の回路構成、その他によって変化させることができる値である。この ようにして、サンプル 'ホールド回路 201において、入力信号は連続時間信号から離 散時間信号へと変換され、後段の帯域通過フィルタ 203、および復調回路 205Aへ と出力されることになり、サンプル ·ホールド回路 201以降はディジタル信号的なデー タ処理、回路動作が可能となる。また、このサンプル ·ホールド回路 201から出力され た信号は、離散時間信号へ変換されたことに伴い、当初の入力中心周波数 Fin以外 に多数の周波数成分を含んでいる。これは、前記従来技術の動作説明でも述べたよ うにデータ値が離散的であるため、これらサンプルデータ力 所望以外の周波数成 分も再現され得ることに由来し、一般に「折り返し」(エイリアス)と呼ばれる。これら折り 返しや他通信規格など力 の不要混入成分を除去するため、次段の帯域通過フィル タ 203が用いられる。ここで、サンプル 'ホールド回路 201で発生した多数の折り返し 成分の中から、帯域通過フィルタ 203により所望の 1つの周波数成分 Fcのみを選択 抽出すれば、ディジタルベースバンド信号を保ちつつ Fin力 Fcへと帯域の中心周 波数が変換できる。このために、本発明ではサンプル 'ホールド回路 201と帯域通過 フィルタ 203を組み合わせ、周波数選択 ·変換を行なっている。
[0025] サンプル 'ホールド回路 201から出力された離散時間信号は、次段の帯域通過フィ ルタ 203へ供給される。この帯域通過フィルタ 203は離散時間信号を扱うディジタル フィルタであり、フィルタから出力された信号をさらに入力へと戻して(フィードバック) 演算に用いる無限インパルス応答フィルタ、また出力信号をフィードバックしない有限 インパルス応答フィルタのいずれも用いることができる。ただし、ここで用いるフィルタ は、通信で使用している信号帯域のみを選択抽出して出力し、次段の復調回路 205 Aへと供給するために、他通信規格力もの信号や同一規格の隣接チャネル信号など が排除可能でなければならない。この点から、前記帯域通過フィルタ 203は、狭帯域 信号を通過させることが可能であり、さらに高い周波数遮断特性を有していることが 要求される。その理由は、後述するように復調回路 205Aの特性上、所望チャネル以 外の信号が復調時に入力された場合は分離することが不可能であり、復調動作が妨 害されるからである。
[0026] 一般に無限インパルス応答フィルタの場合、 4次力 6次程度の低次のフィルタ次 数で前記仕様を満足するが、狭帯域信号を選択的に通過させる場合フィルタの極が 近接することになり、発振の危険を伴う不安定なフィルタとなる可能性がある。一方、 有限インパルス応答フィルタの場合、上記の発振の危険はないものの、同一特性を 持つ無限インパルス応答フィルタと比較してフィルタ長が 10倍程度になる場合があり 、チップ単価を上昇させる可能性がある。
[0027] 周波数変換'選択された変調信号は、復調回路 205Aにおいて基準となる再生搬 送波と波形比較されることにより、ベースバンド信号が抽出され、復調される。ここで は搬送波の再生について述べる。一般に、ディジタル無線通信はパケット形式でデ ータ伝送が行なわれるが、実データの送信に先立ち、パケット先頭部分でプリアンプ ルと呼ばれる固定トレーニング信号が一定時間流されることが規定されている。この プリアンブルに従って、受信装置は周波数シンセサイザでの周波数ロッキング '位相 同期など、実データ受信に必要な環境を準備することが可能であり、復調を行なうこ とができる。このことから、プリアンブルを活用することにより、通信で用いられている 周波数の搬送波を再生させた上、復調回路 205Aに入力して復調へ供することが可 能である。前記一連の動作は、搬送波再生回路 211Aで行なわれるものとする。
[0028] サンプル ·ホールド回路 201と帯域通過フィルタ 203にお!/、て Finから Fcへ周波数 変換された前記変調信号は、搬送波再生回路 211Aで再生された搬送波とともに復 調回路 205Aへ入力され、ベースバンド信号を取り出されて復調される。図 3は、復 調回路 205Aの動作を示す図である。図 3に示されるように、 1シンボルで変調が行 われている時間である lZFrの間、変調信号の中心周波数 1周期分に相当する 1Z Fcのみ復調回路 205Aを起動して 1波分の変調信号波形を読み取る (ステップ 301) 。さらに、同じ時刻 tにおいて再生搬送波の波形を読み取る。この例では、時刻 tにお V、て再生搬送波の位相は 0であり、入力される変調信号は + 90度方向に移相されて いる場合を考える。前記変調方式の説明の際に述べたように、 +90度移相の際は、 ある正の値 Δίだけ周波数変調がかけられていると考えることができる。このことより、 復調回路 205Αには接地点 0から電源電圧 Vddまで振動する正弦波が入力されると 仮定し、ある時刻 tにおける再生搬送波 A (t)を A (t) = (VddZ2)[l + sin(2 Fct) ]と表記すると、 +90度移相の変調波 A' (t)は A' (t) = (Vdd/2) [1 + 5ίη(2 π (Fc + Af)t) ]となる。時刻 tにおいて再生搬送波 A (t)の位相が 0であれば、 A' (t)は簡 単な正弦波の計算力も A' (t) = (Vdd/2) [1 + 5ίη(2 π (1 + AfZFc)N) ]、 Νは 整数である。波形読み取り時刻 tがシンボル開始時刻 0に近ぐベースバンド信号波 形の変化速度 Δはりも入力周波数 Fcが十分速い場合 (VddZ2) <Α' (t)く Vddで ある。つまり、時刻 tでの変調波の電圧振幅が VddZ2よりも大きいか小さいかを比較 回路を用いて判断すれば、 +90度移相の変調が行なわれている力、—90度の移相 が行なわれているかを判断でき、復調することができる。なお、時刻 tにおいて位相が 0である必要はなぐ lZFc間のサンプル点全てを用い、適宜接地点から電源電圧ま での分割数を増やして波形を読み取れば、任意の搬送波位相で波形比較し復調す ることが可能である。ただし、時刻 tは、マルチパス遅延によるシンボル間干渉を回避 し得るよう、シンボル開始点よりも十分遅く選ばれなければならな 、。
[0029] 復調が終了次第、速やかに復調回路 205Aは再び停止される。
[0030] この復調されたベースバンド信号は物理層信号処理部 210へ送られる力 同時に 伝送品質判断部 206へも送られる。この伝送品質判断部 206においては、復調誤り 率を求め、復調誤り率が通信規格上の規定値を満たしているか否かが判断される (ス テツプ 302)。ここで、パケット通信の場合、一般には実際のデータ伝送を行なう前、 前記プリアンブルが送信された後で、伝送状態を判断するための固定トレーニング信 号がパケット内で流されており、復調誤り率を求める際にこれを活用することが可能で ある。
[0031] 伝送品質判断部 206で求められた復調誤り率が通信規格値を満たしていない場合 、サンプリング時間決定部 207において復調時間を lZFcから 2ZFcへと増やし、次 のシンボルにおける復調時間とする(ステップ 303)。ここで決定された次シンボルの 復調時間に応じて、復調回路 205Aおよびサンプリングクロック分配系 212およびそ の他増幅器やフィルタの動作を停止させる信号力 Sストップ信号供給部 208から供給さ れ (ステップ 304)、次シンボルにおいて復調回路 205Aその他ブロックの機能が動 作,停止される。
[0032] 次シンボルで 2ZFcに復調時間を延長しても復調誤り率が通信規格を満足しな 、 場合、復調時間は 3ZFc、 4/FC- · ·へと順次延長される(ステップ 305、 306、 307 )。この操作により、回路停止時間が伝送品質に応じて適応的に変更可能となる。そ して、決定された復調時間に基いて、パケット終了まで復調が実行される (ステップ 3 08)。
[0033] 本実施形態では、復調に必要な最小限の時間、サンプル.ホールド回路 201への サンプリングクロックおよび復調回路 205Aその他へ電源を供給し、その他の時間は 受信装置の動作を停止させるため、受信装置の消費電力を大幅に削減できる。例え ば、変調時間 lZFrが 500ナノ秒の規格において、 Fc = 100MHzで復調回路 205 Aへ変調信号を入力する場合を考える。この場合、位相変調分の検出に費やす時間 は lZFc = 10ナノ秒であり、さらに回路の立ち上がり '立ち下りがそれぞれ 1ナノ秒で 可能とすると、復調回路 205Aの消費電力は連続的に回路を動作させた場合と比較 して [ (10 + 1 + DZ500] X 100 = 2.4%と大幅に少なくなる。ただし、待機電力は 無視し得るとする。
[0034] (第 2の実施形態)
図 5は、本発明の第 2の実施形態のディジタル無線受信装置のブロック図である。 本実施形態は、搬送波再生回路 21 IBで再生された搬送波をサンプリングクロックと して復調回路 205Bに入力し、変調波形を読み取る際のタイミング同期を取っている 点が第 1の実施形態のディジタル無線受信装置と異なる。
[0035] 次に、本実施形態の動作について説明する。ここでは前述した第 1の実施形態と異 なる動作にっ 、てのみ説明する。
[0036] 入力信号は Fin力も Fcへと周波数変換された後、復調回路 205Bへ入力される。図 6は、復調回路 205Bの動作を示す図である。図 6に示されるように、 1シンボルで変 調が行われている lZFrの間、再生搬送波の立ち上がり時刻 Taに同期させて復調 回路 505Bを起動し、変調信号の中心周波数 1周期分に相当する lZFcのみ動作さ せて 1波分の変調信号波形を読み取る。この時刻 Taにお 、て読み取った変調信号 の電圧振幅力 正 ·負いずれの角度方向へ位相変調が行なわれている力判断し、復 調する。図 6に示した変調信号では、正の角度方向へ位相変調が行なわれている。 この例では再生搬送波よりも周波数が高くなるために、変調信号は Taにお 、て搬送 波に対して位相が進行しており、 Taにおける変調信号の電圧振幅は、接地点を 0、 電源電圧値を Vddとすると、 0から VddZ2の間にあると考えられる。逆に、負方向へ 位相変調が行なわれている場合、変調信号は搬送波に対して位相が遅れているた めに、 Taにおける変調信号の電圧振幅は、 VddZ2から Vddの間にあると考えられる 。ゆえに、時刻 Taにおける変調信号の電圧振幅と VddZ2とを比較することによって 、正方向へ位相変調が行なわれているカゝ負方向へ位相変調が行われているかを判 断し、復調することができる。
[0037] ここで、再生搬送波は波の立ち上がり時刻を復調回路 205Bに示すために用いら れており、入力信号との比較には用いられない。つまり、電圧振幅その他再生搬送 波が有する情報は復調動作にぉ 、て用いられな 、。
[0038] 復調された後の動作は、第 1の実施形態の場合と同じである。
[0039] 本実施形態では、再生搬送波の振幅には復調に必要な情報が載せられておらず 、入力変調信号の振幅のみを読み取ればよい。このため、第 1の実施形態と比べて 復調回路 205Bの回路構成は簡単になる。
[0040] (第 3の実施形態) 図 7は、本発明の第 3の実施形態のディジタル無線受信装置のブロック図である。 本実施形態は、搬送波再生回路 211Cにおいて 90度ずつ位相遅延された 4相の搬 送波を再生し、これら 4相の搬送波が全て復調回路 205Cへ入力されて 、る点が第 1 の実施形態のディジタル無線受信装置と異なる。
[0041] 次に、本実施形態のディジタル無線受信装置の動作にっ 、て説明する。ここでは 前述した第 1の実施形態と異なる動作についてのみ説明する。
[0042] 入力変調信号は Fin力も Fcへと周波数変換された後、復調回路 205Cへ入力され る。ここで、同時に、搬送波力もそれぞ; 立相が 0度、 90度、 180度、 270度位相遅 延された再生搬送波も復調回路 205Cへ入力される。図 8は、復調回路 205Cの動 作を示す図である。図 8に示されるように、ある時刻 fにおいて復調回路 205Cを変調 信号の中心周波数 1周期分に相当する lZFc間のみ起動し、時刻 fにおける変調信 号の電圧振幅値 Φ in (f)を読み取る。同時に、復調回路 205Cへ入力された 4相の 再生搬送波それぞれの時刻 fにおける電圧振幅値 φ Ο (ί)〜φ 270 (f)も読み取る。 図 8を参照すると、これらの変調波と 4相再生搬送波の波形読み取りは同時に行われ ることが理解できる。
[0043] この例では、変調信号は搬送波に対して 0度から 90度の間で位相が遅れた位相変 調を受けており、時刻 fにおいて φ θの位相は 0であるとする。まず、時刻 fにおいて、 変調信号と 4相再生搬送波それぞれの電圧振幅 φ in (f)、 φ 0 (f)、 90 (f) , φ 180 (f)、 φ 270 (f)を読み取る。電源電圧値を Vddとすると、 0< ίη(ί) < (Vdd/2)で あるから、この時点では変調信号の搬送波からの位相遅延分は 0度から 180度の間 であることが分かる。さらに、次のサンプル点 f+ (1/fs)において、(VddZ2) < φ i n (f+ (lZfs) )く Vddであるから、この段階で変調信号の位相遅延分は 0度から 90 度の間であることが分かる。一般的な位相 4値変調の場合、 0度から 90度の間で位 相を遅らせる位相変調はバイナリ信号の「10」に対応するので、この波形比較の時点 で復調まで完了したことになる。上記の例は、変調波 1周期分、 2サンプル点での電 圧振幅量読み取りにより、 φ in (f)の波形力^〜 270度移相の搬送波形 、ずれに近 V、かを判断して復調する例である。
[0044] 復調された後の動作は、第 1の実施形態の場合と同一である。 [0045] 本実施形態では、変調信号波形の時刻 fにおける電圧振幅値を読み取ることで、位 相変調量が 0度〜 90度〜 180度〜 270度〜 360度の 4区間中いずれに区分される かが容易に判断できる。特に、 QPSK変調の場合、この 4つの区間とバイナリ信号と が直接対応しているため、復調までに要する ドウエア負荷を軽減できる。
[0046] なお、通常の無線送受信装置では変調信号を I相 'Q相それぞれに分離して扱うた め、 4相の再生搬送波を準備する箇所により、従来構成と比較してハードウェアが複 雑になることはない。
[0047] (第 4の実施の形態)
図 9は、本発明の第 4の実施形態のディジタル無線受信装置のブロック図である。 本実施形態は、復調回路 205Dにおいて、搬送波形との比較ではなぐ入力信号の 位相の時間変化のみ力 ベースバンド信号を読み取るため、復調動作に限っては搬 送波再生回路を必要としない点が第 1の実施形態のディジタル無線受信装置と異な る。
[0048] 次に、図 10を参照して第 4の実施形態のディジタル無線受信装置の動作について 説明する。ここでは位相変調の一例として、時刻 0から時刻 lZFrまでのシンボル期 間において 0度から 90度まで正の角度方向に移相されており、電源電圧値を Vddと して、時刻 fにおける変調波 A' (f)の電圧振幅が A' (f) = (Vdd/2)[l + sin(2 π (Fc + Af)f) ]で表される場合を扱う。また、ここでは前述した第 1の実施形態と異なる動 作についてのみ説明する。
[0049] 入力信号は Fin力も Fcへと周波数変換された後、復調回路 205D 入力される。
図 10は、復調回路 205Dの動作を示す図である。図 10に示されるように、時刻 こお いて lZFc間のみ復調回路 205Dを起動して、各サンプル点における変調波の電圧 振幅を読み取った後、速やかに復調回路 205Dその他受信装置要素を停止する。な お、この例では、簡単のため時刻 fにおける変調波の位相を 0とするため、時刻 fでの 変調波の電圧振幅は (VddZ2)である。
[0050] 次に、半シンボル期間後に相当する時刻 f+ (l/2Fr)において lZFc間のみ復 調回路 205Dを再び起動して、各サンプル点における変調波の電圧振幅を読み取つ た後、速やかに復調回路 205Dその他受信装置要素を停止する。時刻 f + (l/2Fr )における変調波 A'の電圧振幅は、簡単な三角関数の計算力 A' (f) = (Vdd/2) [ 1 + 5ίη(2 π (Fc+ Af) Z2Fr) ]となる。ベースバンド波形の変化速度 Δίとシンボル レ―ト Frは通信規格で定められた値であり、復調回路 205Dへの入力周波数 Fcも復 調時には既知の値である。ゆえに、時刻 fにおける変調信号の位相を読み取り、さら に 2回目に復調回路 205Dを起動して変調信号波形を読み取る時刻を決めておけ ば、 2回目の波形読み取りにおける変調信号の電圧振幅値が予想可能となる。例え ば Δί=0.5ΜΗζ、 Fc= 100MHz、 Fr= 2.0MHzと仮定すると A' (f+ (l/2Fr) ) = 0.85 XVddと予想できる。さらに 90度力も 0度まで負の角度方向に移相される場 合、同様の議論にょり八' + (1 2?1:) )=0.15 ¥(1(1と予想できる。以上の結果か ら、 f+ (l/2Fr)における電源電圧値と VddZ2とを比較すれば、正'負のいずれの 方向に位相変調が行われているかを判断することができ、復調することができる。
[0051] この復調されたベースバンド信号から、伝送品質判断部 206においてを求め、復調 誤り率が通信規格上の規定値を満たして!/ヽるカゝ否かを判断する。伝送品質判断部 2 06で求められた復調誤り率が通信規格値を満たして ヽな 、場合、サンプリング時間 決定部 207において復調時間を lZFcから 2ZFcへと増やし、次のシンボルにおけ る復調回路 205Dの起動時間とする。ここで、決定された次シンボルの復調時間に応 じて、復調回路 205D、サンプリングクロック分配系 211、その他増幅器やフィルタの 動作を停止させる信号がストップ信号供給部 208から供給され、次シンボルにお 、て 復調回路 205Dその他ブロックの機能が動作'停止される。ここで、第 1の実施形態と 異なる点は、 lZFcから 2ZFcへと増やされた復調時間に従い、変調波の電圧振幅 が同シンボル期間内で複数回読み取られる点である。
[0052] 次に入力されるシンボルで 2ZFcに復調時間を延長しても復調誤り率が通信規格 を満足しない場合、復調時間は 3ZFc、 4/FC- - ·へと順次延長される。この操作に より、回路停止時間が伝送品質に応じて適応的に変更可能となる。
[0053] 本実施形態では、搬送波の再生を必要としない分、第 1の実施形態と比べて受信 装置の簡略化が可能となる。ただし、第 1の実施形態では原理上 1つの点で検波す れば復調可能であるが、本実施形態では複数の点で検波する必要がある。この点か ら、復調回路 205Dを起動すべき時間は第 1の実施形態よりも本実施形態のほうが長 くなり、消費電力も大きくなる。
[0054] (第 5の実施の形態)
図 11は、本発明の第 5の実施形態のディジタル無線受信装置のブロック図である。 本実施形態は、変調信号の電圧振幅から位相変調量を検出するのではなぐ図 12 に示される、 Fc+ Δ ίを通過させる狭帯域通過フィルタ 401と、 Fc- Δ ίを通過させる 狭帯域通過フィルタ 402を用いて、搬送波周波数 Fcからのシフト量 Δ fを検出して位 相変調量を求め、復調する点が第 1の実施形態のディジタル無線受信装置と異なる 。なお、図 12に示す復調用帯域通過フィルタ 400は図 11に示す復調回路 205Eに 含まれている。
[0055] ここで、本実施形態の動作について説明する。なお、ここでは前述した第 1の実施 の形態と異なる動作にっ 、てのみ説明する。
[0056] 入力信号は Fin力も Fcへと周波数変換された後、復調回路 205E内の復調用帯域 通過フィルタ 400へ入力される。入力信号は図 12に示される Fc+ Δ ίを通過させる 狭帯域通過フィルタ 401と、 Fc Δ ίを通過させる狭帯域通過フィルタ 402へ同時に 通され、 2つのフィルタの後段に置かれている比較回路 403にて各フィルタから出力 される電圧が比較される。ここで、狭帯域通過フィルタ 401は正の角度方向へ位相変 調が行われている際の周波数シフト量 + Δ ίのみを通過させるフィルタであり、狭帯域 通過フィルタ 402は負の角度方向へ位相変調が行われている際の周波数シフト量 Δ ίのみを通過させるフィルタである。これらのフィルタ 401、 402は離散信号を扱うフ ィルタであるが伝達関数は固定である。比較回路 403において、フィルタ 401の出力 力 Sフィルタ 402の出力よりも大きいと判断されれば、正の角度方向へ位相変調が行わ れていると判断でき、逆にフィルタ 402の出力がフィルタ 401の出力よりも大きいとい う結果が得られれば、負の角度方向へ位相変調が行われていると判断できる。以上 より、比較回路 403の出力結果力も復調することが可能である。
[0057] 復調が行なわれた後の動作については、第 1の実施の形態と同一である。
[0058] 本実施形態では、ベースバンド信号のデータ遷移を周波数シフト量力 読み取るた め、マルチパス干渉で劣化した時間波形を検波する第 1、第 2、第 3、第 4の実施形 態に比べ、信号対雑音比の高い復調が可能である。

Claims

請求の範囲
[1] ディジタル変調された電気信号が入力される無線受信装置であって、
入力された前記信号の中から、通信に用いられている周波数帯域を選択し、出力 する無線周波数帯域選択フィルタと、
前記無線周波数帯域選択フィルタから出力された信号を入力し、該信号を増幅す る増幅器と、
前記増幅器力 出力された信号を入力し、該信号の有する周波数帯域の少なくと も 2倍のサンプリング周波数で該信号を離散時間信号へと変換するサンプル 'ホール ド回路と、
前記サンプル 'ホールド回路から出力される離散時間信号の中から、通信に用いら れている周波数帯域のみを選択し出力するディジタルフィルタと、
前記ディジタルフィルタから出力された信号を入力し、該信号の 1波長分に相当す る時間のみ起動して該信号を復調する復調回路と、
前記復調回路で復調され、出力されたディジタル信号を入力して復調誤り率を求 め、該誤り率が通信規格で規定された復調誤り率を満足するかどうか確認し、満足し な 、場合、前記復調回路の復調時間を変調信号 1波長分から通信規格値を満足す るまで順次延長し、前記サンプル ·ホールド回路へのサンプリングクロック分配系、前 記ディジタルフィルタ、前記増幅器、および前記無線周波数帯域選択フィルタを前記 復調回路と同時に起動および停止させる停止回路と
を含むディジタル無線受信装置。
[2] 当該通信に用いられる搬送波と同一の周波数、および同一の位相を有する搬送波 を再生し、前記ディジタルフィルタから出力される前記信号の中心周波数と同一の周 波数へ変換して出力し、前記復調回路へ出力する搬送波再生手段をさらに含む、請 求項 1に記載の装置。
[3] 前記搬送波再生手段は前記再生された搬送波からそれぞれ 90度、 180度、 270 度位相が移された搬送波を全て再生し、合計 4相の再生搬送波を前記復調回路へ 出力する、請求項 2に記載の装置。
[4] 前記復調回路は、前記搬送波再生手段から供給された搬送波振幅と、前記ディジ タルフィルタ力 供給された信号振幅とを同時に比較してベースバンド信号を読み取 り、復調を行なう、請求項 1または 2に記載の装置。
[5] 前記復調回路は、前記搬送波再生手段から供給された搬送波を同期信号として、 前記ディジタルフィルタから供給された信号振幅を読み取り、復調を行なう、請求項 1 または 2に記載の装置。
[6] 前記復調回路は、前記搬送波再生手段から供給された 4相の搬送波全ての振幅と 、前記ディジタルフィルタ力 供給された信号振幅とを同時に比較してベースバンド 信号を読み取り、復調を行なう、請求項 1または 2または 3に記載の装置。
[7] 前記復調回路は、前記ディジタルフィルタ力 供給された信号の振幅の時間変化 を読み取ることにより復調を行なう、請求項 1に記載の装置。
[8] 前記復調回路は、前記ディジタルフィルタ力 供給された信号が有する周波数帯 域と、搬送波周波数との差を読み取ることにより復調を行なう、請求項 1に記載の装 置。
PCT/JP2005/019761 2004-10-27 2005-10-27 ディジタル無線受信装置 WO2006046632A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006543237A JP4716032B2 (ja) 2004-10-27 2005-10-27 ディジタル無線受信装置
EP05799346A EP1806891A4 (en) 2004-10-27 2005-10-27 DIGITAL RECEIVER WIRELESS
US11/718,216 US7760819B2 (en) 2004-10-27 2005-10-27 Digital wireless receiver

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004312270 2004-10-27
JP2004-312270 2004-10-27

Publications (1)

Publication Number Publication Date
WO2006046632A1 true WO2006046632A1 (ja) 2006-05-04

Family

ID=36227874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019761 WO2006046632A1 (ja) 2004-10-27 2005-10-27 ディジタル無線受信装置

Country Status (4)

Country Link
US (1) US7760819B2 (ja)
EP (1) EP1806891A4 (ja)
JP (1) JP4716032B2 (ja)
WO (1) WO2006046632A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064451A1 (ja) * 2008-12-04 2010-06-10 パナソニック株式会社 サンプリング回路およびこれを用いた受信機
US8125258B2 (en) 2008-02-04 2012-02-28 Nec Corporation Phase synchronization device and phase synchronization method
US8345800B2 (en) 2007-09-20 2013-01-01 Nec Corporation Receiver apparatus and reception method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009271775A (ja) * 2008-05-08 2009-11-19 Toshiba Corp 受信装置
JP4706761B2 (ja) * 2009-01-29 2011-06-22 日本テキサス・インスツルメンツ株式会社 受信回路
EP2299588B1 (en) * 2009-09-11 2012-12-19 Stichting IMEC Nederland Receiver with improved flicker noise performance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06261080A (ja) * 1993-03-09 1994-09-16 Saakitsuto Design:Kk Fskデータ復調装置および無線式遠隔制御装置
JPH0897874A (ja) * 1994-09-26 1996-04-12 Toshiba Corp オフセットqpsk復調器
JP2002374181A (ja) * 2001-04-09 2002-12-26 Texas Instruments Inc サブサンプリング無線周波受信機アーキテクチャ
JP2003338771A (ja) * 2002-05-20 2003-11-28 Sharp Corp 無線通信装置及び無線通信装置の制御方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5179730A (en) * 1990-03-23 1993-01-12 Rockwell International Corporation Selectivity system for a direct conversion receiver
US5677934A (en) 1992-12-30 1997-10-14 Nokia Mobile Phones Limited Multipath propagation compensation in a TDMA system
US5598431A (en) 1994-12-23 1997-01-28 Motorola, Inc. Method and apparatus for signal quality detection in a communication system
US5640698A (en) * 1995-06-06 1997-06-17 Stanford University Radio frequency signal reception using frequency shifting by discrete-time sub-sampling down-conversion
JP3379624B2 (ja) 1997-02-17 2003-02-24 日本電信電話株式会社 波形同期方法
US5844512A (en) * 1997-07-28 1998-12-01 Hewlett-Packard Company Autoranging apparatus and method for improved dynamic ranging in analog to digital converters
JP2001053728A (ja) 1999-06-03 2001-02-23 Matsushita Electric Ind Co Ltd 通信端末装置及び無線通信方法
JP2001257731A (ja) 2000-03-09 2001-09-21 Kawasaki Steel Corp 無線受信機
JP3639195B2 (ja) 2000-07-31 2005-04-20 日本電信電話株式会社 Ofdmパケット通信用受信装置
JP2002051016A (ja) 2000-08-03 2002-02-15 Mitsubishi Electric Corp 無線受信装置
JP2003283413A (ja) 2002-03-22 2003-10-03 Toshiba Corp Cdm受信装置とそのパワーセーブ方法
JP2003143247A (ja) 2002-07-29 2003-05-16 Mitsubishi Materials Corp 無線通信装置及び記録媒体
JP2004194068A (ja) 2002-12-12 2004-07-08 Matsushita Electric Ind Co Ltd 受信装置
JP2004242246A (ja) 2003-02-10 2004-08-26 Matsushita Electric Ind Co Ltd タイムスロット同期方式の無線通信端末

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06261080A (ja) * 1993-03-09 1994-09-16 Saakitsuto Design:Kk Fskデータ復調装置および無線式遠隔制御装置
JPH0897874A (ja) * 1994-09-26 1996-04-12 Toshiba Corp オフセットqpsk復調器
JP2002374181A (ja) * 2001-04-09 2002-12-26 Texas Instruments Inc サブサンプリング無線周波受信機アーキテクチャ
JP2003338771A (ja) * 2002-05-20 2003-11-28 Sharp Corp 無線通信装置及び無線通信装置の制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1806891A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8345800B2 (en) 2007-09-20 2013-01-01 Nec Corporation Receiver apparatus and reception method
JP5333223B2 (ja) * 2007-09-20 2013-11-06 日本電気株式会社 受信装置と方法
US8125258B2 (en) 2008-02-04 2012-02-28 Nec Corporation Phase synchronization device and phase synchronization method
WO2010064451A1 (ja) * 2008-12-04 2010-06-10 パナソニック株式会社 サンプリング回路およびこれを用いた受信機
US8599968B2 (en) 2008-12-04 2013-12-03 Panasonic Corporation Sampling circuit and receiver utilizing the same
JP5587210B2 (ja) * 2008-12-04 2014-09-10 パナソニック株式会社 サンプリング回路およびこれを用いた受信機

Also Published As

Publication number Publication date
EP1806891A1 (en) 2007-07-11
JP4716032B2 (ja) 2011-07-06
JPWO2006046632A1 (ja) 2008-05-22
EP1806891A4 (en) 2012-09-26
US20080112508A1 (en) 2008-05-15
US7760819B2 (en) 2010-07-20

Similar Documents

Publication Publication Date Title
US20050259768A1 (en) Digital receiver and method for processing received signals
JP5333223B2 (ja) 受信装置と方法
JP3188356B2 (ja) 時分割多重通信チャネル用ディジタル復調方法及び回路
JP4716032B2 (ja) ディジタル無線受信装置
CN101420399B (zh) 一种接收机、bpsk解调电路及bpsk解调方法
JP2008530951A (ja) 予め符号化された部分応答信号用の復調器および受信器
WO2009098989A1 (ja) 位相同期装置および位相同期方法
EP0924892A2 (en) Circuit for reproducing bit timing and method of reproducing bit timing
JP2008154285A (ja) シンボルタイミング検出装置及び無線端末装置
JP4272997B2 (ja) 入力バースト信号に含まれる付加的dc成分を検出する回路
JP4268180B2 (ja) シンボルタイミング検出装置及び無線端末装置
JP4098745B2 (ja) ディジタル復調器
JPH0583317A (ja) デイジタル位相変調信号復調回路
JP4637661B2 (ja) 変調信号の復調装置
JP5269751B2 (ja) 復調装置
WO2005006694A1 (ja) タイミング抽出装置及び方法並びにそのタイミング抽出装置を備えた復調装置
JP4307746B2 (ja) 搬送波再生回路および復調装置
JPH0870332A (ja) クロック再生装置
JP2002271431A (ja) 低域通過フィルタ
JP2696948B2 (ja) 搬送波再生回路
JP2795761B2 (ja) Msk信号復調回路
JPH07154439A (ja) 復調装置
KR100246619B1 (ko) 고속 디지털 가입자 선로의 상향 링크용 디지털 복조 장치
JP3729369B2 (ja) 直接変換fsk受信機
JP3818112B2 (ja) 復調装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MD MG MK MN MW MX MZ NA NG NO NZ OM PG PH PL PT RO RU SC SD SG SK SL SM SY TJ TM TN TR TT TZ UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IS IT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006543237

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11718216

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2005799346

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005799346

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005799346

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11718216

Country of ref document: US