WO2016035321A1 - 共有結合性有機構造体を含む導電性ハイブリッド材料 - Google Patents

共有結合性有機構造体を含む導電性ハイブリッド材料 Download PDF

Info

Publication number
WO2016035321A1
WO2016035321A1 PCT/JP2015/004423 JP2015004423W WO2016035321A1 WO 2016035321 A1 WO2016035321 A1 WO 2016035321A1 JP 2015004423 W JP2015004423 W JP 2015004423W WO 2016035321 A1 WO2016035321 A1 WO 2016035321A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic structure
hybrid material
conductive
covalently bonded
ctf
Prior art date
Application number
PCT/JP2015/004423
Other languages
English (en)
French (fr)
Inventor
和秀 神谷
周次 中西
橋本 和仁
和至 岩瀬
亮 釜井
Original Assignee
国立大学法人 東京大学
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学, パナソニック株式会社 filed Critical 国立大学法人 東京大学
Priority to US15/500,382 priority Critical patent/US20170222231A1/en
Priority to CN201580041577.XA priority patent/CN106574124A/zh
Priority to EP15838402.4A priority patent/EP3190157B1/en
Priority to JP2016546317A priority patent/JP6358680B2/ja
Publication of WO2016035321A1 publication Critical patent/WO2016035321A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8673Electrically conductive fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0638Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with at least three nitrogen atoms in the ring
    • C08G73/0644Poly(1,3,5)triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a conductive hybrid material containing a covalently bonded organic structure. Specifically, the present invention relates to a conductive hybrid material including a covalently bonded organic structure that can be suitably used as a catalyst material or an electrode material.
  • the hydrogen oxidation reaction is important in the anode reaction of an H 2 / O 2 fuel cell.
  • a hydrogen generation reaction that is the reverse reaction of the hydrogen oxidation reaction is important in the cathode reaction of an electrolytic cell.
  • platinum group elements such as platinum, palladium and iridium and platinum group element compounds such as platinum ruthenium alloys are widely used as catalysts. .
  • Patent Document 1 discloses using a catalyst in which platinum particles are supported on a carrier such as carbon black powder on the fuel electrode side of a solid polymer fuel cell as a hydrogen oxidation catalyst.
  • Patent Document 2 discloses that a thin film obtained by forming a platinum film on indium tin oxide (ITO) by a sputtering method is disclosed as a hydrogen generation catalyst.
  • Patent Document 2 discloses that the hydrogen generation overvoltage of platinum and a nanostructure containing platinum is small.
  • Patent Document 3 discloses that nickel oxide powder is plasma sprayed on the surface of a nickel expanded metal substrate and the substrate is coated with nickel oxide powder as a catalyst for the hydrogen generation reaction.
  • a covalent organic structure is a porous crystalline polymer having meso and micro-sized pores, and is known to be synthesized by a polycondensation reaction such as boronic acid (for example, Patent Document 4 and Non-patent document 1).
  • the covalent organic structure is a substance that can achieve both high durability by being constructed with only covalent bonds and high design flexibility due to the wide selection of frameworks.
  • utilization in applications such as gas adsorption / separation has been studied by utilizing the property of being porous, but functional porous materials such as next-generation catalysts or catalyst carriers have been studied from the above characteristics. The application as is also attracting attention.
  • the nickel compound of Patent Document 3 has a hydrogen oxidation / hydrogen generation overvoltage of 100 mV or more with respect to platinum, and has a problem that energy is consumed much more than platinum in the reaction.
  • the platinum group elements of Patent Documents 1 and 2 are expensive although the hydrogen oxidation / hydrogen generation overvoltage is extremely small, the platinum group element is supported by supporting the conductive porous carrier as nanoparticles of 3 to 20 nm. It has been used with improved surface area. However, even in such a case, in order to obtain a sufficient current density, it is necessary to increase the amount of the metal supported, which causes a problem of high cost.
  • the covalently bonded organic structure itself has poor electronic conductivity. Therefore, so far, it has been difficult to use as an electrode catalyst, a catalyst material accompanied by an electron transfer reaction, an electrode material of a secondary battery, and the like.
  • An object of the present invention is to provide a novel conductive material.
  • Another object of the present invention is to provide a conductive material having high catalytic activity even when the amount of supported metal is reduced.
  • the conductive hybrid material according to the first aspect of the present invention includes a covalent organic structure having a pore and a conductive material, and the covalent organic structure is on the conductive material. It is carried on.
  • the electrode according to the second aspect of the present invention includes a conductive hybrid material that includes a covalent organic structure having a pore and a conductive material, and the covalent organic structure is supported on the conductive material. To do.
  • the catalyst according to the third aspect of the present invention includes a conductive hybrid material including a covalent organic structure having pores and a conductive material, and the covalent organic structure is supported on the conductive material. To do.
  • the hydrogen generation catalyst according to the fourth aspect of the present invention includes a conductive hybrid material including a covalent organic structure having a pore and a conductive material, and the covalent organic structure is supported on the conductive material. Having a catalyst containing A platinum group element is coordinated to the covalently bonded organic structure.
  • the hydrogen oxidation catalyst according to the fifth aspect of the present invention includes a conductive hybrid material including a covalent organic structure having a pore and a conductive material, and the covalent organic structure is supported on the conductive material. Having a catalyst containing A platinum group element is coordinated to the covalently bonded organic structure.
  • the oxygen reduction catalyst according to the sixth aspect of the present invention includes a conductive hybrid material including a covalent organic structure having pores and a conductive material, and the covalent organic structure is supported on the conductive material. Having a catalyst containing The conductor material is a carbon material.
  • FIG. 1 shows a scanning electron microscope image of a conductive hybrid material according to an embodiment of the present invention.
  • FIG. 2 is a graph showing an oxygen reduction potential-current curve of the conductive hybrid material (Pt / CTF-1 / KB) according to the embodiment of the present invention.
  • FIG. 3 is a graph showing a comparison between the oxygen reduction potential-current curve of the covalently bonded organic structure and the oxygen reduction potential-current curve of the conductive hybrid material.
  • FIG. 4 is a graph showing oxygen reduction potential-current curves of the conductive hybrid material (Pt / CTF-1 / KB) and the material of Comparative Example 1 (20 mass% Pt / C) in the presence of methanol and oxygen. It is.
  • FIG. 1 shows a scanning electron microscope image of a conductive hybrid material according to an embodiment of the present invention.
  • FIG. 2 is a graph showing an oxygen reduction potential-current curve of the conductive hybrid material (Pt / CTF-1 / KB) according to the embodiment of the present invention
  • FIG. 5 shows an oxygen reduction potential-current curve of the conductive hybrid material (Pt / CTF-1 / KB) and the material of Comparative Example 1 (20 mass% Pt / C) when methanol is present but oxygen is not present. It is a graph which shows.
  • FIG. 6 is a graph showing an oxygen reduction potential-current curve of the conductive hybrid material (Cu / CTF-1 / KB) according to the embodiment of the present invention.
  • FIG. 7 is a graph showing oxygen reduction potential-current curves of conductive hybrid materials (Cu / CTF-3 / KB, Cu / CTF-5 / KB and Cu / CTF-6 / KB) according to an embodiment of the present invention. It is.
  • FIG. 1 shows an oxygen reduction potential-current curve of the conductive hybrid material (Pt / CTF-1 / KB) and the material of Comparative Example 1 (20 mass% Pt / C) when methanol is present but oxygen is not present. It is a graph which shows.
  • FIG. 6 is
  • FIG. 8 is a graph showing an oxygen reduction potential-current curve of a conductive hybrid material (Pt / CTF-1 / KB, Cu / CTF-7 / KB) according to an embodiment of the present invention.
  • FIG. 9 is a graph showing the results of linear sweep voltammetry performed on the hybrid materials of Examples 2-1 to 2-7 and the material of Comparative Example 2.
  • FIG. 10 is a graph showing the results of linear sweep voltammetry performed on the hybrid materials of Examples 2-1 to 2-7 and the material of Comparative Example 2.
  • FIG. 11 is a graph showing the relationship between the elemental composition ratio and the current density in the hydrogen oxidation reaction per unit platinum amount in the hybrid materials of Examples 2-1 to 2-7 and the material of Comparative Example 2.
  • FIG. 12 is a graph showing the relationship between the elemental composition ratio and the current density in the hydrogen generation reaction per unit platinum amount in the hybrid materials of Examples 2-1 to 2-7 and the material of Comparative Example 2.
  • the conductive hybrid material of this embodiment includes a covalent organic structure having pores and a conductive material, and the covalent organic structure is supported on the conductive material. .
  • the “covalent organic structure” is a molecule formed by connecting atoms such as hydrogen, carbon, nitrogen, oxygen, boron, and sulfur only by a covalent bond. More specifically, the covalent bond organic structure means a polymer having a structure in which a plurality of the same or different aromatic ring groups form a cyclic repeating unit by a covalent bond.
  • the covalently bonded organic structure also means a polymer having a two-dimensional or three-dimensional network structure in which the repeating unit is continuously connected to one or more other repeating units by a covalent bond.
  • Such a covalently bonded organic structure has a porous structure having meso and micro-sized pores, and has a low density and excellent thermal stability.
  • the covalently bonded organic structure used for the conductive hybrid material of the present embodiment is preferably a polymer composed of repeating units having a plurality of triazine rings in the molecule. As described above, the repeating unit is connected to another adjacent repeating unit by a covalent bond, and a structure is formed by repeating such a structure in a chain manner.
  • the covalent organic structure has a structure in which a plurality of triazine rings are covalently linked via an arylene, heteroarylene, or heteroatom.
  • arylene means a divalent functional group obtained by removing two hydrogen atoms bonded to a carbon atom constituting an aromatic ring from an aromatic hydrocarbon.
  • Heteroarylene means a divalent functional group formed by removing two hydrogen atoms from a heterocyclic compound having aromaticity.
  • the arylene is phenylene.
  • the heteroarylene is pyridylene.
  • the arylene and heteroarylene may have a substituent, and such a substituent is not particularly limited, and may be, for example, alkyl or halogen.
  • a hetero atom sulfur, boron, nitrogen, phosphorus, etc. can be mentioned, Preferably it is sulfur or nitrogen.
  • a covalent organic structure having a triazine ring can be obtained as follows. First, a triazine ring is formed by subjecting a monomer having a dicyano group or a tricyano group to a condensation reaction. Next, by repeating the condensation reaction, a covalent organic structure in which a plurality of triazine rings are finally connected by a covalent bond can be obtained. In obtaining the conductive hybrid material in the present embodiment, the condensation reaction can be preferably performed in-situ on the conductor material.
  • the monomer having a dicyano group is preferably dicyanobenzene or dicyanopyridine.
  • the monomer having a tricyano group is preferably tricyanobenzene or tricyanopyridine.
  • the monomer is dicyanobenzene, a structure in which a plurality of triazine rings are connected via a phenylene as described above via a phenylene bond.
  • the monomer is dicyanopyridine, a structure in which a plurality of triazine rings are linked by a covalent bond via pyridylene as described above. Therefore, the covalently bonded organic structure preferably has a structure in which a plurality of triazine rings are connected by covalent bonds via phenylene or pyridylene.
  • the covalent organic structure is preferably a compound obtained by a condensation reaction of dicyanobenzene or dicyanopyridine.
  • the monomer having a dicyano group can further have a substituent.
  • a substituent is not particularly limited as long as the condensation reaction of the cyano group proceeds, and can be, for example, an alkyl group or a halogen group.
  • the covalently bonded organic structure used for the conductive hybrid material of the present embodiment preferably has 1 nm to 50 nm pores. Also preferably, the covalently bonded organic structure has a molecular weight in the range of 1000-20000.
  • a metal is coordinated to the covalently bonded organic structure. That is, it is preferable that the covalent organic structure is modified with a metal by a coordinate bond.
  • a metal can be a transition metal, preferably a platinum group element or copper.
  • the platinum group element is preferably at least one selected from the group consisting of ruthenium, rhodium, palladium, osmium, iridium and platinum.
  • the metal can exist in a complex form with the covalent organic structure by forming a coordination bond with the heteroatom of the heteroaromatic ring constituting the covalent organic structure. And by coordinating a metal to a covalent bond organic structure, a metal can be disperse
  • a typical example of the covalently bonded organic structure used in the conductive hybrid material of the present embodiment is a compound having a structure represented by the following chemical formula 1.
  • the compound of Chemical Formula 1 can be synthesized by forming a triazine ring by condensation reaction of 2,6-dicyanopyridine and repeating the reaction, as shown in the examples described later.
  • the compound has a structure in which triazine rings are linked by a covalent bond via a pyridylene group.
  • a repeating unit having a cyclic structure composed of three triazine rings and three pyridine rings is formed, and the plurality of repeating units are further linked by a pyridylene group.
  • the compound of Chemical Formula 1 is a polymer having a plurality of pores and a two-dimensional network structure.
  • the covalently bonded organic structure containing the triazine ring of Formula 1 is sometimes referred to as CTF (Covalent Triazine Framework) in particular.
  • the metal can be supported on the covalently bonded organic structure. That is, for example, as shown in Chemical Formula 2, a complex can be formed by forming a coordinate bond between a nitrogen atom of a triazine ring or a nitrogen atom of a pyridylene group and a metal.
  • covalently bonded organic structure used in the conductive hybrid material of the present embodiment are not limited to these, but preferably include the following compounds.
  • examples of the covalently bonded organic structure according to this embodiment include a compound containing a porphyrin ring represented by Chemical Formula 4.
  • the covalently bonded organic structure of Chemical Formula 4 can be synthesized by the method described in X. Feng et al., Chem. Commun., 2011, 47, 1979-1981.
  • a metal can be supported on the covalently bonded organic structure represented by Chemical Formula 4. That is, a complex can be formed by forming a coordinate bond between the nitrogen atom of the porphyrin ring and the metal.
  • Examples of the covalently bonded organic structure according to this embodiment include a compound containing a porphyrin ring and a phthalocyanine ring represented by Chemical Formula 5.
  • the covalently bonded organic structure of Chemical Formula 5 can be synthesized by the method described in Venkata S. Pavan K. Neti et al. CrystEngComm, 2013, 15, 6892-6895.
  • a metal can also be supported on the covalently bonded organic structure represented by Chemical Formula 5. That is, a complex can be formed by forming a coordinate bond between the nitrogen atom of the porphyrin ring and the phthalocyanine ring and the metal.
  • Examples of the covalently bonded organic structure according to this embodiment include a cyclic compound represented by Chemical Formula 7 in which a three-dimensional compound represented by Chemical Formula 6 is bonded via a 4,4′-biphenylene group.
  • the compounds of Chemical Formula 6 and Chemical Formula 7 can be synthesized by the method described in Y.-B. Zhang et al., J. Am. Chem. Soc. 2013, 135, 16336-16339.
  • examples of the covalently bonded organic structure according to this embodiment include a cyclic compound represented by Chemical Formula 9 in which a three-dimensional compound represented by Chemical Formula 8 is bonded.
  • the compounds of Chemical Formula 8 and Chemical Formula 9 can be synthesized by the method described in Q. Fang et al., J. Am. Chem. Soc. 2015, 137, 8352-8355.
  • the conductive material used together with the covalently bonded organic structure can be generally used as a conductive material for an electrode of a secondary battery in the technical field.
  • the conductor material is not particularly limited as long as it can impart electronic conductivity to the covalent organic structure by supporting the covalent organic structure.
  • the conductor material is preferably a carbon material.
  • the carbon material constituting the conductive material at least one selected from the group consisting of graphite, carbon black, ketjen black, acetylene black, carbon nanotube, graphene, and carbon fiber can be used.
  • amorphous carbon can also be used as a carbon material which comprises a conductor material. Since these carbon materials are excellent in conductivity and corrosion resistance, high electrode performance can be maintained for a long period of time when the conductive hybrid material is used for an electrode or the like.
  • the carbon material constituting the conductor material is preferably in the form of nanoparticles. That is, the carbon material preferably has a particle size of 10 nm to 300 nm. When the particle size of the carbon material is within this range, the covalent bond organic structure and the metal coordinated to the covalent bond organic structure can be highly dispersed, and the activity of the metal can be increased. Become.
  • the particle size of the carbon material can be determined by observing the conductive hybrid material with a scanning electron microscope (SEM), for example.
  • the ratio of the covalently bonded organic structure and the conductive material is preferably 100: 10 or more in terms of the mass ratio of the covalently bonded organic structure: conductive material. Further, it is more preferable that the covalent bond organic structure: conductor material is 100: 20 to 100: 5000 by mass ratio.
  • the elemental composition ratio between the covalently bonded organic structure and the conductor material is preferably 0.005 to 1. That is, the ratio of the total number of atoms of the elements constituting the covalent bond organic structure to the total number of atoms of the elements constituting the conductor material ([total number of atoms of the elements constituting the covalent bond organic structure] / [conductor The total number of atoms of the elements constituting the material]) is preferably 0.005 to 1.
  • the composition ratio between the covalently bonded organic structure and the conductor material is within this range, the covalently bonded organic structure is easily supported on the surface of the conductor material with a certain film thickness.
  • the element composition ratio in the present embodiment is a value obtained by performing a narrow scan of X-ray photoelectron spectrum analysis (XPS) on each element constituting the conductive hybrid material and quantifying the peak area.
  • XPS X-ray photoelectron spectrum analysis
  • a value measured using monochromatic Al X-ray (10 kV) is used for the excitation X-ray.
  • the elemental composition ratio between the covalently bonded organic structure and the conductor material is 0.005 to 0.60. It is preferably 0.05 to 0.50.
  • the covalently bonded organic structure is preferably a compound obtained by an in-situ reaction in which a monomer is polymerized on a conductive material.
  • the monomer is subjected to a condensation reaction in a molten salt such as ZnCl 2 in a state where the carbon material nanoparticles are mixed with the monomer of the covalently bonded organic structure.
  • the formation reaction of a covalent organic structure can be performed in-situ on the conductor material.
  • the monomer of the covalently bonded organic structure include dicyanobenzene, dicyanopyridine, tricyanobenzene, and tricyanopyridine as described above.
  • the conductive hybrid material of the present embodiment can impart electronic conductivity by supporting a covalently bonded organic structure on a conductive material such as a carbon material, and further highly disperse metal at an atomic level. Can be made. Therefore, the conductive hybrid material can be used as an electrode catalyst in secondary batteries and fuel cells known in the art, or as a catalyst or electrode in other systems involving electron transfer.
  • the electrode according to the present embodiment includes a conductive hybrid material including a covalent organic structure having a pore and a conductive material, and the covalent organic structure is supported on the conductive material. It is preferable to contain. Moreover, it is preferable that the catalyst which concerns on this embodiment also contains the said electroconductive hybrid material.
  • the binder used for binding the catalyst to the base material.
  • the binder include Nafion (manufactured by DuPont), Flemion (registered trademark) (manufactured by Asahi Glass Co., Ltd.), Aciplex (registered trademark) (Asahi Kasei E).
  • Cation exchange resins such as Materials Co., Ltd., anion exchange resins such as AS-4 (Tokuyama Co., Ltd.), fluorine resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF), styrene
  • fluorine resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF)
  • PVDF polyvinylidene fluoride
  • styrene examples thereof include latex materials such as butadiene rubber (SBR), and polymer materials such as polyacrylic acid, polyvinyl alcohol, and polyacrylamide. These polymer materials may be used alone or in combination of two or more.
  • the binder is not particularly limited as long as it has a binding function.
  • a conductive hybrid material as an electrode catalyst
  • materials known in the technical field can be used as the active material and binder in the electrode depending on the type of battery and the like used.
  • a method commonly used in the technical field can be used as a method for manufacturing the electrode.
  • the conductive hybrid material of the present embodiment is particularly suitable as an electrode material or the like in a fuel cell or the like using methanol because it selectively reacts with oxygen even in the presence of methanol and hardly exhibits a reaction activity with respect to methanol.
  • a conductive support agent when using the said conductive hybrid material for an electrode etc., you may add a conductive support agent.
  • conductive carbon is mainly used.
  • the conductive carbon for example, carbon black, fiber-like carbon, graphite and the like are preferably used.
  • the conductive hybrid material of this embodiment can highly disperse platinum group elements at the atomic level. Therefore, the conductive hybrid material can be suitably used as a hydrogen generation catalyst, a hydrogen oxidation catalyst, and an oxygen reduction catalyst.
  • the hydrogen generation catalyst and the hydrogen oxidation catalyst of this embodiment include a covalently bonded organic structure having a pore and a conductive material, and the covalently bonded organic structure is supported on the conductive material. It has a catalyst containing a conductive hybrid material. And it is preferable that the platinum group element is coordinated to the said covalent bond organic structure.
  • the oxygen reduction catalyst according to the present embodiment includes a conductive organic material including a covalent organic structure having a pore and a conductive material, and the covalent organic structure is supported on the conductive material. It has a catalyst to do. And it is preferable that the said conductor material is a carbon material.
  • the conductive hybrid material of the present embodiment is not limited to use as an electrode material or the like.
  • the conductive hybrid material of the present embodiment is useful as a material for purifying soil contaminated with heavy metals and a material for recovering rare metals by utilizing the feature that the conductive hybrid material forms a coordination bond with the metal and retains the metal. It is.
  • the metal forms a complex with the covalent organic structure by forming a coordination bond with a heteroatom of the heteroaromatic ring constituting the covalent organic structure.
  • the conductive hybrid material is useful as a complex catalyst in an organic synthesis reaction. Moreover, it can be used as an asymmetric synthesis catalyst by imparting chirality to the structure of the covalently bonded organic structure.
  • the conductive hybrid material of the present embodiment has an advantage that the catalyst can be easily recovered when used in an organic synthesis reaction since the complex structure is supported on the support.
  • Example 1-1 Synthesis of Conductive Hybrid Material According to the scheme shown in Chemical Formula 10, a hybrid material carrying a platinum complex of a covalently bound triazine structure (CTF-1) on Ketjen Black (KB) was synthesized.
  • CTF-1 covalently bound triazine structure
  • KB Ketjen Black
  • the resulting mixture was then sealed in a glass tube and heated under vacuum conditions. The mixture was then maintained at a temperature of 400 ° C. for 21 hours.
  • the obtained powder was washed with 0.1 M HCl, water, tetrahydrofuran (THF), and acetonitrile, and then dried under reduced pressure.
  • the powder after drying was impregnated with an aqueous solution of K 2 [PtCl 4 ] (manufactured by Wako Pure Chemical Industries, Ltd.) having a concentration of 160 mM at 60 ° C. for 4 hours to add platinum. Thereafter, it was washed with water and acetone and then dried to obtain a hybrid material (Pt / CTF-1 / KB).
  • a hybrid material (Pt / CTF-1 / KB) in which the mass ratio of platinum / CTF: Ketjenblack was 100: 5, 100: 20, 100: 100 was also prepared by the same production method as described above.
  • Pt / CTF-1 indicates a compound in which a platinum complex is supported on a covalently bonded triazine structure (CTF-1).
  • Pt / CTF-1 / KB indicates a hybrid material in which the above-described Pt / CTF-1 is supported on ketjen black.
  • Example 1-2 First, as in Example 1, 1.363 g ZnCl 2 , 0.129 g 2,6-dicyanopyridine, and 0.129 g ketjen black were mixed in a glove box.
  • the resulting mixture was then sealed in a glass tube and heated under vacuum conditions. The mixture was then maintained at a temperature of 400 ° C. for 21 hours.
  • the obtained powder was washed with 0.1 M HCl, water, tetrahydrofuran, and acetonitrile, and then dried under reduced pressure. Then, the dried powder was impregnated with an aqueous solution of CuCl 2 (manufactured by Wako Pure Chemical Industries, Ltd.) having a concentration of 160 mM at 60 ° C. for 4 hours to add copper. Thereafter, the powder was washed with water, further mixed with 0.1 M NaOH aqueous solution, and then stirred for 1 hour while irradiating ultrasonic waves.
  • Cu / CTF-1 / KB indicates a hybrid material in which a copper complex of a covalently bonded triazine structure (CTF-1) is supported on ketjen black.
  • Chemical formula 11 shows the partial structure of only the repeating unit.
  • Example 1-3 CTF-2, CTF-4 and CTF-5 having the following structures were respectively obtained in the same manner as in Example 1-1 except that the dicyanobenzene derivative represented by Chemical Formula 12 was used instead of 2,6-dicyanopyridine. A hybrid material retained with ketjen black was synthesized.
  • the upper part of Chemical Formula 12 shows the structure of the monomer used, and the lower part shows the structure of CTF.
  • CTF-3 was synthesized almost according to the description of J. Liuet al., J. Chem. Eng. Data, 2013, 58, 3557-3562.
  • CTF-6 was synthesized almost in accordance with the description of Yunfeng Zhao et al., Energy Environ. Sci., 2013, 6, 3684-3692.
  • the monomer and the ketjen black were mixed and then reacted in the same manner as in Example 1-1.
  • the obtained CTF-3 / KB, CTF-5 / KB, and CTF-6 / KB are loaded with copper by the same method as in Example 1-2, so that the hybrid material (Cu / CTF-3 / KB, Cu / CTF-5 / KB and Cu / CTF-6 / KB).
  • CTF-7 represented by the chemical formula 13 in which the triazine ring was connected by a sulfur atom was synthesized. Specifically, first, 0.235 g of trithiocyanuric acid (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 30 ml of 1,4-dioxane (manufactured by Wako Pure Chemical Industries, Ltd.), and 0.625 ml of N, N-diisopropylethylamine (manufactured by Tokyo Chemical Industry Co., Ltd.) was added.
  • trithiocyanuric acid manufactured by Wako Pure Chemical Industries, Ltd.
  • 1,4-dioxane manufactured by Wako Pure Chemical Industries, Ltd.
  • N, N-diisopropylethylamine manufactured by Tokyo Chemical Industry Co., Ltd.
  • the dried powder (CTF-7 / KB) was impregnated with an aqueous solution of 5 mM K 2 [PtCl 4 ] (manufactured by Wako Pure Chemical Industries, Ltd.) at 60 ° C. for 4 hours to add platinum. Thereafter, the substrate was washed with water and acetone and then dried to obtain a hybrid material (Pt / CTF-7 / KB).
  • a hybrid material (Cu / CTF-7 / KB) was obtained by supporting copper on the obtained CTF-7 / KB in the same manner as in Example 1-2.
  • the molecular structure of the obtained hybrid material was analyzed by X-ray photoelectron spectrum analysis (XPS) and wide-area X-ray absorption fine structure (EXAFS) analysis. As a result, it was confirmed that CTF was formed from the bond peak, and that no peak of Pt-Pt bond was observed, so that CTF and divalent platinum 1 atom formed a coordinate bond. .
  • XPS X-ray photoelectron spectrum analysis
  • EXAFS wide-area X-ray absorption fine structure
  • Electrochemical measurement A rotating disk electrode (RDE) containing the hybrid material synthesized in Examples 1-1 to 1-4 was prepared, and its electrochemical characteristics were evaluated.
  • hybrid material powder was first dispersed in 175 ⁇ L of ethanol and 47.5 ⁇ L of Nafion® solution.
  • the Nafion solution was a 5 mass% solution of a lower aliphatic alcohol mixture and water, and a product manufactured by Sigma-Aldrich was used.
  • 7 ⁇ L of the solution was dropped onto a glassy carbon electrode (0.196 cm ⁇ 2 ) to prepare a working electrode.
  • the hybrid material was adjusted to 0.8 mg ⁇ cm ⁇ 2 .
  • Pt line and Ag / AgCl / KClsat. Were used as a counter electrode and a reference electrode, respectively. In the measurement, the rotation speed of the working electrode was 1500 rpm.
  • the electrical conductivity of the hybrid material was measured using a resistivity meter (Loresta-GP, manufactured by Mitsubishi Chemical Analytech Co., Ltd.).
  • FIGS. 2 (a) and 2 (b) The oxygen reduction potential-current curves of Pt / CTF-1 / KB synthesized in Example 1-1 are shown in FIGS. 2 (a) and 2 (b).
  • FIG. 2 (b) is an enlarged view of FIG. 2 (a).
  • 2 (a) and 2 (b) also show oxygen reduction potential-current curves of a material in which platinum is supported on CTF-1 without using carbon black. From the results shown in FIG. 2, it was observed that the current derived from oxygen reduction was significantly increased by supporting Pt / CTF-1 on Ketjen Black. It was confirmed from the electrical conductivity measurement that this was because the electrical conductivity was improved by being supported on ketjen black.
  • FIG. 3 shows the result of comparison of oxygen reduction activity with and without ketjen black using CTF-1 containing no Pt.
  • an oxygen saturated solution (pH 13) of 0.1 M NaOH was used for the measurement.
  • Pt was not contained, the electrical conductivity was improved by supporting it on Ketjen Black, and the oxygen reduction current of CTF-1 was increased.
  • FIG. 4 (a) shows the oxygen reduction reaction activity of the Pt / CTF-1 / KB hybrid material when methanol is present in the solution. Moreover, the result of having performed the same measurement by 20 mass% Pt / C of the comparative example 1 is shown in FIG.4 (b).
  • FIG. 5 shows the result of the same measurement under the condition that the solution does not contain oxygen.
  • the hybrid material containing CTF-1 does not have methanol oxidation reaction activity despite containing Pt, whereas Pt / C does not have methanol oxidation reaction. Activity was observed. This result also shows that the hybrid material containing CTF-1 has high selectivity only for the oxygen reduction reaction as described above.
  • platinum clusters having a Pt—Pt bond are active in methanol oxidation.
  • Pt is present as one atom coordinated to CTF-1 as shown from the above EXAFS result.
  • the oxygen reduction reaction activity was similarly measured for the hybrid material of Example 1-2 (Cu / CTF-1 / KB) in which the metal of the Pt / CTF-1 / KB hybrid material was replaced with copper. The result is shown in FIG. From FIG. 6, it was found that even when copper was supported, high electrical conductivity was obtained and the oxygen reduction activity was improved.
  • the electrical conductivity of the covalently bonded organic structure having a structure other than CTF-1 obtained in Examples 1-3 and 1-4 was also measured.
  • Hybrid materials (Cu / CTF-3 / KB, Cu / CTF-5 / KB, and Cu / CTF-6) synthesized in Example 1-3, in which copper is supported on CTF-3, CTF-5, and CTF-6
  • the measurement result of the oxygen reduction potential-current curve for / KB) is shown in FIG.
  • the measurement result about Cu / CTF-7 / KB is shown in FIG. From these results, it was found that the electrical conductivity is improved even in CTF in which triazine rings are connected by phenylene or sulfur.
  • the metal is held in the covalent organic structure by forming a coordinate bond between the nitrogen atom of the triazine ring of the covalent organic structure or the nitrogen atom of the pyridylene group and the metal. Therefore, for reactions in which the active site is a metal site or a site affected by metal coordination, a covalent organic structure containing a nitrogen atom of a triazine ring or a nitrogen atom of a pyridylene group is present.
  • the present invention can be widely applied as in the embodiment.
  • Example 2-1 a conductive hybrid material was prepared in which the elemental composition ratio of the covalently bonded organic structure and the conductor material determined by X-ray photoelectron spectroscopy was 2.39.
  • the resulting mixture was then sealed in a glass tube and held at 400 ° C. for 21 hours under vacuum.
  • the obtained powder was washed with 0.1 M HCl, water, THF, and acetonitrile, and then dried under reduced pressure.
  • the dried powder is mixed with an aqueous solution of 1 mM K 2 [PtCl 4 ] (manufactured by Wako Pure Chemical Industries, Ltd.), and stirred at 30 ° C. for 1 hour while irradiating ultrasonic waves, so that platinum can be obtained. Added. Thereafter, the hybrid material was obtained by washing with water and acetone and then drying.
  • XPS X-ray photoelectron spectroscopy
  • the method for obtaining the elemental composition ratio between CTF and ketjen black, which is a conductor material will be described in more detail.
  • the amount of platinum supported in the hybrid material of this example was 20.2 wt%.
  • Example 2-2 a conductive hybrid material was prepared in which the elemental composition ratio of the covalently bonded organic structure and conductor material determined by X-ray photoelectron spectroscopy was 0.74. Specifically, a hybrid material was synthesized in the same manner as in Example 2-1, except that the amount of ketjen black added was 0.0258 g.
  • the method for obtaining the elemental composition ratio between CTF and ketjen black, which is a conductor material will be described in more detail.
  • the amount of platinum supported in the hybrid material of this example was 15.1 wt%.
  • Example 2-3 a conductive hybrid material was prepared in which the elemental composition ratio between the covalently bonded organic structure and the conductor material determined by X-ray photoelectron spectroscopy was 0.30. Specifically, a hybrid material was synthesized in the same manner as in Example 2-1, except that the amount of ketjen black added was 0.129 g.
  • the method for obtaining the elemental composition ratio between CTF and ketjen black, which is a conductor material will be described in more detail.
  • the amount of platinum supported in the hybrid material of this example was 8.7 wt%.
  • Example 2-4 a conductive hybrid material was prepared in which the elemental composition ratio of the covalently bonded organic structure and conductor material determined by X-ray photoelectron spectroscopy was 0.16. Specifically, a hybrid material was synthesized in the same manner as in Example 2-1, except that the amount of ketjen black added was 0.129 g and 2,6-dicyanopyridine was 0.0645 g.
  • the method for obtaining the elemental composition ratio between CTF and ketjen black, which is a conductor material will be described in more detail.
  • the amount of platinum supported in the hybrid material of this example was 5.7 wt%.
  • Example 2-5 a conductive hybrid material was prepared in which the elemental composition ratio between the covalently bonded organic structure and the conductor material determined by X-ray photoelectron spectroscopy was 0.10. Specifically, a hybrid material was synthesized in the same manner as in Example 2-1, except that the amount of ketjen black added was 0.129 g and 2,6-dicyanopyridine was 0.0323 g.
  • Example 2-6 a conductive hybrid material was prepared in which the elemental composition ratio of the covalently bonded organic structure and conductor material determined by X-ray photoelectron spectroscopy was 0.030. Specifically, a hybrid material was synthesized in the same manner as in Example 2-1, except that the amount of ketjen black added was 0.129 g and 2,6-dicyanopyridine was 0.0161 g.
  • the method for obtaining the elemental composition ratio between CTF and ketjen black, which is a conductor material will be described in more detail.
  • the amount of platinum supported in the hybrid material of this example was 2.7 wt%.
  • Example 2-7 a conductive hybrid material was prepared in which the elemental composition ratio of the covalently bonded organic structure and conductor material determined by X-ray photoelectron spectroscopy was 0.0090. Specifically, a hybrid material was synthesized in the same manner as in Example 2-1, except that the amount of ketjen black added was 0.129 g and 2,6-dicyanopyridine was 0.0040 g.
  • the amount of platinum supported in the hybrid material of this example was 2.4 wt%.
  • FIG. 9 and 10 show the results of performing linear sweep voltammetry on the hybrid materials of Examples 2-1 to 2-7 and Comparative Example 2.
  • FIG. 9 means the hydrogen oxidation catalytic activity per unit catalyst amount, and it can be said that the higher the current density, the higher the catalytic activity.
  • the elemental composition ratio between the covalently bonded organic structure and the conductor material is 0.05 to 0.50. It turns out that it is preferable.
  • FIG. 10 means hydrogen generation catalytic activity per unit catalyst amount, and it can be said that the higher the current density is, the higher the catalytic activity is.
  • the elemental composition ratio between the covalently bonded organic structure and the conductor material is 0.05 to 0.50. It turns out that it is preferable. As described above, even with a catalyst having a low hydrogen generation catalytic activity, it is possible to increase the hydrogen generation catalytic activity as an electrode by appropriately increasing the amount of the catalyst supported on the electrode.
  • the graph of FIG. 11 means the hydrogen oxidation catalytic activity per unit platinum amount obtained from the hydrogen oxidation catalytic activity per unit catalyst amount of FIG. 9 and the result of the composition analysis by XPS.
  • the higher the HOR (Hydrogen Oxidation Reaction) current density per unit platinum amount the higher the catalytic activity per unit platinum amount.
  • the HOR current density per unit platinum amount is larger than 20 wt% Pt / C. I understand.
  • the elemental composition ratio between the covalently bonded organic structure and the conductor material determined by XPS is preferably 0.005 to 1, preferably 0.005 to 0.00 from the viewpoint of current density per unit platinum amount. 60 is more preferable.
  • the element composition ratio is more preferably 0.005 to 0.30, particularly preferably 0.005 to 0.10, and most preferably 0.005 to 0.05.
  • the graph of FIG. 12 means the hydrogen generation catalyst activity per unit platinum amount obtained from the hydrogen generation catalyst activity per unit catalyst amount of FIG. 10 and the result of the composition analysis by XPS.
  • the higher the HER (Hydrogen Evolution Reaction) current density per unit platinum amount the higher the catalytic activity per unit platinum amount.
  • the HER current density per unit platinum amount is larger than 20 wt% Pt / C. I understand.
  • the elemental composition ratio between the covalently bonded organic structure and the conductor material determined by XPS is preferably 0.005 to 1, preferably 0.005 to 0.00 from the viewpoint of current density per unit platinum amount. 60 is more preferable.
  • the element composition ratio is more preferably 0.005 to 0.30, particularly preferably 0.005 to 0.10, and most preferably 0.005 to 0.05.
  • the preferable elemental composition ratio of the covalent organic structure to the conductor material does not depend on the type of the covalent organic structure.
  • Each of the covalent bond organic structures is a material having a small electrical conductivity, and the distance between the covalent bond organic structure effective for electron transfer and the conductive material is almost constant. That is, when the covalent bond organic structure is supported in the form of a film on the surface of the conductor material, the film thickness of the covalent bond organic structure effective for electron transfer is almost constant. Therefore, it is preferable that the covalently bonded organic structure is supported on the surface of the conductive material with a thin film thickness that facilitates electron transfer.
  • the preferable elemental composition ratio of the covalently bonded organic structure to the conductor material of the hybrid material in the present embodiment is 0.005 to 1, and does not depend on the type of the conductor material. That is, when the specific surface area of the conductor material is smaller than that of the present embodiment, the composition ratio range works in the direction of shifting to a small value as a whole, and conversely, when the specific surface area is larger than that of the present embodiment, the composition ratio range. Is considered to work in the direction of large values.
  • the preferred elemental composition ratio of the covalently bonded organic structure to the conductor material is 0.005 to 1 regardless of the type of the conductor material.
  • the conductive hybrid material of the present embodiment provides excellent conductivity by supporting a covalently bonded organic structure on a conductive material such as a carbon material, and can be useful as an electrode material or the like. It is a demonstration.
  • the electronic conductivity can be imparted, and the fuel cell electrode catalyst material or In addition, it can be used as a catalyst material or an electrode material with electron transfer.
  • the conductive hybrid material of this embodiment can disperse
  • a conductive hybrid material modified with platinum is extremely useful as a material in a fuel cell or the like using methanol.
  • the covalently bonded organic structure has an advantage that it is inexpensive because it consists of only an organic substance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

 導電性ハイブリッド材料は、細孔を有する共有結合性有機構造体と導体材料とを含み、共有結合性有機構造体が導体材料上に担持されている。電子伝導性を有しない共有結合性有機構造体を炭素材料等の導体材料上に担持させることによって、電子伝導性を付与でき、燃料電池の電極触媒材料やその他、電子移動を伴う触媒材料や電極材料として用いることが可能となる。

Description

共有結合性有機構造体を含む導電性ハイブリッド材料
 本発明は、共有結合性有機構造体を含む導電性ハイブリッド材料に関する。詳細には、本発明は、触媒材料や電極材料として好適に用いることが可能な、共有結合性有機構造体を含む導電性ハイブリッド材料に関する。
 水素酸化反応は、H/O燃料電池のアノード反応などにおいて重要である。また、水素酸化反応の逆反応である水素発生反応は、電解槽のカソード反応などにおいて重要である。そして、各種デバイスにおいて水素酸化反応や水素発生反応を進行させる場合には、触媒として、白金、パラジウム及びイリジウムなどの白金族元素や、白金ルテニウム合金などの白金族元素の化合物が広く使用されている。
  H→2H+2e (水素酸化反応)
  2HO+2e→H+2OH (水素発生反応)
 例えば特許文献1では、水素酸化触媒として、固体高分子形燃料電池の燃料極側に、白金粒子をカーボンブラック粉末等の担体に担持した触媒を用いることが開示されている。また、特許文献2では、水素発生触媒として、スパッタ法により白金を酸化インジウムスズ(ITO)上に製膜した薄膜を用いることが開示されている。そして、特許文献2では、白金及び白金を含有するナノ構造体の水素発生過電圧が小さいことが開示されている。
 また、水素発生触媒として作用する白金族以外の元素としては、水素生成酵素であるヒドロゲナーゼの活性中心を構成する鉄、ニッケル及びセレンが知られている。また、水素発生触媒としては、モリブデンの硫化物やセレン化物など、遷移金属の化合物が広く知られている。さらに特許文献3では、ニッケル製エキスパンドメタル基材の表面に酸化ニッケル粉をプラズマ溶射して、基材を酸化ニッケル粉で被覆したものを水素発生反応の触媒として用いることが開示されている。
 ここで、従来より、共有結合性有機構造体(Covalent Organic Framework)を次世代の触媒又は触媒担体などの機能性多孔質材料として応用することが検討されている。共有結合性有機構造体は、メゾやマイクロサイズの細孔を有する多孔質の結晶性高分子であって、ボロン酸等の重縮合反応により合成できることが知られている(例えば、特許文献4及び非特許文献1参照)。共有結合性有機構造体は、共有結合のみで構築されることによる高い耐久性と、フレームワークの選択の幅が広いことによる高い設計自由度とを両立することが可能な物質である。従来は、多孔質であるという性質を利用し、気体の吸着・分離等の用途における利用が検討されてきたが、上記のような特性から次世代の触媒又は触媒担体などの機能性多孔質材料としての応用も注目されている。
特許第4715842号公報 特許第5663254号公報 特許第5670600号公報 米国特許出願公開第2006/0154807号明細書
Cote et al.,Sciense 2005,310,1166
 しかしながら、特許文献3のニッケル化合物などは、白金に対して水素酸化/水素発生過電圧が100mV以上あり、反応において白金よりもエネルギーを多大に消費してしまうという問題がある。一方で、特許文献1及び2の白金族元素は、水素酸化/水素発生過電圧が極めて小さいものの高価であることから、3~20nmのナノ粒子として導電性多孔質担体に担持することで白金の比表面積を向上させて用いられてきた。しかしながら、このような場合でも十分な電流密度を得るためには金属担持量を多くする必要があり、高コストとなることが問題であった。
 また、共有結合性有機構造体は、それ自体は電子伝導性に乏しい。そのため、これまでのところ、電極触媒や電子移動反応を伴う触媒材料、二次電池の電極材料などに用いることが困難であった。
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、本発明は、新規な導電性材料を提供することを目的とする。また、本発明は、金属担持量を低減した場合でも触媒活性が高い導電性材料を提供することをもう一つの目的とする。
 上記課題を解決するために、本発明の第一の態様に係る導電性ハイブリッド材料は、細孔を有する共有結合性有機構造体と導体材料とを含み、共有結合性有機構造体が導体材料上に担持されている。
 本発明の第二の態様に係る電極は、細孔を有する共有結合性有機構造体と導体材料とを含み、共有結合性有機構造体が導体材料上に担持されている導電性ハイブリッド材料を含有する。
 本発明の第三の態様に係る触媒は、細孔を有する共有結合性有機構造体と導体材料とを含み、共有結合性有機構造体が導体材料上に担持されている導電性ハイブリッド材料を含有する。
 本発明の第四の態様に係る水素発生触媒は、細孔を有する共有結合性有機構造体と導体材料とを含み、共有結合性有機構造体が導体材料上に担持されている導電性ハイブリッド材料を含有する触媒を有している。そして、当該共有結合性有機構造体に白金族元素が配位している。
 本発明の第五の態様に係る水素酸化触媒は、細孔を有する共有結合性有機構造体と導体材料とを含み、共有結合性有機構造体が導体材料上に担持されている導電性ハイブリッド材料を含有する触媒を有している。そして、当該共有結合性有機構造体に白金族元素が配位している。
 本発明の第六の態様に係る酸素還元触媒は、細孔を有する共有結合性有機構造体と導体材料とを含み、共有結合性有機構造体が導体材料上に担持されている導電性ハイブリッド材料を含有する触媒を有している。そして、当該導体材料が炭素材料である。
図1は、本発明の実施形態に係る導電性ハイブリッド材料の走査型電子顕微鏡画像を示すものである。 図2は、本発明の実施形態に係る導電性ハイブリッド材料(Pt/CTF-1/KB)の酸素還元電位-電流曲線を示すグラフである。 図3は、共有結合性有機構造体の酸素還元電位-電流曲線と、導電性ハイブリッド材料の酸素還元電位-電流曲線との比較を示すグラフである。 図4は、メタノール及び酸素が存在する場合における、導電性ハイブリッド材料(Pt/CTF-1/KB)及び比較例1の材料(20質量%Pt/C)の酸素還元電位-電流曲線を示すグラフである。 図5は、メタノールは存在するが酸素が存在しない場合における、導電性ハイブリッド材料(Pt/CTF-1/KB)及び比較例1の材料(20質量%Pt/C)の酸素還元電位-電流曲線を示すグラフである。 図6は、本発明の実施形態に係る導電性ハイブリッド材料(Cu/CTF-1/KB)の酸素還元電位-電流曲線を示すグラフである。 図7は、本発明の実施形態に係る導電性ハイブリッド材料(Cu/CTF-3/KB、Cu/CTF-5/KB及びCu/CTF-6/KB)の酸素還元電位-電流曲線を示すグラフである。 図8は、本発明の実施形態に係る導電性ハイブリッド材料(Pt/CTF-1/KB、Cu/CTF-7/KB)の酸素還元電位-電流曲線を示すグラフである。 図9は、実施例2-1~2-7のハイブリッド材料及び比較例2の材料に対し、リニアスイープボルタンメトリーを行った結果を示すグラフである。 図10は、実施例2-1~2-7のハイブリッド材料及び比較例2の材料に対し、リニアスイープボルタンメトリーを行った結果を示すグラフである。 図11は、実施例2-1~2-7のハイブリッド材料及び比較例2の材料における、元素組成比と、単位白金量当たりの水素酸化反応における電流密度との関係を示すグラフである。 図12は、実施例2-1~2-7のハイブリッド材料及び比較例2の材料における、元素組成比と、単位白金量当たりの水素発生反応における電流密度との関係を示すグラフである。
 以下、本実施形態の導電性ハイブリッド材料について説明する。本実施形態の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本実施形態の趣旨を損なわない範囲で適宜変更し実施することができる。
 本実施形態の導電性ハイブリッド材料は、細孔を有する共有結合性有機構造体と導体材料とを含み、共有結合性有機構造体が導体材料上に担持されていることを特徴とするものである。
[1.共有結合性有機構造体]
 本実施形態において、「共有結合性有機構造体」は、水素、炭素、窒素、酸素、ホウ素、硫黄などの原子が共有結合のみによって連結して形成された分子である。より具体的には、共有結合性有機構造体は、同一又は異なる複数の芳香族環基が共有結合によって環状の繰返しユニットを形成した構造を有する高分子を意味する。また、共有結合性有機構造体は、当該繰返しユニットが他の1つ以上の繰返しユニットと共有結合により連続して連結された、二次元又は三次元のネットワーク構造を有する高分子も意味する。このような共有結合性有機構造体は、メゾやマイクロサイズの細孔を有する多孔質構造を有するとともに、低密度かつ優れた熱安定性を有する。
 本実施形態の導電性ハイブリッド材料に用いられる共有結合性有機構造体は、好ましくは、分子内に複数のトリアジン環を有する繰返しユニットよりなる高分子である。上記のとおり、当該繰返しユニットが隣り合う他の繰返しユニットと共有結合によって連結し、このような構造を連鎖的に反復することによって構造体を形成する。
 好ましい態様では、共有結合性有機構造体は、アリーレン、ヘテロアリーレン、又はヘテロ原子を介して複数のトリアジン環が共有結合で連結した構造を有する。ここで、「アリーレン」は、芳香族炭化水素から芳香環を構成する炭素原子に結合した水素原子2個を除いてなる2価の官能基を意味する。「ヘテロアリーレン」は、芳香族性を有する複素環式化合物から2個の水素原子を除いてなる2価の官能基を意味する。好ましくは、アリーレンはフェニレンである。好ましくは、ヘテロアリーレンはピリジレンである。当該アリーレン及びヘテロアリーレンは、置換基を有していてもよく、そのような置換基は、特に限定されるものではないが、例えば、アルキル又はハロゲンであることができる。また、ヘテロ原子としては、硫黄、ホウ素、窒素、リン等を挙げることができ、好ましくは硫黄又は窒素である。
 後述の実施例で示すように、トリアジン環を有する共有結合性有機構造体は、次のようにして得ることができる。まず、ジシアノ基またはトリシアノ基を有するモノマーを縮合反応させることによってトリアジン環が形成される。次に、当該縮合反応を繰り返すことにより、最終的に複数のトリアジン環が共有結合によって連結した共有結合性有機構造体を得ることができる。また、本実施形態における導電性ハイブリッド材料を得るに当たっては、好ましくは、当該縮合反応を導体材料上においてin-situで行うこともできる。
 ジシアノ基を有するモノマーは、ジシアノベンゼン又はジシアノピリジンであることが好ましい。トリシアノ基を有するモノマーは、トリシアノベンゼン又はトリシアノピリジンであることが好ましい。モノマーがジシアノベンゼンである場合、上記のようにフェニレンを介して複数のトリアジン環が共有結合で連結した構造となる。また、モノマーがジシアノピリジンである場合、上記のようにピリジレンを介して複数のトリアジン環が共有結合で連結した構造となる。そのため、共有結合性有機構造体は、フェニレン又はピリジレンを介して、複数のトリアジン環が共有結合で連結した構造を有することが好ましい。また、共有結合性有機構造体は、ジシアノベンゼン又はジシアノピリジンの縮合反応により得られる化合物であることが好ましい。
 ジシアノ基を有するモノマーは、さらに置換基を有することができる。そのような置換基は、シアノ基の縮合反応が進行する限り特に限定されるものではないが、例えば、アルキル基又はハロゲン基であることができる。
 本実施形態の導電性ハイブリッド材料に用いられる共有結合性有機構造体は、好ましくは、1nm~50nmの細孔を有する。また、好ましくは、共有結合性有機構造体は、1000~20000の範囲の分子量を有する。
 また、本実施形態では、共有結合性有機構造体に金属が配位することが好ましい。つまり、共有結合性有機構造体は、配位結合により金属で修飾することが好ましい。そのような金属は遷移金属であることができ、好ましくは白金族元素又は銅である。白金族元素は、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム及び白金からなる群より選ばれる少なくとも一つであることが好ましい。
 当該金属は、共有結合性有機構造体を構成する複素芳香環のヘテロ原子と配位結合を形成することで、共有結合性有機構造体と錯形成して存在することができる。そして、共有結合性有機構造体に金属が配位することにより、金属を単原子状に分散させ、金属の表面積を大きくすることができる。さらに、共有結合性有機構造体から導体材料へ高い割合で電子移動することができるため、当該金属の触媒活性を高めることが可能となる。
 本実施形態の導電性ハイブリッド材料に用いられる共有結合性有機構造体の代表的な例は、以下の化学式1の構造を有する化合物である。
Figure JPOXMLDOC01-appb-C000001
 化学式1の化合物は、後述の実施例で示すように、2,6-ジシアノピリジンを縮合反応させることによってトリアジン環が形成し、当該反応を繰り返すことにより合成することができる。当該化合物は、トリアジン環がピリジレン基を介して共有結合によって連結した構造を有する。化学式1から分かるように、3つのトリアジン環と3つのピリジン環よりなる環状構造の繰返しユニットを形成し、当該複数の繰返しユニットがさらにピリジレン基によって連結している。その結果、化学式1の化合物は、複数の細孔を有し、二次元のネットワーク構造を有する高分子となっている。化学式1のトリアジン環を含む共有結合性有機構造体を、特にCTF(Covalent Triazine Framework)と呼ぶ場合もある。
 当該共有結合性有機構造体には、金属を担持することができる。つまり、例えば化学式2に示すように、トリアジン環の窒素原子やピリジレン基の窒素原子と金属が配位結合を形成することによって、錯形成することができる。
Figure JPOXMLDOC01-appb-C000002
 本実施形態の導電性ハイブリッド材料に用いられる共有結合性有機構造体のその他の具体的な例は、これらに限定されるものではないが、好ましくは以下の化合物が含まれる。
Figure JPOXMLDOC01-appb-C000003
 また、本実施形態に係る共有結合性有機構造体として、化学式4に示すポルフィリン環を含む化合物が挙げられる。化学式4の共有結合性有機構造体は、X. Feng et al., Chem. Commun., 2011, 47, 1979-1981に記載の方法で合成することができる。なお、化学式4の共有結合性有機構造体には、金属を担持することができる。つまり、ポルフィリン環の窒素原子と金属が配位結合を形成することによって、錯形成することができる。
Figure JPOXMLDOC01-appb-C000004
 本実施形態に係る共有結合性有機構造体として、化学式5に示すポルフィリン環及びフタロシアニン環を含む化合物が挙げられる。化学式5の共有結合性有機構造体は、Venkata S. Pavan K. Neti et al. CrystEngComm, 2013, 15, 6892-6895に記載の方法で合成することができる。なお、化学式5の共有結合性有機構造体にも金属を担持することができる。つまり、ポルフィリン環及びフタロシアニン環の窒素原子と金属が配位結合を形成することによって、錯形成することができる。
Figure JPOXMLDOC01-appb-C000005
 本実施形態に係る共有結合性有機構造体として、化学式6に示す三次元の化合物が4,4’-ビフェニレン基を介して結合した、化学式7に示す環状化合物が挙げられる。化学式6及び化学式7の化合物は、Y.-B. Zhang et al., J. Am. Chem. Soc. 2013, 135, 16336-16339に記載の方法で合成することができる。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 また、本実施形態に係る共有結合性有機構造体として、化学式8に示す三次元の化合物が結合した、化学式9に示す環状化合物が挙げられる。化学式8及び化学式9の化合物は、Q. Fang et al., J. Am. Chem. Soc. 2015, 137, 8352-8355に記載の方法で合成することができる。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
[2.導体材料]
 本実施形態の導電性ハイブリッド材料において、共有結合性有機構造体とともに用いられる導体材料は、当該技術分野において二次電池の電極用導電性材料として一般に用いられ得るものである。導体材料は、共有結合性有機構造体を担持することによって、当該共有結合性有機構造体に電子伝導性を付与できるものであれば特に限定されない。ただ、導体材料は炭素材料であることが好ましい。
 導体材料を構成する炭素材料としては、グラファイト、カーボンブラック、ケッチェンブラック、アセチレンブラック、カーボンナノチューブ、グラフェン及びカーボンファイバーからなる群より選ばれる少なくとも一つを使用することができる。また、導体材料を構成する炭素材料としては、無定形炭素も使用することができる。これらの炭素材料は導電性及び耐食性に優れるため、導電性ハイブリッド材料を電極等に用いる際に、長期間に亘り高い電極性能を維持することができる。
 導体材料を構成する炭素材料は、ナノ粒子の形態であることが好ましい。つまり、炭素材料は、10nm~300nmの粒径を有することが好ましい。炭素材料の粒径がこの範囲内であることにより、共有結合性有機構造体及び当該共有結合性有機構造体に配位している金属を高分散させ、当該金属の活性を高めることが可能となる。なお、炭素材料の粒径は、例えば導電性ハイブリッド材料を走査型電子顕微鏡(SEM)で観察することにより求めることができる。
 本実施形態の導電性ハイブリッド材料において、共有結合性有機構造体と導体材料の比率は、質量比で共有結合性有機構造体:導体材料が100:10以上であることが好ましい。また、質量比で、共有結合性有機構造体:導体材料が100:20~100:5000であることがより好ましい。
 本実施形態の導電性ハイブリッド材料において、共有結合性有機構造体と導体材料の元素組成比は、0.005~1であることが好ましい。つまり、共有結合性有機構造体を構成する元素の全原子数と導体材料を構成する元素の全原子数との比([共有結合性有機構造体を構成する元素の全原子数]/[導体材料を構成する元素の全原子数])が0.005~1であることが好ましい。共有結合性有機構造体と導体材料の組成比がこの範囲内であることにより、導体材料の表面に共有結合性有機構造体が一定の膜厚で担持されやすくなる。その結果、共有結合性有機構造体と導体材料との間の距離が小さくなり、電子移動が容易となる。そのため、導電性ハイブリッド材料を触媒として使用した場合、当該材料の触媒活性をより向上させることが可能となる。なお、本実施形態における元素組成比は、導電性ハイブリッド材料を構成する各元素についてX線光電子スペクトル分析(XPS)のナロースキャンを行い、そのピーク面積を定量することにより求めた値とする。また、励起X線には、monochromatic Al X線(10kV)を用いて測定した値を用いることとする。
 なお、本実施形態の導電性ハイブリッド材料を触媒として使用した場合における触媒活性を特に向上させる観点から、共有結合性有機構造体と導体材料の元素組成比は、0.005~0.60であることが好ましく、0.05~0.50であることがさらに好ましい。
 共有結合性有機構造体は、導体材料上においてモノマーを重合させるin-situ反応により得られる化合物であることが好ましい。例えば、当該炭素材料のナノ粒子を共有結合性有機構造体のモノマーと混合させた状態で、ZnCl等の溶融塩中でモノマーの縮合反応を行う。これにより、当該導体材料上においてin-situで共有結合性有機構造体の形成反応を行うことができる。なお、共有結合性有機構造体のモノマーとしては、上述のように、例えばジシアノベンゼン、ジシアノピリジン、トリシアノベンゼン、トリシアノピリジンなどを挙げることができる。
[3.電極等]
 上述のように、本実施形態の導電性ハイブリッド材料は、共有結合性有機構造体を炭素材料等の導体材料上に担持させることによって、電子伝導性を付与でき、さらに金属を原子レベルで高分散させることができる。そのため、導電性ハイブリッド材料は、当該技術分野において公知の二次電池や燃料電池における電極触媒、あるいは、その他電子移動を伴う系における触媒や電極として用いることができる。
 具体的には、本実施形態に係る電極は、細孔を有する共有結合性有機構造体と導体材料とを含み、共有結合性有機構造体が導体材料上に担持されている導電性ハイブリッド材料を含有することが好ましい。また、本実施形態に係る触媒も、当該導電性ハイブリッド材料を含有することが好ましい。
 当該導電性ハイブリッド材料を触媒として用いる場合、当該触媒の基材への結着に用いる結着剤は、当該技術分野において公知の材料を用いることができる。導電性ハイブリッド材料を燃料電池用の触媒として用いる場合、結着剤には、例えばナフィオン(デュポン株式会社製)、フレミオン(登録商標)(旭硝子株式会社製)、アシプレックス(登録商標)(旭化成イーマテリアルズ株式会社製)などの陽イオン交換樹脂、AS-4(株式会社トクヤマ製)などの陰イオン交換樹脂、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)などのフッ素系樹脂、スチレンブタジエンゴム(SBR)などのラテックス類、ポリアクリル酸、ポリビニルアルコール、ポリアクリルアミドなどの高分子材料が挙げられる。これらの高分子材料は、一種を単独で使用してもよく、二種以上を組み合わせて使用してもよい。ただ、結着剤は、結着する機能を有するものであれば、特にこれらに限定されるものではない。
 導電性ハイブリッド材料を電極触媒として用いる場合、当該電極における活物質や結着剤は、用いられる電池等の種類に応じて当該技術分野において公知の材料を用いることができる。また、当該電極の作製方法についても当該技術分野において慣用される手法を用いることができる。
 本実施形態の導電性ハイブリッド材料は、メタノール存在下でも、酸素と選択的に反応し、メタノールに対する反応活性を示し難いため、メタノールを用いる燃料電池等における電極材料等として特に好適である。また、当該導電性ハイブリッド材料を電極等に用いる場合には、導電助剤を添加してもよい。導電助剤としては、主に導電性カーボンが用いられる。導電性カーボンとしては、例えば、カーボンブラック、ファイバー状カーボン、黒鉛等が好ましく用いられる。
 また、本実施形態の導電性ハイブリッド材料は、白金族元素を原子レベルで高分散させることができる。そのため、導電性ハイブリッド材料は、水素発生触媒、水素酸化触媒及び酸素還元触媒としても好適に用いることができる
 具体的には、本実施形態の水素発生触媒及び水素酸化触媒は、細孔を有する共有結合性有機構造体と導体材料とを含み、共有結合性有機構造体が導体材料上に担持されている導電性ハイブリッド材料を含有する触媒を有している。そして、当該共有結合性有機構造体に白金族元素が配位していることが好ましい。また、本実施形態に係る酸素還元触媒は、細孔を有する共有結合性有機構造体と導体材料とを含み、共有結合性有機構造体が導体材料上に担持されている導電性ハイブリッド材料を含有する触媒を有している。そして、当該導体材料が炭素材料であることが好ましい。
 なお、本実施形態の導電性ハイブリッド材料は、電極材料等としての利用に限定されるものではない。例えば、本実施形態の導電性ハイブリッド材料が金属と配位結合を形成して金属を保持する特徴を利用して、重金属で汚染された土壌を浄化する材料や、レアメタルを回収する材料としても有用である。
 また、本実施形態の導電性ハイブリッド材料において、金属は、共有結合性有機構造体を構成する複素芳香環のヘテロ原子と配位結合を形成することで、共有結合性有機構造体と錯形成して存在することができる。そのため、導電性ハイブリッド材料は、有機合成反応における錯体触媒としても有用である。また、共有結合性有機構造体の構造にキラリティを付与することにより、不斉合成触媒としても利用することが可能である。
 さらには、本実施形態の導電性ハイブリッド材料は、錯体構造が担体上に担持されていることから、有機合成反応に用いた際に触媒を容易に回収することができるという利点がある。
 以下、実施例により本実施形態をさらに詳細に説明するが、本実施形態はこれらによって限定されるものではない。
[実施例1-1]
1.導電性ハイブリッド材料の合成
 化学式10に示すスキームに従って、ケッチェンブラック(KB)上に、共有結合性トリアジン構造体(CTF-1)の白金錯体を担持したハイブリッド材料を合成した。
Figure JPOXMLDOC01-appb-C000010
 まず、1.363gのZnCl、0.129gの2,6-ジシアノピリジン、及び0.129gのケッチェンブラックをグローブボックス中で混合した。ZnClは和光純薬工業株式会社製のものを使用し、2,6-ジシアノピリジンはシグマアルドリッチ社のものを使用した。ケッチェンブラックは、ライオン・スペシャリティ・ケミカルズ株式会社製、EC600JDを使用した。
 次に、得られた混合物をガラスチューブに入れて密封し、真空条件下で加熱した。そして、混合物を400℃の温度で21時間維持した。得られた粉末を0.1MのHCl、水、テトラヒドロフラン(THF)、及びアセトニトリルで洗浄した後、減圧乾燥した。そして、乾燥後の粉末を、濃度が160mMであるK[PtCl](和光純薬工業株式会社製)の水溶液に60℃で4時間含浸し、白金を付加した。その後、水、アセトンで洗浄した後に乾燥することで、ハイブリッド材料(Pt/CTF-1/KB)を得た。
 また、上述と同様の製法で、白金/CTF:ケッチェンブラックの質量比が100:5、100:20、100:100となるようにしたハイブリッド材料(Pt/CTF-1/KB)も調製した。なお、本明細書及び図面において、「Pt/CTF-1」は、共有結合性トリアジン構造体(CTF-1)に白金錯体を担持した化合物を示す。また、「Pt/CTF-1/KB」は、ケッチェンブラック上に、上述のPt/CTF-1を担持したハイブリッド材料を示す。
[実施例1-2]
 まず、実施例1と同様に、1.363gのZnCl、0.129gの2,6-ジシアノピリジン、及び0.129gのケッチェンブラックをグローブボックス中で混合した。
 次に、得られた混合物をガラスチューブに入れて密封し、真空条件下で加熱した。そして、混合物を400℃の温度で21時間維持した。得られた粉末を0.1MのHCl、水、テトラヒドロフラン、及びアセトニトリルで洗浄した後、減圧乾燥した。そして、乾燥後の粉末を、濃度が160mMであるCuCl(和光純薬工業株式会社製)の水溶液に60℃で4時間含浸し、銅を付加した。その後、粉末を水で洗浄し、さらに0.1MのNaOH水溶液に混合した後、超音波を照射しながら1時間攪拌を行った。そして、攪拌後の粉末を水及びアセトンでそれぞれ洗浄した後に乾燥することで、ハイブリッド材料(Cu/CTF-1/KB)を得た。なお、本明細書及び図面において、「Cu/CTF-1/KB」は、ケッチェンブラック上に、共有結合性トリアジン構造体(CTF-1)の銅錯体を担持したハイブリッド材料を示す。また、化学式11では、繰返しユニットのみの部分構造を示している。
Figure JPOXMLDOC01-appb-C000011
[実施例1-3]
 2,6-ジシアノピリジンに替えて、化学式12に示すジシアノベンゼン誘導体を用いた以外は実施例1-1と同様にして、以下の構造を有するCTF-2、CTF-4及びCTF-5をそれぞれケッチェンブラックで保持したハイブリッド材料を合成した。なお、化学式12の上段が用いたモノマーの構造を示し、下段がCTFの構造を示す。
 なお、CTF-3は、J. Liu et al., J. Chem. Eng. Data, 2013, 58, 3557-3562の記載に殆ど準じて合成した。また、CTF-6は、Yunfeng Zhao et al., Energy Environ. Sci., 2013, 6, 3684-3692の記載に殆ど準じて合成した。ただ、CTF-3及びCTF-6をそれぞれケッチェンブラック上に担持するために、実施例1-1と同様に、モノマーとケッチェンブラックとを混合した後に、モノマーを反応させた。
Figure JPOXMLDOC01-appb-C000012
 そして、得られたCTF-3/KB、CTF-5/KB及びCTF-6/KBに対し、実施例1-2と同様の方法で銅を担持することで、ハイブリッド材料(Cu/CTF-3/KB、Cu/CTF-5/KB及びCu/CTF-6/KB)を得た。
[実施例1-4]
 トリアジン環を硫黄原子により連結させた、化学式13に示すCTF-7を合成した。具体的には、まず、0.235gのトリチオシアヌル酸(和光純薬工業株式会社製)を30mlの1,4-ジオキサン(和光純薬工業株式会社製)中に溶解し、0.625mlのN,N-ジイソプロピルエチルアミン(東京化成工業株式会社製)を加えた。この溶液を15℃に保持しながら、7.5mlの1,4-ジオキサン中に0.125gの2,4,6-トリクロロ-1,3,5-トリアジン(東京化成工業株式会社製)を溶解した溶液を加えた。さらにこの溶液に、0.360gのケッチェンブラック(EC600JD)を加えて、15℃で1時間、25℃で2時間、85℃で4時間還流した。得られた固体をろ過し、1,4-ジオキサン、エタノールで洗浄した後、減圧乾燥した。
 そして、乾燥後の粉末(CTF-7/KB)を、5mM K[PtCl](和光純薬工業株式会社製)の水溶液に60℃で4時間含浸し、白金を付加した。その後、水、アセトンで洗浄した後に乾燥することで、ハイブリッド材料(Pt/CTF-7/KB)を得た。
 また、得られたCTF-7/KBに対し、実施例1-2と同様の方法で銅を担持することで、ハイブリッド材料(Cu/CTF-7/KB)を得た。
Figure JPOXMLDOC01-appb-C000013
[比較例1]
 市販の、20質量%の白金を炭素粉末に担持した20質量%Pt/C、及びPt-Vulcan XC-72を用いた。
[評価]
1.走査型電子顕微鏡観察等
 実施例1-1で調製した、白金/CTF:ケッチェンブラックの質量比が100:5、100:20、100:100となるようにしたハイブリッド材料の走査型電子顕微鏡画像を図1に示す。また、共有結合性トリアジン構造体(pure CTF)及びケッチェンブラック(pure KB)の走査型電子顕微鏡画像も図1に示す。当該SEM画像から、共有結合性トリアジン構造体とケッチェンブラックが良好に混合した導電性ハイブリッド材料が得られたことが分かる。
 また、X線光電子スペクトル分析(XPS)及び広域X線吸収微細構造(EXAFS)分析により、得られたハイブリッド材料の分子構造を解析した。その結果、その結合ピークからCTFが形成されていること、及びPt-Pt結合のピークが観測されなかったことからCTFと二価の白金1原子が配位結合を形成していることを確認した。
2.電気化学的測定
 実施例1-1~1-4で合成したハイブリッド材料を含む回転ディスク電極(RDE)を作製し、その電気化学的特性の評価を行った。
 具体的には、まず、5mgのハイブリッド材料の粉末を175μLのエタノール及び47.5μLのNafion(登録商標)溶液中に分散させた。Nafion溶液は、低級脂肪族アルコール混合物と水の5質量%溶液で、シグマアルドリッチ社製のものを使用した。そして、当該溶液7μLをグラッシーカーボン電極(0.196cm-2)に滴下し、作用電極を調製した。この際、ハイブリッド材料は、0.8mg・cm-2となるように調整した。また、Pt線とAg/AgCl/KClsat.を、それぞれ対極及び参照電極として用いた。なお、測定の際、作用電極の回転速度は1500rpmとした。
 なお、ハイブリッド材料の電気伝導度は、抵抗率計(株式会社三菱化学アナリテック製、Loresta-GP)を用いて測定した。
 実施例1-1で合成したPt/CTF-1/KBの酸素還元電位-電流曲線を図2(a)及び(b)に示す。測定は、0.5M HSOの酸素飽和溶液を用いた。ここで、図2(b)は、図2(a)の拡大図である。また、図2(a)及び(b)には、カーボンブラックを用いず、CTF-1に白金を担持した材料の酸素還元電位-電流曲線も示す。図2の結果から、Pt/CTF-1をケッチェンブラックに担持させることによって、酸素還元に由来する電流が著しく増加することが観測された。これはケッチェンブラックに担持することで電気伝導度が向上したためであることが、電気伝導度測定から確認された。
 また、Ptを含まないCTF-1を用いて、ケッチェンブラックの有無による酸素還元活性の比較を行った結果を図3に示す。測定は、0.1M NaOHの酸素飽和溶液(pH13)を用いた。その結果、Ptを含まない場合でも、ケッチェンブラックに担持させることによって電気伝導度が向上し、CTF-1の酸素還元電流が増大することが分かった。
 次に、CTF-1を含むハイブリッド材料の酸素還元反応におけるメタノールによる阻害について検討を行った。溶液中にメタノールが存在する場合の、Pt/CTF-1/KBハイブリッド材料の酸素還元反応活性を図4(a)に示す。また、比較例1の20質量%Pt/Cで同様の測定を行った結果を図4(b)に示す。
 図4から、CTF-1を含むハイブリッド材料では、メタノールの存在によって酸素還元電流がほとんど変化しないのに対し、Pt/Cでは酸素還元電流が大きく減少しメタノールの酸化の影響を大きく受けることが分かった。この結果は、CTF-1を含むハイブリッド材料は、メタノール酸化に寄与せず、酸素還元反応に高い選択性を有することを示唆するものである。
 さらに、溶液中に酸素を含まない条件において、同様の測定を行った結果を図5に示す。図5(a)及び(b)から明らかなように、CTF-1を含むハイブリッド材料はPtを含むにもかかわらず、メタノール酸化反応の活性を有しないのに対し、Pt/Cではメタノール酸化反応の活性が見られた。この結果からも、上記のようにCTF-1を含むハイブリッド材料は、酸素還元反応にのみ高い選択性を有することが示される。
 一般に、メタノールの酸化には、Pt-Pt結合を有する白金クラスターが活性を有することが知られている。本実施形態のハイブリッド材料では、上述のEXAFSの結果から示されているように、Ptが一原子としてCTF-1に配位して存在していることによるものと考えられる。
 Pt/CTF-1/KBハイブリッド材料の金属を銅に替えた、実施例1-2のハイブリッド材料(Cu/CTF-1/KB)についても、同様に酸素還元反応活性を測定した。その結果を図6に示す。図6から、銅を担持させた場合でも高い電気伝導度が得られ、酸素還元活性が向上することが分かった。
 さらに、実施例1-3及び1-4で得られたCTF-1以外の構造を有する共有結合性有機構造体についても、電気伝導性について測定を行った。実施例1-3で合成した、CTF-3、CTF-5及びCTF-6に銅を担持させたハイブリッド材料(Cu/CTF-3/KB、Cu/CTF-5/KB及びCu/CTF-6/KB)についての酸素還元電位-電流曲線の測定結果を図7に示す。また、Cu/CTF-7/KBについての測定結果を図8に示す。これらの結果から、トリアジン環をフェニレンあるいは硫黄で連結させたCTFにおいても、電気伝導性が向上することが分かった。
 上述の通り、共有結合性有機構造体のトリアジン環の窒素原子やピリジレン基の窒素原子と金属とが配位結合を形成することによって、金属は共有結合性有機構造体に保持される。したがって、金属部位あるいは金属が配位結合することによって影響を受ける部位が活性中心である反応に対しては、トリアジン環の窒素原子やピリジレン基の窒素原子を含む共有結合性有機構造体が、本実施例と同様に広く適用可能である。
[実施例2-1]
 本実施例では、X線光電子分光によって定量される共有結合性有機構造体と導体材料の元素組成比が2.39である導電性ハイブリッド材料を調製した。
 まず、1.36gのZnCl、0.129gの2,6-ジシアノピリジン、及び0.00645gのケッチェンブラックをグローブボックス中で混合した。ZnClは和光純薬工業株式会社製のものを使用し、2,6-ジシアノピリジンはシグマアルドリッチ社のものを使用した。ケッチェンブラックは、ライオン・スペシャリティ・ケミカルズ株式会社製、EC600JDを使用した。
 次に、得られた混合物をガラスチューブに入れて密封し、真空条件下で400℃にて21時間保持した。得られた粉末を0.1MのHCl、水、THF、及びアセトニトリルで洗浄した後、減圧乾燥した。そして、乾燥後の粉末を1mMのK[PtCl](和光純薬工業株式会社製)の水溶液に混合し、30℃で1時間、超音波を照射しながら攪拌を行うことで、白金を付加した。その後、水、アセトンで洗浄した後に乾燥することで、ハイブリッド材料を得た。
 (X線光電子分光(XPS)測定)
 本実施例のハイブリッド材料をXPS測定することにより、ハイブリッド材料を構成する窒素と炭素の組成比(N/C)を測定した。XPS測定は、XPS装置(AXIS Ultra HAS、Kratos Analytical社製)を用いた。また、励起X線として、monochromatic Al X線(10kV)を用いた。そして、各元素についてのナロースキャン測定を行い、各ピークの面積から組成比を求めた。
 XPS分析によりNとCの組成比を求めたところ、N/C=0.148であった。また、ケッチェンブラックを添加せずに上記と同様に合成したCTFのみ場合のNとCの組成比は、N/C=0.210であった。したがって、これらの結果から、CTFと導体材料であるケッチェンブラックとの元素組成比は2.89と求められた。
 CTFと導体材料であるケッチェンブラックとの元素組成比の求め方をより詳細に説明する。上述のように、CTFのみ場合のNとCの組成比はN/C=0.210である。そのため、ハイブリッド材料中のCTF由来の炭素成分とケッチェンブラック由来の炭素成分の比は、14.8×(100/21.0):[100-14.8×(100/21.0)]、すなわち70.5:29.5である。したがって、CTFと導体材料であるケッチェンブラックとの元素組成比は、(14.8+70.5)/29.5=2.89と計算することができる。
 なお、本実施例のハイブリッド材料における白金の担持量は、20.2wt%であった。
[実施例2-2]
 本実施例では、X線光電子分光によって定量される共有結合性有機構造体と導体材料の元素組成比が0.74である、導電性ハイブリッド材料を調製した。具体的には、ケッチェンブラックの添加量を0.0258gとした以外は、実施例2-1と同様にしてハイブリッド材料を合成した。
 実施例2-1と同様に、XPS分析によりNとCの組成比を求めたところ、N/C=0.079であった。したがって、CTFとケッチェンブラックの元素組成比は0.74と求められた。
 CTFと導体材料であるケッチェンブラックとの元素組成比の求め方をより詳細に説明する。上述のように、CTFのみ場合のNとCの組成比はN/C=0.210である。そのため、ハイブリッド材料中のCTF由来の炭素成分とケッチェンブラック由来の炭素成分の比は、7.9×(100/21.0):[100-7.9×(100/21.0)]、すなわち38:62である。したがって、CTFと導体材料であるケッチェンブラックとの元素組成比は、(7.9+38)/62=0.74と計算することができる。
 なお、本実施例のハイブリッド材料における白金の担持量は、15.1wt%であった。
[実施例2-3]
 本実施例では、X線光電子分光によって定量される共有結合性有機構造体と導体材料の元素組成比が0.30である、導電性ハイブリッド材料を調製した。具体的には、ケッチェンブラックの添加量を0.129gとした以外は、実施例2-1と同様にしてハイブリッド材料を合成した。
 実施例2-1と同様に、XPS分析によりNとCの組成比を求めたところ、N/C=0.041であった。したがって、CTFとケッチェンブラックの元素組成比は0.30と求められた。
 CTFと導体材料であるケッチェンブラックとの元素組成比の求め方をより詳細に説明する。上述のように、CTFのみ場合のNとCの組成比はN/C=0.210である。そのため、ハイブリッド材料中のCTF由来の炭素成分とケッチェンブラック由来の炭素成分の比は、4.1×(100/21.0):[100-4.1×(100/21.0)]、すなわち20:80である。したがって、CTFと導体材料であるケッチェンブラックとの元素組成比は、(4.1+20)/80=0.30と計算することができる。
 なお、本実施例のハイブリッド材料における白金の担持量は、8.7wt%であった。
[実施例2-4]
 本実施例では、X線光電子分光によって定量される共有結合性有機構造体と導体材料の元素組成比が0.16である、導電性ハイブリッド材料を調製した。具体的には、ケッチェンブラックの添加量を0.129gとし、2,6-ジシアノピリジンを0.0645gとした以外は、実施例2-1と同様にしてハイブリッド材料を合成した。
 実施例2-1と同様に、XPS分析によりNとCの組成比を求めたところ、N/C=0.025であった。したがって、CTFとケッチェンブラックの元素組成比は0.16と求められた。
 CTFと導体材料であるケッチェンブラックとの元素組成比の求め方をより詳細に説明する。上述のように、CTFのみ場合のNとCの組成比はN/C=0.210である。そのため、ハイブリッド材料中のCTF由来の炭素成分とケッチェンブラック由来の炭素成分の比は、2.5×(100/21.0):[100-2.5×(100/21.0)]、すなわち12:88である。したがって、CTFと導体材料であるケッチェンブラックとの元素組成比は、(2.5+12)/88=0.16と計算することができる。
 なお、本実施例のハイブリッド材料における白金の担持量は、5.7wt%であった。
[実施例2-5]
 本実施例では、X線光電子分光によって定量される共有結合性有機構造体と導体材料の元素組成比が0.10である、導電性ハイブリッド材料を調製した。具体的には、ケッチェンブラックの添加量を0.129gとし、2,6-ジシアノピリジンを0.0323gとした以外は、実施例2-1と同様にしてハイブリッド材料を合成した。
 実施例2-1と同様に、XPS分析によりNとCの組成比を求めたところ、N/C=0.016であった。したがって、CTFとケッチェンブラックの元素組成比は0.10と求められた。
 CTFと導体材料であるケッチェンブラックとの元素組成比の求め方をより詳細に説明する。上述のように、CTFのみ場合のNとCの組成比はN/C=0.210である。そのため、ハイブリッド材料中のCTF由来の炭素成分とケッチェンブラック由来の炭素成分の比は、1.6×(100/21.0):[100-1.6×(100/21.0)]、すなわち7.6:92である。したがって、CTFと導体材料であるケッチェンブラックとの元素組成比は、(1.6+7.6)/92=0.10と計算することができる。
 なお、本実施例のハイブリッド材料における白金の担持量は、4.3wt%であった。
[実施例2-6]
 本実施例では、X線光電子分光によって定量される共有結合性有機構造体と導体材料の元素組成比が0.030である、導電性ハイブリッド材料を調製した。具体的には、ケッチェンブラックの添加量を0.129gとし、2,6-ジシアノピリジンを0.0161gとした以外は、実施例2-1と同様にしてハイブリッド材料を合成した。
 実施例2-1と同様に、XPS分析によりNとCの組成比を求めたところ、N/C=0.0050であった。したがって、CTFとケッチェンブラックの元素組成比は0.030と求められた。
 CTFと導体材料であるケッチェンブラックとの元素組成比の求め方をより詳細に説明する。上述のように、CTFのみ場合のNとCの組成比はN/C=0.210である。そのため、ハイブリッド材料中のCTF由来の炭素成分とケッチェンブラック由来の炭素成分の比は、0.50×(100/21.0):[100-0.50×(100/21.0)]、すなわち2.4:98である。したがって、CTFと導体材料であるケッチェンブラックとの元素組成比は、(0.50+2.4)/98=0.030と計算することができる。
 なお、本実施例のハイブリッド材料における白金の担持量は、2.7wt%であった。
[実施例2-7]
 本実施例では、X線光電子分光によって定量される共有結合性有機構造体と導体材料の元素組成比が0.0090である、導電性ハイブリッド材料を調製した。具体的には、ケッチェンブラックの添加量を0.129gとし、2,6-ジシアノピリジンを0.0040gとした以外は、実施例2-1と同様にしてハイブリッド材料を合成した。
 実施例2-1と同様に、XPS分析によりNとCの組成比を求めたところ、N/C=0.0019であった。したがって、CTFとケッチェンブラックの元素組成比は0.011と求められた。
 CTFと導体材料であるケッチェンブラックとの元素組成比の求め方をより詳細に説明する。上述のように、CTFのみ場合のNとCの組成比はN/C=0.210である。そのため、ハイブリッド材料中のCTF由来の炭素成分とケッチェンブラック由来の炭素成分の比は、0.19×(100/21.0):[100-0.19×(100/21.0)]、すなわち0.90:99である。したがって、CTFと導体材料であるケッチェンブラックとの元素組成比は、(0.19+0.90)/99=0.011と計算することができる。
 なお、本実施例のハイブリッド材料における白金の担持量は、2.4wt%であった。
[比較例2]
 20wt%の白金を炭素粉末に担持した20wt%Pt/C(HiSPEC(登録商標)-3000、Johnson Matthey Fuel Cells社製)を用いた。
[水素酸化触媒活性評価および水素発生触媒活性評価]
 まず、2.5mgのハイブリッド材料の粉末を750μLのエタノール及び50μLのNafion溶液中に加え、超音波ホモジナイザーにより分散した。Nafion溶液は、低級脂肪族アルコール混合物と水の5質量%溶液で、シグマアルドリッチ社製のものを使用した。そして、当該溶液2.1μLをグラッシーカーボン電極(0.1256cm)に滴下し、作用電極を作製した。この際、ハイブリッド材料(触媒)のグラッシーカーボン電極上への担持量は、52.2μg/cmであった。
 この作用電極を用いて、0.1M HClO水溶液中にて、水素飽和条件下でTi線を対極に、可逆水素電極を参照電極に用いて、2500rpmの回転数にてリニアスイープボルタンメトリー(LSV)を行った。この際、掃引速度は1mV/secで行った。
 実施例2-1~2-7及び比較例2のハイブリッド材料に対し、リニアスイープボルタンメトリーを行った結果を図9及び図10に示す。図9は、単位触媒量当たりの水素酸化触媒活性を意味し、電流密度が正に大きいほど触媒活性が高いといえる。そして、図9より、導電性ハイブリッド材料を水素酸化触媒として使用した場合における触媒活性をより向上させる観点から、共有結合性有機構造体と導体材料の元素組成比は、0.05~0.50であることが好ましいことが分かる。
 なお、水素酸化触媒活性が低い触媒であっても、電極への触媒の担持量を適宜増やすことで、電極としての水素酸化触媒活性を高くすることが可能である。すなわち、例えばCTF/カーボン担体=2.89の場合においても、触媒担持量を多くすれば、他の触媒と同様に電極として高い水素酸化触媒活性を達成し得る。
 図10は、単位触媒量当たりの水素発生触媒活性を意味し、電流密度が負に大きいほど触媒活性が高いといえる。そして、図10より、導電性ハイブリッド材料を水素発生触媒として使用した場合における触媒活性をより向上させる観点から、共有結合性有機構造体と導体材料の元素組成比は、0.05~0.50であることが好ましいことが分かる。なお、上述と同様に、水素発生触媒活性が低い触媒でも、電極への触媒の担持量を適宜増やすことで、電極として水素発生触媒活性を高くすることが可能である。
 図11のグラフは、図9の単位触媒量当たりの水素酸化触媒活性と、XPSによる組成分析の結果とから求めた、単位白金量当たりの水素酸化触媒活性を意味する。図11のグラフにおいて、単位白金量当たりHOR(Hydrogen Oxidation Reaction)電流密度が大きいほど、単位白金量当たりの触媒活性が高い。図11の結果から、XPSによって定量される共有結合性有機構造体と導体材料の元素組成比が0.60以下の場合において、単位白金量当たりHOR電流密度が20wt% Pt/Cよりも大きいことが分かる。したがって、XPSによって定量される共有結合性有機構造体と導体材料の元素組成比は、単位白金量当たりの電流密度の観点から、0.005~1であることが好ましく、0.005~0.60であることがより好ましい。また、当該元素組成比は、0.005~0.30であることがさらに好ましく、0.005~0.10であることが特に好ましく、0.005~0.05であることが最も好ましい。
 図12のグラフは、図10の単位触媒量当たりの水素発生触媒活性と、XPSによる組成分析の結果とから求めた、単位白金量当たりの水素発生触媒活性を意味する。図12のグラフにおいて、単位白金量当たりHER(Hydrogen Evolution Reaction)電流密度が大きいほど、単位白金量当たりの触媒活性が高い。図12の結果から、XPSによって定量される共有結合性有機構造体と導体材料の元素組成比が0.60より小さい場合において、単位白金量当たりHER電流密度が20wt% Pt/Cよりも大きいことが分かる。したがって、XPSによって定量される共有結合性有機構造体と導体材料の元素組成比は、単位白金量当たりの電流密度の観点から、0.005~1であることが好ましく、0.005~0.60であることがより好ましい。また、当該元素組成比は、0.005~0.30であることがさらに好ましく、0.005~0.10であることが特に好ましく、0.005~0.05であることが最も好ましい。
 なお、本実施形態の導電性ハイブリッド材料における、導体材料に対する共有結合性有機構造体の好ましい元素組成比は、共有結合性有機構造体の種類に依存するものではない。共有結合性有機構造体はいずれも導電性が小さい材料であり、電子移動が有効な共有結合性有機構造体と導体材料との間の距離は殆ど一定である。すなわち、共有結合性有機構造体が導体材料の表面に膜状に担持されている場合、電子移動が有効な共有結合性有機構造体の膜厚は殆ど一定である。そのため、共有結合性有機構造体は、電子移動が行われやすい薄い膜厚で導体材料の表面に担持されていることが好ましい。
 また、本実施形態におけるハイブリッド材料の、導体材料に対する共有結合性有機構造体の好ましい元素組成比は、0.005~1で、導体材料の種類に依存するものではない。つまり、導体材料の比表面積が本実施例より小さい場合には、組成比の範囲が全体として小さい値に振れる方向に働き、逆に比表面積が本実施例より大きい場合には、組成比の範囲が全体として大きい値に振れる方向に働くと考えられる。
 ただ、実施例2-7に記載した「CTF/カーボン担体=0.011」の条件においてXPSの検出限界近傍であるのが現状であり、これより小さい値は定量不可になる。また、本実施例で用いているカーボン担体はBET比表面積が1270m/gと導電性多孔質担体では最も大きいレベルの値であることから、これより大きい値を有する導電性多孔質担体は現状ほとんどない。
 以上のことから、導体材料の種類に依存せず、導体材料に対する共有結合性有機構造体の好ましい元素組成比は、0.005~1である。
 以上の実施例は、本実施形態の導電性ハイブリッド材料は、共有結合性有機構造体を炭素材料等の導体材料上に担持することによって優れた導電性を提供し、電極材料等として有用できることを実証するものである。
 特願2014-177243号(出願日:2014年9月1日)の全内容は、ここに援用される。
 以上、実施例に沿って本実施形態の内容を説明したが、本実施形態はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 本実施形態によれば、それ自体は電子伝導性を有しない共有結合性有機構造体を炭素材料等の導体材料上に担持させることによって、電子伝導性を付与でき、燃料電池の電極触媒材料やその他、電子移動を伴う触媒材料や電極材料として用いることが可能となる。
 また、白金または他の白金族元素の単位重量当たりの活性を向上するためには、担持される金属を小粒径化し、かつ、有効に電子移動が可能な金属の割合を高くすることが有効である。そして、本実施形態の導電性ハイブリッド材料は、金属を単原子状に分散させることができる。そのため、単位金属量当たりの金属の表面積が大きくなり、さらに共有結合性有機構造体から導体材料へ高い割合で電子移動することができる。そのため、単位金属担持量当たりの触媒活性を高めることが可能となる。
 導電性ハイブリッド材料を白金により修飾すると、メタノールが存在した場合でも、酸素を選択的に還元し、メタノール酸化反応活性を示し難い。そのため、白金族元素で修飾した導電性ハイブリッド材料は、メタノールを用いる燃料電池等における材料として極めて有用である。
 また、既存の電子伝導性を有する金属や炭素材料をベースにしたバルク無機材料と比較して、共有結合性有機構造体を構成するモノマー分子を種々変更することで、所望の特性等に応じて構造体自体の分子設計を容易に行うことができる。また、共有結合性有機構造体は、有機物のみからなるため、安価であるという利点を有する。

Claims (19)

  1.  細孔を有する共有結合性有機構造体と、導体材料と、を含み、
     前記共有結合性有機構造体が前記導体材料上に担持されている、導電性ハイブリッド材料。
  2.  前記共有結合性有機構造体は、分子内に複数のトリアジン環を有する繰返しユニットよりなる高分子である、請求項1に記載の導電性ハイブリッド材料。
  3.  前記共有結合性有機構造体は、アリーレン、ヘテロアリーレン又はヘテロ原子を介して、複数のトリアジン環が共有結合で連結した構造を有する、請求項1に記載の導電性ハイブリッド材料。
  4.  前記共有結合性有機構造体は、フェニレン又はピリジレンを介して、複数のトリアジン環が共有結合で連結した構造を有する、請求項1に記載の導電性ハイブリッド材料。
  5.  前記共有結合性有機構造体は、ジシアノベンゼン又はジシアノピリジンの縮合反応により得られる化合物である、請求項4に記載の導電性ハイブリッド材料。
  6.  前記共有結合性有機構造体は、前記導体材料上においてモノマーを重合させるin-situ反応により得られる化合物である、請求項1乃至5のいずれか一項に記載の導電性ハイブリッド材料。
  7.  前記共有結合性有機構造体は、以下の群より選択される少なくとも一つの化合物である、請求項1に記載の導電性ハイブリッド材料。
    Figure JPOXMLDOC01-appb-C000014
    Figure JPOXMLDOC01-appb-I000001
  8.  前記導体材料は炭素材料である、請求項1乃至7のいずれか一項に記載の導電性ハイブリッド材料。
  9.  前記炭素材料は、グラファイト、カーボンブラック、ケッチェンブラック、アセチレンブラック、カーボンナノチューブ、グラフェン及びカーボンファイバーからなる群より選ばれる少なくとも一つである、請求項8に記載の導電性ハイブリッド材料。
  10.  前記炭素材料は、ナノ粒子の形態である、請求項8又は9に記載の導電性ハイブリッド材料。
  11.  前記共有結合性有機構造体に金属が配位する、請求項1乃至10のいずれか一項に記載の導電性ハイブリッド材料。
  12.  前記金属は、白金族元素又は銅である、請求項11に記載の導電性ハイブリッド材料。
  13.  請求項1乃至12のいずれか一項に記載の導電性ハイブリッド材料を含む電極。
  14.  請求項1乃至12のいずれか一項に記載の導電性ハイブリッド材料を含む触媒。
  15.  請求項14に記載の触媒を含み、前記共有結合性有機構造体に白金族元素が配位する、水素発生触媒。
  16.  前記導体材料に対する前記共有結合性有機構造体の元素組成比が、0.005~1である、請求項15に記載の水素発生触媒。
  17.  請求項14に記載の触媒を含み、前記共有結合性有機構造体に白金族元素が配位する、水素酸化触媒。
  18.  前記導体材料に対する前記共有結合性有機構造体の元素組成比が、0.005~1である、請求項17に記載の水素酸化触媒。
  19.  請求項14に記載の触媒を含み、前記導体材料が炭素材料である酸素還元触媒。
PCT/JP2015/004423 2014-09-01 2015-08-31 共有結合性有機構造体を含む導電性ハイブリッド材料 WO2016035321A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/500,382 US20170222231A1 (en) 2014-09-01 2015-08-31 Conductive hybrid material including covalent organic structure
CN201580041577.XA CN106574124A (zh) 2014-09-01 2015-08-31 含有共价性有机结构体的导电性杂化材料
EP15838402.4A EP3190157B1 (en) 2014-09-01 2015-08-31 Conductive hybrid material including covalent organic structure
JP2016546317A JP6358680B2 (ja) 2014-09-01 2015-08-31 共有結合性有機構造体を含む導電性ハイブリッド材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014177243 2014-09-01
JP2014-177243 2014-09-01

Publications (1)

Publication Number Publication Date
WO2016035321A1 true WO2016035321A1 (ja) 2016-03-10

Family

ID=55439404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004423 WO2016035321A1 (ja) 2014-09-01 2015-08-31 共有結合性有機構造体を含む導電性ハイブリッド材料

Country Status (5)

Country Link
US (1) US20170222231A1 (ja)
EP (1) EP3190157B1 (ja)
JP (1) JP6358680B2 (ja)
CN (1) CN106574124A (ja)
WO (1) WO2016035321A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116586A1 (ja) * 2016-12-20 2018-06-28 パナソニックIpマネジメント株式会社 金属担持触媒
WO2019188475A1 (ja) * 2018-03-27 2019-10-03 東レ株式会社 トリアジン環含有重合体、樹脂組成物、硬化膜および固体撮像素子
JP2020040857A (ja) * 2018-09-12 2020-03-19 星和電機株式会社 共有結合性有機構造体の焼成体およびその製造方法
CN112619710A (zh) * 2019-09-24 2021-04-09 国家纳米科学中心 一种三嗪基共价网络负载金属单原子的复合材料及其制备方法和应用
WO2022085959A1 (ko) * 2020-10-21 2022-04-28 한양대학교 에리카산학협력단 공유결합 유기 골격체 기반 산소촉매 제조 및 금속-공기 2차 전지 개발
CN114864971A (zh) * 2022-04-14 2022-08-05 深圳市氢瑞燃料电池科技有限公司 一种燃料电池抗反极催化层及其制备方法与应用
CN114887492A (zh) * 2022-04-15 2022-08-12 同济大学 一种二维肟基化共价有机框架电极膜及其制备方法和应用
CN115181265A (zh) * 2022-07-29 2022-10-14 华侨大学 一种亚甲基修饰共价三嗪骨架材料及其制备方法和应用
CN117142552A (zh) * 2023-09-19 2023-12-01 郑州大学 一种自组装双功能光热蒸发柱及其制备方法
CN117142552B (zh) * 2023-09-19 2024-05-31 郑州大学 一种自组装双功能光热蒸发柱及其制备方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107694606A (zh) * 2017-11-01 2018-02-16 中国科学院福建物质结构研究所 铼修饰的共价三嗪环吡啶框架催化剂及制备方法和应用
CN110407165B (zh) * 2018-04-27 2023-05-09 宝山钢铁股份有限公司 锂硫电池用硒掺杂的共价有机骨架-硫正极复合材料及其合成方法
CN110116025A (zh) * 2019-05-30 2019-08-13 河北科技大学 共价三嗪类骨架化合物与MoS2复合析氢催化剂的制备方法及析氢催化剂的应用
CN110164716B (zh) * 2019-05-31 2021-03-30 上海交通大学 一种基于共价有机框架材料的薄膜电极的制备方法
CN110372068B (zh) * 2019-07-10 2021-07-27 常州大学 一种cof负载的金属氢氧化物电极的制备方法及其应用
CN111234214B (zh) * 2020-04-02 2022-05-27 南昌航空大学 一种三嗪基席夫碱共轭微孔聚合物及其制备方法
CN112657472B (zh) * 2020-12-21 2024-02-13 吉林师范大学 一种离子型共价三嗪骨架聚合物材料及其制备方法和应用
CN115094463B (zh) * 2021-03-05 2023-10-13 中国科学院上海高等研究院 一种亚纳米合金材料及其制备方法和用途
KR20230030153A (ko) * 2021-08-25 2023-03-06 주식회사 엘지에너지솔루션 다공성 고체 화합물, 이의 제조방법, 상기 다공성 고체 화합물을 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
CN114005980B (zh) * 2021-10-19 2022-11-22 珠海冠宇电池股份有限公司 一种负极材料及含有该负极材料的锂离子电池
CN114349960B (zh) * 2021-12-21 2023-09-19 常州大学 一种离子型手性共价有机框架材料的制备方法
WO2024036130A1 (en) * 2022-08-11 2024-02-15 Wisconsin Alumni Research Foundation Glassy organic framework ion-conductive membranes

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005041330A1 (ja) * 2003-10-24 2005-05-06 Asahi Glass Company, Limited 固体高分子型燃料電池用膜・電極接合体及びその製造方法
WO2011122399A1 (ja) * 2010-03-31 2011-10-06 ダイハツ工業株式会社 燃料電池
US20120130071A1 (en) * 2009-07-24 2012-05-24 Studiengesellschaft Kohle Mbh Method for oxidizing methane
WO2012107032A1 (de) * 2011-02-09 2012-08-16 Studiengesellschaft Kohle Mbh Verfahren zur herstellung eines katalysators enthaltend mindestens ein übergansgmetal auf einem mit stickstoff modifizierten porösem kohlenstoffträger
JP2012525246A (ja) * 2009-04-28 2012-10-22 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク メタンの電気化学的酸化のための触媒及び方法
JP2013159588A (ja) * 2012-02-07 2013-08-19 Tokyo Institute Of Technology アゾメチンデンドリマー金属ナノ微粒子とその触媒

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3632087B2 (ja) * 2001-03-02 2005-03-23 独立行政法人産業技術総合研究所 低温型燃料電池の燃料極用電極触媒
JP2006202688A (ja) * 2005-01-24 2006-08-03 Asahi Kasei Corp 金属錯体の燃料電池用電極触媒
JPWO2008093731A1 (ja) * 2007-02-01 2010-05-20 独立行政法人産業技術総合研究所 燃料電池用電極触媒およびこれを用いた燃料電池
ATE441685T1 (de) * 2007-06-15 2009-09-15 Max Planck Ges Zur Firderung D Verfahren zur herstellung organischer poríser festkírper und mit diesem verfahren herstellbare festkírper
US8431296B2 (en) * 2008-07-11 2013-04-30 Samsung Electronics Co., Ltd. Electrophotographic toner, process for preparing the same, image forming method and apparatus using the toner
CN103209763B (zh) * 2010-09-13 2017-11-10 康奈尔大学 共价有机框架膜及其制备方法和用途
WO2012107838A1 (en) * 2011-02-08 2012-08-16 Institut National De La Recherche Scientifique Catalysts made using thermally decomposable porous supports

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005041330A1 (ja) * 2003-10-24 2005-05-06 Asahi Glass Company, Limited 固体高分子型燃料電池用膜・電極接合体及びその製造方法
JP2012525246A (ja) * 2009-04-28 2012-10-22 サントル ナショナル ドゥ ラ ルシェルシュ シアンティフィク メタンの電気化学的酸化のための触媒及び方法
US20120130071A1 (en) * 2009-07-24 2012-05-24 Studiengesellschaft Kohle Mbh Method for oxidizing methane
WO2011122399A1 (ja) * 2010-03-31 2011-10-06 ダイハツ工業株式会社 燃料電池
WO2012107032A1 (de) * 2011-02-09 2012-08-16 Studiengesellschaft Kohle Mbh Verfahren zur herstellung eines katalysators enthaltend mindestens ein übergansgmetal auf einem mit stickstoff modifizierten porösem kohlenstoffträger
JP2013159588A (ja) * 2012-02-07 2013-08-19 Tokyo Institute Of Technology アゾメチンデンドリマー金属ナノ微粒子とその触媒

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LILI CUI: "Fabrication of iron phthalocyanine/ graphene micro/nanocomposite by solvothermally assisted PI-PI assembling method and its application for oxygen reduction reaction", ELECTROCHIMICA ACTA, vol. 106, 2013, pages 272 - 278, XP028681729 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116586A1 (ja) * 2016-12-20 2018-06-28 パナソニックIpマネジメント株式会社 金属担持触媒
JP7205466B2 (ja) 2018-03-27 2023-01-17 東レ株式会社 トリアジン環含有重合体、樹脂組成物、硬化膜および固体撮像素子
JPWO2019188475A1 (ja) * 2018-03-27 2021-02-12 東レ株式会社 トリアジン環含有重合体、樹脂組成物、硬化膜および固体撮像素子
WO2019188475A1 (ja) * 2018-03-27 2019-10-03 東レ株式会社 トリアジン環含有重合体、樹脂組成物、硬化膜および固体撮像素子
JP2020040857A (ja) * 2018-09-12 2020-03-19 星和電機株式会社 共有結合性有機構造体の焼成体およびその製造方法
CN112619710A (zh) * 2019-09-24 2021-04-09 国家纳米科学中心 一种三嗪基共价网络负载金属单原子的复合材料及其制备方法和应用
WO2022085959A1 (ko) * 2020-10-21 2022-04-28 한양대학교 에리카산학협력단 공유결합 유기 골격체 기반 산소촉매 제조 및 금속-공기 2차 전지 개발
CN114864971A (zh) * 2022-04-14 2022-08-05 深圳市氢瑞燃料电池科技有限公司 一种燃料电池抗反极催化层及其制备方法与应用
CN114864971B (zh) * 2022-04-14 2024-05-17 深圳市氢瑞燃料电池科技有限公司 一种燃料电池抗反极催化层及其制备方法与应用
CN114887492B (zh) * 2022-04-15 2024-02-27 同济大学 一种二维肟基化共价有机框架电极膜及其制备方法和应用
CN114887492A (zh) * 2022-04-15 2022-08-12 同济大学 一种二维肟基化共价有机框架电极膜及其制备方法和应用
CN115181265A (zh) * 2022-07-29 2022-10-14 华侨大学 一种亚甲基修饰共价三嗪骨架材料及其制备方法和应用
CN115181265B (zh) * 2022-07-29 2023-10-31 华侨大学 一种亚甲基修饰共价三嗪骨架材料及其制备方法和应用
CN117142552A (zh) * 2023-09-19 2023-12-01 郑州大学 一种自组装双功能光热蒸发柱及其制备方法
CN117142552B (zh) * 2023-09-19 2024-05-31 郑州大学 一种自组装双功能光热蒸发柱及其制备方法

Also Published As

Publication number Publication date
CN106574124A (zh) 2017-04-19
JP6358680B2 (ja) 2018-07-18
EP3190157B1 (en) 2019-08-07
US20170222231A1 (en) 2017-08-03
JPWO2016035321A1 (ja) 2017-06-29
EP3190157A1 (en) 2017-07-12
EP3190157A4 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
JP6358680B2 (ja) 共有結合性有機構造体を含む導電性ハイブリッド材料
Zhang et al. Hierarchical FeNiP@ ultrathin carbon nanoflakes as alkaline oxygen evolution and acidic hydrogen evolution catalyst for efficient water electrolysis and organic decomposition
Hu et al. Co‐N‐Doped mesoporous carbon hollow spheres as highly efficient electrocatalysts for oxygen reduction reaction
Srinivas et al. Metal–organic framework-derived NiS/Fe3O4 heterostructure-decorated carbon nanotubes as highly efficient and durable electrocatalysts for oxygen evolution reaction
Chhetri et al. Superior performance of borocarbonitrides, B x C y N z, as stable, low-cost metal-free electrocatalysts for the hydrogen evolution reaction
Zhu et al. Facilely tuning porous NiCo2O4 nanosheets with metal valence‐state alteration and abundant oxygen vacancies as robust electrocatalysts towards water splitting
Han et al. Metal‐phosphide‐containing porous carbons derived from an ionic‐polymer framework and applied as highly efficient electrochemical catalysts for water splitting
Yuan et al. Facile synthesis of MoS2@ CNT as an effective catalyst for hydrogen production in microbial electrolysis cells
Hou et al. Pt nanoparticles/MoS2 nanosheets/carbon fibers as efficient catalyst for the hydrogen evolution reaction
Wu et al. Graphene-riched Co9S8-NC non-precious metal catalyst for oxygen reduction in alkaline media
Shit et al. Hierarchical cobalt sulfide/molybdenum sulfide heterostructure as bifunctional electrocatalyst towards overall water splitting
Kumar et al. Electrochemical and SECM investigation of MoS2/GO and MoS2/rGO nanocomposite materials for HER electrocatalysis
Zeng et al. Facile electrodeposition of cauliflower-like S-doped nickel microsphere films as highly active catalysts for electrochemical hydrogen evolution
Yang et al. Porous N-doped carbon prepared from triazine-based polypyrrole network: a highly efficient metal-free catalyst for oxygen reduction reaction in alkaline electrolytes
Li et al. FeNi Layered Double‐Hydroxide Nanosheets on a 3D Carbon Network as an Efficient Electrocatalyst for the Oxygen Evolution Reaction
Shang et al. Pt–C interfaces based on electronegativity-functionalized hollow carbon spheres for highly efficient hydrogen evolution
Hegazy et al. Synergistic electrocatalytic hydrogen evolution in Ni/NiS nanoparticles wrapped in multi-heteroatom-doped reduced graphene oxide nanosheets
Lei et al. Synthesis of porous N-rich carbon/MXene from MXene@ polypyrrole hybrid nanosheets as oxygen reduction reaction electrocatalysts
Lee et al. PtFe nanoparticles supported on electroactive Au–PANI core@ shell nanoparticles for high performance bifunctional electrocatalysis
Thippani et al. Probing oxygen reduction and oxygen evolution reactions on bifunctional non-precious metal catalysts for metal–air batteries
Song et al. Additional doping of phosphorus into polypyrrole functionalized nitrogenous carbon nanotubes as novel metal-free oxygen reduction electrocatalyst in alkaline solution
Zhiani et al. Preparation and evaluation of nickel nanoparticles supported on the polyvinylpyrrolidone-graphene composite as a durable electrocatalyst for HER in alkaline media
Kumar et al. Uniformly decorated molybdenum carbide/nitride nanostructures on biomass templates for hydrogen evolution reaction applications
Shit et al. Effect of the solvent ratio (ethylene glycol/water) on the preparation of an iron sulfide electrocatalyst and its activity towards overall water splitting
Rahmani et al. Excellent electro-oxidation of methanol and ethanol in alkaline media: Electrodeposition of the NiMoP metallic nano-particles on/in the ERGO layers/CE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838402

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15500382

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016546317

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015838402

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015838402

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE