WO2005124911A1 - 固体高分子型燃料電池用電解質膜、その製造方法及び固体高分子型燃料電池用膜電極接合体 - Google Patents

固体高分子型燃料電池用電解質膜、その製造方法及び固体高分子型燃料電池用膜電極接合体 Download PDF

Info

Publication number
WO2005124911A1
WO2005124911A1 PCT/JP2005/011466 JP2005011466W WO2005124911A1 WO 2005124911 A1 WO2005124911 A1 WO 2005124911A1 JP 2005011466 W JP2005011466 W JP 2005011466W WO 2005124911 A1 WO2005124911 A1 WO 2005124911A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
polymer
fuel cell
electrolyte membrane
cation exchange
Prior art date
Application number
PCT/JP2005/011466
Other languages
English (en)
French (fr)
Inventor
Eiji Endoh
Shinji Terazono
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35510028&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2005124911(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to EP05753376.2A priority Critical patent/EP1772919B2/en
Priority to CA2571138A priority patent/CA2571138C/en
Priority to JP2006514856A priority patent/JP3915846B2/ja
Priority to AT05753376T priority patent/ATE484081T1/de
Priority to DE602005024002T priority patent/DE602005024002D1/de
Publication of WO2005124911A1 publication Critical patent/WO2005124911A1/ja
Priority to US11/615,256 priority patent/US8962215B2/en
Priority to US13/174,664 priority patent/US20110262832A1/en
Priority to US14/599,121 priority patent/US9455465B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2237Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds containing fluorine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1051Non-ion-conducting additives, e.g. stabilisers, SiO2 or ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1053Polymer electrolyte composites, mixtures or blends consisting of layers of polymers with at least one layer being ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1088Chemical modification, e.g. sulfonation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/109After-treatment of the membrane other than by polymerisation thermal other than drying, e.g. sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1093After-treatment of the membrane other than by polymerisation mechanical, e.g. pressing, puncturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/182Cells with non-aqueous electrolyte with solid electrolyte with halogenide as solid electrolyte
    • H01M6/183Cells with non-aqueous electrolyte with solid electrolyte with halogenide as solid electrolyte with fluoride as solid electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • Electrolyte membrane for polymer electrolyte fuel cell Method for producing the same, and membrane electrode assembly for polymer electrolyte fuel cell
  • the present invention relates to an electrolyte membrane for a solid polymer fuel cell capable of obtaining a high output voltage over a long period of time when an initial output voltage is high.
  • a fuel cell is a cell that directly converts the reaction energy of a gas as a raw material into electric energy.
  • a hydrogen-oxygen fuel cell has a reaction product of only water in principle and has a negative effect on the global environment. rare.
  • polymer electrolyte fuel cells that use solid polymer membranes as electrolytes have developed polymer electrolyte membranes with high ionic conductivity and can operate at room temperature and have high output densities. With increasing social demands for global environmental issues, great expectations are placed on power sources for mobile vehicles such as electric vehicles and small-sized cogeneration systems.
  • a proton-conductive ion exchange membrane is usually used as a solid polymer electrolyte.
  • an ion exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group is used. Excellent in basic characteristics.
  • gas-diffusing electrode layers are arranged on both sides of an ion exchange membrane, and a gas containing hydrogen as a fuel and a gas containing oxygen (air or the like) serving as an oxidizing agent are each supplied to an anode. And power to the power sword.
  • the reduction reaction of oxygen in the power source of the polymer electrolyte fuel cell is performed by hydrogen peroxide (H 2 O 2).
  • Techniques for solving such problems include a method of adding a transition metal oxide or a compound having a phenolic hydroxyl group capable of catalytically decomposing hydrogen peroxide to a polymer electrolyte membrane (see Patent Document 1).
  • Patent Document 1 There is known a method of supporting catalytic metal particles in a molecular electrolyte membrane to decompose hydrogen peroxide (see Patent Document 2).
  • Patent Document 2 There is known a method of supporting catalytic metal particles in a molecular electrolyte membrane to decompose hydrogen peroxide.
  • these techniques are techniques for decomposing the hydrogen peroxide generated, and are not intended to suppress the decomposition of the ion exchange membrane itself. There was a possibility that a serious problem could occur in the durability over the entire period. There was also a problem that the cost would be high o
  • an ion exchange membrane which is a perfluorocarbon polymer having a sulfonic acid group has been known as a polymer having much higher stability against radicals than a hydrocarbon polymer.
  • polymer electrolyte fuel cells using ion-exchange membranes with these perfluorocarbon polymer powers are expected to be used as power sources in the automotive and residential markets. Is accelerating. In these applications, operation with particularly high efficiency is required, so that operation at higher voltage is desired and at the same time low cost is desired. In addition, low humidification or non-humidification operation is often required due to the efficiency of the entire fuel cell system.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-118591 (Claim 1, page 2, lines 2 to 9)
  • Patent Document 2 JP-A-6-103992 (Means for solving the problem, page 2, 33-37 line)
  • Non-patent Document 1 New Energy, Sponsored by the National Institute of Advanced Industrial Science and Technology (AIST), 2000 Solid State Fuel Cell R & D Achievement Report, 56 pages, 16-24
  • the present invention is capable of generating electricity with sufficiently high energy efficiency in the practical use of a polymer electrolyte fuel cell for the in-vehicle and residential markets, etc., and enables the humidification temperature (dew point) of the supplied gas.
  • An object of the present invention is to provide a membrane for a polymer electrolyte fuel cell capable of generating power.
  • the present inventors have used an ion-exchange membrane made of a polymer compound having a cation-exchange group, particularly in a fuel cell, in which the membrane is deteriorated under operating conditions with low or no humidification.
  • the present inventors have conducted intensive studies for the purpose of preventing the occurrence of the problem, and have found that the deterioration of the electrolyte membrane can be remarkably suppressed by including a specific ion in the membrane, and have reached the present invention.
  • the present invention comprises a polymer compound having a cation exchange group and a cation exchange membrane.
  • an electrolyte membrane for a polymer electrolyte fuel cell characterized by containing cerium ions.
  • the cerium ion is a force capable of taking a +3 or +4 state, and is not particularly limited in the present invention.
  • the present invention comprises a cation exchange membrane in which two or more layers of a polymer compound having a cation exchange group and also having a cation exchange group are laminated, and at least one of the two or more layers contains cerium ions.
  • An electrolyte membrane for a polymer electrolyte fuel cell is provided.
  • Cerium ions may not exist in any state in the electrolyte membrane as long as they exist as ions, but in one embodiment, some of the cation exchange groups in the cation exchange membrane are formed of cerium ions. Can be present by ion exchange. Therefore, the present invention further provides a polymer compound having a cation-exchange group, comprising a strong cation-exchange membrane, wherein a part of the cation-exchange group is ion-exchanged with cerium ions. High molecular And a cation exchange membrane in which two or more layers composed of a polymer compound having a cation exchange group are laminated, and at least one of the two or more layers is formed of the cation exchange group.
  • An electrolyte membrane for a polymer electrolyte fuel cell comprising a cation exchange membrane at least partially exchanged with cerium ions.
  • the electrolyte membrane of the present invention does not need to contain cerium ions uniformly.
  • a cation exchange membrane laminated membrane consisting of two or more layers, in which at least one but not all of the layers is ion-exchanged with cerium ions, that is, cerium ions are not uniformly contained in the thickness direction. It may be. Therefore, especially when it is necessary to increase the durability of the anode side against hydrogen peroxide or peroxide radicals, only the layer closest to the anode should be a layer made of an ion exchange membrane containing cerium ions. You can also.
  • the polymer compound having a cation exchange group is preferably a polymer compound having a sulfonic acid group.
  • the present invention provides a method for producing an electrolyte membrane for a polymer electrolyte fuel cell, comprising immersing a cation exchange membrane comprising a polymer compound having a cation exchange group in an aqueous solution containing cerium ions. Provide a method.
  • the present invention is also directed to a polymer electrolyte fuel cell comprising an anode and a cathode having a catalyst layer containing a catalyst and an ion exchange resin, and an electrolyte membrane disposed between the anode and the force source.
  • the present invention is for a polymer electrolyte fuel cell comprising an anode and a cathode having a catalyst layer containing a catalyst and an ion exchange resin, and an electrolyte membrane disposed between the anode and the power source.
  • the electrolyte membrane of the present invention has excellent resistance to hydrogen peroxide or peroxide radicals. Although the reason for this is not clear, the inclusion of cerium ions in the electrolyte membrane, particularly when some of the cation exchange groups are ion-exchanged by cerium ions, Interaction between the on and the residue from which the proton of the cation exchange group has dissociated (eg,
  • the polymer electrolyte fuel cell including the membrane electrode assembly having the electrolyte membrane of the present invention Excellent durability and stable power generation over a long period of time.
  • the polymer compound having a cation exchange group before containing a cerium ion is not particularly limited as long as it has a function of dissociating the cation exchange group to generate a proton.
  • the cation exchange group include a sulfonic acid group, a sulfonimide group, a phosphonic acid group, a carboxylic acid group, and a ketoimide group.
  • a sulfonic acid group having high acidity and high chemical stability is particularly preferable.
  • the present invention will be described using a polymer compound having a sulfonic acid group as an example.
  • the method for obtaining the electrolyte membrane of the present invention by incorporating cerium ions into a polymer compound having a sulfonic acid group is not particularly limited, and examples thereof include the following methods. (1) A method of immersing a membrane containing a polymer compound having a sulfonic acid group in a solution containing cell ions.
  • a cerium ion-containing salt is added to a dispersion of a polymer compound having a sulfonic acid group by adding a salt containing a cerium ion to the dispersion, or a solution containing a cerium ion and a high- A method in which a dispersion of a molecular compound is mixed to contain cerium ions, and a film is formed using the obtained liquid by a casting method or the like.
  • cerium salts are used in order to obtain a solution containing cerium ions in which cerium ions can be trivalent or tetravalent.
  • Specific examples of salts containing trivalent cell ions include, for example, cerium acetate (Ce (CH 2 COO)), cerium chloride (CeCl 6.
  • cerium sulfate (Ce (SO 3) 4 ⁇ 0)
  • diammonium nitrate (Ce (NH 3)
  • Cerium acetyl acetate (Ce (CH 2 CO 3)
  • nitric acid or sulfuric acid generated when ion exchange of a polymer compound having a sulfonic acid group with these aqueous solutions is preferable because it can be easily dissolved in the aqueous solution and removed.
  • cerium ion when the cerium ion is trivalent, when the sulfonic acid group is ion-exchanged by the cerium ion, Ce 3+ bonds to three —SOs as shown below.
  • the number of cerium ions contained in the electrolyte membrane is the number of cerium ions contained in the electrolyte membrane.
  • the number of (3) is 0.3 to 20% (hereinafter, this ratio is referred to as “cerium ion content”).
  • the cerium ion This is equivalent to 0.9 to 60% of the total amount of the sulfonic acid groups ion-exchanged with cerium ions (hereinafter, this ratio is referred to as “replacement”). Rate).
  • the cerium ion content is more preferably 0.7 to 16%, further preferably 1 to 13%, further preferably 1.5 to 12%, and still more preferably 2 to 10%. In terms of the above replacement ratio, 1 to 60% is more preferable, 2 to 50% is still more preferable, 3 to 40% is still more preferable, and 5 to 30% is further preferable.
  • cerium ions are smaller than the above range, there is a possibility that sufficient stability to hydrogen peroxide or radical peroxide may not be ensured. If the cerium ion content is larger than the above range, sufficient conductivity of hydrogen ions cannot be secured. In addition, the film resistance may be increased and the power generation characteristics may be reduced.
  • the electrolyte membrane of the present invention is composed of a laminated membrane, the total electrolyte membrane is based on one SO- group.
  • the cerium ion content of the layer containing cerium ions may be higher than the above range as long as the ratio of cerium ions to 3 is within the above range.
  • a cation exchange membrane containing cerium ions is prepared by any of the above methods (1) to (3), and a cation exchange membrane containing no cerium ions is prepared. Although it is preferable to produce through a step of laminating with, it is not particularly limited.
  • the content of cerium ions is preferably represented by a ratio based on the mass of the electrolyte membrane
  • the content of cerium is preferably 0.02 to 8% with respect to the mass of the entire electrolyte membrane.
  • the power is preferably 0.05 to 6.6%, more preferably 0.07 to 5.3%.
  • the polymer compound having a sulfonic acid group before containing cerium ions is not particularly limited, but has an ion exchange capacity of 0.5 to 3.0 meq. More preferably, it is 0.7 to 2.5 meq. Zg dry resin is more preferable. It is particularly preferable that it is 1.0 to 2.5 meq. Zg dry fat. If the ion exchange capacity is too low, sufficient conductivity of hydrogen ions cannot be secured when the sulfonic acid groups are ion-exchanged with cerium ions, which may increase the membrane resistance and lower the power generation characteristics. If the ion exchange capacity is too high, the water resistance and strength of the membrane may decrease.
  • the polymer compound is a fluoropolymer, particularly a perfluorocarbon polymer having a sulfonate group (V, including an ether bond oxygen atom, etc.). Also,) is preferred.
  • a polymerized unit based on a compound (m represents an integer of 0 to 3, n represents an integer of 1 to 12, p represents 0 or 1, and X represents a fluorine atom or a trifluoromethyl group); It is preferably a copolymer containing a polymerized unit based on tetrafluoroethylene.
  • Preferable examples of the above-mentioned perfluorovinylide conjugate include, more specifically, compounds represented by the following formulas (i) to (iii).
  • q represents an integer of 1 to 8
  • r represents an integer of 1 to 8
  • t represents an integer of 1 to 3.
  • CF 2 CFOCF 2 CF (CF 3) O (CF 2) r _S0 3 H ... (ii)
  • CF 2 CF (OCF 2 CF (CF 3 )) t O (CF 2 ) 2 — S ⁇ 3 H...
  • a perfluorocarbon polymer having a sulfonic acid group When a perfluorocarbon polymer having a sulfonic acid group is used, a polymer obtained by fluorinating after polymerization to have the terminal of the polymer fluorinated may be used. When the terminal of the polymer is fluorinated, the stability to hydrogen peroxide and radicals is further improved, so that the durability is improved.
  • a compound other than a perfluorocarbon polymer having a sulfonic acid group can be used.
  • High molecular compounds that are 8 to 3.0 milliequivalents Zg dry resin can be preferably used.
  • the following polymer compounds can be used.
  • Sulfonated polyarylene sulfonated polybenzozoazole, sulfonated polybenzothiazole, sulfonated polybenzoimidazole, sulfonated polysulfone, sulfonated polyethersulfone, sulfonated polyetherethersulfone, sulfonated polyphenylene Lensenolefon, Snollefonidani Polyphenylene Sulfide, Snorrefonidani Polyphenylene Sulfoxide, sulfonated polyphenylene-sulfide, sulfonated polyphenylenesulfide, sulfonated polyether ketone, sulfonated polyetheretherketone, sulfonated polyetherketoneketone , Sulfonated polyimide and the like.
  • the polymer electrolyte fuel cell having the electrolyte membrane of the present invention has, for example, the following configuration. That is, the electrolyte membrane of the present invention is provided with a membrane electrode assembly in which an anode having a catalyst layer containing a catalyst and an ion exchange resin and a force sword are arranged on both surfaces.
  • the anode and the force source of the membrane electrode assembly are preferably provided with a gas diffusion layer made of carbon such as carbon cloth or carbon paper outside the catalyst layer (the side opposite to the membrane).
  • separators On both sides of the membrane / electrode assembly, separators having grooves formed therein for passage of fuel gas or oxidizing gas are arranged.
  • electrolyte membrane of the present invention can be used for a direct methanol fuel cell that supplies methanol instead of fuel gas to the anode side.
  • the above-mentioned catalyst layer is obtained according to a usual method, for example, as follows. First, a solution of a conductive carbon black powder carrying fine particles of a platinum catalyst or platinum alloy catalyst and a solution of a perfluorocarbon polymer having a sulfonate group are mixed to obtain a uniform dispersion. A gas diffusion electrode is formed by such a method to obtain a membrane electrode assembly.
  • the first method is a method in which the above-mentioned dispersion liquid is applied to both sides of an electrolyte membrane, dried, and then both sides are brought into close contact with two carbon cloths or carbon paper.
  • the dispersion is applied to two sheets of carbon cloth or carbon paper and dried, and then sandwiched from both sides of the ion exchange membrane so that the surface to which the dispersion is applied is in close contact with the ion exchange membrane.
  • the carbon cloth or carbon paper has a function as a gas diffusion layer and a function as a current collector for uniformly diffusing the gas into the layer containing the catalyst.
  • a method of applying the above-mentioned dispersion liquid to a separately prepared base material to form a catalyst layer, bonding it to an electrolyte membrane by a method such as transfer, peeling the base material, and sandwiching the base material with the gas diffusion layer. can also be used.
  • the ion exchange resin contained in the catalyst layer is not particularly limited, but is preferably a polymer compound having a sulfonic acid group, and is preferably a perfluorocarbon polymer having a sulfonic acid group. More preferably, there is.
  • the ion exchange resin in the catalyst layer may contain cerium ions as in the case of the electrolyte membrane of the present invention. Ion-exchange resin containing cerium ions can be used for both anode and power source, and decomposition of resin is effectively suppressed.
  • the polymer electrolyte fuel cell is further provided with durability.
  • an ion exchange resin containing no cell ions can be used as the electrolyte membrane, and only the ion exchange resin in the catalyst layer can contain cell ions.
  • both the ion exchange resin and the electrolyte membrane in the catalyst layer contain cerium ions! / ⁇
  • a joined body of the catalyst layer and the electrolyte membrane is prepared in advance, and the joined body is made of cerium. It can also be produced by immersion in a solution containing cations.
  • cerium ions are contained in the catalyst layer, the catalyst layer is formed by the above-described method as a coating liquid obtained by dispersing the catalyst in a dispersion containing a polymer compound having a sulfonic acid group and cerium ions. It is also possible. In this case, only one of the force sword and the anode may contain cerium ions, and both the force sword and the anode may contain cerium ions.
  • cerium ions are contained in an amount of 0.1%, decomposition of the ion exchange resin in the catalyst layer can be effectively suppressed, and therefore, it is more preferable from the viewpoint of improving durability.
  • the electrolyte membrane of the present invention may be a membrane in which only a polymer compound having a sulfonic acid group and partially containing cerium ions is strong, but it may be polytetrafluoroethylene or polytetrafluoroethylene which may contain other components.
  • the membrane may be reinforced with fibers of other resin such as perfluoroalkyl ether, woven fabric, non-woven fabric, porous body and the like. Even in the case of a reinforced membrane, the electrolyte membrane of the present invention can be obtained by immersing a cation exchange membrane having a reinforced sulfonic acid group in a solution containing cerium ions.
  • a method of forming a film using a dispersion liquid containing a polymer compound ion-exchanged with cerium ions can also be applied.
  • the whole membrane may be reinforced, but the periphery of the membrane may be reinforced in a frame shape with a film, a sheet, or the like. If the film is reinforced in a frame shape, the strength of the peripheral part will increase and the handling will be improved.
  • the entire membrane may be reinforced with a high porosity! Reinforcing material and the porosity may be low only at the periphery, or may be reinforced with a reinforcing material without voids.
  • the polymer electrolyte fuel cell provided with the membrane / electrode assembly of the present invention has excellent durability even at a high temperature, and therefore can be operated at 100 ° C. or more to generate power.
  • hydrogen obtained by reforming methanol, natural gas, gasoline, or the like is used as a fuel gas, even if a trace amount of carbon monoxide is contained, the electrode catalyst is poisoned and the output of the fuel cell is liable to decrease.
  • the operating temperature is set to 100 ° C or more, it is possible to suppress poisoning. When the operating temperature is set to 120 ° C or more, the effect of suppressing the more favorable poisoning becomes higher.
  • cerium nitrate (Ce (NO 2) ⁇ 6 ⁇ 0) 12.Omg was added so as to contain cerium ions (+3 valences) corresponding to 30% (equivalent) of the amount of sulfonic acid groups in the membrane.
  • the above-mentioned ion exchange membrane was immersed in the mixture and stirred at room temperature for 40 hours with a stirrer so that cerium ions were contained in the ion exchange membrane.
  • the cerium nitrate solution before and after the immersion was analyzed by inductively coupled plasma (ICP) emission spectroscopy.
  • ICP inductively coupled plasma
  • a catalyst powder manufactured by N-Chemcat Co., Ltd.
  • platinum was supported on a carbon carrier (specific surface area 800 m 2 Zg) so as to contain 50% of the total mass of the catalyst 1.
  • lg was mixed.
  • the coating solution was applied on a polypropylene base film using a bar coater, and then dried in a dryer at 80 ° C for 30 minutes to prepare a catalyst layer.
  • the amount of platinum per unit area contained in the catalyst layer was calculated by measuring the mass of the base film alone before the formation of the catalyst layer and the mass of the base film after the formation of the catalyst layer. It was 2 o
  • the above-mentioned ion-exchange membrane containing cerium ions was used, and the catalyst layers formed on the base film were arranged on both sides of the membrane, and were transferred by hot pressing to remove the anode catalyst.
  • a membrane catalyst layer assembly in which the catalyst layer and the force sword catalyst layer were bonded to both sides of the ion exchange membrane, respectively, was obtained.
  • the electrode area was 16 cm 2 .
  • a membrane electrode assembly was prepared by sandwiching the membrane catalyst layer assembly between two gas diffusion layers having a thickness of 350 ⁇ m and having a carbon cloth force, and this was assembled into a power generation cell and opened as an acceleration test.
  • a circuit test OCV test
  • Tests at atmospheric pressure, current density 0. 2AZcm 2 to correspond to that of hydrogen (utilization ratio 70%) and subjected supply air (% utilization 40) to the anode and force cathode, respectively, the cell temperature 90 ° C, The anode gas had a dew point of 60 ° C and the power source gas had a dew point of 60 ° C. Operation was performed for 100 hours in an open circuit state without power generation, and the voltage change during that time was measured. Before and after the test, hydrogen was supplied to the anode and nitrogen was supplied to the power source, and the amount of hydrogen gas leaking from the anode to the power source through the membrane was analyzed to determine the degree of membrane degradation. Table 1 shows the results.
  • a membrane electrode assembly was produced in the same manner as described above, incorporated into a power generation cell, and subjected to a durability test under low humidification operating conditions.
  • the test conditions were as follows: At normal pressure, hydrogen (utilization rate 70%), Z air (utilization rate 40%) was supplied, and at a cell temperature of 80 ° C, the current density was 0.2 AZcm 2 ⁇ . Initial characteristic evaluation and durability evaluation were performed. Hydrogen and air were humidified and supplied into the cell at a dew point of 80 ° C on the anode side and a dew point of 50 ° C on the power source side. The relationship was measured. Table 2 shows the results.
  • Example 1 the same commercially available ion exchange membrane as used in Example 1 is treated in the same manner as in Example 1 to obtain a membrane having a cerium ion content of 9.3%. Next, a membrane catalyst layer assembly is obtained using this membrane in the same manner as in Example 1, and further a membrane electrode assembly is obtained. About this membrane electrode assembly When the same evaluation as in Example 1 is performed, the results shown in Tables 1 to 3 are obtained.
  • Example 1 Except that an aqueous solution of Omg dissolved in 500 mL of distilled water was used, the same treatment as in Example 1 was performed using the same commercially available ion-exchange membrane as in Example 1, and the cerium ion content was determined. Gave a 6.3% membrane. Next, a membrane catalyst layer assembly was obtained using this membrane in the same manner as in Example 1, and a membrane electrode assembly was obtained. The same evaluation as in Example 1 was performed for this membrane / electrode assembly, and the results are shown in Tables 1 to 3.
  • Example 1 Except that an aqueous solution of Omg dissolved in 500 mL of distilled water was used, the same treatment as in Example 1 was performed using the same commercially available ion-exchange membrane as in Example 1, and the cerium ion content was determined. Get 3.3% membrane. Next, a membrane catalyst layer assembly is obtained using this membrane in the same manner as in Example 1, and further a membrane electrode assembly is obtained. When the same evaluation as in Example 1 is performed on this membrane / electrode assembly, the results shown in Tables 1 to 3 are obtained.
  • a 50-m-thick ion-exchange membrane formed of a polyetheretherketone having a sulfonic acid group and having a part of the sulfonic acid groups ion-exchanged with cerium ions as follows. Produced. That is, 60 g of granular commercially available polyester ether ketone (PEEK-450P, manufactured by Victrex, UK) is added little by little to 1200 g of 98% sulfuric acid at room temperature, and stirred at room temperature for 60 hours to obtain a uniform solution. Thus, a solution of a polymer compound having sulfonic acid groups introduced into polyetheretherketone was obtained.
  • PEEK-450P granular commercially available polyester ether ketone
  • this polyetheretherketone having a sulfonic acid group is dissolved in N-methyl-2-pyrrolidone (NMP) to form a solution of about 10% by mass, and this is a substrate having a polytetrafluoroethylene power at room temperature.
  • NMP N-methyl-2-pyrrolidone
  • a film having a thickness of 50 m was obtained by drying at 100 ° C. for 10 hours in a nitrogen atmosphere to evaporate NMP.
  • this film was cut into a size of 5 cm ⁇ 5 cm (area 25 cm 2 ), and the weight of the whole film was measured in the same manner as in Example 1 to find that it was 0.168 g.
  • the amount of sulfonic acid groups in this membrane is determined by the following equation.
  • Example 1 As a solid polymer electrolyte membrane, the same commercially available ion exchange membrane as used in Example 1 was used without any treatment, and then the membrane catalyst layer assembly was used in the same manner as in Example 1 using this membrane. Thus, a membrane electrode assembly was obtained. When the same evaluation as in Example 1 was performed for this membrane / electrode assembly, the results shown in Tables 1 to 3 were obtained.
  • Example 2 In the same manner as in Example 1, the same commercially available ion-exchange membrane as that used in Example 1 was replaced with 9.8 mg of calcium nitrate (Ca (NO) 4 ⁇ 0) containing calcium ions (+2) in 500 mL of distilled water. Dissolved in
  • Example 2 In the same manner as in Example 1, the same commercially available ion-exchange membrane as used in Example 1 was obtained by dissolving 10.3 mg of copper sulfate (CuSO.5 ⁇ O) containing copper ions (+2) in 500 mL of distilled water.
  • CuSO.5 ⁇ O copper sulfate
  • a membrane catalyst layer assembly was obtained in the same manner as in Example 5 except that the ion exchange membrane having a sulfonic acid group-containing polyetheretherketone force obtained in Example 5 was used without being treated with cerium ions. Obtain an electrode assembly. When this membrane electrode assembly is evaluated in the same manner as in Example 1, the results shown in Tables 1 to 3 are obtained.
  • Example 2 Except that an aqueous solution of Omg dissolved in 500 mL of distilled water was used, the same treatment as in Example 1 was performed using the same commercially available ion-exchange membrane as in Example 1, and the cerium ion content was determined. Gave a 4.7% membrane. Next, a membrane catalyst layer assembly was obtained in the same manner as in Example 1 using this membrane.
  • This membrane catalyst layer assembly was sandwiched between two gas diffusion layers having a thickness of 350 ⁇ m and also having a carbon cloth force to produce a membrane electrode assembly, which was incorporated into a power generation cell.
  • An endurance test was carried out under operating conditions of 120 ° C and moisture.
  • the anode, the force cathode both pressurized to 200 kPa, hydrogen (utilization ratio 50%) Z supplying air (utilization ratio 50%), a solid polymer fuel cell at a current density of 0. 2AZcm 2 to have you in the cell temperature 120 ° C
  • the initial property evaluation and durability evaluation were performed.
  • the anode side has a dew point of 100 ° C
  • the power source side has a dew point of 100 ° C.Hydrogen and air are humidified and supplied into the cell, respectively. The relationship was measured. Table 4 shows the results.
  • Example 2 The same commercially available ion exchange membrane as used in Example 1 was used as the solid polymer electrolyte membrane. Next, a membrane catalyst layer assembly was obtained using this membrane in the same manner as in Example 1 to obtain a membrane electrode assembly.
  • the power generation voltage rapidly dropped to about 0 V after 110 hours, and power generation was disabled. After the test, the film was taken out and examined. As a result, it was found that a large hole was formed in the film, which caused the sudden voltage drop.
  • solution A 300 g, 420 g of ethanol and 280 g of water were charged into a 2 L-year-old autoclave, sealed, mixed and stirred with a double helical blade at 105 ° C for 6 hours to obtain a uniform liquid. (Hereinafter referred to as solution A). Solution A had a solid content concentration of 30% by mass.
  • solution B A uniform transparent liquid composition (hereinafter referred to as solution B) was obtained.
  • the solid concentration of the solution B was 30.2% by mass.
  • the cerium ion content of this solution B was examined as follows.
  • Solution B was cast-coated on a 100 ⁇ m ethylene-tetrafluoroethylene copolymer (ETFE) sheet (trade name: Aflex 100 N, manufactured by Asahi Glass Co., Ltd.) using a die coater, and then at 80 ° C for 10 minutes. 120 after pre-drying. Dried for 10 minutes at C, then 150 C, annealing was performed for 30 minutes to obtain an electrolyte membrane having a thickness of 50 m.
  • EFE ethylene-tetrafluoroethylene copolymer
  • a 5 cm X 5 cm membrane was cut out of this electrolyte membrane, left in dry nitrogen for 16 hours, weighed accurately, and impregnated in 0.1N HC1 aqueous solution to completely remove cerium ions. An extracted liquid was obtained. The cerium in the electrolyte membrane was quantified by measuring this solution by ICP emission spectrometry. The amount of cerium ions was 1.5% based on the mass of the membrane, and the content of cerium ions was perfluorinated. Number of SO— groups in carbon polymer
  • Example 12 The solution A was cast-coated on a 100 m ETFE sheet using a die coater, pre-dried at 80 ° C for 10 minutes, dried at 120 ° C for 10 minutes, and further dried at 150 ° C for 30 minutes. To obtain a 25 m-thick electrolyte membrane.
  • the above solution B was cast-coated on a 100 / zm ETFE sheet with a die coater, pre-dried at 80 ° C for 10 minutes, dried at 120 ° C for 10 minutes, and further dried at 150 ° C. Then, annealing is performed for 30 minutes to obtain a 25 m-thick electrolyte membrane having a cerium ion content of 10%. Next, these membranes are hot-pressed at 150 ° C to obtain a composite membrane of a solid polymer electrolyte having a film thickness in which the cerium ion content is uneven in the thickness direction.
  • a catalyst powder manufactured by N-Chemcat Co., Ltd.
  • a carbon carrier specifically surface area: 800 m 2 Zg
  • 5.6 g of a solution obtained by diluting the above solution A with ethanol to a solid content concentration of 9% by mass is mixed.
  • This mixture is mixed and pulverized using a homogenizer to prepare a coating solution for forming a catalyst layer.
  • This coating solution is applied on a polypropylene base film using a bar coater, and then dried in an oven at 80 ° C for 30 minutes to prepare a catalyst layer.
  • a catalyst layer By measuring the mass of the substrate film after the mass and the catalyst layer formed of only the base film before forming the catalyst layer, calculating the amount of platinum per unit area contained in the catalyst layer, 0. 5mgZcm 2 It is.
  • a catalyst layer formed on the above-mentioned base film was disposed as an anode on the membrane surface, and containing cerium ions.
  • the catalyst layer formed on the above-mentioned base film is arranged as a force sword on the membrane surface, and is transferred by a hot press method so that the anode catalyst layer and the force sword catalyst layer are formed on both surfaces of the ion exchange membrane.
  • a bonded membrane catalyst layer assembly is obtained. Note that the electrode area is 16 cm 2 .
  • a membrane electrode assembly is further obtained from this membrane catalyst layer assembly in the same manner as in Example 1. When the same open circuit test as in Example 1 is performed on this membrane / electrode assembly, the results are as shown in Table 1.
  • a membrane electrode assembly is prepared and assembled into a power generation cell in the same manner as described above, and a durability test is performed under the same low humidification and high temperature operation conditions as in Example 10. That pressurized to the anode and cathode Dotomo 200 kPa, the hydrogen supply (utilization ratio 50%) Z Air (50% utilization), a polymer electrolyte fuel cell at a current density of 0. 2AZcm 2 in the cell temperature 120 ° C Early features Carry out the performance evaluation and durability evaluation. The anode side has a dew point of 100 ° C and the power side has a dew point of 10o ° c.Hydrogen and air are humidified and supplied into the cell, respectively. Is measured. Table 4 shows the results.
  • a membrane / electrode assembly is prepared and assembled into a power generation cell in the same manner as described above, and a durability test is performed under the same high humidification operating conditions as in Example 1. That test conditions, under atmospheric pressure, hydrogen was supplied (utilization 70%) Z Air (40% utilization), the polymer electrolyte fuel cell at a current density of 0. 2AZcm 2 at a cell temperature of 80 ° C
  • Initial Conduct property evaluation and durability evaluation A dew point of 80 ° C was applied to the anode and a dew point of 80 ° C was applied to the power source.Hydrogen and air were humidified and supplied into the cell. Measure. Table 3 shows the results.
  • the solution A was cast-coated on a 100 m ETFE sheet using a die coater, pre-dried at 80 ° C for 10 minutes, dried at 120 ° C for 10 minutes, and further dried at 150 ° C for 30 minutes. To obtain an electrolyte membrane having a thickness of 50 / 50 ⁇ and a size of 5 cm ⁇ 5 cm.
  • a catalyst powder manufactured by N-Chemcat Co., Ltd.
  • a carbon carrier specifically surface area: 800 m 2 Zg
  • 5.6 g of a solution obtained by diluting the above solution B with ethanol to a solid content concentration of 9% by mass was mixed.
  • This mixture was mixed and pulverized using a homogenizer to prepare a coating liquid for forming an anode catalyst layer.
  • This coating solution was applied on a polypropylene base film using a bar coater, and then dried in a dryer at 80 ° C for 30 minutes to remove the perfluorocarbon weight in the catalyst layer. included in the combined - SO- prepare an anode catalyst layer containing the cerium ions of 10 mole 0/0 groups
  • the amount of platinum per unit area contained in the catalyst layer was calculated by measuring the mass of only the base film before forming the catalyst layer and the mass of the base film after forming the catalyst layer. 5mgz cm Shiatsu 7
  • the electrode area was 16 cm 2 .
  • a membrane / electrode assembly was further obtained from this membrane / catalyst layer assembly in the same manner as in Example 1.
  • An open circuit test similar to that of Example 1 was performed on this membrane electrode assembly. The results are shown in Table 1.
  • a membrane electrode assembly similar to the above was fabricated and assembled into a power generation cell, and a durability test was performed under the same low-humidification and high-humidification operating conditions as in Example 1 to obtain the results shown in Tables 2 and 3. It becomes.
  • cerium carbonate hydrate (Ce (CO) ⁇ 8 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ) was adjusted to 2.
  • Example 13 Except for using the catalyst layer, the same procedure as in Example 13 was carried out to obtain an anode electrode containing cerium ions containing 20 mol% of SO— groups contained in the perfluorocarbon polymer in the catalyst layer.
  • a membrane catalyst layer assembly was obtained in which a medium layer and a force sword catalyst layer containing no cerium ions were bonded to both surfaces of the polymer electrolyte membrane.
  • Example 1 From this membrane catalyst layer assembly, a membrane electrode assembly was further obtained in the same manner as in Example 1. An open circuit test similar to that of Example 1 was performed on this membrane electrode assembly. The results are shown in Table 1. In addition, a membrane electrode assembly similar to the above was fabricated and assembled into a power generation cell, and a durability test was performed under the same low-humidification and high-humidification operating conditions as in Example 1 to obtain the results shown in Tables 2 and 3. It becomes.
  • Example 13 a membrane catalyst layer assembly was obtained in the same manner as in Example 13, except that the solution A was used to form an anode catalyst layer without containing cerium ions.
  • the membrane / catalyst layer assembly is immersed in an aqueous solution of cerium nitrate (Ce (NO).
  • a membrane catalyst layer assembly was obtained in which a part of the sulfonic acid groups of the fluorocarbon polymer was ion-exchanged with cerium ions. Ion exchange was performed by the following method.
  • the weight of the entire film produced by the cast film formation was left to stand in dry nitrogen for 16 hours. After that, it was 0.25 lg when measured in dry nitrogen.
  • the amount of sulfonic acid groups in this membrane is determined by the following equation.
  • cerium nitrate (Ce (NO 2) ⁇ 6 ⁇ ) was added so as to contain a number of cerium ions (+3) corresponding to 10% of the number of sulfonic acid groups in the membrane portion of the membrane catalyst layer assembly. 0) 12.Omg 5
  • the membrane catalyst layer assembly was immersed in the mixture, and stirred at room temperature for 40 hours using a stirrer to partially remove the sulfonic acid groups of the perfluorocarbon polymer in the membrane catalyst layer assembly.
  • Cerium ions were contained in the entire membrane catalyst layer assembly by ion exchange with the ions.
  • the cerium nitrate solution before and after immersion was analyzed by ICP emission spectroscopy. As a result, the membrane catalyst layer assembly showed a cerium ion equivalent to 9.3% of the number of —SO— groups in the membrane part of the membrane catalyst layer assembly. was found to be contained.
  • Example 1 of the membrane catalyst layer assembly a membrane electrode assembly was further obtained. An open circuit test similar to that of Example 1 was performed on this membrane electrode assembly. The results are shown in Table 1.
  • a membrane electrode assembly similar to the above was fabricated and assembled into a power generation cell, and a durability test was performed under the same low-humidification and high-humidification operating conditions as in Example 1 to obtain the results shown in Tables 2 and 3. It becomes.
  • Example 1 0.76 0.72 0.66 From the results of the above Examples and Comparative Examples, the open circuit test of high temperature and low humidification,
  • the electrolyte membrane of the present invention has extremely excellent durability against hydrogen peroxide or peroxide radical generated by power generation of a fuel cell. Therefore, the polymer electrolyte fuel cell provided with the membrane electrode assembly having the electrolyte membrane of the present invention is suitable for low-humidification power generation and high-humidification power generation even at high temperatures of 100 ° C or higher. ⁇ ⁇ But it has long-term durability.
  • This patent application was filed on June 22, 2004, Japanese Patent Application No. 2004-183712, Japanese Patent Application No. 2004-225706, filed on August 2, 2004, filed on September 13, 2004
  • the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2004-265176 and Japanese Patent Application No. 2005-118412 filed on April 15, 2005 are hereby incorporated by reference. Of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

 陽イオン交換基を有する高分子化合物からなる陽イオン交換膜からなり、セリウムイオンを含有する電解質膜を、固体高分子型燃料電池用電解質膜として使用する。上記陽イオン交換膜がスルホン酸基を有する場合において、好ましくはセリウムイオンが当該陽イオン交換膜に含まれる-SO3 -基の0.3~20%含まれるようにし、例えばセリウムイオンでスルホン酸基をイオン交換する。高いエネルギー効率での発電が可能であり、供給ガスの露点によらず、高い発電性能を有し、かつ長期間に渡って安定した発電が可能な固体高分子型燃料電池用膜を提供できる。

Description

固体高分子型燃料電池用電解質膜、その製造方法及び固体高分子型 燃料電池用膜電極接合体
技術分野
[0001] 本発明は、初期の出力電圧が高ぐ長期に渡って高い出力電圧が得られる固体高 分子型燃料電池用の電解質膜に関する。
背景技術
[0002] 燃料電池は、原料となるガスの反応エネルギーを直接電気エネルギーに変換する 電池であり、水素'酸素燃料電池は、その反応生成物が原理的に水のみであり地球 環境への影響がほとんどない。なかでも電解質として固体高分子膜を使用する固体 高分子型燃料電池は、高いイオン導電性を有する高分子電解質膜が開発され、常 温でも作動でき高出力密度が得られるため、近年のエネルギー、地球環境問題への 社会的要請の高まりとともに、電気自動車用等の移動車両や、小型コージエネレーシ ヨンシステムの電源として大きな期待が寄せられて 、る。
[0003] 固体高分子型燃料電池では、通常、固体高分子電解質としてプロトン伝導性のィ オン交換膜が使用され、特にスルホン酸基を有するパーフルォロカーボン重合体か らなるイオン交換膜が基本特性に優れている。固体高分子型燃料電池では、イオン 交換膜の両面にガス拡散性の電極層を配置し、燃料である水素を含むガス及び酸 ィ匕剤となる酸素を含むガス (空気等)を、それぞれアノード及び力ソードに供給するこ とにより発電を行う。
[0004] 固体高分子型燃料電池の力ソードにおける酸素の還元反応は過酸ィ匕水素 (H O )
2 2 を経由して反応が進行することから、触媒層中で生成する過酸化水素又は過酸化物 ラジカルによって、電解質膜の劣化を引き起こす可能性が懸念されている。また、ァ ノードには、力ソードから酸素分子が膜内を透過してくるため、同様に過酸化水素又 は過酸ィ匕物ラジカルを生成することも懸念される。特に炭化水素系膜を固体高分子 電解質膜とする場合は、ラジカルに対する安定性に乏しぐ長期間にわたる運転〖こ お!、ては大きな問題となって!、た。 [0005] 例えば、固体高分子型燃料電池が初めて実用化されたのは、米国のジェミニ宇宙 船の電源として採用された時であり、この時にはスチレンージビュルベンゼン重合体 をスルホン化した膜が電解質膜として使用されたが、長期間にわたる耐久性には問 題があった。この様な問題を改善する技術としては、高分子電解質膜中に過酸化水 素を接触分解できる遷移金属酸化物又はフエノール性水酸基を有する化合物を添 加する方法 (特許文献 1参照)や、高分子電解質膜内に触媒金属粒子を担持し、過 酸化水素を分解する方法 (特許文献 2参照)が知られている。しかし、これらの技術は 、生成する過酸ィ匕水素を分解する技術であり、イオン交換膜自体の分解の抑制を試 みるものではないため、初期的には改善の効果があるものの、長期間にわたる耐久 性には大きな問題が生じる可能性があった。またコスト的にも高くなるという問題があ つた o
[0006] 一方、炭化水素系の重合体に対し、ラジカルに対する安定性が格段に優れる重合 体として、スルホン酸基を有するパーフルォロカーボン重合体力 なるイオン交換膜 が知られている。近年、これらのパーフルォロカーボン重合体力もなるイオン交換膜 を用いた固体高分子型燃料電池は、自動車用、住宅用市場等の電源として期待さ れ、実用化への要望が高まり開発が加速している。これらの用途では、特に高い効 率での運転が要求されるため、より高い電圧での運転が望まれると同時に低コストィ匕 が望まれている。また、燃料電池システム全体の効率の点力ゝら低加湿又は無加湿で の運転が要求されることも多 、。
[0007] しかし、スルホン酸基を有するパーフルォロカーボン重合体力もなるイオン交換膜 を用いた燃料電池においても、高加湿下での運転では安定性が非常に高いものの、 低加湿又は無加湿での運転条件にぉ 、ては、電圧劣化が大き 、ことが報告されて いる(非特許文献 1参照)。すなわち、低加湿又は無加湿での運転条件においては、 スルホン酸基を有するパーフルォロカーボン重合体力 なるイオン交換膜においても 過酸化水素又は過酸化物ラジカルにより電解質膜の劣化が進行するものと考えられ る。
[0008] 特許文献 1 :特開 2001— 118591号公報 (請求項 1、 2頁 2〜9行)
特許文献 2 :特開平 6— 103992号公報(問題を解決するための手段、 2頁 33〜37 行)
非特許文献 1:新エネルギー,産業技術総合開発機構主催 平成 12年度固体高分 子形燃料電池研究開発成果報告会要旨集、 56頁 16〜24行
発明の開示
発明が解決しょうとする課題
[0009] そこで本発明は、車載用、住宅用市場等への固体高分子型燃料電池の実用化に おいて、十分に高いエネルギー効率での発電が可能であり、供給ガスの加湿温度( 露点)がセル温度よりも低い低加湿又は無加湿での運転、セル温度に近い温度で加 湿する高加湿での運転のどちらにおいても、高い発電性能を有し、かつ長期間にわ たって安定した発電が可能な固体高分子型燃料電池用膜を提供することを目的とす る。
課題を解決するための手段
[0010] 本発明者らは、陽イオン交換基を有する高分子化合物カゝらなるイオン交換膜を用 V、た燃料電池にぉ 、て、低加湿又は無加湿での運転条件における膜の劣化を防止 することを目的に鋭意検討し、膜中に特定のイオンを含有させることにより電解質膜 の劣化を格段に抑制できることを見出し、本発明に至った。
[0011] 本発明は、陽イオン交換基を有する高分子化合物力 なる陽イオン交換膜からなり
、セリウムイオンを含むことを特徴とする固体高分子型燃料電池用電解質膜を提供 する。なお、セリウムイオンは + 3価又は +4価の状態を取り得る力 本発明では特に 限定されない。
[0012] また、本発明は、陽イオン交換基を有する高分子化合物力もなる層が 2層以上積層 された陽イオン交換膜からなり、前記 2層以上の少なくとも 1層が、セリウムイオンを含 むことを特徴とする固体高分子型燃料電池用電解質膜を提供する。
[0013] セリウムイオンは、イオンとして存在すれば電解質膜中でどのような状態で存在して も力まわないが、一つの態様として陽イオン交換膜中の陽イオン交換基の一部がセリ ゥムイオンでイオン交換されて存在させることができる。そこで、さらに本発明は、陽ィ オン交換基を有する高分子化合物力 なる陽イオン交換膜からなり、前記陽イオン交 換基の一部がセリウムイオンによりイオン交換されていることを特徴とする固体高分子 型燃料電池用電解質膜、及び陽イオン交換基を有する高分子化合物からなる層が 2 層以上積層された陽イオン交換膜からなり、前記 2層以上の少なくとも 1層が、前記陽 イオン交換基の少なくとも一部がセリウムイオンによりイオン交換されている陽イオン 交換膜からなることを特徴とする固体高分子型燃料電池用電解質膜を提供する。
[0014] 本発明の電解質膜は、セリウムイオンを均一に含有している必要はない。 2層以上 の層からなる陽イオン交換膜 (積層膜)であってその全ての層ではなく少なくとも 1層 がセリウムイオンでイオン交換されている、すなわち厚さ方向に不均一にセリウムィォ ンを含んでいてもよい。したがって、特にアノード側について過酸ィ匕水素又は過酸ィ匕 物ラジカルに対する耐久性を高める必要がある場合は、アノードに一番近い層のみ セリウムイオンを含有するイオン交換膜からなる層とすることもできる。
本発明にお ヽては陽イオン交換基を有する高分子化合物はスルホン酸基を有する 高分子化合物であることが好まし 、。
[0015] また、本発明は陽イオン交換基を有する高分子化合物からなる陽イオン交換膜を、 セリウムイオンを含む水溶液中に浸漬することを特徴とする固体高分子型燃料電池 用電解質膜の製造方法を提供する。
[0016] また、本発明は触媒とイオン交換樹脂とを含む触媒層を有するアノード及びカソー ドと、前記アノードと前記力ソードとの間に配置される電解質膜からなる固体高分子型 燃料電池用膜電極接合体であって、前記電解質膜は上述の電解質膜であることを 特徴とする固体高分子型燃料電池用膜電極接合体を提供する。
[0017] また、本発明は触媒とイオン交換樹脂とを含む触媒層を有するアノード及びカソー ドと、前記アノードと前記力ソードとの間に配置される電解質膜からなる固体高分子型 燃料電池用膜電極接合体であって、前記アノードと前記力ソードの少なくとも一方に 含まれるイオン交換榭脂はセリウムイオンを含むことを特徴とする固体高分子型燃料 電池用膜電極接合体を提供する。
発明の効果
[0018] 本発明の電解質膜は、過酸化水素又は過酸化物ラジカルに対して優れた耐性を 有する。この理由は明確ではないが、電解質膜中にセリウムイオンを含むことにより、 特に陽イオン交換基の一部がセリウムイオンでイオン交換されることにより、セリウムィ オンと陽イオン交換基のプロトンが解離した残基 (例えば、 - so一)との相互作用が
3
、電解質膜の過酸ィ匕水素又は過酸ィ匕物ラジカル耐性を効果的に向上させていると 推定される。
[0019] 本発明の電解質膜は過酸化水素又は過酸化物ラジカルに対して優れた耐性を有 するため、本発明の電解質膜を有する膜電極接合体を備える固体高分子型燃料電 池は、耐久性に優れ、長期にわたって安定な発電が可能である。
発明を実施するための最良の形態
[0020] 本発明においてセリウムイオンを含有させる前の陽イオン交換基を有する高分子化 合物としては、陽イオン交換基が解離してプロトンを生成する機能を有していればよく 、特に限定されない。陽イオン交換基の具体例としては、スルホン酸基、スルホンイミ ド基、ホスホン酸基、カルボン酸基、ケトイミド基等があり、特に酸性度が強ぐ化学的 安定性の高いスルホン酸基が好ましい。以下、スルホン酸基を有する高分子化合物 を例にとり本発明につ!、て説明する。
[0021] スルホン酸基を有する高分子化合物中にセリウムイオンを含有させて本発明の電 解質膜を得る方法は特に限定されないが、例えば以下の方法が挙げられる。(1)セリ ゥムイオンが含まれる溶液中にスルホン酸基を有する高分子化合物力 なる膜を浸 漬する方法。(2)スルホン酸基を有する高分子化合物の分散液中にセリウムイオンを 含む塩を添加してセリウムイオンを分散液中に含有させた後、又はセリウムイオンを 含む溶液とスルホン酸基を有する高分子化合物の分散液を混合してセリウムイオン を含有させた後、得られた液を用いてキャスト法等により製膜する方法。(3)セリウム の有機金属錯塩をスルホン酸基を有する高分子化合物からなる陽イオン交換膜と接 触させてセリウムイオンを含有させる方法等。
上記の方法によって得られる電解質膜は、スルホン酸基の一部がセリウムイオンに よりイオン交換されて 、ると考えられる。
[0022] ここでセリウムイオンは + 3価でも +4価でもよぐセリウムイオンを含む溶液を得るた めに各種のセリウム塩が使用される。 + 3価のセリゥムイオンを含む塩を具体的に挙 げると、例えば、酢酸セリウム(Ce (CH COO) ·Η Ο)、塩化セリウム(CeCl · 6Η Ο
3 3 2 3 2
)、硝酸セリウム (Ce (NO ) · 6Η O)、硫酸セリウム (Ce (SO ) · 8Η Ο)、炭酸セリ ゥム(Ce (CO ) · 8Η O)等が挙げられる。 +4価のセリウムイオンを含む塩としては
2 3 3 2
、例えば、硫酸セリウム(Ce (SO ) ·4Η 0)、硝酸二アンモ-ゥムセリウム(Ce (NH
4 2 2 4
) (NO ) )、硫酸四アンモニゥムセリウム(Ce (NH ) (SO ) ·4Η O)等が挙げられ
2 3 6 4 4 4 4 2
る。またセリウムの有機金属錯塩としてはセリウムァセチルァセトナート(Ce (CH CO
3
CHCOCH ) · 3Η Ο)等が挙げられる。なかでも特に硝酸セリウム、硫酸セリウムは
3 3 2
水溶性で取扱いが容易であり好ましい。また、これらの水溶液でスルホン酸基を有す る高分子化合物をイオン交換した際に生成する硝酸又は硫酸は、容易に水溶液中 に溶解し、除去できるので好ましい。
[0023] 例えばセリウムイオンが 3価である場合、スルホン酸基がセリウムイオンによりイオン 交換されると、下記に示すように Ce3+が 3個の― SO と結合する。
[0024] [化 1]
S 03
Figure imgf000007_0001
[0025] 本発明において、電解質膜中に含まれるセリウムイオンの数は、膜中の一 SO—基
3 の数の 0. 3〜20%であることが好ましい(以下、この割合を「セリウムイオンの含有率 」という。 ) oセリウムイオンが完全に上記の構造になっている場合には、セリウムイオン でイオン交換されたスルホン酸基力 スルホン酸基とセリウムイオンでイオン交換され たスルホン酸基との合量の 0. 9〜60%であることと同義である(以下、この割合を「置 換率」という)。セリウムイオンの含有率は、より好ましくは 0. 7〜16%、さらに好ましく は 1〜13%、さらに好ましくは 1. 5〜12%、さらに好ましくは 2〜10%である。上記置 換率でいうと、 1〜60%がより好ましぐ 2〜50%がさらに好ましぐ 3〜40%がさらに 好ましぐ 5〜30%がさらに好ましい。
[0026] セリウムイオンの含有率が上述の範囲よりも小さいと過酸ィ匕水素又は過酸ィ匕物ラジ カルに対する十分な安定性が確保できな 、おそれがある。またセリウムイオンの含有 率が上述の範囲よりも大きいと、水素イオンの十分な伝導性を確保することができず 、膜抵抗が増大して発電特性が低下するおそれがある。
[0027] なお、本発明の電解質膜が積層膜からなる場合は、電解質膜全体の一 SO—基に
3 対するセリウムイオンの割合が上述の範囲に入っていればよぐセリウムイオンを含む 層自体のセリウムイオンの含有率は上述の範囲より高くてもよい。また積層膜の作製 方法としては、例えば上述の(1)〜(3)の 、ずれかの方法によりセリウムイオンを含む 陽イオン交換膜を作製しておき、セリウムイオンを含まな 、陽イオン交換膜と積層す る工程を経て作製することが好ましいが、特に限定されない。
[0028] また、セリウムイオンの含有量の好ま 、範囲を電解質膜の質量に対する割合で示 すと、電解質膜全体の質量に対するセリウムの質量として 0. 02〜8%であることが好 ましく、さらには 0. 05〜6. 6%、さらには 0. 07〜5. 3%力 ^好ましい。
[0029] 本発明にお 、てセリウムイオンを含有させる前のスルホン酸基を有する高分子化合 物としては特に限定されないが、イオン交換容量は 0. 5〜3. 0ミリ当量 Zg乾燥榭脂 であることが好ましぐ 0. 7〜2. 5ミリ当量 Zg乾燥榭脂であることがより好ましぐ 1. 0 〜2. 5ミリ当量 Zg乾燥榭脂であることが特に好ましい。イオン交換容量が低すぎると スルホン酸基がセリウムイオンでイオン交換されたとき水素イオンの十分な伝導性を 確保することができず、膜抵抗が増大して発電特性が低下するおそれがある。またィ オン交換容量が高すぎると膜の耐水性や強度が低下するおそれがある。また、耐久 性の観点力 当該高分子化合物は含フッ素重合体であることが好ましぐ特にスルホ ン酸基を有するパーフルォロカーボン重合体 (エーテル結合性の酸素原子を含んで V、てもよ 、)が好まし 、。パーフルォロカーボン重合体としては特に限定されな 、が、 CF =CF- (OCF CFX) — O— (CF ) —SO Hで表されるパーフルォロビュル
2 2 m p 2 n 3
化合物(mは 0〜3の整数を示し、 nは 1〜12の整数を示し、 pは 0又は 1を示し、 Xは フッ素原子又はトリフルォロメチル基を示す。 )に基づく重合単位と、テトラフルォロェ チレンに基づく重合単位とを含む共重合体であることが好ましい。
[0030] 上記パーフルォロビニルイ匕合物の好ま 、例をより具体的に示すと、下記式 (i)〜( iii)で表される化合物が挙げられる。ただし、下記式中、 qは 1〜8の整数、 rは 1〜8の 整数、 tは 1〜3の整数を示す。
式 1 [0031] CF2 = CFO (CF2) q- S03H ( i)
CF2 = CFOCF2CF (CF3) O (CF2) r_S03H … (ii)
CF2 = CF (OCF2CF (CF3)) tO (CF2) 2— S〇3H … (iii)
[0032] スルホン酸基を有するパーフルォロカーボン重合体を用いる場合、重合後にフッ素 化することにより重合体の末端がフッ素化処理されたものを用いてもよい。重合体の 末端がフッ素化されていると、より過酸ィ匕水素や過酸ィ匕物ラジカルに対する安定性が 優れるため耐久性が向上する。
[0033] また、セリウムイオンを含有させる前のスルホン酸基を有する高分子化合物として、 スルホン酸基を有するパーフルォロカーボン重合体以外のものも使用できる。例えば 高分子の主鎖に、又は主鎖と側鎖に芳香環を有しており、該芳香環にスルホン酸基 が導入された構造を有する高分子化合物であって、イオン交換容量が 0. 8〜3.0ミ リ当量 Zg乾燥榭脂である高分子化合物が好ましく使用できる。具体的には、例えば 下記の高分子化合物が使用できる。
[0034] スルホン化ポリアリーレン、スルホン化ポリべンゾォキサゾール、スルホン化ポリベン ゾチアゾール、スルホン化ポリべンゾイミダゾール、スルホン化ポリスルホン、スルホン ィ匕ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリ フエ二レンスノレホン、スノレホンィ匕ポリフエ二レン才キシド、スノレホンィ匕ポリフエ二レンス ルホキシド、スルホン化ポリフエ-レンサルファイド、スルホン化ポリフエ-レンスルフィ ドスルホン、スルホン化ポリエーテルケトン、スルホン化ポリエーテルエーテルケトン、 スルホン化ポリエーテルケトンケトン、スルホン化ポリイミド等。
[0035] 本発明の電解質膜を有する固体高分子型燃料電池は、例えば以下のような構成 である。すなわち、本発明の電解質膜の両面に、触媒とイオン交換樹脂とを含む触 媒層を有するアノード及び力ソードが配置された膜電極接合体を備える。膜電極接 合体のアノード及び力ソードは、好ましくは触媒層の外側 (膜と反対側)にカーボンク ロスやカーボンペーパー等カゝらなるガス拡散層が配置される。膜電極接合体の両面 には、燃料ガス又は酸化剤ガスの通路となる溝が形成されたセパレータが配置され る。そして、セパレータを介して膜電極接合体が複数積層されたスタックを構成し、ァ ノード側には水素ガスが供給され、力ソード側には酸素又は空気が供給される構成 である。アノードにおいては H→2H+ + 2e—の反応が起こり、力ソードにおいては 1
2
/2 + 2H+ + 2e"→H Oの反応が起こり、化学エネルギーが電気エネルギーに
2 2
変換される。
また、本発明の電解質膜は、アノード側に燃料ガスではなくメタノールを供給する直 接メタノール燃料電池にも使用できる。
[0036] 上述の触媒層は通常の手法に従い、例えば以下のようにして得られる。まず、白金 触媒又は白金合金触媒微粒子を担持させた導電性のカーボンブラック粉末とスルホ ン酸基を有するパーフルォロカーボン重合体の溶液を混合し均一な分散液を得て、 例えば以下のいずれかの方法でガス拡散電極を形成して膜電極接合体を得る。
[0037] 第 1の方法は、電解質膜の両面に上記分散液を塗布し乾燥後、両面を 2枚のカー ボンクロス又はカーボンペーパーで密着する方法である。第 2の方法は、上記分散液 を 2枚のカーボンクロス又はカーボンペーパー上に塗布乾燥後、分散液が塗布され た面が上記イオン交換膜と密着するように、上記イオン交換膜の両面から挟みこむ方 法である。なお、ここでカーボンクロス又はカーボンペーパーは触媒を含む層により 均一にガスを拡散させるためのガス拡散層としての機能と集電体としての機能を有す るものである。また、別途用意した基材に上記分散液を塗工して触媒層を作製し、転 写等の方法により電解質膜と接合させた後に基材をはく離し、上記ガス拡散層で挟 み込む方法も使用できる。
[0038] 触媒層中に含まれるイオン交換榭脂は特に限定されな 、が、スルホン酸基を有す る高分子化合物であることが好ましく、スルホン酸基を有するパーフルォロカーボン 重合体であることがより好ましい。触媒層中のイオン交換榭脂は、本発明の電解質膜 と同様にセリウムイオンを含んでいてもよい。セリウムイオンを含むイオン交換榭脂は 、アノードにも力ソードにも用いることができ、榭脂の分解は効果的に抑制されるので
、固体高分子型燃料電池はさらに耐久性が付与される。また、電解質膜としてはセリ ゥムイオンを含まないイオン交換榭脂を使用し、触媒層中のイオン交換樹脂のみセリ ゥムィ才ンを含有させることちできる。
[0039] 触媒層中のイオン交換樹脂と電解質膜の両方にセリウムイオンを含有させた!/ヽ場 合は、例えば触媒層と電解質膜との接合体をあらかじめ作製し、当該接合体をセリウ ムイオンを含む溶液中に浸漬することにより作製することも可能である。また、触媒層 中にセリウムイオンを含有させる場合、スルホン酸基を有する高分子化合物とセリウム イオンとを含む分散液に触媒を分散させたものを塗工液として上述の方法で触媒層 を形成することも可能である。この場合、力ソード及びアノードのいずれか一方のみに セリウムイオンを含ませることもできるし、力ソード、アノードともにセリウムイオンを含ま せることもできる。このとき、力ソードとアノードとでは、セリウムイオンの含有量が異な る分散液を使用して、力ソードとアノードのセリウムイオンの含有量が異なるように調 節をすることもできる。特にアノードにはスルホン酸基を有する高分子化合物に含ま れる— SO—基の 10〜30モル0 /0のセリウムイオンが含まれ、力ソードには 3〜10モル
3
%のセリウムイオンが含まれると触媒層中のイオン交換樹脂の分解も効果的に抑制 することが出来るので、耐久性向上の点から更に好ましい。
[0040] 本発明の電解質膜は、一部がセリウムイオンを含む、スルホン酸基を有する高分子 化合物のみ力もなる膜であってもよいが、他の成分を含んでいてもよぐポリテトラフ ルォロエチレンやパーフルォロアルキルエーテル等の他の榭脂等の繊維、織布、不 織布、多孔体等により補強されている膜であってもよい。補強された膜の場合でも、 補強されたスルホン酸基を有する陽イオン交換膜を、セリウムイオンを含む溶液に浸 漬することにより本発明の電解質膜が得られる。また、セリウムイオンでイオン交換さ れた高分子化合物を含む分散液を用いて製膜する方法も適用できる。なお、電解質 膜を補強する場合、膜全体を補強してもよいが、膜の周辺近くを額縁状にフィルム、 シート等で補強してもよい。額縁状に膜を補強すると、周辺部の強度が増すため取 扱!、性が向上する。膜全体を空隙率の高!、補強材で補強し周辺部のみ空隙率が低 V、か又は空隙のな 、補強材で補強してもよ 、。
[0041] 本発明の膜電極接合体を備える固体高分子型燃料電池は、高温でも耐久性に優 れるため、 100°C以上で運転し、発電することができる。燃料ガスとしてメタノール、天 然ガス、ガソリン等を改質して得られる水素を使用する場合、一酸化炭素が微量でも 含まれると電極触媒が被毒して燃料電池の出力が低下しやすくなる。運転温度を 10 0°C以上にすると被毒を抑制することが可能となる。運転温度を 120°C以上にすると より好ましぐ被毒を抑制する効果がより高くなる。 実施例
[0042] 以下、本発明を具体的に実施例(例 1〜5、 10、 12〜15)及び比較例(例 6〜9、 1
1)を用いて説明するが、本発明はこれらに限定されない。
[0043] [例 1]
固体高分子電解質膜として、スルホン酸基を有するパーフルォロカーボン重合体 力もなる厚さ 50 mのイオン交換膜 (商品名:フレミオン、旭硝子社製、イオン交換容 量 1. 1ミリ当量 Zg乾燥榭脂)であって、大きさ 5cm X 5cm (面積 25cm2)を使用した 。この膜全体の重さを乾燥窒素中で 16時間放置した後、乾燥窒素中で測定したとこ ろ、 0. 251gであった。この膜のスルホン酸基の量は以下の式により求められる。 0. 251 (g) X I . 1 (ミリ当量 Zg乾燥榭脂) =0. 276 (ミリ当量)。
[0044] 次に、この膜のスルホン酸基量の 30%の量(当量)に相当するセリウムイオン(+ 3 価)を含むように、硝酸セリウム(Ce (NO ) · 6Η 0) 12. Omgを 500mLの蒸留水に
3 3 2
溶解し、この中に上記イオン交換膜を浸漬し、室温で 40時間、スターラーを用いて撹 拌を行ってイオン交換膜中にセリウムイオンを含有させた。なお、浸漬前後の硝酸セ リウム溶液を誘導結合プラズマ (ICP)発光分析により分析した結果、このイオン交換 膜のセリウムイオンの含有率 (膜中の SO—基の数に対するセリウムイオンの割合)
3
は 9. 3%であることが判明した。
[0045] 次に、白金がカーボン担体 (比表面積 800m2Zg)に触媒全質量の 50%含まれる ように担持された触媒粉末 (ェヌ 'ィーケムキャット社製) 1. Ogに、蒸留水 5. lgを混 合した。この混合液に CF =CF /CF =CFOCF CF (CF ) 0 (CF ) SO H共重
2 2 2 2 3 2 2 3 合体 (イオン交換容量 l. 1ミリ当量 Zg乾燥榭脂)をエタノールに分散させた固形分 濃度 9質量%の液 5. 6gを混合した。この混合物をホモジナイザー(商品名:ポリトロ ン、キネマチ力社製)を使用して混合、粉砕させ、触媒層形成用塗工液を作製した。
[0046] この塗工液を、ポリプロピレン製の基材フィルムの上にバーコータで塗工した後、 8 0°Cの乾燥器内で 30分間乾燥させて触媒層を作製した。なお、触媒層形成前の基 材フィルムのみの質量と触媒層形成後の基材フィルムの質量を測定することにより、 触媒層に含まれる単位面積あたりの白金の量を算出したところ、 0. 5mgZcm2であ つた o [0047] 次に、上述のセリウムイオンを含有させたイオン交換膜を用い、この膜の両面に基 材フィルム上に形成された触媒層をそれぞれ配置し、ホットプレス法により転写してァ ノード触媒層及び力ソード触媒層をイオン交換膜の両面にそれぞれ接合した、膜触 媒層接合体を得た。なお、電極面積は 16cm2であった。
[0048] この膜触媒層接合体を厚さ 350 μ mのカーボンクロス力もなるガス拡散層 2枚の間 に挟んで膜電極接合体を作製し、これを発電用セルに組み込み、加速試験として開 回路試験 (OCV試験)を行った。試験は、常圧で、電流密度 0. 2AZcm2に相当す る水素 (利用率 70%)及び空気 (利用率 40%)をそれぞれアノード及び力ソードに供 給し、セル温度は 90°C、アノードガスの露点は 60°C、力ソードガスの露点は 60°Cとし て、発電は行わずに開回路状態で 100時間運転し、その間の電圧変化を測定した。 また、試験前後にアノードに水素、力ソードに窒素を供給し、膜を通してアノードから 力ソードにリークする水素ガス量を分析し、膜の劣化の程度を調べた。結果を表 1に 示す。
[0049] 次に、また上記同様に膜電極接合体を作製して発電用セルに組み込み、低加湿で の運転条件における耐久試験を行った。試験条件は、常圧にて、水素 (利用率 70% )Z空気 (利用率 40%)を供給し、セル温度 80°Cにおいて電流密度 0. 2AZcm2〖こ おける固体高分子型燃料電池の初期特性評価及び耐久性評価を実施した。ァノー ド側は露点 80°C、力ソード側は露点 50°Cとしてそれぞれ水素及び空気を加湿してセ ル内に供給し、運転初期のセル電圧及び運転開始後の経過時間とセル電圧との関 係を測定した。結果を表 2に示す。また、上記のセルの評価条件において、力ソード 側の露点を 80°Cに変更した以外は同様にして、運転初期のセル電圧及び運転開始 後の経過時間とセル電圧との関係を測定した。評価結果を表 3に示す。
[0050] [例 2]
例 1で用いた硝酸セリウム水溶液のかわりにセリウムイオン( + 3価)を含む硫酸セリ ゥム(Ce (SO ) ·8Η 0) 9. 8mgを 500mLの蒸留水に溶解した水溶液を用いる以
2 4 3 2
外は例 1と同様にして、例 1で用いたものと同じ市販のイオン交換膜について処理を 行い、セリウムイオンの含有率が 9. 3%の膜を得る。次に、この膜を用いて例 1と同様 にして膜触媒層接合体を得てさらに膜電極接合体を得る。この膜電極接合体につい て例 1と同様の評価を行うと、表 1〜3に示す結果のとおりとなる。
[0051] [例 3]
例 1で用いた硝酸セリウム水溶液のかわりに、硝酸セリウム(Ce (NO ) · 6Η 0) 8.
3 3 2
Omgを 500mLの蒸留水に溶解した水溶液を用 ヽた以外は例 1と同様にして、例 1で 用いたものと同じ市販のイオン交換膜にっ 、て処理を行 、、セリウムイオンの含有率 が 6. 3%の膜を得た。次に、この膜を用いて例 1と同様にして膜触媒層接合体を得 てさらに膜電極接合体を得た。この膜電極接合体について例 1と同様の評価を行つ たところ、表 1〜3に示す結果のとおりとなった。
[0052] [例 4]
例 1で用いた硝酸セリウム水溶液のかわりに、硝酸セリウム(Ce (NO ) · 6Η 0) 4.
3 3 2
Omgを 500mLの蒸留水に溶解した水溶液を用 ヽた以外は例 1と同様にして、例 1で 用いたものと同じ市販のイオン交換膜にっ 、て処理を行 、、セリウムイオンの含有率 が 3. 3%の膜を得る。次に、この膜を用いて例 1と同様にして膜触媒層接合体を得て さらに膜電極接合体を得る。この膜電極接合体にっ ヽて例 1と同様の評価を行うと、 表 1〜3に示す結果のとおりとなる。
[0053] [例 5]
固体高分子電解質膜として、スルホン酸基を有するポリエーテルエーテルケトンの 、スルホン酸基の一部をセリウムイオンでイオン交換した高分子化合物力 なる厚さ 5 0 mのイオン交換膜を以下のようにして作製した。すなわち、粒状の市販のポリェ 一テルエーテルケトン(英国 Victrex社製、 PEEK— 450P) 60gを室温で 98%の硫 酸 1200gに少量ずつ添加し、室温で 60時間撹拌して均一な溶液を得ることで、ポリ エーテルエーテルケトンにスルホン酸基が導入された高分子化合物の溶液を得た。 次にこの溶液を冷却しながら、 5Lの蒸留水に除除に滴化することで、スルホン酸基を 有するポリエーテルエーテルケトンを析出させ、濾過して分離した。次いでこれを蒸 留水で中性になるまで洗浄し、その後 80°C真空下で 24時間乾燥して 48gのスルホ ン酸基を有するポリエーテルエーテルケトンを得た。
[0054] 次にこの化合物約 lgを精密に秤量した後、 1規定の塩ィ匕ナトリウム水溶液 500mL 中に浸漬し、 60°Cで 24時間反応させてスルホン酸基のプロトンとナトリウムイオンをィ オン交換した。この試料を室温まで冷却した後、蒸留水で十分洗浄し、イオン交換し たあとの塩ィ匕ナトリウム水溶液と洗浄した蒸留水を 0. 01規定の水酸化ナトリウムで滴 定して、イオン交換容量を求めた。イオン交換容量は 1. 6ミリ当量 Zg乾燥榭脂であ つた o
[0055] 次にこのスルホン酸基を有するポリエーテルエーテルケトンを N メチル 2 ピロ リドン (NMP)に溶解して約 10質量%の溶液とし、これを室温でポリテトラフルォロェ チレン力もなる基材にキャスト製膜した後、窒素雰囲気で 100°Cで 10時間乾燥して N MPを蒸発させ、厚さ 50 mの膜を得た。次いでこの膜を大きさ 5cm X 5cm (面積 2 5cm2)に切断し、この膜全体の重さを例 1と同様にして測定したところ、 0. 168gであ つた。この膜のスルホン酸基の量は以下の式により求められる。
0. 168 (g) X I. 6 (ミリ当量 Zg乾燥榭脂) =0. 269 (ミリ当量)。
[0056] この膜のスルホン酸基量の約 30%の量(当量)に相当する Ceイオン(+ 3価)を含 む硝酸セリウム(Ce (NO ) · 6Η 0) 12. Omgを 500mLの蒸留水に溶解した水溶液
3 3 2
に、上記イオン交換膜を浸漬し、室温で 40時間、スターラーを用いて撹拌してセリウ ムイオンの含有率が 10. 3%の膜を得る。次に、この膜を用いて例 1と同様にして膜 触媒層接合体を得てさらに膜電極接合体を得る。この膜電極接合体について例 1と 同様の評価を行うと、表 1〜 3に示す結果のとおりとなる。
[0057] [例 6]
固体高分子電解質膜として、例 1で用いたものと同じ市販のイオン交換膜を何も処 理せずに用い、次に、この膜を用いて例 1と同様にして膜触媒層接合体を得てさらに 膜電極接合体を得た。この膜電極接合体について例 1と同様の評価を行ったところ、 表 1〜3に示す結果のとおりとなった。
[0058] [例 7]
例 1と同様にして、例 1で用 、たものと同じ市販のイオン交換膜をカルシウムイオン( + 2価)を含む硝酸カルシウム(Ca (NO ) ·4Η 0) 9. 8mgを 500mLの蒸留水に溶
3 2 2
解した水溶液に浸漬し、カルシウムイオンの含有率が 10. 3%の膜を得る。次に、こ の膜を用いて例 1と同様にして膜触媒層接合体を得てさらに膜電極接合体を得る。こ の膜電極接合体について例 1と同様の評価を行うと、表 1〜3に示す結果のとおりとな る。
[0059] [例 8]
例 1と同様にして、例 1で用いたものと同じ市販のイオン交換膜を銅イオン(+ 2価) を含む硫酸銅(CuSO · 5Η O) 10. 3mgを 500mLの蒸留水に溶解した水溶液に
4 2
浸漬し、銅イオンの含有率が 9. 7%の膜を得る。次に、この膜を用いて例 1と同様に して膜触媒層接合体を得てさらに膜電極接合体を得る。この膜電極接合体にっ 、て 例 1と同様の評価を行うと、表 1〜3に示す結果のとおりとなる。
[0060] [例 9]
例 5で得られたスルホン酸基を有するポリエーテルエーテルケトン力 なるイオン交 換膜を、セリウムイオンによる処理をせずに用いる以外は例 5と同様にして膜触媒層 接合体を得てさらに膜電極接合体を得る。この膜電極接合体について例 1と同様に 評価を行うと、表 1〜3に示す結果のとおりとなる。
[0061] [例 10]
例 1で用いた硝酸セリウム水溶液のかわりに、硝酸セリウム(Ce (NO ) · 6Η 0) 6.
3 3 2
Omgを 500mLの蒸留水に溶解した水溶液を用 ヽた以外は例 1と同様にして、例 1で 用いたものと同じ市販のイオン交換膜にっ 、て処理を行 、、セリウムイオンの含有率 が 4. 7%の膜を得た。次に、この膜を用いて例 1と同様にして膜触媒層接合体を得 た。
[0062] この膜触媒層接合体を厚さ 350 μ mのカーボンクロス力もなるガス拡散層 2枚の間 に挟んで膜電極接合体を作製し、これを発電用セルに組み込み、以下のとおり低カロ 湿、 120°Cでの運転条件における耐久試験を行った。アノード、力ソードとも 200kPa に加圧し、水素 (利用率 50%) Z空気 (利用率 50%)を供給し、セル温度 120°Cにお いて電流密度 0. 2AZcm2における固体高分子型燃料電池の初期特性評価及び耐 久性評価を実施した。アノード側は露点 100°C、力ソード側は露点 100°Cとしてそれ ぞれ水素及び空気を加湿してセル内に供給し、運転初期のセル電圧及び運転開始 後の経過時間とセル電圧との関係を測定した。結果を表 4に示す。
[0063] [例 11]
固体高分子電解質膜として、例 1で用いたものと同じ市販のイオン交換膜を何も処 理せずに用い、次に、この膜を用いて例 1と同様にして膜触媒層接合体を得てさらに 膜電極接合体を得た。この膜電極接合体について例 10と同様の評価を行ったところ 、 110時間後に発電電圧が急激に約 0Vに低下して発電不能となった。試験後膜を 取り出して調査した結果、膜に大きな孔が空いており、これが急激な電圧低下の原因 であることがわかった。
[0064] [スルホン酸基を有するパーフルォロカーボン重合体の溶液の調製]
CF =CF /CF =CFOCF CF (CF ) 0 (CF ) SO H共重合体 (イオン交換容
2 2 2 2 3 2 2 3
量 1. 1ミリ当量/ g乾燥樹月旨) 300gとエタノーノレ 420gと水 280gとを 2L才ートクレー ブに仕込み、密閉し、ダブルヘリカル翼にて 105°Cで 6時間混合撹拌して均一な液( 以下、溶液 Aという)を得た。溶液 Aの固形分濃度は 30質量%であった。
[0065] [セリウムイオンを含有するスルホン酸基を有するパーフルォロカーボン重合体の溶 液の調製]
300mLガラス製丸底フラスコに、溶液 Aを 100gと、炭酸セリウム水和物(Ce (CO
2 3
) · 8Η O)を 1. OOgとを仕込み、ポリテトラフルォロエチレン (PTFE)製半月板翼に
3 2
て、室温で 8時間撹拌した。撹拌開始より CO発生による気泡が発生した力 最終的
2
には均一な透明の液状組成物(以下、溶液 Bという)を得た。溶液 Bの固形分濃度は 30. 2質量%であった。
[0066] この溶液 Bのセリウムイオンの含有率を以下のように調べた。溶液 Bを 100 μ mのェ チレンーテトラフルォロエチレンコポリマー(ETFE)シート(商品名:ァフレックス 100 N、旭硝子社製)上に、ダイコータにてキャスト塗工し、 80°Cで 10分予備乾燥した後 、 120。Cで 10分乾燥し、さらに 150。C、 30分のァニールを施し、膜厚 50 mの電解 質膜を得た。この電解質膜から、 5cm X 5cmの大きさの膜を切り出し、乾燥窒素中で 16時間放置した後、質量を精秤し、 0. 1規定の HC1水溶液中に含浸して、セリウムィ オンを完全に抽出した液を得た。この液を ICP発光分析にて測定することで、電解質 膜中のセリウムを定量したところ、セリウムイオン量は膜の質量に対して 1. 5%であり 、セリウムイオンの含有率はパーフルォロカーボン重合体に含まれる SO—基の数
3 に対して 10%であった。
[0067] [例 12] 上述の溶液 Aを 100 mの ETFEシート上に、ダイコータにてキャスト塗工し、 80°C で 10分予備乾燥した後、 120°Cで 10分乾燥し、さらに 150°C、 30分のァニールを施 し、膜厚 25 mの電解質膜を得る。同様に、上述の溶液 Bを 100 /z mの ETFEシー ト上に、ダイコータにてキャスト塗工し、 80°Cで 10分予備乾燥した後、 120°Cで 10分 乾燥し、さらに 150°C、 30分のァニールを施し、セリウムイオンの含有率が 10%であ る膜厚 25 mの電解質膜を得る。次に、これらの膜を 150°Cでホットプレスして、膜 厚方向にセリウムイオンの含有率が不均一な膜厚 の固体高分子電解質の複 合膜を得る。
[0068] 次に、白金がカーボン担体 (比表面積 800m2Zg)に触媒全質量の 50%含まれる ように担持された触媒粉末 (ェヌ 'ィーケムキャット社製) 1. Ogに、蒸留水 5. lgを混 合する。この混合液に、上記溶液 Aをエタノールで希釈して固形分濃度を 9質量%と した液 5. 6gを混合する。この混合物をホモジナイザーを使用して混合、粉砕し、触 媒層形成用塗工液を作製する。
[0069] この塗工液を、ポリプロピレン製の基材フィルムの上にバーコータで塗工した後、 8 0°Cの乾燥器内で 30分間乾燥させて触媒層を作製する。なお、触媒層形成前の基 材フィルムのみの質量と触媒層形成後の基材フィルムの質量を測定することにより、 触媒層に含まれる単位面積あたりの白金の量を算出すると、 0. 5mgZcm2である。
[0070] 次に、上述の複合膜を用い、セリウムイオンを含有して 、る膜面には上述の基材フ イルム上に形成された触媒層をアノードとして配置し、セリウムイオンを含有して 、な い膜面には上述の基材フィルム上に形成された触媒層を力ソードとして配置して、ホ ットプレス法により転写してアノード触媒層及び力ソード触媒層をイオン交換膜の両 面にそれぞれ接合した、膜触媒層接合体を得る。なお、電極面積は 16cm2である。 この膜触媒層接合体から例 1と同様にしてさらに膜電極接合体を得る。この膜電極 接合体につ 、て例 1と同様の開回路試験を行うと、結果は表 1に示すとおりとなる。
[0071] 次に、上記同様に膜電極接合体を作製して発電用セルに組み込み、例 10と同様 の低加湿高温での運転条件における耐久試験を行う。すなわちアノード及びカソー ドとも 200kPaに加圧し、水素 (利用率 50%) Z空気 (利用率 50%)を供給し、セル温 度 120°Cにおいて電流密度 0. 2AZcm2における固体高分子型燃料電池の初期特 性評価及び耐久性評価を実施する。アノード側は露点 100°C、力ソード側は露点 10 o°cとしてそれぞれ水素及び空気を加湿してセル内に供給し、運転初期のセル電圧 及び運転開始後の経過時間とセル電圧との関係を測定する。結果を表 4に示す。
[0072] 次に、また上記同様に膜電極接合体を作製して発電用セルに組み込み、例 1と同 様の高加湿での運転条件における耐久試験を行う。すなわち試験条件は、常圧にて 、水素 (利用率 70%) Z空気 (利用率 40%)を供給し、セル温度 80°Cにおいて電流 密度 0. 2AZcm2における固体高分子型燃料電池の初期特性評価及び耐久性評 価を実施する。アノード側は露点 80°C、力ソード側は露点 80°Cとしてそれぞれ水素 及び空気を加湿してセル内に供給し、運転初期のセル電圧及び運転開始後の経過 時間とセル電圧との関係を測定する。結果を表 3に示す。
[0073] [例 13]
上述の溶液 Aを 100 mの ETFEシート上に、ダイコータにてキャスト塗工し、 80°C で 10分予備乾燥した後、 120°Cで 10分乾燥し、さらに 150°C、 30分のァニールを施 し、膜厚 50 /ζ πι、 5cm X 5cmの大きさの電解質膜を得た。
[0074] 次に、白金がカーボン担体 (比表面積 800m2Zg)に触媒全質量の 50%含まれる ように担持された触媒粉末 (ェヌ 'ィーケムキャット社製) 1. Ogに、蒸留水 5. lgを混 合した。この混合液に上述の溶液 Bをエタノールで希釈して、固形分濃度を 9質量% とした液 5. 6gを混合した。この混合物をホモジナイザーを使用して混合、粉砕させ、 アノード触媒層形成用塗工液を作製した。
[0075] この塗工液を、ポリプロピレン製の基材フィルムの上にバーコータで塗工した後、 8 0°Cの乾燥器内で 30分間乾燥させて、触媒層中のパーフルォロカーボン重合体に 含まれる— SO—基の 10モル0 /0のセリウムイオンを含有するアノード触媒層を作製し
3
た。なお、触媒層形成前の基材フィルムのみの質量と触媒層形成後の基材フィルム の質量を測定することにより、触媒層に含まれる単位面積あたりの白金の量を算出し たところ、 0. 5mgz cm しあつ 7こ。
一方、上記溶液 Bのかわりに上記溶液 Aを用いた以外は、アノード触媒層と同様に してセリウムを含有しな 、力ソード触媒層を作製した。
[0076] 次に、溶液 Aを用いて作製した電解質膜の両面に、上述の基材フィルム上に形成 されたアノード触媒層と、力ソード触媒層をそれぞれ配置し、ホットプレス法により触 媒層を膜に転写して、触媒層中のパーフルォロカーボン重合体に含まれる— SO "
3 基の 10モル0 /0のセリウムイオンを含有するアノード触媒層と、セリウムイオンを含有し な!ヽカソード触媒層を高分子電解質膜の両面にそれぞれ接合した、膜触媒層接合 体を得た。なお、電極面積は 16cm2であった。
[0077] この膜触媒層接合体から例 1と同様にしてさらに膜電極接合体を得た。この膜電極 接合体について例 1と同様の開回路試験を行った。結果を表 1に示す。また、上記同 様の膜電極接合体を作製して発電用セルに組み込み、例 1と同様の低加湿及び高 加湿での運転条件における耐久性試験を行うと表 2、 3に示す結果のとおりとなる。
[0078] [例 14]
上述の溶液 Bの作製において炭酸セリウム水和物(Ce (CO ) · 8Η Ο)の量を 2.
2 3 3 2
00gにした以外は同様にして、セリウムイオンの含有率がパーフルォロカーボン重合 体に含まれる— SO—基の数に対して 20%の溶液を得た。次に、この溶液をアノード
3
触媒層の形成に使用した以外は例 13と同様にして、触媒層中のパーフルォロカー ボン重合体に含まれる SO—基の 20モル%のセリウムイオンを含有するアノード触
3
媒層と、セリウムイオンを含有しない力ソード触媒層を高分子電解質膜の両面にそれ ぞれ接合した膜触媒層接合体を得た。
[0079] この膜触媒層接合体から例 1と同様にしてさらに膜電極接合体を得た。この膜電極 接合体について例 1と同様の開回路試験を行った。結果を表 1に示す。また、上記同 様の膜電極接合体を作製して発電用セルに組み込み、例 1と同様の低加湿及び高 加湿での運転条件における耐久性試験を行うと表 2、 3に示す結果のとおりとなる。
[0080] [例 15]
例 13にお 、て、溶液 Aを用いてセリウムイオンを含有しな 、アノード触媒層を作製 した以外は、例 13と同様にして膜触媒層接合体を得た。この膜触媒層接合体を、硝 酸セリウム(Ce (NO ) · 6Η Ο)を溶解した水溶液に浸漬して、膜及び触媒層中のパ
3 3 2
一フルォロカーボン重合体のスルホン酸基の一部をセリウムイオンでイオン交換した 膜触媒層接合体を得た。イオン交換は以下の手法で行った。
[0081] まず、上記キャスト製膜して作製した膜全体の重さを乾燥窒素中で 16時間放置し た後、乾燥窒素中で測定したところ、 0. 25 lgであった。この膜のスルホン酸基の量 は以下の式により求められる。
0. 251 (g) X I. 1 (ミリ当量 Zg乾燥榭脂) =0. 276 (ミリ当量)。
[0082] 次に、この膜触媒層接合体の膜部分のスルホン酸基の数の 10%に相当する数の セリウムイオン(+ 3価)を含むように、硝酸セリウム(Ce (NO ) · 6Η 0) 12. Omgを 5
3 3 2
OOmLの蒸留水に溶解した。この中に上記膜触媒層接合体を浸漬し、室温で 40時 間、スターラーを用いて撹拌を行って膜触媒層接合体中のパーフルォロカーボン重 合体のスルホン酸基の一部をセリウムイオンによりイオン交換して、膜触媒層接合体 の全体にセリウムイオンを含有させた。なお、浸漬前後の硝酸セリウム溶液を ICP発 光分析により分析した結果、膜触媒層接合体は、膜触媒層接合体の膜部分の— SO —基の数の 9. 3%に相当するセリウムイオンを含有していることが判明した。
[0083] この膜触媒層接合体力ゝら例 1と同様にしてさらに膜電極接合体を得た。この膜電極 接合体について例 1と同様の開回路試験を行った。結果を表 1に示す。また、上記同 様の膜電極接合体を作製して発電用セルに組み込み、例 1と同様の低加湿及び高 加湿での運転条件における耐久性試験を行うと表 2、 3に示す結果のとおりとなる。
[0084] [表 1]
Figure imgf000021_0001
[0085] [表 2] 初期の出力 耐久性 Z出力電圧 (V)
電圧 (V) 500時間後 2000時間後
例 1 0. 77 0. 77 0. 76
例 2 0. 77 0. 76 0. 76
例 3 0. 76 0. 75 0. 75
例 4 0. 76 0. 75 0. 74
例 5 0. 75 0. 73 0. 72
例 6 0. 77 0. 70 0. 65
例 7 0. 75 0. 66 0. 60
例 8 0. 75 0. 62 0. 55
例 9 0. 73 0. 58 0. 50
例 1 3 0. 77 0. 76 0. 75
例 1 4 0. 77 0. 76 0. 76
例 1 5 0. 75 0. 74 0. 73
S3] 初期の出力 耐久性 出力電圧 (V)
電圧 (V) 500時間後 2000時間後
例 1 0. 78 0. 78 0. 78
例 2 0. 78 0. 78 0. 77
例 3 0. 78 0. 77 0. 77
例 4 0. 78 0. 77 0. 77
例 5 0. 76 0. 75 0. 74
例 6 0. 77 0. 73 0. 70
例 7 0. 76 0. 7 1 0. 67
例 8 0. 76 0. 70 0. 64
例 9 0. 74 0. 65 0. 60
例 1 2 0. 78 0. 77 0. 76
例 1 3 0. 78 0. 77 0. 76
例 1 4 0. 78 0. 77 0. 76
例 1 5 0. 77 0. 76 0. 76
初期の出力 耐久性 Z出力電圧 (V)
電圧 (V) 500時間後 2000時間後
例 1 0 0. 77 0. 73 0. 68
例 1 1 0. 76 発電不可 発電不可
例 1 2 0. 76 0. 72 0. 66 上記実施例及び比較例の結果より、加速試験である高温 ·低加湿の開回路試験(
OCV試験)においては、アノード及び力ソードで生成する過酸化水素又は過酸化物 ラジカルによって、従来の電解質膜は劣化して水素リークが増大していたが、本発明 の電解質膜は格段に優れた耐久性を示すことが認められる。
産業上の利用可能性
本発明の電解質膜は、燃料電池の発電により生成される過酸化水素又は過酸ィ匕 物ラジカルに対する耐久性が極めて優れている。したがって、本発明の電解質膜を 有する膜電極接合体を備える固体高分子型燃料電池は、低加湿発電、高加湿発電 の 、ずれにお 、ても、また 100°C以上の高温での発電にぉ 、ても長期の耐久性を有 する。 なお、 2004年 6月 22曰に出願された曰本特許出願 2004— 183712号、 2004年 8月 2日に出願された日本特許出願 2004— 225706号、 2004年 9月 13日に出願さ れた日本特許出願 2004— 265176号および 2005年 4月 15日に出願された日本特 許出願 2005— 118412号の明細書、特許請求の範囲、図面及び要約書の全内容 をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims

請求の範囲
[1] 陽イオン交換基を有する高分子化合物力 なる陽イオン交換膜からなり、セリウムィ オンを含むことを特徴とする固体高分子型燃料電池用電解質膜。
[2] 陽イオン交換基を有する高分子化合物力 なる陽イオン交換膜からなり、前記陽ィ オン交換基の一部がセリウムイオンによりイオン交換されていることを特徴とする固体 高分子型燃料電池用電解質膜。
[3] 陽イオン交換基を有する高分子化合物力 なる層が 2層以上積層された陽イオン 交換膜からなり、前記 2層以上の少なくとも 1層が、セリウムイオンを含むことを特徴と する固体高分子型燃料電池用電解質膜。
[4] 陽イオン交換基を有する高分子化合物力 なる層が 2層以上積層された陽イオン 交換膜からなり、前記 2層以上の少なくとも 1層は、前記陽イオン交換基の少なくとも 一部がセリウムイオンによりイオン交換されている陽イオン交換膜からなることを特徴 とする固体高分子型燃料電池用電解質膜。
[5] 陽イオン交換基を有する高分子化合物はスルホン酸基を有する高分子化合物であ る請求項 1〜4のいずれかに記載の固体高分子型燃料電池用電解質膜。
[6] セリウムイオンは、前記陽イオン交換膜に含まれる— SO—基の数の 0. 3〜20%含
3
まれる請求項 5に記載の固体高分子型燃料電池用電解質膜。
[7] 前記スルホン酸基を有する高分子化合物は、スルホン酸基を有するパーフルォロ カーボン重合体である請求項 5又は 6に記載の固体高分子型燃料電池用電解質膜
[8] 前記パーフルォロカーボン重合体は、 CF =CF— (OCF CFX) —O—(CF )
2 2 m p 2 n
-SO Hで表されるパーフルォロビュル化合物(mは 0〜3の整数を示し、 ηは 1〜12
3
の整数を示し、 ρは 0又は 1を示し、 Xはフッ素原子又はトリフルォロメチル基を示す。) に基づく重合単位と、テトラフルォロエチレンに基づく重合単位とを含む共重合体で ある請求項 7に記載の固体高分子型燃料電池用電解質膜。
[9] 前記スルホン酸基を有する高分子化合物は、高分子の主鎖に、又は主鎖と側鎖に 芳香環を有しており、該芳香環にスルホン酸基が導入された構造であって、イオン交 換容量が 0. 8〜3. 0ミリ当量 Zg乾燥榭脂である請求項 5又は 6に記載の固体高分 子型燃料電池用電解質膜。
[10] 補強された電解質膜である請求項 1〜9のいずれかに記載の固体高分子型燃料電 池用電解質膜。
[11] 請求項 1〜10のいずれかに記載の電解質膜の製造方法であって、陽イオン交換 基を有する高分子化合物力もなる陽イオン交換膜を、セリウムイオンを含む水溶液中 に浸漬することを特徴とする固体高分子型燃料電池用電解質膜の製造方法。
[12] 前記セリウムイオンを含む水溶液は、硝酸セリウム水溶液又は硫酸セリウム水溶液 である請求項 11に記載の電解質膜の製造方法。
[13] 触媒とイオン交換樹脂とを含む触媒層を有するアノード及び力ソードと、前記ァノー ドと前記力ソードとの間に配置される電解質膜からなる固体高分子型燃料電池用膜 電極接合体であって、前記電解質膜は請求項 1〜10のいずれかに記載の電解質膜 であることを特徴とする固体高分子型燃料電池用膜電極接合体。
[14] 触媒とイオン交換樹脂とを含む触媒層を有するアノード及び力ソードと、前記ァノー ドと前記力ソードとの間に配置される電解質膜からなる固体高分子型燃料電池用膜 電極接合体であって、前記アノードと前記力ソードの少なくとも一方に含まれるイオン 交換榭脂はセリウムイオンを含むことを特徴とする固体高分子型燃料電池用膜電極 接合体。
[15] 前記アノードと前記力ソードの少なくとも一方に含まれるイオン交換榭脂はセリウム イオンを含む請求項 13に記載の固体高分子型燃料電池用膜電極接合体。
PCT/JP2005/011466 2004-06-22 2005-06-22 固体高分子型燃料電池用電解質膜、その製造方法及び固体高分子型燃料電池用膜電極接合体 WO2005124911A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP05753376.2A EP1772919B2 (en) 2004-06-22 2005-06-22 Electrolyte membrane for solid polymer fuel cell, method for producing same and membrane electrode assembly for solid polymer fuel cell
CA2571138A CA2571138C (en) 2004-06-22 2005-06-22 Electrolyte membrane for polymer electolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell
JP2006514856A JP3915846B2 (ja) 2004-06-22 2005-06-22 固体高分子型燃料電池用電解質膜、その製造方法及び固体高分子型燃料電池用膜電極接合体
AT05753376T ATE484081T1 (de) 2004-06-22 2005-06-22 Elektrolytmembran für eine festpolymer- brennstoffzelle, herstellungsverfahren dafür und membranelektrodenbaugruppe für eine festpolymer- brennstoffzelle
DE602005024002T DE602005024002D1 (de) 2004-06-22 2005-06-22 Elektrolytmembran für eine festpolymer-brennstoffzelle, herstellungsverfahren dafür und membranelektrodenbaugruppe für eine festpolymer-brennstoffzelle
US11/615,256 US8962215B2 (en) 2004-06-22 2006-12-22 Electrolyte membrane for polymer electrolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell
US13/174,664 US20110262832A1 (en) 2004-06-22 2011-06-30 Electrolyte membrane for polymer electrolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell
US14/599,121 US9455465B2 (en) 2004-06-22 2015-01-16 Electrolyte membrane for polymer electrolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2004-183712 2004-06-22
JP2004183712 2004-06-22
JP2004-225706 2004-08-02
JP2004225706 2004-08-02
JP2004265176 2004-09-13
JP2004-265176 2004-09-13
JP2005118412 2005-04-15
JP2005-118412 2005-04-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/615,256 Continuation US8962215B2 (en) 2004-06-22 2006-12-22 Electrolyte membrane for polymer electrolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
WO2005124911A1 true WO2005124911A1 (ja) 2005-12-29

Family

ID=35510028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011466 WO2005124911A1 (ja) 2004-06-22 2005-06-22 固体高分子型燃料電池用電解質膜、その製造方法及び固体高分子型燃料電池用膜電極接合体

Country Status (8)

Country Link
US (3) US8962215B2 (ja)
EP (1) EP1772919B2 (ja)
JP (1) JP3915846B2 (ja)
KR (1) KR100971640B1 (ja)
AT (1) ATE484081T1 (ja)
CA (1) CA2571138C (ja)
DE (1) DE602005024002D1 (ja)
WO (1) WO2005124911A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083229A2 (en) * 2006-01-20 2007-07-26 Toyota Jidosha Kabushiki Kaisha Membrane electrode assembly and polymer electrolyte membrane fuel cell containing the same
JP2008098179A (ja) * 2007-11-01 2008-04-24 Asahi Glass Co Ltd 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体
EP1926165A1 (en) * 2006-11-22 2008-05-28 Asahi Glass Company Ltd. Polymer electrolyte membrane and membrane-electrode assembly for polymer electrolyte fuel cell
WO2008083091A1 (en) * 2006-12-29 2008-07-10 3M Innovative Properties Company Method of making durable polymer electrolyte membranes
JP2008186715A (ja) * 2007-01-30 2008-08-14 Asahi Glass Co Ltd 固体高分子形燃料電池およびその運転方法
JP2009064777A (ja) * 2007-08-10 2009-03-26 Japan Gore Tex Inc 補強された固体高分子電解質複合膜、固体高分子形燃料電池用膜電極組立体および固体高分子形燃料電池
JP2009514172A (ja) * 2005-10-28 2009-04-02 スリーエム イノベイティブ プロパティズ カンパニー セリウム塩添加物を有する高い耐久性の燃料電池構成要素
JP2010212247A (ja) * 2010-04-14 2010-09-24 Toyota Central R&D Labs Inc 膜電極接合体及び固体高分子型燃料電池
JP2011503300A (ja) * 2007-11-09 2011-01-27 スリーエム イノベイティブ プロパティズ カンパニー ヘテロポリ酸を含むポリマー電解質
JP2011508369A (ja) * 2007-12-14 2011-03-10 ゴア エンタープライズ ホールディングス,インコーポレイティド 高安定性燃料電池膜及びその製造方法
WO2013031479A1 (ja) 2011-08-26 2013-03-07 旭硝子株式会社 固体高分子電解質膜および固体高分子形燃料電池用膜電極接合体
JP2013179001A (ja) * 2012-02-29 2013-09-09 Toray Ind Inc 高分子電解質成形体、およびそれを用いた高分子電解質膜、膜電極複合体ならびに固体高分子型燃料電池。
US8685580B2 (en) 2008-06-20 2014-04-01 GM Global Technology Operations LLC Fuel cell with an electrolyte stabilizing agent and process of making the same
JP2014200718A (ja) * 2013-04-02 2014-10-27 旭化成ケミカルズ株式会社 酸素還元触媒、酸素還元電極、及び燃料電池
US9083049B2 (en) 2006-10-16 2015-07-14 GM Global Technology Operations LLC Additives for fuel cell layers
WO2015108193A1 (ja) * 2014-01-20 2015-07-23 旭硝子株式会社 液状組成物、その製造方法および固体高分子形燃料電池用膜電極接合体の製造方法
WO2020241773A1 (ja) 2019-05-31 2020-12-03 旭化成株式会社 高分子電解質膜、膜電極接合体、固体高分子電解質形燃料電池、及び高分子電解質膜の製造方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3915846B2 (ja) 2004-06-22 2007-05-16 旭硝子株式会社 固体高分子型燃料電池用電解質膜、その製造方法及び固体高分子型燃料電池用膜電極接合体
US7943249B2 (en) * 2004-06-22 2011-05-17 Asahi Glass Company, Limited Liquid composition, process for its production and process for producing membrane-electrode assembly for polymer electrolyte fuel cells
JP2006099999A (ja) * 2004-09-28 2006-04-13 Asahi Glass Co Ltd 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体
EP1912272A4 (en) * 2005-07-12 2009-12-02 Asahi Glass Co Ltd ELECTROLYTIC MEMBRANE FOR USE IN A SOLID POLYMER-TYPE FUEL CELL, PROCESS FOR PRODUCING THE MEMBRANE, AND MEMBRANE ELECTRODE ASSEMBLY FOR USE IN A SOLID POLYMER-TYPE COMBUSTIBLE CELL
US8367267B2 (en) 2005-10-28 2013-02-05 3M Innovative Properties Company High durability fuel cell components with cerium oxide additives
US7593823B2 (en) * 2006-11-21 2009-09-22 The Furukawa Electric Co., Ltd Method and device for determining state of battery, and battery power supply system therewith
JP5214602B2 (ja) 2007-06-25 2013-06-19 パナソニック株式会社 燃料電池、膜−電極接合体、及び膜−触媒層接合体
JP5552785B2 (ja) * 2009-09-30 2014-07-16 Jsr株式会社 固体高分子電解質膜およびその製造方法、液状組成物
JP5193394B2 (ja) 2011-01-07 2013-05-08 パナソニック株式会社 固体高分子型燃料電池用電解質膜、及び、当該電解質膜を有する膜電極接合体、並びに、固体高分子型燃料電池
CN103814413B (zh) * 2011-09-21 2017-07-18 东丽株式会社 高分子电解质组合物成型体和使用它的固体高分子型燃料电池
RU2527236C1 (ru) * 2013-03-05 2014-08-27 Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН) Композиционная ионообменная мембрана
KR102575409B1 (ko) 2017-12-28 2023-09-05 현대자동차주식회사 연료전지용 전해질막의 제조방법 및 이를 포함하는 막-전극 접합체의 제조방법
KR102586427B1 (ko) 2017-12-28 2023-10-06 현대자동차주식회사 고내구성 전해질막 및 이를 포함하는 막-전극 접합체
EP3892651A4 (en) 2018-12-07 2022-08-24 Agc Inc. LIQUID COMPOSITION, SOLID POLYMER ELECTROLYTIC MEMBRANE, MEMBRANE-ELECTRODE ASSEMBLY, AND SOLID POLYMER FUEL CELL
EP3892642B1 (en) 2018-12-07 2023-08-23 Agc Inc. Liquid composition, polymer electrolyte membrane, membrane electrode assembly and polymer electrolyte fuel cell
EP3940006A4 (en) * 2019-03-13 2022-11-23 Agc Inc. MEMBRANE ELECTRODE ASSEMBLY
KR20220086949A (ko) 2020-12-17 2022-06-24 현대자동차주식회사 산화방지제 위치를 제어하는 연료전지의 제조방법
CN113416968B (zh) * 2021-06-08 2022-11-08 万华化学集团股份有限公司 一种无氧化剂电化学催化制备角黄素的方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103992A (ja) 1992-09-22 1994-04-15 Tanaka Kikinzoku Kogyo Kk 高分子固体電解質型燃料電池
US5840192A (en) 1993-02-24 1998-11-24 Universite Libre De Bruxelles Single-film membrane, process for obtaining it and use thereof
JP2000106203A (ja) * 1998-09-30 2000-04-11 Aisin Seiki Co Ltd 固体高分子電解質膜及び燃料電池用電極及び固体高分子電解質型燃料電池
JP2000231928A (ja) * 1999-02-10 2000-08-22 Asahi Glass Co Ltd 固体高分子電解質型燃料電池
JP2001118591A (ja) * 1999-10-19 2001-04-27 Toyota Central Res & Dev Lab Inc 高耐久性固体高分子電解質
JP2001185164A (ja) * 1999-12-22 2001-07-06 Asahi Glass Co Ltd イオン交換体ポリマー溶液及び固体高分子電解質型燃料電池用電極の製造方法
JP2003086188A (ja) * 2001-06-27 2003-03-20 Basf Ag 燃料電池
JP2003123777A (ja) * 2001-10-19 2003-04-25 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池
JP2004018573A (ja) * 2002-06-13 2004-01-22 Kanegafuchi Chem Ind Co Ltd プロトン伝導性高分子膜
US20040043283A1 (en) 2002-09-04 2004-03-04 Cipollini Ned E. Membrane electrode assemblies with hydrogen peroxide decomposition catalyst
JP2004288620A (ja) * 2002-12-10 2004-10-14 Basf Ag 膜電極組立品の製造方法
JP2005019232A (ja) * 2003-06-26 2005-01-20 Toyota Central Res & Dev Lab Inc 遷移金属酸化物含有固体高分子電解質
JP2005071760A (ja) * 2003-08-22 2005-03-17 Toyota Central Res & Dev Lab Inc 固体高分子型燃料電池
JP2005149859A (ja) * 2003-11-13 2005-06-09 Toshiba Fuel Cell Power Systems Corp 燃料電池およびその製造方法

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5955556A (en) 1995-11-06 1999-09-21 Alliedsignal Inc. Method of manufacturing fluoropolymers
JPH1092444A (ja) * 1996-09-13 1998-04-10 Japan Gore Tex Inc 電気化学反応装置用固体高分子電解質複合体及びそれを用いた電気化学反応装置
US6221248B1 (en) * 1998-03-23 2001-04-24 Ionics Incorporated Styrene sulfonate cation exchange membrane
DE19919988A1 (de) * 1999-04-30 2000-11-02 Univ Stuttgart Protonenleitende Keramik-Polymer-Kompositmembran für den Temperaturbereich bis 300 DEG C
EP1164651A1 (en) * 2000-06-12 2001-12-19 Asahi Glass Co., Ltd. Electrode catalyst for polymer electrolyte fuel cell and method for its production
US6630263B1 (en) * 2000-11-20 2003-10-07 Plug Power Inc. Fuel cell systems and methods
JP4032738B2 (ja) 2000-12-26 2008-01-16 旭硝子株式会社 固体高分子電解質材料、液状組成物、固体高分子型燃料電池、含フッ素ポリマー及び含フッ素ポリマーからなる固体高分子電解質膜
JP4848587B2 (ja) 2001-01-26 2011-12-28 旭硝子株式会社 固体高分子型燃料電池用電解質材料とその製造方法、及び固体高分子型燃料電池
EP1263073A1 (en) * 2001-05-31 2002-12-04 Asahi Glass Co., Ltd. Membrane-electrode assembly for solid polymer electrolyte fuel cells and process for its production
US7270911B2 (en) * 2001-08-10 2007-09-18 Plurion Limited Load leveling battery and methods therefor
JP4526002B2 (ja) 2001-09-11 2010-08-18 矢崎総業株式会社 コネクタの耐アーク構造
US6939640B2 (en) 2001-09-21 2005-09-06 E. I. Dupont De Nemours And Company Anode electrocatalysts for coated substrates used in fuel cells
JP2003183467A (ja) 2001-12-17 2003-07-03 Asahi Kasei Corp スルホン酸基含有フルオロカーボン重合体溶解組成物及びその溶解方法
JP4096764B2 (ja) 2002-06-17 2008-06-04 ダイキン工業株式会社 含フッ素結晶性ポリマー分散体製造方法
AU2003281365A1 (en) 2002-07-08 2004-01-23 Asahi Glass Company, Limited Dispersion of ion-exchange polymer, process for producing the same, and use thereof
JP2004134294A (ja) 2002-10-11 2004-04-30 Toyota Central Res & Dev Lab Inc 固体高分子電解質
JP4032386B2 (ja) 2002-11-29 2008-01-16 株式会社日立製作所 電動ディスクブレーキ
JP4239584B2 (ja) 2002-12-24 2009-03-18 日産自動車株式会社 筒内直接噴射式火花点火エンジンの点火時期制御装置
JP4217076B2 (ja) 2003-01-21 2009-01-28 Juki株式会社 電子部品供給カセット用テープリール支持装置
US20040164321A1 (en) 2003-02-26 2004-08-26 Dialog Semiconductor Vertical charge transfer active pixel sensor
JP4854914B2 (ja) 2003-03-03 2012-01-18 凸版印刷株式会社 Icカード及びその情報表示方法
JP4278133B2 (ja) 2003-04-21 2009-06-10 株式会社豊田中央研究所 固体高分子型燃料電池用電解質膜電極接合体および固体高分子型燃料電池
CN100426575C (zh) 2003-05-13 2008-10-15 旭硝子株式会社 固体高分子型燃料电池用电解质聚合物、其制造方法和膜·电极接合体
CN100380721C (zh) 2003-06-30 2008-04-09 住友化学株式会社 高分子电解质复合膜、其制造方法及其用途
JP4574149B2 (ja) 2003-09-17 2010-11-04 株式会社豊田中央研究所 固体高分子型燃料電池用電解質膜電極接合体および固体高分子型燃料電池
JP2005118412A (ja) 2003-10-20 2005-05-12 Sanyo Product Co Ltd 収納箱
WO2005041330A1 (ja) 2003-10-24 2005-05-06 Asahi Glass Company, Limited 固体高分子型燃料電池用膜・電極接合体及びその製造方法
US7537857B2 (en) 2003-12-17 2009-05-26 Bdf Ip Holdings Ltd. Reduced degradation of ion-exchange membranes in electrochemical fuel cells
EP1732155B1 (en) 2004-03-04 2010-09-01 Panasonic Corporation Composite electrolytic membrane, catalytic layer membrane assembly, membrane electrode assembly and polymer electroytic fuel cell
JP2004225706A (ja) 2004-03-30 2004-08-12 Matsushita Electric Ind Co Ltd 密閉型電動圧縮機
JP4997968B2 (ja) 2004-04-02 2012-08-15 旭硝子株式会社 固体高分子形燃料電池用電解質材料、電解質膜及び膜電極接合体
JP3915846B2 (ja) 2004-06-22 2007-05-16 旭硝子株式会社 固体高分子型燃料電池用電解質膜、その製造方法及び固体高分子型燃料電池用膜電極接合体
US7943249B2 (en) 2004-06-22 2011-05-17 Asahi Glass Company, Limited Liquid composition, process for its production and process for producing membrane-electrode assembly for polymer electrolyte fuel cells
US7572534B2 (en) 2004-09-20 2009-08-11 3M Innovative Properties Company Fuel cell membrane electrode assembly
JP2006134678A (ja) 2004-11-05 2006-05-25 Toyota Central Res & Dev Lab Inc 固体高分子型燃料電池及び燃料電池システム
CN100388545C (zh) 2004-11-11 2008-05-14 三菱重工业株式会社 固体高分子电解质膜电极组合体及使用该组合体的固体高分子电解质型燃料电池
JP4810868B2 (ja) 2005-04-19 2011-11-09 旭硝子株式会社 固体高分子型燃料電池用電解質膜、その製造方法、固体高分子型燃料電池用膜電極接合体及びその運転方法
JP5095089B2 (ja) 2005-05-31 2012-12-12 株式会社豊田中央研究所 固体高分子電解質、並びに、固体高分子型燃料電池及びその製造方法
EP1912272A4 (en) 2005-07-12 2009-12-02 Asahi Glass Co Ltd ELECTROLYTIC MEMBRANE FOR USE IN A SOLID POLYMER-TYPE FUEL CELL, PROCESS FOR PRODUCING THE MEMBRANE, AND MEMBRANE ELECTRODE ASSEMBLY FOR USE IN A SOLID POLYMER-TYPE COMBUSTIBLE CELL
US8628871B2 (en) 2005-10-28 2014-01-14 3M Innovative Properties Company High durability fuel cell components with cerium salt additives

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103992A (ja) 1992-09-22 1994-04-15 Tanaka Kikinzoku Kogyo Kk 高分子固体電解質型燃料電池
US5840192A (en) 1993-02-24 1998-11-24 Universite Libre De Bruxelles Single-film membrane, process for obtaining it and use thereof
JP2000106203A (ja) * 1998-09-30 2000-04-11 Aisin Seiki Co Ltd 固体高分子電解質膜及び燃料電池用電極及び固体高分子電解質型燃料電池
JP2000231928A (ja) * 1999-02-10 2000-08-22 Asahi Glass Co Ltd 固体高分子電解質型燃料電池
JP2001118591A (ja) * 1999-10-19 2001-04-27 Toyota Central Res & Dev Lab Inc 高耐久性固体高分子電解質
JP2001185164A (ja) * 1999-12-22 2001-07-06 Asahi Glass Co Ltd イオン交換体ポリマー溶液及び固体高分子電解質型燃料電池用電極の製造方法
JP2003086188A (ja) * 2001-06-27 2003-03-20 Basf Ag 燃料電池
JP2003123777A (ja) * 2001-10-19 2003-04-25 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池
JP2004018573A (ja) * 2002-06-13 2004-01-22 Kanegafuchi Chem Ind Co Ltd プロトン伝導性高分子膜
US20040043283A1 (en) 2002-09-04 2004-03-04 Cipollini Ned E. Membrane electrode assemblies with hydrogen peroxide decomposition catalyst
JP2004288620A (ja) * 2002-12-10 2004-10-14 Basf Ag 膜電極組立品の製造方法
JP2005019232A (ja) * 2003-06-26 2005-01-20 Toyota Central Res & Dev Lab Inc 遷移金属酸化物含有固体高分子電解質
JP2005071760A (ja) * 2003-08-22 2005-03-17 Toyota Central Res & Dev Lab Inc 固体高分子型燃料電池
JP2005149859A (ja) * 2003-11-13 2005-06-09 Toshiba Fuel Cell Power Systems Corp 燃料電池およびその製造方法

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009514172A (ja) * 2005-10-28 2009-04-02 スリーエム イノベイティブ プロパティズ カンパニー セリウム塩添加物を有する高い耐久性の燃料電池構成要素
JP2007194121A (ja) * 2006-01-20 2007-08-02 Toyota Central Res & Dev Lab Inc 膜電極接合体及び固体高分子型燃料電池
WO2007083229A3 (en) * 2006-01-20 2008-01-17 Toyota Motor Co Ltd Membrane electrode assembly and polymer electrolyte membrane fuel cell containing the same
US8187765B2 (en) 2006-01-20 2012-05-29 Toyota Jidosha Kabushiki Kaisha Membrane electrode assembly and polymer electrolyte membrane fuel cell
WO2007083229A2 (en) * 2006-01-20 2007-07-26 Toyota Jidosha Kabushiki Kaisha Membrane electrode assembly and polymer electrolyte membrane fuel cell containing the same
JP4514718B2 (ja) * 2006-01-20 2010-07-28 株式会社豊田中央研究所 膜電極接合体及び固体高分子型燃料電池
US9083049B2 (en) 2006-10-16 2015-07-14 GM Global Technology Operations LLC Additives for fuel cell layers
US9711817B2 (en) 2006-11-22 2017-07-18 Asahi Glass Company, Limited Polymer electrolyte membrane and membrane-electrode assembly for polymer electrolyte fuel cell
JP2008130460A (ja) * 2006-11-22 2008-06-05 Asahi Glass Co Ltd 固体高分子電解質膜及び固体高分子型燃料電池用膜電極接合体
EP1926165A1 (en) * 2006-11-22 2008-05-28 Asahi Glass Company Ltd. Polymer electrolyte membrane and membrane-electrode assembly for polymer electrolyte fuel cell
JP2010515231A (ja) * 2006-12-29 2010-05-06 スリーエム イノベイティブ プロパティズ カンパニー 耐久性のあるポリマー電解質薄膜を製造する方法
WO2008083091A1 (en) * 2006-12-29 2008-07-10 3M Innovative Properties Company Method of making durable polymer electrolyte membranes
JP2013243138A (ja) * 2006-12-29 2013-12-05 Three M Innovative Properties Co 耐久性のあるポリマー電解質薄膜を製造する方法
US8110320B2 (en) 2006-12-29 2012-02-07 3M Innovative Properties Company Method of making durable polymer electrolyte membranes
JP2008186715A (ja) * 2007-01-30 2008-08-14 Asahi Glass Co Ltd 固体高分子形燃料電池およびその運転方法
JP2009064777A (ja) * 2007-08-10 2009-03-26 Japan Gore Tex Inc 補強された固体高分子電解質複合膜、固体高分子形燃料電池用膜電極組立体および固体高分子形燃料電池
JP2008098179A (ja) * 2007-11-01 2008-04-24 Asahi Glass Co Ltd 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体
JP2011503300A (ja) * 2007-11-09 2011-01-27 スリーエム イノベイティブ プロパティズ カンパニー ヘテロポリ酸を含むポリマー電解質
JP2011508369A (ja) * 2007-12-14 2011-03-10 ゴア エンタープライズ ホールディングス,インコーポレイティド 高安定性燃料電池膜及びその製造方法
US8685580B2 (en) 2008-06-20 2014-04-01 GM Global Technology Operations LLC Fuel cell with an electrolyte stabilizing agent and process of making the same
JP2010212247A (ja) * 2010-04-14 2010-09-24 Toyota Central R&D Labs Inc 膜電極接合体及び固体高分子型燃料電池
WO2013031479A1 (ja) 2011-08-26 2013-03-07 旭硝子株式会社 固体高分子電解質膜および固体高分子形燃料電池用膜電極接合体
US9379403B2 (en) 2011-08-26 2016-06-28 Asahi Glass Company, Limited Polymer electrolyte membrane and membrane/electrode assembly for polymer electrolyte fuel cell
JP2013179001A (ja) * 2012-02-29 2013-09-09 Toray Ind Inc 高分子電解質成形体、およびそれを用いた高分子電解質膜、膜電極複合体ならびに固体高分子型燃料電池。
JP2014200718A (ja) * 2013-04-02 2014-10-27 旭化成ケミカルズ株式会社 酸素還元触媒、酸素還元電極、及び燃料電池
WO2015108193A1 (ja) * 2014-01-20 2015-07-23 旭硝子株式会社 液状組成物、その製造方法および固体高分子形燃料電池用膜電極接合体の製造方法
JPWO2015108193A1 (ja) * 2014-01-20 2017-03-23 旭硝子株式会社 液状組成物、その製造方法および固体高分子形燃料電池用膜電極接合体の製造方法
JP2019050207A (ja) * 2014-01-20 2019-03-28 Agc株式会社 液状組成物、触媒層形成用塗工液および固体高分子形燃料電池用膜電極接合体の製造方法
US10283800B2 (en) 2014-01-20 2019-05-07 AGC Inc. Liquid composition, method for its production, and method for producing membrane/electrode assembly for polymer electrolyte fuel cell
WO2020241773A1 (ja) 2019-05-31 2020-12-03 旭化成株式会社 高分子電解質膜、膜電極接合体、固体高分子電解質形燃料電池、及び高分子電解質膜の製造方法
US11728500B2 (en) 2019-05-31 2023-08-15 Asahi Kasei Kabushiki Kaisha Polymer electrolyte membrane, membrane electrode assembly, polymer electrolyte fuel cell, and process for producing polymer electrolyte membrane

Also Published As

Publication number Publication date
CA2571138A1 (en) 2005-12-29
US9455465B2 (en) 2016-09-27
ATE484081T1 (de) 2010-10-15
KR20070027578A (ko) 2007-03-09
DE602005024002D1 (de) 2010-11-18
EP1772919B2 (en) 2016-11-30
CA2571138C (en) 2014-02-11
EP1772919A1 (en) 2007-04-11
EP1772919A4 (en) 2008-02-27
US20110262832A1 (en) 2011-10-27
EP1772919B1 (en) 2010-10-06
KR100971640B1 (ko) 2010-07-22
JPWO2005124911A1 (ja) 2008-04-17
US20150200412A1 (en) 2015-07-16
US8962215B2 (en) 2015-02-24
US20070104994A1 (en) 2007-05-10
JP3915846B2 (ja) 2007-05-16

Similar Documents

Publication Publication Date Title
JP3915846B2 (ja) 固体高分子型燃料電池用電解質膜、その製造方法及び固体高分子型燃料電池用膜電極接合体
JP5287969B2 (ja) 固体高分子電解質膜及び固体高分子形燃料電池用膜電極接合体
JP4997971B2 (ja) 固体高分子型燃料電池用電解質膜、その製造方法及び固体高分子型燃料電池用膜電極接合体
JP5247974B2 (ja) 固体高分子形水素・酸素燃料電池用電解質膜の製造方法
WO2007007767A1 (ja) 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体
JP2006099999A (ja) 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体
JP4765908B2 (ja) 固体高分子電解質膜及び固体高分子型燃料電池用膜電極接合体
JP4972867B2 (ja) 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体
JP5286651B2 (ja) 液状組成物、その製造方法及び固体高分子形燃料電池用膜電極接合体の製造方法
JP2007031718A5 (ja)
KR100970358B1 (ko) 액상 조성물, 그 제조 방법 및 고체 고분자형 연료 전지용막 전극 접합체의 제조 방법
JP2007188706A (ja) 固体高分子形燃料電池用電解質膜および固体高分子形燃料電池用膜電極接合体
JP4765401B2 (ja) 固体高分子形燃料電池用膜の製造方法及び固体高分子形燃料電池用膜電極接合体の製造方法
Luo Polymer/nano-organic composite proton exchange membranes for direct methanol fuel cell application
Luo Polymer/Nano-Inorganic Composite Proton Exchange

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006514856

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067026058

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005753376

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2571138

Country of ref document: CA

Ref document number: 200580019941.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11615256

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067026058

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005753376

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11615256

Country of ref document: US