WO2004012330A1 - 圧電部品およびその製造方法 - Google Patents

圧電部品およびその製造方法 Download PDF

Info

Publication number
WO2004012330A1
WO2004012330A1 PCT/JP2003/009311 JP0309311W WO2004012330A1 WO 2004012330 A1 WO2004012330 A1 WO 2004012330A1 JP 0309311 W JP0309311 W JP 0309311W WO 2004012330 A1 WO2004012330 A1 WO 2004012330A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
substrate
wiring
external terminal
acoustic wave
Prior art date
Application number
PCT/JP2003/009311
Other languages
English (en)
French (fr)
Inventor
Yoshihiro Koshido
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to KR1020047011939A priority Critical patent/KR100642932B1/ko
Priority to AU2003252240A priority patent/AU2003252240A1/en
Priority to US10/485,340 priority patent/US20040207033A1/en
Priority to EP03771285A priority patent/EP1458094A4/en
Publication of WO2004012330A1 publication Critical patent/WO2004012330A1/ja
Priority to US11/294,699 priority patent/US20060091485A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/564Monolithic crystal filters implemented with thin-film techniques
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0542Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a lateral arrangement
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0547Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/105Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a cover cap mounted on an element forming part of the BAW device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1064Mounting in enclosures for surface acoustic wave [SAW] devices
    • H03H9/1092Mounting in enclosures for surface acoustic wave [SAW] devices the enclosure being defined by a cover cap mounted on an element forming part of the surface acoustic wave [SAW] device on the side of the IDT's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/566Electric coupling means therefor
    • H03H9/568Electric coupling means therefor consisting of a ladder configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters

Definitions

  • the present invention relates to a piezoelectric component such as a surface acoustic wave device used for a delay line, a filter and the like and a piezoelectric thin film filter and a method of manufacturing the same, and more particularly to a piezoelectric component packaged in a chip size and a method of manufacturing the same. It is. Background art
  • piezoelectric components such as a surface acoustic wave filter (hereinafter referred to as a SAW filter) as a surface acoustic wave device used in a communication device such as a mobile phone, and a piezoelectric filter using a piezoelectric thin film resonator are used.
  • SAW filter surface acoustic wave filter
  • the piezoelectric filter is composed of a Si substrate having an opening or a concave portion and a thin film portion having at least one or more piezoelectric thin films (for example, made of ZnO or AIN) formed on the opening or the concave portion.
  • the piezo-resonator with a space formed between it is configured as a ladder type or a lattice type. In such a piezoelectric filter, it is necessary to secure a vibrating space and protect the vibrating part from moisture, dust, etc. in order to utilize the thickness longitudinal vibration generated in the vibrating part.
  • quartz palm i T a 0 3, L i N b 0 IDT pair made of metal such as AI on a piezoelectric substrate such as 3 (inter- digital Bok transducer, hereinafter abbreviated as IDT) are arranged.
  • a comb-shaped It is necessary to secure the vibration space such as the pole part and the surface acoustic wave propagation part of the piezoelectric substrate, and to protect the comb-shaped electrode part from moisture and dust.
  • a die bonding agent is applied to the bottom surface of a package made of ceramic such as alumina, and the piezoelectric filter and the surface acoustic wave filter are mounted on the package by die bonding.
  • the package was sealed with a lid.
  • the piezoelectric filter and the surface acoustic wave filter are made of alumina, etc. to reduce the size.
  • An electrode land is formed on the bottom of the package, and the elements of the piezoelectric filter and the surface acoustic wave filter are packaged in a die pound.
  • the package was mounted by flip-chip bonding, and the package was sealed with a lid.
  • Patent Literature 1 Patent Literature 2, and Patent Literature 3
  • mounting by bumps is performed.
  • flip-chip mounting in which a bump formed on a base substrate is bonded to a SAW element, and the space required for wire bonding is eliminated to reduce the size of the SAW filter.
  • it is necessary to form a conductive pad for the bump in the Saw element and the effective area of the Saw element is reduced, so that miniaturization is difficult. Also, the cost of bump formation is increased.
  • the SAW element is It is mounted on a base substrate with a through hole facing the pole, and the through hole is filled with a conductive agent to form an external circuit connection. As a result, the size of the SAW filter has been reduced.
  • the present invention has been made in view of the above-mentioned conventional problems, and has as its object to provide a surface acoustic wave device which can be miniaturized and further has an improved degree of freedom in the position of external terminals, and a method of manufacturing the same. It is in.
  • a piezoelectric component includes: a piezoelectric element having at least one vibrating part formed on a substrate and element wiring connected to the vibrating part; A piezoelectric component adhered to the substrate by an adhesive layer so as to face the vibrating portion, the piezoelectric component having a protection space for the vibrating portion, and via an external terminal connecting member formed in the through hole; An external terminal connected to the element wiring is located at a position shifted from the through hole.
  • the positions of the external terminals are shifted from the through holes, that is, shifted from the positions of the element wirings. That is, the position of the external terminal can be formed at an arbitrary position, and the degree of freedom of the position can be improved. Therefore, it is possible to provide a piezoelectric component that can be easily connected to an external circuit.
  • a piezoelectric component according to the present invention includes a piezoelectric element having at least one vibrating portion formed on a substrate and element wiring connected to the vibrating portion, and a through hole.
  • a piezoelectric component bonded to the bonding substrate by an adhesive layer so as to face the vibrating portion, the piezoelectric component having a protection space for the vibrating portion, and the element being disposed between the bonding layer and the bonding substrate. It has a first wiring connected to the wiring, and the first wiring and the external terminal are connected via an external terminal connecting member formed in the through hole.
  • the position of the external terminal is determined by the first wiring and the external terminal. It can be formed at an arbitrary position according to the position of the connection member, and the degree of freedom of the position can be improved. Therefore, connection to an external circuit can be easily performed.
  • the first wiring includes one of capacitance and an inductor. Accordingly, it is not necessary to separately provide a capacitance or an inductor, and the size of the piezoelectric component can be reduced.
  • a piezoelectric component according to the present invention includes a piezoelectric element having at least one vibrating portion formed on a substrate and element wiring connected to the vibrating portion, and a through hole.
  • a piezoelectric component bonded to the bonding substrate by an adhesive layer so as to face the vibrating portion, the piezoelectric component having a protection space for the vibrating portion, and being connected to the element wiring on the bonding substrate. Having a second wiring that is part of the second wiring on the bonding substrate 3 009311
  • the 5 has an upper insulating layer having an insulating layer opening provided so as to be exposed, and is formed on the second wiring and the upper insulating layer via an external terminal connecting member formed in the insulating layer opening. It is characterized by being connected to external terminals.
  • the position of the external terminal is determined by the second wiring and the external terminal. It can be formed at an arbitrary position according to the position of the connection member, and the degree of freedom of the position can be improved. Therefore, connection to an external circuit can be easily performed.
  • the second wiring includes one of capacitance and an inductor. Accordingly, it is not necessary to separately provide a capacitance or an inductor, and the size of the piezoelectric component can be reduced.
  • the protective space is secured by a thickness of an adhesive layer.
  • the protection space is a concave portion formed on a surface of the bonding substrate facing the vibrating portion.
  • the adhesive layer is made of any of a thermosetting resin, a thermoplastic resin, and an ultraviolet curable resin.
  • the adhesive layer is made of an adhesive, and further has a resin or metal layer between the adhesive layer made of the adhesive and the surface acoustic wave element.
  • the bonding substrate is preferably made of a wet-etchable material such as glass, crystal, or fused quartz.
  • the piezoelectric element may be a surface acoustic wave element having a vibrating portion formed of a comb-shaped electrode portion formed on a substrate.
  • the piezoelectric element may be a substrate having an opening or a recess.
  • the piezoelectric thin film element has a vibrating portion having a structure in which the upper and lower surfaces of a thin film portion having at least one or more piezoelectric thin films formed on the concave portion sandwich at least a pair of upper electrodes and lower electrodes so as to face each other. May be.
  • the piezoelectric element has a vibrating portion having a structure in which the upper and lower surfaces of a thin film portion having at least one or more piezoelectric thin films formed on a substrate are sandwiched by at least a pair of upper and lower electrodes facing each other. Further, the piezoelectric thin film element may have a space between the substrate and the lower electrode in the vibration part.
  • a method for manufacturing a piezoelectric component according to the present invention includes a piezoelectric element having at least one vibrating portion formed on a substrate and an element wiring connected to the vibrating portion, and a through hole.
  • a method for producing a piezoelectric component wherein a bonding substrate is bonded to an oscillating portion with an adhesive layer so as to face the oscillating portion, wherein at least one oscillating portion and the oscillating portion are connected to the substrate.
  • Forming a piezoelectric element by forming an element wiring; forming a through hole in the bonding substrate; and securing a protection space for the vibrating portion by an adhesive layer between the piezoelectric element and the bonding substrate. Bonding to the element wiring via the through hole, and forming an external terminal connected to the external terminal connecting member.
  • the element wiring and the through-hole may be provided. It is preferable to perform alignment with the above.
  • a method for manufacturing a piezoelectric component includes: a piezoelectric element having at least one vibrating portion formed on a substrate and an element wiring connected to the vibrating portion; A method of manufacturing a piezoelectric component, wherein a bonding substrate having holes is bonded by an adhesive layer such that the bonding substrate faces the vibrating portion, wherein the substrate includes at least one vibrating portion and the vibrating portion. Forming a piezoelectric element by forming element wiring Bonding the piezoelectric element and the bonding substrate with an adhesive layer so as to secure a protection space for the vibrating portion; forming a through-hole in the bonding substrate; and forming the element through the through-hole.
  • It is characterized by including a step of forming an external terminal connecting member so as to be connected to a wiring, and a step of forming an external terminal so as to be connected to the external terminal connecting member.
  • a protection space for the vibrating portion is secured by forming a concave portion in the bonding substrate. This makes it possible to easily form a space for protecting the vibrating portion.
  • the through-hole is formed by jet etching using a resist pattern. Thereby, a through hole can be easily formed.
  • the through-hole may be formed by laser etching or sandblasting. Thereby, a through hole can be easily formed.
  • the external terminal connecting member and / or the external terminal may be formed by vapor deposition of a metal.
  • the external terminal connecting member and the external terminal may be formed by printing and then sintering the conductive paste.
  • the method for manufacturing a piezoelectric component of the present invention may be configured such that after the conductive paste is printed in the through-hole, the wiring is formed by the conductive paste to form the external terminals. Good.
  • an aggregate substrate including a plurality of the piezoelectric elements is formed, and the bonding substrate is bonded to the aggregate substrate and then diced.
  • the bonding substrate is smaller than the aggregate substrate.
  • the displacement at the time of bonding due to the difference in thermal expansion between the Saw element and the bonding substrate can be reduced, and a high-quality piezoelectric component can be manufactured.
  • the piezoelectric element may be a surface acoustic wave element having a vibrating part formed of a comb-shaped electrode part formed on a substrate.
  • the piezoelectric element includes at least a pair of upper electrodes and upper and lower surfaces of a thin film portion having at least one or more piezoelectric thin films formed on the opening or the concave portion of the substrate having the opening or the concave portion. It may be a piezoelectric thin film element having a vibrating portion having a structure in which the lower electrode is sandwiched between the lower electrodes.
  • the piezoelectric element has a vibrating portion having a structure in which the upper and lower surfaces of a thin film portion having at least one or more piezoelectric thin films formed on a substrate are sandwiched by at least a pair of upper and lower electrodes facing each other.
  • the piezoelectric thin film element may have a space between the substrate and the lower electrode in the vibrating section.
  • the piezoelectric component of the present invention can be miniaturized, and the position of the external terminal can be formed at an arbitrary position, so that the degree of freedom of the position can be improved. Therefore, it is possible to provide a piezoelectric component that can be easily connected to an external circuit.
  • FIG. 1 is a cross-sectional view illustrating a manufacturing process of the surface acoustic wave device according to the embodiment of the present invention.
  • FIG. 2 is a cross-sectional view illustrating a manufacturing process of the surface acoustic wave device according to Embodiment 1 of the present invention.
  • FIG. 3 is a cross-sectional view illustrating a manufacturing process of the surface acoustic wave device according to the embodiment of the present invention.
  • FIG. 4 is a cross-sectional view illustrating a manufacturing process of the surface acoustic wave device according to Embodiment 2 of the present invention.
  • FIG. 5 is a cross-sectional view showing a manufacturing process of the surface acoustic wave device according to Embodiment 2 of the present invention.
  • FIG. 6 is a cross-sectional view illustrating a manufacturing process of the surface acoustic wave device according to Embodiment 2 of the present invention.
  • FIG. 7 is a cross-sectional view illustrating a manufacturing process of the surface acoustic wave device according to Embodiment 3 of the present invention.
  • FIG. 8 is a cross-sectional view illustrating a manufacturing process of the surface acoustic wave device according to Embodiment 4 of the present invention.
  • FIG. 9 is a cross-sectional view showing a manufacturing process of the surface acoustic wave device according to Embodiment 5 of the present invention.
  • FIG. 10 is a cross-sectional view showing a manufacturing process of the surface acoustic wave device according to Embodiment 5 of the present invention.
  • FIG. 11 is a cross-sectional view illustrating a manufacturing process of the surface acoustic wave device according to Embodiment 6 of the present invention.
  • FIG. 12 is a cross-sectional view showing a manufacturing process of the surface acoustic wave device according to Embodiment 6 of the present invention.
  • FIG. 13 is a circuit diagram of a specific example of a surface acoustic wave device according to Embodiment 1 of the present invention.
  • FIG. 14 is a plan view of a surface acoustic wave element in a surface acoustic wave device according to a specific example of the first embodiment of the present invention.
  • FIG. 5 is a plan view after a resin layer is formed on the surface acoustic wave device of FIG.
  • FIG. 16 is a plan view after the bonding substrate is pasted on the resin layer of FIG. 5 to form external terminals.
  • FIG. 17 is a cross-sectional view of a specific example of a surface acoustic wave device according to Embodiment 2 of the present invention.
  • FIG. 18 is a circuit diagram of a specific example of a surface acoustic wave device according to Embodiment 2 of the present invention.
  • FIG. 19 is a plan view of a surface acoustic wave element in a surface acoustic wave device according to a specific example of the second embodiment of the present invention.
  • FIG. 20 is a plan view after a resin layer is formed on the surface acoustic wave device of FIG.
  • FIG. 21 is a plan view after bonding a bonding substrate to the resin layer of FIG. 20 to form external terminals.
  • FIG. 22 is a sectional view of a specific example of a surface acoustic wave device according to Embodiment 2 of the present invention.
  • FIG. 23 is a circuit diagram of a specific example of a surface acoustic wave device according to Embodiment 6 of the present invention.
  • FIG. 24 is a plan view of a surface acoustic wave element in a surface acoustic wave device according to a specific example of Embodiment 6 of the present invention.
  • FIG. 25 is a plan view after a resin layer is formed on the surface acoustic wave device of FIG.
  • FIG. 26 is a plan view after the first wiring is formed on the resin layer of FIG.
  • FIG. 27 is a plan view after bonding the bonding substrate to the resin layer of FIG. 26 and forming external terminals.
  • FIG. 28 is a cross-sectional view of a specific example of a surface acoustic wave device according to Embodiment 6 of the present invention.
  • FIG. 29 is a sectional view showing a surface acoustic wave device according to a modification of the surface acoustic wave device shown in FIG.
  • FIG. 30 is a circuit diagram of another specific example of a surface acoustic wave device according to Embodiment 6 of the present invention.
  • FIG. 31 is a plan view of a surface acoustic wave element in another specific example of a surface acoustic wave device according to Embodiment 6 of the present invention.
  • FIG. 32 is a plan view after a resin layer is formed on the surface acoustic wave element of FIG.
  • FIG. 33 is a plan view after forming the first wiring and the wiring on the resin layer of FIG.
  • FIG. 34 is a plan view after bonding a bonding substrate to the resin layer of FIG. 33 and forming external terminals.
  • FIG. 35 is a circuit diagram of a specific example of a surface acoustic wave device according to Embodiment 7 of the present invention.
  • FIG. 36 is a plan view of a surface acoustic wave element in a surface acoustic wave device according to a specific example of the seventh embodiment of the present invention.
  • FIG. 37 is a plan view after a resin layer is formed on the surface acoustic wave device of FIG.
  • FIG. 38 is a plan view after the bonding substrate is attached on the resin layer of FIG. 37.
  • FIG. 39 is a plan view after forming the second wiring on the bonding substrate of FIG.
  • FIG. 40 is a plan view after forming an upper resin layer on the bonding substrate of FIG. 38 and forming external terminals.
  • FIG. 41 is a sectional view of a surface acoustic wave element in a surface acoustic wave device according to a specific example of the seventh embodiment of the present invention.
  • FIG. 42 is a sectional view showing a surface acoustic wave device according to a modification of the surface acoustic wave device shown in FIG.
  • FIG. 43 is a circuit diagram of another specific example of the surface acoustic wave device according to the seventh embodiment of the present invention.
  • FIG. 44 shows another specific example of a surface acoustic wave device according to the seventh embodiment of the present invention.
  • FIG. 2 is a plan view of the surface acoustic wave device in the first embodiment.
  • FIG. 45 is a plan view after a resin layer is formed on the surface acoustic wave device of FIG.
  • FIG. 46 is a plan view showing a state after the bonding substrate is pasted on the resin layer of FIG. 45 to form the second wiring.
  • FIG. 47 is a plan view after forming an upper resin layer on the bonding substrate of FIG. 46 and forming external terminals.
  • FIG. 48 is a cross-sectional view of another specific example of a surface acoustic wave device according to Embodiment 7 of the present invention.
  • FIG. 49 is a circuit diagram of a specific example of the piezoelectric thin-film filter according to the eighth embodiment of the present invention.
  • FIG. 50 is a plan view of a piezoelectric thin film element in a piezoelectric thin film filter according to a specific example of Embodiment 8 of the present invention.
  • FIG. 51 is a sectional view of the piezoelectric thin film element of FIG.
  • FIG. 52 is a plan view after a resin layer is formed on the piezoelectric thin film element of FIG. 50.
  • FIG. 53 is a plan view showing a state after the bonding substrate is pasted on the resin layer of FIG. 52 to form the second wiring.
  • FIG. 54 is a plan view after forming the upper resin layer on the bonding substrate of FIG. 53 and forming the external terminals.
  • FIG. 55 is a cross-sectional view of a specific example of the piezoelectric thin-film filter according to the eighth embodiment of the present invention.
  • FIG. 56 is a cross-sectional view of a modified example of the piezoelectric thin film filter of FIG. BEST MODE FOR CARRYING OUT THE INVENTION [Embodiment 1]
  • FIG. 3 a SAW filter 51 packaged in a chip size in which a SAW element (piezoelectric element) 6 and a bonding substrate 20 are bonded together with an adhesive layer 21 is used.
  • the S AW element 6 has at least an IDT (vibrating portion) 2 and a conduction pad (element wiring) 3 on a surface facing the bonding substrate 20.
  • the bonding substrate 20 protects the excitation portion of the surface acoustic wave such as IDT 2 when bonded to the SAW element 6 (excitation portion protection for preventing the contact between the IDT and the bonding substrate).
  • Hollow structure (recess) 16 is provided on the surface facing the SAW element 6.
  • the thickness of the hollow structure 16 for protecting the excitation part and the thickness of the adhesive layer 21 ensure a space for protecting the excitation part of the surface acoustic wave such as the IDT 2 of the SAW element 6.
  • the hollow structure 16 for protecting the excitation part can reduce the height of the SAW filter.
  • a through hole 18 for a conductive pad for connecting the conductive pad 3 of the SAW element 6 to the outside is formed in the bonding substrate 20, and the through hole 18 for the conductive pad is formed through the through hole 18 for the conductive pad.
  • External terminal connection member (wiring for extraction) 22a connected to terminal 22b is formed.
  • the external terminal connecting member 22a is connected to the conductive pad 3 via the conductive pad through hole ⁇ 8 on a surface different from the surface on which the concave portion of the bonding substrate is formed, and a circuit or the like connected to the outside. It can be formed according to the position of the external terminal 22b arbitrarily changed in accordance with the above. That is, the degree of freedom of the position of the external terminal 22b can be improved.
  • the external terminal 22b may be formed before, after, or simultaneously with the formation of the external terminal connecting member 22a. The method for manufacturing the SAW filter described above will be described with reference to FIGS. This will be described in detail.
  • a SAW element 6 is manufactured.
  • I DT 2, conductive pad 3, a reflector (not shown) and wiring (not shown) Form is formed on the piezoelectric base plate 1 and 1 00 mm * thickness 0. 35 mm i T a 0 3 .
  • the SAW element 6 is manufactured.
  • a frame is formed at the same time along the outer periphery (dicing line) of the SAW chip, and it is used as a ground for the outer frame 4 for hermetic sealing when bonded to a bonding substrate described later.
  • the dicing line may be made thicker to serve also as an outer frame for hermetic sealing.
  • an alignment mark 5 for positioning at the time of bonding with a bonding substrate described later can be formed. The shape and size of the alignment mark 5 are not particularly limited, but are assumed to be a circle of 10 ⁇ here.
  • the piezoelectric substrate 1 may be a collective substrate including a plurality of SAW elements 6.
  • a bonded substrate 20 is prepared in steps 2 to 5.
  • step 2 for example, to a thickness of 0.1 0 and 1 0 0 mm * one surface (facing the above i T a 0 3 surface that forms the shape of the IDT 2 of the piezoelectric substrate 1 of a glass substrate 1 0 mm On the surface (hereinafter referred to as surface A), a resist pattern 11 having an opening 13 is applied to form a hollow structure for protecting the exciting portion of the surface acoustic wave such as the IDT 2 or the like.
  • an opening 14 for forming a through-hole for the purpose of externally connecting the conduction pad 3 to the other surface (hereinafter, referred to as surface B) of the glass substrate # 0 and an alignment mark for alignment mark are provided.
  • a resist pattern 12 having an opening 15 is formed.
  • the opening 15 for the alignment mark is made circular in accordance with the alignment mark 5, and furthermore, is made to coincide with the center of the alignment mark 5.
  • step 3 both surfaces of the glass substrate 10 are fetched with hydrofluoric acid or the like at, for example, 30 tm. Thus, a hollow structure 16 for protecting the excitation portion is formed.
  • step 4 the resist is applied to the entire surface A of the glass substrate 10.
  • the pattern 17 is applied to protect the hollow structure 16 for protecting the excitation part.
  • through-etching is performed with hydrofluoric acid or the like according to the resist pattern 12 on the surface B of the glass substrate 10 to form a through-hole 18 for a conductive pad and a through-hole 19 for an alignment mark.
  • the through-etching is performed from one side, the through-hole 18 for the conductive pad and the through-hole 19 for the alignment mark are formed in a forward tapered shape.
  • the resist patterns 1 1 ⁇ 1 2 ⁇ 17 are peeled off.
  • a bonded substrate 20 is manufactured.
  • FIG. 2 shows only one bonding substrate 20, a plurality of bonding substrates 20 may be formed on the glass substrate 0.
  • step 5 the adhesive layer 21 made of an adhesive is transferred to the surface A of the bonding substrate (glass substrate 10) 20. At this time, the adhesive does not adhere to the hollow structure 16 for protecting the excitation portion, the through hole 18 for the conduction pad, and the through hole 19 for the alignment mark.
  • this adhesive layer 21 is formed on the bonding substrate 20, it is possible to avoid the possibility of preventing the adhesive from being attached to the IDT 2 or the like.
  • step 6 the SAW element 6 manufactured in step 1 is bonded to the bonding substrate 20 having the adhesive layer 21 manufactured in steps 2 to 5.
  • the alignment mark 5 of the SAW element 6 and the alignment mark through hole 19 of the bonding substrate 20 are aligned.
  • the positions of the conductive pad 3 of the SAW element 6 and the through-hole 18 for the conductive pad of the bonding substrate 20 are aligned, and then the bonding is performed.
  • the piezoelectric substrate of the glass substrate and L i T a 0 3 is in the high flatness, it is easy temporary fixation performed when bonding the both.
  • alignment is easy.
  • FIG. 3 only one set of the bonded SAW element 6 and the bonded substrate 20 is shown, but a plurality of sets are formed.
  • a lift-off resist (not shown) having a predetermined wiring pattern as an opening is applied to the surface B of the bonding substrate 20.
  • the through hole 18 for the conduction pad of the bonding substrate 20 (glass substrate 10) An opening of the resist is formed so that an external terminal connected to the conduction pad 3 of the SAW element 6 can be formed.
  • This wiring pattern may have an L component or a C component on the surface B of the bonding substrate 20, for example.
  • a metal to be a wiring having a multilayer structure of Au (200 nm) / Pd (100 nm) / Ti (100 nm) is vapor-deposited. Lift off.
  • the external terminal connecting member 22 a can be formed on the bonding substrate 20 so as to be connected to the conductive pad 3 of the SAW element 6. Further, the external terminal connecting member 22a and the external terminal 22b may be formed collectively. Further, the external terminal 22b may be formed before or after forming the external terminal connecting member 22a.
  • a buffer resin layer 23 for buffering is formed on the entire surface of the SAW element 6 in order to reduce a shock at the time of mounting. Finally, dicing at a predetermined position completes the SAW filter 51.
  • a glass substrate is used as the bonding substrate 20, but the present invention is not limited to this.
  • a single crystal SiO 2 (quartz) substrate or a fused quartz substrate can be used.
  • wet etching can be performed, it is possible to easily and inexpensively form a through hole, a hollow structure for protecting an excitation portion, and the like.
  • the bonding substrate 20 is transparent in order to facilitate alignment.
  • the bonding substrate is an insulating material
  • L i T a 0 3 is and L i N b 0 3 dielectric pressure conductive substrate by Li relative dielectric constant of the S AW element is low (piezoelectric substrate Since the dielectric constant is 20 or more, the relative dielectric constant is preferably 4 or less.)
  • the glass substrate 10 has a size (small piece) smaller than that of the piezoelectric substrate 1 in advance. As a result, the displacement at the time of joining due to the difference in thermal expansion between the piezoelectric substrate of the SAW element and the glass substrate can be reduced. Finally, by dicing, each S AW You can break it down in the evening.
  • a metal film such as a metal film may be formed as a shield for preventing the influence of electromagnetic waves from the outside.
  • the adhesive layer 21 is made of, for example, a thermosetting resin such as an epoxy-based, silicone-based, phenol-based, polyimide-based, or polyurethane-based thermoplastic resin such as a polyphenylene sulfide-based resin, or an ultraviolet curable resin. It is preferable that the SAW element 6 and the bonding substrate 20 can be bonded by being formed of a resin or the like and being cured by heat, ultraviolet light, or the like. However, it is preferable to avoid those that generate corrosive gas and the like.
  • a thermosetting resin such as an epoxy-based, silicone-based, phenol-based, polyimide-based, or polyurethane-based thermoplastic resin such as a polyphenylene sulfide-based resin, or an ultraviolet curable resin. It is preferable that the SAW element 6 and the bonding substrate 20 can be bonded by being formed of a resin or the like and being cured by heat, ultraviolet light, or the like. However, it is preferable to avoid those that generate
  • the adhesive layer 21 is made of a resin layer such as polyimide, novolak resin, photosensitive benzocyclobutene (BCB), a metal layer such as solder, or a metal layer such as Al, Ag, or Au and an epoxy, silicone, or the like. And an adhesive layer of a polyimide type or the like.
  • a resin layer such as polyimide, novolak resin, photosensitive benzocyclobutene (BCB), a metal layer such as solder, or a metal layer such as Al, Ag, or Au and an epoxy, silicone, or the like.
  • BCB photosensitive benzocyclobutene
  • the adhesive layer 21 not only the adhesive layer 21 but also a resin layer (insulating layer) (not shown) may be provided on the bonding substrate 20 side, and the adhesive layer 21 may be provided on the resin layer. Further, the resin layer may be provided on the side of the Saw element 6 instead of the bonding substrate 20 side, and the adhesive layer 21 may be provided on the resin layer.
  • a conductive resin or a non-conductive resin can be used.
  • those having conductivity are preferable, and examples thereof include an epoxy resin containing Ag particles. In this way, by imparting conductivity, the influence of external electromagnetic waves can be prevented.
  • the method of forming the external terminal connecting member 22a is not limited to the above method.
  • a conductive paste is provided in the through hole 18 for the conductive pad of the bonding substrate 20.
  • the external terminal connection member (via hole) 22a may be formed by filling the package or printing with a sufficient thickness, and then firing. Also by this method, the external terminal connecting member 22a and the external terminal 22b can be formed collectively.
  • the conductive paste include a resin-based Ag paste, a solder paste, a low-temperature sinterable S ⁇ paste, and a ⁇ paste. Further, wiring can be formed on the bonding substrate 20 at the same time, and the manufacturing process can be simplified.
  • the resin used for the adhesive layer 21 is inexpensive, the cost can be reduced.
  • the external terminal connecting member 22 a or both the external terminal connecting member 22 a and the external terminal 22 b are formed by etching. You may.
  • a multilayer structure may be formed in which an Au layer or an Ag layer is formed after forming a NiCr layer as an adhesion layer and then securing solder wettability.
  • a Pd layer or an N ⁇ layer may be formed as a diffusion preventing layer between the adhesive layer and the Au or Ag layer.
  • the resin layer (insulating layer) is provided on the SAW element side, and an adhesive layer is further provided on the resin layer for bonding.
  • FIG. 13 shows a circuit diagram of the surface acoustic wave filter 100 of the above specific example.
  • the surface acoustic wave filter 100 has a configuration in which the surface acoustic wave resonators 101 to 105 having an IDT (oscillating portion) are provided in a ladder type.
  • the surface acoustic wave resonators 101 to 103 are series resonators, and the surface acoustic wave resonators 104 and 105 are parallel resonators.
  • the surface acoustic wave filter 100 of the above specific example will be described with reference to FIGS. 14 to 17 according to the method of manufacturing the surface acoustic wave filter of the present embodiment.
  • a surface acoustic wave resonator 10 1 to 105, conductive pads (element wiring) 106 to 109 and lead-out wiring (element wiring) 110 to 115 are formed, and a SAW element 150 is manufactured.
  • the conduction pad 106 is connected to the input terminal, the conduction pad 107 is connected to the output terminal, and the conduction pads 108 108 are connected to the GND terminal.
  • This resin layer 124 may cover the entire piezoelectric substrate 1.
  • an adhesive layer (not shown) is formed on the resin layer 124.
  • FIG. 16 is a cross-sectional view of the completed surface acoustic wave filter # 00, taken along the line AA ′ shown in FIGS.
  • the adhesive layer ⁇ 24a is formed between the resin layer 124 and the bonding substrate ⁇ 29.
  • concave portions 1338 and 139 are provided at locations of the SAW element 150 facing the surface acoustic wave resonators 104 ⁇ 105.
  • a concave portion is also provided at a portion of the joining substrate 1229 facing the surface acoustic wave resonators ⁇ 0 ⁇ to 103.
  • I DT vibration part
  • a protective space for the surface acoustic wave resonator having the following is secured, but it is sufficient that the protective space is secured by at least one of the resin layer, the adhesive layer, and each concave portion.
  • FIGS. 4 to 6 and FIGS. 18 to 22 Another embodiment of the present invention will be described below with reference to FIGS. 4 to 6 and FIGS. 18 to 22.
  • members having the same functions as those described in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • a space for protecting the IDT is secured by the thickness of the resin layer 8 without forming the hollow structure for protecting the excitation portion in the above-described embodiment.
  • a SAW element 26 is manufactured.
  • a SAW element 26 is manufactured on a piezoelectric substrate 1 having a thickness of 0.35 mm and a thickness of 100 ⁇ ⁇ 1_ i T a 0 3 .
  • an IDT 2, a conduction pad 3, a reflector (not shown), and a routing wiring (not shown) ) Is formed on a piezoelectric substrate 1 of L i T a 0 3, by a lift-off method using a vapor deposition, for example, you formed of AI.
  • L i T a0 3 of I DT 2 have surfaces that form a piezoelectric substrate 1 to form a protective film 7 such as ⁇ ⁇ .
  • a protective film 7 such as ⁇ ⁇ .
  • an alignment mark 5 for positioning at the time of bonding with a bonding substrate which will be described later, is also formed.
  • the piezoelectric substrate 1 may be an aggregate substrate provided with a plurality of SAW elements 26.
  • step 2 the IDT 2 of the piezoelectric substrate 1 of L ⁇ Ta O 3 is obtained.
  • An organic development type photosensitive resin such as photosensitive polyimide is applied to the formed surface and dried.
  • the resin layer 8 is formed by exposing and developing the photosensitive resin according to a predetermined pattern.
  • an excitation portion protection opening 27 for exposing the IDT 2 and the reflector and the like, and a conduction pad opening 28 for exposing a part of the conduction pad 3 for connection to the outside are formed.
  • the thickness of the resin layer 8 is set to a thickness that does not allow the bonding substrate 30 to contact the IDT 2 together with the thickness of the bonding layer 32 of the bonding substrate 30 to be bonded later. This thickness is preferably, for example, about 20 tm.
  • a resin bull and a resin stopper can be formed at the same time as the formation of the excitation portion protection opening 27, a resin bull and a resin stopper can be formed. Further, the half-etching required for forming the excitation portion protection space structure and the like on the bonding substrate 30 described later is not required, and the number of steps can be reduced.
  • the S AW element 26 is manufactured.
  • a bonding substrate 30 is manufactured in the same manner as steps 2, 4, and 5 of the first embodiment. That is, in step 3, for example, a thickness of 0. 2 0 mm of 1 0 0 mm [Phi one surface (facing the above ⁇ T a 0 3 surface forming the IDT 2 of the piezoelectric substrate 1 of a glass substrate 1 0 Apply resist 31 to the entire surface (hereinafter referred to as surface A).
  • step 4 through etching is performed with hydrofluoric acid or the like in accordance with the resist pattern # 2 on the surface B of the glass substrate 10 to form through holes 38 for conductive pads and through holes 19 for alignment marks.
  • the through hole 38 for the conductive pad and the through hole 19 for the alignment mark are formed in a forward tapered shape.
  • the resist patterns 1 2 and 3 1 are peeled off. This allows the joining A substrate 30 is manufactured. Although only one bonding substrate 30 is shown in FIG. 5, a plurality of bonding substrates 30 may be formed on the glass substrate 10.
  • step 5 the adhesive layer 32 made of an adhesive is transferred to the surface A of the bonding substrate (glass substrate # 0) 30.
  • the resin layer 8 having a thickness of 20 jLtm is formed on the piezoelectric substrate side, an adhesive may be formed on the entire surface of the bonding substrate. At this time, the adhesive does not adhere to the portion of the through hole 38 for the conductive pad and the through hole 19 for the alignment mark.
  • the adhesive layer 32 may be formed on the resin layer 8 of the SAW substrate 26. However, by forming the adhesive layer 32 on the bonding substrate 30, it is possible to prevent the adhesive from adhering to the IDT 2 or the like. It is preferable to set it to 0.
  • step 6 the Saw element 26 manufactured in steps 1 and 2 is bonded to the bonding substrate 30 having the adhesive layer 32 manufactured in steps 3 to 5.
  • the alignment mark 5 of the SAW element 26 and the alignment mark through hole 9 of the bonding substrate 30 are aligned.
  • the positions of conductive pad 3 and conductive pad opening 28 of Saw element 26 and through-hole 38 for conductive pad of bonding substrate 30 are aligned.
  • the resin layer 8 has a sufficient thickness, it is possible to prevent the adhesive from adhering to the IDT 2, the conductive pad 3, and the like.
  • step 7 for example, a resin-based Ag paste is printed and filled into the through-holes 38 for conductive pads and the through-holes 19 for alignment marks, and the metal is formed by sintering.
  • the filling part 33 is formed.
  • the adhesive layer 32 can be cured at the same time. Also, for example, when a photosensitive resin is used for the resin layer 8, the photosensitive resin can be cured. Further, unnecessary portions of the metal-filled portion 33 are removed by, for example, polishing.
  • step 8 for example, a resin-based Ag paste is printed in accordance with a predetermined pattern, and is sintered to form the external terminals 35 connected to the metal-filled portion (external terminal connection member) 33.
  • a wiring having an L component or a C component may be formed on the bonding substrate 30. Further, the metal filled portion 33 and the external terminal 35 may be formed by printing at the same time.
  • step 9 a buffer resin layer 36 for buffering is formed on the entire surface of the protective film 7 formed on the Saw element 6 in order to reduce the impact during mounting. Finally, dicing is performed at a predetermined position to complete the S AW fill 52.
  • the excitation portion (surface vibration) of the surface acoustic wave such as IDT 2 is formed by the excitation portion protection opening 27 formed in the resin layer 8 and the space formed by the adhesive layer 32. Department) can be protected.
  • the external terminal 35 extends from the metal filling portion 33 in the bonding board, and can be changed to an arbitrary position according to a circuit or the like to be connected to the outside. Can be improved.
  • FIG. 18 shows a circuit diagram of the surface acoustic wave filter 200 of the above specific example.
  • the surface acoustic wave filter 200 has a configuration in which the surface acoustic wave resonators 201 to 205 having an IDT (vibrating portion) are provided in a ladder form.
  • the surface acoustic wave resonators 201 to 203 are series resonators, and the surface acoustic wave resonators 204 to 205 are parallel resonators.
  • the surface acoustic wave resonators 201 to 205 and the lead-out wiring (element wiring) 206 to 211 are formed on the piezoelectric substrate 1, and the SAW element 250 Is prepared.
  • the above-mentioned elastic surface acoustic wave resonator 200 is placed on the above-mentioned SAW element 250. ⁇ 7 ⁇ 2 1 9, and a resin layer 224 having a resin layer opening 222 to 223 exposing a part of the routing wiring 206 to 211 is formed.
  • This resin layer 224 may cover the entire piezoelectric substrate 1.
  • FIG. 21 is a cross-sectional view of the completed surface acoustic wave filter 200 taken along the line AA ′ shown in FIGS.
  • an adhesive layer 224a is formed between the resin layer 224 and the bonding substrate 229.
  • a protection space for the IDT of the surface acoustic wave resonator is ensured by the thickness of the resin layer 224.
  • the IDT protection space of the surface acoustic wave resonator is ensured by the thickness of the resin layer.
  • a protection space for the surface acoustic wave resonator having the IDT (vibrating portion) is secured in the resin layer, the adhesive layer, and each of the concave portions, but at least one of the resin layer, the adhesive layer, and each of the concave portions is provided. It is only necessary that a protected space be secured.
  • FIG. 1 Another embodiment of the present invention will be described with reference to FIG. It is as follows.
  • members having the same functions as the members described in the first and second embodiments are denoted by the same reference numerals, and description thereof will be omitted.
  • the through hole 38 for the conductive pad and the through hole 19 for the alignment mark of the bonding substrate 20 in the second embodiment are formed by a laser.
  • a bonded substrate 30 is manufactured in place of the steps 1 to 3 in the steps 3 and 4 in the second embodiment. That is, in step 3 of the second embodiment, the resist pattern 12 is formed on the entire surface without being formed by photolithography (step 1). Then, the etching in step 4 is performed with a laser to form a through hole 38 for a conductive pad and a through hole 19 for an alignment mark (step 2). As described above, the photolithography process can be omitted, resulting in cost reduction. In addition, by controlling the laser power, it is possible to perform normal taper processing.
  • the laser causes a melt called dross 40 to adhere around the through holes 38 for conductive pads and the through holes 19 for alignment marks, but is easily removed simultaneously with the resist pattern 12 in step 3.
  • the number of processes is not increased.
  • the dross may be removed by lightly etching in the state of step 2. Although only one bonding substrate 30 is shown in FIG. 7, a plurality of bonding substrates 30 may be formed on the glass substrate # 0.
  • the Saw filter can be manufactured according to step 5 of the second embodiment.
  • through holes 38 for conductive pads and through holes for alignment marks can be obtained.
  • the through holes 19 may be formed.
  • the through hole 38 for the conductive pad and the through hole 19 for the alignment mark of the bonding substrate 30 are bonded to the SAW element 26. This is an example of forming by laser later.
  • step ⁇ in the same manner as in Step 1 of Embodiment 2, IDT 2, electroconductive pads 3, reflectors (not shown) and piezoelectric »plate lead interconnection (not shown) such as L i T a O 3 ⁇ Fabricate the S AW element 26 provided above.
  • IDT 2 in the same manner as in Step 1 of Embodiment 2, electroconductive pads 3, reflectors (not shown) and piezoelectric »plate lead interconnection (not shown) such as L i T a O 3 ⁇
  • an aggregate substrate including a plurality of SAW elements 26 on the piezoelectric substrate 1 may be used.
  • the resin layer 8 is formed on the SAW element 26 in the same manner as in step 2 of the second embodiment.
  • the resin layer 8 may be formed by applying a photosensitive resin such as a photosensitive polyimide, drying, exposing, and developing. At this time, a space (excitation portion protection opening 43) for protecting the excitation portion of the surface acoustic wave such as IDT2 is secured.
  • the thickness of the resin layer 8 may be, for example, 20 tm.
  • step 3 the resin layer 8 of the SAW element 26 and the glass substrate 10 having the adhesive layer 42 on the entire surface are formed. Glue. Here, it is not necessary to align the glass substrate 10.
  • step 4 the glass substrate 10 and the adhesive layer are 4 and 2 are etched to form through-holes 38 for conductive pads.
  • the conductive pad 3 is exposed.
  • dross (not shown) is generated by laser etching, but if removal is necessary, it can be removed by performing half etching with hydrofluoric acid or the like.
  • step 5 similarly to the first embodiment, an external terminal connecting member (wire for extraction) 35 a connected to the conductive pad 3 via the conductive pad through-hole 38.
  • the external terminal 35 is formed so as to be connected to the external terminal connecting member 35a.
  • the alignment of the glass substrate 10 is not required in the step 3, and the fabrication is easy.
  • FIGS. 9 and 10 Another embodiment of the present invention will be described below with reference to FIGS. 9 and 10.
  • members having the same functions as those described in the above-described Embodiments 1 to 4 are given the same reference numerals, and descriptions thereof will be omitted.
  • the adhesive layer 32 is provided on the SAW element 26, and after bonding the glass substrate ⁇ 0, the conductive pad is formed on the glass substrate 10.
  • step 1 similarly to step 1 of the first embodiment, for example, using AI, IDT 2, conduction pad 3, reflector (not shown), alignment mark 5, and wiring prepare a SAW element 2 6 comprise (not shown) or the like on the piezoelectric substrate 1 L ⁇ T a 0 3. Thereafter, for example, Ti (20 nm) and Au (100 nm) are stacked on the conductive pad 3 by a lift-off method (not shown). In this embodiment, a protective film 7 such as Ti is formed on the piezoelectric substrate 1 of LiTaO. are doing.
  • the piezoelectric substrate 1 may be a collective substrate including a plurality of SAW elements 26.
  • a photosensitive resin such as a photosensitive polyimide is applied to a thickness of, for example, 15 tm, and dried. Further, a resin layer having an excitation portion protection opening 27, a conduction pad opening 28, and a dicing line opening 49 for protecting the IDT 2 and the reflector by exposing and developing the photosensitive resin.
  • Form 4 8 At this time, the exposure conditions are optimized, and the openings are formed in a forward tapered shape. As described above, by forming the dicing line openings 49, clogging during dicing can be suppressed. Further, it is preferable that the dicing line opening 49 is made equal to the width of a dicing die blade used for dicing. This makes it difficult for the protruding portion of the glass after the dicing to be broken.
  • the adhesive layer 32 is transferred to the resin layer 48.
  • step 3 the glass substrate 10 is attached to the adhesive layer 32, and the adhesive layer 32 is cured. Since no pattern is formed on the glass substrate 10 in this bonding, no alignment is required.
  • the glass substrate 10 is, for example, a 100 1 ⁇ ⁇ glass substrate of 150 1 1 1.
  • a resist pattern 2 for forming a through hole exposing the conductive pad 3 is formed on the glass substrate 10.
  • An opening 14 for exposing the conductive pad 3 is formed in the resist pattern 12.
  • the opening 14 is formed larger than the conductive pad opening 28.
  • an overhang shape (a mushroom shape, that is, a portion of the through hole closer to the glass substrate 10 than the conductive pad opening 28) is formed between the through hole to be formed later and the conductive pad opening 28.
  • step 4 a forward tapered conductive pad through hole 38 is formed by wet etching using hydrofluoric acid or the like. At this time, since the conduction pad 3 is laminated with Au, corrosion due to hydrofluoric acid can be prevented. Even if a Pt layer is formed instead of Au, corrosion by hydrofluoric acid can be similarly prevented.
  • the protective film 7 also functions as a protective film in etching when forming the conductive pad through hole 38 and the like.
  • step 5 for example, a negative-type photo resist is applied onto the glass substrate 10, dried, exposed and developed, so that the through-hole 38 for the conductive pad and the external terminal forming portion are formed.
  • a reverse tapered resist pattern (not shown) for a lift head having an opening is formed.
  • an external terminal connecting member 2 formed by vapor deposition in the order of A u (100 nm) / ⁇ i (20 ⁇ m) / ⁇ i (500 ⁇ m) / ⁇ i (20 nm). 2a and external terminals 22b are formed at once, and the resist pattern is removed.
  • step 6 in order to mitigate the impact at the time of mounting, the L i T a 0 3 buffer resin layer 2 3 of slow ⁇ the entire surface of the protective film 7 made of metal that is formed on the piezoelectric substrate 1 Form. Finally, dicing is performed at a predetermined position, whereby the SAW filter 53 is completed.
  • FIG. 11 and 12 and FIGS. 23 to 34 Another embodiment of the present invention will be described below with reference to FIGS. 11 and 12 and FIGS. 23 to 34.
  • members having the same functions as those described in the first to fifth embodiments are denoted by the same reference numerals, and the description thereof will be omitted.
  • a first wiring (wiring for taking out) 50 is formed on the resin layer 48.
  • a SAW element 6 comprises a (not shown) or the like on the piezoelectric substrate 1 L i T a O 3. Thereafter, for example, Ti (20 nm) and Au (100 nm) are stacked on the conductive pad 3 by a lift-off method. Also forms a L i T a 0 3 protective film 7 made of metal such as T i on the piezoelectric substrate ⁇ .
  • SAW element 6 may be an aggregate substrate having a plurality of SAW elements 6 on the piezoelectric substrate.
  • a photosensitive polyimide or the like may be used. Is applied in a thickness of, for example, 15 m and dried. Further, a resin layer having an excitation portion protection opening 27, a conduction pad opening 28, and a dicing line opening 49 for protecting the IDT 2 and the reflector by exposing and developing the photosensitive resin. Form 4 8 At this time, the exposure conditions are optimized, and the openings are formed in a forward tapered shape. As described above, by forming the dicing line openings 49, clogging during dicing can be suppressed. Further, it is preferable that the dicing line opening 49 is made equal to the width of a dicing die blade used for dicing. This makes it difficult for the protruding portion of the glass after the dicing to be broken.
  • the first wiring 50 connected to the conductive pad 3 is formed on the resin layer 48 by a lift-off method in the same manner as the conductive pad.
  • the first wiring 50 may include an L component or a C component.
  • the connection portion with the conduction pad 3 is extended by the first wiring 50.
  • a through hole to be formed later may be formed so that the first wiring 50 is exposed, and the positions of the external terminals can be freely arranged. it can.
  • an adhesive layer 32 is formed on the glass substrate 10 and bonded to the above-mentioned Saw element 6 and cured. In this bonding, since no pattern is formed on the glass substrate # 0, no alignment is required.
  • the glass substrate 10 is, for example, a 100 mm mm glass substrate of 150
  • step 5 a resist pattern # 2 for forming a through-hole exposing the first wiring 50 is applied to the glass substrate 10. An opening for exposing the first wiring 50 is formed in the resist pattern 12. Then, through-etching with hydrofluoric acid or the like is performed to form a forward tapered through-hole 38 for a conductive pad. At this time, since the adhesive layer 32 is formed on the entire surface of the glass substrate 10, the adhesive layer 32 remains without being etched.
  • step 6 the adhesive layer 32 is etched with fuming nitric acid, an organic solvent or the like.
  • the conductive pad 3 and the first wiring 50 are laminated with Au, corrosion due to hydrofluoric acid or the like can be prevented. Further, even if a Pt layer is formed instead of Au, corrosion due to hydrofluoric acid or the like can be similarly prevented.
  • the protective film 7 also functions as a protective film in etching when forming the conductive pad through hole 38 and the like.
  • laser etching or sandblasting may be performed.
  • a resist is applied to the entire surface of the glass substrate 10 and then etched with a laser. This eliminates the need to form a resist pattern and allows the adhesive layer 32 to be etched at the same time.
  • hydrofluoric acid treatment is performed. This hydrofluoric acid treatment is for removing a melt called dross.
  • step 7 for example, Au-Sn solder is printed through the through-hole 38 for the conductive pad, and the external terminal connection member is formed by heat treatment. 22 a and the external terminal 22 b can be formed.
  • a buffer resin layer 23 for buffering is formed on the entire surface of the protective film 7 made of metal formed on the LiTaO 3 piezoelectric substrate 1 in order to alleviate the impact during mounting.
  • dicing is performed at a predetermined position to complete the SAW filter 54.
  • FIG. 23 shows a circuit diagram of the surface acoustic wave filter 300 of the above specific example.
  • the surface acoustic wave filter 300 includes a ladder-type surface acoustic wave resonator 301 having an IDT (vibrating portion). Note that the elastic surface wave resonators 301 to 303 are series resonators, the surface acoustic wave resonators 304 to 305 are parallel resonators, and the inductors 35 1 and 35 2 are surface acoustic wave resonators 304 -In this configuration, it is connected in series to 2005.
  • surface acoustic wave resonators 301 to 305, conductive pads (element wiring) 303 to 309, and lead wiring (element wiring) 3 30 to 3 ⁇ 5 are arranged on the piezoelectric substrate 1.
  • the SAW element 350 is manufactured.
  • the resin layer openings 317 to 317 to expose the elastic surface wave resonators 301 to 305 are formed.
  • a resin layer 324 having resin layer openings 320 to 323 from which the conductive pads 306 to 309 are exposed is formed.
  • the resin layer 324 may cover the entire piezoelectric substrate 1.
  • first wirings 361 to 364 connected to the conductive pads 306 to 309 are formed through the resin openings 320 to 323.
  • the first wirings 363-36 are formed with an inductance L.
  • the inductor L of the first wiring 36 3 ⁇ 364 corresponds to the inductor 35 1 ⁇ 352.
  • the first wiring has the evening, it is also possible to provide the first wiring with the capacitance C by forming a comb-like electrode.
  • the Saw element 350 and the bonding substrate 329 are adhered to each other by an adhesive layer (not shown).
  • the surface acoustic wave filter 300 is completed.
  • the portions formed in the through holes 325 to 328 in the external terminals 340 to 343 can be regarded as external terminal connection members. That is, the external terminals 340 to 343 have a configuration in which the external terminal connecting member and the external terminal are integrally formed.
  • FIG. 28 is a cross-sectional view of the completed surface acoustic wave filter 300 taken along the line ⁇ _ ⁇ ′ shown in FIGS.
  • the adhesive layer 324a is formed between the resin layer 324 and the bonding substrate 329. Further, in the surface acoustic wave resonators 304 and 305 of the SAW element 350, a protection space for the IDT of the surface acoustic wave resonator is secured by the thickness of the resin layer 324. Similarly, for the surface acoustic wave resonators 301 to 303, the protection space of the IDT of the surface acoustic wave resonator is secured by the thickness of the resin layer.
  • a surface acoustic wave filter 380 as a modified example of the surface acoustic wave filter 300 will be described with reference to FIG.
  • a concave portion 37 0 ⁇ 37 1 is provided at a portion of the bonded substrate 329 facing the surface acoustic wave resonator 304-305. It is something. Further, a concave portion is provided in a portion of the bonded substrate 329 facing the other surface acoustic wave resonator. Further, another specific example of the surface acoustic wave filter will be described with reference to FIGS. 30 to 34. FIG.
  • FIG. 30 shows a circuit diagram of a surface acoustic wave filter 400 of another specific example.
  • the surface acoustic wave filter 400 has a ladder type surface acoustic wave resonators 40 to 405 each having an IDT (vibrating portion).
  • the surface acoustic wave resonators 401 to 403 are series resonators, the surface acoustic wave resonators 404 to 405 are parallel resonators, and the inductors 45 1 to 452 are connected in series to the surface acoustic wave resonators 404 to 405. It is a connected configuration.
  • the surface acoustic wave resonator 40 is placed on the piezoelectric substrate 1.
  • lead wiring (element wiring) 408 to 415 are formed, and a SAW element 450 is manufactured.
  • a resin layer 424 having openings 425 to 427 to expose the surface acoustic wave resonators 401 to 405 are formed. Further, the resin layer 424 may cover the entire piezoelectric substrate 1.
  • the wiring is connected to the lead wiring 4 1 0 ⁇ 4 1 3 ⁇ 4 1 4 ⁇ 4 1 4 '4 15 via the resin opening 4 18-42 1 ⁇ 4 2-423.
  • the first wirings 46 1 to 4 64 are formed.
  • the inductor L is formed integrally with the first wirings 46 3 and 464.
  • the inductor L of the first wiring 463-464 corresponds to the inductor 451-452.
  • the first wiring has the inductor, but it is also possible to have the capacitance C in the first wiring.
  • the first wiring 465 connecting the wirings 409-411 via the resin openings 411-419 and the first wiring 465 connecting the resin openings 416-420 A first wiring 4 6 6 connecting 408-4 1 2 is formed.
  • the thickness of the lead wiring 408 to 4 A part of the bus bar of the surface acoustic wave resonators 401 to 405 may be formed to be thicker, so that the routing wiring 408 to 415, the bus bar, and the first wiring 46 1 to Connectivity with each of 4 6 6 can be improved.
  • through holes 428 to 431 are formed on the resin layer 424 so that the ends of the first wirings 46 "! To 464 are exposed.
  • the bonded bonding substrate 4 32 is aligned and bonded, and the resin layer 4 2 4 and the bonding substrate 4 3 2 are bonded to each other with an adhesive layer (not shown), and through the through holes 4 2 8 to 4 3 1.
  • the surface acoustic wave filter 400 is completed by forming external terminals 4 33 to 4 36 connected to the first wirings 46 1 to 4 64.
  • the external terminals 4 3 3 4 3 The portion formed in the through holes 428 to 431 in 6 can be regarded as an external terminal connection member. That is, the external terminals 433 to 4336 are connected to the external terminal connection member.
  • the external terminal connection member and the external terminals 43 to 43 are formed, for example, by using a printing technique to form the through-holes. It can be formed by filling Au—Sn solder into 428 to 431, and then performing heat treatment, and the external terminal may be a thin film formed by lift-off. Alternatively, the external terminal connection member and the external terminal may be separated and formed by different methods.
  • the SAW resonator 450 of the SAW element 450 has a protection space for the IDT of the surface acoustic wave resonator due to the thickness of the resin layer 424. Is secured.
  • the IDT protection space of the surface acoustic wave resonator is secured by the thickness of the resin layer.
  • a protection space may be ensured by providing a concave portion at a portion of the bonded substrate 432 that faces the surface acoustic wave resonators 401-405.
  • FIGS. 35 to 48 Another embodiment of the present invention will be described below with reference to FIGS. 35 to 48.
  • Members having the same functions as the members described in Embodiments 1 to 6 are denoted by the same reference numerals, and description thereof will be omitted.
  • FIGS. 35 to 35 show the surface acoustic wave filter according to the present embodiment.
  • the surface acoustic wave filter 500 includes surface acoustic wave resonators 501 to 505 each having an IDT (oscillating portion) in a ladder shape.
  • the surface acoustic wave resonators 501 to 503 are series resonators, and the surface acoustic wave resonators
  • 504-505 is a parallel resonator, and inductors 55 1 and 552 are connected in series to a surface acoustic wave resonator 504-505.
  • each of the surface acoustic wave resonators 501 to 505 includes a comb-shaped electrode portion made of a metal such as AI and a reflector.
  • the conductive pads (element wiring) 506 to 509 and the lead-out wiring (element wiring) 510 to 515 are also made of metal such as AI.
  • These surface acoustic wave resonators 501 to 505, conductive pads (element wiring) 506 to 509, and lead wiring (element wiring) 510 to 515 can be formed by a lift-off method by vapor deposition.
  • the piezoelectric substrate 1 has a plurality of combinations of surface acoustic wave resonators 501 to 505, conductive pads (element wiring) 506 to 509, and lead wiring (element wiring) 510 to 515. Then, an aggregate substrate of a plurality of SAW elements can be formed.
  • an alignment mark is also formed on the piezoelectric substrate 1.
  • the resin layer openings 5 17 to 5 19 through which the elastic surface wave resonators 501 to 505 are exposed, and conduction are provided.
  • a resin layer 524 having resin layer openings 520 to 523 from which the pads 506 to 509 are exposed is formed.
  • the resin layer 524 may cover the entire piezoelectric substrate 1.
  • the resin layer 524 is formed by applying a photosensitive polyimide in a thickness of, for example, 10 m, and exposing and developing so that the resin layer openings 5 17 to 5 23 can be formed. Can be.
  • the resin openings 5 17 to 5 23 not only the surface acoustic wave resonators 50 5 to 505 but also the wiring connected to each elastic surface wave resonator 501 to 505
  • the wirings 5 10 to 5 15 may be formed so that the immediate vicinity thereof is exposed.
  • the exposure conditions are optimized and the resin openings 520-523 are formed in a tapered shape. This facilitates later formation of a wiring or the like by metal evaporation or conductive paste in the resin openings 520 to 523.
  • the dicing line portion be an opening. Since there is no resin in the dicing line, clogging is less likely to occur during dicing. Note that the opening width of the dicing line portion may be equal to the dicing blade width.
  • a glass substrate can be used as the bonding substrate 529.
  • a glass substrate for example, a glass substrate having a thickness of 100 jm may be used.
  • an adhesive is applied to the entire surface of the bonding substrate 529 to form an adhesive layer (not shown), and the adhesive is applied to the resin layer 524 and the adhesive is cured.
  • a through-hole 525 to 528 may be formed after a glass substrate is used as the bonding substrate 529 and the glass substrate is attached to the resin layer 524. In this case, there is no patterning of the through-holes or the like on the bonding substrate 529 (glass substrate), so that alignment is unnecessary.
  • the alignment marks on the piezoelectric substrate 1 are used to penetrate the conductive pads 506 to 509 on the piezoelectric substrate 1 through the glass substrate. It is sufficient that the holes 525 to 528 have a forward tapered shape with a laser. At this time, the adhesive is also removed by the laser.
  • the conductive pads 506 to 50 are formed on the bonding substrate 529 through the resin openings 520 to 523 and the through holes 525 to 528.
  • the second wirings 530 to 533 are formed so as to be connected to 9.
  • the second wirings 5 3 2-5 3 3 are formed with inductors.
  • the inductor L of the second wiring 532-253 corresponds to the above-mentioned inductor 515-1552. In the above, the inductor is provided in the second wiring, but it is also possible to provide the second wiring with capacitance C.
  • the second wirings 530 to 533 can be formed on the bonding substrate 529, for example, by lift-off.
  • the structure of the second wiring 530 to 533 is, for example, Au (1 OO nm) / Ti (20 nm) / AI electrode (1 Atm) / Ti (100 nm) Is preferred.
  • the upper resin layer openings 5 3 4 to 5 3 are formed on the bonding substrate 5 29 so that the ends of the second wiring 5 3 0-5 3 3 are exposed.
  • the upper resin layer (upper insulating layer, insulating pattern) on which 3 7 is formed 5 3 8 is formed.
  • Materials used for the upper resin layer include photosensitive polyimide, benzocyclobutene, cyclic resin, epoxy resin and the like.
  • external terminals 538 to 541 are formed so as to be connected to the ends of the second wirings 5300 to 533 via the upper resin layer openings 5334 to 5337.
  • the surface acoustic wave filter 500 is completed.
  • the portions formed in the upper resin layer openings 534 to 537 in the above external terminals 538 to 541 can be regarded as external terminal connection members. That is, the external terminals 538 to 541 have a configuration in which the external terminal connecting member and the external terminal are integrally formed.
  • the external terminal connection member and the external terminals are formed by, for example, using a printing technique, filling the upper resin layer opening portions 534 to 537 with Au—Sn solder, and performing a heat treatment. Can be.
  • the external terminal may be a thin film formed by lift-off. Further, the external terminal connecting member and the external terminal may be separated and formed by different methods.
  • a conductive resin for buffering may be applied to the back surface of the piezoelectric substrate and cured.
  • a metal film may be formed on the back surface of the piezoelectric substrate in advance, and a buffer resin may be applied thereon.
  • the conductive resin or metal exhibits an electromagnetic wave shielding effect.
  • the degree of freedom in designing the surface acoustic wave filter can be increased.
  • FIG. 41 is a cross-sectional view of the completed surface acoustic wave filter 500 taken along the line AA ′ shown in FIGS. 36 to 40.
  • an adhesive layer 324a is formed between the resin layer 524 and the bonding substrate 529.
  • the SAW element 550 of the SAW element 550 The thickness of the layer 524 secures a protection space for the IDT of the surface acoustic wave resonator.
  • a protection space for the IDT of the surface acoustic wave resonator is secured by the thickness of the resin layer.
  • a surface acoustic wave filter 580 of a modified example of the surface acoustic wave filter 500 will be described with reference to FIG.
  • the surface acoustic wave filter 580 is provided with a concave portion 570 at a position facing the IDT of the surface acoustic wave resonator 504 ⁇ 505 on the bonding substrate 529 in the surface acoustic wave filter 500. -5 7 1 is provided. Further, a concave portion is provided in a portion of the joining substrate 529 facing the IDT of another surface acoustic wave resonator.
  • FIG. 43 Another surface acoustic wave filter according to the present embodiment will be described with reference to FIGS. 43 to 48.
  • FIG. 43 Another surface acoustic wave filter according to the present embodiment will be described with reference to FIGS. 43 to 48.
  • FIG. 43 shows a circuit diagram of another surface acoustic wave filter 600 according to the present embodiment.
  • the surface acoustic wave filter 600 is a surface acoustic wave resonator 600 having an IDT (vibrating portion). ⁇ 605 in a ladder type.
  • the surface acoustic wave resonators 60 ⁇ to 603 are series resonators, the surface acoustic wave resonators 60 4 ⁇ 605 are parallel resonators, and the inductors 65 1 and 65 2 are surface acoustic wave resonators.
  • This is a configuration in which the elements are connected in series to the elements 604-605.
  • surface acoustic wave resonators 61 to 65 and lead wirings (element wirings) 66 to 61 3 are formed on the piezoelectric substrate 1, and the SAW element 65 0 Is prepared.
  • the resin layer openings 61-61 through which the elastic surface wave resonators 61-605 are exposed, and the wiring A resin layer 625 having resin layer openings 611 to 624 from which the wirings 606 to 613 are exposed is formed.
  • This resin layer 6 25 may cover the entire piezoelectric substrate 1.
  • the lead-out wirings 600 to 613 are exposed on the resin layer 625 via the resin openings 617 to 624.
  • the bonding substrate 634 on which the through holes 62-633 are formed is aligned and bonded, and the resin layer 625 and the bonding substrate 634 are bonded.
  • an adhesive layer (not shown) is formed on the resin layer 625.
  • the wiring is routed through the resin opening 6 1 7-6 20-6 2 1-6 2 4 and the through hole 6 2 6 ⁇ 6 2 9-6 3 0-6 33 6 06 ⁇ 60 9 ⁇ 6
  • the second wirings 635 to 638 are formed so as to be connected to 10-6 13.
  • Example ⁇ ⁇ Fill the above resin opening 6 1 7-6 20-62 1-6 2 4 and through hole 6 2 6 ⁇ 6 29 ⁇ 6 3 0 ⁇ 6 3 3 with conductive paste and use conductive paste.
  • the second wirings 635 to 636 can be formed.
  • the second wiring 63 7-638 is formed with an inductor L.
  • the inductor L of the second wiring 63 7 ⁇ 6 3 8 corresponds to the inductor 6 51 ⁇ 6 52.
  • the inductor L is provided on the second wiring, but the second wiring may have capacitance C.
  • upper resin layer openings 641 to 644 were formed on the bonding substrate 625 so that the ends of the second wirings 635 to 638 were exposed.
  • An upper resin layer (upper insulating layer) 645 is formed.
  • the external terminals 646-649 so as to be connected to the ends of the second wirings 635-638 via the upper resin layer openings 641-1644, the surface acoustic waves can be obtained.
  • the filter 600 is completed.
  • the length of the lead wiring 606 to 613 may be increased, or the surface acoustic wave resonator 60 ⁇ !
  • a portion of the bus bar 605 to 605 may be made thicker, thereby increasing the connectivity between the routing wires 606 to 613, the bus bar, and the second wires 635 to 640. .
  • the opening of the upper resin layer in the external terminals 6 4 6-6 49 can be regarded as external terminal connection members. That is, the external terminals 646 to 649 have a configuration in which the external terminal connecting member and the external terminal are integrally formed.
  • the above-mentioned external terminal connecting members and external terminals should be formed, for example, by using a printing technique, filling the upper resin layer openings 6 4 1 to 6 4 4 with solder, and heat-treating them. Can be.
  • the external terminal may be a thin film formed by lift-off. Further, the external terminal connecting member and the external terminal may be separated and formed by different methods.
  • FIG. 48 is a cross-sectional view of the completed surface acoustic wave filter 600 taken along the line AA ′ shown in FIGS. 44 to 47.
  • an adhesive layer 625a is formed between the resin layer 625 and the bonding substrate 634. Further, in the surface acoustic wave resonators 604 and 605 of the SAW element 650, a protection space for the IDT of the surface acoustic wave resonator is secured by the thickness of the resin layer 625. Similarly, for the surface acoustic wave resonators 60 1 to 60 3, the IDT protection space of the surface acoustic wave resonator is secured by the thickness of the resin layer.
  • a protection space may be secured by providing a concave portion at a position facing the surface acoustic wave resonators 61 to 65 in the bonding substrate 634. Further, the concave portion can be formed at the same time when the through holes 62-63 are formed in the bonding substrate 634.
  • the surface acoustic wave filter has an ID layer, a reflector, a wiring, and a conduction pad formed on a piezoelectric substrate. And only the reflector may be formed.
  • the resin layer may be provided with a resin opening through which the above-mentioned IDT bus bar is exposed, and the wiring may be formed on the resin layer or on the bonding substrate. As a result, some wiring can be eliminated, and the surface acoustic wave filter can be downsized.
  • the positions of the resin opening, the through hole, and the upper resin opening are shifted from each other.
  • the through holes and the upper resin opening may be formed in the same position.
  • the conductive pad and some wiring can be eliminated, and the surface acoustic wave filter can be downsized.
  • the SAW element as the piezoelectric element has been described.
  • a piezoelectric thin film element can be used instead of the SAW element as the piezoelectric element in the first to seventh embodiments.
  • piezoelectric thin-film filter piezoelectric component
  • FIG. 49 shows a circuit diagram of the piezoelectric thin film filter 700 according to the present embodiment.
  • the piezoelectric thin-film filter 700 includes a piezoelectric thin-film resonator (vibrating portion) 7011 to 704 in a ladder shape.
  • the piezoelectric thin-film resonators 71, 703 are parallel resonators
  • the piezoelectric thin-film resonators 720, 704 are series resonators.
  • a method for manufacturing the piezoelectric thin film filter 700 will be described with reference to FIGS. 50 to 55.
  • This manufacturing method is the same as the manufacturing method described in Embodiment 7, except that a piezoelectric thin film element is used instead of the surface acoustic wave element.
  • a piezoelectric thin film element (piezoelectric element) 705 including piezoelectric thin film resonators 70 1 to 704 is manufactured.
  • the piezoelectric thin film element 7 0 5, the support substrate 7 0 6 made of silicon, walk layers of the formed on the supporting substrate is S i 0 2, S i 0 2 and AI 2 0 3 Metropolitan AI that have a 2 0 3 and S i O 2 Metropolitan insulating film 7 0 7 a layer such as made of.
  • the support substrate 706 has an opening (cavity) 708 that penetrates in the thickness direction of the support substrate 705 and reaches the insulating film 707.
  • the insulating film 707 forms a diaphragm. This diaphragm faces the opening (cavity) 708.
  • Each of the piezoelectric thin-film resonators 700 to 704 has a structure in which a pair of a lower electrode and an upper electrode are sandwiched between upper and lower surfaces of a thin film portion having at least one or more piezoelectric thin films on a diaphragm. .
  • the upper electrodes of the piezoelectric thin-film resonators 70 1 and 702 are integrated to form an upper electrode 7 12.
  • the lower electrode 7 10 of the piezoelectric thin film resonator 70 1 is connected to GND.
  • the lower electrodes of the piezoelectric thin-film resonators 720-704 and the piezoelectric thin-film resonator 703 are integrated to form a lower electrode 709.
  • the upper electrode 714 of the piezoelectric thin-film resonator 703 is grounded.
  • the upper electrode of the piezoelectric thin film resonator 704 is an upper electrode 7 13.
  • the broken line 7 15 indicates the diaphragm of the piezoelectric thin film element 705. In FIG. 50, the piezoelectric thin film 711 is omitted.
  • a resin opening 7 19-7 1 7-7 18 exposing the upper electrode 7 12 ⁇ 7 1 3 ⁇ 7 14 and a lower electrode A resin layer 721 having a resin opening 710 exposing the 710 and a resin opening 720 exposing the piezoelectric thin-film resonators 701 to 704 is formed.
  • the upper electrode 7 1 2 7 1 3 ′ 7 1 4 is exposed on the resin layer 7 2 1 via the resin opening 7 1 9-7 1 7-7 18.
  • bonding board 7 2 6 having through hole 7 2 2 through which lower electrode 7 10 is exposed via resin opening 7 16, not shown Adhere with an adhesive layer.
  • the upper electrode 7 10, the lower electrode 7 12, and the upper electrode 7 are formed on the bonding substrate 7 26 through the resin openings 7 6 to 7 19 and the through holes 7 2 to 7
  • the second wirings 7 27 to 730 are formed so as to be connected to 13-7 14.
  • the bonding substrate 72 6 be a substrate having a linear expansion coefficient close to that of the supporting substrate 706.
  • a hard glass substrate is preferable. Support substrate 706 and bonding substrate 7
  • the coefficient of linear expansion is close to 26
  • the occurrence of stress, deflection, and strain can be suppressed.
  • the influence on the manufactured piezoelectric thin film filter can be suppressed, and the change in characteristics and the reliability of the bonding strength can be improved.
  • the upper resin layer openings 731 to 734 are formed on the bonding substrate 726 so that the ends of the second wirings 727 to 7330 are exposed.
  • the upper resin layer 735 having the above is formed.
  • external terminals 736 to 739 are formed so as to be connected to the second wirings 727 to 7330 via the upper resin layer openings 731 to 734.
  • Portions formed in the upper resin layer openings 731 to 734 in 36 to 739 can be regarded as external terminal connection members. That is, the external terminals 736 to 739 have a configuration in which the external terminal connection member and the external terminal are integrally formed.
  • the external terminal connection material and the external terminals 736 to 739 are formed by filling the upper resin layer openings 731 to 734 with solder, for example, by using a printing technique. It can be formed by heat treatment.
  • the external terminal connecting member and the external terminals 736 to 739 may be thin films formed by lift-off. Further, the external terminal connecting member and the external terminals 736 to 739 may be separated and formed by different methods.
  • the piezoelectric thin film filter 700 is completed.
  • FIG. 55 is a cross-sectional view of the completed piezoelectric thin-film filter 700 taken along the line BB ′ shown in FIGS. 50 to 54.
  • the piezoelectric thin film resonators 720 and 704 of the piezoelectric thin film element 705 are formed by the thickness of the resin layer 726. Protected space is secured.
  • the piezoelectric thin-film resonators 70 1 -703 also have a piezoelectric thickness depending on the thickness of the resin layer 7 26. A protection space for the thin film resonator is secured.
  • the protection space is secured by the thickness of the resin layer.
  • the protection space may be secured by forming a concave portion in the bonded substrate.
  • the piezoelectric thin film filter 780 is different from the piezoelectric thin film filter 700 in that the support substrate 706 provided with the opening 708 is provided with a concave portion 708 a.
  • the piezoelectric thin film filter 780 the diaphragm can be secured by the concave portion 708. Further, since the diaphragm is covered with the concave portion 708, it is not necessary to use a lid material unlike the piezoelectric thin film filter 700.
  • a piezoelectric thin film resonator in which a space is formed between the lower electrode and the support substrate without providing an opening or a concave portion in the support substrate may be used.
  • Piezoelectric components such as a surface acoustic wave device and a piezoelectric thin film filter used for a delay line, a filter, and the like can be miniaturized.
  • a communication device such as a mobile phone in which the piezoelectric component is used can be miniaturized.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

 小型化が可能であり、さらに外部端子の位置の自由度を向上させた圧電部品およびその製造方法を提供する。圧電基板に形成されたIDT2および該IDT2と接続されている導通パッド3を有するSAW素子6と、導通パッド用貫通孔18を有する接合基板20とが、上記IDT2と対向するように、接着層21により接着されている弾性表面波装置である。上記IDT2などの弾性表面波の励振部分を保護する励振部分保護用中空構造16により保護空間を形成している。また、上記導通パッド用貫通孔18を介して上記導通パッド3と接続されている外部端子22が導通パッド用貫通孔18からずれた位置にある。

Description

明細書
圧電部品およびその製造方法 技術分野
本発明は、 例えば、 遅延線、 フィルタ等に用いられる弾性表面波装 置および圧電薄膜フィルタ等の圧電部品およびその製造方法に関し、 特に、 チップサイズにパッケージングされた圧電部品およびその製造 方法に関するものである。 背景技術
近年の電子機器の小型化、 軽量化により、 電子部品に対しても多機 能化が要求されている。 このような背景の中、 携帯電話機等の通信装 置に使用される弾性表面波装置としての弾性表面波フィルタ (以下 S A Wフィルタという) および圧電薄膜共振子を利用した圧電フィルタ 等の圧電部品に対しても同様に小型化、 軽量化が求められている。 圧電フィルタは、 開口部若しくは凹部を有する S i基板と、 該開口 部若しくは凹部上に形成されている少なくとも 1 層以上の圧電薄膜 ( 例えば、 Z n Oや A I Nからなる) を有する薄膜部の上下面を少なく とも一対の上部電極および下部電極を対向させて挟む構造の振動部と を有する圧電共振子、 または S i基板に開口部や凹部を設けることな く、 下部電極と S i 基板との間に空間を形成してなる圧電共振子を梯 子型またはラテイス型に構成してなっている。 このような圧電フィル 夕においては、 振動部で発生する厚み縦振動を利用するため、 振動空 間を確保すると共に、 振動部を水分や埃などから保護する必要がある また、 弾性表面波フィルタは、 水晶やし i T a 0 3、 L i N b 0 3 等の圧電基板上に A Iなどの金属からなる 1対のくし型電極部 (イン ターデジタル卜ランスデューサ、 以下、 I D Tと略記する) を配置し てなつている。 このような弾性表面波フィルタにおいては、 くし型電 極部ゃ圧電基板の弾性表面波の伝搬部分などの振動空間を確保すると 共に、 くし型電極部を水分や埃などから保護する必要がある。
上記の圧電フィルタおよび^性表面波フィルタでは、 アルミナなど のセラミックからなるパッケージの底面にダイボンド剤を塗布し、 圧 電フィルタおよび弾性表面波フィル夕の素子をダイボンドでパッケー ジに搭載し、 パッケージ内部の端子と素子の電極とをワイヤボンディ ングにより接続した後、 パッケージをリッドによって封止されていた 。 また、 上記の圧電フィルタおよび弾性表面波フィルタは、 小型化の ために、 アルミナなどからなる/:?ッケージの底面に電極ランドを形成 し、 圧電フィルタおよび弾性表面波フィルタの素子をダイポンドでパ ッケージにフリップチップボンディングで搭載し、 パッケージをリッ ドによって封止することも行われていた。
しかし、 上記のような構造では、 圧電フィルタおよび弾性表面波フ ィルタの素子を小型化したところで、 パッケージが小型化されない限 り、 圧電フィルタおよび弾性表面波フィルタの小型化 ·低背化ができ ないという問題があった。 また、 小型のパッケージにかかるコス卜が 高いという問題もあった。 またさらに、 特に圧電フィルタでは、 振動 部が基板の開口部若しくは凹部に形成されているため、 素子のダイシ ング、 実装時の素子のピックアップ、 ダイポンドなどの工程における 衝撃によって、 振動部の破壊が発生するという問題があった。
これに対し、 例えば、 特許文献 1、 特許文献 2および特許文献 3で は、 バンプによる実装が行われている。 これらの公報によれば、 ベー ス基板に形成したバンプを S A W素子とを接着するフリップチップ実 装で、 ワイヤボンディングに必要な空間をなくすことにより S A Wフ ィル夕の小型化が図られている。 しかしながら、 S A W素子にはバン プに対する導通パッ ドを形成する必要があり、 S A W素子の有効面積 が小さくなるため、 小型化が困難である。 また、 バンプ形成のコス卜 がかかる。
そこで、 特許文献 4では、 S A W素子を、 S A W素子の引き出し電 極に対向する貫通孔を形成したベース基板に搭載し、 貫通孔に導電剤 を充填して、 外部回路接続部を形成している。 これにより、 S A Wフ ィル夕の小型化が行われている。
【特許文献 1 】
特開 2 0 0 1 — 9 4 3 9 0号公報
【特許文献 2】
特開平 1 1 — 1 5 0 4 4 1号公報
【特許文献 3】
特開 2 0 0 1 _ 6 0 6 4 2号公報
【特許文献 4】
特開 2 0 0 1 — 2 4 4 7 8 5号公報
. 発明の開示
ところが、 特許文献 4に記載の構成では S A W素子の引き出し電極 と、 ベース基板の貫通孔とは必ず対向する位置にあるため、 その貫通 孔に形成される外部端子の位置が固定されている。 そのため、 外部端 子の位置を変更することができないという問題がある。
本発明は、 上記従来の問題に鑑みなされたものであり、 その目的は 、 小型化が可能であり、 さらに外部端子の位置の自由度を向上させた 弾性表面波装置およびその製造方法を提供することにある。
本発明の圧電部品は、 上記の課題を解決す ¾ために、 基板上に形成 された少なくとも一つの振動部および該振動部に接続されている素子 配線を有する圧電素子と、 貫通孔を有する接合基板とが、 上記振動部 と対向するように、 接着層により接着されている圧電部品であって、 上記振動部の保護空間を有し、 上記貫通孔に形成された外部端子接続 部材を介して上記素子配線に接続されている外部端子が貫通孔からず れた位置にあることを特徴としている。
上記の構成によれば、 上記振動部を保護する保護空間を有している ため、 バンプ、 ワイヤ等の圧電部品を大型化する要素が不要であり、 その分の空間を排除でき、 小型化された圧電部品を容易に提供するこ とができる。 また、 上記外部端子の位置は、 貫通孔からずれている、 つまり、 素子配線の位置からずれている。 すなわち、 上記外部端子の 位置は、 任意の位置に形成することができ、 位置の自由度を向上させ ることができる。 従って、 外部回路への接続を容易に行うことができ る圧電部品を提供することができる。
さらに、 本発明の圧電部品は、 上記の課題を解決するために、 基板 上に形成された少なくとも一つの振動部および該振動部に接続されて いる素子配線を有する圧電素子と、 貫通孔を有する接合基板とが、 上 記振動部と対向するように、 接着層により接着されている圧電部品で あって、 上記振動部の保護空間を有し、 上記接着層と接合基板との間 に上記素子配線に接続されている第一配線を有し、 上記貫通孔に形成 された外部端子接続部材を介して該第一配線と外部端子とが接続され ていることを特徴としている。
上記の構成によれば、 上記素子配線と上記外部端子とが上記第一配 線および外部端子接続部材を介して接続されているので、 上記外部端 子の位置は、 上記第一配線および外部端子接続部材の位置に応じて任 意の位置に形成することができ、 位置の自由度を向上させることがで きる。 従って、 外部回路に接続を容易に行うことができる。
本発明の圧電部品は、 上記の構成に加えて、 上記第一配線は、 キヤ パシタンスまたはィンダクタのいずれかを備えることが好ましい。 こ れにより、 別にキャパシタンスまたはィンダクタを設ける必要がなく 、 圧電部品の小型化を図ることができる。
さらに、 本発明の圧電部品は、 上記の課題を解決するために、 基板 上に形成された少なくとも一つの振動部および該振動部に接続されて いる素子配線を有する圧電素子と、 貫通孔を有する接合基板とが、 上 記振動部と対向するように、 接着層により接着されている圧電部品で あって、 上記振動部の保護空間を有し、 上記接合基板上に上記素子配 線に接続されている第二配線を有し、 接合基板上には第二配線の一部 3 009311
5 が露出するように設けられた絶縁層開口部を有する上部絶縁層を有し 、 上記絶縁層開口部に形成された外部端子接続部材を介して第二配線 と上部絶縁層上に形成された外部端子とが接続されていることを特徴 としている。
上記の構成によれば、 上記素子配線と上記外部端子とが上記第二配 線および外部端子接続部材を介して接続されているので、 上記外部端 子の位置は、 上記第二配線および外部端子接続部材の位置に応じて任 意の位置に形成することができ、 位置の自由度を向上させることがで きる。 従って、 外部回路に接続を容易に行うことができる。
本発明の圧電部品は、 上記の構成に加えて、 上記第二配線は、 キヤ パシタンスまたはィンダクタのいずれかを備えることが好ましい。 こ れにより、 別にキャパシタンスまたはィンダクタを設ける必要がなく 、 圧電部品の小型化を図れることができる。
本発明の圧電部品は、 上記の構成に加えて、 上記保護空間は、 接着 層の厚さにより確保されていることが好ましい。
本発明の圧電部品は、 上記の構成に加えて、 上記保護空間は、 上記 接合基板の振動部と対向する面に形成されている凹部であることが好 ましい。
また、 本発明の圧電部品は、 上記の構成に加えて、 上記接着層は、 熱硬化性樹脂、 熱可塑性樹脂、 紫外線硬化性樹脂のいずれかからなる ことが好ましい。
また、 上記接着層は、 接着剤からなり、 さらに該接着剤からなる接 着層と弾性表面波素子との間に、 樹脂若しくは金属層を有することが 好ましい。
また、 上記接合基板は、 ガラス、 水晶、 溶融石英などのウエットェ ツチング可能な材料からなることが好ましい。
また、 上記圧電素子は、 基板に形成されたくし型電極部からなる振 動部を有する弾性表面波素子であってよい。
また、 上記圧電素子は、 開口部または凹部を有する基板の該開口部 又は凹部上に形成されている、 少なくとも 1層以上の圧電薄膜を有す る薄膜部の上下面を少なくとも一対の上部電極および下部電極を対向 させて挟む構造の振動部を有する圧電薄膜素子であってよい。
また、 上記圧電素子は、 基板上に形成されている少なくとも 1層以 上の圧電薄膜を有する薄膜部の上下面を少なくとも一対の上部電極お よび下部電極を対向させて挟む構造の振動部を有し、 且つ、 基板と振 動部における下部電極の間には空間を有する圧電薄膜素子であっても よい。
本発明の圧電部品の製造方法は、 上記課題を解決するために、 基板 上に形成された少なくとも一つの振動部および該振動部に接続されて いる素子配線を有する圧電素子と、 貫通孔を有する接合基板とが、 上 記振動部と対向するように、 接着層によリ接着されている圧電部品の 製造方法であって、 上記基板に少なくとも一つの振動部および該振動 部に接続されている素子配線を形成して圧電素子を作製する工程と、 上記接合基板に貫通孔を形成する工程と、 上記圧電素子と上記接合基 板とを、 接着層により上記振動部の保護空間を確保するように接着す る工程と、 上記貫通孔を介して上記素子配線に接続される外部端子接 続部材を形成する工程と、 上記外部端子接続部材に接続される外部端 子を形成する工程とを含むことを特徴としている。
また、 上記の方法に加えて、 上記圧電素子と上記接合基板とを、 接 着層にょリ上記くし型電極部の保護空間を確保するように接着するェ 程において、 上記素子配線と上記貫通孔との位置合わせを行なうこと が好ましい。
さらに、 本発明の圧電部品の製造方法は、 上記課題を解決するため に、 基板上に形成された少なくとも一つの振動部および該振動部に接 続されている素子配線を有する圧電素子と、 貫通孔を有する接合基板 とが、 上記振動部と対向するように、 接着層により接着されている圧 電部品の製造方法であって、 基板に少なくとも一つの振動部及び該振 動部に接続されている素子配線を形成して圧電素子を作製する工程と 、 上記圧電素子と上記接合基板とを、 接着層により上記振動部の保護 空間を確保するように接着する工程と、 上記接合基板に貫通孔を形成 する工程と、 上記貫通孔を介して上記素子配線に接続させるように外 部端子接続部材を形成する工程と、 上記外部端子接続部材に接続させ るように外部端子を形成する工程とを含むことを特徴としている。 上記の方法によれば、 上記の保護空間を有しているため、 バンプ、 ワイヤ等の部品を大型化する要素が不要であり、 その分の空間を排除 でき、 小型化された圧電部品を容易に提供することができる。 さらに 、 バンプの形成、 それに対する導通パッド、 ワイヤボンディング等の 工程がなく工程の簡略化ができる。 また、 上記外部端子の位置は、 任 意の位置に形成することができ、 位置の自由度を向上させることがで きる。 従って、 外部回路への接続を容易に行うことができる。
本発明の圧電部品の製造方法は、 上記の方法に加えて、 上記振動部 の保護空間を上記接合基板に凹部を形成することによリ確保すること が好ましい。 これにより、 容易に振動部を保護する空間を形成するこ とができる。
また、 本発明の圧電部品の製造方法は、 上記の方法に加えて、 上記 貫通孔を、 レジス卜パターンを用いてゥエツ卜エッチングにより形成 することが好ましい。 これにより、 容易に貫通孔を形成することがで きる。
また、 本発明の圧電部品の製造方法は、 上記の方法に加えて、 上記 貫通孔をレーザーエッチングまたはサンドブラス卜処理によリ形成し てもよい。 これにより、 容易に貫通孔を形成することができる。
また、 本発明の圧電部品の製造方法は、 上記の方法に加えて、 金属 の蒸着により上記外部端子接続部材および/または外部端子を形成し てもよい。
また、 本発明の圧電部品の製造方法は、 上記の方法に加えて、 導電 性ペース卜を印刷した後、 焼結することにより上記外部端子接続部材 およびノまたは外部端子を形成してもよい。 また、 本発明の圧電部品の製造方法は、 上記の方法に加えて、 貫通 孔に導電性ペース卜を印刷した後に、 導電性ペース卜により配線を形 成して上記外部端子を形成してもよい。
また、 本発明の圧電部品の製造方法は、 上記の方法に加えて、 複数 の上記圧電素子を備える集合基板を形成し、 上記接合基板を集合基板 に接着した後にダイシングすることが好ましい。
上記の構成によれば、 上記接合基板と圧電素子とのと位置合せのず れがほぼなく、 品質のよい圧電部品を容易に大量に製造することがで さる。
上記接合基板が上記集合基板よリも小さいことが好ましい。 これに ょリ、 S A W素子と、 接合基板との熱膨張の差による、 接合時のズレ をよリー層小さくすることができ、 品質のよい圧電部品を製造するこ とができる。
また、 上記圧電素子は、 基板に形成されたくし型電極部からなる振 動部を有する弾性表面波素子であつてよい。
また、 上記圧電素子は、 開口部または凹部を有する基板の該開口部 又は凹部上に形成されている、 少なくとも 1層以上の圧電薄膜を有す る薄膜部の上下面を少なくとも一対の上部電極および下部電極を対向 させて挟む構造の振動部を有する圧電薄膜素子であってよい。
また、 上記圧電素子は、 基板上に形成されている少なくとも 1層以 上の圧電薄膜を有する薄膜部の上下面を少なくとも一対の上部電極お よび下部電極を対向させて挟む構造の振動部を有し、 且つ、 基板と振 勤部における下部電極の間には空間を有する圧電薄膜素子であってよ い。
本発明の圧電部品は、 小型化が可能であり、 さらに、 外部端子の位 置は、 任意の位置に形成することができ、 位置の自由度を向上させる ことができる。 従って、 外部回路への接続を容易に行うことができる 圧電部品を提供することができる。 図面の簡単な説明
図 1 は本発明の実施の形態〗 にかかる弾性表面波装置の製造工程を示 す断面図である。
図 2は本発明の実施の形態 1 にかかる弾性表面波装置の製造工程を示 す断面図である。
図 3は本発明の実施の形態〗 にかかる弾性表面波装置の製造工程を示 す断面図である。
図 4は本発明の実施の形態 2にかかる弾性表面波装置の製造工程を示 す断面図である。
図 5は本発明の実施の形態 2にかかる弾性表面波装置の製造工程を示 す断面図である。
図 6は本発明の実施の形態 2にかかる弾性表面波装置の製造工程を示 す断面図である。
図 7は本発明の実施の形態 3にかかる弾性表面波装置の製造工程を示 す断面図である。
図 8は本発明の実施の形態 4にかかる弾性表面波装置の製造工程を示 す断面図である。
図 9は本発明の実施の形態 5にかかる弾性表面波装置の製造工程を示 す断面図である。
図 1 0は本発明の実施の形態 5にかかる弾性表面波装置の製造工程を 示す断面図である。
図 1 1 は本発明の実施の形態 6にかかる弾性表面波装置の製造工程を 示す断面図である。
図 1 2は本発明の実施の形態 6にかかる弾性表面波装置の製造工程を 示す断面図である。
図 1 3は本発明の実施の形態 1 の具体的な例の弾性表面波装置におけ る回路図である。
図 1 4は本発明の実施の形態 1の具体的な例の弾性表面波装置におけ る弾性表面波素子の平面図である。 図 Ί 5は図 1 4の弾性表面波素子上に樹脂層を形成した後の平面図で あ 。
図 1 6は図〗 5の樹脂層上に接合基板を貼り付け外部端子を形成した 後の平面図である。
図 1 7は本発明の実施の形態〗の具体的な例の弾性表面波装置の断面 図である。
図 1 8は本発明の実施の形態 2の具体的な例の弾性表面波装置におけ る回路図である。
図 1 9は本発明の実施の形態 2の具体的な例の弾性表面波装置におけ る弾性表面波素子の平面図である。
図 2 0は図 1 9の弾性表面波素子上に樹脂層を形成した後の平面図で ある。
図 2 1 は図 2 0の樹脂層上に接合基板を貼リ付け外部端子を形成した 後の平面図である。
図 2 2は本発明の実施の形態 2の具体的な例の弾性表面波装置の断面 図である。
図 2 3は本発明の実施の形態 6の具体的な例の弾性表面波装置におけ る回路図である。
図 2 4は本発明の実施の形態 6の具体的な例の弾性表面波装置におけ る弾性表面波素子の平面図である。
図 2 5は図 2 4の弾性表面波素子上に樹脂層を形成した後の平面図で ある。
図 2 6は図 2 5の樹脂層上に第一配線を形成した後の平面図である。 図 2 7は図 2 6の樹脂層上に接合基板を貼リ付け外部端子を形成した 後の平面図である。
図 2 8は本発明の実施の形態 6の具体的な例の弾性表面波装置の断面 図である。
図 2 9は図 2 8に示す弾性表面波装置の変形例の弾性表面波装置を示 す断面図である。 図 3 0は本発明の実施の形態 6の他の具体的な例の弾性表面波装置に おける回路図である。
図 3 1 は本発明の実施の形態 6の他の具体的な例の弾性表面波装置に おける弾性表面波素子の平面図である。
図 3 2は図 3 1の弾性表面波素子上に樹脂層を形成した後の平面図で ある。
図 3 3は図 3 2の樹脂層上に第一配線および配線を形成した後の平 ¾ 図である。
図 3 4は図 3 3の樹脂層上に接合基板を貼り付け、 外部端子を形成し た後の平面図である。
図 3 5は本発明の実施の形態 7.の具体的な例の弾性表面波装置におけ る回路図である。
図 3 6は本発明の実施の形態 7の具体的な例の弾性表面波装置におけ る弾性表面波素子の平面図である。
図 3 7は図 3 6の弾性表面波素子上に樹脂層を形成した後の平面図で ある。
図 3 8は図 3 7の樹脂層上に接合基板を貼り付けた後の平面図である 図 3 9は図 3 8の接合基板上に第二配線を形成した後の平面図である 。
図 4 0は図 3 8の接合基板上に上部樹脂層を形成し、 外部端子を形成 した後の平面図である。
図 4 1 は本発明の実施の形態 7の具体的な例の弾性表面波装置におけ る弾性表面波素子の断面図である。
図 4 2は図 4 1 に示す弾性表面波装置の変形例の弾性表面波装置を示 す断面図である。
図 4 3は本発明の実施の形態 7の他の具体的な例の弾性表面波装置に おける回路図である。
図 4 4は本発明の実施の形態 7の他の具体的な例の弾性表面波装置に おける弾性表面波素子の平面図である。
図 4 5は図 4 4の弾性表面波素子上に樹脂層を形成した後の平面図で ある。
図 4 6は図 4 5の樹脂層上に接合基板を貼り付け、 第二配線を形成し た後の平面図である。
図 4 7は図 4 6の接合基板上に上部樹脂層を形成し、 外部端子を形成 した後の平面図である。
図 4 8は本発明の実施の形態 7の他の具体的な例の弾性表面波装置の 断面図である。
図 4 9は本発明の実施の形態 8の具体的な例の圧電薄膜フィルタにお ける回路図である。
図 5 0は本発明の実施の形態 8の具体的な例の圧電薄膜フィルタにお ける圧電薄膜素子の平面図である。
図 5 1 は図 5 0の圧電薄膜素子の断面図である。
図 5 2は図 5 0の圧電薄膜素子上に樹脂層を形成した後の平面図であ る。
図 5 3は図 5 2の樹脂層上に接合基板を貼り付け、 第二配線を形成し た後の平面図である。
図 5 4は図 5 3の接合基板上に上部樹脂層を形成し、 外部端子を形成 した後の平面図である。
図 5 5は本発明の実施の形態 8の具体的な例の圧電薄膜フィルタの断 面図である。
図 5 6は図 5 5の圧電薄膜フィルタの変形例の圧電薄膜フィル夕の断 面図である。 発明を実施するための最良の形態 〔実施の形態 1 〕
本発明の実施の一形態について、 図 1 ないし図 3、 並びに図〗 3な いし図 1 7に基づいて説明すれば、 以下の通りである、 本実施の形態では、 図 3に示すように、 S AW素子 (圧電素子) 6 と、 接合基板 20とが接着層 2 1 で貼リ合わされているチップサイズ にパッケージングされた S AWフィルタ 5 1 について説明する。 上記 S AW素子 6は、 上記接合基板 20と対向する面に、 少なくとも I D T (振動部) 2と導通パッド (素子配線) 3とを備えている。 上記接 合基板 2 0は、 S AW素子 6と接合された時に I D T 2などの弾性表 面波の励振部分を保護する ( I DTと接合基板が接触しないようにす る) ための励振部分保護用中空構造 (凹部) 1 6を、 S AW素子 6と 対向する面に備えている。 上記の励振部分保護用中空構造 1 6と接着 層 2 1 の厚さにより S AW素子 6の I DT 2などの弾性表面波の励振 部分を保護するための空間が確保されている。 また、 この励振部分保 護用中空構造 1 6により、 S AWフィルタの低背化が可能である。 さ らに、 接合基板 20には、 S AW素子 6の導通パッド 3を外部接続す るための導通パッド用貫通孔 1 8が形成されており、 この導通パッド 用貫通孔 1 8を介して外部端子 2 2 bと接続されている外部端子接続 部材 (取り出し用配線) 22 aが形成されている。 この外部端子接続 部材 22 aは、 接合基板の凹部が形成されている面と別の面において 導通パッド用貫通孔〗 8を介して導通パッド 3と接続されており、 外 部に接続する回路等に合わせて任意に変更した外部端子 22 bの位置 に応じて形成することができる。 つまり、 外部端子 2 2 bの位置の自 由度を向上させることができる。 また、 外部端子 22 bの形成は、 上 記外部端子接続部材 2 2 aの形成の前でも後でもまたは同時でもよい 以下、 上記の S AWフィルタの製造方法について、 図 1ないし 3に 基づいてより詳細に説明する。
まず、 図 1 に示すように、 工程 1 において、 S AW素子 6を作製す る。 例えば、 厚さ 0. 35 mmの 1 00 mm*し i T a 03の圧電基 板 1上に、 I DT 2、 導通パッド 3、 リフレクタ (図示せず) および 配線 (図示せず) 等を形成する。 つまり、 I DT 2、 導通パッド 3、 リフレクタおよび引き回し配線等を、 し i T a 0 3の圧電基板 1上に 、 蒸着によるリフトオフ法等により、 例えば A I で形成する。 これに ょリ、 S A W素子 6が作製される。 また、 蒸着によるリフトオフの際 、 同時に、 S A Wチップの外周部 (ダイシングライン) に沿って枠を 形成し、 後述の接合基板と貼り合わせたときに気密封止用外枠 4の下 地とすることが好ましい。 また、 ダイシングラインを太くして、 気密 封止用外枠と兼ねてもよい。 さらに、 後述の接合基板との貼リ合わせ 時の位置合わせ用のァライメン卜マーク 5も形成することができる。 このァライメン卜マーク 5は、 その形状および大きさを特に限定され るわけではないが、 ここでは 1 0 ^の円形とする。 なお、 図 1 で は S A W素子 6は 1 つしか図示されていないが、 圧電基板 1 に複数の S A W素子 6を備えている集合基板となっていてよい。
続いて、 図 2に示すように、 工程 2〜工程 5において接合基板 2 0 を作製する。
工程 2において、 例えば、 厚さ 0 . 1 0 m mの 1 0 0 m m *ガラス 基板 1 0の一方の面 (上記し i T a 0 3の圧電基板 1の I D T 2を形 成した面と対向させる面 (以下、 面 Aとする)) に上記 I D T 2など の弾性表面波の励振部分の保護を目的とした中空構造を形成するため 開口部 1 3を有するレジス卜パターン 1 1 を施す。
さらに、 ガラス基板〗 0の他方の面 (以下、 面 Bとする) に導通パ ッド 3を外部接続することを目的とした貫通孔を形成するための開口 部 1 4およびァライメン卜マーク用の開口部 1 5を有するレジス卜パ ターン 1 2を形成する。 ここでは、 ァライメン卜マーク用の開口部 1 5は、 上記ァライメン卜マーク 5に合わせて円形とし、 さらに、 ァラ ィメン卜マーク 5の中心と一致させる。
次に、 工程 3において、 上記ガラス基板 1 0の両面を、 フッ酸等で 例えば 3 0 t m八一フェッチングする。 これにより、 励振部分保護用 中空構造 1 6を形成する。
次に、 工程 4において、 ガラス基板 1 0の面 Aの全面に、 レジス卜 パターン 1 7を塗布して上記励振部分保護用中空構造 1 6を保護する 。 さらに、 ガラス基板 1 0の面 Bのレジス卜パターン 1 2に従ってフ ッ酸等で貫通エッチングして、 導通パッド用貫通孔 1 8およびァライ メン卜マーク用貫通孔 1 9を形成する。 このとき、 片側からの貫通ェ ツチングであるので、 導通パッド用貫通孔 1 8およびァライメントマ ーク用貫通孔 1 9は、 順テーパー形状で形成される。 その後、 レジス 卜パターン 1 1 ■ 1 2 · 1 7を剥離する。 これにより、 接合基板 2 0 を作製する。 なお、 図 2では接合基板 2 0は 1つしか図示されていな いが、 ガラス基板 ΐ 0に複数形成されていてよい。
次いで、 工程 5において、 接合基板 (ガラス基板 1 0 ) 2 0の面 A に接着剤からなる接着層 2 1 を転写する。 このとき、 励振部分保護用 中空構造 1 6、 導通パッド用貫通孔 1 8およびァライメン卜マーク用 貫通孔 1 9の部分には接着剤が付着することがない。 この接着層 2 1 は、 接合基板 2 0に形成することにより、 接着剤の I D T 2等への付 着を防止するおそれを回避することができる。
次いで、 図 3に示すように、 工程 6において、 工程 1で作製した S A W素子 6と工程 2〜 5で作製した接着層 2 1 を有する接合基板 2 0 とを貼り合わせる。 このとき、 S A W素子 6のァライメン卜マーク 5 と接合基板 2 0のァライメン卜マーク用貫通孔 1 9とを位置合わせす る。 これにより、 S A W素子 6の導通パッド 3と接合基板 2 0の導通 パッド用貫通孔 1 8とも位置が合わせを行ってから、 貼り合わせる。 また、 ガラス基板および L i T a 0 3の圧電基板は、 平坦度が高いの で、 その両方を貼り合わせる際に行う仮固定が容易である。 また、 透 明なガラス基板を用いているので、 位置合わせが容易となる。 なお、 図 3では、 貼り合わされた S A W素子 6と接合基板 2 0との組は、 一 組しか図示していないが、 複数組が形成されている。
次いで、 工程 7において、 接合基板 2 0の面 Bに所定の配線パター ンを開口部とするリフトオフ用レジス卜 (図示せず) を施す。 このと き、 接合基板 2 0 (ガラス基板 1 0 ) の導通パッド用貫通孔 1 8には 、 S AW素子 6の導通パッド 3に接続される外部端子が形成すること ができるように、 レジス卜の開口部を形成する。 この配線パターンは 、 例えば、 接合基板 20の面 Bに L成分や C成分をもたせるようにす ることもできる。 そして、 上記リフトオフ用レジス卜上から、 例えば 、 A u ( 200 n m) / P d ( 1 00 n m) /T i ( l O O n m) の 多層構造の配線となる金属を蒸着し、 上記レジス卜をリフ卜オフする 。 これにより、 接合基板 20に S AW素子 6の導通パッド 3と接続す るように外部端子接続部材 2 2 aを形成することができる。 また、 外 部端子接続部材 2 2 aと外部端子 2 2 bとを一括して形成してもよい 。 さらに、 外部端子 22 bの形成は、 上記外部端子接続部材 22 aを 形成する前でも後でもよい。
次いで、 工程 8において、 実装時の衝撃を緩和するために、 S AW 素子 6の全面に緩衝用の緩衝樹脂層 2 3を形成する。 最後に、 所定の 位置でダイシングすることにより S AWフィルタ 5 1が完成する。 上記の方法では、 接合基板 20にガラス基板を用いているが、 これ に限らず、 例えば、 単結晶 S i 02 (水晶) 基板、 溶融石英基板を用 いることができる。 上記の基板によれば、 ウエッ トエッチングするこ とができるため、 容易にかつ安価に貫通孔、 励振部分保護用中空構造 等を形成することができる。 特に、 上記接合基板 20は、 位置合わせ を容易にするため、 透明であることが好ましい。 また、 接合基板とし ては、 ポリイミドなどからなる樹脂フィル厶を用いることも可能であ る。 つまり、 つまり、 接合基板は、 絶縁物であって、 S AW素子の圧 電基板よリも比誘電率が低い (圧電基板である L i T a 03や L i N b 03は比誘電率が 20以上であるため、 比誘電率が 4以下が好まし い) ことが好ましい。
また、 上記ガラス基板 1 0を予め圧電基板 1 より小さいサイズ (小 片) にしておくことが好ましい。 これにより、 S AW素子の圧電基板 と、 ガラス基板との熱膨張の差による、 接合時のズレを小さくするこ とができる。 そして、 最後にダイシングすることにより、 各 S AWフ ィル夕に分断すればよい。
また、 上記圧電基板 1 の I D T 2を形成していない面には、 外界か らの電磁波の影響を防止するためのシールドとして、 例えば Τ ί等の 金属膜を形成していてもよい。
また、 上記接着層 2 1 は、 例えば、 エポキシ系、 シリコーン系、 フ 工ノール系、 ポリイミド系、 ポリウレタン系等の熱硬化性樹脂、 ポリ フエ二レンサルフアイド系等の熱可塑性樹脂、 紫外線硬化性樹脂など で形成され、 熱、 紫外線等により硬化することにより S A W素子 6と 接合基板 2 0とを接着することができるものがよい。 しかしながら、 腐食性ガス等を発生するものを避けることが好ましい。
また、 上記接着層 2 1 は、 ポリイミド、 ノボラック樹脂、 感光性べ ンゾシクロブテン ( B C B ) 等の樹脂層、 はんだ等の金属層、 または A l 、 A g、 A u等の金属層とエポキシ系、 シリコーン系、 ポリイミ ド系等の接着層とからなつていてもよい。 このとき、 上記金属層を接 合基板 2 0の励振部分保護用中空構造 1 6にも形成しておけば、 外界 の電磁波の影響を防止することができる。 さらに、 上記の方法では、 接着層 2 〗を接合基板 2 0側に形成したが、 S A W素子 6側に形成し てもよい。 また、 接着層 2 1のみではなく、 接合基板 2 0側に図示し ない樹脂層 (絶縁層) を設け、 さらに該樹脂層上に接着層 2 1を設け る構成であってもよい。 またさらに、 接合基板 2 0側ではなく、 S A W素子 6側に上記樹脂層を設け、 さらに該樹脂層上に接着層 2 1 を設 ける構成であってもよい。
また、 上記緩衝樹脂層 2 3には、 例えば、 導電性のある樹脂やない 樹脂を使用することができる。 中でも導電性のあるものが好ましく、 例えば、 A g粒子を含有したエポキシ樹脂が挙げられる。 このように 、 電導性を付与することにより、 外界の電磁波の影響を防止すること ができる。
また、 外部端子接続部材 2 2 aの形成方法は、 上記の方法に限らな い。 例えば、 接合基板 2 0の導通パッド用貫通孔 1 8に導電性ペース 卜を充填、 または充分な厚さで印刷後、 焼成することにより外部端子 接続部材 (ビアホール) 2 2 aを形成してもよい。 この方法によって も、 外部端子接続部材 2 2 aと外部端子 2 2 bとを一括して形成する ことができる。 上記導電性ペース卜には、 例えば、 樹脂系 A gペース 卜、 はんだペース卜、 低温焼結可能な S ηペース卜、 Ζ ηペース卜が 挙げられる。 また、 接合基板 2 0上への配線形成を同時に行うことが でき、 製造工程の簡略化が可能である。
また、 接着層 2 1 に用いる樹脂は安価であるので、 コストを低減す ることができる。
また、 接合基板 2 0の面 Β全面に金属を蒸着した後、 エッチングす ることにより外部端子接続部材 2 2 a、 または外部端子接続部材 2 2 aと外部端子 2 2 bとの両方を形成してもよい。 また、 密着層として T し N i C r層を形成したのち、 はんだ濡れ性確保のために、 A u 層または A g層を形成する多層構造としてもよい。 また、 密着層と A uまたは A g層の間に拡散防止層として P d層または N ί層を形成し てもよい。
さらに、 本実施の形態のより具体的な例の弾性表面波フィルタつい て、 図 1 3ないし図 1 7に基づいて説明する。 なお、 この具体的な例 では、 S A W素子側に上記樹脂層 (絶縁層) を設け、 さらに該樹脂層 上に接着層を設けて接合した場合について説明する。
図 1 3に、 上記具体的な例の弾性表面波フィルタ 1 0 0の回路図を 示す。 上記弾性表面波フィルタ 1 0 0は、 I D T (振動部) を有する 弾性表面波共振子 1 0 1〜 1 0 5をラダー型に備えている構成である 。 なお、 弾性表面波共振子 1 0 1 〜 1 0 3を直列共振子、 弾性表面波 共振子 1 0 4 · 1 0 5を並列共振子としている。
以下、 上記具体的な例の弾性表面波フィルタ 1 0 0について、 図 1 4ないし図 1 7に基づいて、 本実施の形態の弾性表面波フィル夕の製 造方法に従って説明する。
まず、 図 1 4に示すように、 圧電基板 1上に弾性表面波共振子 1 0 1〜 1 05、 導通パッド (素子配線) 1 06〜 1 09および引き回し 配線 (素子配線) 1 1 0〜 1 1 5を形成し、 S AW素子 1 5 0を作製 する。
なお、 導通パッド 1 0 6は入力端子に、 導通パッド 1 07は出力端 子に、 導通パッド 1 08 ■ 1 09は、 G N D端子にそれぞれ接続され る。
次いで、 図 1 5に示すように、 上記 S AW素子 1 5 0上に、 上記弾 性表面波共'振子 1 0 1〜〗 05が露出する樹脂層開口部 1 1 7~ 1 1 9、 および導通パッド 1 06~ 1 09が露出する樹脂層開口部 1 20 - 1 2 3を有する樹脂層 1 24が形成される。 この樹脂層 1 2 4は、 上記圧電基板 1 を全て覆っていてもよい。 また、 上記樹脂層 1 24上 には、 図示しない接着層が形成される。
次いで、 図 1 6に示すように、 上記 S AW素子 1 5 0上に、 導通パ ッ ド 1 0 6〜 1 09が露出するように貫通孔 1 2 5〜 1 28が形成さ れた接合基板 1 2 9を位置あわせして貼り合わせ、 S AW素子.1 50 と接合基板 1 29とを接着する。 そして、 樹脂層開口部 1 2 0〜 1 2 3および上記貫通孔 1 2 5〜 1 2 8を介して、 導通パッド 1 06〜 1 0 9にそれぞれ接続される外部端子接続部材〗 3 0〜 1 33、 および 外部端子接続部材 1 3 0〜 1 3 3に接続している外部端子 1 34〜 1 3 7を形成することにより、 弾性表面波フィルタ〗 00が完成する。 なお、 完成した弾性表面波フィルタ〗 00の図 1 4ないし図 1 6に おいて示した A— A' 線における断面図を図 1 7に示す。
上記弾性表面波フィルタ 1 00では、 図 1 7に示すように、 樹脂層 1 24と接合基板〗 2 9との間に接着層〗 24 aが形成されている。 また、 S AW素子 1 5 0の弾性表面波共振子 1 04 ■ 1 05に対向す る箇所には、 凹部 1 3 8 · 1 3 9が設けられている。 同様に、 接合基 板 1 2 9の弾性表面波共振子〗 0 〗 ~ 1 0 3に対向する箇所にも、 凹 部が設けられている。
上記では、 樹脂層、 接着層および各凹部により、 I DT (振動部) を有する弾性表面波共振子の保護空間が確保されているが、 これら樹 脂層、 接着層および各凹部の少なくともいずれかで保護空間が確保さ れていればよい。 〔実施の形態 2〕
本発明の実施の他の形態について、 図 4ないし図 6、 ならびに図 1 8ないし 2 2に基づいて説明すれば、 以下の通りである。 なお、 説明 の便宜上、 前記の実施の形態 1 にて示した部材と同一の機能を有する 部材には、 同一の符号を付記し、 その説明を省略する。
本実施の形態では、 図 6に示すように、 S AW素子 2 6と、 接合基 板 30とが接着層 3 2で貼り合わされている S AWフィルタ 52につ いて説明する。 本実施の形態では、 前記実施の形態〗 における励振部 分保護用中空構造を形成せず、 樹脂層 8の厚さにより I DTを保護す る空間が確保されている構成である。
以下、 上記の S AWフィルタの製造方法について、 図 4ないし図 6 に基づいてより詳細に説明する。
まず、 図 4に示すように、 工程〗 において、 S AW素子 2 6を作製 する。 例えば、 厚さ 0. 3 5 mmの 1 0 0 ηΐΓη φ 1_ i T a 03の圧電 基板 1上に、 I D T 2、 導通パッド 3、 リフレクタ (図示せず) およ び引き回し配線 (図示せず) 等を形成する。 つまり、 I DT 2、 導通 パッド 3、 リフレクタおよび引き回し配線等を、 L i T a 03の圧電 基板 1上に、 蒸着によるリフトオフ法等により、 例えば A I で形成す る。 また、 上記 L i T a03の圧電基板 1の I DT 2を形成していな い面には Τ ί等の保護膜 7を形成する。 また、 蒸着によるリフトオフ の際、 同時に、 後述の接合基板との貼り合わせ時の位置合わせ用のァ ライメン卜マーク 5も形成する。 なお、 図 4では S AW素子 2 6は 1 つしか図示されていないが、 圧電基板 1 に複数の S AW素子 2 6を備 えている集合基板となっていてよい。
次いで、 工程 2において、 L ί T a O 3の圧電基板 1 の I D T 2を 形成している面に感光性ポリイミド等の有機現像タイプの感光性樹脂 を塗布し、 乾燥させる。 この感光性樹脂を所定のパターンに従って露 光し、 現像することにより樹脂層 8を形成する。 このとき、 I D T 2 およびリフレクタ等を露出させる励振部分保護開口部 2 7、 ならびに 外部と接続するための導通パッド 3の一部を露出させる導通パッド開 口部 2 8を形成するようにする。 この樹脂層 8の厚さは、 後に接着す る接合基板 3 0の接着層 3 2の厚さと合わせて上記 I D T 2に接合基 板 3 0が接触しない厚さにする。 この厚さは、 例えば 2 0 t m程度が 好ましい。 また、 励振部分保護開口部 2 7の形成と同時に、 樹脂ブー ル、 樹脂止めを形成することもできる。 さらに、 後述の接合基板 3 0 に励振部分保護空間構造等の形成に必要なハーフエッチングが不要で あり、 工程を削減することができる。
これにより、 S A W素子 2 6が作製される。
次いで、 図 5に示すように、 工程 3〜工程 5において、 前記実施の 形態 1 の工程 2、 4、 5と同様にして、 接合基板 3 0を作製する。 つまり、 工程 3において、 例えば、 厚さ 0 . 2 0 m mの 1 0 0 m m Φガラス基板 1 0の一方の面 (上記し ί T a 0 3の圧電基板 1 の I D T 2を形成した面と対向させる面 (以下、 面 Aとする)) 全面にレジ スト 3 1 を施す。
さらに、 ガラス基板 1 0の他方の面 (以下、 面 Bとする) に導通パ ッド 3と導通するための導通パッド開口部 2 8に合わせた導通パッド 用開口部 2 4およびァライメン卜マーク用の開口部 1 5を有するレジ ス卜パターン 1 2を形成する。
次に、 工程 4において、 ガラス基板 1 0の面 Bのレジス卜パターン Ί 2に従ってフッ酸等で貫通エッチングして、 導通パッド用貫通孔 3 8およびァライメントマーク用貫通孔 1 9を形成する。 このとき、 片 側からの貫通エッチングであるので、 導通パッド用貫通孔 3 8および ァライメン卜マーク用貫通孔 1 9は、 順テーパー形状で形成される。 その後、 レジス卜パターン 1 2 · 3 1 を剥離する。 これによリ、 接合 基板 3 0を作製する。 なお、 図 5では接合基板 3 0は 1つしか図示さ れていないが、 ガラス基板 1 0に複数形成されていてよい。
次いで、 工程 5において、 接合基板 (ガラス基板〗 0 ) 3 0の面 A に接着剤からなる接着層 3 2を転写する。 この場合、 厚さ 2 0 jLt mの 樹脂層 8が圧電基板側に形成してあるので、 接合基板の全面に接着剤 を形成してもよい。 このとき、 導通パッド用貫通孔 3 8およびァライ メン卜マーク用貫通孔 1 9の部分には接着剤が付着することがない。 この接着層 3 2は、 S A W基板 2 6の樹脂層 8に形成してもよいが、 接合基板 3 0に形成することにより、 接着剤の I D T 2等への付着を 防止するため、 接合基板 3 0に設けるほうが好ましい。
次いで、 図 6に示すように、 工程 6において、 工程 1 〜2で作製し た S A W素子 2 6と工程 3〜 5で作製した接着層 3 2を有する接合基 板 3 0とを貼り合わせる。 このとき、 S A W素子 2 6のァライメン卜 マーク 5と接合基板 3 0のァライメン卜マーク用貫通孔〗 9とを位置 合わせする。 これにより、 S A W素子 2 6の導通パッド 3および導通 パッド開口部 2 8と接合基板 3 0の導通パッド用貫通孔 3 8とも位置 が合わせられる。 また、 樹脂層 8が充分な厚さを有しているので、 I D T 2や導通パッド 3等に接着剤が付着することを防止することがで さる。
次いで、 工程 7において、 上記導通パッド用貫通孔 3 8およびァラ ィメン卜マーク用貫通孔 1 9に、 例えば、 樹脂系 A gペーストを印刷 して充填し、 焼結することによリ、 金属充填部 3 3を形成する。 この とき、 接着層 3 2も同時に硬化させることができる。 また、 例えば樹 脂層 8に感光性樹脂を用いた場合には、 この感光性樹脂を硬化させる ことができる。 さらに、 金属充填部 3 3の不要な部分は例えば研磨す ることにより除去する。
次いで、 工程 8において、 例えば樹脂系 A gペース卜を所定のパタ —ンに従って印刷して、 焼結することにより金属充填部 (外部端子接 続部材) 3 3に接続している外部端子 3 5を形成する。 この印刷の際 、 接合基板 3 0には、 L成分や C成分をもたせた配線を形成してもよ い。 また、 上記金属充填部 3 3、 外部端子 3 5を同時に印刷して形成 してもよい。
次いで、 工程 9において、 実装時の衝撃を緩和するために、 S A W 素子 6に形成している保護膜 7全面に緩衝用の緩衝樹脂層 3 6を形成 する。 最後に、 所定の位置でダイシングすることにより S A Wフィル 夕 5 2が完成する。
上記のように、 完成した S A Wフィルタでは、 樹脂層 8に形成され ている励振部分保護開口部 2 7および接着層 3 2によって形成されて いる空間により I D T 2などの弾性表面波の励振部分 (振動部) を保 護することができる。
また、 外部端子 3 5は、 接合基板において金属充填部 3 3から延び ており、 外部に接続する回路等に合わせて任意の位置に変更すること ができるつまり、 外部端子 3 5の位置の自由度を向上させることがで さる。
さらに、 本実施の形態のよリ具体的な例の弾性表面波フィルタつい て、 図 1 8ないし図 2 2に基づいて説明する。
図 1 8に、 上記具体的な例の弾性表面波フィルタ 2 0 0の回路図を 示す。 上記弾性表面波フィルタ 2 0 0は、 I D T (振動部) を有する 弾性表面波共振子 2 0 1 〜 2 0 5をラダー型に備えている構成である 。 なお、 弾性表面波共振子 2 0 1 〜 2 0 3を直列共振子、 弾性表面波 共振子 2 0 4 - 2 0 5を並列共振子としている。
以下、 上記具体的な例の弾性表面波フィルタ 2 0 0について、 図 1 9ないし図 2 2に基づいて説明する。
まず、 図 1 9に示すように、 圧電基板 1上に弾性表面波共振子 2 0 1 〜 2 0 5、 引き回し配線 (素子配線) 2 0 6〜 2 1 1 を形成し、 S A W素子 2 5 0を作製する。
次いで、 図 2 0に示すように、 上記 S A W素子 2 5 0上に、 上記弾 性表面波共振子 2 0 ■!〜 2 0 5が露出する樹脂層開口部 2 〗 7 ~ 2 1 9、 および引き回し配線 2 0 6〜 2 1 1 の一部が露出する樹脂層開口 部 2 2 0 ~ 2 2 3を有する樹脂層 2 2 4が形成される。 この樹脂層 2 2 4は、 上記圧電基板 1 を全て覆っていてもよい。
次いで、 図 2 1 に示すように、 上記 S A W素子 2 5 0上に、 引き回 し配線 2 0 6〜2 0 9が露出するように貫通孔 2 2 5〜 2 2 8が形成 された接合基板 2 2 9を位置あわせして貼り合わせ、 S A W素子 2 5 0と接合基板 2 2 9とを接着する。 このとき、 接合基板 2 2 9には、 図示しない接着層が形成される。 そして、 上記樹脂層開口部 2 2 0〜 2 2 3および貫通孔 2 2 5〜2 2 8を介して、 引き回し配線 2 0 6〜 2 0 9にそれぞれ接続される外部端子接続部材 2 3 0〜2 3 3、 およ び外部端子接続部材 2 3 0〜 2 3 3に接続している外部端子 2 3 4〜 2 3 7を形成することにより、 弾性表面波フィルタ 2 0 0が完成する なお、 完成した弾性表面波フィルタ 2 0 0の図 1 9ないし図 2 1 に おいて示した A— A ' 線における断面図を図 2 2に示す。
上記弾性表面波フィルタ 2 0 0では、 図 2 2に示すように、 樹脂層 2 2 4と接合基板 2 2 9との間に接着層 2 2 4 aが形成されている。 また、 S A W素子 2 5 0の弾性表面波共振子 2 0 4 · 2 0 5は、 樹脂 層 2 2 4の厚さにょリ弾性表面波共振子の I D Tの保護空間が確保さ れている。 同様に、 弾性表面波共振子 2 0 1〜 2 0 3についても、 樹 脂層の厚さにょリ弾性表面波共振子の I D Tの保護空間が確保されて いる。
上記では、 樹脂層、 接着層および各凹部にょリ、 I D T (振動部) を有する弾性表面波共振子の保護空間が確保されているが、 これら樹 脂層、 接着層および各凹部の少なくともいずれかで保護空間が確保さ れていればよい。
〔実施の形態 3〕
本発明のさらに他の実施の形態について図 7に基づいて説明すれば 、 以下の通りである。 なお、 説明の便宜上、 前記実施の形態 1 および 2にて示した各部材と同一の機能を有する部材には、 同一の符号を付 記し、 その説明を省略する。
本実施の形態では、 前記実施の形態 2における、 接合基板 2 0の導 通パッド用貫通孔 3 8およびァライメン卜マーク用貫通孔 1 9をレー ザ一によつて形成するものである。
つまり、 実施の形態 2における工程 3および工程 4を、 図 7に示す ように、 工程 1〜工程 3に代えて接合基板 3 0を作製している。 つま リ、 実施の形態 2における工程 3において、 レジス卜パターン 1 2を フォトリソにより形成することなく全面に形成する (工程〗)。 そし て工程 4におけるエッチングをレーザーで行い、 導通パッド用貫通孔 3 8およびァライメン卜マーク用貫通孔 1 9を形成する (工程 2 )。 上記のように、 フォ トリソの工程を省略することができコス卜ダウン となる。 また、 レーザーのパワーをコントロールすることで、 順テー パー加工を行うこともできる。 レーザーにより、 ドロス 4 0と呼ばれ る溶融物が導通パッド用貫通孔 3 8およびァライメントマーク用貫通 孔 1 9の周囲に付着するが、 工程 3においてレジス卜パターン 1 2と 同時に容易に除去することができるため、 工程が増加することはない 。 なお、 工程 2の状態で軽くエッチングすることにより、 ドロスを除 去してもよい。 なお、 図 7では接合基板 3 0は 1 つしか図示されてい ないが、 ガラス基板〗 0に複数形成されていてよい。
その後、 実施の形態 2の工程 5に従って S A Wフィルタを製造する ことができる。
このように、 レーザーによりエッチングする場合、 ガラス基板 1 0 に代えて、 サファイア (A I 2 0 3の単結晶) 基板、 M g F基板、 M g O基板、 L i F基板、 C a F 2基板、 B a F基板等を用いることが できる。
なお、 レーザーによるエッチングに代えて、 サンドブラス卜処理を 行うことで、 導通パッド用貫通孔 3 8およびァライメン卜マーク用貫 通孔 1 9を形成してもよい。 〔実施の形態 4〕
本発明の他の実施の形態について図 8に基づいて説明すれば、 以下 の通りである。 なお、 説明の便宜上、 前記実施の形態 Ί ないし 3にて 示した各部材と同一の機能を有する部材には、 同一の符号を付記し、 その説明を省略する。
本実施の形態では、 図 8に示すように、 実施の形態 2において、 接 合基板 30の導通パッド用貫通孔 3 8およびァライメン卜マーク用貫 通孔 1 9を S AW素子 2 6に接着した後にレーザーで形成する例であ る。
すなわち、 工程〗 において、 実施の形態 2の工程 1 と同様に、 I D T 2、 導通パッド 3、 リフレクタ (図示せず) および引き回し配線 ( 図示せず) 等を L i T a O 3の圧電 »板 Ί上備える S AW素子 26を 作製する。 ただし、 本実施の形態では、 ァライメントマ一クを形成す る必要はない。 なお、 図 8では S AW素子 2 6は 1 つしか図示されて いないが、 圧電基板 1 に複数の S AW素子 2 6を備えている集合基板 となっていてよい。
次いで、 工程 2において、 実施の形態 2の工程 2と同様に S AW素 子 26に樹脂層 8を形成する。 この樹脂層 8は、 例えば感光性ポリイ ミド等の感光性樹脂を塗布し、 乾燥させた後、 露光して現像すること により形成すればよい。 このとき、 I D T 2などの弾性表面波の励振 部分を保護する空間 (励振部分保護開口部 43) を確保するようにす る。 この樹脂層 8の厚さは、 例えば 20 t mの厚さで形成すればよい 次いで、 工程 3において、 上記 S AW素子 2 6の樹脂層 8と、 全面 に接着層 42を有するガラス基板 1 0とを接着する。 ここで、 ガラス 基板 1 0を位置合わせする必要はない。
次いで、 工程 4において、 レーザーによリガラス基板 1 0と接着層 4 2とをエッチングし、 導通パッド用貫通孔 3 8を形成する。 これに より、 導通パッド 3が露出する。 このとき、 レーザーエッチングによ るドロス (図示せず) が生じるが、 除去が必要であればフッ酸等によ. るハーフエッチングを行うことによリ除去することができる。
次いで、 工程 5において、 前記の実施の形態 1で示したのと同様に 、 導通パッド用貫通孔 3 8を介して、 導通パッド 3と接続される外部 端子接続部材 (取り出し用配線) 3 5 aを形成し、 該外部端子接続部 材 3 5 aと接続するように外部端子 3 5を形成する。
最後に、 所定の位置でダイシングすることにより S A Wフィルタが 完成する。
以上のように、 上記の方法によれば、 工程 3においてガラス基板 1 0の位置合わせが不要であり、 造が容易となる。
〔実施の形態 5〕
本発明の実施の他の形態について、 図 9および図 1 0に基づいて説 明すれば、 以下の通りである。 なお、 説明の便宜上、 前記の実施の形 態 1ないし 4にて示した部材と同一の機能を有する部材には、 同一の 符号を付記し、 その説明を省略する。
本実施の形態では、 図 1 0に示すように、 実施の形態 2において、 S A W素子 2 6に接着層 3 2を設け、 ガラス基板〗 0を貼りあわせた 後に、 上記ガラス基板 1 0に導通パッド用貫通孔 3 8を形成する例で ある。
すなわち、 図 9に示すように、 工程 1 において、 実施の形態 1 のェ 程 1 と同様に、 例えば A I で、 I D T 2、 導通パッド 3、 リフレクタ (図示せず)、 ァライメン卜マーク 5および引き回し配線 (図示せず ) 等を L ί T a 0 3の圧電基板 1上に備える S A W素子 2 6を作製す る。 この後、 導通パッド 3上には、 リフトオフ法により、 例えば T i ( 2 0 n m ) および A u ( 1 0 0 n m ) を積層する (図示せず)。 本 実施の形態では L i T a O の圧電基板 1 に T i等の保護膜 7を形成 している。 なお、 図 9では S A W素子 2 6は 1 つしか図示されていな いが、 圧電基板 1 に複数の S A W素子 2 6を備えている集合基板とな つていてよい。
次に、 工程 2において、 感光性ポリイミド等の感光性樹脂を例えば 1 5 t mの厚さで塗布し、 乾燥させる。 さらに、 この感光性樹脂を露 光し、 現像することにより I D T 2およびリフレクタを保護するため の励振部分保護開口部 2 7、 導通パッド開口部 2 8、 およびダイシン グライン開口部 4 9を有する樹脂層 4 8を形成する。 このとき、 露光 条件を適正化し、 上記各開口部を順テーパー形状にする。 上記のよう に、 ダイシングライン開口部 4 9を形成することにより、 ダイシング 時の目詰まりを抑制することができる。 また、 ダイシングライン開口 部 4 9はダイシングに使用するためのダイシンダブレードの幅に同等 にすることが好ましい。 これにより、 ダイシング後における、 ガラス の突出部が破損しにくくなる。 次いで、 上記樹脂層 4 8に接着層 3 2 を転写する。
次いで、 図 1 0に示すように、 工程 3において、 ガラス基板 1 0を 上記接着層 3 2に貼り合わせ、 接着層 3 2を硬化させる。 この貼り合 わせは、 ガラス基板 1 0にパターンが形成されていないので、 位置あ わせが不要である。 このガラス基板 1 0は、 例えば、 1 5 0 1 1の 1 0 0 ΓΥΙ ΙΎΙ Φガラス基板である。 さらに、 上記ガラス基板 1 0に、 上記 導通パッド 3を露出させる貫通孔を形成するためのレジス卜パターン Ί 2を施す。 このレジス卜パターン 1 2には、 導通パッド 3を露出さ せるための開口部 1 4を形成する。 この開口部 1 4は、 導通パッド開 口部 2 8よりも大きく形成する。 これにより、 後に形成される貫通孔 と、 導通パッド開口部 2 8との間でオーバーハング形状 (キノコの形 、 すなわち、 導通パッド開口部 2 8よりもガラス基板 1 0側の貫通孔 の部分が小さい形状) となるのを防止することができる。 これによリ 、 後の外部端子の形成が容易となる。 特に蒸着により外部端子を形成 する場合、 外部端子の断線を防止することができる。 次いで、 工程 4において、 フッ酸等によるウエットエッチングによ リ、 順テーパー形状の導通パッド用貫通孔 3 8を形成する。 このとき 、 導通パッド 3は、 A uが積層されているので、 フッ酸による腐食を 防止することができる。 また、 A uに代えて P t層を形成していても 同様にフッ酸による腐食を防止することができる。 また、 保護膜 7は 、 上記導通パッド用貫通孔 3 8等を形成する際のエッチングにおける 保護膜としても機能する。
次いで、 工程 5において、 ガラス基板 1 0上に例えばネガ型フ才 卜 レジス卜を、 塗布し、 乾燥し、 さらに露光して現像することにより、 導通パッド用貫通孔 3 8と外部端子形成部に開口部を有するリフ卜才 フ用の逆テーパー形状レジストパターン (図示せず) を形成する。 こ のように、 ネガ型のフォトレジス卜を用いているので、 導通パッド用 貫通孔 3 8におけるレジスト残渣が生じることがなく、 さらに逆テー パーにすることができる。 そして、 例えば、 A u ( 1 0 0 n m ) / Ί i ( 2 0 η m ) / Ν i ( 5 0 0 η m ) / Τ i ( 2 0 n m ) の順に蒸着 してなる外部端子接続部材 2 2 aと外部端子 2 2 bとを一括して形成 し、 レジス卜パターンを除去する。
次いで、 工程 6において、 実装時の衝撃を緩和するために、 L i T a 0 3の圧電基板 1 に形成している金属からなる保護膜 7の全面に緩 衝用の緩衝樹脂層 2 3を形成する。 最後に、 所定の位置でダイシング することにより S A Wフィルタ 5 3が完成する。
〔実施の形態 6〕
本発明の実施の他の形態について、 図 1 1 および図 1 2、 ならびに 図 2 3ないし図 3 4に基づいて説明すれば、 以下の通りである。 なお 、 説明の便宜上、 前記の実施の形態 1ないし 5にて示した部材と同一 の機能を有する部材には、 同一の符号を付記し、 その説明を省略する 本実施の形態では、 図 1 2に示すように、 実施の形態 5において、 樹脂層 4 8上に第一配線 (取り出し用配線) 5 0を形成した構成であ る。
すなわち、 図 1 1 に示すように、 工程 1 において、 実施の形態 5の 工程 1 と同様に、 例えば A Iで、 I D T 2、 導通パッド 3、 リフレク 夕 (図示せず)、 ァライメン卜マーク 5および引き回し配線 (図示せ ず) 等を L i T a O 3の圧電基板 1上に備える S A W素子 6を作製す る。 この後、 導通パッド 3上には、 リフトオフ法により、 例えば T i ( 2 0 n m ) および A u ( 1 O O n m ) を積層する。 また、 L i T a 0 3の圧電基板〗 に T i等の金属からなる保護膜 7を形成している。 なお、 図 1 1 では S A W素子 6は 1つしか図示されていないが、 圧電 基板〗 に複数の S A W素子 6を備えている集合基板となっていてよい 次に、 工程 2において、 感光性ポリイミド等の感光性樹脂を例えば 1 5 mの厚さで塗布し、 乾燥させる。 さらに、 この感光性樹脂を露 光し、 現像することにより I D T 2およびリフレクタを保護するため の励振部分保護開口部 2 7、 導通パッド開口部 2 8、 およびダイシン グライン開口部 4 9を有する樹脂層 4 8を形成する。 このとき、 露光 条件を適正化し、 上記各開口部を順テーパー形状にする。 上記のよう に、 ダイシングライン開口部 4 9を形成することにより、 ダイシング 時の目詰まりを抑制することができる。 また、 ダイシングライン開口 部 4 9はダイシングに使用するためのダイシンダブレードの幅に同等 にすることが好ましい。 これにより、 ダイシング後における、 ガラス の突出部が破損しにくくなる。
次いで、 工程 3において、 樹脂層 4 8上に上記導通パッド 3に接続 している第一配線 5 0を導通パッドと同様にリフ卜オフ法により形成 する。 また、 この第一配線 5 0により、 L成分や C成分を入れてもよ い。 また、 この第一配線 5 0により、 導通パッド 3との接続部が延長 される。 これにより、 後に形成する貫通孔をこの第一配線 5 0が露出 するように形成すればよく、 外部端子の位置を自由に配置することが できる。
次いで、 図 1 2に示すように、 工程 4において、 ガラス基板 1 0に 接着層 3 2を形成し、 上記 S A W素子 6と貼り合わせ硬化させる。 こ の貼り合わせは、 ガラス基板〗 0にパターンが形成されていないので 、 位置あわせが不要である。 このガラス基板 1 0は、 例えば、 1 5 0 |11の 1 0 0 m m φガラス基板である。
次いで、 工程 5において、 上記ガラス基板 1 0に、 上記第一配線 5 0を露出させる貫通孔を形成するためのレジストパターン〗 2を施す 。 このレジス卜パターン 1 2には、 上記第一配線 5 0を露出させるた めの開口部を形成する。 そして、 フッ酸等によるゥエツ卜エッチング により、 順テーパー形状の導通パッド用貫通孔 3 8を形成する。 この とき、 ガラス基板 1 0の全面に接着層 3 2を形成しているので、 この 接着層 3 2はエッチングされずに残る。
次いで、 工程 6において、 上記接着層 3 2を発煙硝酸、 有機溶剤等 でエッチングする。 このとき、 導通パッド 3および第一配線 5 0は、 A uが積層されているので、 フッ酸等による腐食を防止することがで きる。 また、 A uに代えて P t層を形成していても同様にフッ酸等に よる腐食を防止することができる。 また、 保護膜 7は、 上記導通パッ ド用貫通孔 3 8等を形成する際のエッチングにおける保護膜としても 機能する。
また、 これら工程 5および 6の代わりに、 レーザーでエッチングし たり、 サンドブラス卜処理をしてもよい。 レーザーでエッチングする 場合、 ガラス基板 1 0の全面にレジス卜を塗布した後、 レーザーでェ ツチングする。 これにより、 レジス卜のパターン形成をする必要がな く、 さらに、 接着層 3 2のエッチングを同時に行うことができる。 そ して、 フッ酸処理を行う。 このフッ酸処理は、 ドロスと呼ばれる溶融 物の除去のためである。
次いで、 工程 7において、 導通パッド用貫通孔 3 8を介して例えば A u - S nはんだを印刷し、 熱処理することにより外部端子接続部材 2 2 aおよび外部端子 22 bを形成することができる。 次いで、 実装 時の衝撃を緩和するために、 L i T a O3の圧電基板 1 に形成してい る金属からなる保護膜 7の全面に緩衝用の緩衝樹脂層 23を形成する 。 最後に、 所定の位置でダイシングすることにより S AWフィルタ 5 4が完成する。
さらに、 本実施の形態のよリ具体的な例の弾性表面波フィルタつい て、 図 2 3ないし図 28に基づいて説明する。
図 23に、 上記具体的な例の弾性表面波フィルタ 300の回路図を 示す。 上記弾性表面波フィルタ 300は、 I DT (振動部) を有する 弾性表面波共振子 3 0 1〜3 05をラダー型に備えている。 なお、 弾 性表面波共振子 3 0 1 - 30 3を直列共振子、 弾性表面波共振子 30 4 - 30 5を並列共振子とし、 ィンダクタ 3 5 1 · 35 2を弾性表面 波共振子 3 04 - 3 05に直列に接続している構成である。
以下、 上記具体的な例の弾性表面波フィルタ 300について、 図 2 4ないし図 2 8に基づいて、 説明する。
まず、 図 24に示すように、 圧電基板 1上に弾性表面波共振子 30 1 〜305、 導通パッド (素子配線) 3 06〜30 9、 引き回し配線 (素子配線) 3 〗 0〜3 〗 5を形成し、 S AW素子 350を作製する 次いで、 図 25に示すように、 上記 S AW素子 3 50上に、 上記弾 性表面波共振子 30 1〜305が露出する樹脂層開口部 3 1 7〜3 1 9、 および導通パッド 306〜 309が露出する樹脂層開口部 320 〜323を有する樹脂層 3 24が形成される。 この樹脂層 3 24は、 上記圧電基板 1 を全て覆っていてもよい。
次いで、 図 2 6に示すように、 樹脂開口部 3 20〜3 23を介して 、 導通パッド 30 6〜 30 9に接続されている第一配線 36 1〜3 6 4を形成する。 なお、 第一配線 3 63 - 3 6 については、 インダク 夕 Lを持たせて形成している。 第一配線 3 6 3 · 3 64のィンダクタ Lは、 上記インダクタ 35 1 · 3 52に相当する。 上記ではインダク 夕しを第一配線に持たせているが、 くし歯状に電極を形成するなどし て第一配線にキャパシタンス Cを持たせることも可能である。
次いで、 図 2 7に示すように、 上記樹脂層 3 24上に、 第一配線 3 6 1 〜3 64の端部が露出するように貫通孔 3 25〜 3 28が形成さ れた接合基板 3 2 9を位置合わせして貼り合わせて、 S AW素子 3 5 0と接合基板 3 2 9とを図示しない接着層により接着する。 そして、 貫通孔 3 25〜 3 28を介して、 導通パッド 3 06〜 3 09と接続さ れる外部端子 3 40〜34 3を形成することにより弾性表面波フィル 夕 300が完成する。 なお、 上記外部端子 340〜34 3における上 記貫通孔 3 2 5〜3 28に形成されている部分については、 外部端子 接続部材とみなすことができる。 つまり、 上記外部端子 340〜 3 4 3は、 外部端子接続部材と外部端子とを一体に形成した構成となって いる。
なお、 完成した弾性表面波フィル夕 3 00の図 24ないし図 2 7に おいて示した Α_Α' 線における断面図を図 2 8に示す。
上記弾性表面波フィルタ 300では、 図 2 8に示すように、 樹脂層 324と接合基板 3 2 9との間に接着層 3 24 aが形成されている。 また、 S AW素子 350の弾性表面波共振子 3 04 · 3 05は、 樹脂 層 3 2 4の厚さにより弾性表面波共振子の I D Tの保護空間が確保さ れている。 同様に、 弾性表面波共振子 3 0 1〜 303についても、 樹 脂層の厚さにより弾性表面波共振子の I DTの保護空間が確保されて いる。
さらに、 上記弾性表面波フィルタ 3 00の変形例の弾性表面波フィ ルタ 3 80について、 図 2 9に基づいて説明する。 この弾性表面波フ ィルタ 3 80は、 上記弾性表面波フィルタ 300において、 接合基板 32 9における弾性表面波共振子 3 0 4 - 30 5と対向する箇所に凹 部 3 7 0 · 3 7 1 を設けたものである。 またさらに、 接合基板 3 2 9 における他の弾性表面波共振子に対向する箇所にも凹部が設けられて いる。 また、 さらに他の具体的な例の弾性表面波フィルタついて、 図 30 ないし図 3 4に基づいて説明する。
図 30に、 上記他の具体的な例の弾性表面波フィルタ 40 0の回路 図を示す。 上記弾性表面波フィルタ 40 0は、 I DT (振動部) を有 する弾性表面波共振子 40 〗〜405をラダー型に備えている。 なお 、 弾性表面波共振子 40 1〜4 0 3を直列共振子、 弾性表面波共振子 404 - 405を並列共振子とし、 インダクタ 45 1 - 45 2を弾性 表面波共振子 404 - 405に直列に接続している構成である。
以下、 上記他の具体的な例の弾性表面波フィルタ 400について、 図 3 1ないし図 34に基づいて、 説明する。
まず、 図 3 1 に示すように、 圧電基板 1上に弾性表面波共振子 40
1 - 405 , 引き回し配線 (素子配線) 408〜4 1 5を形成し、 S AW素子 4 50を作製する。
次いで、 図 3 2に示すように、 上記 S AW素子 450上に、 上記引 き回し配線 408~ 4 1 5の一部が露出する樹脂層開口部 4 1 6〜 4
2 3、 および上記弾性表面波共振子 40 1 〜405が露出する樹脂層 開口部 42 5〜42 7を有する樹脂層 4 24が形成される。 また、 こ の樹脂層 4 24は、 上記圧電基板 1 を全て覆っていてもよい。
次いで、 図 33に示すように、 樹脂開口部 4 1 8 - 42 1 ■ 4 2 2 - 42 3を介して引き回し配線 4 1 0 ■ 4 1 3 · 4 1 4 ' 4 1 5に接 続されている第一配線 4 6 1〜4 64を形成する。 なお、 第一配線 4 6 3 · 4 6 4については、 ィンダクタ Lを一体に形成している。 第一 配線 463 - 464のインダクタ Lは、 上記インダクタ 45 1 - 45 2に相当する。 上記ではインダクタしを第一配線に持たせているが、 第一配線にキャパシタンス Cを持たせることも可能である。 さらに、 樹脂開口部 4 1 7 - 4 1 9を介して引き回し配線 40 9 - 4 1 1 を接 続する第一配線 4 6 5、 および樹脂開口部 4 1 6 · 420を介して引 き回し配線 408 - 4 1 2を接続する第一配線 4 6 6を形成する。 ま た、 場合によっては、 引き回し配線 408~4 1 5を太くしたり、 弾 性表面波共振子 4 0 1〜4 0 5のバスバーの一部を太くして形成して もよく、 これにより、 引き回し配線 4 0 8〜4 1 5、 バスバーと、 第 一配線 4 6 1〜4 6 6のそれぞれとの接続性を高めることができる。 次いで、 図 3 4に示すように、 上記樹脂層 4 2 4上に、 第一配線 4 6 "!〜 4 6 4の端部が露出するように貫通孔 4 2 8〜4 3 1 が形成さ れた接合基板 4 3 2を位置合わせして貼り合わせて、 樹脂層 4 2 4と 接合基板 4 3 2とを図示しない接着層により接着する。 そして、 貫通 孔 4 2 8〜4 3 1 を介して第一配線 4 6 1〜4 6 4と接続する外部端 子 4 3 3〜4 3 6を形成することにより弾性表面波フィルタ 4 0 0が 完成する。 なお、 上記外部端子 4 3 3 4 3 6における上記貫通孔 4 2 8〜4 3 1 に形成されている部分については、 外部端子接続部材と みなすことができる。 つまり、 上記外部端子 4 3 3〜4 3 6は、 外部 端子接続部材と外部端子とを一体に形成した構成となっている。 上記 外部端子接続部材および外部端子 4 3 3〜4 3 6は、 例えば、 印刷技 術をつかって、 貫通孔 4 2 8〜4 3 1 に A u— S nはんだを充填し、 熱処理することにより形成することができる。 また、 外部端子は、 リ フ卜オフにより形成された薄膜であってもよい。 また、 外部端子接続 部材と外部端子とを分離して、 異なる方法で形成してもよい。
上記弾性表面波フィルタ 4 0 0では、 S A W素子 4 5 0の弾性表面 波共振子 4 0 4 ■ 4 0 5は、 樹脂層 4 2 4の厚さにより弾性表面波共 振子の I D Tの保護空間が確保されている。 同様に、 弾性表面波共振 子 4 0 1〜4 0 3についても、 樹脂層の厚さにより弾性表面波共振子 の I D Tの保護空間が確保されている。 また、 接合基板 4 3 2におけ る弾性表面波共振子 4 0 1 - 4 0 5に対向する箇所に凹部を設けるこ とにょリ、 保護空間を確保してもよい。
〔実施の形態 7〕
本発明の実施の他の形態について、 図 3 5ないし図 4 8に基づいて 説明すれば、 以下の通りである。 なお、 説明の便宜上、 前記の実施の 形態 1ないし 6にて示した部材と同一の機能を有する部材には、 同一 の符号を付記し、 その説明を省略する。
本実施の形態にかかる弾性表面波フィルタついて、 図 35ないし図
4 8に基づいて説明する。
國 3 5に、 本実施の形態にかかる弾性表面波フィルタ 500の回路 図を示す。 上記弾性表面波フィルタ 500は、 I DT (振動部) を有 する弾性表面波共振子 5 0 1 〜505をラダ 型に備えている。 なお 、 弾性表面波共振子 50 1〜 50 3を直列共振子、 弾性表面波共振子
504 - 5 05を並列共振子とし、 ィンダクタ 55 1 · 55 2を弾性 表面波共振子 5 04 - 5 05に直列に接続している構成である。
まず、 囡3 6に示すように、 圧電基板 1上に弾性表面波共振子 5 0 1 〜5 05、 導通パッド (素子配線) 506〜509、 引き回し配線 (素子配線) 5 1 0〜5 1 5を形成し、 S AW素子 5 5 0を作製する 本実施の形態では、 上記圧電基板 1 としては、 例えば、 厚さ 0.3 5 mmの L i T a 03からなる圧電基板を用いることができる。 また 、 弾性表面波共振子 50 1〜505は、 A I などの金属からなるくし 型電極部、 リフレクタからなっている。 さらに、 導通パッド (素子配 線) 5 06〜 5 0 9、 引き回し配線 (素子配線) 5 1 0 ~ 5 1 5につ いても A I などの金属から形成する。 これら、 弾性表面波共振子 5 0 1 〜5 05、 導通パッド (素子配線) 506〜509、 引き回し配線 (素子配線) 5 1 0〜 5 1 5は、 蒸着によるリフトオフ法にょリ形成 することができる。 また、 圧電基板 1 には、 弾性表面波共振子 5 0 1 〜 5 05、 導通パッド (素子配線) 50 6〜 5 09、 引き回し配線 ( 素子配線) 5 1 0~5 1 5の組み合わせを、 複数形成し、 複数の S A W素子の集合基板を形成することができる。 このように、 S AW素子 の集合基板を形成した場合には、 圧電基板 1上にァライメン卜マーク も形成する。 これら弾性表面波共振子 50 1 〜505、 導通パッド ( 素子配線) 50 6〜50 9.、 引き回し配線 (素子配線) 5 1 0〜5 1 5、 ァライメン卜マークの形成は、 同一プロセスで行うことができる 。 その後、 弾性表面波共振子 5 0 〗 ~ 5 0 5のくし型電極と反射器の 部分に S i Nや S i 0 2などの保護膜を例えば 5 n m成膜することが 好ましい。
次いで、 図 3 7に示すように、 上記 S A W素子 5 5 0上に、 上記弾 性表面波共振子 5 0 1〜5 0 5が露出する樹脂層開口部 5 1 7〜5 1 9、 および導通パッ ド 5 0 6〜5 0 9が露出する樹脂層開口部 5 2 0 〜5 2 3を有する樹脂層 5 2 4が形成される。 この樹脂層 5 2 4は、 上記圧電基板 1を全て覆っていてもよい。
上記樹脂層 5 2 4は、 感光性ポリイミドを例えば 1 0 mの厚さで 塗布し、 上記樹脂層開口部 5 1 7〜5 2 3を形成できるように、 露光 •現像することにより形成することができる。 また、 樹脂開口部 5 1 7〜5 2 3では、 弾性表面波共振子 5 0 〗〜5 0 5だけでなく、 各弾 性表面波共振子 5 0 1〜5 0 5に接続されている引き回し配線 5 1 0 〜5 1 5の直近部が露出するように形成してもよい。
また、 露光条件を適正化し、 上記樹脂開口部 5 2 0 - 5 2 3を順テ 一パー形状とすることが好ましい。 これによリ、 後に該樹脂開口部 5 2 0〜5 2 3に金属の蒸着あるいは導電ペース卜によリ配線等を形成 することが容易となる。
また、 S A W素子の集合基板とした場合には、 ダイシングライン部 を開口部とすることが好ましい。 ダイシングライン部に樹脂がないの で、 ダイシング時に目詰まりが起こリにくくすることができる。 なお 、 ダイシングライン部の開口幅は、 ダイシングプレード幅と同等とす れぱよい。
次いで、 図 3 8に示すように、 樹脂開口部 5 2 0〜 5 2 3を介して 導通パッド 5 0 6〜5 0 9が露出する貫通孔 5 2 5〜5 2 8が形成さ れた接合基板 5 2 9を、 位置合わせして、 S A W素子 5 5 0に貼りつ ける。
このとき、 上記接合基板 5 2 9としては、 ガラス基板が挙げられる 。 このガラス基板としては、 例えば厚さ 1 0 0 j mのものを使用すれ ばよい。 上記貼り付けの際には、 接合基板 5 2 9の全面に接着剤を塗 布して接着層 (図示せず) を形成し、 上記樹脂層 5 2 4に貼り付け、 接着剤を硬化させる。
また、 接合基板 5 2 9にガラス基板を使用して、 樹脂層 5 2 4に貼 リ付けた後に貫通孔 5 2 5〜5 2 8を形成してもよい。 この場合、 接 合基板 5 2 9 (ガラス基板) に貫通孔等のパタニングがされていない ので、 位置合わせが不要である。 また、 貫通孔 5 2 5〜 5 2 8を形成 する場合には、 圧電基板 1上のァライメン卜マークを使って、 圧電基 板 1 上の導通パッド 5 0 6 ~ 5 0 9に対するガラス基板における貫通 孔 5 2 5〜5 2 8をレーザーで順テーパー状であければよい。 このと き、 レーザーにより接着剤も除去される。 ただし、 この場合、 ガラス 基板面に全面にレジス卜を塗布し、 レーザー加工後にフッ酸処理する ことが好ましい。 レーザー加工するとドロスと呼ばれる溶融物が付着 するので、 フッ酸でそれを除去するためである。
次いで、 図 3 9に示すように、 上記接合基板 5 2 9上に、 樹脂開口 部 5 2 0〜 5 2 3および貫通孔 5 2 5〜 5 2 8を介して導通パッド 5 0 6〜 5 0 9と接続するように、 第二配線 5 3 0〜5 3 3を形成する 。 なお、 第二配線 5 3 2 - 5 3 3については、 インダクタしを持たせ て形成している。 第二配線 5 3 2 - 5 3 3のインダクタ Lは、 上記ィ ンダクタ 5 5 1 - 5 5 2に相当する。 上記ではインダクタしを第二配 線に持たせているが、 第二配線にキャパシタンス Cを持たせることも 可能である。
上記第二配線 5 3 0〜 5 3 3は、 接合基板 5 2 9上に、 例えばリフ 卜オフで形成することができる。 第二配線 5 3 0〜 5 3 3の構造は、 例えば、 A u ( 1 O O n m) /T i ( 2 0 n m) /A I 電極 ( 1 At m ) /T i ( 1 0 0 n m) とすることが好ましい。
次いで、 図 4 0に示すように、 上記接合基板 5 2 9上に、 第二配線 5 3 0 - 5 3 3の端部が露出するように上部樹脂層開口部 5 3 4〜5 3 7が形成された上部樹脂層 (上部絶縁層、 絶縁パターン) 5 3 8を 形成する。 上部樹脂層に使用される材料としては、 感光性ポリイミ ド 、 ベンゾシクロブテン、 環ォレフイン系樹脂、 エポキシ系樹脂等が挙 げられる。 そして、 上部樹脂層開口部 5 3 4〜 5 3 7を介して第二配 線 5 3 0〜 5 3 3の端部に接続するように外部端子 5 3 8〜 5 4 1 を 形成することにより弾性表面波フィルタ 5 0 0が完成する。 なお、 上 記外部端子 5 3 8〜 5 4 1 における上部樹脂層開口部 5 3 4〜5 3 7 に形成されている部分については、 外部端子接続部材とみなすことが できる。 つまり、 上記外部端子 5 3 8〜 5 4 1 は、 外部端子接続部材 と外部端子とを一体に形成した構成となっている。 上記外部端子接続 部材および外部端子は、 例えば、 印刷技術をつかって、 上部樹脂層開 口部 5 3 4〜 5 3 7に A u— S nはんだを充填し、 熱処理することに より形成することができる。 また、 外部端子は、 リフトオフにより形 成された薄膜であってもよい。 また、 外部端子接続部材と外部端子と を分離して、 異なる方法で形成してもよい。
さらに、 実施の形態 1 に示したように、 緩衝用の導電性樹脂を圧電 基板の裏面に塗布し硬化させてもよい。 または、 予め圧電基板の裏面 に金属を成膜し、 その上から緩衝用樹脂を塗布しても良い。 上記導電 性樹脂あるいは金属により電磁波のシールド効果を発揮する。
また、 複数の S A W素子の集合基板を形成した場合には、 ダイシン グにより、 個々の弾性表面波装置を得ることができる。
上記のように、 導通パッドと、 外部端子との位置をずらすことが容 易にできるため、 弾性表面波フィルタの設計の自由度を高めることが できる。
なお、 完成した弾性表面波フィルタ 5 0 0の図 3 6ないし図 4 0に おいて示した A— A ' 線における断面図を図 4 1 に示す。
上記弾性表面波フィルタ 5 0 0では、 図 4 1 に示すように、 樹脂層 5 2 4と接合基板 5 2 9との間に接着層 3 2 4 aが形成されている。 また、 S A W素子 5 5 0の弾性表面波共振子 5 0 4 ■ 5 0 5は、 樹脂 層 5 2 4の厚さにより弾性表面波共振子の I D Tの保護空間が確保さ れている。 同様に、 弾性表面波共振子 5 0 1 ~ 5 0 3についても、 樹 脂層の厚さにより弾性表面波共振子の I D Tの保護空間が確保されて いる。
さらに、 上記弾性表面波フィルタ 5 0 0の変形例の弾性表面波フィ ルタ 5 8 0について、 図 4 2に基づいて説明する。 この弾性表面波フ ィルタ 5 8 0は、 上記弾性表面波フィルタ 5 0 0において、 接合基板 5 2 9における弾性表面波共振子 5 0 4 ■ 5 0 5の I D Tと対向する 箇所に凹部 5 7 0 - 5 7 1を設けたものである。 またさらに、 接合基 板 5 2 9における他の弾性表面波共振子の I D Tに対向する箇所にも 凹部が設けられている。
さらに、 本実施の形態にかかる他の弾性表面波フィルタついて、 図 4 3ないし図 4 8に基づいて、 説明する。
図 4 3に、 本実施の形態にかかる他の弾性表面波フィルタ 6 0 0の 回路図を示す。 上記弾性表面波フィルタ 6 0 0は、 I D T (振動部) を有する弾性表面波共振子 6 0 ■! 〜 6 0 5をラダー型に備えている。 なお、 弾性表面波共振子 6 0 〗〜 6 0 3を直列共振子、 弾性表面波共 振子 6 0 4 ■ 6 0 5を並列共振子とし、 ィンダクタ 6 5 1 · 6 5 2を 弾性表面波共振子 6 0 4 - 6 0 5に直列に接続している構成である。 まず、 図 4 4に示すように、 圧電基板 1上に弾性表面波共振子 6 0 1 〜 6 0 5、 引き回し配線 (素子配線) 6 0 6 ~ 6 1 3を形成し、 S A W素子 6 5 0を作製する。
次いで、 図 4 5に示すように、 上記 S A W素子 6 5 0上に、 上記弾 性表面波共振子 6 0 1 〜6 0 5が露出する樹脂層開口部 6 1 4〜 6 1 6、 および引き回し配線 6 0 6〜 6 1 3が露出する樹脂層開口部 6 1 7〜 6 2 4を有する樹脂層 6 2 5が形成される。 この樹脂層 6 2 5は 、 上記圧電基板 1 を全て覆っていてもよい。
次いで、 図 4 6に示すように、 上記樹脂層 6 2 5上に、 樹脂開口部 6 1 7〜 6 2 4を介して引き回し配線 6 0 6 ~ 6 1 3が露出するよう に貫通孔 6 2 6〜6 33が形成された接合基板 6 34を位置あわせし て貼り合わせ、 樹脂層 6 25と接合基板 63 4とを接着する。 このと き、 樹脂層 6 2 5には、 図示しない接着層が形成される。 そして、 上 記樹脂開口部 6 1 7 - 6 20 - 6 2 1 - 6 2 4および貫通孔 6 2 6 ■ 6 2 9 - 6 3 0 - 6 33を介して引き回し配線 6 06 · 60 9 · 6 1 0 - 6 1 3に接続するように第二配線 6 3 5〜6 38を形成する。 例 ぇぱ、 導電ペース卜で上記樹脂開口部 6 1 7 - 6 20 - 62 1 - 6 2 4および貫通孔 6 2 6 · 6 29 · 6 3 0 ■ 6 3 3を埋めるとともに、 導電ペース卜で配線を形成することにより第二配線 6 3 5〜 63 8を 形成することができる。 なお、 第二配線 6 3 7 - 63 8については、 インダクタ Lを持たせて形成している。 第二配線 63 7 · 6 3 8のィ ンダクタ Lは、 上記インダクタ 6 5 1 · 6 5 2に相当する。 上記では インダクタ Lを第二配線に持たせているが、 第二配線にキャパシタン ス Cを持たせることも可能である。 さらに、 樹脂開口部 6 1 8 · 62 2および貫通孔 62 7 · 6 3 1を介して引き回し配線 6 07 · 6 1 1 を接続する第二配線 63 9、 および樹脂開口部 6 1 9 · 62 3および 貫通孔 6 2 8 - 63 2を介して引き回し配線 608 - 6 1 2を接続す る第二配線 6 40を形成する。
次いで、 図 4 7に示すように、 上記接合基板 6 25上に、 第二配線 63 5〜 6 3 8の端部が露出するように上部樹脂層開口部 6 4 1 〜 6 44が形成された上部樹脂層 (上部絶縁層) 645を形成する。 そし て、 上部樹脂層開口部 6 4 1 - 644を介して第二配線 63 5〜 6 3 8の端部に接続するように外部端子 6 4 6〜 64 9を形成することに より弾性表面波フィルタ 600が完成する。
また、 場合によっては、 引き回し配線 6 0 6〜6 1 3を太くしたり、 弾性表面波共振子 60 ·! 〜 605のバスバーの一部を太くして形成し てもよく、 これにより、 引き回し配線 6 06〜 6 1 3、 バスバーと、 第二配線 6 3 5〜6 40との接続性を高めることができる。
なお、 上記外部端子 6 4 6- 6 4 9における上記上部樹脂層開口部 6 4 1 〜 6 4 4に形成されている部分については、 外部端子接続部材 とみなすことができる。 つまり、 上記外部端子 6 4 6〜 6 4 9は、 外 部端子接続部材と外部端子とを一体に形成した構成となっている。 上 記外部端子接続部材および外部端子は、 例えば、 印刷技術をつかって, 上部樹脂層開口部 6 4 1〜 6 4 4に八リー 5 门はんだを充填し、 熱処 理することにより形成することができる。 また、 外部端子は、 リフト オフにより形成された薄膜であってもよい。 また、 外部端子接鐃部材 と外部端子とを分離して、 異なる方法で形成してもよい。
また、 完成した弾性表面波フィルタ 6 0 0の図 4 4ないし図 4 7に おいて示した A— A ' 線における断面図を図 4 8に示す。
上記弾性表面波フィルタ 6 0 0では、 図 4 8に示すように、 樹脂層 6 2 5と接合基板 6 3 4との間に接着層 6 2 5 aが形成されている。 また、 S A W素子 6 5 0の弾性表面波共振子 6 0 4 · 6 0 5は、 樹脂 層 6 2 5の厚さにより弾性表面波共振子の I D Tの保護空間が確保さ れている。 同様に、 弾性表面波共振子 6 0 1 〜 6 0 3についても、 樹 脂層の厚さにより弾性表面波共振子の I D Tの保護空間が確保されて いる。 また、 接合基板 6 3 4における弾性表面波共振子 6 0 1 〜 6 0 5に対向する箇所に凹部を設けることにより、 保護空間を確保しても よい。 また、 上記凹部は、 接合基板 6 3 4に貫通孔 6 2 6〜 6 3 3を 形成するのと同時に形成することができる。
また、 上記実施の形態 1ないし 7では、 上記弾性表面波フィル夕は 、 圧電基板上に、 I D丁、 リフレクタ、 引き回し配線、 および導通パ ッドを形成したが、 圧電基板 1上には、 I D Tおよびリフレクタのみ を形成してもよい。 この場合、 樹脂層には、 上記 I D Tのバスバーが 露出する樹脂開口部を設け、 配線は樹脂層上または接合基板上に形成 すればよい。 これにより、 一部の配線をなくすことができ、 弾性表面 波フィルタを小型化することができる。
また、 上記実施の形態 1ないし 7では、 樹脂開口部、 貫通孔および 上部樹脂開口部の位置をずらして形成しているが、 これら樹脂開口部 、 貫通孔および上部樹脂開口部の位置を一致させて形成してもよい。 これにより、 導通パッドや一部の配線をなくすことができ、 弾性表面 波フィルタを小型化することができる。 〔実施の形態 8〕
上記実施の形態 1 〜7では、 圧電素子としての S A W素子について 説明したが、 上記実施の形態 1 〜 7における上記圧電素子として S A W素子に代えて圧電薄膜素子を用いることができる。
この圧電薄膜素子を用いた圧電薄膜フィルタ (圧電部品) の一例に ついて図 4 9ないし図 5 6に基づいて説明する。
図 4 9に本実施の形態にかかる圧電薄膜フィルタ 7 0 0の回路図を 示す。 上記圧電薄膜フィルタ 7 0 0は、 圧電薄膜共振子 (振動部) 7 0 1 〜 7 0 4をラダー型に備えている。 なお、 上記圧電薄膜フィルタ 7 0 0では、 圧電薄膜共振子 7 0 1 · 7 0 3を並列共振子、 圧電薄膜 共振子 7 0 2 · 7 0 4を直列共振子となっている。
上記圧電薄膜フィルタ 7 0 0の製造方法について図 5 0ないし図 5 5に基づいて説明する。 この製造方法は、 実施の形態 7に記載の製造 方法において、 弾性表面波素子に代えて圧電薄膜素子を用いた構成で ある。
まず、 図 5 0、 図 5 1 に示すように、 圧電薄膜共振子 7 0 1 〜 7 0 4を備える圧電薄膜素子 (圧電素子) 7 0 5を作製する。 上記圧電薄 膜素子 7 0 5は、 シリコンからなる支持基板 7 0 6、 その支持基板上 に形成されている S i 0 2、 S i 0 2と A I 2 0 3とからなる層あるい は A I 2 0 3と S i O 2とからなる層等である絶縁膜 7 0 7を備えてい る。 さらに、 支持基板 7 0 6は、 支持基板 7 0 5の厚さ方向に貫通し、 絶縁膜 7 0 7まで達する開口部 (空洞部) 7 0 8を備えている。 また、 この絶縁膜 7 0 7上には、 順に、 A I等からなる下部電極 (電極) 7 0 9 . 7 1 0、 Z n Oあるいは A l N等からなる圧電薄膜 7 1 1 、 お よび A I等からなる上部電極 (電極) 7 1 2 · 7 Ί 3 · 7 1 4を備え ている。 上記絶縁膜 707はダイヤフラムを形成している。 このダイ ャフラムは、 上記開口部 (空洞部) 7 0 8に面している。 各圧電薄膜 共振子 7 0 1 〜7 04は、 ダイヤフラム上にて、 少なくとも 1層以上 の圧電薄膜を有する薄膜部の上下面を一対の下部電極および上部電極 を対向させて挟む構造となっている。 本実施の形態の構成では、 圧電 薄膜共振子 70 1 · 702の上部電極が一体化されて上部電極 7 1 2 となっている。 圧電薄膜共振子 70 1の下部電極 7 1 0は G N Dとな つている。 圧電薄膜共振子 7 0 2 - 7 04および圧電薄膜共振子 70 3の下部電極が一体化されて下部電極 7 0 9となっている。 圧電薄膜 共振子 7 0 3の上部電極 7 1 4は G N Dとなっている。 圧電薄膜共振 子 704の上部電極は上部電極 7 1 3となっている。 また、 破線部 7 1 5は、 この圧電薄膜素子 705のダイヤフラムを示している。 なお, 図 50では、 圧電薄膜 7 1 1 は省略されている。
次いで、 図 52に示すように、 上記圧電薄膜素子 705上に、 上部 電極 7 1 2 · 7 1 3 · 7 1 4が露出する樹脂開口部 7 1 9 - 7 1 7 - 7 1 8、 下部電極 7 1 0が露出する樹脂開口部 7 1 6、 および圧電薄 膜共振子 70 1〜 7 04が露出する樹脂開口部 7 20を有する樹脂層 7 2 1 を形成する。
次いで、 図 53に示すように、 上記樹脂層 7 2 1上に、 樹脂開口部 7 1 9 - 7 1 7 - 7 1 8を介して上部電極 7 1 2 · 7 1 3 ' 7 1 4が 露出する貫通孔 72 5 - 72 3 - 72 4, 樹脂開口部 7 1 6を介して 下部電極 7 1 0が露出する貫通孔 7 2 2を備える接合基板 7 2 6を位 置合わせして、 図示しない接着層により貼り付ける。 そして、 上記接 合基板 7 2 6上に、 樹脂開口部 7 〗 6 ~ 7 1 9および貫通孔 7 2 2〜 7 25を介して、 上部電極 7 1 0、 下部電極 7 1 2、 上部電極 7 1 3 - 7 1 4と接続するように、 第二配線 7 2 7〜 7 30を形成する。 な お、 この第二配線 7 2 7〜 73 0に、 インダク夕 Lまたはキャパシタ ンス Cを持たせることも可能である。 また、 上記接合基板 7 2 6とし ては、 支持基板 7 0 6と線膨張係数が近い基板であることが好ましく 、 例えば、 硬質ガラス基板が好ましい。 支持基板 7 0 6と接合基板 7
2 6との線膨張係数が近いことにより、 応力、 たわみ、 ひずみの発生 を抑制することができる。 これにより、 製造される圧電薄膜フィル夕 への影響を抑えることができ、 特性の変化、 接合強度の信頼性を向上 させることができる。
次いで、 図 5 4に示すように、 上記接合基板 7 2 6上に、 第二配線 7 2 7〜 7 3 0の端部が露出するように、 上部樹脂層開口部 7 3 1 〜 7 3 4を有する上部樹脂層 7 3 5を形成する。 そして、 上記上部樹脂 層開口部 7 3 1 〜 7 3 4を介して第二配線 7 2 7〜 7 3 0に接続する ように、 外部端子 7 3 6 - 7 3 9を形成する。 なお、 上記外部端子 7
3 6〜 7 3 9における上記上部樹脂層開口部 7 3 1 〜 7 3 4に形成さ れている部分については、 外部端子接続部材とみなすことができる。 つまり、 上記外部端子 7 3 6〜 7 3 9は、 外部端子接続部材と外部端 子とを一体に形成した構成となっている。 また、 上記外部端子接続部 材および外部端子 7 3 6〜 7 3 9は、 例えば、 印刷技術をつかって、 上部樹脂層開口部 7 3 1 〜 7 3 4に八リー 3 门はんだを充填し、 熱処 理することにより形成することができる。 また、 外部端子接続部材ぉ よび外部端子 7 3 6〜 7 3 9は、 リフ卜オフにより形成された薄膜で あってもよい。 また、 外部端子接続部材と外部端子 7 3 6〜 7 3 9と を分離して、 異なる方法で形成してもよい。
さらに、 図 5 1 に示す支持基板 7 0 6の開口部 7 0 8を覆うように 、 例えばアルミナ製のフタ材を貼り付けることによリ圧電薄膜フィル タ 7 0 0が完成する。
なお、 完成した圧電薄膜フィルタ 7 0 0の図 5 0ないし図 5 4にお いて示した B— B ' 線における断面図を図 5 5に示す。
上記圧電薄膜フィルタ 7 0 0では、 図 5 5に示すように、 圧電薄膜 素子 7 0 5の圧電薄膜共振子 7 0 2 · 7 0 4は、 樹脂層 7 2 6の厚さ により圧電薄膜共振子の保護空間が確保されている。 同様に、 圧電薄 膜共振子 7 0 1 - 7 0 3についても、 樹脂層 7 2 6の厚さにより圧電 薄膜共振子の保護空間が確保されている。
本実施の形態では、 樹脂層の厚さにより保護空間を確保したが、 接 合基板に凹部を形成することによって保護空間を確保してもよい。
また、 圧電薄膜フィルタ 7 0 0の変形例としては、 例えば、 図 5 6 に示す圧電薄膜フィルタ 7 8 0がある。 図 5 6に示すように、 圧電薄 膜フィルタ 7 8 0は、 圧電薄膜フィルタ 7 0 0において、 開口部 7 0 8が設けられている支持基板 7 0 6を、 凹部 7 0 8 aが設けられてい る支持基板 7 0 6 aに代えた構成である。 この圧電薄膜フィルタ 7 8 0では、 凹部 7 0 8によりダイヤフラムを確保することができる。 ま た、 凹部 7 0 8によりダイヤフラムが覆われているため、 圧電薄膜フ ィルタ 7 0 0のようにフタ材を用いる必要がなくなる。
また、 圧電薄膜フィルタの更なる変形例として、 支持基板に開口部 や凹部を設けることなく、 下部電極と支持基板との間に空間を形成し た圧電薄膜共振子を用いてもよい。
本発明は上述した各実施形態に限定されるものではなく、 請求項に 示した範囲で種々の変更が可能であり、 異なる実施形態にそれぞれ開 示された技術的手段を適宜組み合わせて得られる実施形態についても 本発明の技術的範囲に含まれる。 産業上の利用可能性
遅延線、 フィルタ等に用いられる、 弾性表面波装置および圧電薄膜 フィルタ等の圧電部品を小型化することができる。 また、 この圧電部 品が使用される、 携帯電話機等の通信装置を小型化することができる

Claims

請求の範囲
1 . 基板上に形成された少なくとも一つの振動部および該振動部に接 続されている素子配線を有する圧電素子と、 貫通孔を有する接合基板 とが、 上記振動部と対向するように、 接着層により接 されている圧 電部品であって、
上記振動部の保護空間を有し、
上記貫通孔に形成された外部端子接続部材を介して上記素子配線に 接続されている外部端子が貫通孔からずれた位置にあることを特徴と する圧電部品。
2 . 基板上に形成された少なくとも一つの振動部および該振動部に接 続されている素子配線を有する圧電素子と、 貫通孔を有する接合基板 とが、 上記振動部と対向するように、 接着層により接着されている圧 電部品であって、
上記振動部の保護空間を有し、
上記接着層と接合基板との間に上記素子配線に接続されている第一 配線を有し、 上記貫通孔に形成された外部端子接続部材を介して該第 —配線と外部端子とが接続されていることを特徴とする圧電部品。
3 . 上記第一配線は、 キャパシタンスまたはインダクタのいずれかを 備えることを特徴とする請求項 2に記載の圧電部品。
4 . 基板上に形成された少なくとも一つの振動部および該振動部に接 続されている素子配線を有する圧電素子と、 貫通孔を有する接合基板 とが、 上記振動部と対向するように、 接着層にょリ接着されている圧 電部品であって、
上記振動部の保護空間を有し、
上記接合基板上に上記素子配線に接続されている第二配線を有し、 接合基板上には第二配線の一部が露出するように設けられた絶縁層開 口部を有する上部絶縁層を有し、
上記絶縁層開口部に形成された外部端子接続部材を介して第二配線 と上部絶縁層上に形成された外部端子とが接続されていることを特徴 とする圧電部品。
5 . 上記第二配線は、 キャパシタンスまたはインダクタのいずれかを 備えることを特徴とする請求項 4に記載の圧電部品。
6 . 上記保護空間は、 接着層の厚さにより確保されていることを特徴 とする請求項 1 に記載の圧電部品。
7 . 上記保護空間は、 上記接合基板の振動部と対向する面に形成され ている凹部であることを特徴とする請求項〗 に記載の圧電部品。
8 . 上記接着層は、 熱硬化性樹脂、 熱可塑性樹脂、 紫外線硬化性樹脂 のいずれかからなることを特徴とする請求項 1 に記載の圧電部品。
9 . 上記接着層は、 接着剤からなり、 さらに該接着剤からなる接着層 と圧電素子との間に、 樹脂層を有することを特徴とする請求項 1 に記 載の圧電部品。
1 0 . 上記接合基板は、 ガラス、 水晶、 溶融石英などのウエットエツ チング可能な材料からなることを特徴とする請求項 1 に記載の圧電部 口
ΠΠ ο
1 1 . 上記圧電素子は、 基板に形成されたくし型電極部からなる振動 部を有する弾性表面波素子であることを特徴とする、 請求項 1 に記載 の圧電部品。
1 2 . 上記圧電素子は、 開口部または凹部を有する基板の該開口部又 は凹部上に形成されている、 少なくとも 1層以上の圧電薄膜を有する 薄膜部の上下面を少なくとも一対の上部電極および下部電極を対向さ せて挟む構造の振動部を有する圧電薄膜素子であることを特徴とする 、 請求項 1 に記載の圧電部品。
1 3 . 上記圧電素子は、 基板上に形成されている少なくとも 1層以上 の圧電薄膜を有する薄膜部の上下面を少なくとも一対の上部電極およ び下部電極を対向させて挟む構造の振動部を有し、 且つ、 基板と振動 部における下部電極の間には空間を有する圧電薄膜素子であることを 特徴とする請求項 1 に記載の圧電部品。
1 4 . 基板上に形成された少なくとも一つの振動部および該振動部に 接続されている素子配線を有する圧電素子と、 貫通孔を有する接合基 板とが、 上記振動部と対向するように、 接着層にょリ接着されている 圧電部品の製造方法であって、
上記基板に少なくとも一つの振動部および該振動部に接続されてい る素子配線を形成して圧電素子を作製する工程と、
上記接合基板に貫通孔を形成する工程と、
上記圧電素子と上記接合基板とを、 接着層により上記振動部の保護 空間を確保するように接着する工程と、
上記貫通孔を介して上記素子配線に接続される外部端子接続部材を 形成する工程と、
上記外部端子接続部材に接続される外部端子を形成する工程とを含 むことを特徴とする圧電部品の製造方法。
1 5 . 上記圧電素子と上記接合基板とを、 接着層により上記振動部の 保護空間を確保するように接着する工程において、 上記素子配線と上 記貫通孔との位置合わせを行なうことを特徴とする請求項 1 4に記載 の圧電部品。
1 6 . 基板上に形成された少なくとも一つの振動部および該振動部に 接続されている素子配線を有する圧電素子と、 貫通孔を有する接合基 板とが、 上記振動部と対向するように、 接着層により接着されている 圧電部品の製造方法であって、
基板に少なくとも一つの振動部及び該振動部に接続されている素子 配線を形成して圧電素子を作製する工程と、
上記圧電素子と上記接合基板とを、 接着層により上記振動部の保護 空間を確保するように接着する工程と、
上記接合基板に貫通孔を形成する工程と、
上記貫通孔を介して上記素子配線に接続させるように外部端子接続 部材を形成する工程と、
上記外部端子接続部材 (こ接続させるように外部端子を形成する工程 とを含むことを特徴とする圧電部品の製造方法。
Ί 7 . 上記振動部の保護空間を上記接合基板に凹部を形成することに よリ確保することを特徴とする請求項 1 4に記載の圧電部品の製造方 法。
1 8 . 上記貫通孔を、 レジス卜パターンを用いてウエットエッチング により形成することを特徴とする請求項 1 4に記載の圧電部品の製造 方法。
1 9 . 上記貫通孔をレーザーエッチングまたはサンドプラス卜処理に より形成することを特徴とする請求項 1 4に記載の圧電部品の製造方 法。
2 0 . 金属の蒸着にょリ上記外部端子接続部材および/または外部端 子を形成することを特徴とする請求項 1 4に記載の圧電部品の製造方 法。 2 1 . 導電性ペース卜を印刷した後、 焼結することにより上記外部端 子接続部材および/または外部端子を形成することを特徴とする請求 項 1 4に記載の圧電部品の製造方法。
2 2 . 貫通孔に導電性ペース卜を印刷した後に、 導電性ペース卜によ リ配線を形成して上記外部端子を形成することを特徴とする請求項 1 4に記載の圧電部品の製造方法。
2 3 . 複数の上記圧電素子を備える集合基板を形成し、 上記接合基板 を集合基板に接着した後にダイシングすることを特徴とする請求項 1 4に記載の圧電部品の製造方法。
2 4 . 上記接合基板が上記集合基板よりも小さいことを特徴とする請 求項 2 3に記載の圧電部品の製造方法。 2 5 . 上記圧電素子は、 基板に形成されたくし型電極部からなる振動 部を有する弾性表面波素子であることを特徴とする、 請求項〗 4に記 載の圧電部品の製造方法。
2 6 . 上記圧電素子は、 開口部または凹部を有する基板の該開口部又 は凹部上に形成されている、 少なくとも 1層以上の圧電薄膜を有する 薄膜部の上下面を少なくとも一対の上部電極および下部電極を対向さ せて挟む構造の振動部を有する圧電薄膜素子であることを特徴とする 、 請求項 1 4に記載の圧電部品の製造方法。
2 7 . 上記圧電素子は、 基板上に形成されている少なくとも 1層以上 の圧電薄膜を有する薄膜部の上下面を少なくとも一対の上部電極およ び下部電極を対向させて挟む構造の振動部を有し、 且つ、 基板と振動 部における下部電極の間には空間を有する圧電薄膜素子であることを ; 特徴とする、 請求項〗 4に記載の圧電部品の製造方法。
PCT/JP2003/009311 2002-07-31 2003-07-23 圧電部品およびその製造方法 WO2004012330A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020047011939A KR100642932B1 (ko) 2002-07-31 2003-07-23 압전 부품
AU2003252240A AU2003252240A1 (en) 2002-07-31 2003-07-23 Piezoelectric component and production method therefor
US10/485,340 US20040207033A1 (en) 2002-07-31 2003-07-23 Piezoelectric component and production method therefor
EP03771285A EP1458094A4 (en) 2002-07-31 2003-07-23 PIEZOELECTRIC COMPONENT AND MANUFACTURING METHOD THEREFOR
US11/294,699 US20060091485A1 (en) 2002-07-31 2005-12-05 Piezoelectric device and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-222600 2002-07-31
JP2002222600 2002-07-31
JP2003-198048 2003-07-16
JP2003198048A JP2004129222A (ja) 2002-07-31 2003-07-16 圧電部品およびその製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/294,699 Division US20060091485A1 (en) 2002-07-31 2005-12-05 Piezoelectric device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2004012330A1 true WO2004012330A1 (ja) 2004-02-05

Family

ID=31190338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009311 WO2004012330A1 (ja) 2002-07-31 2003-07-23 圧電部品およびその製造方法

Country Status (7)

Country Link
US (2) US20040207033A1 (ja)
EP (1) EP1458094A4 (ja)
JP (1) JP2004129222A (ja)
KR (1) KR100642932B1 (ja)
CN (1) CN1565078A (ja)
AU (1) AU2003252240A1 (ja)
WO (1) WO2004012330A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006106831A1 (ja) * 2005-04-01 2008-09-11 松下電器産業株式会社 弾性表面波デバイスおよびその製造方法

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004129222A (ja) * 2002-07-31 2004-04-22 Murata Mfg Co Ltd 圧電部品およびその製造方法
US20050095835A1 (en) * 2003-09-26 2005-05-05 Tessera, Inc. Structure and method of making capped chips having vertical interconnects
US7750420B2 (en) 2004-03-26 2010-07-06 Cypress Semiconductor Corporation Integrated circuit having one or more conductive devices formed over a SAW and/or MEMS device
EP1788384B1 (en) * 2004-09-10 2012-09-26 Murata Manufacturing Co., Ltd. Surface acoustic wave sensor for detecting substance in liquid and device for detecting substance in liquid employing the sensor
JP2006108993A (ja) * 2004-10-04 2006-04-20 Hitachi Media Electoronics Co Ltd 表面弾性波デバイスおよびその製造方法
JP4618492B2 (ja) * 2004-12-24 2011-01-26 セイコーエプソン株式会社 弾性表面波センサ
KR100653089B1 (ko) * 2005-10-31 2006-12-04 삼성전자주식회사 탄성 표면파 디바이스 웨이퍼 레벨 패키지 및 그 패키징방법
US7622684B2 (en) * 2005-11-02 2009-11-24 Panasonic Corporation Electronic component package
JP2009515352A (ja) * 2005-11-09 2009-04-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 少なくとも1つのマイクロエレクトロニクス素子を密封するパッケージキャリアの製造方法及び診断素子の製造方法
WO2007055077A1 (ja) * 2005-11-14 2007-05-18 Murata Manufacturing Co., Ltd. 弾性表面波装置の製造方法及び弾性表面波装置
JP2007189501A (ja) * 2006-01-13 2007-07-26 Matsushita Electric Ind Co Ltd 電子部品
JP4627269B2 (ja) * 2006-02-24 2011-02-09 日本碍子株式会社 圧電薄膜デバイスの製造方法
JP2007281902A (ja) * 2006-04-07 2007-10-25 Hitachi Media Electoronics Co Ltd 立体配線を有する中空構造ウェハレベルパッケージ
WO2008120511A1 (ja) * 2007-03-29 2008-10-09 Murata Manufacturing Co., Ltd. 液中物質検出センサー
KR100872265B1 (ko) * 2007-05-16 2008-12-05 삼성전기주식회사 웨이퍼 레벨 패키지 및 그 패키징 방법
EP2246979A4 (en) * 2008-02-18 2014-03-05 Murata Manufacturing Co ELASTIC WAVE DEVICE AND METHOD FOR MANUFACTURING THE SAME
KR101079429B1 (ko) * 2009-09-11 2011-11-02 삼성전기주식회사 디바이스 패키지 기판 및 그 제조 방법
TWI417544B (zh) * 2010-11-25 2013-12-01 Univ Nat Sun Yat Sen Bending plate wave allergen sensor and its manufacturing method
US9040837B2 (en) * 2011-12-14 2015-05-26 Ibiden Co., Ltd. Wiring board and method for manufacturing the same
US10224260B2 (en) * 2013-11-26 2019-03-05 Infineon Technologies Ag Semiconductor package with air gap
JP6444787B2 (ja) * 2015-03-23 2018-12-26 太陽誘電株式会社 弾性波デバイスおよびその製造方法
CN105742255B (zh) * 2016-04-01 2018-10-09 江苏长电科技股份有限公司 金属圆片级凹槽埋孔型表面声滤波芯片封装结构及方法
CN105897210A (zh) * 2016-04-01 2016-08-24 江苏长电科技股份有限公司 凹槽型表面声滤波芯片封装结构及其制造方法
CN105810596A (zh) * 2016-04-01 2016-07-27 江苏长电科技股份有限公司 一种蚀刻型表面声滤波芯片封装结构的制造方法
CN105897218B (zh) * 2016-04-01 2018-11-09 江苏长电科技股份有限公司 凹槽埋孔型表面声滤波芯片封装结构及其制造方法
CN105897209A (zh) * 2016-04-01 2016-08-24 江苏长电科技股份有限公司 金属圆片级凹槽型表面声滤波芯片封装结构及其制造方法
CN105810597B (zh) * 2016-04-01 2018-10-09 江苏长电科技股份有限公司 金属圆片级埋孔型表面声滤波芯片封装结构的制造方法
CN105870077A (zh) * 2016-04-01 2016-08-17 江苏长电科技股份有限公司 埋孔型表面声滤波芯片封装结构及其制造方法
CN105762085B (zh) * 2016-04-01 2019-01-01 江苏长电科技股份有限公司 金属圆片埋孔型表面声滤波芯片封装结构及制造方法
CN105897219A (zh) * 2016-04-01 2016-08-24 江苏长电科技股份有限公司 圆片级表面声滤波芯片封装结构及其制造方法
CN105846038B (zh) * 2016-04-01 2019-01-29 江苏长电科技股份有限公司 金属圆片级蚀刻型表面声滤波芯片封装结构的制造方法
CN105742195A (zh) * 2016-04-01 2016-07-06 江苏长电科技股份有限公司 一种蚀刻埋孔型表面声滤波芯片封装结构的制造方法
GB2555835B (en) * 2016-11-11 2018-11-28 Novosound Ltd Ultrasound transducer
KR102295454B1 (ko) * 2017-04-25 2021-08-27 가부시키가이샤 무라타 세이사쿠쇼 전자 부품 및 그것을 구비하는 모듈
CN107749748B (zh) * 2017-09-01 2021-12-24 江苏长电科技股份有限公司 一种声表面波滤波芯片封装结构
CN108063182B (zh) * 2017-11-27 2019-08-09 大连理工大学 一种压电复合元件电极制备方法
CN111480294B (zh) * 2017-12-27 2023-08-01 株式会社村田制作所 弹性波装置
US11929731B2 (en) 2018-02-18 2024-03-12 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode mark, and pitch
US12040779B2 (en) 2020-04-20 2024-07-16 Murata Manufacturing Co., Ltd. Small transversely-excited film bulk acoustic resonators with enhanced Q-factor
US11323089B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Filter using piezoelectric film bonded to high resistivity silicon substrate with trap-rich layer
US10637438B2 (en) 2018-06-15 2020-04-28 Resonant Inc. Transversely-excited film bulk acoustic resonators for high power applications
US11509279B2 (en) 2020-07-18 2022-11-22 Resonant Inc. Acoustic resonators and filters with reduced temperature coefficient of frequency
US10911023B2 (en) 2018-06-15 2021-02-02 Resonant Inc. Transversely-excited film bulk acoustic resonator with etch-stop layer
US11146232B2 (en) 2018-06-15 2021-10-12 Resonant Inc. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US11323090B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator using Y-X-cut lithium niobate for high power applications
US11323096B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator with periodic etched holes
US11206009B2 (en) 2019-08-28 2021-12-21 Resonant Inc. Transversely-excited film bulk acoustic resonator with interdigital transducer with varied mark and pitch
US12088281B2 (en) 2021-02-03 2024-09-10 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with multi-mark interdigital transducer
US10601392B2 (en) 2018-06-15 2020-03-24 Resonant Inc. Solidly-mounted transversely-excited film bulk acoustic resonator
US20220116015A1 (en) 2018-06-15 2022-04-14 Resonant Inc. Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch
US11936358B2 (en) 2020-11-11 2024-03-19 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with low thermal impedance
US11264966B2 (en) 2018-06-15 2022-03-01 Resonant Inc. Solidly-mounted transversely-excited film bulk acoustic resonator with diamond layers in Bragg reflector stack
US10917072B2 (en) 2019-06-24 2021-02-09 Resonant Inc. Split ladder acoustic wave filters
US11967945B2 (en) 2018-06-15 2024-04-23 Murata Manufacturing Co., Ltd. Transversly-excited film bulk acoustic resonators and filters
US11323091B2 (en) 2018-06-15 2022-05-03 Resonant Inc. Transversely-excited film bulk acoustic resonator with diaphragm support pedestals
US11876498B2 (en) 2018-06-15 2024-01-16 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with multiple diaphragm thicknesses and fabrication method
US12081187B2 (en) 2018-06-15 2024-09-03 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator
US11996825B2 (en) 2020-06-17 2024-05-28 Murata Manufacturing Co., Ltd. Filter using lithium niobate and rotated lithium tantalate transversely-excited film bulk acoustic resonators
US10985728B2 (en) 2018-06-15 2021-04-20 Resonant Inc. Transversely-excited film bulk acoustic resonator and filter with a uniform-thickness dielectric overlayer
US11909381B2 (en) 2018-06-15 2024-02-20 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes having a narrower top layer
US11349452B2 (en) 2018-06-15 2022-05-31 Resonant Inc. Transversely-excited film bulk acoustic filters with symmetric layout
US10826462B2 (en) 2018-06-15 2020-11-03 Resonant Inc. Transversely-excited film bulk acoustic resonators with molybdenum conductors
US11916539B2 (en) 2020-02-28 2024-02-27 Murata Manufacturing Co., Ltd. Split-ladder band N77 filter using transversely-excited film bulk acoustic resonators
US11901878B2 (en) 2018-06-15 2024-02-13 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes with a wider top layer
US11870423B2 (en) 2018-06-15 2024-01-09 Murata Manufacturing Co., Ltd. Wide bandwidth temperature-compensated transversely-excited film bulk acoustic resonator
US11888463B2 (en) 2018-06-15 2024-01-30 Murata Manufacturing Co., Ltd. Multi-port filter using transversely-excited film bulk acoustic resonators
US12095446B2 (en) 2018-06-15 2024-09-17 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch
US12119808B2 (en) 2018-06-15 2024-10-15 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator package
US11949402B2 (en) 2020-08-31 2024-04-02 Murata Manufacturing Co., Ltd. Resonators with different membrane thicknesses on the same die
US12113512B2 (en) 2021-03-29 2024-10-08 Murata Manufacturing Co., Ltd. Layout of XBARs with multiple sub-resonators in parallel
US12040781B2 (en) 2018-06-15 2024-07-16 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator package
US11146238B2 (en) 2018-06-15 2021-10-12 Resonant Inc. Film bulk acoustic resonator fabrication method
US10998882B2 (en) 2018-06-15 2021-05-04 Resonant Inc. XBAR resonators with non-rectangular diaphragms
US11996822B2 (en) 2018-06-15 2024-05-28 Murata Manufacturing Co., Ltd. Wide bandwidth time division duplex transceiver
WO2020186261A1 (en) 2019-03-14 2020-09-17 Resonant Inc. Transversely-excited film bulk acoustic resonator with half-lambda dielectric layer
CN118316415A (zh) 2019-04-05 2024-07-09 株式会社村田制作所 横向激励薄膜体声波谐振器封装和方法
US20210013866A1 (en) * 2019-07-12 2021-01-14 General Electric Company Systems and methods for saw wafer level assembly with top side contacts
US20220116020A1 (en) 2020-04-20 2022-04-14 Resonant Inc. Low loss transversely-excited film bulk acoustic resonators and filters
US11811391B2 (en) 2020-05-04 2023-11-07 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with etched conductor patterns
US11965731B2 (en) 2020-11-03 2024-04-23 Taiwan Semiconductor Manufacturing Company Ltd. Package structure and measurement method for the package structure
US12003226B2 (en) 2020-11-11 2024-06-04 Murata Manufacturing Co., Ltd Transversely-excited film bulk acoustic resonator with low thermal impedance
KR20220121306A (ko) * 2021-02-24 2022-09-01 삼성디스플레이 주식회사 커버 윈도우, 커버 윈도우의 제조방법, 및 표시 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213874A (ja) * 1995-02-03 1996-08-20 Matsushita Electric Ind Co Ltd 表面弾性波装置及びその製造方法
JPH09326663A (ja) * 1996-06-07 1997-12-16 Matsushita Electric Ind Co Ltd 振動子とその製造方法
JPH1032293A (ja) * 1996-07-17 1998-02-03 Matsushita Electric Ind Co Ltd 電子部品の製造方法
JPH11355088A (ja) * 1998-06-09 1999-12-24 Matsushita Electric Ind Co Ltd 圧電デバイスの製造方法
JP2001185976A (ja) * 1999-12-24 2001-07-06 Kyocera Corp 弾性表面波装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3328102B2 (ja) * 1995-05-08 2002-09-24 松下電器産業株式会社 弾性表面波装置及びその製造方法
JPH10303690A (ja) * 1997-04-25 1998-11-13 Mitsubishi Electric Corp 表面弾性波装置及びその製造方法
JP3669463B2 (ja) * 1997-08-05 2005-07-06 Tdk株式会社 樹脂封止表面実装型電子部品
JP3514361B2 (ja) * 1998-02-27 2004-03-31 Tdk株式会社 チップ素子及びチップ素子の製造方法
FR2788176B1 (fr) * 1998-12-30 2001-05-25 Thomson Csf Dispositif a ondes acoustiques guidees dans une fine couche de materiau piezo-electrique collee par une colle moleculaire sur un substrat porteur et procede de fabrication
US6871396B2 (en) * 2000-02-09 2005-03-29 Matsushita Electric Industrial Co., Ltd. Transfer material for wiring substrate
JP2004129222A (ja) * 2002-07-31 2004-04-22 Murata Mfg Co Ltd 圧電部品およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213874A (ja) * 1995-02-03 1996-08-20 Matsushita Electric Ind Co Ltd 表面弾性波装置及びその製造方法
JPH09326663A (ja) * 1996-06-07 1997-12-16 Matsushita Electric Ind Co Ltd 振動子とその製造方法
JPH1032293A (ja) * 1996-07-17 1998-02-03 Matsushita Electric Ind Co Ltd 電子部品の製造方法
JPH11355088A (ja) * 1998-06-09 1999-12-24 Matsushita Electric Ind Co Ltd 圧電デバイスの製造方法
JP2001185976A (ja) * 1999-12-24 2001-07-06 Kyocera Corp 弾性表面波装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1458094A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006106831A1 (ja) * 2005-04-01 2008-09-11 松下電器産業株式会社 弾性表面波デバイスおよびその製造方法
JP4714214B2 (ja) * 2005-04-01 2011-06-29 パナソニック株式会社 弾性表面波デバイス

Also Published As

Publication number Publication date
US20060091485A1 (en) 2006-05-04
EP1458094A1 (en) 2004-09-15
KR100642932B1 (ko) 2006-11-08
JP2004129222A (ja) 2004-04-22
CN1565078A (zh) 2005-01-12
AU2003252240A1 (en) 2004-02-16
US20040207033A1 (en) 2004-10-21
KR20040089137A (ko) 2004-10-20
EP1458094A4 (en) 2005-04-06

Similar Documents

Publication Publication Date Title
WO2004012330A1 (ja) 圧電部品およびその製造方法
KR100654054B1 (ko) 압전 부품 및 그 제조 방법
US9882540B2 (en) Method for manufacturing surface acoustic wave apparatus
JP5849130B2 (ja) 弾性波装置および弾性波モジュール
JP4212137B2 (ja) 保護音響ミラーを含む頂部を有するバルク型音波(baw)フィルタ
JP5106633B2 (ja) 弾性波装置
JP2002261582A (ja) 弾性表面波デバイスおよびその製造方法ならびにそれを用いた回路モジュール
JP5206377B2 (ja) 電子部品モジュール
US7102272B2 (en) Piezoelectric component and method for manufacturing the same
KR100885351B1 (ko) 탄성 표면파 장치
JP4467154B2 (ja) 弾性表面波装置
JP2005130341A (ja) 圧電部品及びその製造方法、通信装置
US11159143B2 (en) Filter device and method for manufacturing the same
JP4012753B2 (ja) 弾性表面波装置
JP2009183008A (ja) 圧電部品の製造方法
JP2009213174A (ja) 弾性表面波装置、および実装構造体
JP4731216B2 (ja) 弾性表面波装置
JP4684343B2 (ja) 弾性表面波装置
JP2001077658A (ja) 弾性表面波装置
JP5794778B2 (ja) 電子装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 10485340

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 20038012278

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003771285

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020047011939

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003771285

Country of ref document: EP