WO2005041330A1 - 固体高分子型燃料電池用膜・電極接合体及びその製造方法 - Google Patents

固体高分子型燃料電池用膜・電極接合体及びその製造方法 Download PDF

Info

Publication number
WO2005041330A1
WO2005041330A1 PCT/JP2004/015528 JP2004015528W WO2005041330A1 WO 2005041330 A1 WO2005041330 A1 WO 2005041330A1 JP 2004015528 W JP2004015528 W JP 2004015528W WO 2005041330 A1 WO2005041330 A1 WO 2005041330A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst layer
membrane
catalyst
amine
fuel cell
Prior art date
Application number
PCT/JP2004/015528
Other languages
English (en)
French (fr)
Inventor
Toshihiro Tanuma
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to JP2005514960A priority Critical patent/JPWO2005041330A1/ja
Publication of WO2005041330A1 publication Critical patent/WO2005041330A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8668Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8875Methods for shaping the electrode into free-standing bodies, like sheets, films or grids, e.g. moulding, hot-pressing, casting without support, extrusion without support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8896Pressing, rolling, calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a membrane-electrode assembly for a solid polymer fuel cell capable of obtaining a high output voltage over a long period of time when an initial output voltage is high and a method for producing the same.
  • a fuel cell is a battery that directly converts the reaction energy of a gas as a raw material into electric energy, and a hydrogen-oxygen fuel cell has a reaction product of only water in principle and has an impact on the global environment.
  • polymer electrolyte membranes with high ionic conductivity have been developed for solid polymer fuel cells that use solid polymer membranes as electrolytes, and can be operated at room temperature and have a high output density. For this reason, with increasing social demands for energy and global environmental issues in recent years, great expectations have been placed on power sources for mobile vehicles such as electric vehicles and compact cogeneration systems.
  • an ion exchange membrane having a cation exchange group is usually used as an electrolyte membrane.
  • an ion exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group is used. Excellent in basic characteristics.
  • a gas-diffusing electrode layer is disposed on both sides of an ion exchange membrane, and a gas containing hydrogen as a fuel and a gas (oxygen or the like) containing oxygen as an oxidizing agent are respectively supplied. Electricity is generated by supplying the anode and power sword.
  • the reduction reaction of oxygen in the power source of the polymer electrolyte fuel cell is performed by hydrogen peroxide (H 2 O 2).
  • a membrane obtained by sulfonating a styrene dibutyl benzene polymer was used as an electrolyte membrane, but there was a problem in long-term durability. For this reason, a perfluorocarbon polymer having a sulfonic acid group has attracted attention as a polymer having excellent stability against radicals, and it is known that an ion exchange membrane having such a polymer power can be used as an electrolyte membrane.
  • Patent Document 1 a system in which a transition metal oxide or a compound having a phenolic hydroxyl group capable of catalytically decomposing a peroxide radical is added to an electrolyte membrane
  • Patent Document 2 a technique of supporting catalytic metal particles in an electrolyte membrane to decompose hydrogen peroxide.
  • these techniques are techniques for adding a material only to the electrolyte membrane, and do not attempt to improve the catalyst layer that is a source of hydrogen peroxide or peroxide radicals. Therefore, although there is an effect of improvement at an early stage, there is a possibility that a serious problem may occur in durability over a long period of time. There was also a problem that the cost would be high.
  • a polymer electrolyte fuel cell comprising a supported catalyst formed by treating the carbon surface of a catalyst with N, N-dimethylaminopropylamine is known (Patent Document 3). Since N, N-dimethylaminopropylamine was used for catalyst treatment and then filtered off, the amine did not remain sufficiently in the catalyst, and the effect of improving durability was insufficient. Furthermore, the N, N-dimethylaminopropylamine used here has high solubility in water and is water-philic, so it is eluted by water generated during operation of the fuel cell, and its effect is easily diluted. There was a problem.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-118591 (Claims)
  • Patent Document 2 Japanese Patent Application Laid-Open No. 06-103992 (page 2, lines 33-37)
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2002-373663 (Example 1)
  • the present invention is capable of generating electric power with sufficiently high energy efficiency when commercializing a polymer electrolyte fuel cell for use in a vehicle-mounted or residential market, and at the same time, has a long-lasting durability.
  • An object of the present invention is to provide a membrane-electrode assembly for a polymer electrolyte fuel cell which is excellent in performance and a method for producing the same.
  • An object of the present invention is to provide a membrane 'electrode assembly having a catalyst layer in which hydrogen peroxide and peroxide radicals are less likely to be generated with power generation in order to obtain high durability, and a method for manufacturing the same.
  • the present invention provides an anode and a power source having a catalyst layer containing catalyst powder in which catalyst metal particles are supported on a carbon carrier and an ion exchange resin, and a method for forming a catalyst layer of the anode and a catalyst layer of the cathode.
  • the present invention provides an anode and a power source having a catalyst layer containing a catalyst powder in which catalytic metal particles are supported on a carbon carrier and an ion exchange resin, and a catalyst layer of the anode and the cathode.
  • An electrode assembly for a polymer electrolyte fuel cell having an ion exchange membrane disposed between the catalyst layer and the catalyst layer, wherein at least one of the catalyst layer of the anode and the catalyst layer of the force source is provided.
  • the present invention provides a membrane-electrode assembly for a polymer electrolyte fuel cell, characterized by containing the present amine, and wherein the content of the present amine to the catalyst powder is 0.3 to 30% by mass.
  • the present invention provides an anode and a power source having a catalyst layer containing a catalyst powder in which catalytic metal particles are supported on a carbon carrier and an ion exchange resin, a catalyst layer of the anode and the cathode.
  • Polymer electrolyte fuel cell having an ion exchange membrane disposed between the catalyst layer
  • a method for producing a membrane 'electrode assembly comprising: the catalyst powder, the ion-exchange resin, and the present amine, wherein the content of the present amine with respect to the catalyst powder (WXN) ZM X 1000 is 0.03.
  • the present invention provides a method for producing a membrane-electrode assembly for a polymer electrolyte fuel cell, characterized by the following.
  • the present invention provides an anode and a power source having a catalyst layer containing a catalyst powder in which catalytic metal particles are supported on a carbon carrier and an ion exchange resin, a catalyst layer of the anode and the cathode.
  • a method for producing a membrane-electrode assembly for a polymer electrolyte fuel cell having an ion exchange membrane disposed between said catalyst layer and said catalyst layer comprising: said catalyst powder, said ion exchange resin, and said amine.
  • a coating liquid is prepared in which the content of the present amine with respect to the catalyst powder is 0.3 to 30% by mass, and the coating liquid is coated on a substrate to form a catalyst layer.
  • a method for producing a membrane-electrode assembly for a polymer electrolyte fuel cell characterized in that the obtained catalyst layer is used as at least one of an anode and a power sword catalyst layer.
  • a polymer electrolyte fuel cell incorporating a membrane's electrode assembly containing a catalyst powder which is considered to have high normal catalytic activity, has a long duration in which hydrogen peroxide and peroxide radicals are easily generated during power generation. If power is generated during the period, the output tends to decrease.
  • a fuel cell incorporating the membrane-electrode assembly of the present invention has less performance degradation even after long-term power generation. The reason for this is that, in the present invention, the present amine is contained in the catalyst layer, so that the present amine has a function to supplement peroxide decomposition radicals. And peroxide radicals are unlikely to be generated.
  • FIG. 1 is a cross-sectional view showing an embodiment of a membrane-electrode assembly for a polymer electrolyte fuel cell according to the present invention.
  • FIG. 1 shows a cross-sectional view of one embodiment of the membrane / electrode assembly for a polymer electrolyte fuel cell of the present invention.
  • the membrane ′ electrode assembly 7 includes a solid polymer electrolyte membrane 1, an anode catalyst layer 2 and a force catalyst layer 3, which are in close contact with the membrane surface of the electrolyte membrane 1, and a gas diffusion layer 4, which is in close contact with each of these catalyst layers. 4 'and gas seal 6
  • the anode catalyst layer 2 and the force catalyst layer 3 are disposed between the gas diffusion layers 4 and 4 ′ and the solid polymer electrolyte membrane 1.
  • the solid polymer electrolyte membrane 1 has a role of selectively transmitting protons generated in the anode catalyst layer 2 to the force sword catalyst layer 3 along the thickness direction.
  • the solid polymer electrolyte membrane 1 also has a function as a diaphragm for preventing hydrogen supplied to the anode and oxygen supplied to the power source from being mixed.
  • the gas diffusion layers 4 and 4 ′ usually also serve as a porous conductive base material and need not necessarily be provided.However, they promote gas diffusion to the catalyst layer and also have a current collector function. Usually, it is preferable to be provided. Outside the membrane / electrode assembly 7, a separator 5 having a groove serving as a gas flow path 5a is arranged. Hydrogen gas obtained by reforming a fuel such as methanol or natural gas is supplied to the anode side through a groove of the separator.
  • the electrode assembly 7 has the gas diffusion layers 4 and 4 ′, the gas diffusion layers 4 and 4 ′ and the catalyst layers 2 and 3 are referred to as an electrode.
  • the anode catalyst layer 2 is configured to include, for example, a catalyst powder in which an alloy of platinum and ruthenium is supported on a carbon carrier, and an ion exchange resin.
  • the force sword catalyst layer 3 is configured to include a catalyst powder in which platinum or a platinum alloy is supported on a carbon carrier and an ion exchange resin.
  • the ion exchange resin a sulfonic acid group having a cation exchange group and a sulfonic acid group preferred by a hydrocarbon resin or a fluorinated hydrocarbon resin is preferred.
  • a fluorocarbon polymer (which may contain an etheric oxygen atom) is particularly preferred because of its excellent radial stability.
  • the cation exchange group include a sulfonic acid group, a carboxylic acid group, a phosphonic acid group, and a phosphate group.
  • n an integer of 1 to 12
  • p represents 0 or 1
  • X represents a fluorine atom or a trifluoromethyl group.
  • Preferred examples of the above-mentioned fluorovinyl compound include compounds represented by the following formulas (i) and (iii).
  • q represents an integer of 1 to 8
  • r represents an integer of 1 to 8
  • t represents an integer of 1 to 3.
  • CF 2 CF (OCF 2 CF (CF 3 )) t O (CF 2 ) 2 SO s H...
  • hydrocarbon resin having a cation exchange group various conventionally known hydrocarbon resins can be used.
  • Hydrocarbon resins having a cation exchange group include, for example, acrylic acid. Dibutylbenzene copolymer, methacrylic acid'dibutylbenzene copolymer, phenolsulfonic acid resin, polystyrenesulfonic acid, and sulfonated polyimide. Styrene-dibutylbenzene copolymer, styrene-butadiene copolymer, polyethersulfone, polyetheretherketone, polyolefin, polychlorinated butyl, polyethylene, etc. No.
  • the partially fluorinated hydrocarbon resin having a cation exchange group in the above-described hydrocarbon resin having a cation exchange group, a hydrogen atom other than a functional group such as an ion exchange group is used.
  • a substance having a structure partially substituted with a fluorine atom can be used.
  • ion-exchange resins such as polystyrene sulfonic acid graft-poly (trifluorostyrene) and polystyrene sulfonic acid graft-poly (ethylene 'tetrafluoroethylene), and tetrafluoroethylene ethylene copolymer Coalescence, bi-fluoridene resin, trifluoro-chloroethylene resin, poly Styrene graft-polytetrafluoroethylene, poly (trifluoroethylene) graft-poly (ethylene.tetrafluoroethylene), styrene 'dibutylbenzene copolymer graft-poly (perfluoroethylene'propene), polystyrene graph
  • resins in which a cation exchange group is introduced into a resin such as topopoly (perfluoroethylene / propene).
  • At least one of the anode catalyst layer 2 and the force sword catalyst layer 3 contains the present amine.
  • hydrogen peroxide is generated mainly on the anode side, so that the present amine is more effectively contained in the anode catalyst layer 2 than in the force catalyst layer 3.
  • both of the anode catalyst layer 2 and the force catalyst layer 3 contain the same. It is thought that by containing the present amine, hydrogen peroxide and hydrogen peroxide radicals are less likely to be generated, and as a result, performance degradation is reduced even when the fuel cell is operated for a long period of time.
  • the present amines include primary amines, secondary amines, and tertiary amines, and among them, HALS is chemically and thermally stable. Particularly preferred.
  • HALS is a general term for hindered amine light stabilizers and has a structure in which all hydrogen-nuclear methyl groups on carbons at the 2- and 6-positions of piperidine are substituted. Things.
  • HALS used as the present amine generally has a structure in which all of the 2- and 6-positions of piperidine are substituted with a methyl group, preferably a group represented by Formula 1.
  • X represents a hydrogen atom or an alkyl group.
  • X is a hydrogen atom such as 2,2,6,6-tetramethyl-4-piperidyl group or X-force methyl group 1,2,2,6,6-pentamethyl-4-piperidyl HALS having a group is particularly preferably employed.
  • the expression 1 There are many commercially available HALS having a structure in which the group mentioned is bonded to a COO— group, that is, a HALS having a group represented by the formula 2, but these can be preferably used.
  • HALS that can be preferably used in the present invention include those represented by the following formula.
  • R 2,2,6,6-tetramethyl-4-piperidyl group
  • R 1,2,2,6,6 pentamethyl-4-piperidyl group
  • CH CH, CH (COOR) CH (COOR) CH (COOR) CH COOR, CH (COO
  • Specific products include Tinuvin 123, Tinuvin 144, Tinuvin 765, and Tinuvin. 770, Tinuvin 622, Chimasorp 944, Chimasorp 119 (all of which are trade names of Ciba 'Su Charity' Chemicals), Adekastab LA52, Adekastab LA57, Adekastab LA62, Adekastab LA67, Adekastab LA82, Adekastab LA87, Adekastab LX335 (Each of the above is a trade name of Asahi Deni Dani Kogyo KK) and the like, but is not limited thereto.
  • HALS those having relatively small molecules are preferable since they can enter deep into the pores of the catalyst.
  • the present amines include, specifically, 2-ethylhexylamine, and 3-amine.
  • (2-ethylhexyloxy) propylamine, diisobutylamine, di-n-octylamine, tri-n-octylamine, triallylamine, di-2-ethylhexylamine and 3- (dibutylamino) propylamine are also selected from the group.
  • One or more types can be preferably used. Similar to HALS, among the present amines, those having relatively small molecules, such as 2-ethylhexylamine and diisobutylamine, are preferable because they can enter deep into the pores of the catalyst.
  • the present amine must have a solubility in water of 3 or less. If the solubility of this amine in water exceeds 3, it is not preferable because the rate of elution into the water around the catalyst surface during operation of the fuel cell increases, and the effect of improving durability gradually decreases.
  • the solubility of this amine in water is particularly preferably 1 or less.
  • the solubility of the present amine in water means the mass of the amine dissolved in 100 g of water at 20 ° C.
  • the content of the present amine (WXN) / MX 1000 in the catalyst layer is preferably 0.03 to 11, particularly preferably 0.05 to 0.7.
  • W is the content (g) of the present amine per lg of the catalyst powder
  • M is the molecular weight of the present amine
  • N is the number of basic nitrogen atoms in one molecule of the present amine.
  • the basic nitrogen atom indicates the number of nitrogen atoms acting as an amine.
  • the basic nitrogen atom is represented by a nitrogen atom having any one of the following formulas (iv) to (vi).
  • R 1, R 2, R 3, R 2, R 3 and R 4 represent a monovalent organic group.
  • the content of the present amine is preferably represented by a mass ratio with respect to the catalyst powder, it is preferably from 0.3 to 30% by mass with respect to the catalyst powder, particularly preferably from 11 to 20%. . If the content of this amine is too small, sufficient durability cannot be obtained when the fuel cell is operated. On the other hand, if the content of the present amine is too large, when the present solution is contained in the coating solution for forming the catalyst layer, the catalyst layer tends to be cracked, resulting in poor coatability. The performance as a fuel cell is also reduced.
  • the catalyst metal and the carbon support have a mass ratio (catalyst metal: carbon support) of 2: 8-7: 3, particularly 4: 6- 6: 4 is preferred.
  • a mass ratio catalyst metal: carbon support
  • the thickness of the catalyst layer can be reduced, gas diffusivity can be increased, and excellent output characteristics can be obtained. If the content of the catalyst metal in the catalyst powder is too small, the amount of the catalyst metal required for the reaction may be insufficient, and if the content of the catalyst metal is too large, aggregation of the catalyst metal particles on the carbon carrier may occur. It is likely to occur, and the performance may be reduced by force.
  • the carbon material serving as a carrier used in the supported catalyst includes carbon black having fine pores, activated carbon, carbon nanotube, carbon nanohorn, and the like.
  • Various carbon materials can be preferably used.
  • carbon black is often used in many cases. Examples of the carbon black include channel black, furnace black, thermal black, and acetylene black.
  • the activated carbon various activated carbons obtained by carbonizing and activating various materials containing carbon atoms can be used.
  • an ion exchange membrane is used as the solid polymer electrolyte membrane 1.
  • the same type of ion exchange resin that is preferable as the resin contained in the above-mentioned catalyst layer can be used. That is, a hydrocarbon resin or a fluorinated hydrocarbon resin having a cation exchange group can be preferably used.
  • a perfluorocarbon polymer having a sulfonic acid group is also preferable because it has excellent stability against radicals.
  • the gas diffusion layers 4, 4 are usually made of a conductive porous sheet such as carbon paper, carbon cloth, and carbon felt.
  • the gas diffusion layers 4 and 4 ′ are interposed between the catalyst layers 2 and 3 and the separator 5.
  • a material obtained by subjecting a carbon paper, a carbon cloth, or a carbon felt to a water-repellent treatment with a fluorine resin is preferably used.
  • At least one of the anode catalyst layer 2 and the force sword catalyst layer 3 is formed by mixing a catalyst powder, an ion exchange resin, and a solution in which the present amine is dissolved or dispersed in a solvent, to form a catalyst layer. It is preferably formed by preparing a coating solution for use, applying the coating solution to the gas diffusion layers 4, 4 'or the solid polymer electrolyte membrane 1, and drying the coating solution. In addition, the above-mentioned coating solution is applied on a separately prepared base material, dried to form a catalyst layer, and then laminated on the solid polymer electrolyte membrane 1 and transferred to the solid polymer electrolyte membrane 1 by hot pressing. You may.
  • the content of the present amine is preferably from 0.03 to 11 in the case of the content (WXN) ZMX1000 based on the catalyst powder, and more preferably from 0.05 to 0.7. Further, when the content of the present amine is represented by a mass ratio with respect to the catalyst powder, it is preferably from 0.3 to 30%, particularly preferably from 11 to 20%.
  • the substrate on which the coating liquid for forming a catalyst layer is coated any film that is stable with respect to a dispersion medium contained in the coating liquid for forming a catalyst layer can be preferably used.
  • polypropylene examples include polyethylene terephthalate, ethylene'tetrafluoroethylene copolymer, and polytetrafluoroethylene sheet.
  • a method for applying the coating liquid for forming the catalyst layer a method using an applicator, a bar coater, a die coater, or the like, a screen printing method, a gravure printing method, or the like can be applied.
  • a water repellent, a pore-forming agent, a thickener, a diluting solvent, and the like are added to the coating liquid for forming the catalyst layer as needed to enhance the discharge of water generated by the electrode reaction.
  • a method for incorporating the present amine into the catalyst layer a method for forming the catalyst layer using a coating solution for forming a catalyst layer and then immersing the catalyst layer in a solution in which the present amine is dissolved in a solvent is used. And a method of preparing a membrane 'electrode assembly outside the catalyst layer and then immersing the membrane' electrode assembly in the present amine solution.
  • a gas containing oxygen is supplied to the force source, and a gas containing hydrogen is supplied to the anode.
  • a separator in which a groove serving as a gas flow path is formed is disposed outside both electrodes of the membrane / electrode assembly, and a gas is caused to flow through the gas flow path to form a membrane / electrode assembly.
  • the separator may be made of metal or carbon, or may be made of a material obtained by mixing graphite and resin, and various conductive materials can be used widely.
  • Tables 1, 3, and 5 show the content of the present amine contained in the catalyst layer in each example in terms of (WXN) ZM X 1000 and the value represented by the mass ratio to the catalyst powder in the catalyst layer. Are respectively shown.
  • catalyst 1 a platinum-supported catalyst (manufactured by N-Chemcat, hereinafter referred to as catalyst 1) in which 50% of the total mass of the catalyst is contained in a carbon support (specific surface area: 800 m 2 Zg) is added to 11.6 g of distilled water. Added and stirred well.
  • catalyst 1 a platinum-supported catalyst (manufactured by N-Chemcat, hereinafter referred to as catalyst 1) in which 50% of the total mass of the catalyst is contained in a carbon support (specific surface area: 800 m 2 Zg) is added to 11.6 g of distilled water. Added and stirred well.
  • catalyst 1 a platinum-supported catalyst (manufactured by N-Chemcat, hereinafter referred to as catalyst 1 a platinum-supported catalyst (manufactured by N-Chemcat, hereinafter referred to as catalyst 1) in which 50% of the total mass of the catalyst is contained in a carbon support (specific surface area: 800 m 2 Zg) is added to 11.6 g
  • HAL represented by H COOR (where R is 2,2,6,6-tetramethyl-4-piperidyl group)
  • copolymer A ion exchange capacity: 1.1 meq. Zg dry resin, hereafter referred to as copolymer A
  • ethanol 8 g of a liquid with a solid concentration of 10% by mass and distilled water 3 .3 g was further added and mixed and dispersed using a homogenizer to obtain a coating liquid a for forming a catalyst layer.
  • the coating liquid a was coated on a polypropylene base film using a bar coater, and then dried in a dryer at 80 ° C for 30 minutes to prepare a catalyst layer a.
  • Table 1 shows the content of HALS contained in this catalyst layer.
  • the amount of platinum per unit area contained in the catalyst layer a was calculated by measuring the mass of only the base film before the formation of the catalyst layer a and the base film after the formation of the catalyst layer a. It was 5 mgZcm 2 .
  • a 30 m-thick ion exchange membrane (Flemion: trade name of Asahi Glass Co., Ltd., ion exchange capacity 1.1) which also has a perfluorocarbon polymer force having a sulfonic acid group. (Equivalent of Zg dry resin), the catalyst layers a formed on the base film were respectively arranged on both surfaces of this film, and transferred by hot pressing. As a result, an anode catalyst layer and a force sword catalyst layer were formed, and a membrane-catalyst layer assembly comprising a solid polymer membrane having an electrode area of 25 cm 2 and a catalyst layer was prepared.
  • a membrane-electrode assembly was produced by sandwiching the obtained membrane-catalyst layer assembly between two gas diffusion layers made of carbon cloth having a thickness of 350 ⁇ m.
  • hydrogen (utilization ratio 70%) Z air supply (40% utilization)
  • the polymer at a current density of 0. 2AZcm 2 Te Contact ⁇ the cell temperature 70 ° C Of the fuel cell was evaluated.
  • the dew point is 70 on the anode side.
  • C and the power source side were humidified with hydrogen and air, respectively, and supplied to the inside of the cell with a dew point of 50 ° C, and the cell voltage at the beginning of operation was measured.
  • Table 2 shows the results.
  • Table 2 shows the relationship between the elapsed time after the start of operation and the cell voltage (durability evaluation).
  • a coating solution b for forming a catalyst layer was prepared in the same manner as in Example 1, except that ethanol in which HALS was not dissolved was used instead of the ethanol solution of HALS.
  • a catalyst layer b was prepared in the same manner as in Example 1, except that the coating liquid b was used instead of the coating liquid a.
  • the amount of platinum per unit area contained in the catalyst layer b was measured in the same manner as in Example 1, it was 0.5 mgZcm 2 .
  • an example was adopted except that both the anode catalyst layer and the power In the same manner as in 1, a membrane / catalyst layer assembly having an electrode area of 25 cm 2 was produced.
  • Example 2 shows the results. Table 2 shows the results obtained when the durability was evaluated in the same manner as in Example 1.
  • HALS (ADK STAB LA77: trade name of Asahi Denka Kogyo KK, molecular weight: 481, number of basic nitrogen atoms: 2, insoluble in water) represented by OR (where R is the same as R in Example 1)
  • a coating liquid c for forming a catalyst layer was prepared in the same manner as in Example 1 except that the coating liquid c was used.
  • a catalyst layer c was prepared in the same manner as in Example 1, except that the coating liquid c was used instead of the coating liquid a.
  • Table 1 shows the content of HALS in this catalyst layer. When the amount of platinum per unit area contained in the catalyst layer c was measured in the same manner as in Example 1, it was 0.5 mgZcm 2 .
  • a membrane-catalyst layer assembly having an electrode area of 25 cm 2 was produced in the same manner as in Example 1 except that both the anode catalyst layer and the force catalyst layer were constituted by the catalyst layer c.
  • Example 2 shows the results. Table 2 shows the results obtained when the durability was evaluated in the same manner as in Example 1.
  • Example 1 instead of Adekastab LA57 as HALS, poly [ ⁇ 6 -— (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl ⁇ ⁇ (2, 2, 6 , 6-Tetramethyl-4-piperidyl) imino ⁇ hexamethylene ⁇ (2,2,6,6-tetramethyl-4-piperidyl) imino ⁇ ] (Timasoap 944: Trade name of Ciba Specialty Chemical Co., molecular weight: 2500, base)
  • Coating solution d for forming a catalyst layer was prepared in the same manner as in Example 1 except that 0.1 lg of the number of nitrogen atoms having a property (insoluble in water, 20) was dissolved.
  • a catalyst layer d was prepared in the same manner as in Example 1, except that the coating liquid d was used instead of the coating liquid a. Table 1 shows the HALS content in this catalyst layer. When the amount of platinum per unit area contained in the catalyst layer d was measured in the same manner as in Example 1, it was 0.5 mgZcm 2 . Next, in the same manner as in Example 1 except that both the anode catalyst layer and the force sword catalyst layer were constituted by the catalyst layer d, a membrane having an electrode area of 25 cm 2 The body was made.
  • Example 2 shows the results. Table 2 shows the results obtained when the durability was evaluated in the same manner as in Example 1.
  • Example 1 instead of ADK STAB LA57, HALS is replaced by N, N, -bis (3-aminopropyl) ethylenediamine.2,4-bis [N-butyl-N— (1,1,2,2,6,6- Pentamethyl 4-piperidyl) amino] — 6-chloro-1,3,5-triazine condensate (Timasorp 119: Chino Specialty Chemicals, trade name, molecular weight: 2000, number of basic nitrogen atoms) : 20, insoluble in water) was prepared in the same manner as in Example 1 except that 0.1 lg of the compound was dissolved in water.
  • a catalyst layer e was prepared in the same manner as in Example 1, except that the coating liquid e was used instead of the coating liquid a.
  • Table 1 shows the content of HALS contained in this catalyst layer.
  • the amount of platinum per unit area contained in the catalyst layer e was measured in the same manner as in Example 1, and it was 0.5 mgZcm 2 .
  • a membrane-catalyst layer assembly having an electrode area of 25 cm 2 was produced in the same manner as in Example 1, except that both the anode catalyst layer and the force sword catalyst layer were constituted by the catalyst layer e.
  • a membrane-catalyst layer assembly having an electrode area of 25 cm 2 was produced in the same manner as in Example 1 except that both the anode catalyst layer and the force sword catalyst layer were constituted by the catalyst layer e.
  • Example 2 shows the results. Table 2 shows the results obtained when the durability was evaluated in the same manner as in Example 1.
  • Catalyst 1 Take 7.5 g of Catalyst 1, add it to a mixed solvent of 67 g of distilled water and 68 g of methanol, and mix well.
  • HALS 7.9 g of a solution of 0.5 g of ADK STAB LA77 in methanol is added, and the mixture is mixed and dispersed using a homogenizer.
  • the coating liquid f was coated on a polypropylene base film using a bar coater. By drying in a dryer at 0 ° C for 8 hours, styrene 'di-
  • a catalyst layer f composed of benzene ion exchange resin and containing 0.5 mgZcm 2 of platinum per unit area. After washing the catalyst layer f several times with water, the SONa group is converted to a SOH group by immersing it in a 0.5 mmol ZL aqueous sulfuric acid solution. Contained in this catalyst layer
  • Table 3 shows the HALS content.
  • the amount of platinum per unit area contained in the catalyst layer f can be calculated by measuring in the same manner as in Example 1.
  • a 50-m-thick polymer electrolyte membrane obtained by synthesizing by the method disclosed in Example 1 of JP-A-2002-334702. (Ethylene / tetrafluoroethylene)) except that the procedure is the same as in Example 1 to produce a membrane / catalyst layer assembly having an electrode area of 25 cm 2 .
  • Example 2 Using this membrane's catalyst layer assembly, a membrane 'electrode assembly was prepared in the same manner as in Example 1, and the cell voltage was measured and the durability was evaluated in the initial stage of operation in the same manner as in Example 1. The result is obtained.
  • Example 6 the same procedure as in Example 6 is carried out except that methanol that does not dissolve HALS is used instead of the methanol solution of HALS, to prepare a coating solution g for forming a catalyst layer.
  • a coating liquid g was used in place of the coating liquid f to prepare a catalyst layer g in which the amount of platinum per unit area was 0.5 mgZcm 2 in the same manner as in Example 6.
  • This catalyst layer g is operated in the same manner as in Example 6 to convert a —SO Na group into a —SO H group.
  • a membrane-catalyst layer assembly having an electrode area of 25 cm 2 is produced by performing the same operation as in Example 6 except that both the catalyst layers are constituted by the catalyst layer g.
  • Example 2 Using this membrane's catalyst layer assembly, a membrane 'electrode assembly was prepared in the same manner as in Example 1, and the cell voltage was measured and the durability was evaluated in the initial stage of operation in the same manner as in Example 1. The result is obtained.
  • Example 6 a 60 ⁇ m-thick polymer electrolyte membrane (sulfonide polyether sulfone) obtained by synthesizing the solid polymer electrolyte membrane by the method disclosed in Example 1 of JP-A-2001-307752 was used. , Ion exchange capacity: 0.56 meq / g dry resin) Is performed in the same manner as in Example 6 to produce a membrane-catalyst layer assembly having an electrode area of 25 cm 2 . Table 1 shows the content of HALS contained in this catalyst layer.
  • Example 2 Using this membrane's catalyst layer assembly, a membrane 'electrode assembly was prepared in the same manner as in Example 1, and the cell voltage was measured and the durability was evaluated in the initial stage of operation in the same manner as in Example 1. The result is obtained.
  • a catalyst layer g is prepared in the same manner as in Example 7. Next, a membrane-catalyst layer assembly having an electrode area of 25 cm 2 is produced in the same manner as in Example 8, except that both the anode catalyst layer and the force catalyst layer are constituted by the catalyst layer g.
  • Example 2 Using this membrane's catalyst layer assembly, a membrane 'electrode assembly was prepared in the same manner as in Example 1, and the cell voltage was measured and the durability was evaluated in the initial stage of operation in the same manner as in Example 1. The result is obtained.
  • Example 6 In the same manner as in Example 6, 7.5 g of Catalyst 1 is added to a mixed solvent of 67 g of distilled water and 68 g of methanol, and mixed well. As HALS, 7.9 g of a solution of 0.5 g of ADK STAB LA77 in methanol is added, and the mixture is mixed and dispersed using a homogenizer.
  • copolymer B Add 3 g of 2 2 2 3 2 2 2 3 copolymer (ion exchange capacity: 1.4 meq. Zg dry resin, hereinafter referred to as copolymer B), mix and disperse with a homogenizer to form a catalyst layer
  • copolymer B ion exchange capacity: 1.4 meq. Zg dry resin
  • the above copolymer can be obtained by synthesizing by the method disclosed in Example 1 of JP-A-2004-10744, and 4-bromo-1,1,2-trifluorobutene 1 and 1 Isobutene was added to a freon solution with 1,1,2-trifluoropentane-1 and then reacted by irradiation with Co- ⁇ rays for 6 hours to form a polymer, and then sodium sulfite was added. It is obtained by introducing one SOH group by reacting.
  • Example 6 platinum per unit area was used in the same manner as in Example 6 except that the coating liquid h was used instead of the coating liquid f, and the coating liquid was dried in a dryer at 80 ° C for 30 minutes. To prepare a catalyst layer h having an amount of 0.5 mg / cm 2 . Table 3 shows the HALS content in this catalyst layer. Next Then, the same procedure as in Example 6 was carried out except that both the anode catalyst layer and the force sword catalyst layer were composed of the catalyst layer h, thereby producing a membrane-catalyst layer assembly having an electrode area of 25 cm 2.
  • a 40-m polymer electrolyte membrane obtained by synthesizing by the method disclosed in Comparative Example 2 of JP-A-2003-68327.
  • the operation was performed in the same manner as in Example 6 except that the capacity: 1.21 meq. (Zg dried resin) was used to produce a membrane-catalyst layer assembly having an electrode area of 25 cm 2 .
  • Example 2 Using this membrane's catalyst layer assembly, a membrane 'electrode assembly was prepared in the same manner as in Example 1, and the cell voltage was measured and the durability was evaluated in the initial stage of operation in the same manner as in Example 1. The result is obtained.
  • Example 10 the same procedure as in Example 10 is carried out except that methanol that does not dissolve HALS is used instead of the methanol solution of HALS, to prepare a coating liquid i for forming a catalyst layer.
  • the coating liquid i was used in place of the coating liquid h, and a catalyst layer i in which the amount of platinum per unit area was 0.5 mg / cm 2 was prepared in the same manner as in Example 6.
  • a membrane-catalyst layer assembly having an electrode area of 25 cm 2 was produced.
  • Table 3 shows the HALS content in this catalyst layer.
  • Example 2 Using this membrane's catalyst layer assembly, a membrane 'electrode assembly was prepared in the same manner as in Example 1, and the cell voltage was measured and the durability was evaluated in the initial stage of operation in the same manner as in Example 1. The result is obtained.
  • Example 6 The procedure of Example 6 is repeated, except that a solution in which 0.41 g of Adekastab LA57 and 7.9 g of methanol are mixed as HALS, to prepare a coating liquid j for forming a catalyst layer.
  • the same procedure as in Example 6 is carried out except that the coating liquid j is used instead of the coating liquid f, to prepare a catalyst layer j in which the amount of platinum per unit area is 0.5 mg / cm 2 .
  • This catalyst layer j is operated in the same manner as in Example 6 to convert a —SO Na group into a —SO H group. Next, touch the anode
  • Example 6 The operation was performed in the same manner as in Example 6, except that both the medium layer and the First, a membrane-catalyst layer assembly having an electrode area of 25 cm 2 is prepared. Table 3 shows the content of HALS contained in this catalyst layer.
  • Example 2 Using this membrane's catalyst layer assembly, a membrane 'electrode assembly was prepared in the same manner as in Example 1, and the cell voltage was measured and the durability was evaluated in the initial stage of operation in the same manner as in Example 1. The result is obtained.
  • Example 6 The same procedure as in Example 6 was carried out except that a solution obtained by mixing 0.43 g of Chimasorp 944 and 7.9 g of methanol as HALS in Example 6 was used, to prepare a coating liquid k for forming a catalyst layer.
  • the same procedure as in Example 6 is carried out except that the coating liquid k is used instead of the coating liquid f, to prepare a catalyst layer k in which the amount of platinum per unit area is 0.5 mg / cm 2 .
  • This catalyst layer k is operated in the same manner as in Example 6 to convert SO Na groups to SO H groups. Contained in this catalyst layer
  • Table 3 shows the HALS content.
  • Example 2 Using this membrane's catalyst layer assembly, a membrane 'electrode assembly was prepared in the same manner as in Example 1, and the cell voltage was measured and the durability was evaluated in the initial stage of operation in the same manner as in Example 1. The result is obtained.
  • This coating liquid 1 was coated on a polypropylene base film with a bar coater and dried in an oven at 80 ° C. for 30 minutes, whereby the amount of platinum per unit area was 0.5 mg / cm.
  • a second catalyst layer 1 is prepared. Table 5 shows the content of amine contained in the catalyst layer. The amount of platinum per unit area contained in the catalyst layer 1 was measured in the same manner as in Example 1. Can be calculated.
  • a membrane-electrode assembly was prepared in the same manner as in Example 1, and the cell voltage was measured in the initial operation and the durability was evaluated in the same manner as in Example 1. The result is obtained.
  • Example 14 In the same manner as in Example 14 except that 0.1 g of diisobutylamine (molecular weight: 129.14, the number of basic nitrogen atoms: 1, solubility in water ⁇ 1) is used instead of tree n-octylamine.
  • a coating liquid m for forming a catalyst layer.
  • a catalyst layer m having a platinum amount per unit area of 0.5 mg / cm 2 was prepared in the same manner as in Example 14.
  • Table 5 shows the content of amine contained in the catalyst layer.
  • a membrane-catalyst layer assembly having an electrode area of 25 cm 2 is prepared by performing the same operation as in Example 1 except that both the anode catalyst layer and the force catalyst layer are formed of the catalyst layer n. .
  • a membrane-electrode assembly was prepared in the same manner as in Example 1, and the cell voltage was measured in the initial operation and the durability was evaluated in the same manner as in Example 1. The result is obtained.
  • Example 14 instead of tree n-octylamine, 2-ethylhexylamine (molecular weight: 129.24, the number of basic nitrogen atoms: 1, solubility in water: 0.16) was changed to 0.1. The same procedure as in Example 14 is carried out except for using lg, to prepare a coating liquid n for forming a catalyst layer. A coating layer n having a platinum amount per unit area of 0.5 mg / cm 2 was prepared in the same manner as in Example 14, except that coating liquid n was used instead of coating liquid 1. Table 5 shows the content of amine contained in this catalyst layer.
  • a membrane-catalyst layer assembly having an electrode area of 25 cm 2 is prepared by performing the same operation as in Example 1 except that both the anode catalyst layer and the force sword catalyst layer are constituted by the catalyst layer n.
  • a membrane-electrode assembly was prepared in the same manner as in Example 1, and the cell voltage was measured in the initial operation and the durability was evaluated in the same manner as in Example 1. The result is obtained.
  • Example 14 except that 0.05 g of piperidine (molecular weight: 85.2, number of basic nitrogen atoms: 1, solubility in water: dissolved at an arbitrary ratio) was used instead of tree n-octylamine.
  • the same operation as in Example 14 is performed to prepare a coating liquid o for forming a catalyst layer.
  • a catalyst layer o having a platinum amount per unit area of 0.5 mgZcm 2 is prepared in the same manner as in Example 14, except that the coating liquid o is used instead of the coating liquid 1.
  • Table 5 shows the content of amine contained in this catalyst layer.
  • a membrane-catalyst layer assembly having an electrode area of 25 cm 2 is produced by performing the same operation as in Example 1 except that both the anode catalyst layer and the force sword catalyst layer are constituted by the catalyst layer o.
  • a membrane-electrode assembly was prepared in the same manner as in Example 1, and the cell voltage was measured in the initial operation and the durability was evaluated in the same manner as in Example 1. The result is obtained.
  • Example 14 was repeated except that 0.05 g of n-propylamine (molecular weight: 59.1 1; number of basic nitrogen atoms: 1; solubility in water: 100) was used instead of tree n-octylamine.
  • the same operation is performed to prepare a coating liquid p for forming a catalyst layer.
  • a coating layer p having a platinum amount of 0.5 mg / cm 2 per unit area was prepared in the same manner as in Example 14, except that the coating liquid p was used instead of the coating liquid 1.
  • Table 5 shows the content of amine contained in the catalyst layer.
  • a membrane having an electrode area of 25 cm 2 is prepared by performing the same operation as in Example 1 except that both the anode catalyst layer and the force catalyst layer are formed of the catalyst layer p.
  • An electrode assembly was prepared using the 'catalyst layer assembly in the same manner as in Example 1', and the cell voltage was measured and the durability was evaluated at the initial stage of operation in the same manner as in Example 1. The results shown in
  • Example 19 (Comparative Example)
  • Example 14 except that 0.1 lg of N, N-dimethylaminopropylamine (molecular weight: 102.18, number of basic nitrogen atoms: 2, solubility: 100) was used instead of tree n-octylamine.
  • a coating liquid q for forming a catalyst layer.
  • a coating layer q having a platinum amount per unit area of 0.5 mgZcm 2 was prepared in the same manner as in Example 14, except that the coating liquid q was used instead of the coating liquid 1.
  • Table 5 shows the content of amine contained in this catalyst layer.
  • a membrane-catalyst layer assembly having an electrode area of 25 cm 2 is produced by performing the same operation as in Example 1 except that both the anode catalyst layer and the force sword catalyst layer are constituted by the catalyst layer q.
  • a membrane-electrode assembly was prepared in the same manner as in Example 1, and the cell voltage was measured in the initial operation and the durability was evaluated in the same manner as in Example 1. The result is obtained.
  • Example 14 instead of using copolymer A, sodium styrene sulfonate 0.5
  • Example 14 the same operation was performed except that the coating liquid r was used in place of the coating liquid 1 and the coating liquid was dried in a dryer at 80 ° C for 8 hours. Having styrene 'dibulbenze
  • a catalyst layer r containing ion exchange resin and containing 0.5 mg Zcm 2 of platinum per unit area is prepared. After washing the catalyst layer r several times with water, the catalyst is immersed in an aqueous solution of 0.5 mmol ZL of sulfuric acid to convert the SO Na groups into SO H groups. Of the amine contained in this catalyst layer
  • Table 5 shows the content.
  • a 50-m-thick polymer electrolyte membrane obtained by synthesizing by the method disclosed in Example 1 of JP-A-2002-334702. The operation is performed in the same manner as in Example 1 except that (ethylene 'tetrafluoroethylene) is used, to produce a membrane' catalyst layer assembly having an electrode area of 25 cm 2 .
  • Example 20 The procedure of Example 20 was repeated, except that in place of the ethanol solution of tree n-octylamine in Example 20, ethanol was used without dissolving the tree n-octylamine.
  • a coating layer s having a platinum amount per unit area of 0.5 mg / cm 2 was prepared in the same manner as in Example 20, except that coating liquid s was used instead of coating liquid r.
  • This catalyst layer s is operated in the same manner as in Example 20 to convert -SO Na groups into -SO H groups.
  • a membrane / catalyst layer assembly having an electrode area of 25 cm 2 is produced by performing the same operation as in Example 20 except that both the catalyst layer and the power catalyst layer are constituted by the catalyst layer s.
  • a membrane-electrode assembly was prepared in the same manner as in Example 1, and the cell voltage was measured in the initial operation and the durability was evaluated in the same manner as in Example 1. The result is obtained.
  • Example 14 instead of using the copolymer A, 8 g of the copolymer BO and 7.2 g of ethanol were added to prepare a coating liquid t for forming a catalyst layer.
  • Example 14 the coating liquid t was used in place of the coating liquid 1, and the amount of platinum per unit area of the catalyst layer t was 0.5 mg / cm 2 in the same manner as in Example 14. I do.
  • Table 5 shows the content of amine contained in the catalyst layer.
  • both the anode catalyst layer and the force sword catalyst layer are constituted by a catalyst layer t, and are obtained as a solid polymer electrolyte membrane by synthesizing by the method disclosed in Example 2 of JP-A-2003-68327.
  • Example 2 The same operation as in Example 1 was carried out except that a polymer electrolyte membrane (sulfonimide polyimide) having a thickness of ⁇ m was used, to prepare a membrane-catalyst layer assembly having an electrode area of 25 cm 2 .
  • a polymer electrolyte membrane sulfonimide polyimide having a thickness of ⁇ m was used, to prepare a membrane-catalyst layer assembly having an electrode area of 25 cm 2 .
  • a membrane-electrode assembly was prepared in the same manner as in Example 1, and the cell voltage was measured in the initial operation and the durability was evaluated in the same manner as in Example 1. The result is obtained.
  • Example 22 The same procedure as in Example 22 was carried out except that in place of the ethanol solution of tree n-octylamine in Example 22, ethanol not dissolving tree n-octylamine was used, and the coating solution u for forming a catalyst layer was prepared. I do.
  • the coating liquid u was used instead of the coating liquid t.
  • a catalyst layer u having an amount of platinum per unit area of 0.5 mgZcm 2 is prepared.
  • a membrane-catalyst layer assembly having an electrode area of 25 cm 2 is prepared by performing the same operation as in Example 22 except that both the anode catalyst layer and the force catalyst layer are constituted by the catalyst layer u.
  • a membrane-electrode assembly was prepared in the same manner as in Example 1, and the cell voltage was measured in the initial operation and the durability was evaluated in the same manner as in Example 1. The result is obtained.
  • the presence of amine in the catalyst layer makes it difficult for hydrogen peroxide and peroxide radicals to be generated, so that a fuel cell incorporating the obtained membrane-electrode assembly can generate power for a long time.
  • performance degradation is reduced. Therefore, it is possible to provide a membrane-electrode assembly for a polymer electrolyte fuel cell, which is stable even after long-term power generation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

 初期の発電性能が高く、長期にわたって安定した出力特性を維持できる固体高分子型燃料電池用膜・電極接合体の提供。  触媒金属粒子がカーボン担体に担持された触媒粉末とイオン交換樹脂とを含む触媒層を有するアノード及びカソードと、該アノードの触媒層と該カソードの触媒層との間に配置されるイオン交換膜とを有する固体高分子型燃料電池用膜・電極接合体において、前記アノードの触媒層及び前記カソードの触媒層の少なくとも一方には、20°Cで水に対する溶解度が3以下のアミンを含有させ、当該アミンの触媒粉末に対する含有量(W×N)/M×1000を0.03~1とする(ただし、Wは前記アミンの触媒粉末1gあたりの含有量(g)、Mは前記アミンの分子量、Nは前記アミン1分子中における塩基性を有する窒素原子の数である。)。前記アミンとしては、特にHALSが好ましい。

Description

明 細 書
固体高分子型燃料電池用膜 ·電極接合体及びその製造方法
技術分野
[0001] 本発明は、初期の出力電圧が高ぐ長期に渡って高い出力電圧が得られる固体高 分子型燃料電池用膜 ·電極接合体及びその製造方法に関する。
背景技術
[0002] 燃料電池は、原料となるガスの反応エネルギを直接電気工ネルギに変換する電池 であり、水素'酸素燃料電池は、その反応生成物が原理的に水のみであり地球環境 への影響がほとんどない。なかでも電解質として固体高分子膜を使用する固体高分 子型燃料電池は、高いイオン導電性を有する高分子電解質膜が開発され、常温でも 作動でき高出力密度が得られる。このため、近年のエネルギ、地球環境問題への社 会的要請の高まりとともに、電気自動車用等の移動車両や、小型コージエネレーショ ンシステムの電源として大きな期待が寄せられて 、る。
[0003] 固体高分子型燃料電池では、通常、電解質膜として陽イオン交換基を有するィォ ン交換膜が使用され、特にスルホン酸基を有するパーフルォロカーボン重合体から なるイオン交換膜が基本特性に優れている。固体高分子型燃料電池では、イオン交 換膜の両面にガス拡散性の電極層を配置し、燃料である水素を含むガス及び酸ィ匕 剤となる酸素を含むガス (空気等)を、それぞれアノード及び力ソードに供給すること により発電を行う。
[0004] 固体高分子型燃料電池の力ソードにおける酸素の還元反応は過酸ィ匕水素 (H O )
2 2 を経由して反応が進行することから、触媒層中で生成する過酸化水素又は過酸化物 ラジカルによって、電解質膜の劣化を引き起こす可能性が懸念されている。また、ァ ノードには力ソードから酸素分子が膜内を透過してくるため、アノードで水素分子と酸 素分子が反応を引き起こしラジカルを生成することも考えられる。特に炭化水素榭脂 膜を電解質膜として使用する場合は、ラジカルに対する安定性に乏しく長期間に渡 る運転においては大きな問題となっていた。例えば、固体高分子型燃料電池が初め て実用化されたのは、米国のジエミ-宇宙船の電源として採用された時であり、この 時にはスチレンージビュルベンゼン重合体をスルホンィ匕した膜が電解質膜として使用 されたが、長期間に渡る耐久性に問題があった。このため、ラジカルに対する安定性 に優れる重合体として、スルホン酸基を有するパーフルォロカーボン重合体が着目さ れ、該重合体力もなるイオン交換膜が電解質膜として使用できることが知られている。
[0005] また、さらにラジカルに対する安定性を高めるため、電解質膜中に過酸化物ラジカ ルを接触分解できる遷移金属酸化物又はフエノール性水酸基を有する化合物を添 加する系(特許文献 1)や、電解質膜内に触媒金属粒子を担持し、過酸化水素を分 解する技術 (特許文献 2)も開示されている。しかし、これらの技術は電解質膜内のみ に材料を添加する技術であり、過酸ィ匕水素又は過酸ィ匕物ラジカルの発生源である触 媒層の改良を試みるものではない。したがって、初期的には改善の効果があるものの 、長期間に渡る耐久性には大きな問題が生じる可能性があった。またコスト的にも高 くなるという問題があった。
[0006] また、触媒のカーボン表面を N, N—ジメチルァミノプロピルァミンで処理して形成さ れた担持触媒からなる固体高分子型燃料電池が知られている(特許文献 3)が、 N, N—ジメチルァミノプロピルアミンを触媒の処理に用いた後に濾別しているため、アミ ンが触媒中に十分残らず、耐久性を向上させる効果は不十分であった。さらに、ここ で用いられている N, N—ジメチルァミノプロピルアミンは水に対して溶解度が高ぐ親 水性であるため、燃料電池運転中に生成する水により溶出し、その効果が薄れやす いという問題点があった。
特許文献 1:特開 2001— 118591号公報 (特許請求の範囲)
特許文献 2:特開平 06— 103992号公報(2頁 33— 37行)
特許文献 3:特開 2002 - 373663号公報(実施例 1)
発明の開示
発明が解決しょうとする課題
[0007] 近年、固体高分子型燃料電池は、自動車用、住宅用市場等の電源として期待され 、実用化への要望が高まり開発が加速している。これらの用途では、特に高い効率で の運転が要求されるため、より高い電圧での運転が望まれると同時に長期に渡って 安定した出力を得られることが望ましい。また、電解質膜の導電性を確保するために 、電解質膜を加湿する必要があるが、燃料電池システム全体の効率の点から低加湿 又は無加湿での運転が要求されることも多 、。
[0008] そこで本発明は、車載用、住宅用市場等へ固体高分子型燃料電池を実用化する にあたって、充分に高いエネルギ効率での発電が可能であると同時に、長期間に渡 つて耐久性に優れた固体高分子型燃料電池用膜 ·電極接合体及びその製造方法を 提供することを目的とする。高耐久性を得るために、発電に伴って過酸化水素や過 酸化物ラジカルが発生しにくい触媒層を有する膜'電極接合体及びその製造方法を 提供することを目的とする。
課題を解決するための手段
[0009] 本発明は、触媒金属粒子がカーボン担体に担持された触媒粉末とイオン交換榭脂 とを含む触媒層を有するアノード及び力ソードと、該アノードの触媒層と該カソードの 触媒層との間に配置されるイオン交換膜とを有する固体高分子型燃料電池用膜 '電 極接合体であって、前記アノードの触媒層及び前記力ソードの触媒層の少なくとも一 方には、 20°Cで水に対する溶解度が 3以下のァミン (以下、本ァミンともいう)が含ま れ、本ァミンの触媒粉末に対する含有量(WX N) ZM X 1000が0. 03— 1である( ただし、 Wは本ァミンの触媒粉末 lgあたりの含有量 (g)、 Mは本ァミンの分子量、 N は本ァミン 1分子中における塩基性を有する窒素原子の数である。)ことを特徴とする 固体高分子型燃料電池用膜 ·電極接合体を提供する。
[0010] また、本発明は、触媒金属粒子がカーボン担体に担持された触媒粉末とイオン交 換榭脂とを含む触媒層を有するアノード及び力ソードと、該アノードの触媒層と該カソ ードの触媒層との間に配置されるイオン交換膜とを有する固体高分子型燃料電池用 膜'電極接合体であって、前記アノードの触媒層及び前記力ソードの触媒層の少なく とも一方には、本ァミンが含まれ、本ァミンの触媒粉末に対する含有量が質量比で 0 . 3— 30%であることを特徴とする固体高分子型燃料電池用膜'電極接合体を提供 する。
[0011] また、本発明は、触媒金属粒子がカーボン担体に担持された触媒粉末とイオン交 換榭脂とを含む触媒層を有するアノード及び力ソードと、該アノードの触媒層と該カソ ードの触媒層との間に配置されるイオン交換膜とを有する固体高分子型燃料電池用 膜'電極接合体の製造方法であって、前記触媒粉末と前記イオン交換樹脂と本アミ ンとを含み、かつ、本ァミンの前記触媒粉末に対する含有量 (WX N) ZM X 1000 が 0. 03— 1である塗工液を調製し、該塗工液を基材上に塗工することにより触媒層 を形成し、得られた触媒層をアノード及び力ソードの触媒層の少なくとも一方とするこ とを特徴とする固体高分子型燃料電池用膜 ·電極接合体の製造方法を提供する。
[0012] また、本発明は、触媒金属粒子がカーボン担体に担持された触媒粉末とイオン交 換榭脂とを含む触媒層を有するアノード及び力ソードと、該アノードの触媒層と該カソ ードの触媒層との間に配置されるイオン交換膜とを有する固体高分子型燃料電池用 膜'電極接合体の製造方法であって、前記触媒粉末と前記イオン交換樹脂と本アミ ンとを含み、かつ、本ァミンの前記触媒粉末に対する含有量が質量比で 0. 3— 30% である塗工液を調製し、該塗工液を基材上に塗工することにより触媒層を形成し、得 られた触媒層をアノード及び力ソードの触媒層の少なくとも一方とすることを特徴とす る固体高分子型燃料電池用膜 '電極接合体の製造方法を提供する。
発明の効果
[0013] 通常の触媒活性が高!ヽと ヽわれる触媒粉末を含む膜'電極接合体を組み込んだ 固体高分子型燃料電池は、発電時に過酸化水素や過酸化物ラジカルが生成しやす ぐ長期間の発電を行うと出力が低下しやすい。本発明の膜'電極接合体を組み込 んだ燃料電池は、長期間発電しても性能劣化が少なくなる。この理由としては、本発 明では、触媒層中に本ァミンを含有させることにより、本ァミンが過酸化物の分解ゃラ ジカルの補足機能を有するため、また、本ァミンの存在により過酸化水素や過酸化物 ラジカルが生成しにくくなるためと考えられる。
図面の簡単な説明
[0014] [図 1]本発明の固体高分子型燃料電池用膜'電極接合体の実施態様を示す断面図 符号の説明
[0015] 1 :固体高分子電解質膜、
2 :アノード触媒層、
3 :力ソード触媒層、 4、 4':ガス拡散層、
5 :セパレータ、
5a:セパレータのガス供給溝、
6 :ガスシール体、
7 :膜'電極接合体。
発明を実施するための最良の形態
[0016] 本発明の固体高分子型燃料電池用膜 '電極接合体の一態様の断面図を図 1に示 す。以下、膜'電極接合体 7を図 1に基づいて説明する。膜'電極接合体 7は、固体高 分子電解質膜 1と、この電解質膜 1の膜面に密着したアノード触媒層 2及び力ソード 触媒層 3と、これら各触媒層に密着したガス拡散層 4、 4'とガスシール体 6により構成 される。アノード触媒層 2及び力ソード触媒層 3は、ガス拡散層 4、 4'と固体高分子電 解質膜 1との間に配置される。固体高分子電解質膜 1は、アノード触媒層 2中で生成 するプロトンを膜厚方向に沿って力ソード触媒層 3へ選択的に透過させる役割を有す る。また、固体高分子電解質膜 1は、アノードに供給される水素と力ソードに供給され る酸素が混じり合わないようにするための隔膜としての機能も有する。ガス拡散層 4、 4'は通常多孔性の導電性基材カもなり、必ずしも備えられていなくてもよいが、触媒 層へのガスの拡散を促進し、集電体の機能も有するので、通常は備えられていること が好ましい。膜'電極接合体 7の外側にはガス流路 5aとなる溝が形成されたセパレー タ 5が配置される。アノード側には、セパレータの溝を介して、例えばメタノールや天 然ガス等の燃料を改質して得られる水素ガスが供給される。なお、本明細書では、膜
•電極接合体 7がガス拡散層 4、 4'を有する場合はガス拡散層 4、 4'と触媒層 2、 3と を合わせて電極という。
以下、本発明について詳述する。
[0017] 本発明では、アノード触媒層 2は、例えば、白金とルテニウムの合金をカーボン担 体に担持した触媒粉末とイオン交換樹脂と含んで構成される。また、力ソード触媒層 3は、白金又は白金合金をカーボン担体に担持した触媒粉末とイオン交換樹脂とを 含んで構成される。本発明では、イオン交換榭脂としては、陽イオン交換基を有する 、炭化水素榭脂又は含フッ素炭化水素榭脂が好ましぐスルホン酸基を有するパー フルォロカーボン重合体 (エーテル性酸素原子を含んでもよい。)からなるもの力 ラ ジカルに対する安定性に優れることから特に好まし 、。陽イオン交換基としてはスル ホン酸基、カルボン酸基、ホスホン酸基、リン酸基等が挙げられる。
[0018] スルホン酸基を有するパーフルォロカーボン重合体としては、 CF =CF—(OCF C
2 2
FX) O-(CF)—SO Hで表されるパーフルォロビュル化合物(mは 0— 3の整数 m p 2 n 3
を示し、 nは 1一 12の整数を示し、 pは 0又は 1を示し、 Xはフッ素原子又はトリフルォ ロメチル基を示す。 )に基づく重合単位と、テトラフルォロエチレンに基づく重合単位 とを含む共重合体であることが好ま 、。
[0019] 上記フルォロビニル化合物の好ま ヽ例としては、下記式 (i)一 (iii)で表される化合 物が挙げられる。ただし、下記式中、 qは 1一 8の整数、 rは 1一 8の整数、 tは 1一 3の 整数を示す。
[0020] [化 1]
CF2 = CFO (CF2) qS03H … ( i )
CF2 = CFOCF2CF (CF3) O (CF2) rS03H … (ii)
CF2 = CF (OCF2CF (CF3) ) tO (CF2) 2SOsH … (iii)
[0021] また、陽イオン交換基を有する炭化水素榭脂としては、従来より知られている様々 なものが使用できる。陽イオン交換基を有する炭化水素榭脂は、例えば、アクリル酸. ジビュルベンゼン共重合体、メタクリル酸'ジビュルベンゼン共重合体、フエノールス ルホン酸榭脂、ポリスチレンスルホン酸、スルホン化ポリイミド等の他に、スチレン'ジ ビュルベンゼン共重合体、スチレン 'ブタジエン共重合体、ポリエーテルスルホン、ポ リエ一テルエーテルケトン、ポリオレフイン、ポリ塩化ビュル、ポリエチレン等の重合体 に陽イオン交換基を導入したものが挙げられる。
[0022] また、陽イオン交換基を有する部分フッ素化炭化水素榭脂としては、上述の陽ィォ ン交換基を有する炭化水素榭脂において、イオン交換基等の官能基以外の水素原 子がフッ素原子に一部置換した構造の物質が使用できる。その他、ポリスチレンスル ホン酸グラフトーポリ(トリフルォロスチレン)、ポリスチレンスルホン酸グラフトーポリ(ェ チレン'テトラフルォロエチレン)等のイオン交換榭脂、さらには、テトラフルォロェチレ ン.エチレン共重合体、フッ化ビ-リデン榭脂、トリフルオロークロロエチレン榭脂、ポリ スチレングラフトーポリテトラフルォロエチレン、ポリ(トリフルォロスチレン)グラフトーポリ (エチレン.テトラフルォロエチレン)、スチレン 'ジビュルベンゼン共重合体グラフトー ポリ(パーフルォロエチレン 'プロペン)、ポリスチレングラフトーポリ(パーフルォロェチ レン ·プロペン)等の樹脂に陽イオン交換基を導入したもの等が挙げられる。
[0023] 本発明では、アノード触媒層 2及び力ソード触媒層 3の少なくとも一方には本ァミン が含まれる。燃料電池の反応においては過酸ィヒ水素がアノード側を中心に生成する ため、本ァミンはアノード触媒層 2に含有させるほうが力ソード触媒層 3に含有させる のよりも効果的である。しかし、よりいつそう高い効果を得るには、アノード触媒層 2、 力ソード触媒層 3のいずれにも含有させることが好ましい。本ァミンを含有させることに より、過酸ィ匕水素や過酸ィ匕物ラジカルが生成しにくくなり、その結果、燃料電池を長 期間運転しても性能劣化が少なくなると考えられる。この過酸化水素や過酸化物ラジ カルが生成しにくくなる機構については、詳細には解明されていないが、おそらくは 触媒粉末表面にある酸性の官能基 (一 COOH)と本ァミン中の塩基性を有する窒素 原子が反応することにより、酸性の官能基が消失するため過酸ィ匕水素や過酸ィ匕物ラ ジカルの生成を抑制するものと考えられる。したがって、本ァミン中の塩基性を有する 窒素原子の数により、その抑制効果は決まってくるものと考えられる。
[0024] 本ァミンとしては、第 1級ァミン、第 2級ァミン、第 3級ァミンの 、ずれのものでも好ま しぐなかでも、 HALSが化学的、熱的にも安定である点カゝら特に好ましい。本発明 において、本ァミンを含む触媒層を有する燃料電池を作動させた場合、電池の反応 により水が生成しても、本ァミンは作動中に触媒層力 離脱しにく 、ので好ま 、。 ここで、 HALSとは、ヒンダードアミン系光安定剤(Hidered amine light stabili zers)の総称であり、ピぺリジンの 2位及び 6位の炭素上の全ての水素原子力メチル 基で置換された構造を有するものである。
[0025] 本ァミンとして使用される HALSは、通常ピぺリジンの 2位と 6位が全てメチル基で 置換された構造、好ましくは式 1で表わされる基を有する。ただし、式 1中 Xは水素原 子又はアルキル基を表す。式 1で表わされる基のなかでも、 Xが水素原子である 2, 2 , 6, 6—テトラメチルー 4ーピペリジル基、又は X力メチル基である 1, 2, 2, 6, 6—ペン タメチルー 4ーピペリジル基を有する HALSが特に好ましく採用される。なお、式 1で表 わされる基が COO—基に結合して ヽる構造、すなわち式 2で表わされる基を有する HALSが数多く市販されて ヽるがこれらは好ましく使用できる。
[化 2]
式 2
Figure imgf000010_0001
[0027] 具体的に本発明で好ましく使用できる HALSを挙げると、例えば以下の式で表わさ れるものが挙げられる。なお、ここで 2, 2, 6, 6—テトラメチルー 4ーピペリジル基を R、 1 , 2, 2, 6, 6 ペンタメチルー 4ーピペリジル基を R,で表わす。
ROC ( = 0) (CH ) C ( = 0) ORゝ ROC ( = 0) C (CH ) =CH、 R,OC ( = 0) C (
2 8
CH ) =CH、 CH (COOR) CH (COOR) CH (COOR) CH COOR、 CH (COO
3 2 2 2 2
R,) CH (COOR' ) CH (COOR' ) CH COOR'、式 3で表わされる化合物等。
[0028] [化 3]
式 3
Figure imgf000010_0002
[0029] また、具体的な商品としては、チヌビン 123、チヌビン 144、チヌビン 765、チヌビン 770、チヌビン 622、チマソープ 944、チマソープ 119 (以上はいずれも、チバ 'スぺ シャリティ'ケミカルズ社商品名)、アデカスタブ LA52、アデカスタブ LA57、アデカス タブ LA62、アデカスタブ LA67、アデカスタブ LA82、アデカスタプ LA87、アデカス タブ LX335 (以上はいずれも旭電ィ匕工業社商品名)等を挙げることができるが、これ らに限定されない。
[0030] HALSのなかでも分子が比較的小さいものは触媒の細孔の奥深くに入り込めるの で好ましい。この観点で好ましい HALSとしては、 ROC ( = 0) (CH ) C ( = 0) OR、
2 8
R' OC ( = 0) C (CH ) =CHで表わされる化合物等である。
3 2
[0031] また、本ァミンとしては、 HALSの他に、具体的には、 2—ェチルへキシルァミン、 3—
(2—ェチルへキシルォキシ)プロピルァミン、ジイソブチルァミン、ジー n—才クチルアミ ン、トリー n—才クチルァミン、トリアリルァミン、ジー 2—ェチルへキシルァミン及び 3— (ジ プチルァミノ)プロピルアミンカもなる群より選ばれる 1種以上も好ましく使用できる。 H ALSと同様、本ァミンのなかでも分子が比較的小さいもの、例えば、 2—ェチルへキシ ルァミン、ジイソブチルァミン等は、触媒の細孔の奥深くに入り込めるので好ましい。
[0032] 本ァミンは、水に対する溶解度が 3以下であることが必要である。本ァミンの水に対 する溶解度が 3を超えるものは、燃料電池運転中に触媒表面力 周囲の水に溶出す る割合が増し、耐久性向上の効果が徐々に薄れていくため好ましくない。本ァミンの 水に対する溶解度は 1以下が特に好ましい。なお、本発明では、本ァミンの水に対す る溶解度とは、 20°Cで、 lOOgの水に対して溶解するァミンの質量のことを意味する。
[0033] 本発明では、触媒層中において、本ァミンは含有量 (WX N) /M X 1000が 0. 03 一 1であることが好ましぐ特に 0. 05-0. 7であることが好ましい。ただし、 Wは本アミ ンの触媒粉末 lgあたりの含有量 (g)、 Mは本ァミンの分子量、 Nは本ァミン 1分子中 における塩基性を有する窒素原子の数である。なお、塩基性を有する窒素原子は、 ァミンとして作用する窒素原子の数を示す。本ァミンでは、塩基性を有する窒素原子 とは、下式 (iv)— (vi)のいずれかの結合を有する窒素原子で表される。下記式で、 R 、 R、 R、 R、 R、 Rは 1価の有機基を示す。なお、 HALSの場合は通常、式 (v)又 a b c d e f
は (vi)の結合を有する。 [0034] [化 4]
R aNH 2 · · · (iv)
R b -NH ( v )
R d -N - R e · · · (vi)
[0035] 塩基性を有する窒素原子の数は、例えば、 HALSの場合では、 ROC ( = 0) (CH
2
) C ( = 0) ORであれば、 N = 2であり、 CH (COOR) CH (COOR) CH (COOR) C
8 2
H COORであれば、 N = 4である。また、 HALS以外の本ァミンの場合は、例えば、
2
トリー n—ォクチルァミンであれば、 N= lであり、 3— (ジブチルァミノ)プロピルァミンで あれば、 N = 2である。
[0036] また、本ァミンの含有量の好ま 、範囲を触媒粉末との質量比で示すと、触媒粉末 に対し、質量比で 0. 3— 30%が好ましぐ特に 1一 20%が好ましい。本ァミンの含有 量が少なすぎると、燃料電池として運転した場合に十分な耐久性が得られない。また 、本ァミンの含有量が多すぎると、触媒層形成用塗工液に本ァミンを含有させておい て塗工する場合には、触媒層にクラックが入りやすくなるなど塗工性が悪ィ匕し、燃料 電池としての性能も低下する。
[0037] 本発明における担持触媒にぉ ヽて、触媒金属とカーボン担体とは質量比 (触媒金 属:カーボン担体)で 2 : 8-7 : 3であることが好ましぐ特に 4: 6— 6: 4であることが好 ましい。この範囲であれば、触媒層の厚さを薄くすることが可能であり、ガスの拡散性 を高め、優れた出力特性を得ることができる。触媒粉末中の触媒金属の含有割合が 少なすぎると、反応に必要な触媒金属の量が不足するおそれがあり、触媒金属の含 有量が多すぎるとカーボン担体上で触媒金属粒子同士の凝集が起こりやすくなり、 力えって性能が低下するおそれがある。
[0038] 本発明にお ヽて担持触媒に使用される担体となるカーボン材料としては、細孔の 発達したカーボンブラック、活性炭、カーボンナノチューブ、カーボンナノホーン等種 々の炭素材料が好ましく使用できる。固体高分子型燃料電池では、通常カーボンブ ラックが使用されることが多ぐ該カーボンブラックとしてはチャンネルブラック、ファー ネスブラック、サーマルブラック、アセチレンブラック等が挙げられる。また、活性炭と しては、種々の炭素原子を含む材料を炭化、賦活処理して得られる種々の活性炭が 使用できる。
[0039] 本発明では、固体高分子電解質膜 1としては、イオン交換膜を使用する。イオン交 換膜には、前述の触媒層に含まれる榭脂として好ましいイオン交換樹脂と同種のもの が使用できる。すなわち、陽イオン交換基を有する、炭化水素榭脂又は含フッ素炭 化水素樹脂が好ましく使用できる。スルホン酸基を有するパーフルォロカーボン重合 体力もなるもの力 ラジカルに対する安定性に優れることから特に好ましい。
[0040] また、ガス拡散層 4、 4,は、通常カーボンペーパーやカーボンクロス、カーボンフエ ルト等の導電性の多孔質シートからなる。このガス拡散層 4、 4'は、触媒層 2、 3とセ パレータ 5との間に介在されている。上記ガス拡散層 4、 4'としては、カーボンぺーパ 一、カーボンクロス、カーボンフェルト上にフッ素榭脂で撥水処理を行った材料等も 好ましく使用でさる。
[0041] 本発明では、アノード触媒層 2及び力ソード触媒層 3の少なくとも一方は、触媒粉末 とイオン交換樹脂と本アミンを溶媒に溶解又は分散させた液とを混合して、触媒層形 成用塗工液を調製し、該塗工液をガス拡散層 4、 4'又は固体高分子電解質膜 1に塗 ェし、乾燥させることにより形成されることが好ましい。また、別途用意した基材上に 上記塗工液を塗布し乾燥して触媒層を形成した後、固体高分子電解質膜 1と積層し てホットプレスすることにより固体高分子電解質膜 1に転写してもよい。なお、本ァミン の含有量は、触媒粉末に対する含有量(WX N) ZM X 1000で示す場合は0. 03 一 1であることが好ましぐ特に 0. 05-0. 7が好ましい。また、本ァミンの含有量は、 触媒粉末との質量比で示す場合は、 0. 3— 30%が好ましぐ特に 1一 20%が好まし い。ここで、触媒層形成用塗工液を塗工する基材としては、触媒層形成用塗工液中 に含まれる分散媒に対して安定なフィルムであれば好ましく使用でき、例えば、ポリプ ロピレン、ポリエチレンテレフタレート、エチレン'テトラフルォロエチレン共重合体、ポ リテトラフルォロエチレンのシート等が挙げられる。 [0042] 上述の触媒層形成用の塗工液の塗工方法としては、アプリケータ、バーコータ、ダ イコータ等を使用する方法や、スクリーン印刷法、グラビア印刷法等を適用できる。ま た、触媒層形成用塗工液中には、必要に応じて撥水剤、造孔剤、増粘剤、希釈溶媒 等を添加することにより、電極反応で生成する水の排出性を高めること、触媒層自体 の形状安定性を保持すること、又は塗工時の塗工むらの改善や塗工安定性等を高 めることも可能である。また、上記の他に、本ァミンを触媒層に含有させる方法として は、触媒層形成用塗工液により触媒層を形成した後、当該触媒層を、本ァミンを溶媒 に溶解した溶液に浸漬する方法や、触媒層の外側に膜'電極接合体を作製した後に 膜'電極接合体を本ァミン溶液に浸漬する方法等が挙げられる。
[0043] 本発明の膜 ·電極接合体を備える固体高分子型燃料電池では、力ソードには酸素 を含むガス、アノードには水素を含むガスが供給される。具体的には、例えばガスの 流路となる溝が形成されたセパレータを膜'電極接合体の両方の電極の外側に配置 し、ガスの流路にガスを流すことにより膜'電極接合体に燃料となるガスを供給し発電 させる。セパレータは、金属製、カーボン製のもののほか、黒鉛と榭脂を混合した材 料力もなるものもあり、各種導電性材料を幅広く使用できる。
実施例
[0044] 以下、本発明を具体的に実施例及び比較例を用いて説明するが、本発明はこれら に限定されない。なお、表 1、 3、 5に各実施例において、触媒層に含まれる本ァミン の含有量を (W X N) ZM X 1000で表した値と触媒層中の触媒粉末に対する質量 比で表した値とを、それぞれ示す。
[0045] [例 1 (実施例)]
白金がカーボン担体 (比表面積 800m2Zg)に触媒全質量の 50%含まれるように 担持された触媒 (ェヌ 'ィーケムキャット社製、以下、触媒 1という) 2gを、蒸留水 11. 6 gに添加し、よく撹拌した。これに対し、 CH (COOR) CH (COOR) CH (COOR) C
2
H COOR (ただし、 Rは 2, 2, 6, 6—テトラメチルー 4—ピペリジル基)で示される HAL
2
S (アデカスタブ LA57 :旭電ィ匕工業社商品名、分子量: 792、塩基性を有する窒素 原子の数: 4、水に不溶) 0. 15gをエタノールに溶解した溶液 7. 9gを添カ卩した。この 混合液をホモジナイザー (キネマチ力社商品名:ポロトロン)を使用して、混合、分散さ せた。これに対し、 CF =CF /CF =CFOCF CF (CF ) 0 (CF ) SO H共重合
2 2 2 2 3 2 2 3 体 (イオン交換容量 1. 1ミリ当量 Zg乾燥榭脂、以下、共重合体 Aという)をエタノール に分散させた固形分濃度 10質量%の液 8gと蒸留水 3. 3gを添加し、さらにホモジナ ィザーを使用して混合、分散させ、これを触媒層形成用塗工液 aとした。
[0046] この塗工液 aを、ポリプロピレン製の基材フィルムの上にバーコータで塗工した後、 8 0°Cの乾燥器内で 30分間乾燥させて触媒層 aを作製した。この触媒層中に含まれる HALSの含有量を表 1に示す。なお、触媒層 a形成前の基材フィルムのみと触媒層 a 形成後の基材フィルムの質量を測定することにより、触媒層 aに含まれる単位面積あ たりの白金の量を算出したところ、 0. 5mgZcm2であった。
[0047] 次に、固体高分子電解質膜として、スルホン酸基を有するパーフルォロカーボン重 合体力もなる厚さ 30 mのイオン交換膜 (フレミオン:旭硝子社商品名、イオン交換 容量 1. 1ミリ当量 Zg乾燥榭脂)を使用し、この膜の両面に基材フィルム上に形成さ れた触媒層 aをそれぞれ配置し、ホットプレス法により転写した。これによりアノード触 媒層及び力ソード触媒層を形成し、電極面積が 25cm2である固体高分子膜と触媒層 カゝらなる膜'触媒層接合体を作製した。
[0048] 得られた膜'触媒層接合体を、厚さ 350 μ mのカーボンクロスからなるガス拡散層 2 枚の間に挟んで膜'電極接合体を作製した。発電用セルに組み込み、常圧にて、水 素 (利用率 70%) Z空気 (利用率 40%)を供給し、セル温度 70°Cにお ヽて電流密度 0. 2AZcm2における固体高分子型燃料電池の評価を行った。アノード側は露点 70 。C、力ソード側は露点 50°Cとしてそれぞれ水素及び空気を加湿してセル内に供給し 、運転初期のセル電圧を測定した。結果を表 2に示す。さらに、運転開始後の経過時 間とセル電圧との関係 (耐久性評価)を測定すると、表 2に示すとおりとなる。
[0049] [例 2 (比較例)]
例 1において、 HALSのエタノール溶液のかわりに、 HALSを溶解していないエタ ノールを使用した以外は例 1と同様にして、触媒層形成用塗工液 bを調製した。塗工 液 aのかわりに塗工液 bを用い、例 1と同様にして触媒層 bを作製した。触媒層 bに含 まれる単位面積あたりの白金の量を例 1と同様に測定したところ、 0. 5mgZcm2であ つた。次に、アノード触媒層、力ソード触媒層ともに触媒層 bにより構成した以外は例 1と同様にして、電極面積が 25cm2である膜'触媒層接合体を作製した。 この膜'触媒層接合体を用いて例 1と同様に膜'電極接合体を作製し、例 1と同様に して、運転初期のセル電圧を測定した。結果を表 2に示す。さらに、例 1と同様に耐久 性評価を行うと得られる結果を表 2に示す。
[0050] [例 3 (実施例)]
例 1において、 HALSとしてアデカスタブ LA57のかわりに ROC ( = 0) C H C (=
8 16
O) OR (ただし、 Rは例 1における Rと同じ)で表わされる HALS (アデカスタブ LA77: 旭電化工業社商品名、分子量: 481、塩基性を有する窒素原子の数 : 2、水に不溶) を使用した以外は例 1と同様にして、触媒層形成用塗工液 cを調製した。塗工液 aの 力わりに塗工液 cを用い、例 1と同様にして触媒層 cを作製した。この触媒層中に含ま れる HALSの含有量を表 1に示す。なお、触媒層 cに含まれる単位面積あたりの白金 の量を例 1と同様に測定したところ、 0. 5mgZcm2であった。次に、アノード触媒層、 力ソード触媒層ともに触媒層 cにより構成した以外は例 1と同様にして、電極面積が 2 5cm2である膜'触媒層接合体を作製した。
この膜'触媒層接合体を用いて例 1と同様に膜'電極接合体を作製し、例 1と同様に して、運転初期のセル電圧を測定した。結果を表 2に示す。さらに、例 1と同様に耐久 性評価を行うと得られる結果を表 2に示す。
[0051] [例 4 (実施例)]
例 1において、 HALSとしてアデカスタブ LA57のかわりにポリ [{6— (1, 1, 3, 3— テトラメチルブチル)アミノー 1, 3, 5—トリアジンー 2, 4—ジィル } { (2, 2, 6, 6—テトラメ チルー 4—ピペリジル)イミノ}へキサメチレン { (2, 2, 6, 6—テトラメチルー 4ーピペリジル )イミノ}] (チマソープ 944 :チバ'スぺシャリティ'ケミカル社商品名、分子量: 2500、 塩基性を有する窒素原子の数: 20、水に不溶)を 0. lg溶解した以外は例 1と同様に して、触媒層形成用塗工液 dを調製した。塗工液 aのかわりに塗工液 dを用い、例 1と 同様にして触媒層 dを作製した。この触媒層中に含まれる HALSの含有量を表 1〖こ 示す。なお、触媒層 dに含まれる単位面積あたりの白金の量を例 1と同様に測定した ところ、 0. 5mgZcm2であった。次に、アノード触媒層、力ソード触媒層ともに触媒層 dにより構成した以外は例 1と同様にして、電極面積が 25cm2である膜'触媒層接合 体を作製した。
この膜'触媒層接合体を用いて例 1と同様に膜'電極接合体を作製し、例 1と同様に して、運転初期のセル電圧を測定した。結果を表 2に示す。さらに、例 1と同様に耐久 性評価を行うと得られる結果を表 2に示す。
[0052] [例 5 (実施例)]
例 1において、 HALSとしてアデカスタブ LA57のかわりに N, N,-ビス(3—アミノプ 口ピル)エチレンジァミン.2, 4—ビス [N—ブチルー N—(1, 1, 2, 2, 6, 6—ペンタメチ ルー 4ーピペリジル)ァミノ]— 6—クロ口— 1, 3, 5—トリアジン縮合物(チマソープ 119 :チ ノ^スべシャリティ ·ケミカル社商品名、分子量: 2000、塩基性を有する窒素原子の数 : 20、水に不溶)を 0. lg溶解した以外は例 1と同様にして、触媒層形成用塗工液 eを 調製した。塗工液 aのかわりに塗工液 eを用い、例 1と同様にして触媒層 eを作製した 。この触媒層中に含まれる HALSの含有量を表 1に示す。なお、触媒層 eに含まれる 単位面積あたりの白金の量を例 1と同様に測定したところ、 0. 5mgZcm2であった。 次に、アノード触媒層、力ソード触媒層ともに触媒層 eにより構成した以外は例 1と同 様にして、電極面積が 25cm2である膜'触媒層接合体を作製した。次に、アノード触 媒層、力ソード触媒層ともに触媒層 eにより構成した以外は例 1と同様にして、電極面 積が 25cm2である膜'触媒層接合体を作製した。
この膜'触媒層接合体を用いて例 1と同様に膜'電極接合体を作製し、例 1と同様に して、運転初期のセル電圧を測定した。結果を表 2に示す。さらに、例 1と同様に耐久 性評価を行うと得られる結果を表 2に示す。
[0053] [例 6 (実施例)]
触媒 1を 7. 5gとり、蒸留水 67g、メタノール 68gの混合溶媒に添加し、よく混合する 。これに HALSとして、アデカスタブ LA77を 0. 5gメタノールに溶解した溶液 7. 9gを 添加し、この混合液をホモジナイザーを使用して、混合、分散させる。
次いで、この混合物に、スチレンスノレホン酸ナトリウム 2. 08g、ジビ-ノレベンゼン 0. 21g、ァゾビスイソブチ口-トリル 0. 002gを混合してホモジナイザーで混合、分散し 触媒層形成用塗工液 fを調製する。
[0054] この塗工液 fを、ポリプロピレン製の基材フィルムの上にバーコータで塗工した後、 8 0°Cの乾燥器内で 8時間乾燥させることにより、 -SO Na基を有するスチレン'ジビ-
3
ルベンゼンイオン交換榭脂からなる、単位面積あたりの白金の量が 0. 5mgZcm2の 触媒層 fを作製する。この触媒層 fを水にて数回洗浄した後、 0. 5mmolZLの硫酸 水溶液に浸すことにより SO Na基を SO H基に変換する。この触媒層中に含まれ
3 3
る HALSの含有量を表 3に示す。なお、触媒層 fに含まれる単位面積あたりの白金の 量は例 1と同様に測定することにより算出することができる。
[0055] 次に、固体高分子電解質膜として、特開 2002-334702号の実施例 1に開示され ている方法で合成して得られる厚さ 50 mの高分子電解質膜 (ポリスチレンスルホン 酸グラフトーポリ(エチレン ·テトラフルォロエチレン) )を用 、る以外は例 1と同様にして 操作を行い、電極面積が 25cm2である膜'触媒層接合体を作製する。
この膜'触媒層接合体を用いて例 1と同様に膜'電極接合体を作製し、例 1と同様に して、運転初期のセル電圧の測定及び耐久性評価を行うと表 4に示す結果が得られ る。
[0056] [例 7 (比較例)]
例 6において、 HALSのメタノール溶液のかわりに、 HALSを溶解しないメタノール を使用する以外は例 6と同様にして操作を行い、触媒層形成用塗工液 gを調製する。 例 6において、塗工液 fのかわりに塗工液 gを用い、例 6と同様にして単位面積あたり の白金の量が 0. 5mgZcm2の触媒層 gを作製する。この触媒層 gを、例 6と同様にし て操作を行い、 -SO Na基を- SO H基に変換する。次に、アノード触媒層、力ソード
3 3
触媒層ともに触媒層 gにより構成する以外は例 6と同様にして操作を行うことにより、 電極面積が 25cm2である膜'触媒層接合体を作製する。
この膜'触媒層接合体を用いて例 1と同様に膜'電極接合体を作製し、例 1と同様に して、運転初期のセル電圧の測定及び耐久性評価を行うと表 4に示す結果が得られ る。
[0057] [例 8 (実施例)]
例 6において、固体高分子電解質膜として、特開 2001— 307752号の実施例 1に 開示されて ヽる方法で合成して得られる厚さ 60 μ mの高分子電解質膜 (スルホンィ匕 ポリエーテルスルホン、イオン交換容量 : 0. 56ミリ当量/ g乾燥榭脂)を用いる以外 は例 6と同様にして操作を行い、電極面積が 25cm2である膜 ·触媒層接合体を作製 する。この触媒層中に含まれる HALSの含有量を表 1に示す。
この膜'触媒層接合体を用いて例 1と同様に膜'電極接合体を作製し、例 1と同様に して、運転初期のセル電圧の測定及び耐久性評価を行うと表 4に示す結果が得られ る。
[0058] [例 9 (比較例)]
例 7と同様にして、触媒層 gを作製する。次に、アノード触媒層、力ソード触媒層とも に触媒層 gにより構成する以外は例 8と同様にして操作を行い、電極面積が 25cm2 である膜 ·触媒層接合体を作製する。
この膜'触媒層接合体を用いて例 1と同様に膜'電極接合体を作製し、例 1と同様に して、運転初期のセル電圧の測定及び耐久性評価を行うと表 4に示す結果が得られ る。
[0059] [例 10 (実施例)]
例 6と同様にして、触媒 1を 7. 5gとり、蒸留水 67g、メタノール 68gの混合溶媒に添 加し、よく混合する。これに HALSとして、アデカスタブ LA77を 0. 5gメタノールに溶 解した溶液 7. 9gを添加し、この混合液をホモジナイザーを使用して、混合、分散さ せる。
[0060] 次いで、この混合物に、 CF =CF (CH CH CH ) /CF =CF (CH CH SO H)
2 2 2 3 2 2 2 3 共重合体 (イオン交換容量 : 1. 4ミリ当量 Zg乾燥榭脂、以下、共重合体 Bという)を 3 g添加し、ホモジナイザーで混合、分散し触媒層形成用塗工液 hを調製する。なお、 上記共重合体は、特開 2004— 10744号の実施例 1に開示されて ヽる方法で合成し て得ることができ、 4—ブロモ 1, 1, 2—トリフルォロブテン 1と 1, 1, 2—トリフルォロ ペンテン- 1とのフレオン溶液に、イソブテンを添加した後、 Co— γ線照射を 6時間行 うことにより反応させて重合体を生成させ、さらに、亜硫酸ナトリウムを添加して反応さ せることにより一 SO H基を導入して得られる。
3
[0061] 次いで、例 6において、塗工液 fのかわりに塗工液 hを用い、 80°Cの乾燥器内で 30 分乾燥させた以外は、例 6と同様にして単位面積あたりの白金の量が 0. 5mg/cm2 の触媒層 hを作製する。この触媒層中に含まれる HALSの含有量を表 3に示す。次 に、アノード触媒層、力ソード触媒層ともに触媒層 hにより構成する以外は例 6と同様 にして操作を行うことにより、電極面積が 25cm2である膜'触媒層接合体を作製する
[0062] 次いで、固体高分子電解質膜として、特開 2003— 68327号の比較例 2に開示され ている方法で合成して得られる 40 mの高分子電解質膜 (スルホンィ匕ポリイミド、ィォ ン交換容量: 1. 21ミリ当量 Zg乾燥榭脂)を用いる以外は例 6と同様にして操作行 、 、電極面積が 25cm2である膜'触媒層接合体を作製する。
この膜'触媒層接合体を用いて例 1と同様に膜'電極接合体を作製し、例 1と同様に して、運転初期のセル電圧の測定及び耐久性評価を行うと表 4に示す結果が得られ る。
[0063] [例 11 (比較例)]
例 10において、 HALSのメタノール溶液のかわりに、 HALSを溶解しないメタノー ルを使用する以外は例 10と同様にして操作を行い、触媒層形成用塗工液 iを調製す る。例 10において、塗工液 hのかわりに塗工液 iを用い、例 6と同様にして単位面積あ たりの白金の量が 0. 5mg/cm2の触媒層 iを作製する。次に、アノード触媒層、カソ ード触媒層ともに触媒層 iにより構成する以外は例 6と同様にして操作を行うことにより 、電極面積が 25cm2である膜'触媒層接合体を作製することができる。この触媒層中 に含まれる HALSの含有量を表 3に示す。
この膜'触媒層接合体を用いて例 1と同様に膜'電極接合体を作製し、例 1と同様に して、運転初期のセル電圧の測定及び耐久性評価を行うと表 4に示す結果が得られ る。
[0064] [例 12 (実施例)]
例 6において、 HALSとしてアデカスタブ LA57を 0. 41g及びメタノールを 7. 9g混 合した溶液を用いる以外は例 6と同様にして操作を行 ヽ、触媒層形成用塗工液 jを調 製する。塗工液 fのかわりに塗工液 jを用いる以外は、例 6と同様にして操作を行い、 単位面積あたりの白金の量が 0. 5mg/cm2の触媒層 jを作製する。この触媒層 jを、 例 6と同様にして操作を行い、 -SO Na基を- SO H基に変換する。次に、アノード触
3 3
媒層、力ソード触媒層ともに触媒層 j〖こより構成する以外は例 6と同様にして操作を行 い、電極面積が 25cm2である膜'触媒層接合体を作製する。この触媒層中に含まれ る HALSの含有量を表 3に示す。
この膜'触媒層接合体を用いて例 1と同様に膜'電極接合体を作製し、例 1と同様に して、運転初期のセル電圧の測定及び耐久性評価を行うと表 4に示す結果が得られ る。
[0065] [例 13 (実施例)]
例 6において、 HALSとしてチマソープ 944を 0. 43g、メタノーノレを 7. 9g混合した 溶液を用いる以外は例 6と同様にして操作を行 ヽ、触媒層形成用塗工液 kを調製す る。塗工液 fのかわりに塗工液 kを用いる以外は、例 6と同様にして操作を行い、単位 面積あたりの白金の量が 0. 5mg/cm2の触媒層 kを作製する。この触媒層 kを、例 6 と同様にして操作を行い、 SO Na基を SO H基に変換する。この触媒層中に含ま
3 3
れる HALSの含有量を表 3に示す。次に、アノード触媒層、力ソード触媒層ともに触 媒層 kにより構成する以外は例 6と同様にして操作を行い、電極面積が 25cm2である 膜 ·触媒層接合体を作製する。
この膜'触媒層接合体を用いて例 1と同様に膜'電極接合体を作製し、例 1と同様に して、運転初期のセル電圧の測定及び耐久性評価を行うと表 4に示す結果が得られ る。
[0066] [例 14 (実施例)]
触媒 1を 2g取り、これに、蒸留水 11. 6gに添加し、よく撹拌する。これに、トリー n—才 クチルァミン (分子量: 353. 67、塩基性を有する窒素原子の数: 1、水に不溶) 0. 2g をエタノールに溶解して得た溶液 7. 9gを添カロして、この混合液をホモジナイザーを 使用して、混合、分散させる。これに共重合体 Aをエタノールに分散させて固形分濃 度 10質量%の液 8gとし、蒸留水 3. 3gを添加して、さらにホモジナイザーを使用して 混合、分散して触媒層形成用塗工液 1を調整する。
この塗工液 1を、ポリプロピレン製の基材フィルムの上にバーコータで塗工し、 80°C の乾燥器内で 30分間乾燥させることにより、単位面積あたりの白金の量が 0. 5mg/ cm2の触媒層 1を作製する。この触媒層中に含まれるァミンの含有量を表 5に示す。な お、触媒層 1に含まれる単位面積あたりの白金の量は例 1と同様に測定することにより 算出することができる。
[0067] 次に、アノード触媒層、力ソード触媒層ともに触媒層 1により構成する以外は例 1と同 様にして操作を行うことにより、電極面積が 25cm2である膜'触媒層接合体を作製す る。
この膜'触媒層接合体を用いて例 1と同様に膜'電極接合体を作製し、例 1と同様に して、運転初期のセル電圧の測定及び耐久性評価を行うと表 6に示す結果が得られ る。
[0068] [例 15 (実施例)]
例 14において、トリー n—ォクチルァミンのかわりにジイソブチルァミン(分子量: 129 . 14、塩基性を有する窒素原子の数: 1、水に対する溶解度 < 1)を 0. lg用いる以外 は例 14と同様にして操作を行い、触媒層形成用塗工液 mを調製する。塗工液 1のか わりに塗工液 mを用い、例 14と同様にして単位面積あたりの白金の量が 0. 5mg/c m2の触媒層 mを作製する。この触媒層中に含まれるァミンの含有量を表 5に示す。 次に、アノード触媒層、力ソード触媒層ともに触媒層 nにより構成する以外は例 1と同 様にして操作を行うことにより、電極面積が 25cm2である膜'触媒層接合体を作製す る。
この膜'触媒層接合体を用いて例 1と同様に膜'電極接合体を作製し、例 1と同様に して、運転初期のセル電圧の測定及び耐久性評価を行うと表 6に示す結果が得られ る。
[0069] [例 16 (実施例)]
例 14にお!/、て、トリー n—ォクチルァミンのかわりに 2—ェチルへキシルァミン(分子量 : 129. 24、塩基性を有する窒素原子の数: 1、水に対する溶解度: 0. 16)を 0. lg用 いる以外は例 14と同様にして操作を行い、触媒層形成用塗工液 nを調製する。塗工 液 1のかわりに塗工液 nを用い、例 14と同様にして単位面積あたりの白金の量が 0. 5 mg/cm2の触媒層 nを作製する。この触媒層中に含まれるァミンの含有量を表 5〖こ 示す。次に、アノード触媒層、力ソード触媒層ともに触媒層 nにより構成する以外は例 1と同様にして操作を行うことにより、電極面積が 25cm2である膜'触媒層接合体を作 製する。 この膜'触媒層接合体を用いて例 1と同様に膜'電極接合体を作製し、例 1と同様に して、運転初期のセル電圧の測定及び耐久性評価を行うと表 6に示す結果が得られ る。
[0070] [例 17 (比較例)]
例 14において、トリー n—ォクチルァミンのかわりにピぺリジン (分子量: 85. 2、塩基 性を有する窒素原子の数: 1、水に対する溶解度:任意の割合で溶解)を 0. 05g用い る以外は例 14と同様にして操作を行い、触媒層形成用塗工液 oを調製する。塗工液 1のかわりに塗工液 oを用い、例 14と同様にして単位面積あたりの白金の量が 0. 5m gZcm2の触媒層 oを作製する。この触媒層中に含まれるァミンの含有量を表 5に示 す。次に、アノード触媒層、力ソード触媒層ともに触媒層 oにより構成する以外は例 1 と同様にして操作を行うことにより、電極面積が 25cm2である膜'触媒層接合体を作 製する。
この膜'触媒層接合体を用いて例 1と同様に膜'電極接合体を作製し、例 1と同様に して、運転初期のセル電圧の測定及び耐久性評価を行うと表 6に示す結果が得られ る。
[0071] [例 18 (比較例)]
例 14において、トリー n—ォクチルァミンのかわりに n—プロピルアミン(分子量: 59. 1 1、塩基性を有する窒素原子の数: 1、水に対する溶解度: 100)を 0. 05g用いる以外 は例 14と同様にして操作を行い、触媒層形成用塗工液 pを調製する。塗工液 1のか わりに塗工液 pを用い、例 14と同様にして単位面積あたりの白金の量が 0. 5mg/c m2の触媒層 pを作製する。この触媒層中に含まれるァミンの含有量を表 5に示す。次 に、アノード触媒層、力ソード触媒層ともに触媒層 pにより構成する以外は例 1と同様 にして操作を行うことにより、電極面積が 25cm2である膜'触媒層接合体を作製する この膜'触媒層接合体を用いて例 1と同様に膜'電極接合体を作製し、例 1と同様に して、運転初期のセル電圧の測定及び耐久性評価を行うと表 6に示す結果が得られ る。
[0072] [例 19 (比較例)] 例 14において、トリー n—ォクチルァミンのかわりに N, N—ジメチルァミノプロピルアミ ン (分子量: 102. 18、塩基性を有する窒素原子の数: 2、溶解度: 100)を 0. lg用い る以外は例 14と同様にして操作を行い、触媒層形成用塗工液 qを調製する。塗工液 1のかわりに塗工液 qを用い、例 14と同様にして単位面積あたりの白金の量が 0. 5m gZcm2の触媒層 qを作製する。この触媒層中に含まれるァミンの含有量を表 5に示 す。次に、アノード触媒層、力ソード触媒層ともに触媒層 qにより構成する以外は例 1 と同様にして操作を行うことにより、電極面積が 25cm2である膜'触媒層接合体を作 製する。
この膜'触媒層接合体を用いて例 1と同様に膜'電極接合体を作製し、例 1と同様に して、運転初期のセル電圧の測定及び耐久性評価を行うと表 6に示す結果が得られ る。
[0073] [例 20 (実施例)]
例 14において、共重合体 Aを使用するかわりに、スチレンスルホン酸ナトリウム 0. 5
5g、ジビュルベンゼン 0. 055g、ァゾビスイソブチ口-トリル 0. 0055gを混合して、触 媒層形成用塗工液 rを調整する。
[0074] 例 14にお 、て、塗工液 1のかわりに塗工液 rを用い、 80°Cの乾燥器内で 8時間乾燥 させること以外は同様に操作を行い、—SO Na基を有するスチレン 'ジビュルべンゼ
3
ンイオン交換榭脂を含む、単位面積あたりの白金の量が 0. 5mgZcm2の触媒層 rを 作製する。この触媒層 rを水にて数回洗浄した後、 0. 5mmolZLの硫酸水溶液に浸 すことにより SO Na基を SO H基に変換する。この触媒層中に含まれるァミンの
3 3
含有量を表 5に示す。
[0075] 次に、固体高分子電解質膜として、特開 2002— 334702号の実施例 1に開示され ている方法で合成して得られる厚さ 50 mの高分子電解質膜 (ポリスチレンスルホン 酸グラフトーポリ(エチレン 'テトラフルォロエチレン)を用 、る以外は例 1と同様にして 操作を行い、電極面積が 25cm2である膜'触媒層接合体を作製する。
この膜'触媒層接合体を用いて例 1と同様に膜'電極接合体を作製し、例 1と同様に して、運転初期のセル電圧の測定及び耐久性評価を行うと表 6に示す結果が得られ る。 [0076] [例 21 (比較例)]
例 20において、トリー n—ォクチルァミンのエタノール溶液のかわりに、トリー n—ォクチ ルァミンを溶解しな 、エタノールを使用する以外は例 20と同様にして操作を行 、、触 媒層形成用塗工液 sを調製する。塗工液 rのかわりに塗工液 sを用い、例 20と同様に して単位面積あたりの白金の量が 0. 5mg/cm2の触媒層 sを作製する。この触媒層 s を、例 20と同様にして操作を行い、 -SO Na基を- SO H基に変換する。次に、ァノ
3 3
ード触媒層、力ソード触媒層ともに触媒層 sにより構成する以外は例 20と同様にして 操作を行うことにより、電極面積が 25cm2である膜'触媒層接合体を作製する。
この膜'触媒層接合体を用いて例 1と同様に膜'電極接合体を作製し、例 1と同様に して、運転初期のセル電圧の測定及び耐久性評価を行うと表 6に示す結果が得られ る。
[0077] [例 22 (実施例)]
例 14において、共重合体 Aを使用するかわりに、共重合体 BO. 8g及びエタノール 7. 2gを添加して、触媒層形成用塗工液 tを調整する。
[0078] 次に、例 14において、塗工液 1のかわりに塗工液 tを用い、例 14と同様にして単位 面積あたりの白金の量が 0. 5mg/cm2の触媒層 tを作製する。この触媒層中に含ま れるァミンの含有量を表 5に示す。次に、アノード触媒層、力ソード触媒層ともに触媒 層 tにより構成し、固体高分子電解質膜として、特開 2003— 68327号の例 2に開示さ れて 、る方法で合成して得られる 40 μ mの高分子電解質膜 (スルホンィ匕ポリイミド)を 用いる以外は例 1と同様にして操作を行い、電極面積が 25cm2である膜'触媒層接 合体を作製する。
この膜'触媒層接合体を用いて例 1と同様に膜'電極接合体を作製し、例 1と同様に して、運転初期のセル電圧の測定及び耐久性評価を行うと表 6に示す結果が得られ る。
[0079] [例 23 (比較例)]
例 22において、トリー n—ォクチルァミンのエタノール溶液のかわりに、トリー n—ォクチ ルァミンを溶解しないエタノールを使用する以外は例 22と同様にして操作を行い、触 媒層形成用塗工液 uを調整する。例 22において、塗工液 tのかわりに塗工液 uを用い 、例 14と同様にして単位面積あたりの白金の量が 0. 5mgZcm2の触媒層 uを作製 する。次に、アノード触媒層、力ソード触媒層ともに触媒層 uにより構成する以外は例 22と同様にして操作を行うことにより、電極面積が 25cm2である膜'触媒層接合体を 作製する。
この膜'触媒層接合体を用いて例 1と同様に膜'電極接合体を作製し、例 1と同様に して、運転初期のセル電圧の測定及び耐久性評価を行うと表 6に示す結果が得られ る。
[0080] [表 1]
Figure imgf000026_0001
[0081] [表 2]
Figure imgf000026_0002
[0082] [表 3] 添加剤 (HALS) 含有量: (WXN) / 含有量:対触媒粉末
MX 1 000 質量%換算
例 6 アデカスタブ LA 77 0. 28 6. 7
例 7 なし 0 0
例 8 アデカスタブ L A 77 0. 28 6. 7
例 9 なし 0 0
例 1 0 アデカスタブ L A 77 0. 28 6. 7
例 1 1 なし 0 0
例 1 2 アデカスタブ L A 57 0. 28 5. 5
例 1 3 チマソープ 944 0. 45 5. 7 [0083] [表 4]
Figure imgf000027_0001
[0084] [表 5]
Figure imgf000027_0002
[0085] [表 6]
Figure imgf000027_0003
産業上の利用可能性 本発明によれば、触媒層にァミンが含まれることにより、過酸化水素や過酸化物ラ ジカルが生成しにくくなるため、得られる膜 ·電極接合体を組み込んだ燃料電池は、 長期間発電しても性能劣化が少なくなる。そのため、長期間の発電を行っても安定し た固体高分子型燃料電池用膜 ·電極接合体を提供できる。

Claims

請求の範囲
[1] 触媒金属粒子がカーボン担体に担持された触媒粉末とイオン交換樹脂とを含む触 媒層を有するアノード及び力ソードと、該アノードの触媒層と該カソードの触媒層との 間に配置されるイオン交換膜とを有する固体高分子型燃料電池用膜'電極接合体で あって、前記アノードの触媒層及び前記力ソードの触媒層の少なくとも一方には、 20 °Cで水に対する溶解度が 3以下のァミンが含まれ、当該ァミンの触媒粉末に対する 含有量 (WX N) /M X 1000が 0. 03— 1である(ただし、 Wは前記ァミンの触媒粉 末 lgあたりの含有量 (g)、 Mは前記ァミンの分子量、 Nは前記アミン 1分子中におけ る塩基性を有する窒素原子の数である。 )ことを特徴とする固体高分子型燃料電池 用膜'電極接合体。
[2] 触媒金属粒子がカーボン担体に担持された触媒粉末とイオン交換樹脂とを含む触 媒層を有するアノード及び力ソードと、該アノードの触媒層と該カソードの触媒層との 間に配置されるイオン交換膜とを有する固体高分子型燃料電池用膜'電極接合体で あって、前記アノードの触媒層及び前記力ソードの触媒層の少なくとも一方には、 20 °Cで水に対する溶解度が 3以下のァミンが含まれ、当該ァミンの触媒粉末に対する 含有量が質量比で 0. 3— 30%であることを特徴とする固体高分子型燃料電池用膜' 電極接合体。
[3] 前記ァミンが、式 1で表わされる基 (ただし、 Xは水素原子又はメチル基を表す。 )を 有する HALSである請求項 1又は 2に記載の固体高分子型燃料電池用膜 '電極接 合体。
[化 1]
式 1
Figure imgf000029_0001
[4] 前記ァミンが、 2—ェチルへキシルァミン、 3—( 2—ェチルへキシルォキシ)プロピル ァミン、ジイソブチルァミン、ジー n—才クチルァミン、トリー n—才クチルァミン、トリアリル ァミン、ジー 2—ェチルへキシルァミン及び 3— (ジブチルァミノ)プロピルァミンからなる 群より選ばれる 1種以上である請求項 1又は 2に記載の固体高分子型燃料電池用膜 '電極接合体。
[5] 前記触媒粉末中の、触媒金属とカーボン担体の質量比 (触媒金属:カーボン担体) 力 S2 : 8— 7 : 3であり、かつ前記カーボン担体が、カーボンブラック、活性炭、カーボン ナノチューブ及びカーボンナノホーンからなる群から選ばれる 1種以上である請求項 ェ一 4のいずれかに記載の固体高分子型燃料電池用膜'電極接合体。
[6] 前記イオン交換榭脂力 CF =CF— (OCF CFX) — O— (CF )—SO Hで表され
2 2 m p 2 n 3 るパーフルォロビュル化合物(mは 0— 3の整数を示し、 nは 1一 12の整数を示し、 p は 0又は 1を示し、 Xはフッ素原子又はトリフルォロメチル基を示す。 )に基づく繰り返 し単位と、テトラフルォロエチレンに基づく繰り返し単位とを含む共重合体である請求 項 1一 5のいずれかに記載の固体高分子型燃料電池用膜'電極接合体。
[7] 触媒金属粒子がカーボン担体に担持された触媒粉末とイオン交換樹脂とを含む触 媒層を有するアノード及び力ソードと、該アノードの触媒層と該カソードの触媒層との 間に配置されるイオン交換膜とを有する固体高分子型燃料電池用膜'電極接合体の 製造方法であって、前記触媒粉末と前記イオン交換樹脂と 20°Cで水に対する溶解 度が 3以下のァミンとを含み、かつ、当該ァミンの前記触媒粉末に対する含有量 (W X N) ZM X 1000が 0. 03— 1である(ただし、 Wは前記ァミンの触媒粉末 あたり の含有量 (g)、 Mは前記ァミンの分子量、 Nは前記アミン 1分子中における塩基性を 有する窒素原子の数である。)塗工液を調製し、該塗工液を基材上に塗工することに より触媒層を形成し、得られた触媒層をアノード及び力ソードの触媒層の少なくとも一 方とすることを特徴とする固体高分子型燃料電池用膜 '電極接合体の製造方法。
[8] 触媒金属粒子がカーボン担体に担持された触媒粉末とイオン交換樹脂とを含む触 媒層を有するアノード及び力ソードと、該アノードの触媒層と該カソードの触媒層との 間に配置されるイオン交換膜とを有する固体高分子型燃料電池用膜'電極接合体の 製造方法であって、前記触媒粉末と前記イオン交換樹脂と 20°Cで水に対する溶解 度が 3以下のァミンとを含み、かつ、当該ァミンの前記触媒粉末に対する含有量が質 量比で 0. 3— 30%である塗工液を調製し、該塗工液を基材上に塗工することにより 触媒層を形成し、得られた触媒層をアノード及び力ソードの触媒層の少なくとも一方 とすることを特徴とする固体高分子型燃料電池用膜 '電極接合体の製造方法。 前記ァミンが、式 1で表わされる基 (ただし、 Xは水素原子又はメチル基を表す。)を 有する HALSである請求項 7又は 8に記載の固体高分子型燃料電池用膜 '電極接 合体の製造方法。
[化 2]
Figure imgf000031_0001
前記ァミンが、 2—ェチルへキシルァミン、 3—( 2—ェチルへキシルォキシ)プロピル ァミン、ジイソブチルァミン、ジー n—才クチルァミン、トリー n—才クチルァミン、トリアリル ァミン、ジー 2—ェチルへキシルァミン及び 3— (ジブチルァミノ)プロピルァミンからなる 群より選ばれる 1種以上である請求項 7又は 8に記載の固体高分子型燃料電池用膜 '電極接合体の製造方法。
PCT/JP2004/015528 2003-10-24 2004-10-20 固体高分子型燃料電池用膜・電極接合体及びその製造方法 WO2005041330A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005514960A JPWO2005041330A1 (ja) 2003-10-24 2004-10-20 固体高分子型燃料電池用膜・電極接合体及びその製造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003364352 2003-10-24
JP2003-364352 2003-10-24
JP2004-076310 2004-03-17
JP2004076310 2004-03-17
JP2004076309 2004-03-17
JP2004-076309 2004-03-17

Publications (1)

Publication Number Publication Date
WO2005041330A1 true WO2005041330A1 (ja) 2005-05-06

Family

ID=34527593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015528 WO2005041330A1 (ja) 2003-10-24 2004-10-20 固体高分子型燃料電池用膜・電極接合体及びその製造方法

Country Status (2)

Country Link
JP (1) JPWO2005041330A1 (ja)
WO (1) WO2005041330A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7943249B2 (en) 2004-06-22 2011-05-17 Asahi Glass Company, Limited Liquid composition, process for its production and process for producing membrane-electrode assembly for polymer electrolyte fuel cells
US8962215B2 (en) 2004-06-22 2015-02-24 Asahi Glass Company, Limited Electrolyte membrane for polymer electrolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell
WO2016035321A1 (ja) * 2014-09-01 2016-03-10 国立大学法人 東京大学 共有結合性有機構造体を含む導電性ハイブリッド材料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059494A (ja) * 2001-08-09 2003-02-28 Asahi Glass Co Ltd 固体高分子型燃料電池の運転方法及び燃料電池装置
JP2003077479A (ja) * 2001-09-04 2003-03-14 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池およびその製造方法
JP2003086187A (ja) * 2001-09-14 2003-03-20 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池
JP2003197218A (ja) * 2001-12-27 2003-07-11 Asahi Glass Co Ltd 固体高分子型燃料電池用膜電極接合体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059494A (ja) * 2001-08-09 2003-02-28 Asahi Glass Co Ltd 固体高分子型燃料電池の運転方法及び燃料電池装置
JP2003077479A (ja) * 2001-09-04 2003-03-14 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池およびその製造方法
JP2003086187A (ja) * 2001-09-14 2003-03-20 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池
JP2003197218A (ja) * 2001-12-27 2003-07-11 Asahi Glass Co Ltd 固体高分子型燃料電池用膜電極接合体の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7943249B2 (en) 2004-06-22 2011-05-17 Asahi Glass Company, Limited Liquid composition, process for its production and process for producing membrane-electrode assembly for polymer electrolyte fuel cells
US8546004B2 (en) 2004-06-22 2013-10-01 Asahi Glass Company, Limited Liquid composition, process for its production and process for producing membrane-electrode assembly for polymer electrolyte fuel cells
US8962215B2 (en) 2004-06-22 2015-02-24 Asahi Glass Company, Limited Electrolyte membrane for polymer electrolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell
US9331354B2 (en) 2004-06-22 2016-05-03 Asahi Glass Company, Limited Liquid composition, process for its production, and process for producing membrane-electrode assembly for polymer electrolyte fuel cells
US9455465B2 (en) 2004-06-22 2016-09-27 Asahi Glass Company, Limited Electrolyte membrane for polymer electrolyte fuel cell, process for its production and membrane-electrode assembly for polymer electrolyte fuel cell
US10153506B2 (en) 2004-06-22 2018-12-11 AGC Inc. Liquid composition, process for its production, and process for producing membrane-electrode assembly for polymer electrolyte fuel cells
US10916790B2 (en) 2004-06-22 2021-02-09 AGC Inc. Liquid composition, process for its production, and process for producing membrane-electrode assembly for polymer electrolyte fuel cells
WO2016035321A1 (ja) * 2014-09-01 2016-03-10 国立大学法人 東京大学 共有結合性有機構造体を含む導電性ハイブリッド材料
CN106574124A (zh) * 2014-09-01 2017-04-19 国立大学法人东京大学 含有共价性有机结构体的导电性杂化材料

Also Published As

Publication number Publication date
JPWO2005041330A1 (ja) 2007-11-29

Similar Documents

Publication Publication Date Title
JP5010823B2 (ja) 直接酸化型燃料電池用高分子電解質膜、その製造方法及びこれを含む直接酸化型燃料電池システム
JP3915846B2 (ja) 固体高分子型燃料電池用電解質膜、その製造方法及び固体高分子型燃料電池用膜電極接合体
JP4845609B2 (ja) 燃料電池用高分子電解質膜、これを含む燃料電池用膜−電極組立体、及びこれを含む燃料電池システム
JP4689581B2 (ja) 燃料電池用高分子電解質膜、その製造方法及びこれを含む燃料電池用電極接合体
CA2450346C (en) Electrode structure for solid polymer fuel cell, its production method, and solid polymer fuel cell
KR100778502B1 (ko) 연료 전지용 고분자 전해질 막, 이를 포함하는 연료 전지용막-전극 어셈블리 및 연료 전지 시스템
JP4997971B2 (ja) 固体高分子型燃料電池用電解質膜、その製造方法及び固体高分子型燃料電池用膜電極接合体
JP5247974B2 (ja) 固体高分子形水素・酸素燃料電池用電解質膜の製造方法
WO2007007767A1 (ja) 固体高分子形燃料電池用電解質膜、その製造方法及び固体高分子形燃料電池用膜電極接合体
KR20180060811A (ko) 막 전극 접합체, 연료 전지 및 막 전극 접합체의 제조방법
JP2006049110A (ja) 燃料電池用触媒、それを用いた膜電極接合体、その製造方法及び燃料電池
JP4765908B2 (ja) 固体高分子電解質膜及び固体高分子型燃料電池用膜電極接合体
US7842422B2 (en) Membrane-electrode assembly for fuel cell and fuel cell comprising the same
JP2006318755A (ja) 固体高分子形燃料電池用膜電極接合体
JP4352878B2 (ja) モノマー化合物、グラフト共重合化合物、及びそれらの製造方法、高分子電解質膜、並びに燃料電池
JP2004152615A (ja) 固体高分子電解質膜、その製造方法及び膜電極接合体
JP2007188706A (ja) 固体高分子形燃料電池用電解質膜および固体高分子形燃料電池用膜電極接合体
JP2004178814A (ja) 固体高分子型燃料電池用膜・電極接合体の製造方法
JP4682629B2 (ja) 固体高分子型燃料電池用電解質膜、および固体高分子型燃料電池用膜・電極接合体
US7977008B2 (en) High temperature proton exchange membrane using ionomer/solid proton conductor, preparation method thereof and fuel cell containing the same
KR101117630B1 (ko) 연료전지용 막-전극 접합체 및 그 제조방법
WO2005041330A1 (ja) 固体高分子型燃料電池用膜・電極接合体及びその製造方法
JP2008016270A (ja) 電極/個体高分子電解質接合体及び燃料電池
KR100709191B1 (ko) 연료 전지용 막-전극 어셈블리, 고분자 전해질 막의 제조방법 및 연료 전지 시스템
JP2006236927A (ja) 固体高分子型燃料電池用膜電極接合体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514960

Country of ref document: JP

122 Ep: pct application non-entry in european phase