JP2004194068A - 受信装置 - Google Patents

受信装置 Download PDF

Info

Publication number
JP2004194068A
JP2004194068A JP2002360841A JP2002360841A JP2004194068A JP 2004194068 A JP2004194068 A JP 2004194068A JP 2002360841 A JP2002360841 A JP 2002360841A JP 2002360841 A JP2002360841 A JP 2002360841A JP 2004194068 A JP2004194068 A JP 2004194068A
Authority
JP
Japan
Prior art keywords
signal
sampling
frequency
unit
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2002360841A
Other languages
English (en)
Inventor
Hiroyuki Harada
博之 原田
Yasutoku Miyahara
泰徳 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002360841A priority Critical patent/JP2004194068A/ja
Publication of JP2004194068A publication Critical patent/JP2004194068A/ja
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Analogue/Digital Conversion (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Superheterodyne Receivers (AREA)

Abstract

【課題】低消費電力化と共にサンプリング信号のジッタ品質を高めることのできる受信装置を提供すること。
【解決手段】無線信号を受信する第1の無線信号受信部101と、第1の無線信号受信部101の出力信号をサンプリングしてAD変換を行うサンプリング部106と、サンプリング部106の出力信号に対してデジタル信号処理を行うデジタル信号処理部107と、これらの各部に基準周波数の信号を供給する基準発振器109とを有する。デジタル信号処理部107は、無線信号の通信方式に対応したサンプリング速度に変換し直してサンプリングを行うリサンプラ107cを有し、このリサンプラ107cでサンプリングされたデジタル信号を復調する。サンプリング部106が行うサンプリング動作のタイミングを決定するサンプリング信号110は、基準発振器109の出力信号である。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、低消費電力化と共にサンプリング信号のジッタ品質を高めた受信装置に関する。
【0002】
【従来の技術】
従来、無線通信機では、その受信方式としてスーパーヘテロダインと呼ばれる方式が用いられている。また、近年、デジタル携帯電話等に代表されるデジタル無線通信機では、受信信号をAD変換し、デジタル処理により復調する方法が必須となっている。
【0003】
以下に、従来のデジタル無線通信機における受信部の構成について、図3を参照して説明する。図3は、スーパーヘテロダイン方式の従来の受信部を示す構成図である。同図に示す受信部は、無線信号を受信するアンテナ301と、フロントエンド部302と、周波数変換部303と、中間周波数増幅部304と、直交変換部305と、ベースバンドフィルタ部306と、AD変換部(ADC)307と、デジタルフィルタ部308と、復調器309と、クロック(CLK)発振器310と、基準発振器311とを備えて構成されている。
【0004】
以下、従来の受信部が有する各構成要素について説明する。
まず、フロントエンド部302は、受信した信号を周波数選択して増幅するものであり、無線システムで用いられる無線周波数帯域の信号を周波数選択するフィルタ302aと、増幅器302bとを有している。また、周波数変換部303は、周波数変換を行うミキサ303aと、周波数変換を行うための局部発振信号を供給する局部発振器303bと、周波数変換に伴うイメージ信号を除去するフィルタ303cとを有している。
【0005】
また、中間周波数増幅部304は、周波数変換部303から出力される中間周波数信号を増幅するものであり、受信信号から必要な信号帯域だけを選択するフィルタ304aと、可変利得増幅器304bとを有している。なお、可変利得増幅器304bは、後述するAD変換部307の入力電圧振幅がAD変換部307の入力範囲を越えないように、かつ、AD変換に伴う量子化誤差が受信特性に影響を与えない範囲に信号を増幅するものである。ここでは、可変利得増幅器304bの制御方法の説明については省略するが、例えば、復調器309により信号振幅を測定することによって制御可能である。
【0006】
また、直交変換部305は、中間周波数部304の出力信号をI成分およびQ成分から成る直交ベースバンド信号に周波数変換するものであり、ミキサ305a,305bと、90度移相器305cと、中間周波数増幅部304の出力信号の中心周波数に等しい周波数の信号を出力する局部発振部305dとを有している。また、ベースバンドフィルタ部306は、直交ベースバンド信号から不要な帯域の信号を除去するフィルタ306a,306bを有している。当該ベースバンドフィルタ部306は、受信信号に対して不要な帯域の信号を除去すると共に、AD変換に際して不要な帯域の信号を除去する、つまりエリアシングの防止の働きも有する。
【0007】
また、AD変換部307は、直交ベースバンド信号をAD変換するAD変換器307a,307bを有している。また、デジタルフィルタ部308は、受信信号から不要な成分を除去するものであり、直交ベースバンド信号に対応したデジタルフィルタ308a,308bを有している。また、復調器309は、受信信号の変調方式に応じた復調を行うものであり、デジタル回路、またはDSPおよび信号処理ソフトウェアから構成される(例えば、非特許文献1参照。)。
【0008】
また、クロック(CLK)発振器310は、AD変換部307、デジタルフィルタ部308および復調器309にサンプリングクロックを供給するものである。なお、AD変換部307以降のデジタル信号処理は、受信した信号の通信方式のシンボルレートまたはビットレートの周波数で行われる。したがって、CLK発振器310の周波数は、受信した信号の通信方式のシンボルレートまたはビットレートの周波数またはその整数倍に設定される。CLK発振器310は、例えば周波数シンセサイザ、逓倍器または分周器によって実現される。
【0009】
また、基準発振器311は、当該無線通信機における基準周波数の信号を出力するものであり、TCXO(温度補償型水晶発振器)やVTCXO(電圧制御付温度補償型水晶発振器)、OCXO(恒温槽付水晶発振器)といった高精度、高安定の水晶発振器から構成される。また、基準発振器311は、局部発振器303b,305dおよびクロック発振器310に接続され、各部に基準周波数のクロック信号を供給する。なお、局部発振器303b,305dは、周波数シンセサイザ等によって構成される(例えば、非特許文献2参照。)。これは、局部発振器303bでは、発振周波数を数百MHz以上でかつ周波数可変とする必要があるためであり、局部発振器305dでは、周波数変換部303におけるイメージ除去の都合等によりその発振周波数を数百MHzに設定する必要がある等の理由による。
【0010】
上記説明した従来の受信部では、周波数シンセサイザが2つ必要である。一般に、周波数シンセサイザの消費電流は数mAと、受信機の中で占める比率が大きくなっているため、周波数シンセサイザを2つ使用することは、特に、低消費電流化が求められている機器において不利である。
【0011】
このため、局部発振器305dを、数百MHzの発振周波数を出力する周波数シンセサイザよりも周波数の低い発振器に置き換えて、消費電流を削減する方法として、アンダーサンプリング(バンドパスサンプリングまたはサブサンプリング)と呼ばれる方式が知られている。当該アンダーサンプリング方式では、受信信号をその周波数よりも低い周波数でサンプリングし、その折り返しを利用して周波数変換することが行われる(例えば、非特許文献3参照。)。
【0012】
図4は、アンダーサンプリング方式の従来の受信部を示す構成図である。同図において、図3と重複する部分には同一の符号を付して説明を省略する。まず、サンプルホールド回路401は、CLK発振器310の出力信号をサンプリングクロックとして、その周期で入力信号をサンプルホールドするものである。ここで、CLK発振器310の出力信号の周波数は、サンプルホールド回路401の入力信号周波数に比べて低く、かつ、サンプルホールド回路401の入力信号帯域の2倍以上に設定されている。
【0013】
また、AD変換器402は、サンプルホールド回路401でサンプルホールドされた信号をCLK発振器310の出力信号の周期でAD変換するものである。また、デジタルミキサ403は、AD変換器402の出力信号をデジタル的に周波数変換し、I成分およびQ成分から成る直交ベースバンド信号を得るものである。なお、デジタルミキサ403の動作は、図3に示した直交変換部305の動作と基本的に同様である。つまり、デジタルミキサ403は、デジタル信号処理によって直交変換部305が行う信号処理と同様の処理を行う。
【0014】
図4に示した従来の受信部の場合も、サンプルホールド回路401以降のデジタル信号処理は、受信した信号の通信方式のシンボルレートまたはビットレートの周波数で行われる。したがって、CLK発振器310が発振するサンプリングクロックの周波数は、受信した信号の通信方式のシンボルレートまたはビットレートの周波数またはその整数倍に設定される。
【0015】
本発明に関連する先行技術文献としては、その他に以下のものが挙げられる。非特許文献4や非特許文献5には、アンダーサンプリングを用いた受信機におけるサンプリングクロックのジッタ品質について記載されている。また、非特許文献6には、デジタル信号の状態におけるリサンプリングの方法について記載されている。また、非特許文献7には、AD変換器として、バンドパスデルタシグマAD変換器の構成について記載されている。また、特許文献1には、アンダーサンプリング方式の受信装置について記載されている。さらに、特許文献2には、シグマデルタアナログデジタル変換器を有する受信機について記載されている。
【0016】
【非特許文献1】
石川他著「W−CDMA移動機用ベースバンドLSI」Matsushita TechnicalJournal, Vol.47,No.6, 2001年12月、P.62−67
【非特許文献2】
夜陣、佐藤著「GSM方式携帯電話EB−G600シリーズ」Matsushita Technical Journal, Vol.44, No.6, 1998年12月、P.31−35
【非特許文献3】
Behzad Razavi著、黒田忠広監訳「RF マイクロエレクトロニクス」丸善、2002年、P.160−164
【非特許文献4】
J.A.Wepman著「Analog-to-Digital Converters and Their Applications in Radio Receivers」IEEE Communication Magazine, 1995年5月、P.39−45
【非特許文献5】
河野、春山著、「ソフトウエア無線の現状と将来」信学論(B)、vol.J84−B No.7、2001年,P.1112−1119
【非特許文献6】
青山監訳「現代デジタル信号処理理論とその応用」丸善、1992年、P.125−199
【非特許文献7】
Armond Hairpetian著「An 81-MHzIF Receiver in CMOS」IEEE J.Solid-Circuit, vol.31, 1996年12月,P.1981−1986
【特許文献1】
特開平8−162990号公報
【特許文献2】
特表2001−526487号公報
【0017】
【発明が解決しようとする課題】
しかしながら、上記説明した受信部には以下に示す問題点があり、その改善が望まれていた。図3に示したスーパーヘテロダイン方式の従来の受信部には周波数シンセサイザが2つ必要であった。一般に、周波数シンセサイザの消費電流は数mAであり、受信機の中で占める比率が大きくなっている。したがって、周波数シンセサイザを2つ使用する場合、特に、低消費電流化が求められる携帯電話等の用途では、その消費電流の削減が問題となっていた。
【0018】
また、図4に示したアンダーサンプリング従来の受信部では、周波数シンセサイザが1つで良く低消費電力化が可能である反面、サンプリングクロックのジッタが受信時に大きく影響してしまうという問題点があった(例えば、非特許文献4、非特許文献5参照。)。サンプリングクロックは、複数の無線システムに対応する場合、各無線システムに対応したサンプリングクロックを生成する必要があるため、周波数シンセサイザ、逓倍器または分周器等を用いて生成される。
【0019】
周波数シンセサイザは、基準発振器の位相とVCO(電圧制御発振器)の位相を比較することで安定した周波数の出力信号を得るものであり、理想的には、基準発振器と同等のジッタ品質を得ることが可能である。しかし、実際には、各種雑音源の影響により、基準発振器に比べて周波数シンセサイザのジッタ品質は劣る。また、周波数シンセサイザの回路構成は、基準発振器に比べて複雑であるたま回路設計が難しく、設計に多くの時間を必要としていた。また、逓倍器または分周器を用いた場合でも、実際には、各種雑音源の影響により基準発振器に比べてジッタ品質は劣っていた。
【0020】
本発明は、上記従来の問題点に鑑みてなされたものであって、低消費電力化と共にサンプリング信号のジッタ品質を高めることのできる受信装置を提供することを目的としている。
【0021】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る受信装置は、無線信号を受信する無線信号受信手段と、前記無線信号受信手段の出力信号をサンプリングしてAD変換を行うサンプリング手段と、前記サンプリング手段の出力信号に対して信号処理を行う信号処理手段と、前記無線信号受信手段、前記サンプリング手段および前記信号処理手段に基準周波数の信号を供給する基準発振器と、を備え、前記信号処理手段は、前記無線信号受信手段が受信した無線信号の通信方式に対応したサンプリング周波数で前記サンプリング手段の出力信号をサンプリングするリサンプラ手段を有し、当該リサンプラ手段によってサンプリングされた信号を復調し、前記サンプリング手段が行うサンプリング動作のタイミングを決定するサンプリング信号は、前記基準発振器の出力信号である。
【0022】
このように、当該受信装置は、サンプリング手段が基準発振器の出力信号に従ってサンプリングを行うアンダーサンプリング方式であるため、基準発振器からサンプリング手段との間に周波数シンセサイザを設ける必要がない。したがって、消費電力を低減することができる。また、サンプリング手段が行うサンプリング動作のタイミングを決定するサンプリング信号は基準発振器の出力信号であるため、周波数シンセサイザを設けた場合と比較して、サンプリング手段に供給するサンプリング信号のジッタ品質を高めることができる。この結果、設計が容易となり低コスト化を実現できる。
【0023】
また、本発明に係る受信装置は、前記無線信号受信手段を少なくとも2つ有し、前記リサンプラ手段は、前記各無線信号受信手段が受信した無線信号の通信方式に応じて動作を切り替え、当該通信方式に対応したサンプリング周波数で前記サンプリング手段の出力信号をサンプリングする。したがって、通信方式毎にリサンプラ手段を設けなくても良いため、低コスト化を図ることができる。
【0024】
また、本発明に係る受信装置は、前記基準発振器から得られた信号を元に、前記無線信号受信手段が受信した無線信号の通信方式に対応した周波数のクロック信号を前記リサンプラ手段に供給するクロック発振器を備え、前記リサンプラ手段におけるサンプリング周波数は、前記クロック発振器から供給されるクロック信号の周波数である。このため、クロック発振器には周波数シンセサイザの構成が必要であるが、ここでの動作はデジタル的な動作であるため低ジッタである必要はないためクロック発振器の設計は容易である。したがって、低コストの素子等が使用可能となるため、安価に受信装置を提供することができる。
【0025】
さらに、本発明に係る受信装置は、前記信号処理手段は、前記サンプリング手段の出力信号を直交ベースバンド信号に変換する直交変換手段を有し、前記無線信号受信手段の出力信号の周波数“fif1”と、前記サンプリング手段のサンプリング周波数“fs”と、前記サンプリング手段の出力信号の周波数“fif2”と、の関係は、
fif2=fif1−k×fs
または
fif2=k×fs−fif1
(kは整数)
なお、
fs=4×fif2
を満たす。この関係を満たすことで、直交変換手段における掛算処理は入力信号と{1,0、−1,0,1,0、−1,0,1…}の積をとるだけで良くなるため、回路規模を縮小することができる。
【0026】
【発明の実施の形態】
以下、本発明に係る受信装置の実施の形態について、〔第1の実施形態〕、〔第2の実施形態〕の順に図面を参照して詳細に説明する。
【0027】
[第1の実施形態]
図1は、本発明に係る第1の実施形態の受信装置を示す構成図である。第1の実施形態の受信装置は、同図に示すように、特許請求の範囲の無線信号受信手段に該当する第1の無線信号受信部101と、サンプリング手段に該当するサンプリング部106と、信号処理手段に該当するデジタル信号処理部107と、クロック(CLK)発振器108と、基準発振器109とを備えて構成されている。
【0028】
以下、本実施形態の受信装置が有する各構成要素について説明する。
まず、第1の無線信号受信部101は、第1の無線信号を受信するアンテナ102と、受信した無線信号を周波数選択して増幅するフロントエンド部103と、フロントエンド部103の出力信号を中間周波数に周波数変換する周波数変換部104と、周波数変換部104の出力信号を増幅する中間周波数増幅部105とを有している。
【0029】
フロントエンド部103は、無線システムで用いられる無線周波数帯域の信号を周波数選択する第1のフィルタ103aと、増幅器103bとを有している。また、周波数変換部104は、周波数変換を行うミキサ104aと、周波数変換を行うためにミキサ104aに局部発振信号を供給する局部発振器104bと、周波数変換に伴うイメージ信号を除去するフィルタ104cとを有している。なお、局部発振器104bは、例えば周波数シンセサイザによって構成される。
【0030】
また、中間周波数増幅部105は、周波数変換部104から出力される中間周波数信号を増幅するものであり、受信信号から必要な信号帯域だけを選択するフィルタ105aと、可変利得増幅器105bと、可変利得増幅器105bの出力信号から不要な雑音を除去するフィルタ105cとを有している。なお、可変利得増幅器105bは、後述するAD変換部106bの入力電圧振幅がAD変換部106bの入力範囲を越さないように、かつ、AD変換に伴う量子化誤差が受信特性に影響を与えない範囲に信号を増幅するものである。ここでは、可変利得増幅器105bの制御方法の説明については省略するが、例えば、復調器107dにより信号振幅を測定することによって制御可能である。
【0031】
また、サンプリング部106は、第1の無線信号受信部101の出力信号をサンプリングしてAD変換するものであり、入力信号をサンプリング信号110の周期でサンプルホールドするサンプルホールド部106aと、サンプルホールド部106aの出力信号をサンプリング信号110の周期でAD変換(量子化)するAD変換部(ADC)106bとを有している。
【0032】
また、デジタル信号処理部107は、AD変換部106bによってデジタル化された信号を処理するものであり、特許請求の範囲の直交変換手段に該当するデジタルミキサ107aと、デジタルフィルタ107bと、リサンプラ手段に該当するリサンプラ107cと、復調器107dとを有している。デジタルミキサ107aは、AD変換部106bから出力されたデジタル信号をI成分およびQ成分から成る直交ベースバンド信号に変換するものである。また、デジタルフィルタ107bは、デジタルミキサ107aから出力された直交ベースバンド信号から不要な成分を除去するものである。
【0033】
また、リサンプラ107cは、サンプリング信号110の周波数でサンプリングされた信号を、第1の無線信号受信部101が受信する信号の通信方式に対応したサンプリング周波数で再度サンプリングしなおすものである。例えば、GSM方式ではシンボルレートが270.833kbps(より正確には、13MHz/48bps)であるため、リサンプラ107cは、サンプリング信号110の周波数間隔のサンプリング信号を270.833kHz(より正確には、13MHz/48bps)に変換して出力する。なお、リサンプラ107cにおけるサンプリング周波数は、後述するCLK発振器108から供給されるクロック信号の周波数である。
【0034】
リサンプラ107cは、DA変換器によりアナログ信号に一旦変換した後、AD変換器により再度サンプリングすることにより実現可能である。より好ましくは、デジタル信号の状態で変換する。なお、デジタル信号の状態でのリサンプリング方法については非特許文献6に記載されている。
【0035】
また、復調器107dは、第1の無線信号受信部101で受信する信号の変調方式に応じた復調を行うものである。復調器107dは、デジタル回路、またはDSPおよび信号処理ソフトウェアから構成される。なお、復調器107dの例としては非特許文献1に記載されている。
【0036】
また、CLK発振器108は、リサンプラ107cおよび復調器107dにクロック信号を供給するものである。CLK発振器108は周波数シンセサイザ等により構成され、基準発振器109から得られた信号を元に、第1の無線信号受信部101で受信される信号の通信方式に対応したシンボルレートの周波数またはその整数倍の周波数の信号を出力する。
【0037】
また、基準発振器109は、当該受信装置における基準周波数の信号を出力するものであり、TCXO(温度補償型水晶発振器)やVTCXO(電圧制御付温度補償型水晶発振器)、OCXO(恒温槽付水晶発振器)といった高精度、高安定の水晶発振器から構成される。また、基準発振器109は、局部発振器104bおよびクロック発振器108に基準周波数の信号を供給すると共に、サンプリング部106、デジタルミキサ107aおよびデジタルフィルタ107bに動作タイミング信号として基準周波数の信号を供給する。
【0038】
なお、本実施形態では、サンプリング部106が行うサンプリング動作のタイミングを決定するサンプリング信号110のジッタ劣化を抑えるために、基準発振器109から出力される信号(サンプリング信号110)はそのまままたは必要最小限のバッファを介して、サンプリング部106に供給される。また、本実施形態では、サンプリング部106に供給するサンプリング信号110の供給源として基準発振器109を用いている。例えば携帯電話では、26MHz、19.2MHz、13MHz、12.6MHzといった周波数が用いられることが多く、基準発振器は、発振周波数が安定しかつ高精度で比較的容易かつ安価に入手可能であるためである。
【0039】
また、第1の無線信号受信部101から出力される中間信号周波数の典型的な値は50MHz〜300MHzである。50MHz〜300MHzの中間信号周波数の信号を標本化定理に従う周波数でサンプリングするためには、100MHz〜400MHzでサンプリングする必要がある。このような場合、アンダーサンプリング方式またはサブサンプリング方式が用いられる(例えば、非特許文献3参照。)。
【0040】
また、信号を再生する場合、受信信号が占める周波数帯域の少なくとも2倍の周波数で信号をサンプリングすれば良い。例えば、W−CDMAの占める周波数帯域は3.84MHzであるため、7.68MHz以上の周波数でサンプリングすれば良い。また、GSMの占める周波数帯域は約200kHzであるためため、400kHz以上の周波数でサンプリングすれば良い。したがって、基準発振器109の基準周波数の信号を用いて第1の無線信号受信部101から出力される中間周波数信号をサンプリングすることにより、信号を正しく再生することができる。
【0041】
さらに、第1の無線信号受信部101の出力信号の周波数を“fif1”、サンプリング信号110のサンプリング周波数を“fs”、AD変換部106bのデジタル信号出力の出力周波数を“fif2”とする場合、“fif1”、“fs”および“fif2”は、以下に示す式の関係を満たすことが望ましい。この関係を満たすことで、デジタルミキサ107aにおける掛算処理は入力信号と{1,0、−1,0,1,0、−1,0,1…}の積をとるだけで良くなるため、回路規模を縮小することができる。
【0042】
fif2=fif1−k×fs
または
fif2=k×fs−fif1
(kは整数)
なお、fs=4×fif2
【0043】
また、PDC方式の場合、基準発振器109の発振周波数を12.6MHzにすると、復調信号は42kbpsであるため、リサンプラ107cの動作を例えば300回に1回の間引き動作とすることができる。これにより、リサンプラ107cの回路構成を簡単にすることができる。また、PHS方式の場合、基準発振器109の発振周波数を19.2MHzにすると、復調信号は384kbpsであるため、リサンプラ107cの動作を例えば50回に1回の間引き動作とすることができる。これにより、リサンプラ107cの回路構成を簡単にすることができる。
【0044】
また、GSM方式の場合、基準発振器109の発振周波数を26MHzまたは13MHzにすると、復調信号は13MHz/48bpsであるため、リサンプラ107cの動作を例えば96回に1回または48回に1回の間引き動作とすることができる。これにより、リサンプラ107cの回路構成を簡単にできる。また、W−CDMA方式の場合、基準発振器109の発振周波数を19.2MHzにすると、復調信号は384kbpsであるため、リサンプラ107cの動作を例えば50回に1回の間引き動作とすることができる。これにより、リサンプラ107cの回路構成を簡単にすることができる。
【0045】
以上説明したように、本実施形態の受信装置は、サンプリング部106が基準発振器109から得られた信号の周波数に従ってサンプリングを行うアンダーサンプリング方式であるため、周波数シンセサイザを1つ備えていれば良い。したがって、消費電力を低減することができる。また、サンプリング信号110として周波数シンセサイザよりもジッタ品質の良い基準発振器109の出力信号を利用するため、設計が容易となり低コスト化を実現できる。さらに、リサンプラ107cおよび復調器107dにクロック信号を供給するクロック(CLK)発振器108には周波数シンセサイザの構成が必要であるが、ここでの動作はデジタル的な動作であるため低ジッタである必要はなく、CLK発振器108の設計を容易にできる。したがって、低コストのCMOSが使用可能となり、安価に受信装置を提供することができる。
【0046】
なお、上記各方式における基準発振器109の発振周波数は、上記数値に限定されるものではない。例えば、PHS方式の場合、基準発振器109の発振周波数を12.6MHzとしても良い。このような数値にすることで、PHS方式の受信装置とPDC方式の受信装置とで部品を共通化することができ、量産効果により基準発振器の低コスト化が可能となる。つまり、PHS方式において、PDC方式と同じ基準発振器を使用することにより、安価な基準発振器を得ることができる。但し、リサンプラ107cの回路は多少複雑になるが、アナログ的な精度は不要であるため、AD変換器106b、デジタルミキサ107a、デジタルフィルタ107b、リサンプラ107cおよび復調器107dを組み合わせた集積化を行うことで、コストの増加を抑えることができる。したがって、受信装置の低コスト化を実現できる。
【0047】
また、基準発振器109の発振周波数は、26MHz、19.2MHz、13MHz、12.6MHzでなくても、その整数倍またはその整数分の1であっても良い。
【0048】
[第2の実施形態]
図2は、本発明に係る第2の実施形態の受信装置を示す構成図である。同図において、図1(第1の実施形態)と重複する部分には同一の符号を付して説明を省略する。第2の実施形態の受信装置は、第1の実施形態の受信装置が有する構成要素に加えて、第1の無線信号受信部101と同様の構成の第2の無線信号受信部201を備えている。なお、第2の無線信号受信部201は、特許請求の範囲の無線信号受信手段に該当する。また、本実施形態では、第1の無線信号受信部101が例えばGSM方式に対応し、第2の無線信号受信部201が例えばW−CDMA方式に対応するといったように、各無線信号受信部はそれぞれ異なる通信方式に対応している。
【0049】
第2の無線信号受信部201は、第1の無線信号を受信するアンテナ202と、受信した無線信号を周波数選択して増幅するフロントエンド部203と、フロントエンド部103の出力信号を中間周波数に周波数変換する周波数変換部204と、周波数変換部204の出力信号を増幅する中間周波数増幅部205とを有し、中間周波数増幅部205によって増幅された信号がサンプリング部106のサンプルホールド部106aに入力される。また、周波数変換部204の局部発振器204bには、第1の実施形態と同様に、基準発振器109から発振された基準周波数の信号が供給される。
【0050】
また、本実施形態では、デジタル信号処理部107が有するリサンプラ107cおよび復調器107d並びにCLK発振器108は、第1の無線信号を受信する場合と第2の無線信号を受信する場合とでその動作を切り替える。例えば、第1の無線信号がGSM方式の信号、第2の無線信号がW−CDMA方式の信号の場合、次のような動作に切り替える。
【0051】
第1の無線信号(GSM方式)を受信した際、リサンプラ107cは、サンプリング信号110の周波数でサンプリングした信号を270.833kHz(正確には、13MHz/48bps)の信号に変換し、復調器107dはGSM復調器として動作する。そして、CLK発振器108は、270.833kHz(正確には、13MHz/48bps)またはその整数倍の周波数の信号を出力する。
【0052】
一方、第2の無線信号(W−CDMA方式)を受信した際、リサンプラ107cは、サンプリング信号110の周波数でサンプリングした信号を3.84MHzの信号に変換し、復調器107dはW−CDMA復調器として動作する。そして、CLK発振器108は、3.84MHzまたはその整数倍の周波数の信号を出力する。
【0053】
なお、リサンプラ107cの切替動作は、復調器107d内部の論理回路で実現しても良いし、マイクロプロセッサ(図示せず)およびソフトウェアで実現しても良い。また、好ましくは、第1の無線信号および第2の無線信号の各周波数帯域に適応した不要成分除去のため、リサンプラ107cと復調器107dとの間に、CLK発振器108の周波数に応じて動作を切り替えるデジタルフィルタを挿入しても良い。
【0054】
以上説明したように、本実施形態の受信装置では、無線信号毎にサンプリングクロックを用意する必要がないため低コスト化を図ることができる。また、デジタルミキサ107a、リサンプラ107cおよび復調器107dをマイクロプロセッサやDSPおよびとソフトウェアにより構成することで、異なる無線方式への対応が容易となり、安価に受信装置を提供することができる。なお、本実施形態では、2つの無線信号受信部を備えた場合について示したが、3つ以上の無線信号受信部を備えても良い。
【0055】
上記説明した第1および第2の実施形態において、サンプリング部106にフラッシュ型AD変換器を用いることで、サンプルホールド部106aを省略した構成であって良い。また、AD変換器としては、例えば非特許文献7に記載されたバンドパスデルタシグマAD変換器を用い、より受信特性に余裕を持たせた構成であっても良い。
【0056】
また、リサンプラ107cの位置として、AD変換器106bとデジタルミキサ107aとの間にリサンプラ107cを挿入した構成であっても良い。また、デジタルミキサ107a、デジタルフィルタ107b、リサンプラ107dおよび復調器107dは、論理回路で構成しても、マイクロプロセッサやDSPおよびソフトウェアで構成しても良い。また、受信する無線方式に応じて変更可能とした構成にしても良い。
【0057】
また、基準発振器109の周波数は、26MHz、19.2MHz、13MHz、12.6MHzに限定されるものではなく他の周波数でも良い。または、発振周波数がより高い発振器を用いて、広帯域信号を受信可能な構成とすることも可能である。
【0058】
さらに、以上説明した実施形態の受信装置は、サンプリング信号110を発振する手段として、発振周波数が安定し高精度の基準発振器109を利用することにある。したがって、基準発振器109は、TCXOやVTCXO、OCXOに限定されるものではない。
【0059】
【発明の効果】
以上説明したように、本発明に係る受信装置は、サンプリング手段が基準発振器の出力信号に従ってサンプリングを行うアンダーサンプリング方式であるため、基準発振器からサンプリング手段との間に周波数シンセサイザを設ける必要がない。したがって、消費電力を低減することができる。また、サンプリング手段が行うサンプリング動作のタイミングを決定するサンプリング信号は基準発振器の出力信号であるため、周波数シンセサイザを設けた場合と比較して、サンプリング手段に供給するサンプリング信号のジッタ品質を高めることができる。この結果、設計が容易となり低コスト化を実現できる。
【図面の簡単な説明】
【図1】本発明に係る第1の実施形態の受信装置を示す構成図
【図2】本発明に係る第2の実施形態の受信装置を示す構成図
【図3】スーパーヘテロダイン方式の従来の受信部を示す構成図
【図4】アンダーサンプリング方式の従来の受信部を示す構成図
【符号の説明】
101 第1の無線信号受信部
102,202 アンテナ
103,201 フロントエンド部
103a,203a 第1のフィルタ
103b,203b 増幅器
104,204 周波数変換部
104a,204a ミキサ
104b,204b 局部発振器
104c,204c フィルタ
105,205 中間周波数増幅部
105a,205a フィルタ
105b,205b 可変利得増幅器
105c,205c フィルタ
106 サンプリング部
106a サンプルホールド部
106b AD変換部
107 デジタル信号処理部
107a デジタルミキサ
107b デジタルフィルタ
107c リサンプラ
107d 復調器
108 クロック発振器
109 基準発振器
201 第2の無線信号受信部

Claims (4)

  1. 無線信号を受信する無線信号受信手段と、
    前記無線信号受信手段の出力信号をサンプリングしてAD変換を行うサンプリング手段と、
    前記サンプリング手段の出力信号に対して信号処理を行う信号処理手段と、
    前記無線信号受信手段、前記サンプリング手段および前記信号処理手段に基準周波数の信号を供給する基準発振器と、を備え、
    前記信号処理手段は、前記無線信号受信手段が受信した無線信号の通信方式に対応したサンプリング周波数で前記サンプリング手段の出力信号をサンプリングするリサンプラ手段を有し、当該リサンプラ手段によってサンプリングされた信号を復調し、
    前記サンプリング手段が行うサンプリング動作のタイミングを決定するサンプリング信号は、前記基準発振器の出力信号であることを特徴とする受信装置。
  2. 前記無線信号受信手段を少なくとも2つ有し、
    前記リサンプラ手段は、前記各無線信号受信手段が受信した無線信号の通信方式に応じて動作を切り替え、当該通信方式に対応したサンプリング周波数で前記サンプリング手段の出力信号をサンプリングすることを特徴とする請求項1記載の受信装置。
  3. 前記基準発振器から得られた信号を元に、前記無線信号受信手段が受信した無線信号の通信方式に対応した周波数のクロック信号を前記リサンプラ手段に供給するクロック発振器を備え、
    前記リサンプラ手段におけるサンプリング周波数は、前記クロック発振器から供給されるクロック信号の周波数であることを特徴とする請求項1または2記載の受信装置。
  4. 前記信号処理手段は、前記サンプリング手段の出力信号を直交ベースバンド信号に変換する直交変換手段を有し、
    前記無線信号受信手段の出力信号の周波数“fif1”と、前記サンプリング手段のサンプリング周波数“fs”と、前記サンプリング手段の出力信号の周波数“fif2”と、の関係は、
    fif2=fif1−k×fs
    または
    fif2=k×fs−fif1
    (kは整数)
    なお、
    fs=4×fif2
    を満たすことを特徴とする請求項1、2または3記載の受信装置。
JP2002360841A 2002-12-12 2002-12-12 受信装置 Ceased JP2004194068A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002360841A JP2004194068A (ja) 2002-12-12 2002-12-12 受信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002360841A JP2004194068A (ja) 2002-12-12 2002-12-12 受信装置

Publications (1)

Publication Number Publication Date
JP2004194068A true JP2004194068A (ja) 2004-07-08

Family

ID=32759798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002360841A Ceased JP2004194068A (ja) 2002-12-12 2002-12-12 受信装置

Country Status (1)

Country Link
JP (1) JP2004194068A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007049444A (ja) * 2005-08-10 2007-02-22 Mitsubishi Electric Corp 信号処理回路
JP2007274546A (ja) * 2006-03-31 2007-10-18 Asahi Kasei Electronics Co Ltd 受信システム
EP1994644A1 (en) * 2006-03-13 2008-11-26 Kleer Semiconductor Corporation Rf-to-baseband receiver architecture
JP2009267982A (ja) * 2008-04-28 2009-11-12 Toyota Motor Corp ミキサ及びδς変調器
JP2009267981A (ja) * 2008-04-28 2009-11-12 Toyota Motor Corp ミキサ及びδς変調器
US7760819B2 (en) 2004-10-27 2010-07-20 Nec Corporation Digital wireless receiver
JP2011166773A (ja) * 2010-02-11 2011-08-25 Korea Electronics Telecommun サブサンプリング技法を利用する受信器のデジタル処理構造
JP2013005329A (ja) * 2011-06-20 2013-01-07 Toshiba Corp アナログ−デジタル変換装置及びアナログ−デジタル変換方法
WO2016103825A1 (ja) * 2014-12-22 2016-06-30 住友電気工業株式会社 Ad変換器及びこれを用いた通信装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7760819B2 (en) 2004-10-27 2010-07-20 Nec Corporation Digital wireless receiver
JP2007049444A (ja) * 2005-08-10 2007-02-22 Mitsubishi Electric Corp 信号処理回路
JP4627230B2 (ja) * 2005-08-10 2011-02-09 三菱電機株式会社 信号処理回路
EP1994644A1 (en) * 2006-03-13 2008-11-26 Kleer Semiconductor Corporation Rf-to-baseband receiver architecture
JP2009529840A (ja) * 2006-03-13 2009-08-20 クリア セミコンダクター コーポレイション Rf−ベースバンド受信機アーキテクチャ
EP1994644A4 (en) * 2006-03-13 2014-01-01 Smsc Holdings Sarl RF TO BASE BAND RECEIVER ARCHITECTURE
JP2007274546A (ja) * 2006-03-31 2007-10-18 Asahi Kasei Electronics Co Ltd 受信システム
JP2009267982A (ja) * 2008-04-28 2009-11-12 Toyota Motor Corp ミキサ及びδς変調器
JP2009267981A (ja) * 2008-04-28 2009-11-12 Toyota Motor Corp ミキサ及びδς変調器
JP2011166773A (ja) * 2010-02-11 2011-08-25 Korea Electronics Telecommun サブサンプリング技法を利用する受信器のデジタル処理構造
JP2013005329A (ja) * 2011-06-20 2013-01-07 Toshiba Corp アナログ−デジタル変換装置及びアナログ−デジタル変換方法
WO2016103825A1 (ja) * 2014-12-22 2016-06-30 住友電気工業株式会社 Ad変換器及びこれを用いた通信装置

Similar Documents

Publication Publication Date Title
JP4566228B2 (ja) 送受信機
JP5022672B2 (ja) サンプリングミキサおよび受信機
US7436910B2 (en) Direct bandpass sampling receivers with analog interpolation filters and related methods
TWI408400B (zh) 多重衛星定位系統之訊號處理裝置及方法
US6075409A (en) Demodulation method and arrangement
US20080026717A1 (en) Bandpass-sampling delta-sigma communication receiver
JPWO2006137324A1 (ja) 無線受信装置
JPH11127085A (ja) 2モード復調装置
WO2004028000A2 (en) Complex-if digital receiver
JP2012070087A (ja) デジタル位相比較器及びデジタル位相同期回路
JP2007088657A (ja) Fmトランスミッタ
JP2007096694A (ja) Fmトランスミッタ
CN101123697A (zh) 多频带电视调谐器及其相关方法
Lachartre et al. 7.5 A TCXO-less 100Hz-minimum-bandwidth transceiver for ultra-narrow-band sub-GHz IoT cellular networks
JP2006324795A (ja) イメ−ジリジェクションミキサと帯域フィルタを有する受信ifシステム
JP5007891B2 (ja) 直角位相サンプリング用クロック信号発生方法及び装置
JP5821846B2 (ja) 周波数変換器およびそれを用いた受信機
KR20060121126A (ko) 대역통과 샘플링 수신기 및 샘플링 방법
JP2004194068A (ja) 受信装置
Abidi Evolution of a software-defined radio receiver's RF front-end
KR20040032902A (ko) 저 전력 rf 수신기에서의 무선주파수 신호 주파수 전환소자
JP2002076975A (ja) デジタルダウンコンバータ、及び受信機
JP2003318759A (ja) 周波数変換装置
US8280340B2 (en) Clock generation for integrated radio frequency receivers
JP2006180373A (ja) アンダーサンプリングにおけるサンプリング周波数決定方法及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051024

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070801

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070808

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20071226