WO2018116586A1 - 金属担持触媒 - Google Patents

金属担持触媒 Download PDF

Info

Publication number
WO2018116586A1
WO2018116586A1 PCT/JP2017/036764 JP2017036764W WO2018116586A1 WO 2018116586 A1 WO2018116586 A1 WO 2018116586A1 JP 2017036764 W JP2017036764 W JP 2017036764W WO 2018116586 A1 WO2018116586 A1 WO 2018116586A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
carbon
supported catalyst
platinum group
atoms
Prior art date
Application number
PCT/JP2017/036764
Other languages
English (en)
French (fr)
Inventor
亮 釜井
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2018116586A1 publication Critical patent/WO2018116586A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present application relates to a metal-supported catalyst supporting a metal.
  • Platinum group elements exhibit high catalytic activity for various chemical reactions and are widely used industrially and commercially as catalysts.
  • fuel cells, hydrogen generators by electrolysis of water, and the like have attracted attention as new energy utilization devices.
  • the fuel cell uses an oxygen reduction reaction and a hydrogen oxidation reaction
  • the hydrogen generator uses a hydrogen generation reaction.
  • a platinum group element is suitably used as a catalyst. Therefore, the need for platinum group elements is expected to increase.
  • platinum group elements are generally rare and expensive, and the price is unstable. From the viewpoint of saving resources, securing availability, and reducing costs, it is strongly desired to reduce the amount of platinum group elements used.
  • Patent Document 1 As a method of reducing the amount of platinum group element used, as disclosed in Patent Document 1, it has been proposed to reduce the size of platinum group element particles carried on a carrier. In addition, as disclosed in Patent Document 2, it has also been proposed to support metal cluster nanoparticles containing a platinum group element on a carrier.
  • One non-limiting exemplary embodiment of the present application provides a metal-supported catalyst with a low proportion of platinum group elements and high catalytic activity.
  • the metal-supported catalyst according to the first aspect of the present invention contains a platinum group metal atom and a carbon atom.
  • the mass ratio of platinum group metal atoms to carbon atoms measured by X-ray photoelectron spectroscopy is W, and in the image observed with a high-resolution transmission electron microscope, the projected area ratio of platinum group metal atoms to carbon atoms is When S R , S R / W is 2.0 or more and 4.0 or less.
  • the metal-supported catalyst according to the second aspect of the present invention includes a porous carbon-based material containing carbon atoms, a surface of the porous carbon-based material, a particle diameter of 0.5 nm to 15 nm, platinum, And metal particles containing a group metal atom.
  • the mass ratio of platinum group metal atoms to carbon atoms measured by X-ray photoelectron spectroscopy is W, and in the image observed with a high-resolution transmission electron microscope, the projected area ratio of platinum group metal atoms to carbon atoms is When S R , S R / W is 2.0 or more and 4.0 or less.
  • FIG. 1A to 1D show examples of compounds containing at least one of a nitrogen atom and a sulfur atom.
  • (E) to (h) in FIG. 1B show examples of compounds containing at least one of a nitrogen atom and a sulfur atom.
  • FIG. 1C (i) shows an example of a compound containing at least one of a nitrogen atom and a sulfur atom.
  • FIG. 2 is a schematic view showing an example of a fuel cell according to an embodiment of the present invention.
  • FIG. 3 is a photograph showing the results of observation of the metal-supported catalyst of Example 1 with a transmission electron microscope.
  • FIG. 4 is a photograph showing the results of observation of the metal-supported catalyst of Example 2 with a transmission electron microscope.
  • FIG. 5 is a photograph showing the results of observation of the metal-supported catalyst of Comparative Example 1 with a transmission electron microscope.
  • FIG. 6 is a photograph showing the result of observation of the metal-supported catalyst of Comparative Example 2 with a transmission electron microscope.
  • platinum particles with a diameter of 3 nm correspond to a surface exposure rate of about 30%.
  • the diameters of the supported nanoparticles are distributed, even if the average value is 3 nm in diameter, the average surface exposure rate is almost less than 30%. Therefore, especially when considering application as an oxygen reduction catalyst, there is a limit in improving the catalytic activity per unit weight of the platinum group element simply by making the metal particles small.
  • the present disclosure provides a metal-supported catalyst having a higher surface exposure rate than before and an electrode using the metal-supported catalyst without reducing the high catalytic activity of the platinum group element.
  • the inventor of the present application has conducted intensive research on a method for realizing a catalyst having a high surface exposure rate of a platinum group element without causing a decrease in catalytic activity of the platinum group element, in particular, oxygen reduction activity. .
  • the inventors have conceived that the shape of the platinum group element particles to be supported is controlled and the surface exposure rate is increased by appropriately designing the formation process of the platinum group element nanoparticles.
  • the outline of the metal-supported catalyst of the present disclosure is as follows.
  • the metal-supported catalyst according to an embodiment of the present disclosure includes a platinum group metal atom and a carbon atom.
  • the mass ratio of platinum group metal atoms to carbon atoms measured by X-ray photoelectron spectroscopy is W, and the projected area ratio of platinum group metal atoms to carbon atoms in an image observed with a high-resolution transmission electron microscope When S is S R , S R / W is 2.0 or more and 4.0 or less.
  • a metal-supported catalyst according to another embodiment of the present disclosure includes a porous carbon-based material containing carbon atoms, a surface of the porous carbon-based material, a particle diameter of 0.5 nm to 15 nm, platinum, And metal particles containing a group metal atom.
  • the mass ratio of platinum group metal atoms to carbon atoms measured by X-ray photoelectron spectroscopy is W, and the projected area ratio of platinum group metal atoms to carbon atoms in an image observed with a high-resolution transmission electron microscope When S is S R , S R / W is 2.0 or more and 4.0 or less.
  • the platinum group metal atom may contain at least one selected from the group consisting of Ru, Rh, Pd, Os, Ir and Pt.
  • the platinum group metal atom may be Pt.
  • the metal-supported catalyst may further contain at least one of a nitrogen atom and a sulfur atom.
  • the metal-supported catalyst of the present disclosure includes a platinum group atom and a carbon atom.
  • the metal-supported catalyst includes a carbon-based material containing carbon atoms and metal particles containing platinum group atoms.
  • the carbon-based material functions as a carrier for metal particles.
  • the carbon-based material preferably has at least one selected from the group consisting of, for example, carbon black, graphene, graphite fine particles, carbon paper, carbon cloth, and carbon felt. From the viewpoint of more stably supporting metal atoms, the carbon-based material is preferably a porous carbon-based material containing carbon atoms.
  • the carbon-based material more preferably contains at least one of a nitrogen atom and a sulfur atom.
  • Nitrogen atoms and sulfur atoms may be doped in the carbon-based material.
  • a layer containing a compound having at least one of a nitrogen atom and a sulfur atom and having a thickness of several nm or less may be formed on the surface of the carbon-based material.
  • “dope” refers to a state in which carbon atoms in a bonded state by sp 2 hybrid orbital constituting carbon black are substituted with nitrogen atoms or sulfur atoms. Such a doped state can be confirmed, for example, by performing a Raman spectroscopic measurement.
  • the form of such a doped nitrogen atom or sulfur atom is not particularly limited. Moreover, when providing the layer containing the compound which has at least one of the nitrogen atom and sulfur atom of thickness of several nanometers or less, the layer may be formed over the whole surface of carbonaceous material, and only in part It may be formed.
  • the compound containing at least one of a nitrogen atom and a sulfur atom is preferably a material having a large molecular weight so that elimination from the carbon-based material is suppressed.
  • the molecular weight is preferably 1000 or more.
  • Such a compound containing at least one of a nitrogen atom and a sulfur atom may be, for example, an oligomer or a polymer having a repeating unit shown in (a) to (i) of FIGS. 1A, 1B and 1C.
  • the carbon-based material includes at least one of a nitrogen atom and a sulfur atom on the surface
  • a lone electron pair of the nitrogen atom or the sulfur atom becomes an ion of a platinum group element ( Coordinate to a cation).
  • the platinum group atoms can be held on the surface of the carbon-based material in an ion state of each platinum group element, not in an aggregated state.
  • the oligomer or polymer structure having the repeating unit shown in (a) to (i) of FIGS. 1A, 1B, and 1C described above is formed on the surface of the carbon-based material, so that ions of platinum group elements A plurality of coordination loci suitable for capturing are closely arranged. As a result, platinum group element ions can be more reliably retained on the surface of the carbon-based material.
  • the total atomic number ratio of nitrogen atoms and sulfur atoms to carbon atoms is preferably about 0.01 or more and about 0.1 or less.
  • the atomic ratio is based on values identified and quantified by X-ray photoelectron spectroscopy, as will be described later.
  • a polymer material containing a triazine ring is preferably used as the compound containing at least one of a nitrogen atom and a sulfur atom.
  • the polymer material containing a triazine ring is preferably supported on the surface of conductive carbon. Therefore, the carbon-based material contained in the metal-supported catalyst preferably contains a polymer material containing a triazine ring and conductive carbon that supports the polymer material on the surface.
  • the polymer material is preferably made of a polymer containing at least a triazine ring (C 3 N 3 ).
  • the polymer material is preferably composed of a covalently bonded organic structure containing a triazine ring.
  • a covalent organic structure is a molecule formed by connecting atoms such as hydrogen, carbon, nitrogen, oxygen, boron, and sulfur only by a covalent bond. More specifically, the covalent bond organic structure means a polymer having a structure in which a plurality of the same or different aromatic ring groups form a cyclic repeating unit by a covalent bond.
  • the covalently bonded organic structure also means a polymer having a two-dimensional or three-dimensional network structure in which the repeating unit is continuously connected to one or more other repeating units by a covalent bond.
  • Such a covalently bonded organic structure has a porous structure having meso and micro-sized pores, and has a low density and excellent thermal stability.
  • the polymer material used for the carbon-based material is preferably composed of a covalently bonded organic structure composed of repeating units having a plurality of triazine rings in the molecule.
  • a covalent organic structure can be formed by connecting such a repeating unit to another adjacent repeating unit by a covalent bond and repeating such a structure in a chain manner.
  • the polymer material is preferably composed of a covalent organic structure having a structure in which a plurality of triazine rings are connected via a covalent bond via an arylene, heteroarylene, or heteroatom.
  • arylene means a divalent functional group obtained by removing two hydrogen atoms bonded to a carbon atom constituting an aromatic ring from an aromatic hydrocarbon.
  • Heteroarylene means a divalent functional group formed by removing two hydrogen atoms from a heterocyclic compound having aromaticity.
  • the arylene is phenylene.
  • the heteroarylene is pyridylene.
  • the arylene and heteroarylene may have a substituent, and such a substituent is not particularly limited, and may be, for example, alkyl or halogen. Moreover, as a hetero atom, sulfur, boron, nitrogen, phosphorus, etc. can be mentioned, Preferably it is sulfur or nitrogen.
  • the polymer material used for the carbon-based material preferably has 1 nm to 50 nm pores.
  • the covalent bond organic structure preferably has pores of 1 nm to 50 nm.
  • the covalent bond organic structure preferably has a molecular weight in the range of 1000 to 20000.
  • the ion (cation) of the platinum group element can be coordinated to the polymer material.
  • the ions of the platinum group element form a coordinate bond with the heteroatom of the heteroaromatic ring that forms the covalent organic structure. It can exist in a complexed form with a binding organic structure.
  • the ion of a platinum group element coordinates to a covalent bond organic structure, the said ion can be disperse
  • the ion of the platinum group element can form a coordinate bond with an atom having an unshared electron pair contained in the polymer material. More preferably, the platinum group element ion can form a coordinate bond with the nitrogen atom contained in the polymer material. This makes it possible to efficiently disperse ions of the platinum group element in a monoatomic form.
  • a typical example of a covalently bonded organic structure used as a polymer material is a compound having a structure shown in FIG. 1A (a).
  • the compound shown in (a) of FIG. 1A can be synthesized by forming a triazine ring by condensation reaction of 2,6-dicyanopyridine and repeating the reaction, as shown in the Examples described later.
  • the compound has a structure in which triazine rings are linked by a covalent bond via a pyridylene group.
  • a repeating unit having a cyclic structure composed of three triazine rings and three pyridine rings is formed, and the plurality of repeating units are further linked by a pyridylene group.
  • the compound (a) in FIG. 1A is a polymer having a plurality of pores and a two-dimensional network structure.
  • the covalently bonded organic structure containing a triazine ring in FIG. 1A may be particularly referred to as a covalently bonded triazine structure (CTF, Covalent Triazine Framework).
  • metal ions can be supported. That is, a complex can be formed by forming a coordinate bond between the nitrogen atom of the triazine ring or the nitrogen atom of the pyridylene group and the metal ion. Further, like the covalently bonded organic structure of FIG. 1A, the polymer material containing a triazine ring contains a high concentration of atoms containing an unshared electron pair. The metal ions are stabilized by the interaction with the metal ions. Therefore, the polymer material containing a triazine ring can stably support metal particles having a small particle size.
  • the covalently bonded organic structure used as the polymer material is not limited to that shown in (a) of FIG. 1A, and (b) to (d) in FIG. 1A, (e) to (h) in FIG.
  • a compound containing a triazine ring such as 1C (i) can also be preferably used.
  • the polymer material may be a covalent organic structure in which one type of cyclic structure repeating unit is connected.
  • the polymer material may be a covalent organic structure as a copolymer in which a plurality of types of cyclic structure repeating units are linked.
  • the polymerization degree of the polymer material is preferably 10 or more, and more preferably 100 or more.
  • the degree of polymerization of the polymer material refers to the number average degree of polymerization.
  • a covalent organic structure having a triazine ring used as a polymer material can be obtained as follows. First, a triazine ring is formed by subjecting a monomer having a dicyano group or a tricyano group to a condensation reaction. Next, by repeating the condensation reaction, a covalent organic structure in which a plurality of triazine rings are finally connected by a covalent bond can be obtained.
  • the monomer having a dicyano group is preferably dicyanobenzene or dicyanopyridine.
  • the monomer having a tricyano group is preferably tricyanobenzene or tricyanopyridine.
  • the covalently bonded organic structure preferably has a structure in which a plurality of triazine rings are connected by covalent bonds via phenylene or pyridylene.
  • the covalent organic structure is preferably a compound obtained by a condensation reaction of dicyanobenzene or dicyanopyridine.
  • the monomer having a dicyano group can further have a substituent.
  • a substituent is not particularly limited as long as the condensation reaction of the cyano group proceeds, and can be, for example, an alkyl group or a halogen group.
  • conductive carbon carrying a polymer material on the surface is generally used as a conductive material for an electrode of a secondary battery.
  • the conductive carbon is capable of imparting electronic conductivity to the covalent organic structure by supporting the covalent organic structure used as a polymer material on the surface. preferable.
  • the conductive carbon is preferably a porous material from the viewpoint of more stably supporting the polymer material.
  • Examples of such conductive carbon include at least one selected from the group consisting of carbon black such as ketjen black and acetylene black, graphene, fine graphite particles, fullerene, carbon nanohorn, carbon paper, carbon cloth, and carbon felt. Can do.
  • As the conductive carbon amorphous carbon can also be used. Since these conductive carbons are excellent in conductivity and corrosion resistance, high electrode performance can be maintained over a long period of time.
  • the conductive carbon preferably has a large specific surface area in order to increase the amount of the polymer material supported.
  • the conductive carbon preferably has a specific surface area calculated by the BET method of 500 m 2 / g or more.
  • the shape of the conductive carbon is not particularly limited, and examples thereof include a spherical shape, a plate shape, a scale shape, a column shape, and a needle shape. Furthermore, the conductive carbon is preferably in the form of nanoparticles.
  • the average primary particle diameter of the conductive carbon is preferably 10 nm to 1000 nm, and more preferably 10 nm to 300 nm. When the particle diameter of the conductive carbon is within this range, the polymer material and the metal ions coordinated to the polymer material can be highly dispersed.
  • the particle diameter of conductive carbon can be calculated
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the ratio of the covalent bond organic structure and the conductive carbon constituting the polymer material is preferably 100: 10 or more of the covalent bond organic structure: conductive carbon in terms of mass ratio. More preferably, the covalent bond organic structure: conductive carbon is 100: 20 to 100: 5000 by mass ratio.
  • the polymer material is preferably supported on the surface of the particulate conductive carbon.
  • the polymer material is composed of a covalent organic structure
  • the covalent organic structure is a material with low conductivity
  • the covalent organic structure is thin and easily undergoes electron transfer.
  • the film is supported on the surface of the conductive carbon by a film thickness. Since the covalent bond organic structure is supported in the form of a thin film, the distance between the covalent bond organic structure and the conductive carbon is reduced, and the distance between the covalent bond organic structure and the conductive carbon is reduced. Electron transfer becomes easy. As a result, the catalytic activity of the metal-supported catalyst can be further improved.
  • the polymer material may cover the entire surface of the conductive carbon, but the carbon-based material is not limited to such an embodiment.
  • the polymer material may be supported on a part of the surface of the conductive carbon.
  • the metal particles containing a platinum group atom are supported on the surface of a carbon-based material.
  • the metal particles supported on the surface of the carbon-based material are particles in a metal state in which platinum group atoms are assembled by metal bonds.
  • the platinum group atom includes at least one selected from the group consisting of ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir), and platinum (Pt).
  • the platinum group atom is preferably platinum (Pt).
  • the metal particles containing a platinum group atom preferably have a particle size of 0.5 nm or more and 15 nm or less. Here, the particle diameter is based on a value observed with a high-resolution transmission electron microscope (HR-TEM).
  • the metal particles containing platinum group atoms have a shape (w> h) in which the width w in the surface direction is larger than the height h. That is, the metal particles spread in the direction of the surface of the carbon-based material that carries the metal particles, and the direction perpendicular to the surface that carries the metal particles has a thin island structure.
  • the metal particles have an island-like structure, the proportion of platinum group atoms exposed on the surface increases, and the proportion of platinum group atoms having no catalytic action located inside the metal particles can be reduced. Therefore, a metal-supported catalyst in which the amount of platinum group element used is reduced while maintaining high catalytic activity can be realized.
  • the metal particles having such an island-like structure are caused by capturing the platinum group element on the surface of the carbon-based material by coordination of ions of the platinum group element. Specifically, when the ions of platinum group elements held by coordinate bonds with nitrogen atoms or sulfur atoms on the surface of the carbon-based material are reduced, the reduced platinum atoms aggregate together to form particles. However, since the platinum group elements immobilized on the surface of the carbonaceous material in advance move and aggregate on the surface of the carbonaceous material, the aggregated platinum group atoms can form the island-shaped structure described above.
  • the mass ratio of the platinum group atom in the metal particle to the carbon atom in the carbon-based material [mass of platinum group atom in the metal particle] ] / [Mass of carbon atoms in the carbon-based material]).
  • the projected area ratio of platinum group atoms to carbon atoms [projected area of platinum group atoms] / [projected area of carbon atoms]) in the image when the metal-supported catalyst is observed with a high-resolution transmission electron microscope is S Let R be.
  • the projected area ratio of the platinum group atom metal particles to the carbon-based material in the bright field image of the metal-supported catalyst observed with a high-resolution transmission electron microscope [projection area of the platinum group atom metal particles] / the projected area of the carbonaceous material]) and S R.
  • S R / W is 2.0 or more and 4.0 or less (2.0 ⁇ S R /W ⁇ 4.0).
  • S R / W is smaller than 1. That is, the projected area ratio is not so large with respect to the mass ratio. This indicates that the amount of platinum group element used is not significantly reduced.
  • S R / W is less than 2.0, platinum particles do not form an island structure.
  • S R / W is larger than 4.0, the metal lattice structure becomes irregular and the oxygen reduction activity decreases.
  • the high-resolution transmission electron microscope is a transmission electron microscope capable of observation at a magnification of 1 million times or more.
  • the quantification of carbon atoms and platinum group atoms in X-ray photoelectron spectroscopy can be performed as follows. First, for the peak derived from each atom, a baseline is drawn by the Shirley method for an average value between 2.0 eV from the low energy end of the peak to the smaller end. Similarly, a baseline is drawn by the Shirley method for an average value between 2.0 eV from the high energy end of the peak to the larger side. Then, the integrated intensity of the peak of each atom is obtained by integrating the absolute value of the difference between the baseline and the peak.
  • the mass of carbon atoms contained in the metal-supported catalyst and the platinum group are determined from the relationship between the integrated intensity of the peak of each atom and the relative sensitivity coefficient.
  • the atomic mass ratio can be determined.
  • the metal-supported catalyst having the above-described characteristics can be produced, for example, by coordinating a cation of a platinum group element to a carbon-based material and then reducing the cation of the platinum group element.
  • a carbon-based material containing at least one of a nitrogen atom and a sulfur atom is prepared.
  • Such a carbon-based material can be produced by the method described above.
  • platinum group element cations are coordinated to the carbon-based material.
  • a carbon-based material is added to an aqueous solution containing a platinum group element cation and stirred to coordinate the platinum group element cation to nitrogen and sulfur located on the surface of the carbon-based material.
  • the cation of a platinum group element is arrange
  • the reduction of the cation of the platinum group element can be performed by a method of firing a carbon-based material coordinated with ions in a reducing atmosphere or an inert atmosphere.
  • the reduction of the cation of the platinum group element can be performed by a method of applying a potential at which platinum (II) ions can be reduced to a carbon-based material coordinated with platinum (II) ions.
  • a trace amount of platinum group atoms can be arranged on the surface of the carbon-based material. Further, during reduction, platinum group atoms can be moved at the atomic level by migration on the surface of the carbon-based material. Therefore, the metal particle formed by aggregation of platinum group atoms can exhibit a highly anisotropic shape.
  • the metal-supported catalyst of the present disclosure has various catalytic actions exhibited by platinum group elements.
  • the metal particles when the metal particles have an island-like structure, the relative proportion of the (111) plane and the (100) plane with relatively high oxygen reduction activity increases. For this reason, the metal-supported catalyst of the present disclosure exhibits particularly high oxygen reduction activity.
  • the metal-supported catalyst of the present disclosure is suitably used as a catalyst in the following reaction, for example.
  • the oxygen reduction reaction shown below is a cathode reaction in H 2 / O 2 fuel cells, salt electrolysis, etc., and is important in energy conversion electrochemical devices and the like.
  • a hydrogen generation reaction that is a reaction that is a pair of hydrogen oxidation reactions is important as a reaction at a hydrogen generation electrode for water electrolysis hydrogen generation.
  • the metal-supported catalyst of the present disclosure can be suitably used as a catalyst for these reactions. Therefore, it is considered that an expanding demand can be satisfied while reducing the amount of platinum group element used as a catalyst of an energy source that is considered to be widely used in the future.
  • FIG. 2 shows an example of the configuration of the fuel cell according to the present disclosure.
  • a load 14 to which current is supplied when connected to the fuel cell is also illustrated.
  • the fuel cell 10 is a primary cell capable of discharging electricity.
  • a hydrogen fuel cell such as a polymer electrolyte fuel cell (PEFC) and a phosphoric acid fuel cell (PAFC), and a microbial fuel cell ( MFC).
  • PEFC polymer electrolyte fuel cell
  • PAFC phosphoric acid fuel cell
  • MFC microbial fuel cell
  • a hydrogen fuel cell is a fuel cell that obtains electrical energy from hydrogen and oxygen by the reverse reaction of water electrolysis.
  • PEFC, PAFC, alkaline fuel cell (AFC), molten carbonate fuel cell (MCFC), solid An electrolyte fuel cell (SOFC) or the like is known.
  • the fuel cell 10 is preferably PEFC or PAFC.
  • PEFC is a fuel cell using a proton conductive ion exchange membrane as an electrolyte material
  • PAFC is a fuel cell using phosphoric acid (H 3 PO 4 ) impregnated in a matrix layer as an electrolyte material.
  • Such a fuel cell 10 includes, for example, an electrolyte solution 11 (electrolyte material) as shown in FIG.
  • the fuel cell 10 includes an anode 12 (fuel electrode) and a cathode 13 (air electrode).
  • the anode 12 is an electrode that emits electrons to the load 14 by an oxygen generation reaction.
  • the cathode 13 is an electrode through which electrons flow from the load 14 due to an oxygen reduction reaction.
  • the cathode 13 is configured as a gas diffusion electrode and includes the above-described metal-supported catalyst.
  • the gas diffusion electrode can be suitably applied to electrodes such as hydrogen fuel cells and MFCs.
  • the fuel cell 10 according to the present disclosure may have a known configuration except that the fuel cell 10 includes a cathode 13 and the cathode 13 is a gas diffusion electrode including a metal-supported catalyst.
  • the cathode 13 is configured as a gas diffusion electrode and includes a metal-supported catalyst.
  • the present invention is not limited to such a configuration.
  • an electrode including a metal-supported catalyst can be used for both the anode 12 and the cathode 13.
  • a gas diffusion electrode including a metal-supported catalyst may be used as the anode 12.
  • the metal-supported catalyst contained in the anode 12 promotes an oxidation reaction (H 2 ⁇ 2H + + 2e ⁇ ) of hydrogen gas as a fuel, and donates electrons to the anode 12.
  • a gas diffusion electrode provided with a metal-supported catalyst may be used as the cathode 13.
  • the metal-supported catalyst contained in the cathode 13 promotes a reduction reaction (1 / 2O 2 + 2H + + 2e ⁇ ⁇ H 2 O) of oxygen gas that is an oxidant.
  • the gas diffusion electrode including the metal-supported catalyst is mainly used as a cathode that causes the same electrode reaction as that of the hydrogen fuel cell.
  • the metal-supported catalyst can be suitably used for an electrode of a fuel cell.
  • the use of the metal-supported catalyst is not limited to the fuel cell, and may be used as an electrode of various electrochemical devices.
  • electrochemical devices include water electrolyzers, carbon dioxide permeators, salt electrolyzers, metal-air batteries (such as lithium-air batteries).
  • a metal-supported catalyst was produced by adsorbing platinum (II) ions on a carbon-based material and calcining the carbon-based material on which the platinum (II) ions were adsorbed in a reducing atmosphere or an inert atmosphere.
  • FIG. 3 shows an observation image of the metal-supported catalyst of this example. As shown in FIG. 3, in the metal-supported catalyst 1 of this example, it can be seen that metal particles 2 made of platinum are supported on the surface of a porous carbon-based material 3. Then, from FIG.
  • XPS X-ray photoelectron spectroscopy
  • Example 2 Platinum (II) ions are adsorbed on a carbon-based material, and platinum (II) ions are reduced by applying a potential at which platinum (II) ions can be reduced to carbon-based materials on which platinum (II) ions are adsorbed.
  • a supported catalyst was prepared.
  • a nitrogen-containing carbon-based material carrying platinum chloride ions was obtained by the same method as in Example 1.
  • 100 mg of the nitrogen-containing carbon-based material was dispersed ultrasonically in a mixture of 0.95 mL of Nafion and 3.2 mL of ethanol. And the obtained dispersion liquid was apply
  • the glassy carbon coated with the nitrogen-containing carbon-based material described above was -0.1 Vvs. In 0.1 M perchloric acid aqueous solution. An RHE potential was applied for 10 hours. Then, it wash
  • FIG. 4 shows an observation image of the metal-supported catalyst of this example.
  • the metal-supported catalyst 1 of this example also has metal particles 2 made of platinum supported on the surface of a porous carbon-based material 3.
  • the ratio (S R ) of the projected area of the darkly observed region derived from the metal particles to the projected area of the carbon-based material was obtained. .
  • S R was 0.041.
  • Comparative Example 1 A commercially available 60 wt% platinum-supported carbon material (HiSPEC (registered trademark) 9100, manufactured by Johnson Matthey) was used as the metal-supported catalyst of Comparative Example 1.
  • FIG. 5 shows an observation image of the catalyst of this example using a transmission electron microscope. As shown in FIG. 5, it can be seen that the catalyst of Comparative Example 1 has a large amount of platinum 4 supported on carbon black 5.
  • Comparative Example 2 A commercially available 40 wt% platinum-supported carbon-based material (manufactured by Johnson Matthey, HiSPEC 4000) was used as the metal-supported catalyst of Comparative Example 2.
  • FIG. 6 shows an observation image of the catalyst of this example using a transmission electron microscope. As shown in FIG. 6, it can be seen that the catalyst of Comparative Example 2 also has a large amount of platinum 4 supported on carbon black 5 in the same manner as the catalyst of Comparative Example 1.
  • Table 1 summarizes the mass ratio (W) of metal atoms to carbon atoms, the projected area ratio of metal atoms to carbon atoms (S R ), S R / W, and the surface exposure rate in each example.
  • the ratio (S R ) of the projected area in the transmission electron microscope image is different by about one digit between Example 1 and Example 2, and Comparative Example 1 and Comparative Example 2.
  • the composition ratio (W) by X-ray photoelectron spectroscopy is generally It can be seen that this corresponds to the mass ratio.
  • the ratio of platinum to the carbon-based material in the metal-supported catalysts of Example 1 and Example 2 is about 1 wt%, compared with the commercially available platinum catalyst used in Comparative Example 1 and Comparative Example 2, It can be seen that the amount of platinum used is several tenths or less. Then, considering that the atomic weight of platinum is 10 times or more that of carbon, it can be seen that in Example 1 and Example 2, the supported platinum particles are very small compared to the carbon-based material.
  • S R / W of Comparative Example 1 and Comparative Example 2 is smaller by one digit or more. That is, it can be seen that the conventional platinum-supporting carbon-based material does not satisfy the condition of 2.0 ⁇ S R /W ⁇ 4.0.
  • Example 1 and Example 2 exceeds 30%, and it can be seen that the metal-supported catalyst of the present disclosure has a structure that does not match the “uniform sphere model”.
  • the metal-supported catalyst of the present disclosure is suitably used as a catalyst for various chemical reactions using a platinum group element as a catalyst.
  • it is suitably used as a catalyst for oxygen reduction reaction, hydrogen oxidation reaction, hydrogen generation reaction, etc. in fuel cells, hydrogen generators and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

金属担持触媒(1)は、白金族の金属原子と炭素原子とを含む。金属担持触媒に関し、X線光電子分光法で測定した前記炭素原子に対する前記白金族の金属原子の質量比をW、高分解能透過型電子顕微鏡で観察される画像において、前記炭素原子に対する前記白金族の金属原子の投影面積比をSとしたとき、S/Wが2.0以上4.0以下である。このような金属担持触媒では、白金族元素の割合が少ないもの関わらず、高い触媒活性を示すことができる。

Description

金属担持触媒
 本願は、金属を担持した金属担持触媒に関する。
 白金族元素は、種々の化学反応に対して高い触媒活性を示し、工業的および商業的に広く触媒として利用されている。特に、近年、新しいエネルギーの利用装置として、燃料電池や、水の電気分解による水素生成装置等が注目されている。燃料電池では、酸素還元反応および水素酸化反応が利用され、水素生成装置では、水素発生反応が利用される。これらの反応には、白金族元素が触媒として好適に用いられる。したがって、今後ますます、白金族元素のニーズが高まると考えられる。
 しかし、白金族元素は、一般に希少で高価であり、かつ、価格が不安定である。省資源化の観点、入手安定性を確保する観点、低コスト化の観点などから、白金族元素の使用量を低減することが強く望まれている。
 白金族元素の使用量を低減する方法としては、特許文献1に開示されるように、担体に担持する白金族元素の粒子を小さくすることが提案されている。また、特許文献2に開示されるように、白金族元素を含む金属クラスターのナノ粒子を担体に担持させることも提案されている。
特開昭54-82394号公報 特開2006-140017号公報
 従来の白金族元素を担持した触媒では、より白金族元素の使用量を低減することが求められていた。本願の限定的ではない例示的な一実施形態は、白金族元素の割合が少なく、触媒活性の高い金属担持触媒を提供する。
 上記課題を解決するために、本発明の第一の態様に係る金属担持触媒は、白金族の金属原子と炭素原子とを含む。そして、X線光電子分光法で測定した炭素原子に対する白金族の金属原子の質量比をW、高分解能透過型電子顕微鏡で観察される画像において、炭素原子に対する白金族の金属原子の投影面積比をSとしたとき、S/Wが2.0以上4.0以下である。
 本発明の第二の態様に係る金属担持触媒は、炭素原子を含む多孔質炭素系材料と、多孔質炭素系材料の表面に担持され、0.5nm以上15nm以下の粒子径を有し、白金族の金属原子を含む金属粒子と、を備える。そして、X線光電子分光法で測定した炭素原子に対する白金族の金属原子の質量比をW、高分解能透過型電子顕微鏡で観察される画像において、炭素原子に対する白金族の金属原子の投影面積比をSとしたとき、S/Wが2.0以上4.0以下である。
図1Aの(a)から(d)は、窒素原子および硫黄原子の少なくとも一方を含む化合物の例を示す。 図1Bの(e)から(h)は、窒素原子および硫黄原子の少なくとも一方を含む化合物の例を示す。 図1Cの(i)は、窒素原子および硫黄原子の少なくとも一方を含む化合物の例を示す。 図2は、本発明の実施形態に係る燃料電池の一例を示す概略図である。 図3は、実施例1の金属担持触媒を、透過型電子顕微鏡で観察した結果を示す写真である。 図4は、実施例2の金属担持触媒を、透過型電子顕微鏡で観察した結果を示す写真である。 図5は、比較例1の金属担持触媒を、透過型電子顕微鏡で観察した結果を示す写真である。 図6は、比較例2の金属担持触媒を、透過型電子顕微鏡で観察した結果を示す写真である。
 以下、図面を参照しながら、本開示に係る金属担持触媒について説明する。なお、以下で説明する実施形態は、いずれも好ましい例を示すものである。また、以下の実施形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態などは一例であり、本実施形態を限定する主旨ではない。
 白金族元素を触媒として用いる場合、白金族元素の粒子における表面が主として触媒作用に関与し、粒子の内部は触媒作用に関与しない。このため、白金族元素の粒子はできるだけ小さいほうが、触媒活性を維持しつつ、白金族元素の使用量を低減することができる。しかし、C.V.Rao et al., J. Phys. Chem. C, 2010, 114(18), pp 8661-8667によれば、白金族元素が白金である場合、白金ナノ粒子のサイズが約3nmを下回ると、単位白金重量当たりの酸素還元活性が低下する。
 ここで、触媒担体上に担持された金属ナノ粒子は、G.C.Bond, Platinum Metals Rev., 1975, 19, (4), 126-134に示されているように、「uniform sphere model」によく一致することが知られている。このモデルに基づくと、粒径と表面露出率には式(1)の関係がある。
   D=6μ/Nρd (1)
 ここで、Dは金属原子の表面露出率、μは原子量、Nはアボガドロ数、aは金属原子の占有面積、ρは密度、dは粒子の直径である。
 式(1)によれば、例えば直径3nmの白金粒子は、表面露出率が3割程度に相当する。実際には、担持されるナノ粒子の直径には分布があるため、平均値が直径3nmであっても、平均表面露出率は3割に満たないことが殆どである。したがって、特に酸素還元触媒としての適用を考えた場合、単に金属粒子を小粒径にしただけでは、白金族元素の単位重量当たりの触媒活性を向上させるには限界があった。
 本開示は、白金族元素の有する高い触媒活性を低下させることなく、従来よりも高い表面露出率を有する金属担持触媒、及び当該金属担持触媒を用いた電極を提供する。
 本願発明者は、このような課題に鑑み、白金族元素の触媒活性、特に酸素還元活性の低下を招くことなく、白金族元素の表面露出率が高い触媒を実現する方法について鋭意研究を行った。その結果、白金族元素のナノ粒子の形成プロセスを適切に設計することによって、担持される白金族元素の粒子の形状を制御し、表面露出率を高めることを想到した。本開示の金属担持触媒の概要は以下の通りである。
 本開示の一実施形態に係る金属担持触媒は、白金族の金属原子と炭素原子とを含む。そして、X線光電子分光法で測定した炭素原子に対する白金族の金属原子の質量比をWとし、高分解能透過型電子顕微鏡で観察される画像において、炭素原子に対する白金族の金属原子の投影面積比をSとしたとき、S/Wが2.0以上4.0以下である。
 本開示の他の実施形態に係る金属担持触媒は、炭素原子を含む多孔質炭素系材料と、多孔質炭素系材料の表面に担持され、0.5nm以上15nm以下の粒子径を有し、白金族の金属原子を含む金属粒子と、を備える。そして、X線光電子分光法で測定した炭素原子に対する白金族の金属原子の質量比をWとし、高分解能透過型電子顕微鏡で観察される画像において、炭素原子に対する白金族の金属原子の投影面積比をSとしたとき、S/Wが2.0以上4.0以下である。
 白金族の金属原子は、Ru、Rh、Pd、Os、IrおよびPtからなる群より選ばれる少なくとも一種を含んでいてもよい。
 白金族の金属原子はPtであってもよい。
 金属担持触媒は、窒素原子および硫黄原子の少なくとも一方をさらに含んでいてもよい。
 以下、本開示の金属担持触媒の実施形態を詳細に説明する。本開示の金属担持触媒は、白金族原子と炭素原子を含む。具体的には、金属担持触媒は、炭素原子を含む炭素系材料と、白金族原子を含む金属粒子とを含む。
[炭素系材料]
 炭素系材料は、金属粒子の担体として機能する。炭素系材料は、例えば、カーボンブラック、グラフェン、グラファイト微粒子、カーボンペーパー、カーボンクロス、カーボンフェルトからなる群より選ばれる少なくとも一つを有することが好ましい。より安定的に金属原子を担持する観点から、炭素系材料は、炭素原子を含む多孔質炭素系材料であることが好ましい。
 また、炭素系材料は、窒素原子および硫黄原子の少なくとも一方を含むことがより好ましい。窒素原子および硫黄原子は、炭素系材料にドープされていてもよい。また、窒素原子および硫黄原子の少なくとも一方を有する化合物を含み、数nm以下の厚さを有する層が、炭素系材料の表面に形成されていてもよい。ここで「ドープ」とは、例えばカーボンブラックを構成するsp混成軌道による結合状態の炭素原子を、窒素原子または硫黄原子で置換した状態をいう。このようなドープされた状態は、例えばラマン分光測定を行うことにより確認できる。このようなドープされた窒素原子または硫黄原子の形態は特に限定されない。また、数nm以下の厚さの窒素原子および硫黄原子の少なくとも一方を有する化合物を含む層を設ける場合、層は炭素系材料の表面全体に亘って形成されていてもよいし、一部のみに形成されていてもよい。
 窒素原子および硫黄原子の少なくとも一方を含む化合物は、炭素系材料からの脱離が抑制されるよう、分子量が大きい材料であることが好ましい。具体的には、分子量が1000以上であることが好ましい。このような窒素原子および硫黄原子の少なくとも一方を含む化合物としては、例えば図1A、図1B及び図1Cの(a)から(i)で示す繰り返しユニットを有するオリゴマーまたはポリマーであってもよい。
 炭素系材料が表面に窒素原子および硫黄原子の少なくとも一方を含むことによって、金属担持触媒の製造過程において、炭素系材料の表面で、窒素原子または硫黄原子の孤立電子対が白金族元素のイオン(カチオン)に配位する。これによって、白金族原子が凝集した状態ではなく、個々の白金族元素のイオンの状態で炭素系材料の表面に保持させることができる。好ましくは、上述した図1A、図1B及び図1Cの(a)から(i)で示す繰り返しユニットを有するオリゴマーまたはポリマー構造が炭素系材料の表面に形成されていることにより、白金族元素のイオンの捕捉に適した複数の配位座が近接して配置される。その結果、より確実に炭素系材料の表面に白金族元素のイオンを保持し得る。
 炭素系材料における、炭素原子に対する窒素原子および硫黄原子の合計原子数比は、0.01程度以上0.1程度以下であることが好ましい。原子数比は、後述するように、X線光電子分光法によって同定及び定量される値に基づく。
 本開示に係る金属担持触媒において、窒素原子および硫黄原子の少なくとも一方を含む化合物として、トリアジン環を含む高分子材料を用いることが好ましい。また、トリアジン環を含む高分子材料は、導電性炭素の表面に担持されていることが好ましい。そのため、金属担持触媒に含まれる炭素系材料は、トリアジン環を含む高分子材料と、当該高分子材料を表面に担持する導電性炭素とを含んでいることが好ましい。
 (高分子材料)
 炭素系材料において、高分子材料は、少なくともトリアジン環(C)を含む高分子からなることが好ましい。また、高分子材料は、トリアジン環を含む共有結合性有機構造体からなることが好ましい。共有結合性有機構造体は、水素、炭素、窒素、酸素、ホウ素、硫黄などの原子が共有結合のみによって連結して形成された分子である。より具体的には、共有結合性有機構造体は、同一又は異なる複数の芳香族環基が共有結合によって環状の繰返しユニットを形成した構造を有する高分子を意味する。また、共有結合性有機構造体は、当該繰返しユニットが他の1つ以上の繰返しユニットと共有結合により連続して連結された、二次元又は三次元のネットワーク構造を有する高分子も意味する。このような共有結合性有機構造体は、メゾやマイクロサイズの細孔を有する多孔質構造を有するとともに、低密度かつ優れた熱安定性を有する。
 炭素系材料に用いられる高分子材料は、分子内に複数のトリアジン環を有する繰返しユニットよりなる共有結合性有機構造体からなることが好ましい。上記のとおり、このような繰返しユニットが隣り合う他の繰返しユニットと共有結合によって連結し、このような構造を連鎖的に反復することによって、共有結合性有機構造体を形成することができる。
 高分子材料は、アリーレン、ヘテロアリーレン、又はヘテロ原子を介して複数のトリアジン環が共有結合で連結した構造を有する共有結合性有機構造体からなることが好ましい。ここで、「アリーレン」は、芳香族炭化水素から芳香環を構成する炭素原子に結合した水素原子2個を除いてなる二価の官能基を意味する。「ヘテロアリーレン」は、芳香族性を有する複素環式化合物から2個の水素原子を除いてなる二価の官能基を意味する。好ましくは、アリーレンはフェニレンである。好ましくは、ヘテロアリーレンはピリジレンである。当該アリーレン及びヘテロアリーレンは、置換基を有していてもよく、そのような置換基は、特に限定されるものではないが、例えば、アルキル又はハロゲンとすることができる。また、ヘテロ原子としては、硫黄、ホウ素、窒素、リン等を挙げることができ、好ましくは硫黄又は窒素である。
 炭素系材料に用いられる高分子材料は、1nm~50nmの細孔を有することが好ましい。また、高分子材料が共有結合性有機構造体からなる場合、当該共有結合性有機構造体は、1nm~50nmの細孔を有することが好ましい。さらに、高分子材料が共有結合性有機構造体からなる場合、共有結合性有機構造体は、1000~20000の範囲の分子量を有することが好ましい。
 炭素系材料において、白金族元素のイオン(カチオン)は高分子材料に配位できることが好ましい。また、高分子材料として共有結合性有機構造体を用いた場合、白金族元素のイオンは、共有結合性有機構造体を構成する複素芳香環のヘテロ原子と配位結合を形成することで、共有結合性有機構造体と錯形成して存在することができる。そして、共有結合性有機構造体に白金族元素のイオンが配位することにより、当該イオンを単原子状に分散させることができる。
 白金族元素のイオンは、高分子材料に含まれる非共有電子対を有する原子と配位結合を形成できることが好ましい。また、白金族元素のイオンは、高分子材料に含まれる窒素原子と配位結合を形成できることがより好ましい。これにより、白金族元素のイオンを効率的に単原子状に分散させることが可能となる。
 高分子材料として用いられる共有結合性有機構造体の代表的な例は、図1Aの(a)に示す構造を有する化合物である。図1Aの(a)に示す化合物は、後述の実施例で示すように、2,6-ジシアノピリジンを縮合反応させることによってトリアジン環を形成し、当該反応を繰り返すことにより合成することができる。当該化合物は、トリアジン環がピリジレン基を介して共有結合によって連結した構造を有する。図1Aの(a)から分かるように、3つのトリアジン環と3つのピリジン環よりなる環状構造の繰返しユニットを形成し、当該複数の繰返しユニットがさらにピリジレン基によって連結している。その結果、図1Aの(a)の化合物は、複数の細孔を有し、二次元のネットワーク構造を有する高分子となっている。図1Aの(a)のトリアジン環を含む共有結合性有機構造体を、特に共有結合性トリアジン構造体(CTF、Covalent Triazine Framework)と呼ぶ場合もある。
 図1Aの(a)の共有結合性有機構造体には、金属イオンを担持することができる。つまり、トリアジン環の窒素原子やピリジレン基の窒素原子と金属イオンが配位結合を形成することによって、錯形成することができる。また、図1Aの(a)の共有結合性有機構造体のように、トリアジン環を含む高分子材料は、非共有電子対を含む原子を高濃度で含有しており、この非共有電子対と金属イオンとが相互作用をすることによって、金属イオンは安定化される。そのため、トリアジン環を含む高分子材料は、粒径が小さい金属粒子を安定的に担持することができる。
 高分子材料として用いられる共有結合性有機構造体は、図1Aの(a)のものに限定されず、図1Aの(b)~(d)、図1Bの(e)~(h)及び図1Cの(i)のようなトリアジン環を含む化合物も好ましく用いることができる。
 高分子材料は、一種類の環状構造の繰返しユニットが連結した共有結合性有機構造体であってもよい。また、高分子材料は、複数種類の環状構造の繰返しユニットが連結したコポリマーとしての共有結合性有機構造体であってもよい。
 高分子材料の重合度は、高ければ高いほど好ましい。高分子材料の重合度が高まることにより、炭素系材料として使用する際に、低分子成分の一部が導電性炭素の表面から脱離して失活することを抑制できる。具体的には、高分子材料の重合度は10以上であることが好ましく、100以上であることがより好ましい。なお、高分子材料の重合度は数平均重合度をいう。
 高分子材料として用いられ、トリアジン環を有する共有結合性有機構造体は、次のようにして得ることができる。まず、ジシアノ基またはトリシアノ基を有するモノマーを縮合反応させることによってトリアジン環が形成される。次に、当該縮合反応を繰り返すことにより、最終的に複数のトリアジン環が共有結合によって連結した共有結合性有機構造体を得ることができる。
 ジシアノ基を有するモノマーは、ジシアノベンゼン又はジシアノピリジンであることが好ましい。トリシアノ基を有するモノマーは、トリシアノベンゼン又はトリシアノピリジンであることが好ましい。モノマーがジシアノベンゼンである場合、フェニレンを介して複数のトリアジン環が共有結合で連結した構造となる。また、モノマーがジシアノピリジンである場合、ピリジレンを介して複数のトリアジン環が共有結合で連結した構造となる。そのため、共有結合性有機構造体は、フェニレン又はピリジレンを介して、複数のトリアジン環が共有結合で連結した構造を有することが好ましい。また、共有結合性有機構造体は、ジシアノベンゼン又はジシアノピリジンの縮合反応により得られる化合物であることが好ましい。
 ジシアノ基を有するモノマーは、さらに置換基を有することができる。そのような置換基は、シアノ基の縮合反応が進行する限り特に限定されるものではないが、例えば、アルキル基又はハロゲン基とすることができる。
 (導電性炭素)
 本開示の炭素系材料において、高分子材料を表面に担持する導電性炭素は、二次電池の電極用導電性材料として一般に用いられるものである。ただ、導電性炭素は、高分子材料として用いられる共有結合性有機構造体を表面に担持することによって、当該共有結合性有機構造体に電子伝導性を付与することができるものであることが特に好ましい。
 導電性炭素は、より安定的に高分子材料を担持する観点から、多孔質材料であることが好ましい。このような導電性炭素としては、ケッチェンブラックやアセチレンブラック等のカーボンブラック、グラフェン、グラファイト微粒子、フラーレン、カーボンナノホーン、カーボンペーパー、カーボンクロス、カーボンフェルトからなる群より選ばれる少なくとも一つを挙げることができる。また、導電性炭素としては、無定形炭素も使用することができる。これらの導電性炭素は導電性及び耐食性に優れるため、長期間に亘り高い電極性能を維持することができる。
 導電性炭素は、高分子材料の担持量を増加させるために、比表面積が大きい方が好ましい。例えば、導電性炭素は、BET法で算出される比表面積が500m/g以上であることが好ましい。
 導電性炭素の形状は特に限定されず、例えば球状、板状、鱗片状、柱状、針状などが挙げられる。さらに、導電性炭素は、ナノ粒子の形態であることが好ましい。また、導電性炭素の平均一次粒子径は、10nm~1000nmであることが好ましく、10nm~300nmであることがより好ましい。導電性炭素の粒子径がこの範囲内であることにより、高分子材料及び当該高分子材料に配位している金属イオンを高分散させることが可能となる。なお、導電性炭素の粒子径は、例えば金属担持触媒を走査型電子顕微鏡(SEM)又は透過型電子顕微鏡(TEM)で観察することにより求めることができる。
 炭素系材料において、高分子材料を構成する共有結合性有機構造体と導電性炭素の比率は、質量比で共有結合性有機構造体:導電性炭素が100:10以上であることが好ましい。また、質量比で、共有結合性有機構造体:導電性炭素が100:20~100:5000であることがより好ましい。
 炭素系材料において、高分子材料は、粒子状の導電性炭素の表面に担持されていることが好ましい。ただ、高分子材料が共有結合性有機構造体からなる場合、共有結合性有機構造体はいずれも導電性が低い材料であることから、共有結合性有機構造体は、電子移動が行われやすい薄い膜厚で導電性炭素の表面に担持されていることが好ましい。共有結合性有機構造体が薄膜状で担持されていることにより、共有結合性有機構造体と導電性炭素との間の距離が小さくなり、共有結合性有機構造体と導電性炭素との間の電子移動が容易となる。そのため、金属担持触媒の触媒活性をより向上させることが可能となる。
 なお、高分子材料は、導電性炭素の表面全体を覆っていてもよいが、炭素系材料はこのような態様に限定されない。例えば、高分子材料は、導電性炭素の表面の一部に担持されてもよい。
[白金族原子を含む金属粒子]
 本開示の金属担持触媒において、白金族原子を含む金属粒子は、炭素系材料の表面に担持されている。また、金属担持触媒において、炭素系材料の表面に担持された金属粒子は、白金族原子が金属結合によって集合してなるメタル状態の粒子である。白金族原子は、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、イリジウム(Ir)および白金(Pt)からなる群より選ばれる少なくとも一種を含む。白金族原子は、好ましくは白金(Pt)である。白金族原子を含む金属粒子は0.5nm以上15nm以下の粒子径を有することが好ましい。ここで、粒子径は、高分解能透過型電子顕微鏡(HR-TEM)で観測される値に基づく。
 ここで、白金族原子を含む金属粒子は、「uniform sphere model」とは異なり、高さhよりも担持される面方向の幅wが大きい形状(w>h)を有する。つまり、金属粒子は、炭素系材料の、金属粒子を担持する面の方向に広がっており、金属粒子を担持する面に垂直な方向は薄い島状の構造を有する。金属粒子が島状の構造を有することによって、表面に露出する白金族原子の割合が増え、金属粒子の内部に位置する触媒作用を有しない白金族原子の割合を少なくすることができる。よって、高い触媒活性を維持しつつも、白金族元素の使用量が低減された金属担持触媒が実現し得る。
 このような島状の構造を備えた金属粒子は、白金族元素のイオンの配位により、炭素系材料の表面で白金族元素を捕捉したことに起因する。具体的には、炭素系材料の表面において、窒素原子または硫黄原子との配位結合によって保持された白金族元素のイオンを還元すると、還元された白金原子が互いに凝集し、粒子を構成する。しかし、予め炭素系材料の表面に固定化された白金族元素が炭素系材料の表面を移動して凝集することから、凝集した白金族原子は上述した島状の構造を形成することができる。
 ここで、金属担持触媒をX線光電子分光法(XPS)で測定した場合、炭素系材料中の炭素原子に対する、金属粒子中の白金族原子の質量比([金属粒子中の白金族原子の質量]/[炭素系材料中の炭素原子の質量])をWとする。また、金属担持触媒を高分解能透過型電子顕微鏡で観察した際の画像における、炭素原子に対する白金族原子の投影面積比([白金族原子の投影面積]/[炭素原子の投影面積])をSとする。言い換えれば、金属担持触媒を高分解能透過型電子顕微鏡で観察した際の明視野像における、炭素系材料に対する白金族原子の金属粒子の投影面積比([白金族原子の金属粒子の投影面積]/[炭素系材料の投影面積])をSとする。このとき、S/Wが2.0以上4.0以下(2.0≦S/W≦4.0)である。本願発明者の詳細な検討の結果、S/Wがこの範囲を満たすことによって、高い触媒活性を維持しつつ白金族元素の使用量を低減できることが分かった。
 以下において詳細に説明するように、従来の炭素に担持された白金触媒では、S/Wは1よりも小さい。つまり、質量比に対して、投影面積比はそれほど大きくない。これは、白金族元素の使用量があまり低減されていないことを示している。S/Wが2.0未満の場合、白金粒子は島状構造を形成しない。また、S/Wが4.0より大きい場合、金属の格子構造が不規則となり、酸素還元活性が低下する。
 ここで、高分解能透過型電子顕微鏡は、100万倍以上の倍率で観測をすることが可能な透過型電子顕微鏡である。
 また、X線光電子分光法における炭素原子及び白金族原子の定量は、次のように行うことができる。まず、各原子に由来するピークに対して、ピークの低エネルギー側の末端から小さい側に2.0eVまでの間の平均値に対して、Shirley法によってベースラインを引く。同様に、当該ピークの高エネルギー側の末端から大きい側に2.0eVまでの間の平均値に対して、Shirley法によってベースラインを引く。そして、そのベースラインとピークとの差の絶対値を積分することにより、各原子のピークの積分強度を求める。X線光電子分光法では、各原子の相対感度係数が定められていることから、各原子のピークの積分強度と相対感度係数との関係から、金属担持触媒に含まれる炭素原子の質量と白金族原子の質量の比を求めることができる。
 上述した特徴を備えた金属担持触媒は、例えば、炭素系材料に白金族元素のカチオンを配位させ、その後、白金族元素のカチオンを還元することによって作製することができる。
 まず、窒素原子および硫黄原子の少なくとも一方を含む炭素系材料を用意する。このような炭素系材料は、上述した方法によって作製することができる。
 次に、白金族元素のカチオンを炭素系材料に配位させる。例えば、白金族元素のカチオンを含む水溶液に炭素系材料を加え、攪拌することによって、炭素系材料の表面に位置する窒素および硫黄に白金族元素のカチオンを配位させる。これにより、白金族元素のカチオンを炭素系材料の表面に配置する。白金族元素のカチオンを炭素系材料の表面に配位させた後、炭素系材料を洗浄し、過剰な、つまり、配位していない白金族元素のカチオンを除去することが好ましい。
 次に、炭素系材料の表面に配位結合によって捕捉された白金族元素のカチオンを還元する。白金族元素のカチオンの還元は、イオンが配位した炭素系材料を還元雰囲気または不活性雰囲気の中で焼成する方法によって行うことができる。また、白金族元素のカチオンの還元は、白金(II)イオンが配位した炭素系材料に、白金(II)イオンが還元されうる電位を印加する方法によって行うことができる。
 この方法によれば、炭素系材料の表面に配位結合によって白金族元素のカチオンを補足するため、微量の白金族原子を炭素系材料の表面に配置できる。また、還元時には、炭素系材料の表面でのマイグレーションにより、原子レベルで白金族原子を移動させることができる。そのため、白金族原子が凝集してなる金属粒子は、高い異方性のある形状を示すことができる。
 本開示の金属担持触媒は、白金族元素が示す種々触媒作用を有する。特に、上述したように金属粒子が島状の構造を有することによって、酸素還元活性が比較的高い(111)面や(100)面の相対的な割合が増加する。このため、本開示の金属担持触媒は、特に高い酸素還元活性を示す。
 本開示の金属担持触媒は、例えば、以下の反応における触媒として好適に用いられる。
 下記に示す酸素還元反応は、H2/O2燃料電池、食塩電解等におけるカソード反応であり、エネルギー変換電気化学デバイスなどにおいて重要である。
 O+4H+4e → 2HO (2)
 下記に示す水素酸化反応は、H2/O2燃料電池におけるアノード反応として重要である。
 H → 2H+2e (3)
 水素酸化反応の対となる反応である水素発生反応は、水電解水素生成の水素発生電極における反応として重要である。
 2H+2e → H (4)
 本開示の金属担持触媒によれば、これらの反応の触媒として好適に用いることができる。よって、今後、広く利用されると考えられるエネルギー源の触媒として、白金族元素の使用量を低減しながら、拡大する需要を満たすことができると考えられる。
 ここで、本開示に係る金属担持触媒を燃料電池に適用した例を説明する。図2では、本開示における燃料電池の構成の一例を示している。なお、同図には、当該燃料電池に接続された場合に電流が供給される負荷14も図示している。この燃料電池10は、電気を放出することができる一次電池であり、例えば、固体高分子形燃料電池(PEFC)及びリン酸形燃料電池(PAFC)のような水素燃料電池、並びに微生物燃料電池(MFC)を含む。
 水素燃料電池は、水の電気分解の逆反応により、水素と酸素から電気エネルギーを得る燃料電池であり、PEFC、PAFC、アルカリ形燃料電池(AFC)、溶融炭酸塩形燃料電池(MCFC)、固体電解質形燃料電池(SOFC)等が知られている。燃料電池10は、PEFC又はPAFCであることが好ましい。PEFCはプロトン伝導性イオン交換膜を電解質材とする燃料電池であり、PAFCはマトリクス層に含浸されたリン酸(HPO)を電解質材とする燃料電池である。
 このような燃料電池10は、図2に示すように、例えば、電解液11(電解質材)を備える。また、燃料電池10は、アノード12(燃料極)とカソード13(空気極)とを備える。アノード12は、酸素発生反応により負荷14に電子を放出する電極である。また、カソード13は、酸素還元反応により負荷14から電子が流入する電極である。
 本開示において、カソード13はガス拡散電極として構成され、上述の金属担持触媒を備える。ガス拡散電極は、水素燃料電池及びMFC等の電極に好適に適用され得る。本開示における燃料電池10は、カソード13を備え、さらにカソード13が金属担持触媒を備えるガス拡散電極であること以外は、公知の構成を有していればよい。
 なお、上記説明では、カソード13がガス拡散電極として構成され、金属担持触媒を備えているとして説明したが、このような構成に限定されない。本開示における燃料電池10において、金属担持触媒を備える電極は、アノード12及びカソード13のいずれにも用いることができる。
 例えば、燃料電池10が水素燃料電池である場合、金属担持触媒を備えるガス拡散電極は、アノード12として用いられてもよい。この場合、アノード12に含まれる金属担持触媒は、燃料である水素ガスの酸化反応(H→2H+2e)を促進して、アノード12に電子を供与する。また、金属担持触媒を備えるガス拡散電極は、カソード13として用いられてもよい。この場合、カソード13に含有される金属担持触媒は、酸化剤である酸素ガスの還元反応(1/2O+2H+2e→HO)を促進する。
 ただし、燃料電池10がMFCである場合、アノード12は電子供与微生物から直接電子を受容する。よって、この場合、金属担持触媒を備えるガス拡散電極は、主として水素燃料電池と同じ電極反応を起こすカソードとして用いられる。
 このように、金属担持触媒は燃料電池の電極に好適に用いることができる。ただ、金属担持触媒の用途は燃料電池に限定されず、種々の電気化学デバイスの電極として用いられてもよい。このような電気化学デバイスとしては、水の電気分解装置、二酸化炭素透過装置、食塩電解装置、金属空気電池(リチウム空気電池など)等が挙げられる。
 本開示の金属担持触媒を作製し、物性を調べた結果を説明する。
[実施例1]
 炭素系材料に白金(II)イオンを吸着させ、白金(II)イオンが吸着した炭素系材料を還元雰囲気または不活性雰囲気の中で焼成することによって、金属担持触媒を作製した。
 1.窒素含有炭素系材料の合成
 化学式1に示すスキームに従って、ケッチェンブラック(登録商標)上に共有結合性トリアジン構造体(CTF)を担持した窒素含有炭素系材料を合成した。
Figure JPOXMLDOC01-appb-C000001
 まず、2726mgのZnCl2、0.129gの2,6-ジシアノピリジン、及び0.129gのケッチェンブラックを窒素雰囲気のグローブボックス中で混合した。次に、この混合物をガラス管に真空封入し、400℃で21時間焼成した。得られた粉末を、0.1Mの塩酸、水、テトラヒドロフラン、及びアセトニトリルで洗浄した後、乾燥した。これにより、ケッチェンブラックの表面にCTF膜を形成した窒素含有炭素系材料を得た。なお、ケッチェンブラックは、ライオン・スペシャリティ・ケミカルズ株式会社製EC600JDを使用し、平均一次粒子径が34.0nmであった。
 2.白金族元素を含む金属粒子の炭素系材料への配置
 化学式1に示すスキームに従って、上述のようにして得られた窒素含有炭素系材料に白金を担持した。具体的には、作製した窒素含有炭素系材料100mgを、3mMのテトラクロロ白金酸カリウム水溶液1450mLに加え、超音波によって分散させた後、60℃で4時間攪拌した。これにより、塩化白金イオンを担持した窒素含有炭素系材料を得た。そして、当該窒素含有炭素系材料を、水、アセトンで洗浄して乾燥した後、さらに100%水素雰囲気下、450℃で2時間焼成した。このようにして、共有結合性トリアジン構造体の表面に、メタル状態の白金粒子を担持した金属担持触媒を得た。
 3.電子顕微鏡による観察
 金属担持触媒をエタノール中、超音波で分散させ、マイクログリッド上に分散液を滴下した。乾燥後、透過型電子顕微鏡(TEM、日本電子株式会社製、JEM-ARM200F)を用いて、金属担持触媒の明視野像を観察した。図3では、本例の金属担持触媒の観察像を示している。図3に示すように、本例の金属担持触媒1では、多孔質の炭素系材料3の表面に、白金からなる金属粒子2が担持されていることが分かる。そして、図3より、炭素系材料の一次粒子が積層していない領域において、炭素系材料の投影面積に対する、金属粒子に由来する暗く観察される領域の投影面積の比(S)を求めた。その結果、Sは0.032であった。
 4.X線光電子分光法(XPS)による組成分析
 X線光電子分光法は、XPS分析装置(Kratos Analytical社製AXIS Ultra HAS)を用いて測定した。励起X線としては、Al Kα(10kV)を用いた。各元素についてのナロースキャンを行い、各元素のピークの面積から組成比を求めた。得られた白金の質量比(W)は1.2wt%であった。したがって、本例の金属担持触媒において、S/W(0.032/0.012)=2.6であった。
 5.白金族原子の表面露出量の定量
 金属担持触媒の粉末5mgを、ナフィオン(登録商標)50μLおよびエタノール750μLの混合物中に超音波によって分散させた。なお、ナフィオンは、Sigma-Aldrich社製の5wt%分散液を使用した。そして、得られた分散液2.1mLを、4mmφのグラッシーカーボンの回転ディスク電極上に滴下して乾燥した。
 この回転ディスク電極を三極式の電気化学セルの作用極に用いて、一酸化炭素をバブリングした0.1M過塩素酸水溶液中において、0.05Vvs.RHEの電位を2時間印加し、一酸化炭素を白金に吸着させた。その後、0.05Vvs.RHEの電位の印加を保持した状態で一酸化炭素のバブリングを止め、さらに窒素バブリングを30分間行った。
 次に、0.05Vvs.RHEから正方向に1.3Vvs.RHEまで、掃引速度100mV/sにて、リニアスイープボルタンメトリーを行った。このとき、0.6~1.0Vvs.RHE付近に、白金に吸着した一酸化炭素のストリッピングに伴うピークが得られる。そのため、そのピーク面積から吸着していた一酸化炭素の量を求め、白金の表面露出率を算出した。その結果、本例の金属担持触媒において、白金の表面露出率は39%であった。
[実施例2]
 炭素系材料に白金(II)イオンを吸着させ、白金(II)イオンが吸着した炭素系材料に白金(II)イオンが還元されうる電位を印加することで白金(II)イオンを還元し、金属担持触媒を作製した。
 1.窒素含有炭素系材料の合成
 実施例1と同様の方法により、窒素含有炭素系材料を得た。
 2.白金族元素を含む金属粒子の炭素系材料への配置
 まず、実施例1と同様の方法により、塩化白金イオンを担持した窒素含有炭素系材料を得た。次に、当該窒素含有炭素系材料100mgを、ナフィオン0.95mL及びエタノール3.2mLの混合物中に超音波で分散させた。そして、得られた分散液を、面積が20cmのグラッシーカーボン上に塗布して乾燥した。
 上述の窒素含有炭素系材料を塗布したグラッシーカーボンに対して、0.1M過塩素酸水溶液中において、-0.1Vvs.RHEの電位を10時間印加した。その後、水で洗浄し、グラッシーカーボンをエタノール中に浸漬し、超音波による分散を行うことでナフィオンを溶解し、触媒分散液の状態とした。そして、吸引ろ過により触媒粉末を回収した。このようにして、共有結合性トリアジン構造体の表面に、メタル状態の白金粒子を担持した金属担持触媒を得た。
 3.電子顕微鏡による観察
 実施例1と同様の方法により、透過型電子顕微鏡を用いて金属担持触媒の明視野像を観察した。図4では、本例の金属担持触媒の観察像を示している。図4に示すように、本例の金属担持触媒1も、多孔質の炭素系材料3の表面に、白金からなる金属粒子2が担持されていることが分かる。そして、図4より、炭素系材料の一次粒子が積層していない領域において、炭素系材料の投影面積に対する、金属粒子に由来する暗く観察される領域の投影面積の比(S)を求めた。その結果、Sは0.041であった。
 4.X線光電子分光法(XPS)による組成分析
 実施例1と同様の方法により、X線光電子分光法による組成比を求めた。得られた白金族の質量比(W)は1.2wt%であった。したがって、本例の金属担持触媒において、S/W(0.041/0.012)=3.4であった。
 5.白金族原子の表面露出量の定量
 実施例1と同様の方法により、白金の表面露出率を算出した。その結果、本例の金属担持触媒において、白金の表面露出率は47%であった。
[比較例1]
 市販の60wt%白金担持炭素系材料(ジョンソン・マッセイ社製、HiSPEC(登録商標)9100)を、比較例1の金属担持触媒として用いた。なお、HiSPEC9100は、カーボンブラックに白金を約60wt%担持した触媒である。そして、当該触媒について、実施例1と同様に、S、W、及び白金の表面露出率を求めた。その結果、Sは0.36であり、Wは61wt%であり、S/W(0.36/0.61)=0.59であった。また、本例の金属担持触媒において、白金の表面露出率は16%であった。
 図5では、透過型電子顕微鏡による、本例の触媒の観察像を示す。図5に示すように、比較例1の触媒は、多量の白金4がカーボンブラック5に担持されていることが分かる。
[比較例2]
 市販の40wt%白金担持炭素系材料(ジョンソン・マッセイ社製、HiSPEC4000)を、比較例2の金属担持触媒として用いた。なお、HiSPEC4000は、カーボンブラックに白金を約40wt%担持した触媒である。そして、当該触媒について、
実施例1と同様に、S、W、及び白金の表面露出率を求めた。その結果、Sは0.12であり、Wは42wt%であり、S/W(0.12/0.42)=0.29であった。また、本例の金属担持触媒において、白金の表面露出率は18%であった。
 図6では、透過型電子顕微鏡による、本例の触媒の観察像を示す。図6に示すように、比較例2の触媒も、比較例1の触媒と同様に、多量の白金4がカーボンブラック5に担持されていることが分かる。
[触媒活性の評価]
 実施例1及び実施例2並びに比較例1及び比較例2の触媒について、酸素還元反応における触媒活性を評価した。具体的には、燃料電池のカソードに実施例1及び実施例2および比較例1及び比較例2の触媒を用いて燃料電池を動作させたところ、実施例1及び実施例2と比較例1及び比較例2とは同等の性能を示した。
[考察]
 各例における、炭素原子に対する金属原子の質量比(W)、炭素原子に対する金属原子の投影面積比(S)、S/W、及び表面露出率を表1に纏めて示す。
Figure JPOXMLDOC01-appb-T000002
 表1から分かるように、透過型電子顕微鏡像における投影面積の比(S)は、実施例1及び実施例2と、比較例1及び比較例2とで一桁程度異なっている。
 また、比較例1及び比較例2の触媒は、それぞれ、白金含有量が60wt%および40wt%であるとして販売されているため、X線光電子分光法による組成比(W)は、概ね、実際の質量比と対応していることが分かる。また、表1より、実施例1及び実施例2の金属担持触媒における炭素系材料に対する白金の割合は1wt%程度であり、比較例1及び比較例2で用いた市販の白金触媒に比べて、白金の使用量が数十分の1以下であることが分かる。そして、白金の原子量が炭素の10倍以上であることを考慮すると、実施例1及び実施例2では、担持されている白金粒子は炭素系材料に比べて非常に微量であることが分かる。
 また、実施例1及び実施例2に比べて、比較例1及び比較例2のS/Wは1桁以上小さい。つまり、従来の白金担持炭素系材料では、2.0≦S/W≦4.0という条件を全く満たさないことが分かる。
 さらに、実施例1及び実施例2の表面露出率は30%を超えており、本開示の金属担持触媒は、「uniform sphere model」に一致しない構造を備えていることが分かる。
 これらの結果から、本開示の金属担持触媒によれば、高い触媒活性を維持しつつ白金族元素の使用量を低減できることが分かった。
 以上、実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 特願2016-246272号(出願日:2016年12月20日)の全内容は、ここに援用される。
 本開示の金属担持触媒は、白金族元素を触媒として用いる種々の化学反応用の触媒として好適に用いられる。特に、燃料電池、水素生成装置等における、酸素還元反応、水素酸化反応、水素発生反応等の触媒として好適に用いられる。
 1 金属担持触媒
 2 金属粒子
 3 炭素系材料

Claims (8)

  1.  白金族の金属原子と炭素原子とを含み、
     X線光電子分光法で測定した前記炭素原子に対する前記金属原子の質量比をW、高分解能透過型電子顕微鏡で観察される画像において、前記炭素原子に対する前記金属原子の投影面積比をSとしたとき、S/Wが2.0以上4.0以下である、金属担持触媒。
  2.  前記金属原子は、Ru、Rh、Pd、Os、IrおよびPtからなる群より選ばれる少なくとも一種を含む、請求項1に記載の金属担持触媒。
  3.  前記金属原子はPtである、請求項1又は2に記載の金属担持触媒。
  4.  窒素原子および硫黄原子の少なくとも一方をさらに含む、請求項1乃至3のいずれか一項に記載の金属担持触媒。
  5.  炭素原子を含む多孔質炭素系材料と、
     前記多孔質炭素系材料の表面に担持され、0.5nm以上15nm以下の粒子径を有し、白金族の金属原子を含む金属粒子と、
     を備え、
     X線光電子分光法で測定した前記炭素原子に対する前記金属原子の質量比をW、高分解能透過型電子顕微鏡で観察される画像において、前記炭素原子に対する前記金属原子の投影面積比をSとしたとき、S/Wが2.0以上4.0以下である、金属担持触媒。
  6.  前記金属原子は、Ru、Rh、Pd、Os、IrおよびPtからなる群より選ばれる少なくとも一種を含む、請求項5に記載の金属担持触媒。
  7.  前記金属原子はPtである、請求項5又は6に記載の金属担持触媒。
  8.  前記多孔質炭素系材料は、窒素原子および硫黄原子の少なくとも一方をさらに含む、請求項5乃至7のいずれか一項に記載の金属担持触媒。
PCT/JP2017/036764 2016-12-20 2017-10-11 金属担持触媒 WO2018116586A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016246272A JP2020028815A (ja) 2016-12-20 2016-12-20 金属担持触媒
JP2016-246272 2016-12-20

Publications (1)

Publication Number Publication Date
WO2018116586A1 true WO2018116586A1 (ja) 2018-06-28

Family

ID=62627673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036764 WO2018116586A1 (ja) 2016-12-20 2017-10-11 金属担持触媒

Country Status (2)

Country Link
JP (1) JP2020028815A (ja)
WO (1) WO2018116586A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020040857A (ja) * 2018-09-12 2020-03-19 星和電機株式会社 共有結合性有機構造体の焼成体およびその製造方法
CN113549956A (zh) * 2021-07-02 2021-10-26 北京化工大学 一种低载量铂催化气体扩散电极及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035321A1 (ja) * 2014-09-01 2016-03-10 国立大学法人 東京大学 共有結合性有機構造体を含む導電性ハイブリッド材料

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035321A1 (ja) * 2014-09-01 2016-03-10 国立大学法人 東京大学 共有結合性有機構造体を含む導電性ハイブリッド材料

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAMAI, R. ET AL.: "Oxygen-Tolerant electrodes with platinum-loaded covalent triazine frameworks for the hydrogen oxidation reaction", ANGEW. CHEM. INT. ED., vol. 55, no. 42, 16 September 2016 (2016-09-16), pages 13184 - 13188, XP055510265 *
KAMIYA, K. ET AL.: "Platinum-modified covalent triazine frameworks hybridized with carbon nanoparticles as methanol-tolerant oxygen reduction electrocatalysts", NAT COMMUN., vol. 5, no. 1, 22 September 2014 (2014-09-22), pages 1 - 6, XP055493219 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020040857A (ja) * 2018-09-12 2020-03-19 星和電機株式会社 共有結合性有機構造体の焼成体およびその製造方法
CN113549956A (zh) * 2021-07-02 2021-10-26 北京化工大学 一种低载量铂催化气体扩散电极及其制备方法和应用

Also Published As

Publication number Publication date
JP2020028815A (ja) 2020-02-27

Similar Documents

Publication Publication Date Title
Nguyen et al. Rational design of core@ shell structured CoSx@ Cu2MoS4 hybridized MoS2/N, S‐codoped graphene as advanced electrocatalyst for water splitting and Zn‐air battery
Deng et al. NiCo-doped CN nano-composites for cathodic catalysts of Zn-air batteries in neutral media
JP6358680B2 (ja) 共有結合性有機構造体を含む導電性ハイブリッド材料
Xie et al. Nano-structured textiles as high-performance aqueous cathodes for microbial fuel cells
Doan et al. Rational engineering CoxOy nanosheets via phosphorous and sulfur dual‐coupling for enhancing water splitting and Zn–air battery
Jukk et al. Platinum nanoparticles supported on nitrogen-doped graphene nanosheets as electrocatalysts for oxygen reduction reaction
Bae et al. The role of nitrogen in a carbon support on the increased activity and stability of a Pt catalyst in electrochemical hydrogen oxidation
Lilloja et al. Mesoporous iron-nitrogen co-doped carbon material as cathode catalyst for the anion exchange membrane fuel cell
Orfanidi et al. Preparation and characterization of Pt on modified multi-wall carbon nanotubes to be used as electrocatalysts for high temperature fuel cell applications
Cai et al. Green synthesis of Pt-on-Pd bimetallic nanodendrites on graphene via in situ reduction, and their enhanced electrocatalytic activity for methanol oxidation
Themsirimongkon et al. Electrocatalytic enhancement of platinum and palladium metal on polydopamine reduced graphene oxide support for alcohol oxidation
US20210234177A1 (en) Electrocatalyst
Cao et al. Superiority of boron, nitrogen and iron ternary doped carbonized graphene oxide-based catalysts for oxygen reduction in microbial fuel cells
KR20120130184A (ko) 연료 전지용 촉매 및 전극
Chen et al. N, P-co-doped carbon coupled with CoP as superior electrocatalysts for hydrogen evolution reaction and overall water splitting
JP2016003396A (ja) コアシェル電極触媒のための安定なコアとしての合金ナノ粒子の合成
Song et al. Additional doping of phosphorus into polypyrrole functionalized nitrogenous carbon nanotubes as novel metal-free oxygen reduction electrocatalyst in alkaline solution
KR102321423B1 (ko) 지속적인 물 분해를 위해 폐 효모를 이용한 다중 헤테로원자로 도핑된 탄소 촉매, 이를 포함한 물 분해 장치 및 이의 제조 방법
JP6727266B2 (ja) 燃料電池用アノード触媒層及びそれを用いた燃料電池
Kakaei High efficiency platinum nanoparticles based on carbon quantum dot and its application for oxygen reduction reaction
Rahmani et al. Excellent electro-oxidation of methanol and ethanol in alkaline media: Electrodeposition of the NiMoP metallic nano-particles on/in the ERGO layers/CE
Preda et al. Graphene Incorporation as a Propitious Approach for Improving the Oxygen Reduction Reaction (ORR) Activity of Self-assembled Polycrystalline NiCo 2 O 4–NiO
Habibi et al. Ni@ Pt core-shell nanoparticles as an improved electrocatalyst for ethanol electrooxidation in alkaline media
JP6727263B2 (ja) 燃料電池用アノード触媒層及びそれを用いた燃料電池
Shi et al. Synthesis of palladium nanoparticles supported on reduced graphene oxide-tungsten carbide composite and the investigation of its performance for electrooxidation of formic acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17884909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP