WO2003099933A1 - Dispersion et procede de production de moulages utilisant une dispersion - Google Patents

Dispersion et procede de production de moulages utilisant une dispersion Download PDF

Info

Publication number
WO2003099933A1
WO2003099933A1 PCT/JP2003/006171 JP0306171W WO03099933A1 WO 2003099933 A1 WO2003099933 A1 WO 2003099933A1 JP 0306171 W JP0306171 W JP 0306171W WO 03099933 A1 WO03099933 A1 WO 03099933A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
component
oligosaccharide
dispersion
dispersion according
Prior art date
Application number
PCT/JP2003/006171
Other languages
English (en)
French (fr)
Inventor
Hisayoshi Ito
Original Assignee
Daicel Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries, Ltd. filed Critical Daicel Chemical Industries, Ltd.
Priority to JP2004508180A priority Critical patent/JP4464815B2/ja
Priority to EP03730505A priority patent/EP1512725B9/en
Priority to US10/515,420 priority patent/US20050239925A1/en
Priority to KR1020047019193A priority patent/KR100973602B1/ko
Publication of WO2003099933A1 publication Critical patent/WO2003099933A1/ja
Priority to US12/379,232 priority patent/US7868069B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/042Elimination of an organic solid phase
    • C08J2201/0422Elimination of an organic solid phase containing oxygen atoms, e.g. saccharose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers

Definitions

  • the present invention provides a dispersion (or a resin composition forming a dispersion system), which comprises a resin component and a water-soluble auxiliary component, and is useful for processing the resin component into a form such as a porous body or a granular material.
  • the present invention also relates to a method for producing a molded article using the dispersion, and a water-soluble auxiliary for forming a dispersion in combination with a resin.
  • a resin molded body having a desired shape such as a porous body or a particle.
  • Japanese Patent Application Laid-Open No. 2001-28525 discloses that a pore-forming agent that melts at a molding temperature and a polymer material such as a resin are melt-kneaded, and the mixture contains a pore-forming agent after molding.
  • a method for producing a porous body by washing a pore-forming agent from a solid molded article with a solvent is disclosed.
  • pen-forming erythritol L-erythritol and the like are described as pore-forming agents.
  • Organic solvents such as water and alcohols are described as solvents for eluting agent components. According to this method, a homogeneous porous body in which fine pores are uniformly formed can be manufactured.
  • the proportion of the pore-forming agent (low melting point erythritol / high melting point pentaerythritol) in the resin composition is increased, the melt kneading property of the resin composition is reduced, and the uniformity of the pore diameter is impaired. More specifically, in kneading a resin and erythritol, when erythritol having a low melting point is melted, the viscosity of the resin composition sharply decreases, and the melt-kneading property of the resin composition decreases remarkably.
  • thermoplastic resin (a) to be pulverized is melt-kneaded with at least one other thermoplastic resin (b).
  • (A) is a dispersed phase and a resin (b) is a continuous phase to obtain a resin composition.
  • the resin (a) is not dissolved, and the resin (b) is dissolved in a solvent capable of dissolving the resin composition.
  • a method for obtaining spherical fine particles of the resin (a) by washing the resin is disclosed.
  • the resin forming the continuous phase does not contribute to the resin fine particles as a product at all, it is eventually recovered or discarded in a dissolved state.
  • recovering the resin in the solution is not only extremely difficult, but also increases the production cost of the resin fine particles.
  • the resin solution is directly discarded as a waste liquid, there is a concern that it will have an adverse effect on the environment.
  • Japanese Patent Application Laid-Open No. 60-13816 discloses that polyethylene glycol and a thermoplastic resin are melt-stirred and then poured into water to coagulate both polymers. A method for producing thermoplastic resin particles to be removed has been proposed.
  • Japanese Patent Application Laid-Open No. 61-94333 discloses that a thermoplastic resin and polyethylene oxide are melted and stirred, then cooled, and water is used to reduce polyethylene oxide.
  • a method for producing thermoplastic resin particles to be removed is disclosed.
  • Japanese Patent Application Laid-Open No. 9-165457 discusses melt molding by mixing a melt-forming water-soluble polymer such as polyvinyl alcohol resin, modified starch, and polyethylene oxide with a thermoplastic resin. There is disclosed a method for producing resin fine particles in which a water-soluble polymer is removed from a molded product using water after obtaining the product.
  • an object of the present invention is to provide a water-soluble auxiliary component (or water-soluble auxiliary agent) which is a saccharide and can be uniformly kneaded with a resin component, and a dispersion (or dispersion) using the water-soluble auxiliary component.
  • a resin composition forming a system).
  • Another object of the present invention is to provide a water-soluble auxiliary component (or water-soluble auxiliary agent) capable of industrially advantageously forming a predetermined molded product even when a wide variety of resin components are used, and this water-soluble auxiliary component.
  • An object of the present invention is to provide a dispersion (or a resin composition forming a dispersion) using the same.
  • Still another object of the present invention is to provide a water-soluble auxiliary component (or a water-soluble auxiliary component) which can be kneaded even if the auxiliary component is contained in a high proportion with respect to the resin component and can form a uniform phase-separated structure. And a dispersion using the water-soluble auxiliary component (or a resin composition forming a dispersion system).
  • Another object of the present invention is to provide a water-soluble auxiliary component (or water-soluble auxiliary agent) that can be easily eluted with water and that can reduce the burden on the environment. It is an object of the present invention to provide a method for producing a molded article using a dispersion (or a resin composition forming a dispersion) composed of the above components.
  • Still another object of the present invention is to provide a method capable of producing a molded article having a uniform pore size / particle size. Disclosure of the invention
  • the present inventor has conducted intensive studies to achieve the above object, and as a result, when at least an auxiliary component composed of an oligosaccharide is combined with a resin component to form a dispersion, the dispersion is uniform with the resin while being a saccharide.
  • the present inventors have found that a molded article having a uniform pore diameter or a uniform particle diameter can be produced using a wide variety of resin components, which can be kneaded, and the present invention has been completed.
  • the dispersion of the present invention is a dispersion composed of a resin component (A) and a water-soluble auxiliary component (B), and the auxiliary component (B) is composed of at least an oligosaccharide.
  • the auxiliary component (B) may form a continuous phase or a co-continuous phase in a sea-island structure, and the resin component (A) may be a thermoplastic resin [eg, a polyester resin (eg, an aliphatic polyester type).
  • the oligosaccharide may exhibit a melting point or softening point at a temperature higher than the heat deformation temperature of the resin component (A), or may decompose.
  • the melting point or softening point of the oligosaccharide (B may be a temperature higher than the heat deformation temperature of the resin component (A), for example, about 90 to 290.
  • Oligosaccharides that decompose thermally without showing a distinct melting point or softening point at a temperature higher than the thermal deformation temperature of the resin component (A) may be used. It may be measured as a specified vicat softening point.
  • the heat distortion temperature (Vicat softening point) of the resin is, for example, The temperature may be 60 to 300 ° C., preferably about 80 to 260 ° C.
  • the oligosaccharide may be composed of a disaccharide, a trisaccharide, a tetrasaccharide, a pentasaccharide, a hexasaccharide, a heptasaccharide, an octasaccharide, a nonasaccharide, a decasaccharide, or the like, and may be composed of at least a tetrasaccharide.
  • Oligosaccharides (B) Consist of tetrasaccharides such as maltotetraose, isomaltoterose, suixiose, cellotetraose, scorodose, liquinose, and tetraose in which a sugar alcohol is bonded to the reducing end of panose. May be.
  • the oligosaccharide (Bi) may be composed of an oligosaccharide composition such as starch sugar, galacto-oligosaccharide, coupling sugar, fructooligosaccharide, xylo-oligosaccharide, soybean oligosaccharide, chitin oligosaccharide, chitosan oligosaccharide, and the like.
  • Such oligosaccharides (the content of tetrasaccharides in B may be 60% by weight or more.
  • the viscosity of a 50% by weight aqueous solution of oligosaccharides is measured with a B-type viscometer at a temperature of 25: Then, it may be 1 Pa ⁇ s or more (for example, 3 to: about 100 Pa ⁇ s).
  • the auxiliary component (B) may contain an oligosaccharide (a water-soluble plasticizing component (B 2 ) for plasticizing B.
  • the melting point or softening point of the plasticized component (B 2 ) is determined by the heat distortion temperature of the resin component (A). (The above-mentioned vicat softening point) Also, when a melt flow rate specified by JISK 720 is measured at a temperature 30 tons higher than the thermal deformation temperature of the resin component (A).
  • the melt flow rate of the auxiliary component ( ⁇ ) composed of the oligosaccharide and the plasticizing component ( ⁇ 2 ) may be, for example, 1 or more (for example, about 1 to 40).
  • (beta 2) are sugars (e.g., monosaccharides, disaccharides, etc.) is constituted by a or sugar alcohols Often, such saccharides may be composed of reducing sugars, and monosaccharides may be composed of triose, tetroses, pentoses, hexoses, heptose, octose, nonose, decose, dodecose, etc.
  • the disaccharide is the monosaccharide And homo- and hetero-disaccharides.
  • Sugar alcohols include tetritol (eg, erythritol, etc.), pentitol (eg, penyu erythritol, arabitol, ribitol, xylitol, etc.), hexitol (eg, sorbitol, dulcitol, mannitol, etc.), heptitol, It may be composed of octitol, nonitol, dexitol, dodecitol and the like. Also, the resin component
  • the ratio of (A) and auxiliary component (B) is the ratio of resin component (A) / auxiliary component
  • the present invention also includes a water-soluble auxiliary which is composed of at least an oligosaccharide (B!) And is combined with a resin to form a dispersion. Also, the auxiliary component (B) is eluted from the dispersion, and a molded product composed of the resin component (A) (for example, the average pore size is 0.1 to 100 / m, and the pore size varies. Porous material whose coefficient is 60 or less, average particle size is 0.1
  • the dispersion may be a resin composition that forms a dispersion system with a resin component and an auxiliary component, and both may be used synonymously.
  • the water-soluble auxiliary component may be referred to as a pore-forming agent.
  • FIG. 1 is a scanning electron micrograph of a cross section of the porous body obtained in Example 2.
  • FIG. 2 is a scanning electron micrograph of the particles obtained in Example 13 ⁇ Detailed Description of the Invention [Resin component (A)]
  • the resin constituting the resin component includes thermoplastic resin [polyester resin (for example, aromatic polyester resin and aliphatic polyester resin), polyamide resin, polyurethane resin, poly (thio) ether resin. Resins (for example, polyacetal resins, polyphenylene ether resins, polysulfide resins, polyether ketone resins, etc.), condensed thermoplastic resins such as polycarbonate resins, polysulfone resins, polyimide resins; Vinyl polymerized thermoplastic resin such as polyolefin resin, (meth) acrylic resin, styrene resin, vinyl resin (eg, halogen-containing resin, vinyl ester resin, vinyl alcohol resin); cellulose derivative And natural products derived from natural products), and thermosetting resins (Eg, epoxy resin, unsaturated polyester resin, diaryl phthalate resin, silicone resin, etc.). These resins can be used alone or in combination of two or more. As the resin component, a thermoplastic resin or a water-insoluble resin (such as a
  • thermoplastic resin (Thermoplastic resin)
  • polyester resin examples include a homopolyester or copolyester obtained by polycondensation of a dicarboxylic acid component and a diol component; a homopolyester or copolyester obtained by polycondensation of oxycarboxylic acid; Homopolyesters or copolyesters obtained by ring polymerization are mentioned. These polyester resins can be used alone or in combination of two or more.
  • dicarboxylic acid component examples include aromatic dicarboxylic acids [for example, terephthalic acid, isophthalic acid, phthalic acid; alkyl-substituted phthalic acids such as methyl terephthalic acid and methyl isophthalic acid; naphthalene dicarboxylic acid rubonic acid (2,6-naphthalene) Dicarboxylic acid, 2,7-naphthalene dicarboxylic acid, 1,5-naphthalenedicarboxylic acid, etc.); 4, 4 ' —Diphenyldicarboxylic acids such as diphenyldicarboxylic acid and 3,4 ′ diphenyldicarboxylic acid; diphenyloxycarboxylic acids such as 4,4 ′ diphenoxyethanedicarboxylic acid; diphenylether-1,4 ′ —Diphenyl ether dicarboxylic acid such as dicarponic acid; diphenyl alkane dicarboxylic acid
  • the dicarboxylic acid component also includes a derivative capable of forming an ester, for example, a lower alkyl ester such as a dimethyl ester, an acid anhydride, and an acid halide such as an acid chloride.
  • a derivative capable of forming an ester for example, a lower alkyl ester such as a dimethyl ester, an acid anhydride, and an acid halide such as an acid chloride.
  • aliphatic C 2 _ 1 2-diol e.g., ethylene glycol, propylene glycol, Bok Li methylene glycol, 1, 4-butanediol, 1, 3 - butanediol, Neobe down tilde Recall , hexane diol C 2 _ 1 2 Arukanjio Le such diethylene glycol, triethylene glycol, such as Jipuropire glycol (poly) Okishi C 2 - 4 Arukirenguri calls, etc.); alicyclic C 6 - 1 2-diol (e.g.
  • aromatic C 6 _ 2 o diol e.g., resorcinol, benzene diols such as hydroquinone; bisphenols such bisphenol a, F, etc. AD;; naphthalene Njioru bis With phenolic alkylene oxide Body, etc.
  • aromatic C 6 _ 2 o diol e.g., resorcinol, benzene diols such as hydroquinone; bisphenols such bisphenol a, F, etc. AD;; naphthalene Njioru bis With phenolic alkylene oxide Body, etc.
  • the Okishikarubon acids e.g., glycolic acid, lactic acid, O key Shipuropion acid, Okishi acid, glyceric acid, aliphatic C 2 _ 6 Okishikarubon acids such as tartronic acid; arsenate Dorokishi acid, other aromatic Okishinafu Te acid Okishikarubon Acids and the like.
  • These oxycarboxylic acids can be used alone or in combination of two or more.
  • the lactone for example, Puropioraku tons Puchiroraku tons, Bruno Reroraku tons, include C 3 _ 1 2 lactone force Puroraku tons like. These lactones can be used alone or in combination of two or more. Among these lactone, C 4 _ 1 0 lactone, in particular a force Puroraku tons (e.g., epsilon - such force Puroraku ton) are preferred.
  • polyester resin examples include an aromatic polyester resin and an aliphatic polyester resin.
  • aromatic polyester resin examples include the above-mentioned aromatic dicarboxylic acids (preferably, aromatic dicarboxylic acids having about 8 to 20 carbon atoms, such as terephthalic acid, isophthalic acid, phthalic acid, and naphthalenedicarboxylic acid). and), the aliphatic diol (preferably ethylene glycol, propylene glycol, 1, 4 one-butanediol, 1, such as aliphatic C 2 _ 1 2-diol and 3-butanediol) or the alicyclic diol (Preferably, an alicyclic group such as cyclohexanedimethanol
  • an alkylene acrylate unit such as alkylene terephthalate ⁇ alkylene naphthalate is used as a main component (for example, 50%). % By weight or more).
  • polyoxy C 2 _ 4 alkylene glycol repeat number has 2-4 about Okishiarukiren unit [such as poly glycol (Okishi - C 2 - 4 alkylene) such Darikoru including Units and the number of carbon atoms 6 to 1 About 2 aliphatic dicarboxylic acids (adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, etc.) may be contained.
  • Okishiarukiren unit such as poly glycol (Okishi - C 2 - 4 alkylene) such Darikoru including Units and the number of carbon atoms 6 to 1
  • aliphatic dicarboxylic acids adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, etc.
  • examples of the aromatic polyester-based resin include polyalkylene terephthalate [for example, polycycloalkanedichlorotetraalkylene terephthalate such as poly (1,4-cyclohexyldimethylene terephthalate) (PCT); polyethyleneterephthalate evening rate (PET), polybutylene terephthalate evening rate (PBT) poly C 2 _ 4 ⁇ Rukirenterefu evening rate, etc.], the polyalkylene reflex evening poly C 2 _ 4 alkylene naphthalate corresponding to the rate (e.g., polyethylene Examples thereof include polyethylene terephthalate copolyester containing ethylene terephthalate unit as a main component, and polybutylene terephthalate copolyester containing butylene terephthalate unit as a main component.
  • the aromatic polyester resin may be a liquid crystalline polyester.
  • the aliphatic polyester-based resin examples include the above-mentioned aliphatic dicarboxylic acid components (for example, aliphatic dicarboxylic acids having about 2 to 6 carbon atoms, such as oxalic acid, succinic acid, and adipic acid, preferably oxalic acid and succinic acid); the aliphatic diol component (e.g., ethylene glycol, propylene glycol, 1, 4 one-butanediol, 1, 3 - butanediol, neopentyl tilde recall, aliphatic such as hexanediol to C 2 - 6 di O Lumpur, preferably ethylene glycol, 1, 4-butanediol, and homo- polyesters or copolyesters obtained by polycondensation of an aliphatic C 2 _ 4 diol) such as neopentyl glycol, the aliphatic Okishikarubon acids (e.g
  • copolymerization components polyoxy C 2 _ 4 alkylene glycol repeat number has 2-4 about Okishiaruki alkylene units [such as poly Jechi glycol - a (Okishi C 2 4 alkylene) unit including glycol, etc.] and, Aliphatic dicarboxylic acids having about 6 to 12 carbon atoms (eg, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, etc.) may be contained.
  • adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, etc. may be contained.
  • examples of the aliphatic polyester resin include, for example, polyester resins obtained by polycondensation of a dicarboxylic acid component and a diol component (for example, polyethylene oxalate, polybutylene oxalate, polyneopentylene).
  • oxalate poly C such as 2 - 6 Aruki Ren'ogumbleto, polyethylene succinate, polybutylene succinate Shineto, poly C 2 _ 6 Al key succinates such as polyneopentyl succinate, polyethylene adipate, polybutylene adipate Pies, Porineo pliers poly C 2 such as adipate - such as 6 alkylene N'ajipeto), polyoxyethylene carboxylic acid resin (e.g., polyglycolic acid or polylactic acid), Poriraku tons resins [for example, positive Rikapuroraku tons (Daicel Chemical Industries, Ltd. Made, PCLH 7, PC
  • copolyesters include, for example, copolyesters using two kinds of dicarboxylic acid components (eg, polyethylene succinate-adipate copolymer resin, polybutylene succinate-adipate copolymer resin, etc.). such as poly-C 2 _ 4 alkyl succinates one adipate copolymer), obtained from a dicarboxylic acid component and a Jio Le component and lactone copolyesters (e.g., poly force Puroraku tons over polybutylene succinate copolymer resin), etc. Can be exemplified.
  • dicarboxylic acid components eg, polyethylene succinate-adipate copolymer resin, polybutylene succinate-adipate copolymer resin, etc.
  • Jio Le component and lactone copolyesters e.g., poly force Puroraku tons over polybutylene succinate copolymer resin
  • the polyester resin used in the present invention is a polyester resin containing a urethane bond (for example, an aliphatic polyester resin containing a urethane bond). Resin).
  • the polyester resin containing a urethane bond is preferably a resin obtained by increasing the molecular weight of the polyester resin (such as a low molecular weight polyester diol) with diisocyanate (for example, aliphatic diisocyanate).
  • diisocyanate examples include aromatic diisocyanates (for example, phenylene diisocyanate, tolylene diisocyanate, diphenylmethane-1,4'-diisocyanate, etc.), and araliphatic diisocyanates (for example, xylylene diisocyanate).
  • aromatic diisocyanates for example, phenylene diisocyanate, tolylene diisocyanate, diphenylmethane-1,4'-diisocyanate, etc.
  • araliphatic diisocyanates for example, xylylene diisocyanate
  • Alicyclic diisocyanate for example, isophorone diisocyanate, etc.
  • aliphatic diisocyanate for example, trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate
  • Lysine diisocyanate methyl ester trimethylhexamethylene diisocyanate, etc.
  • diisocyanates can be used alone or in combination of two or more.
  • aliphatic diisocyanates for example, hexamethylene diisocyanate, can be preferably used.
  • polyester resins containing urethane bonds examples include “Pionole # 100000”, “Vionole # 300”, and “Biono” manufactured by Showa Polymer Co., Ltd. Series # 600 ".
  • polyamide resin examples include an aliphatic polyamide resin, an alicyclic polyamide resin, an aromatic polyamide resin, and the like. Usually, an aliphatic polyamide resin is used. These polyamide resins can be used alone or in combination of two or more.
  • the polyamide resin may have biodegradability.
  • the biodegradability made of Polyamide resins, the aliphatic Jiamin component (tetra Mechirenjiamin, hexamethylene diamine C, such as 4 - 1 ⁇ ) and alkylene Njiamin), the aliphatic dicarboxylic acid component (adipic acid, sebacic acid , a C 4 _ 2, such as dodecanedioic acid () such as alkylene dicarboxylic acids), the aliphatic diol component (ethylene glycol, is a condensation product of propylene grayed recall, etc. C 2 _ 12 alkane diols such as butanediol) and Polyester amides may be mentioned.
  • the polyurethane resin can be obtained by reacting a diisocyanate, a polyol (for example, a diol) and, if necessary, a chain extender.
  • diisocyanates include hexamethylene diisocyanate, aliphatic diisocyanates such as 2,2,4-trimethylhexamethylene diisocyanate, 1,4-cyclohexanediisocyanate, and isophorone diisocyanate.
  • Alicyclic diisocyanates such as neat, phenylene diisocyanate, tolylene diisocyanate, diphenylmethane-1,4'-diisocyanate, 1,5-naphthalene diisocyanate, etc.
  • Aromatic disocyanates, xy Examples thereof include araliphatic diisocyanates such as lilylene diisocyanate.
  • polystyrene resin examples include a polyester polyol, a polyether polyol, and a polycarbonate polyol.
  • diols polyester diol, polyether diol, polycarbonate diol, etc.
  • These polyols can be used alone or in combination of two or more. '
  • polyester diols succinic acid, adipic phosphate, and C 4 _ 1 2 aliphatic dicarboxylic acid component such as Azerain acid, E Ji glycol, propylene glycol, C 2, such as butanediol, neopentyl down tilde Recall _ 1 2 polyester diol obtained from an aliphatic diol component, epsilon - polyester diols obtained from C 4 _ 1 2 lactone component such force Puroraku tons, and the aliphatic dicarboxylic acid component and Roh or the aliphatic diol component , A polyester diol obtained from the lactone component), a polyether diol (polyethylene glycol, polypropylene glycol, polyoxyethylene-polyoxypropylene block copolymer, polyoxytetramethylene glycol, bisphenol A-alkyl) Nokisai de adduct, etc.), polyester di O Lumpur with the poly
  • chain extender ethylene glycol, other C 2 _ 1 () alkylene glycols such as propylene grayed recall Jiamin acids [cycloaliphatic aliphatic Jiamin acids (Echirenjiamin, trimethylene ⁇ Min, Tet lame Chi range ⁇ Minh Linear or branched alkylenediamines; linear or branched polyalkylene polyamines such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, and dipropylenetriamine; and alicyclic diamines (isophoronediamine). Ami ) And aromatic diamines (eg, phenylenediamine, xylylenediamine). These polyurethane resins can be used alone or in combination of two or more.
  • the poly (thio) ether resins include polyoxyalkylene resins, polyphenylene ether resins, and polysulfide resins (polythioether resins).
  • polyoxy C _ 4 alkylene glycol such as polyoxyethylene one polyoxypropylene block copolymers include .
  • These poly (thio) ether resins can be used alone or in combination of two or more.
  • Polycarbonate resins include aromatic polycarbonates based on bisphenols (such as bisphenol A) and aliphatic polycarbonates such as diethylene glycol bisarylcarbonate. These polycarbonate resins can be used alone or in combination of two or more.
  • Polysulfone resins include polysulfone resins, polyethersulfone resins, and polyallyl sulfones obtained by polycondensation of dihalogenodiphenylsulfone (such as dichlorophenylsulfone) and bisphenols (such as bisphenol A or a metal salt thereof).
  • dihalogenodiphenylsulfone such as dichlorophenylsulfone
  • bisphenols such as bisphenol A or a metal salt thereof.
  • An example is a sulfone resin.
  • These polysulfone resins can be used alone or in combination of two or more.
  • the Poriorefui down resin, alpha-C 2 _ 6 Orefi emissions alone or co-polymers e.g., polyethylene, polypropylene, ethylene one pro propylene copolymer, poly (methyl pentene one 1) of Orefin such Homopolymer or copolymer, copolymer of ethylene and copolymerizable monomer (ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylate copolymer Polymer).
  • These polyolefin resins can be used alone or in combination of two or more.
  • (Meth) acrylic resins include (meth) acrylic monomers [(meth) acrylic acid, (meth) acrylic acid C! -Alkylester, (meth) hydroxyalkyl acrylate, (meth) glycidyl acrylate , (Meth) acrylonitrile, etc.] homo- or copolymers, for example, poly (meth) acrylate such as poly (meth) methyl acrylate, methyl methacrylate- (meth) acrylic acid copolymer, methyl acryl Methyl acrylate- (meth) acrylate copolymer, methyl methacrylate- (meth) acrylate copolymer, (meth) acrylate-styrene copolymer (MS resin, etc.) Is mentioned.
  • poly (meth) acrylate such as poly (meth) methyl acrylate, methyl methacrylate- (meth) acrylic acid copolymer, methyl acryl Methyl acrylate-
  • Preferred (meth) acrylic resins include 5- alkyl poly (meth) acrylate, methyl methacrylate-acrylate copolymer, and (meth) acrylate-styrene copolymer (MS resin, etc.). included. These (meth) acrylic resins can be used alone or in combination of two or more.
  • styrene resin a homopolymer or a copolymer of styrene monomers (styrene, methylstyrene, vinyltoluene, etc.) (polystyrene, styrene-vinyltoluene copolymer, styrene- ⁇ -methylstyrene copolymer) may be used.
  • Styrene-monomer and copolymerizable monomer [styrene-acrylonitrile copolymer (AS resin),
  • the vinyl-based resin includes a homo- or copolymer of a vinyl-based monomer, a copolymer with another copolymerizable monomer, and the like.
  • the vinyl monomer include a halogen-containing Bier monomer [eg, a chlorine-containing vinyl monomer (eg, vinyl chloride, vinylidene chloride, chloroprene, etc.), a fluorine-containing vinyl monomer (eg, fluoroethylene) And carboxylic acid vinyl esters [vinyl acetate, vinyl pionate, vinyl crotonate, vinyl benzoate, and other vinyl esters].
  • halogen-containing Bier monomer eg, a chlorine-containing vinyl monomer (eg, vinyl chloride, vinylidene chloride, chloroprene, etc.)
  • fluorine-containing vinyl monomer eg, fluoroethylene
  • carboxylic acid vinyl esters eg, fluoroethylene
  • vinyl resin examples include vinyl chloride resin (for example, polyvinyl chloride, polyvinylidene chloride, vinyl chloride-vinyl acetate copolymer, vinylidene chloride-vinyl acetate copolymer, etc.), and fluorine resin (for example, polyvinyl fluoride).
  • vinyl chloride resin for example, polyvinyl chloride, polyvinylidene chloride, vinyl chloride-vinyl acetate copolymer, vinylidene chloride-vinyl acetate copolymer, etc.
  • fluorine resin for example, polyvinyl fluoride
  • Vinyl ester resins eg,
  • vinyl ester-based resin for example, vinyl alcohol-based resins (eg, polyvinyl acetal such as polyvinyl alcohol, polyvinyl formal, and polyvinyl butyral, and ethylene-vinyl alcohol copolymer)] can also be used.
  • vinyl alcohol resins an ethylene-vinyl alcohol copolymer is preferred.
  • an ethylene-vinyl alcohol copolymer is used, if the ethylene content is too high, the hydrophilicity of the resin is reduced and the interaction with the auxiliary component (B) is reduced, so that the ethylene content is 10 to 40. It is preferable that the weight is% by weight.
  • cellulose derivatives examples include cellulose esters (such as cellulose acetate and cellulose phthalate), cellulose carbamates (such as cellulose phenyl carbamate), and cellulose ethers (such as cyanoethyl cellulose). These cellulose derivatives can be used alone or in combination of two or more.
  • cellulose ester examples include cellulose acetate (cellulose acetate) such as cellulose acetate and cellulose triacetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, and cellulose acetate butyrate.
  • cellulose ether examples include alkyl cellulose (for example, ethyl cellulose, isopropyl cellulose, and butyl cell port).
  • - C 2 _ 6 alkyl celluloses such as scan
  • ⁇ Lal Kill cellulose e.g., benzyl cellulose, etc.
  • hydroxycarboxylic alkyl cell opening over scan e.g., hydroxy C 4, such as hydroxybutyl cellulose - 6 alkyl cellulose
  • carboxyalkyl cellulose e.g., carboxymethyl key shell carboxy C 2 _ 6 alkyl cellulose, such as chill cellulose
  • Xia Bruno ethylcellulose and the like.
  • the degree of substitution of the cellulose derivative is preferably low, for example, the average degree of substitution is 2.5 or less, preferably 2 or less (for example, about 0: about 2), more preferably 1 or less. .5 or less (for example, about 0.1 to 1.5).
  • Thermoplastic elastomers include polyamide-based elastomers, polyester-based elastomers, polyurethane-based elastomers, polystyrene-based elastomers, polyolefin-based elastomers, polyvinyl chloride-based elastomers, and fluorine-based thermoplastic elastomers. Are mentioned. These thermoplastic elastomers can be used alone or in combination of two or more.
  • the block structure is not particularly limited, and may be a triblock structure, a multiblock structure, a star block structure, or the like.
  • the heat distortion temperature of the resin component (for example, the vicat softening point specified in JISK 720) can be selected from the range of 60 to 300, for example, 80 to 260, preferably 1 to 260. 0 to 240 "(for example, 110 to 240), more preferably about 120 to 23O: (for example, 130 to 220).
  • Preferred resins include polyamide resins, Polyolefin resin, styrene resin, vinyl resin (for example, halogen-containing resin, vinyl ester resin, vinyl alcohol resin, etc.), biodegradable resin [for example, aliphatic polyester resin (for example, poly) Lactic acid-based resin and poly C 3 12 lactone-based resin), biodegradable polyester-based resin such as polyester amide, vinyl alcohol-based resin, and the above-mentioned cellulose derivative].
  • a resin having a hydrophilic group such as a mouth xyl group or a carbonyl group may be used.
  • the molded body composed of the biodegradable resin Since the molded body composed of the biodegradable resin has excellent biodegradability, it can be used, for example, in fields used in the natural environment (agriculture, forestry and fisheries materials, civil engineering materials, construction materials, outdoor leisure products, etc.). , Fields that are difficult to collect and reuse after use (food packaging films, food packaging containers, hygiene products, daily necessities), fields that make use of the special function of resins (medical materials that require biodegradability and absorbability) And coating materials that require sustained release).
  • the water-soluble auxiliary is composed of at least a water-soluble auxiliary component (B) composed of an oligosaccharide, and forms a dispersion in combination with a resin. Further, in order to adjust the heat melting property of the oligosaccharide, the water-soluble auxiliary agent preferably further contains a plasticizing component (B 2 ).
  • Oligosaccharides consist of homo-oligosaccharides in which 2 to 10 molecules of monosaccharides are dehydrated and condensed via glycosidic bonds, and at least two or more monosaccharides and Z or sugar alcohols have 2 to 10 molecules of glycosidic bonds. And dehydration-condensed hetero-oligosaccharides.
  • the oligosaccharide (B) Includes, for example, disaccharide to decasaccharide, and usually, disaccharide to hexasaccharide oligosaccharide is used. Oligosaccharides are usually solid at room temperature. These oligosaccharides may be anhydrous.
  • oligosaccharide a monosaccharide and a sugar alcohol may be bonded. These oligosaccharides can be used alone or in combination of two or more.
  • the oligosaccharide may be an oligosaccharide composition composed of a plurality of sugar components. Even such an oligosaccharide composition may be simply referred to as an oligosaccharide.
  • disaccharides examples include trehalose (eg, ⁇ , ⁇ -trehalose, ⁇ ,] 3-trehalose, ⁇ ,) 3-trehalose, and cozybi.
  • Homo-oligosaccharides such as aose, nigerose, maltose, isomaltose, sophorose, laminaribiose, cellobiose, gentiobiose; lactose, sucrose, palatinose, meribiose, rutinose, primemeberose, allanose, etc.
  • Telo-oligosaccharides such as aose, nigerose, maltose, isomaltose, sophorose, laminaribiose, cellobiose, gentiobiose; lactose, sucrose, palatinose, meribiose, rutinose, primemeberose, allanose, etc.
  • trisaccharides examples include homooligosaccharides such as maltotriose, isomalttriose, panose, and cellotriose; manninotriose, solatriose, melezitose, planteose, gentianose, umbelliferose, lactosecloth, and raffinose. Tetra oligosaccharides.
  • tetrasaccharides examples include homooligosaccharides such as maltotetraose and isomalttetraose; tetrasaccharides in which a sugar or a sugar alcohol is conjugated to a reducing end of sucrose, serotetraose, scorodose, liquinose, or panose. Telo-oligosaccharides;
  • tetraose in which a monosaccharide or a sugar alcohol is bound to the reducing end of panose is disclosed in, for example, Japanese Patent Application Laid-Open No. H10-215892, And monosaccharides such as glucose, fructose, mannose, xylose, and arabinose, and tetraose to which sugar alcohols such as sorbitol, xylitol, and erythritol are bound.
  • pentasaccharides examples include homo-oligosaccharides such as malto-pentose-ose and isomaltopene-ose; and hetero-oligosaccharides such as pen-deose-ose having a disaccharide bonded to the reducing end of panose.
  • Pencil aose in which a disaccharide is bound to the reducing end of panose is also disclosed, for example, in Japanese Patent Application Laid-Open No. H10-219589, wherein sucrose, lactose, cellobiose, Pencil aose to which a disaccharide such as trehalose is bound can be exemplified.
  • Hexasaccharides include homooligosaccharides such as maltohexaose and isomaltohexaose.
  • the oligosaccharide is preferably composed of at least a tetrasaccharide from the viewpoint of melt kneading with the resin component.
  • the oligosaccharide may be an oligosaccharide composition formed by the decomposition of a polysaccharide. Oligosaccharide compositions usually contain tetrasaccharides. Examples of the oligosaccharide composition include starch saccharide (starch saccharide), galacto-oligosaccharide, coupling sugar, fructooligosaccharide, xylo-oligosaccharide, soybean oligosaccharide, chitin oligosaccharide, chitosan oligosaccharide, and the like. These oligosaccharide compositions can be used alone or in combination of two or more.
  • starch saccharide starch saccharide
  • galacto-oligosaccharide galacto-oligosaccharide
  • coupling sugar fructooligosaccharide
  • xylo-oligosaccharide xylo-oligosaccharide
  • the starch sugar is an oligosaccharide composition obtained by allowing an acid or darcoamylase to act on starch, and may be a mixture of oligosaccharides having a plurality of glucoses bound thereto.
  • starch sugars include reduced starch saccharified products (trade name: P-11, tetrasaccharide content of 90% by weight or more) manufactured by Towa Kasei Co., Ltd.
  • Galacto-oligosaccharide is an oligosaccharide composition obtained by reacting lactose with ⁇ -galactosidase and the like, and is a mixture of galactosyl lactose and galactose- (glucose) n (n is an integer of 1 to 4). Number).
  • Coupling sugar is an oligosaccharide composition obtained by reacting starch and sucrose with cyclodextrin synthase (CGTaSe), and is a mixture of (glucose) n _ sucrose (n is an integer of 1 to 4). You may.
  • Fructooligosaccharide is an oligosaccharide composition obtained by reacting sugar (sucrose) with fructofuranosidase, and is a mixture of sucrose- (fructose) n (n is an integer of 1 to 4). ).
  • the content of trisaccharides and tetrasaccharides (especially tetrasaccharides) in the oligosaccharide composition is, for example, 60% by weight or more in order to prevent a sharp decrease in viscosity during melt kneading. (60-100% by weight), It is preferably at least 70% by weight (70 to 100% by weight), more preferably at least 80% by weight (80 to 100% by weight), particularly at least 90% by weight (90 to 1% by weight). 0% by weight).
  • the oligosaccharide may be a reduced type (maltose type) or a non-reduced type (trehalose type), but a reduced type oligosaccharide is preferable because of its excellent heat resistance.
  • the reduced oligosaccharide is not particularly limited as long as it has a free aldehyde group or a ketone group and is a reducing sugar.
  • Disaccharides such as monos, cellobiose, gentiobiose, lactose, palatinose, melibiose, rutinose, primeverose, and lleranose; maltotriose, isomalt trios, panose, cellotriose, mannino triose, and thoratriose.
  • Tetrasaccharides such as maltotetraose, isomalttetraose, cellotetraose, and liquinose
  • pentasaccharides such as maltopenyose and isomaltopeneose
  • hexasaccharides such as maltohexaose and isomaltohexaose Etc., and the like.
  • the oligosaccharide is a derivative of a natural polysaccharide or a product derived from a natural product produced by reduction thereof, the load on the environment can be reduced.
  • the viscosity of the oligosaccharide is desirably high. Specifically, when measured at a temperature of 25 using a B-type viscometer, the viscosity of a 50% by weight aqueous solution of an oligosaccharide is 1 Pa ⁇ s or more (for example,;! To 500 Pa).
  • ⁇ S preferably 2 Pa * s or more (for example, about 2 to 250 Pa ⁇ s, particularly about 3 to 100 Pa ⁇ s), and more preferably 4 Pa ⁇ s or more (eg, For example, it is about 4 to 50 Pa ⁇ s, especially 6 Pa ⁇ s or more (for example, about 6 to 50 Pa ⁇ s), and it is desirable to use a high-viscosity oligosaccharide.
  • the melting point or softening point of the oligosaccharide is preferably higher than the heat distortion temperature of the resin component (A) (for example, the Vicat softening point specified in JISK7206).
  • the oligosaccharides may not show a melting point or softening point and may be thermally decomposed.
  • the decomposition temperature may be defined as the oligosaccharide (“melting point or softening point” of ⁇ ).
  • the temperature difference between the melting point or softening point of the oligosaccharide (Bj) and the heat deformation temperature of the resin component (A) is, for example, 1 or more (for example, about 1 to 80), preferably 10 or more (for example, , About 10 to 70), and more preferably 15 ° C or more (for example, about 15 to 6O: about).
  • the melting point or softening point of (Bj) can be selected in the range of 70 to 300, depending on the type of the resin component (A), for example, 90 to 290 t :, preferably 10 to 100. 0 to 280t: (for example, 110 to 270), more preferably about 120 to 260 (for example, 130 to 260).
  • anhydrides of oligosaccharides exhibit a high melting point or softening point.
  • the melting point of dihydrate is 97, but the melting point of anhydride is 203.
  • the melting point or softening point of the oligosaccharide is higher than the heat deformation temperature of the resin component (A), not only can the sudden decrease in the viscosity of the oligosaccharide during melt kneading be prevented, but also the thermal degradation of the oligosaccharide can be suppressed.
  • the water-soluble auxiliary component (B) is combined with the oligosaccharide (Bj) and the water-soluble plasticizing component (B 2 ) for plasticizing the oligosaccharide to form a resin component.
  • the viscosity of the water-soluble auxiliary component (B) can be adjusted.
  • the plasticizing component (B 2 ) is not particularly limited as long as it can exhibit a phenomenon that the oligosaccharide (B!) Hydrates and becomes a syrup-like state, and examples thereof include sugars and sugar alcohols. These plasticizing components can be used alone or in combination of two or more. (Sugars)
  • an oligosaccharide (monosaccharides and / or disaccharides are usually used in order to effectively plasticize B.
  • These saccharides can be used alone or in combination of two or more kinds.
  • Examples of the monosaccharide include triose, tetroose, bentose, hexose, heptose, octose, nonose, and decose. These compounds may be aldoseketose, dialdose (a compound that is a derivative of a sugar and has carbon atoms at both ends of an aldehyde group, such as tetraacetylgalactohexaldehyde, Idohexodialdose, xylovent aldose, etc.), monosaccharides having a plurality of carbonyl groups (such as aldoalkoketoses such as oson and onose), monosaccharides having a methyl group (such as methyl sugars such as altromethylose), Ashiru groups (especially C 2 _ 4 Ashiru group such Asechiru group) monosaccharides having (the Aldo Ichisu of Asechiru products, such as Asechiru products such
  • Such monosaccharides include, for example, tetroses (erythrose, threolose, etc.), pentoses (arabinose, ribose, lyxose, deoxylipose, xylose, etc.), hexoses (araose, altroose, glucose, mannose, etc.). Growth, idose, galactose, fructose, sorbose, fucose, rhamnose, talose, galacturonic acid, glucuronic acid, mannuronic acid, dalcosamine, etc.).
  • the monosaccharide may be a cyclic isomer in which a cyclic structure is formed by a mesogenic bond.
  • the monosaccharide does not need to have optical rotation, but may be any of D-form, L-form, and D-L form. These monosaccharides can be used alone or in combination of two or more.
  • an oligosaccharide if it can plasticize B ⁇
  • disaccharides having a low melting point or a low softening point eg, gentibiose, melibiose, trehalose (dihydrate), etc.
  • homo- and heterodisaccharides of the monosaccharides eg, aldobiocarboxylic acid such as dalcuronoglucose in which glucuronic acid and glucose are ⁇ -1,6-glycosidically linked.
  • saccharides are preferably reducing sugars [eg, free monosaccharides, and among the disaccharides, reducing sugars having a low melting point or low softening point (eg, gentibiose, melibiose, etc.)]. .
  • the sugar alcohol may be a chain sugar alcohol such as alditol (glycitol) or a cyclic sugar alcohol such as inositol, but usually, Linear sugar alcohols are used. These sugar alcohols can be used alone or in combination of two or more.
  • linear sugar alcohols examples include tetritol (threitol, erythritol, etc.), pentitol [pentaerythritol, arabitol, ribitol (adnitol), xylitol, lixitol, etc.], hexitol [sorbitol] , Mannitol, idiitol, daritol, talitol, dulcitol (galactitol), arozurcitol (aritol), arsulitol, etc.], heptitol, octitol, nonitol, dexitol, and dodecitol.
  • pentitol pentitol [pentaerythritol, arabitol, ribitol (adnitol), xylitol, lixitol, etc.]
  • sugar alcohols erythritol, pentaerythritol, arabitol, ribitol, xylitol, sorbitol, dulcitol and mannitol are preferred.
  • the sugar alcohol often contains at least one sugar alcohol selected from erythritol, pentaerythritol, and xylitol.
  • Plasticizing component (beta 2) is liquid at ordinary temperature (e.g., degree 1 5-2 0) Although it may be in the form of a syrup, it is usually solid in many cases from the viewpoint of handling.
  • de auxiliary component (B) an oligosaccharide and (B!) Plasticizer Chemical component and (B 2), a pyrolytic oligosaccharides oligosaccharides (B!) Does not show a clear melting point Ya softening point However, it can be effectively plasticized or softened.
  • the melting point or softening point of the plasticizing component (B 2 ) is usually equal to or lower than the heat distortion temperature of the resin component (A) (for example, the vicat softening point specified in JISK7206).
  • some plasticizing components have a high melting point (for example, 200 ⁇ or more), but when coexisting with oligosaccharides, there are substances that melt at a temperature lower than the actual melting point. For example, pentaerythritol exerts a plasticizing effect on oligosaccharides at a temperature lower than the actual melting point (26 Ot :) (for example, about 160 to 180), and becomes molten.
  • Such a plasticizing component having a high melting point cannot be used alone because it does not melt at the heat deformation temperature of the resin component, but can be effectively used in combination with an oligosaccharide.
  • a plasticizing component that exerts a plasticizing effect on oligosaccharides at a temperature lower than the actual melting point for example, pentaerythritol
  • the temperature at which the plasticizing effect on the oligosaccharide is exhibited is determined by the plasticizing component ( ⁇ ).
  • the “melting point or softening point” of 2 ) may be used.
  • the melting point or softening point of the auxiliary component ( ⁇ ) may be higher or lower than the thermal deformation temperature of the resin component ( ⁇ ).
  • the resin component ( ⁇ ) and the auxiliary component ( ⁇ ) may be melted or softened at least at the kneading temperature (or molding temperature).
  • the temperature difference between the melting point or softening point of the auxiliary component ( ⁇ ) and the heat deformation temperature of the resin component ( ⁇ ) may be selected in the range of 0 to 100, for example, 3 to 800. Even (e.g., 3 to 55), preferably 5 to 60 (e.g., 5 to 45), and more preferably 5 to 40 (e.g., 10 to 35).
  • the temperature difference between the melting point or softening point of the auxiliary component ( ⁇ ) and the thermal deformation temperature of the resin component ( ⁇ ) is small (for example, when the temperature difference is 0 to 20)
  • the auxiliary component (B) for example, a sugar component
  • the melt flow rate of the auxiliary component (B) is determined by, for example, the heat deformation temperature (of the resin component (A)).
  • melt edge rate specified in JIS K72010 when the melt edge rate specified in JIS K72010 is measured at a temperature 3 Ot higher than the above-mentioned vicat softening point, 1 or more (for example, about 1 to 40), preferably 5 or more ( For example, about 5 to 30), and more preferably 10 or more (for example, about 10 to 20).
  • the ratio (weight ratio) of the plasticizing component ( ⁇ 2 ) is such that the plasticizing component is not localized due to agglomeration or the like during the melt-kneading, and the oligosaccharide is efficiently plasticized.
  • the amount which can be obtained, for example, the oligosaccharide (Bj) plasticizing component ( ⁇ 2 ) can be selected from 50, preferably 95-5 to 60/40, more preferably 90/10 to It is about 70/30.
  • the compatibility between the resin component ( ⁇ ) and the auxiliary component ( ⁇ ) is not particularly limited, and may be incompatible or compatible.
  • the resin component and the auxiliary component are compatible with each other, even if the resin component and the auxiliary component form a uniform single phase at the kneading temperature, the surface tension and the solidification rate of the two during the cooling process after kneading. Due to the difference, the resin component and the auxiliary component can be phase-separated.
  • the reason why the resin component and the auxiliary component can be phase-separated is that the auxiliary component of the present invention has a low surface tension and is kneaded with the resin component. It can maintain a relatively high viscosity even at a temperature and has a unique physical property that the solidification rate at the time of cooling is extremely faster than that of the resin component due to its low molecular weight.
  • the ratio (weight ratio) between the resin component ( ⁇ ) and the auxiliary component ( ⁇ ) can be selected according to the type and viscosity of the resin component and the auxiliary component, the compatibility between the resin component and the auxiliary component, and the like. Although not particularly limited, usually does not impair moldability.
  • the ratio of the resin component (A) / Agent component (B) 7525-: can be selected from the range of LO / 90.
  • the viewpoint of balance between porosity and mechanical strength preferably from 60 to 40 to 15
  • 50/50 to 15Z85 preferably about 40 to 25/75.
  • the porous resin molded body is useful as a separation membrane.
  • the ratio (weight ratio) of the resin component (A) and the auxiliary component (B) is usually the same as the resin component (A).
  • Z auxiliary component (B)- ⁇ / ⁇ preferably about 50/50 to 5/95, more preferably about 45/55 to 10/90.
  • the dispersion or the resin composition may contain, as necessary, various additives such as a filler, a plasticizer or a softener, a lubricant, a stabilizer (a heat stabilizer, an antioxidant, an ultraviolet absorber, etc.), Thickeners, colorants (titanium oxide, carbon black, etc.), dispersants, flame retardants, antistatic agents and the like may be added.
  • various additives such as a filler, a plasticizer or a softener, a lubricant, a stabilizer (a heat stabilizer, an antioxidant, an ultraviolet absorber, etc.), Thickeners, colorants (titanium oxide, carbon black, etc.), dispersants, flame retardants, antistatic agents and the like may be added.
  • the filler includes, for example, a powdery or granular filler or a reinforcing agent (such as my strength, clay, talc, caic acids, silica, calcium carbonate, magnesium carbonate, carbon black, ferrite, etc.), and fibrous material.
  • Filament or reinforcing agent Organic fiber such as rayon, nylon, vinylon, aramid, carbon fiber, glass fiber, metal fiber, whisking power And other inorganic fibers).
  • each of these additives may be an effective amount.
  • the total amount of the additives is about 0 to 50 parts by weight, preferably 0.1 to 20 parts by weight, based on 100 parts by weight of the resin. It may be about 10 parts by weight, more preferably about 0.5 to 10 parts by weight.
  • the amount of each additive is about 0 to 30 parts by weight, preferably about 0.05 to 20 parts by weight, more preferably about 0.1 to 10 parts by weight, based on 100 parts by weight of the resin. It may be.
  • the phase separation structure and the dispersion structure are not particularly limited, and the resin component and the auxiliary component may form a sea-island structure or a composite dispersed phase structure. However, if the auxiliary component (B) forms a continuous phase in the sea-island structure (the resin phase is an independent phase-separated structure) or a co-continuous phase, the auxiliary component Can be eluted quickly.
  • the shape of the dispersed phase composed of the resin component is particulate (for example, spherical, elliptical, polygonal, prismatic, etc.). , Column, rod, irregular shape, etc.).
  • the preferred shape of the dispersed phase is spherical.
  • the average particle size of the disperse phase is not particularly limited, and can be selected from a range of about 0.1 lim to lmm depending on the application.For example, 0.1 to 800 / m (for example, 0.1 ⁇ 500m), preferably 0.1 ⁇ : lOOm (for example, 0.5 ⁇ 80m), more preferably 0.5 ⁇ 50 / m (for example:! ⁇ 40m) It is about.
  • the continuous phase composed of the auxiliary component (porogen) has a lamellar structure, OB DD (Ordered Bicontinuous Double Diamond) structure, cylinder-one structure, etc.
  • OB DD Organic Bicontinuous Double Diamond
  • cylinder-one structure etc.
  • measuring the size of a continuous phase having such a structure conventional measurement methods such as conversion into a circle cannot be used because there are no units such as independent particles.
  • one continuous phase in one section of the dispersion By measuring the minimum length (X) in the width direction of the phase in (or the tetrapod-like basic unit), the size of the continuous phase composed of the auxiliary component can be measured.
  • the average length (X) is not particularly limited, and can be selected from a range of about 0.1 m to 1 mm depending on the application. For example, 0.1 to 800 mm (for example, 0:! 0.00 m), preferably about 0.1 to 100 m (for example, 0.5 to 80 m), and more preferably about 0.5 to 50 m (for example, 1 to 40 m).
  • the present invention also includes a method of eluting the auxiliary component (B) from the dispersion to produce a molded article (for example, a porous body or particles) composed of the resin component (A).
  • the dispersion can be prepared by kneading the resin component (A) and the auxiliary component (B). Usually, a kneaded composition is molded to prepare a preform.
  • the kneading can be carried out using a conventional kneading machine (for example, a single-screw or twin-screw extruder, a kneader, a calendar-roll, etc.).
  • the kneading time may be selected, for example, from the range of 10 seconds to 1 hour, and is usually about 30 seconds to 45 minutes, preferably about 1 to 30 minutes (for example, about 1 to 10 minutes).
  • the resin component and the auxiliary component may be preliminarily kneaded with a freeze grinder or the like, or may be preliminarily kneaded with a Henschel mixer, a tumble mixer, a pole mill, or the like.
  • the molding method examples include extrusion molding, injection molding, blow molding, calendar molding, and the like. Extrusion molding or injection molding is usually used in terms of productivity and ease of processing.
  • the shape of the preform is not particularly limited, and may be 0-dimensional shape (granular shape, pellet shape, etc.), 1-dimensional shape (strand shape, rod shape, etc.), 2-dimensional shape (plate shape, sheet shape, fill shape). Shape), three-dimensional shape (tubular, block-like, etc.) Is also good.
  • the auxiliary component it is desirable to process into a strand, rod, sheet, or film.
  • the preformed body may be processed by laminating another base material in a molding process.
  • the kneading temperature and the molding temperature can be appropriately set according to the raw materials used (for example, resin components and auxiliary components). For example, 90 to 300, preferably 110 ⁇ 260 ⁇ , more preferably about 140 ⁇ 240 (for example, 170 ⁇ 240), especially about 170 ⁇ 230 (for example, 180 ⁇ 220).
  • the kneading temperature and the molding temperature may be set to 230 or less in order to avoid the thermal decomposition of the auxiliary components (oligosaccharides and plasticizing components).
  • the dispersion system (the form in which the resin component and the auxiliary component are dispersed) may be formed by appropriately cooling the melt (for example, a kneaded product or a preform) after kneading and / or molding.
  • the cooling temperature may be at least the heat distortion temperature of the resin component or a temperature at least about 10 lower than the melting point or softening point of the auxiliary component.
  • the melting point or softening point of the auxiliary component 10 to 100 X: about lower temperature, preferably about 15 to 80 t: lower than the above temperature, more preferably about 20 to 60 lower than the above temperature. Low temperatures may be used.
  • the cooling temperature can be selected from the range of 5 to 150 depending on the type of the resin component or the auxiliary component. For example, 10 to: 0 to 60), preferably about 15 to 100 (for example, 15 to 50), and more preferably about 20 to 80 (for example, about 20 to 40).
  • the cooling time can be appropriately set according to the type of the resin component and the auxiliary component, the cooling temperature, and the like, and may be selected from a wide range of, for example, 30 seconds to 20 hours. It may be 0 hour, preferably 1 minute to 5 hours (for example, 1 minute to 1 hour), and more preferably about 1.5 to 30 minutes. Due to cooling, even if the resin component and the auxiliary component are compatible, they are dispersed in the cooling process due to differences in solidification rate such as surface tension and crystallization. A system can be formed and a dispersion can be obtained.
  • the compatibility between the resin component and the auxiliary component, the melt viscosity of the resin component and the auxiliary component, kneading conditions for example, kneading time, kneading temperature, etc.
  • the conditions for example, cooling time, cooling temperature, etc.
  • the average pore size of the porous body or the average particle size of the particles can be changed, and not only the porosity is high, but also the pore size uniformity is extremely high.
  • Highly porous bodies (particularly porous bodies having continuous pores) and particles having a narrow particle size distribution and a uniform particle diameter can be easily obtained.
  • the form of the target product can be changed.
  • the resin component and the auxiliary component have the same ratio, thus, a porous body and particles can be selected.
  • the average pore size of the porous body or the average particle size of the particles is not particularly limited, and can be selected from a range of about 0.1 m to 1 mm depending on the application. For example, 0.1 :! to 800 jm (for example, : 0.5 to 50 m / m), preferably 0.1 to: L 00 im (for example, 0.5 to 80 m), more preferably 0.5 to 50 m (for example, 1 to 50 m). 40 m).
  • the variation coefficient of the pore size ([standard deviation of pore size / average pore size] XI 00) or the variation coefficient of the particle size ([standard deviation of particle size Z average particle size] X 100) is 60 or less (for example, About 5 to 60), more preferably 50 or less (for example, about 10 to 50).
  • the preformed body (or dispersion) obtained as described above may be mixed with a solvent [water, a water-soluble solvent (eg, alcohols (methanol, ethanol, propanol, isopropanol, butanol, etc.), ethers ( , Etc.), etc. to elute or wash the auxiliary component to obtain a molded article.
  • a solvent water, a water-soluble solvent (eg, alcohols (methanol, ethanol, propanol, isopropanol, butanol, etc.), ethers ( , Etc.), etc.
  • Water is preferred as the solvent because it has less impact on the environment and can reduce industrial costs.
  • the auxiliary component is eluted using a conventional method, for example, under normal pressure (for example, about 1 atm or 100,000 Pa), under reduced pressure, or under pressure. Can be done.
  • the dissolution temperature of the auxiliary component can be appropriately set according to the resin component and the auxiliary component, and is, for example, 10 to 100, preferably 25 to 90: and more preferably 30 to 8 0: about (for example, 40 to 80). Since the water-soluble auxiliary component of the present invention is easily soluble in water, it does not require a large amount of water.
  • the molded body can be collected using a collection method such as filtration or centrifugation. It is desirable that no auxiliary component remains in the obtained molded body.However, for example, from the viewpoint of cost reduction in the washing process, even if a small amount of the auxiliary component remains in the molded body, Since the component is a compound derived from a natural product, there is little adverse effect on the molded product.
  • the auxiliary component extracted with the solvent can be easily recovered using conventional separation means (for example, distillation, concentration, recrystallization, etc.).
  • the above-mentioned molded body is not particularly limited as long as it can be obtained by eluting the auxiliary component from the resin component, and examples thereof include a porous body (a porous body having a two-dimensional structure such as a sheet or a film). Etc.) and particles (for example, spherical and true spherical particles).
  • the obtained molded body may be processed by laminating another base material by heat fusion or the like.
  • a water-soluble auxiliary component (or a water-soluble auxiliary) that can be uniformly kneaded with a resin is used while being a saccharide, so that a dispersion (or a dispersion) composed of a water-soluble auxiliary component and a resin component is used.
  • a resin composition that forms a dispersion system even if a wide variety of resin components are used, a molded article having a predetermined shape can be industrially advantageously formed, and kneading can be performed even if the auxiliary component is contained in a high ratio with respect to the resin component.
  • a dispersion having a uniform phase separation structure can be formed.
  • the water-soluble auxiliary component can be easily eluted from the dispersion with water, and does not adversely affect the environment even when the eluate is used as a waste liquid, since it is a component derived from a natural product.
  • Industrial applicability The molded product obtained by the production method of the present invention can be used for various applications depending on the obtained shape.
  • the porous body can be used as a separation membrane for liquids, a filter, a moisture absorbent, an adsorbent, a humectant, or an image receiving layer (or image receptor) of a recording sheet (for example, an ink receptor).
  • resins can be applied to the particles, they can be used to improve the suitability for mixing with other fine particles (for example, inorganic fine particles, etc.), as well as paints and coating agents (for example, powder paints), It can be used as an antiblocking agent (for example, an antiblocking agent for molded articles), a spacer, a toner, and the like. Furthermore, it can be used as an additive to daily necessities such as cosmetics, and as an additive for sheets or films.
  • paints and coating agents for example, powder paints
  • a resin composition composed of a resin component and an auxiliary component having the composition shown in Table 1 was melt-kneaded at a set temperature of 200 for 5 minutes using a Brabender (Labo Plastmill, manufactured by Toyo Seiki Co., Ltd.). , 30 for 10 minutes, and then press machine at 200, 200 kg / cm 2 (about 20 MPa) for 3 minutes, 1 mm thick plate-shaped dispersion Was prepared.
  • the dispersion was rapidly cooled under a pressure of 200 kg / cm 2 (approximately 20 MPa) for 30.3 minutes, and then immersed in 60 ml of hot and cold water. The dispersion was allowed to stand until the initial content was reduced to about 5% by weight, and finally a porous body was produced.
  • each component used and the evaluation method of the obtained porous body are as follows. Table 1 shows the results.
  • Resin-1 Ethylene-vinyl alcohol copolymer resin (Kuraray Co., Ltd., EP-L101B, ethylene content 19.8% by weight)
  • Resin-2 Polystyrene resin (Toyo Styrene Co., Ltd., GP PS HRM 63C)
  • Resin-3 Polypropylene resin (F219D, manufactured by Grand Polymer Co., Ltd.)
  • Auxiliary component 1 oligosaccharide: Starch sugar (Reduced starch saccharified product PO-10, 25, manufactured by Towa Kasei Co., Ltd.) Viscosity of 50% by weight aqueous solution measured with a B-type viscometer: 6 . 5 P a ⁇ s)
  • Auxiliary component 1 2 plasticizing component: Sugar alcohol (Wako Pure Chemical Industries, Ltd., Penyu Erythritol)
  • Auxiliary component 1 plasticizing component: Sugar alcohol (Erythritol, manufactured by Mitsubishi Chemical Foods Corporation)
  • Figure 1 shows an SEM photograph of the cross section of the porous body obtained in Example 2.
  • the cross-sectional structure of the porous body is a three-dimensionally continuous pore structure, there are no independent pores, and the conventional pore diameter measurement method based on circular conversion, etc. Cannot be adopted. Therefore, using a scanning electron microscope (SEM: manufactured by JEOL Ltd.), a single hole was formed using a photograph of the cross section of the porous body taken at 100 to 100 ⁇ . The minimum length in the width direction of the hole in the region where the hole was located was defined as the hole diameter.
  • the pore diameter was measured for a randomly extracted hole of 100 mm, and the average pore diameter, standard deviation, and coefficient of variation were calculated. Further, the presence or absence of a hole having a hole diameter of more than 100 / m was examined.
  • Example 2 Using a resin component and an auxiliary component having the compositions shown in Table 2, a dispersion was prepared in the same manner as in Example 1. The obtained dispersion was immediately cooled at 30 to 200 kgZcm 2 (about 20 MPa) for 3 minutes, and then immersed in 6 Ot: hot water to suspend the resin particles. A cloudy solution was obtained. Fine particles of resin were recovered by separating insoluble components from this suspension using a membrane membrane made of polyvinylidene fluoride having a pore size of 0.45 m. In addition, the components used, the compatibility, and the method of evaluating the obtained fine particles are as follows. Table 2 shows the results.
  • Resin component Resin component: Nylon 12 (Polyamide 12) Resin (Daicel Degussa Co., Ltd., Diamid L160)
  • Resin-5 Polystyrene resin (Toyo Styrene Co., Ltd., GPPS HRM 63 C)
  • Resin-6 Cellulose acetate petitate resin (Eastman Co., Ltd., CAB171-15S)
  • Resin-1 7 Styrene-butadiene copolymer resin (K-Resin KK38, manufactured by Phillips Sekiyu KK)
  • Resin-1 8 Polyvinylidene fluoride resin (PVD F6008, manufactured by Solvay Davand Sudo Polymer Co., Ltd.)
  • Resin 9 Polylactic acid (Lashia H—100 P L, manufactured by Mitsui Chemicals, Inc.)
  • Resin-10 Polycaprolactone-polybutylene succinate copolymer resin (Daicel Chemical Industries, Ltd., Cell Green CBS201)
  • Resin-11 Ethylene-vinyl alcohol copolymer resin (Kuraray Co., Ltd., EP-L101B, ethylene content 19.8% by weight)
  • Auxiliary component 1-4 oligosaccharide: Starch sugar (manufactured by Towa Kasei Co., Ltd., viscosity of 50% by weight aqueous solution measured with a B-type viscometer at reduced starch saccharified products P0-10, 25): 6.5 Pas)
  • Auxiliary component 1 5 (a) (plasticizing component): Sugar alcohol (pentaerythritol, manufactured by Wako Pure Chemical Industries, Ltd.)
  • Auxiliary component 1 5 (plasticizing component): Sugar alcohol (D (—) sorbitol, manufactured by Wako Pure Chemical Industries, Ltd.)
  • DSC differential scanning calorimetry
  • This sample was supplied to a measuring device, heated to 200 once, and allowed to stand for 5 minutes.
  • the exothermic peak accompanying the crystallization of the resin component was observed at a rate of 10 / min in accordance with JISK7121, at a rate of temperature decrease of 10 minutes.
  • the crystallization temperature was measured by reading the temperature from the peak top position. For the crystallization temperature of the resin component alone, the same operation was performed for the resin component, and the crystallization temperature was measured.
  • the crystallization temperature of the resin component alone is compared with the crystallization temperature of the resin component measured using a mixture of the resin component and the auxiliary component, and the temperature difference between the two is 1 ". When it was within the range, it was determined that there was compatibility between the resin component and the auxiliary component.
  • the crystallization temperature of the resin component cannot be measured, the crystallization temperature of the oligosaccharide measured by the above procedure for the auxiliary component and the mixture of the resin component and the auxiliary component The measured crystallization temperature of the oligosaccharide was compared, and if the temperature difference between the two was within 1 or less, it was determined that there was compatibility between the resin component and the auxiliary component.
  • a suspension is prepared by dispersing an appropriate amount of the dried resin fine particles again in pure water, and using a laser diffraction type particle size distribution meter (manufactured by Shimadzu Corporation, SALD-200J). And the number average particle diameter was measured. In addition, the standard deviation and the coefficient of variation were calculated for 100 randomly extracted particles among the resin fine particles.
  • Auxiliary component is composed only of compounds derived from natural products
  • Auxiliary component 5 (a: pentaerythritol, b: D (—) sorbitol)
  • the resin component and the auxiliary component were spherical in both a compatible system and an incompatible system. Spherical resin particles could be obtained.
  • FIG. 2 shows an electron micrograph of the spherical fine particles of the cellulose acetate butyrate resin obtained in Example 13.
  • Comparative Example 4 in which the sugar alcohol that does not completely plasticize at the heat distortion temperature of the resin component was used as the auxiliary component, the dispersion obtained by melt-kneading was immersed in water. Even when the auxiliary component was removed, the resin component did not become fine particles, and a sponge-like lump having pores exceeding a pore diameter of 100 zm was obtained.
  • the melting point is lower than the heat distortion temperature of the resin component.
  • kneading with the resin component could not be performed because the viscosity of the auxiliary component was too low during melt kneading.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Description

明 細 書 分散体及びそれを用いた成形体の製造方法 技術分野
本発明は、 樹脂成分及び水溶性助剤成分とで構成され、 前記樹脂 成分を多孔体や粉粒体などの形態に加工するために有用な分散体 (又は分散系を形成する樹脂組成物) 、 この分散体を用いた成形体 の製造方法、 及び樹脂と組み合わせて分散体を形成するための水溶 性助剤に関する。 背景技術
多孔体や粒子などの所望の形状の樹脂成形体を製造する場合、 様々な方法が用いられている。 例えば、 特開 2 0 0 1 — 2 8 2 5号 公報には、 成形温度で溶融する気孔形成剤と、 樹脂などの高分子物 質とを溶融混練し、 成形した後に、 気孔形成剤を含む充実成形体か ら気孔形成剤を溶媒で洗浄する多孔体の製造方法が開示されている この文献では、 気孔形成剤として、 ペン夕エリスリ 卜一ルゃ Lーェ リスリ トールなどが記載され、 助剤成分を溶出するための溶媒とし て、 水やアルコール類などの有機溶剤が記載されている。 この方法 によれば、 微細な気孔が均一に形成された均質な多孔体を製造する ことができる。
しかし、 樹脂組成物中における気孔形成剤 (低融点のエリスリ ト 一ルゃ高融点のペンタエリスリ トール) の割合を高めると、 樹脂組 成物の溶融混練性が低下し、 孔径の均一性を損なう。 より詳細には, 樹脂とエリスリ トールとの混練において、 低融点のエリスリ トール が溶融すると、 急激に樹脂組成物の粘度が低下し、 樹脂組成物の溶 融混練性が著しく低下する。 また、 樹脂組成物におけるペン夕エリ スリ トールの割合を高めると、 溶融混練できるものの、 一部のペン 夕エリスリ トールが不溶なまま残存し、 均一な孔径を有する多孔体 を得ることができない。
特開平 1 0— 1 7 6 0 6 5号号公報には、 微粉末化する熱可塑性 樹脂 ( a ) に、 他の 1種類以上の熱可塑性樹脂 (b ) を溶融混練す ることにより、 樹脂 ( a ) が分散相、 樹脂 (b ) が連続相を構成す る樹脂組成物を得て、 樹脂 ( a ) は溶解せず、 樹脂 (b ) が溶解す るような溶媒で前記樹脂組成物を洗浄することにより、 樹脂 ( a ) の球状微粒子を得る方法が開示されている。
しかし、 この方法においては、 分散相と連続相とがそれぞれ非相 溶である必要があるだけでなく、 分散相の樹脂の種類によって、 連 続相の樹脂と溶媒との適正な組み合わせを選択する必要がある。 そ のため、 樹脂同士の組合せが制限されるだけでなく、 樹脂及び溶媒 の組み合わせについても制限される。 さらに、 分散体を冷却する過 程において、 非相溶である樹脂同士は、 大きな相分離を起こしがち である。 そのため、 この分散体を慎重に固化させなければ、 一旦生 成した分散相が再び集合してしまい、 所定形状の球状微粒子を得る ことができなくなる。
さらにまた、 連続相を形成する樹脂は、 製品となる樹脂微粒子に はなんら関与しないため、 最終的に回収されるか、 あるいは溶解状 態のまま廃棄されることになる。 しかし、 溶液中の樹脂を回収する ことは、 非常に困難であるばかりか、 樹脂微粒子の製造コストを上 昇させる要因となる。 また、 樹脂溶液を廃液としてそのまま廃棄し た場合、 環境への悪影響が懸念される。
特開昭 6 0— 1 3 8 1 6号公報には、 ポリエチレングリコールと 熱可塑性樹脂とを溶融撹拌した後に、 水中に投入して両ポリマーを 凝固させ、 その後、 水を用いて、 ポリエチレングリコールを除去す る熱可塑性樹脂粒子の製造方法が提案されている。 特開昭 6 1— 9 4 3 3号公報には、 熱可塑性樹脂とポリエチレンォキサイ ドとを溶 融撹拌した後に冷却させ、 水を用いて、 ポリエチレンオキサイ ドを 除去する熱可塑性樹脂粒子の製造方法が開示されている。 特開平 9 — 1 6 5 4 5 7号公報には、 ポリビニルアルコール系樹脂、 変性澱 粉、 ポリエチレンォキサイ ドなどの溶融形成可能な水溶性高分子と、 熱可塑性樹脂とを混合して溶融成形物を得た後、 水を用いて、 成形 物から水溶性高分子を除去する樹脂微粒子の製造方法が開示されて いる。
しかし、 これらの方法においても、 樹脂と水溶性高分子との非相 溶性が必要であるため、 選択できる樹脂の組合せが限定されるだけ でなく、 得られる樹脂粒子の粒子径分布の均一性は十分ではない。 さらに、 これらの水溶性高分子は、 水への溶解度が小さいため、 溶 解させるために大量の水が必要であるとともに、 溶解速度が遅いた め、 生産性を著しく低下させる。 さらにまた、 このような水溶性高 分子は、 非天然物由来である場合が多いため、 このような水溶性高 分子を溶解した廃液は、 環境に悪影響を及ぼす。
従って、 本発明の目的は、 糖類でありながら、 樹脂成分と均一に 混練可能である水溶性助剤成分 (又は水溶性助剤) 、 およびこの水 溶性助剤成分を用いた分散体 (又は分散系を形成する樹脂組成物) を提供することにある。
本発明の他の目的は、 幅広い種類の樹脂成分を用いても、 所定の 成形体を工業的に有利に形成できる水溶性助剤成分 (又は水溶性助 剤) 、 およびこの水溶性助剤成分を用いた分散体 (又は分散系を形 成する樹脂組成物) を提供することにある。
本発明のさらに他の目的は、 樹脂成分に対して助剤成分を高い割 合で含有させても混練可能であり、 かつ均一な相分離構造を形成で きる水溶性助剤成分 (又は水溶性助剤) 、 およびこの水溶性助剤成 分を用いた分散体 (又は分散系を形成する樹脂組成物) を提供する ことにある。
本発明の別の目的は、 水で容易に溶出できるだけでなく、 環境へ の負荷を低減できる水溶性助剤成分 (又は水溶性助剤) と、 樹脂成 分とで構成された分散体 (又は分散系を形成する樹脂組成物) を用 いた成形体の製造方法を提供することにある。
本発明のさらに別の目的は、 孔径ゃ粒子径が均一な成形体を製造 できる方法を提供することにある。 発明の開示
本発明者は、 前記課題を達成するため鋭意検討した結果、 少なく ともオリゴ糖で構成された助剤成分を、 樹脂成分と組み合わせて分 散体を形成すると、 糖類でありながら、 樹脂と均一に混練可能であ り、 幅広い種類の樹脂成分を用いて、 均一な孔径又は粒子径を有す る成形体を製造できることを見出し、 本発明を完成した。
すなわち、 本発明の分散体は、 樹脂成分 (A ) 及び水溶性助剤成 分 (B ) とで構成された分散体であって、 助剤成分 (B ) が、 少な くともオリゴ糖 で構成されている。 助剤成分 (B ) は、 海 島構造における連続相、 または共連続相を形成してもよく、 樹脂成 分 (A ) は、 熱可塑性樹脂 [例えば、 ポリエステル系樹脂 (例えば、 脂肪族ポリエステル系樹脂) 、 ポリアミ ド系樹脂、 ポリウレタン系 樹脂、 ポリ (チォ) エーテル系樹脂、 ポリカーボネート系樹脂、 ポ リスルホン系樹脂、 ポリオレフイン系樹脂、 (メタ) アクリル系樹 脂、 スチレン系樹脂、 ビニル系樹脂、 セルロース誘導体、 熱可塑性 エラス トマ一など] で構成してもよい。 オリゴ糖 は、 樹脂 成分 (A ) の熱変形温度よりも高い温度で融点又は軟化点を示して もよいし、 分解してもよい。 例えば、 オリゴ糖 (B の融点又は 軟化点は、 樹脂成分 (A ) の熱変形温度よりも高い温度、 例えば、 9 0〜 2 9 0で程度であってもよい。 また、 オリゴ糖 (B は樹 脂成分 (A ) の熱変形温度よりも高い温度で明瞭な融点や軟化点を 示さず熱分解するオリゴ糖であってもよい。 樹脂の熱変形温度は、 例えば、 J I S K 7 2 0 6で規定されるビカッ ト軟化点として 測定してもよく、 樹脂の熱変形温度 (ビカッ ト軟化点) は、 例えば, 60〜 3 0 0 °C、 好ましくは 8 0〜 2 6 0 °C程度であってもよい。 オリゴ糖 は、 二糖類、 三糖類、 四糖類、 五糖類、 六糖類、 七糖類、 八糖類、 九糖類、 十糖類などで構成してもよく、 少なくと も四糖類で構成してもよい。 オリゴ糖 (B!) は、 マルトテトラオ —ス、 イソマルトテトラオース、 ス夕キオース、 セロテトラオース、 スコロドース、 リキノース、 パノースの還元末端に糖又は糖アルコ ールが結合したテトラオースなどの四糖で構成してもよい。 また、 オリゴ糖 (Bi) は、 デンプン糖、 ガラク トオリゴ糖、 カップリン グシュガー、 フルク トオリゴ糖、 キシロオリゴ糖、 大豆オリゴ糖、 キチンオリゴ糖、 キトサンオリゴ糖などのオリゴ糖組成物で構成し てもよく、 このようなオリゴ糖 (B 中の四糖類の含有量は 6 0 重量%以上であってもよい。 オリゴ糖 の 5 0重量%水溶液 の粘度は、 温度 2 5 :で B型粘度計で測定したとき、 1 P a · s以 上 (例えば、 3〜: 1 0 0 P a · s程度) であってもよい。
さらに、 助剤成分 (B) は、 オリゴ糖 (B を可塑化するため の水溶性可塑化成分 (B2) を含んでいてもよい。 オリゴ糖 (B!) と可塑化成分 (B2) とを組み合わせると、 オリゴ糖 が熱分 解するオリゴ糖であっても有効に可塑化又は軟化できる。 可塑化成 分 (B2) の融点又は軟化点は、 前記樹脂成分 (A) の熱変形温度 (前記ビカッ ト軟化点) 以下であってもよい。 また、 樹脂成分 (A) の前記熱変形温度より 3 0 t高い温度において J I S K 7 2 1 0で規定されるメルトフローレ一トを測定したとき、 オリゴ 糖 と可塑化成分 (Β2) とで構成された助剤成分 (Β) のメ ルトフローレートは、 例えば、 1以上 (例えば、 1〜40程度) で あってもよい。 可塑化成分 (Β2) は、 糖類 (例えば、 単糖類、 二 糖類など) や糖アルコールなどで構成してもよく、 このような糖類 は、 還元糖で構成してもよい。 単糖類は、 トリオース、 テトロース, ペントース、 へキソース、 ヘプトース、 ォク トース、 ノノース、 デ コース、 ドデコースなどで構成してもよく、 二糖類は、 前記単糖類 のホモ及びへテロ二糖類で構成してもよい。 糖アルコールは、 テト リ トール (例えば、 エリスリ トールなど) 、 ペンチトール (例えば、 ペン夕エリスリ トール、 ァラビトール、 リビトール、 キシリ トール など) 、 へキシトール (例えば、 ソルビトール、 ズルシトール、 マ ンニトールなど) 、 ヘプチトール、 ォクチトール、 ノニトール、 デ キトール、 ドデキトールなどで構成してもよい。 また、 樹脂成分
(A) と助剤成分 (B) との割合は、 樹脂成分 (A) /助剤成分
(B) = 9 9ノ 1〜: 1ノ9 9 (重量比) 程度であってもよく、 助剤 成分 (B) において、 オリゴ糖 (B!) と可塑化成分 (B2) との割 合は、 オリゴ糖 (B!) /可塑化成分 (B2) = 9 9 1〜 5 0 / 5
0 (重量比) 程度であってもよい。
本発明には、 少なくともオリゴ糖 (B!) で構成され、 かつ樹脂 と組み合わせて分散体を形成するための水溶性助剤も含まれる。 ま た、 分散体から、 助剤成分 (B) を溶出し、 樹脂成分 (A) で構成 された成形体 (例えば、 平均孔径が 0. l〜 1 0 0 / mで、 かつ孔 径の変動係数が 6 0以下であるような多孔体、 平均粒子径が 0. 1
〜 1 0 0 xmで、 かつ粒子径の変動係数が 6 0以下であるような粒 子など) を製造する方法も含まれる。
なお、 本発明において、 分散体は、 樹脂成分と助剤成分とで、 分 散系を形成する樹脂組成物であってもよく、 両者を同義に用いる場 合がある。 また、 水溶性助剤成分を、 気孔形成剤と称する場合があ る。 図面の簡単な説明
図 1は実施例 2で得られた多孔体断面の走査型電子顕微鏡写真で ある。
図 2は実施例 1 3で得られた粒子の走査型電子顕微鏡写真である < 発明の詳細な説明 [樹脂成分 (A ) ]
樹脂成分を構成する樹脂には、 熱可塑性樹脂 [ポリエステル系樹 脂 (例えば、 芳香族ポリエステル系樹脂や脂肪族ポリエステル系樹 脂など) 、 ポリアミ ド系樹脂、 ポリウレタン系樹脂、 ポリ (チォ) エーテル系樹脂 (例えば、 ポリアセタール系樹脂、 ポリフエ二レン エーテル系樹脂、 ポリスルフイ ド系樹脂、 ポリエーテルケトン系樹 脂など) 、 ポリカーボネート系樹脂、 ポリスルホン系樹脂、 ポリイ ミ ド系樹脂などの縮合系熱可塑性樹脂 ; ポリオレフイ ン系樹脂、 (メタ) アクリル系樹脂、 スチレン系樹脂、 ビニル系樹脂 (例えば、 ハロゲン含有樹脂、 ビニルエステル系樹脂、 ビニルアルコール系樹 脂など) などのビニル重合系熱可塑性樹脂 ; セルロース誘導体など の天然物由来樹脂など] 、 および熱硬化性樹脂 (例えば、 エポキシ 樹脂、 不飽和ポリエステル樹脂、 ジァリルフタレート樹脂、 シリコ —ン樹脂など) などが挙げられる。 これらの樹脂は、 単独で又は二 種以上組み合わせて使用できる。 樹脂成分としては、 通常、 熱可塑 性樹脂、 非水溶性樹脂 (非水溶性熱可塑性樹脂など) が使用される。
(熱可塑性樹脂)
( 1 ) ポリエステル系樹脂
ポリエステル系樹脂としては、 例えば、 ジカルボン酸成分とジォ ール成分との重縮合により得られるホモポリエステル又はコポリェ ステル ; ォキシカルボン酸を重縮合させて得られるホモポリエステ ル又はコポリエステル ; ラク トンを開環重合させて得られるホモポ リエステル又はコポリエステルが挙げられる。 これらのポリエステ ル系樹脂は、 単独で又は二種以上組み合わせて使用できる。
ジカルボン酸成分としては、 例えば、 芳香族ジカルボン酸 [例え ば、 テレフタル酸、 イソフタル酸、 フタル酸 ; メチルテレフタル酸、 メチルイソフタル酸などのアルキル置換フタル酸 ; ナフタレンジ力 ルボン酸 (2 , 6—ナフタレンジカルボン酸、 2, 7 -ナフタレン ジカルボン酸、 1, 5—ナフタレンジカルボン酸など) ; 4, 4 ' —ジフエニルジカルボン酸、 3, 4 ' ージフエニルジカルボン酸な どのジフエニルジカルボン酸 ; 4, 4 ' ージフエノキシエタンジカ ルボン酸などのジフエノキシエタンジカルボン酸 ; ジフエニルエー テル一 4, 4 ' —ジカルポン酸などのジフエニルエーテルジカルボ ン酸 ; ジフエニルメタンジカルボン酸、 ジフエ二ルェ夕ンジカルポ ン酸などのジフエ二ルアルカンジカルボン酸 ; ジフエ二ルケトンジ カルボン酸などの炭素数 8〜2 0程度の芳香族ジカルボン酸など] 、 脂肪族ジカルボン酸 (例えば、 シユウ酸、 コハク酸、 アジピン酸、 ァゼライン酸、 セバシン酸、 ドデカン二酸、 へキサデカンジ力ルポ ン酸、 ダイマー酸などの炭素数 2〜4 0程度の脂肪族ジカルボン酸 など) 、 脂環族ジカルボン酸 (例えば、 シクロへキサンジカルボン 酸、 へキサヒドロフタル酸、 へキサヒドロイソフ夕ル酸、 へキサヒ ドロテレフタル酸、 ハイミック酸などの炭素数 8〜1 2程度の脂環 族ジカルボン酸など) などが挙げられる。 これらのジカルボン酸成 分は、 単独で又は二種以上組み合わせて使用できる。
なお、 ジカルボン酸成分には、 エステル形成可能な誘導体、 例え ば、 ジメチルエステルなどの低級アルキルエステル、 酸無水物、 酸 クロライ ドなどの酸ハライ ドなども含まれる。
ジオール成分としては、 例えば、 脂肪族 C 2_1 2 ジオール (例えば、 エチレングリコール、 プロピレングリコール、 卜リメチレングリコ ール、 1, 4—ブタンジオール、 1 , 3 —ブタンジオール、 ネオべ ンチルダリコール、 へキサンジオールなどの C 2_1 2 アルカンジォー ル ; ジエチレングリコール、 トリエチレングリコール、 ジプロピレ ングリコールなどの (ポリ) ォキシ C 24 アルキレングリ コール 等) ; 脂環族 C 61 2 ジオール (例えば、 シクロへキサンジオール、 シクロへキサンジメタノール等) ; 芳香族 C 6_2o ジオール (例えば, レゾルシノール、 ヒドロキノンなどのベンゼンジオール; ナフタレ ンジオール ; ビスフエノール A, F, A Dなどのビスフエノール 類 ; ビスフエノール類のアルキレンォキサイ ド付加体など) などが 挙げられる。 これらのジオール成分は、 単独で又は二種以上組み合 わせて使用できる。
ォキシカルボン酸としては、 例えば、 グリコール酸、 乳酸、 ォキ シプロピオン酸、 ォキシ酪酸、 グリセリン酸、 タルトロン酸などの 脂肪族 C 2_6 ォキシカルボン酸 ; ヒ ドロキシ安息香酸、 ォキシナフ トェ酸などの芳香族ォキシカルボン酸などが挙げられる。 これらの ォキシカルボン酸は、 単独で又は二種以上組み合わせて使用できる。
ラク トンとしては、 例えば、 プロピオラク トン、 プチロラク トン、 ノ レロラク トン、 力プロラク トン等の C 3_1 2 ラク トンが挙げられる。 これらのラク トンは、 単独で又は二種以上組み合わせて使用できる。 これらのラク トンのうち、 C 4_1 0 ラク トン、 特に力プロラク トン (例えば、 ε —力プロラク トンなど) が好ましい。
ポリエステル系樹脂には、 芳香族ポリエステル系樹脂や脂肪族ポ リエステル系樹脂などが含まれる。
芳香族ポリエステル系樹脂としては、 例えば、 前記芳香族ジカル ボン酸 (好ましくは、 テレフタル酸、 イソフタル酸、 フタル酸、 ナ フタレンジカルボン酸などの炭素数 8〜 2 0程度の芳香族ジカルポ ン酸など) と、 前記脂肪族ジオール (好ましくは、 エチレングリコ ール、 プロピレングリコール、 1, 4 一ブタンジオール、 1, 3— ブタンジオールなどの脂肪族 C 2_1 2 ジオールなど) 又は前記脂環族 ジオール (好ましくは、 シクロへキサンジメタノールなどの脂環族
C 6_20 ジオールなど) との重縮合により得られたホモポリエステル 又はコポリエステルなどが挙げられ、 好ましくは、 アルキレンテレ フタレートゃアルキレンナフタレ一トなどのアルキレンァリ レート 単位を主成分 (例えば、 5 0重量%以上) とするホモポリエステル 又はコポリエステルなどが例示できる。 共重合成分には、 繰り返し 数が 2〜 4程度のォキシアルキレン単位を有するポリオキシ C 2_4 アルキレングリコール [ジエチレングリコールなどのポリ (ォキシ — C 2-4 アルキレン) 単位を含むダリコールなど] や炭素数 6〜 1 2程度の脂肪族ジカルボン酸 (アジピン酸、 ピメリン酸、 スベリン 酸、 ァゼライン酸、 セバシン酸など) などが含まれていてもよい。 具体的には、 芳香族ポリエステル系樹脂としては、 ポリアルキレ ンテレフ夕レート [例えば、 ポリ ( 1 , 4ーシクロへキシルジメチ レンテレフ夕レート) (P C T ) などのポリシクロアルカンジ C卜 4 アルキレンテレフタレ一卜 ; ポリエチレンテレフ夕レート (P E T ) 、 ポリブチレンテレフ夕レート (P B T ) などのポリ C 2_4 ァ ルキレンテレフ夕レート] 、 このポリアルキレンテレフ夕レートに 対応するポリ C 2_4 アルキレンナフタレート (例えば、 ポリエチレ ンナフタレートなど) 、 エチレンテレフ夕レート単位を主成分とし て含有するポリエチレンテレフタレ一トコポリエステル、 ブチレン テレフ夕レート単位を主成分として含有するポリブチレンテレフタ レートコポリエステルなどが例示できる。 芳香族ポリエステル系樹 脂は液晶性ポリエステルであってもよい。
脂肪族ポリエステル系樹脂としては、 前記脂肪族ジカルボン酸成 分 (例えば、 シユウ酸、 コハク酸、 アジピン酸などの炭素数 2〜6 程度の脂肪族ジカルボン酸、 好ましくはシユウ酸、 コハク酸) と、 前記脂肪族ジオール成分 (例えば、 エチレングリコール、 プロピレ ングリコール、 1, 4 一ブタンジオール、 1, 3 —ブタンジオール、 ネオペンチルダリコール、 へキサンジオール等の脂肪族 C 2— 6 ジォ ール、 好ましくはエチレングリコール、 1, 4—ブタンジオール、 ネオペンチルグリコールなどの脂肪族 C 2_4 ジオール) との重縮合 により得られるホモポリエステル又はコポリエステルや、 前記脂肪 族ォキシカルボン酸 (例えば、 グリコール酸、 乳酸、 ォキシプロピ オン酸、 ォキシ酪酸などの脂肪族 C 2_6 ォキシカルボン酸、 好まし くはダリコール酸や乳酸などの脂肪族 C 24 ォキシカルボン酸) の ホモポリエステル又はコポリエステル、 開始剤 ( 2官能や 3官能の 開始剤、 例えば、 アルコールなどの活性水素化合物) を用いて前記 ラク トン (好ましくは、 力プロラク トンなどの C 4_10 ラク トン) を 開環重合して得られるホモポリラク トン又はコポリラク トンが挙げ られる。 共重合成分には、 繰り返し数が 2〜 4程度のォキシアルキ レン単位を有するポリオキシ C 2_4 アルキレングリコール [ジェチ レングリコールなどのポリ (ォキシー C 2-4 アルキレン) 単位を含 むグリコールなど] や、 炭素数 6〜 1 2程度の脂肪族ジカルボン酸 (アジピン酸、 ピメリン酸、 スベリン酸、 ァゼライン酸、 セバシン 酸など) などが含まれていてもよい。
具体的には、 脂肪族ポリエステル系樹脂としては、 例えば、 ジカ ルボン酸成分とジオール成分との重縮合から得られるポリエステル 系樹脂 (例えば、 ポリエチレンオギザレート、 ポリブチレンオギザ レート、 ポリネオペンチレンオギザレートなどのポリ C 26 ァルキ レンオギザレート ; ポリエチレンサクシネート、 ポリブチレンサク シネート、 ポリネオペンチレンサクシネートなどのポリ C 2_6 アル キレンサクシネート ; ポリエチレンアジペート、 ポリブチレンアジ ペート、 ポリネオペンチレンアジペートなどのポリ C 26 アルキレ ンアジペートなど) 、 ポリオキシカルボン酸系樹脂 (例えば、 ポリ グリコール酸やポリ乳酸など) 、 ポリラク トン系樹脂 [例えば、 ポ リカプロラク トン (ダイセル化学工業 (株) 製, P C L H 7、 P C
L H 4、 P C L H 1など) などのポリ C 3_1 2 ラク トン系樹脂など] などが挙げられる。 コポリエステルの具体例としては、 例えば、 2 種類のジカルボン酸成分を用いたコポリエステル (例えば、 ポリエ チレンサクシネート—アジべ一ト共重合樹脂、 ポリブチレンサクシ ネート—アジべ—ト共重合樹脂などのポリ C 2_4 アルキレンサクシ ネート一アジペート共重合樹脂など) 、 ジカルボン酸成分とジォー ル成分とラク トンとから得られるコポリエステル (例えば、 ポリ力 プロラク トンーポリブチレンサクシネート共重合樹脂など) などが 例示できる。
本発明で使用するポリエステル系樹脂は、 ウレタン結合を含むポ リエステル系樹脂 (例えば、 ウレタン結合を含む脂肪族ポリエステ ル系樹脂) であってもよい。 ウレタン結合を含むポリエステル系樹 脂は、 前記ポリエステル系樹脂 (低分子量ポリエステルジオールな ど) をジイソシァネート (例えば、 脂肪族ジイソシァネート) で高 分子量化した樹脂が好ましい。
ジイソシァネートとしては、 芳香族ジイソシァネート (例えば、 フエ二レンジイソシァネート、 トリレンジイソシァネート、 ジフエ ニルメタン一 4, 4 ' —ジイソシァネートなど) 、 芳香脂肪族ジィ ソシァネート (例えば、 キシリレンジイソシァネートなど) 、 脂環 族ジイソシァネート (例えば、 イソホロンジイソシァネートなど) 、 脂肪族ジイソシァネート (例えば、 トリメチレンジイソシァネート、 テトラメチレンジイソシァネート、 ペンタメチレンジイソシァネー ト、 へキサメチレンジイソシァネート、 リジンジイソシァネ一トメ チルエステル、 トリメチルへキサメチレンジィソシァネートなど) 等が挙げられる。 これらのジイソシァネートは、 単独で又は二種以 上組み合わせて使用できる。 これらのジイソシァネートのうち、 脂 肪族ジイソシァネート、 例えば、 へキサメチレンジイソシァネート が好ましく使用できる。
ウレタン結合を含むポリエステル系樹脂 (例えば、 脂肪族ポリエ ステル系樹脂) としては、 昭和高分子 (株) 製の 「ピオノーレ # 1 0 0 0」 、 「ビオノ一レ # 3 0 0 0」 、 「ビオノ一レ # 6 0 0 0」 のシリーズなどが挙げられる。
( 2 ) ポリアミ ド系樹脂
ポリアミ ド系樹脂としては、 例えば、 脂肪族ポリアミ ド系樹脂、 脂環族ポリアミ ド系樹脂、 芳香族ポリアミ ド系樹脂などが挙げられ、 通常、 脂肪族ポリアミ ド系樹脂が使用される。 これらのポリアミ ド 系樹脂は、 単独で又は二種以上組み合わせて使用できる。
脂肪族ポリアミ ド系樹脂としては、 脂肪族ジァミン成分 (テトラ メチレンジァミン、 へキサメチレンジァミンなどの C 4-1 () アルキレ ンジァミン) と脂肪族ジカルボン酸成分 (アジピン酸、 セバシン酸, ドデカン二酸などの C4_2() アルキレンジカルボン酸など) との縮合 物 (例えば、 ポリアミ ド 46、 ポリアミ ド 6 6、 ポリアミ ド 6 1 0、 ポリアミ ド 6 1 2、 ポリアミ ド 1 0 1 0、 ポリアミ ド 1 0 1 2、 ポ リアミ ド 1 2 1 2など) 、 ラクタム ( ε —力プロラクタム、 ω—ラ ゥロラクタムなどの C 4-20 ラクタムなど) 又はアミノカルボン酸 (ω—アミノウンデカン酸などの炭素数 C4_20 ァミノカルボン酸な ど) の単独又は共重合体 (例えば、 ポリアミ ド 6、 ポリアミ ド 1 1、 ポリアミ ド 1 2など) 、 これらのポリアミ ド成分が共重合したコポ リアミ ド (例えば、 ポリアミ ド 6 Z 1 1 , ポリアミ ド 6 / 1 2, ポ リアミ ド 6 6ノ 1 1 , ポリアミ ド 6 6 Z 1 2など) などが挙げられ る。
さらに、 ポリアミ ド系樹脂は生分解性を有していてもよい。 生分 解性ポリアミ ド系樹脂としては、 前記脂肪族ジァミン成分 (テトラ メチレンジァミン、 へキサメチレンジアミンなどの C41{) アルキレ ンジァミン) と、 前記脂肪族ジカルボン酸成分 (アジピン酸、 セバ シン酸、 ドデカン二酸などの C4_2() アルキレンジカルボン酸など) と、 前記脂肪族ジオール成分 (エチレングリコール、 プロピレング リコール、 ブタンジオールなどの C2_12 アルカンジオールなど) と の縮合物であるポリエステルアミ ドが挙げられる。
( 3) ポリウレタン系樹脂
ポリウレタン系樹脂は、 ジイソシァネート類とポリオ一ル類 (例 えばジオール類) と必要により鎖伸長剤との反応により得ることが できる。 ジイソシァネート類としては、 へキサメチレンジイソシァ ネート、 2 , 2 , 4— トリメチルへキサメチレンジイソシァネート などの脂肪族ジイソシァネート類、 1, 4—シクロへキサンジイソ シァネ一ト、 ィソホロンジィソシァネ一トなどの脂環族ジィソシァ ネート類、 フエ二レンジイソシァネート、 トリレンジイソシァネー ト、 ジフエニルメタン一 4, 4 ' ージイソシァネート、 1 , 5—ナ フタレンジイソシァネートなどの芳香族ジィソシァネート類、 キシ リレンジイソシァネートなどの芳香脂肪族ジイソシァネート類など が例示できる。
ポリオール類としては、 例えば、 ポリエステルポリオール、 ポリ エーテルポリオール、 ポリカーボネートポリオールなどが挙げられ る。 ポリオール類の中でも特にジオール類 (ポリエステルジオール、 ポリエーテルジオール、 ポリカーボネートジオールなど) が好まし い。 これらのポリオール類は単独で又は二種以上組み合わせて使用 できる。 '
ジオール類としては、 ポリエステルジオール (コハク酸、 アジピ ン酸、 ァゼライン酸などの C 4_1 2 脂肪族ジカルボン酸成分と、 ェチ レングリコール、 プロピレングリコール、 ブタンジオール、 ネオペ ンチルダリコールなどの C 2_1 2 脂肪族ジオール成分とから得られる ポリエステルジオール、 ε —力プロラク トンなどの C 4_1 2 ラク トン 成分から得られるポリエステルジオール、 前記脂肪族ジカルボン酸 成分及びノ又は前記脂肪族ジオール成分と、 前記ラク トン成分から 得られるポリエステルジオールなど) 、 ポリエーテルジオール (ポ リエチレングリコール、 ポリプロピレングリコール、 ポリオキシェ チレン一ポリオキシプロピレンブロック共重合体、 ポリオキシテト ラメチレングリコール、 ビスフエノール A—アルキレンォキサイ ド 付加体など) 、 ポリエステルエーテルジオール (ジオール成分の一 部として上記ポリエーテルジオールを用いたポリエステルジォー ル) などが利用できる。
さらに、 鎖伸長剤としては、 エチレングリコール、 プロピレング リコールなどの C 2_1 () アルキレングリコールの他、 ジァミン類 [脂 肪族ジァミン類 (エチレンジァミン、 トリメチレンジァミン、 テト ラメチレンジァミンなど直鎖又は分岐鎖状アルキレンジアミン ; ジ エチレントリァミン、 トリエチレンテトラミン、 テトラエチレンべ ンタミン、 ジプロピレントリアミンなどの直鎖又は分岐鎖状ポリァ ルキレンポリアミンなど) 、 脂環族ジァミン類 (イソホロンジアミ ンなど) 、 芳香族ジァミン類 (フエ二レンジァミン、 キシリ レンジ ァミンなど) など] も使用できる。 これらのポリウレタン系樹脂は、 単独で又は二種以上組み合わせて使用できる。
( 4 ) ポリ (チォ) エーテル系樹脂
ポリ (チォ) エーテル系樹脂には、 ポリオキシアルキレン系樹脂、 ポリフエ二レンエーテル系樹脂、 ポリスルフイ ド系樹脂 (ポリチォ エーテル系樹脂) が含まれる。 ポリオキシアルキレン系樹脂として は、 ポリオキシメチレングリコール、 ポリオキシプロピレングリコ —ル、 ポリオキシテ卜ラメチレングリコール、 ポリオキシエチレン 一ポリオキシプロピレンブロック共重合体などのポリオキシ C !_4 アルキレングリコールなどが含まれる。 これらのポリ (チォ) エー テル系樹脂は、 単独で又は二種以上組み合わせて使用できる。
( 5 ) ポリカーポネ一ト系樹脂
ポリ力一ポネート系樹脂には、 ビスフエノール類 (ビスフエノー ル Aなど) をベースとする芳香族ポリ力一ポネート、 ジエチレング リコールビスァリルカーポネートなどの脂肪族ポリカーボネートな どが含まれる。 これらのポリカーボネート系樹脂は、 単独で又は二 種以上組み合わせて使用できる。
( 6 ) ポリスルホン系樹脂
ポリスルホン系樹脂には、 ジハロゲノジフエニルスルホン (ジク ロロジフエニルスルホンなど) とビスフエノール類 (ビスフエノー ル A又はその金属塩など) との重縮合により得られるポリスルホン 樹脂、 ポリエーテルスルホン樹脂、 ポリアリルスルホン樹脂などが 例示できる。 これらのポリスルホン系樹脂は、 単独で又は二種以上 組み合わせて使用できる。
( 7 ) ポリオレフィ ン系樹脂
ポリオレフイ ン系樹脂には、 α— C 2_6 ォレフィ ンの単独又は共 重合体、 例えば、 ポリエチレン、 ポリプロピレン、 エチレン一プロ ピレン共重合体、 ポリ (メチルペンテン一 1 ) などのォレフィンの 単独又は共重合体、 ォレフィ ンと共重合性単量体との共重合体 (ェ チレン一酢酸ビニル共重合体、 エチレン一 (メタ) アクリル酸共重 合体、 エチレン一 (メタ) アクリル酸エステル共重合体など) が挙 げられる。 これらのポリオレフィン系樹脂は単独で又は二種以上組 み合わせて使用できる。
( 8 ) (メタ) ァクリル系樹脂
(メタ) アクリル系樹脂としては、 (メタ) アクリル系単量体 [ (メタ) アクリル酸、 (メタ) アクリル酸 C !— アルキルエステ ル、 (メタ) アクリル酸ヒドロキシアルキル、 (メタ) アクリル酸 グリシジル、 (メタ) アクリロニトリルなど] の単独又は共重合体、 例えば、 ポリ (メタ) アクリル酸メチルなどのポリ (メタ) ァクリ ル酸エステル、 メタクリル酸メチル— (メタ) アクリル酸共重合体、 メ夕クリル酸メチルーアクリル酸エステル一 (メタ) アクリル酸共 重合体、 メ夕クリル酸メチル— (メタ) アクリル酸エステル共重合 体、 (メタ) アクリル酸エステルースチレン共重合体 (M S樹脂な ど) などが挙げられる。 好ましい (メタ) アクリル系樹脂には、 ポ リ (メタ) アクリル酸 5 アルキル、 メ夕クリル酸メチルーァク リル酸エステル共重合体、 (メタ) アクリル酸エステルースチレン 共重合体 (M S樹脂など) などが含まれる。 これらの (メタ) ァク リル系樹脂は単独で又は二種以上組み合わせて使用できる。
( 9 ) スチレン系樹脂
スチレン系榭脂としては、 スチレン系単量体 (スチレン、 ひーメ チルスチレン、 ビニルトルエンなど) の単独又は共重合体 (ポリス チレン、 スチレン—ビニルトルエン共重合体、 スチレン— α—メチ ルスチレン共重合体など) 、 スチレン系単量体と共重合性単量体と の共重合体 [スチレン一アクリロニトリル共重合体 (A S樹脂) 、
(メタ) アクリル酸エステルースチレン共重合体 (M S樹脂など) , スチレン—無水マレイン酸共重合体、 スチレン—ブタジエンブロッ ク共重合体などの共重合体など ; アクリロニトリル一アクリル酸ェ ステルースチレン共重合体 (A A S樹脂) 、 アクリロニトリル一塩 素化ポリエチレン—スチレン共重合体 (A C S樹脂) 、 ァクリロ二 トリル一酢酸ビニルースチレン共重合体 (A X S樹脂) などのスチ レン系グラフト共重合体; ゴム成分の存在下、 少なくともスチレン 系単量体をグラフト重合したグラフト重合体、 例えば、 耐衝撃性ポ リスチレン (H I P S、 又はゴムグラフトポリスチレン系樹脂) 、 アクリロニトリル一ブタジエン—スチレン共重合体 (A B S樹脂) 、 ァクリ ロニトリル一エチレンプロピレンゴムースチレン共重合体 ( A E S樹脂) など] などが挙げられる。 これらのスチレン系樹脂 は単独で又は二種以上組み合わせて使用できる。
( 1 0 ) ビニル系樹脂
ビニル系樹脂には、 ビニル系単量体の単独又は共重合体、 あるい は他の共重合可能なモノマーとの共重合体などが含まれる。 ビニル 系単量体としては、 例えば、 ハロゲン含有ビエル単量体 [例えば、 塩素含有ビニル単量体 (例えば、 塩化ビニル、 塩化ビニリデン、 ク ロロプレンなど) 、 フッ素含有ビニル単量体 (例えば、 フルォロェ チレンなど) など] 、 カルボン酸ビニルエステル [酢酸ビニル、 プ 口ピオン酸ビニル、 クロトン酸ビニル、 安息香酸ビニルなどのビニ ルエステルなど] などが挙げられる。 これらのビニル系樹脂は単独 で又は二種以上組み合わせて使用できる。
ビニル系樹脂としては、 例えば、 塩化ビニル系樹脂 (例えば、 ポ リ塩化ビニル、 ポリ塩化ビニリデン、 塩化ビニルー酢酸ビニル共重 合体、 塩化ビニリデンー酢酸ビニル共重合体など) 、 フッ素樹脂 (例えば、 ポリフッ化ビニル、 ポリフッ化ビニリデン、 ポリクロ口 トリフルォロエチレン、 テトラフルォロエチレン一へキサフルォロ プロピレン共重合体、 テトラフルォロエチレン—パーフルォロアル キルビニルエーテル共重合体、 テトラフルォロエチレン一エチレン 共重合体など) 、 ビニルエステル系樹脂 (例えば、 ポリ酢酸ビニル. 酢酸ビニルーエチレン共重合体、 エチレン一酢酸ビニル共重合体、 酢酸ビニルー塩化ビニル共重合体、 酢酸ビニルー (メタ) アクリル 酸エステル共重合体など) などが挙げられる。
前記ビニルエステル系樹脂の誘導体 [例えば、 ビニルアルコール 系樹脂 (例えば、 ポリビニルアルコール、 ポリビニルホルマール、 ポリビニルプチラールなどのポリ ビニルァセタール、 エチレン—ビ ニルアルコール共重合体など) など] も使用できる。 これらのビニ ルアルコール系樹脂のうち、 エチレン一ビニルアルコール共重合体 が好ましい。 エチレン—ビニルアルコール共重合体を使用する場合、 エチレン含量が高すぎると、 樹脂の親水性が低下して助剤成分 ( B ) との相互作用が低減するため、 エチレン含量は 1 0〜4 0重 量%であることが好ましい。
( 1 1 ) セルロース誘導体
セルロース誘導体としては、 セルロースエステル類 (セルロース アセテート、 セルロースフタレートなど) 、 セルロースカーバメ一 卜類 (セルロースフエニルカーバメートなど) 、 セルロースェ一テ ル類 (シァノエチルセルロースなど) が挙げられる。 これらのセル ロース誘導体は、 単独で又は二種以上組み合わせて使用できる。 セルロースエステルとしては、 例えば、 セルロースジァセテ一卜、 セルローストリアセテートなどのセルロースアセテート (酢酸セル ロース) 、 セルロースプロピオネート、 セルロースブチレート、 セ ルロースアセテートプロピオネート、 セルロースアセテートブチレ ート等の有機酸エステル (又はァシルセルロース) ; 硝酸セルロー ス、 硫酸セルロース、 リン酸セルロース等の無機酸エステル ; 硝酸 酢酸セルロースなどの混酸エステル等が挙げられる。
セルロースエーテルとしては、 例えば、 アルキルセルロース (例 えば、 ェチルセルロース、 イソプロピルセルロース、 ブチルセル口
—スなどの C 2_6 アルキルセルロース) 、 ァラルキルセルロース (例えば、 ベンジルセルロースなど) 、 ヒ ドロキシアルキルセル口 ース (例えば、 ヒドロキシブチルセルロースなどのヒドロキシ C 4- 6 アルキルセルロース) 、 カルボキシアルキルセルロース (例えば、 カルボキシェチルセルロースなどのカルボキシ C2_6 アルキルセル ロース) 、 シァノエチルセルロース等が挙げられる。
生分解性の点からは、 セルロース誘導体の置換度は低いのが好ま しく、 例えば、 平均置換度 2. 5以下、 好ましくは 2以下 (例えば、 0. :!〜 2程度) 、 さらに好ましくは 1. 5以下 (例えば、 0. 1 〜 1. 5程度) である。
( 1 2 ) 熱可塑性エラス卜マー
熱可塑性エラストマ一には、 ポリアミ ド系エラストマ一、 ポリエ ステル系エラストマ一、 ポリウレタン系エラストマ一、 ポリスチレ ン系エラストマ一、 ポリオレフイン系エラストマ一、 ポリ塩化ビニ ル系エラストマ一、 フッ素系熱可塑性エラストマ一などが挙げられ る。 これらの熱可塑性エラストマ一は、 単独で又は二種以上組み合 わせて使用できる。
熱可塑性エラストマ一がブロック共重合体であるとき、 ブロック 構造は特に制限されず、 トリブロック構造、 マルチブロック構造、 星形プロック構造などであってもよい。
樹脂成分の熱変形温度 (例えば、 J I S K 7 2 0 6で規定さ れるビカッ ト軟化点) は、 6 0〜 3 0 0 の範囲から選択でき、 例 えば、 8 0〜 2 6 0 、 好ましくは 1 0 0〜 24 0" (例えば 1 1 0〜240 ) 、 さらに好ましくは 1 2 0〜 2 3 O : (例えば 1 3 0〜 22 0で) 程度である。 好ましい樹脂としては、 ポリアミ ド系 樹脂、 ポリオレフイ ン系樹脂、 スチレン系樹脂、 ビニル系樹脂 (例 えば、 ハロゲン含有樹脂、 ビニルエステル系樹脂、 ビニルアルコー ル系樹脂など) 、 生分解性樹脂 [例えば、 脂肪族ポリエステル系樹 脂 (例えば、 ポリ乳酸系樹脂やポリ C 3 12 ラクトン系樹脂など) 、 ポリエステルアミ ドなどの生分解性ポリエステル系樹脂、 ビニルァ ルコール系樹脂、 前記セルロース誘導体] などが挙げられる。 なお、 助剤成分 (B) との溶融混練を容易にするために、 アミノ基、 ヒド 口キシル基や力ルポキシル基などの親水性基を有する樹脂を使用し てもよい。
前記生分解性樹脂で構成された成形体は、 生分解性に優れるため、 例えば、 自然環境中で使用される分野 (農林水産業用資材、 土木資 材、 建設資材、 野外レジャー製品など) .、 使用後の回収及び再利用 が困難な分野 (食品包装用フィルム、 食品包装用容器、 衛生用品、 日用品) 、 樹脂の特殊な機能を生かした分野 (生体内分解吸収性を 必要とする医用素材、 徐放性を必要とする被覆材など) などで有用 に使用できる。
[水溶性助剤]
水溶性助剤は、 少なく ともオリゴ糖 で構成された水溶性 助剤成分 (B ) で構成され、 樹脂と組み合わせて分散体を形成する。 さらに、 オリゴ糖の熱溶融特性を調整するために、 水溶性助剤は可 塑化成分 (B 2) をさらに含むのが好ましい。
( B オリゴ糖
オリゴ糖 は、 2〜 1 0分子の単糖類が、 グリコシド結合 を介して脱水縮合したホモオリゴ糖と、 少なくとも 2種類以上の単 糖類及び Z又は糖アルコールが、 2〜 1 0分子グリコシド結合を介 して脱水縮合したヘテロオリゴ糖とに大別される。 オリゴ糖 (B !) としては、 例えば、 二糖類〜十糖類が挙げられ、 通常、 二糖類 〜六糖類のオリゴ糖が使用される。 オリゴ糖は、 通常、 常温で固体 である。 なお、 これらのオリゴ糖は、 無水物でもよい。 また、 オリ ゴ糖において、 単糖類と糖アルコールとが結合していてもよい。 こ れらのオリゴ糖は単独で又は二種以上組み合わせて使用できる。 な お、 オリゴ糖は複数の糖成分で構成されたオリゴ糖組成物であって もよい。 このようなオリゴ糖組成物であっても単にオリゴ糖という 場合がある。
二糖類としては、 トレハロース (例えば、 α , α— トレハロース、 β , ]3— トレハロース、 α , )3— トレハロースなど) 、 コージービ オース、 ニゲロース、 マルトース、 イソマル卜ース、 ソホロ一ス、 ラミナリビオース、 セロビオース、 ゲンチオビオースなどのホモォ リゴ糖 ; ラク ト一ス、 スクロース、 パラチノース、 メリ ビオース、 ルチノース、 プリメべロース、 ッラノースなどのへテロオリゴ糖が 挙げられる。
三糖類としては、 マルト トリオース、 イソマルト トリオ一ス、 パ ノース、 セロ トリオースなどのホモオリゴ糖 ; マンニノ トリオース、 ソラトリオース、 メレジトース、 プランテオース、 ゲンチアノース、 ゥンベリフエロース、 ラク トスクロ一ス、 ラフイ ノースなどのへテ 口オリゴ糖が挙げられる。
四糖類としては、 マルトテトラオース、 イソマルトテトラオース などのホモオリゴ糖 ; ス夕キオース、 セロテ卜ラオース、 スコロ ド —ス、 リキノース、 パノースの還元末端に糖又は糖アルコールが結 合したテトラオースなどのへテロオリゴ糖が挙げられる。
これらの四糖類のうち、 パノースの還元末端に単糖類又は糖アル コールが結合したテトラオースは、 例えば、 特開平 1 0— 2 1 5 8 9 2号公報に開示されており、 パノースの還元末端に、 グルコース、 フルク トース、 マンノース、 キシロース、 ァラビノースなどの単糖 類や、 ソルビトール、 キシリ トール、 エリスリ トールなどの糖アル コールが結合したテトラオースが例示できる。
五糖類としては、 マルトペン夕オース、 イソマルトペン夕オース などのホモオリゴ糖 ; パノースの還元末端に二糖類が結合したペン 夕オースなどのへテロオリゴ糖が挙げられる。
パノースの還元末端に二糖類が結合したペン夕オースも、 例えば、 特開平 1 0— 2 1 5 8 9 2号公報に開示されており、 パノースの還 元末端に、 スクロース、 ラク トース、 セロビオース、 トレハロース などの二糖類が結合したペン夕オースが例示できる。
六糖類としては、 マルトへキサオース、 イソマルトへキサオース などのホモオリゴ糖などが挙げられる。 オリゴ糖は、 樹脂成分との溶融混練性の観点から、 少なく とも四 糖類で構成されているのが好ましい。
オリゴ糖は、 多糖類の分解により生成するオリゴ糖組成物であつ てもよい。 オリゴ糖組成物は、 通常、 四糖類を含んでいる。 オリゴ 糖組成物としては、 例えば、 デンプン糖 (デンプン糖化物) 、 ガラ ク トオリゴ糖、 カップリングシュガー、 フルク トオリゴ糖、 キシロ オリゴ糖、 大豆オリゴ糖、 キチンオリゴ糖、 キトサンオリゴ糖など が挙げられる。 これらのオリゴ糖組成物は、 単独で又は二種以上組 み合わせて使用できる。
例えば、 デンプン糖は、 デンプンに酸又はダルコアミラーゼなど を作用させて得られるオリゴ糖組成物であり、 複数個のグルコース が結合したオリゴ糖の混合物であってもよい。 デンプン糖としては、 例えば、 東和化成 (株) 製の還元デンプン糖化物 (商品名 : P〇一 1 0、 四糖類の含有量 9 0重量%以上) などが挙げられる。
ガラク トオリゴ糖は、 ラク ト一スに^—ガラク トシダーゼなどを 作用させて得られるオリゴ糖組成物であり、 ガラク トシルラク ト一 スとガラク トースー (グルコース) n の混合物 (nは 1〜 4の整 数) であってもよい。
カップリングシュガーは、 デンプンとスクロースにシクロデキス トリン合成酵素 (CGTas e) を作用させて得られるオリゴ糖組成物で あり、 (グルコース) n _スクロースの混合物 ( nは 1〜 4の整 数) であってもよい。
フルク トオリゴ糖 (フラク トオリゴ糖) は、 砂糖 (スクロース) にフルク トフラノシダ一ゼを作用させて得られるオリゴ糖組成物で あり、 スクロース— (フルク トース) n の混合物 (nは 1〜4の整 数) であってもよい。
これらのオリゴ糖組成物において、 溶融混練での急激な粘度低下 を防止するため、 オリゴ糖組成物中の三糖類、 四糖類 (特に四糖 類) の含有量は、 例えば、 6 0重量%以上 ( 6 0〜 1 0 0重量%) , 好ましくは 7 0重量%以上 ( 7 0〜 1 0 0重量%) 、 さらに好まし くは 8 0重量%以上 ( 8 0〜 1 0 0重量%) 、 特に 9 0重量%以上 ( 9 0〜 1 0 0重量%) である。
オリゴ糖は還元型 (マルトース型) であってもよく、 非還元型 (トレハロース型) であってもよいが、 還元型のオリゴ糖は、 耐熱 性に優れるため好ましい。
還元型のオリゴ糖としては、 遊離のアルデヒド基又はケトン基を 有し、 還元性を示す糖であれば、 特に限定されず、 例えば、 コージ —ビオース、 ニゲロース、 マルトース、 イソマルトース、 ソホロー ス、 ラミナリビオ一ス、 セロビオース、 ゲンチオビオース、 ラク 卜 ース、 パラチノース、 メリビオース、 ルチノース、 プリメべロース、 ッラノースなどの二糖類 ; マルト トリオース、 ィソマルト トリオ一 ス、 パノース、 セロ トリオース、 マンニノ トリオース、 ソラトリオ —スなどの三糖類 ; マルトテトラオース、 イソマルトテトラオース、 セロテトラオース、 リキノ一スなどの四糖類 ; マルトペン夕オース、 ィソマルトペン夕オースなどの五糖類 ; マルトへキサオース、 ィソ マルトへキサオースなどの六糖類などが挙げられる。
一般的に、 前記オリゴ糖は、 天然物である多糖類の誘導体あるい はそれらの還元によって製造される天然物由来の製造物であるため, 環境への負荷を低減できる。
混練により、 効果的に樹脂成分と助剤成分とを分散させるために は、 オリゴ糖の粘度は高いのが望ましい。 具体的には、 B型粘度計 を用いて温度 2 5でで測定したとき、 オリゴ糖の 5 0重量%水溶液 の粘度は、 1 P a · s以上 (例えば、 ;!〜 5 0 0 P a · s程度) 、 好ましくは 2 P a * s以上 (例えば、 2〜 2 5 0 P a · s、 特に 3 〜 1 0 0 P a · s程度) 、 さらに好ましくは 4 P a · s以上 (例え ば、 4〜 5 0 P a · s程度) 、 特に 6 P a · s以上 (例えば、 6〜 5 0 P a · s程度) であり、 高粘度オリゴ糖を用いることが望まし い。 また、 オリゴ糖 の融点又は軟化点は、 樹脂成分 (A) の 熱変形温度 (例えば、 J I S K 7 2 06で規定されるビカッ ト 軟化点) より高いのが好ましい。 なお、 オリゴ糖の種類 (例えば、 還元デンプン糖化物などのデンプン糖など) によっては、 融点又は 軟化点を示さず、 熱分解する場合がある。 このような場合、 分解温 度をオリゴ糖 (Β の 「融点又は軟化点」 としてもよい。
オリゴ糖 (Bj) の融点又は軟化点と、 樹脂成分 (A) の熱変形 温度との温度差は、 例えば、 1で以上 (例えば、 1〜 8 0で程度) 、 好ましくは 1 0 以上 (例えば、 1 0〜 7 0 程度) 、 さらに好ま しくは 1 5°C以上 (例えば、 1 5〜 6 O :程度) である。 オリゴ糖
(Bj) の融点又は軟化点は、 樹脂成分 (A) の種類などに応じて、 7 0〜 3 0 0 の範囲で選択でき、 例えば、 9 0〜 2 9 0 t:、 好ま しくは 1 0 0〜 2 8 0t: (例えば、 1 1 0〜 2 7 0 ) 、 さらに好 ましくは 1 2 0〜 2 6 0 (例えば、 1 3 0〜 2 6 0で) 程度であ つてもよい。 なお、 一般にオリゴ糖の無水物は、 高い融点又は軟化 点を示す。 例えば、 トレハロースの場合、 二水化物の融点は 9 7 であるが、 無水物の融点は 2 0 3 である。 オリゴ糖の融点又は軟 化点が樹脂成分 (A) の熱変形温度より高いと、 溶融混練でのオリ ゴ糖の急激な粘度低下を防止できるだけでなく、 オリゴ糖の熱劣化 も抑制できる。
更に、 本発明では、 水溶性助剤成分 (B) において、 オリゴ糖 (Bj) と、 オリゴ糖 (B を可塑化するための水溶性可塑化成分 (B2) とを組み合わせることにより、 樹脂成分 (A) との混練に おいて、 水溶性助剤成分 (B) の粘度を調整できる。
(B2) 可塑化成分
可塑化成分 (B2) としては、 オリゴ糖 (B!) が水和して水飴状 態となる現象を発現できるものであればよく、 例えば、 糖類、 糖ァ ルコールなどが挙げられる。 これらの可塑化成分は、 単独で又は二 種以上組み合わせて使用できる。 (糖類)
糖類としては、 オリゴ糖 (B を有効に可塑化するために、 通 常、 単糖類及び/又は二糖類が使用される。 これらの糖類は、 単独 で又は二種以上組み合わせて使用できる。
単糖類としては、 トリオース、 テトロース、 ベント一ス、 へキソ ース、 ヘプトース、 ォク トース、 ノノース、 デコースなどが挙げら れる。 これらの化合物は、 アルド一スゃケトースであってもよく、 ジアルド一ス (糖の誘導体であって炭素鎖両末端がアルデヒ ド基で ある化合物、 例えば、 テトラァセチルガラク トへキソジアルド一ス、 イ ドへキソジアルド一ス、 キシロベント ドアルドース等) 、 複数の カルボ二ル基を有する単糖類 (ォソン、 ォノース等のアルドアルコ ケトース等) 、 メチル基を有する単糖類 (アルトロメチロースなど のメチル糖等) 、 ァシル基 (特にァセチル基などの C 2_4 ァシル基 等) を有する単糖類 (前記アルド一スのァセチル化物、 例えば、 ァ ルデヒドグルコースペン夕ァセチル化物などのァセチル化物など) 、 力ルポキシル基が導入された糖類 (糖酸またはゥロン酸等) 、 チォ 糖、 アミノ糖、 デォキシ糖などであってもよい。
このような単糖類の具体例としては、 例えば、 テトロース (エリ トロース、 トレオロース等) 、 ペントース (ァラビノース、 リボー ス、 リキソース、 デォキシリポース、 キシロース等) 、 へキソース (ァロース、 アル卜ロース、 グルコース、 マンノース、 グロース、 イ ドース、 ガラク ト一ス、 フルク 卜ース、 ソルポース、 フコース、 ラムノース、 タロース、 ガラクチュロン酸、 グルクロン酸、 マンヌ ロン酸、 ダルコサミン等) などが例示できる。
また、 単糖類は、 へミアセ夕一ル結合により環状構造を形成した 環状異性体であってもよい。 単糖類は、 旋光性を有している必要は ないが、 D形、 L形、 D L形のいずれであってもよい。 これらの単 糖類は、 単独で又は二種以上組み合わせて使用できる。
二糖類としては、 オリゴ糖 (B ^ を可塑化できるものであれば, 特に制限されず、 例えば、 前記二糖類のうち、 低融点または低軟化 点を有する二糖類 (例えば、 ゲンチビオース、 メリビオース、 トレ ハロース (二水化物) など) 、 前記単糖類のホモ及びへテロ二糖類 に相当する二糖類 (例えば、 グルクロン酸とグルコースとが α — 1 , 6グリコシド結合したダルクロノグルコースなどのアルドビォゥ口 ン酸など) が例示できる。
糖類は、 熱安定性の点から、 還元糖 [例えば、 遊離の単糖類の他、 前記二糖類のうち、 低融点又は低軟化点の還元糖 (例えば、 ゲンチ ビオース、 メリビオースなど) など] が好ましい。
(糖アルコール)
糖アルコール (又は水溶性多価アルコール) としては、 アルジト ール (グリシトール) などの鎖状糖アルコールであってもよく、 ィ ノシッ トなどの環式糖アルコールであってもよいが、 通常は、 鎖状 糖アルコールが使用される。 これらの糖アルコールは、 単独で又は 二種以上組み合わせて使用できる。
鎖状糖アルコールとしては、 テトリ トール (トレィ トール、 エリ スリ トールなど) 、 ペンチ卜一ル [ペンタエリスリ トール、 ァラビ トール、 リビトール (アド二トール) 、 キシリ トール、 リキシト一 ルなど] 、 へキシトール [ソルビトール、 マンニトール、 イジトー ル、 ダリ トール、 タリ トール、 ズルシトール (ガラクチトール) 、 ァロズルシトール (ァリ トール) 、 アルスリ トールなど] 、 へプチ トール、 ォクチトール、 ノニトール、 デキトール、 及びドデキト一 ルなどが挙げられる。
これらの糖アルコールのうち、 エリスリ トール、 ペンタエリスリ トール、 ァラビトール、 リビトール、 キシリ トール、 ソルビトール、 ズルシトール及びマンニトールなどが好ましい。 糖アルコールは、 エリスリ トール、 ペン夕エリスリ トール、 キシリ トールから選択さ れた少なくとも 1つの糖アルコールを含む場合が多い。
可塑化成分 (Β 2 ) は、 常温 (例えば、 1 5〜 2 0で程度) で液 体 (シロップ状) であってもよいが、 取扱い性などの点から、 通常、 固体である場合が多い。 助剤成分 (B) をオリゴ糖 (B!) と可塑 化成分 (B2) とで構成すると、 オリゴ糖 (B!) が明瞭な融点ゃ軟 化点を示さない熱分解性オリゴ糖であっても、 有効に可塑化又は軟 化できる。
可塑化成分 (B2) の融点又は軟化点は、 通常、 樹脂成分 (A) の熱変形温度 (例えば、 J I S K 7 2 0 6で規定されるビカツ ト軟化点) 以下である。 なお、 可塑化成分の中には、 高融点 (例え ば 2 0 0 ^以上) を有するにも拘わらず、 オリゴ糖と共存すると、 実際の融点よりも低い温度で融解する物質が存在する。 例えば、 ぺ ンタエリスり トールは、 実際の融点 (2 6 Ot:) より低温 (例えば 1 60〜 1 8 0 程度) でオリゴ糖に対する可塑化効果を発揮する とともに、 自身も融解状態となる。 このような高融点の可塑化成分 は、 単独では樹脂成分の熱変形温度において融解しないため利用で きないが、 オリゴ糖と組み合わせることによって有効に利用できる。 なお、 実際の融点より低温でオリゴ糖に対する可塑化効果を発揮す る可塑化成分 (例えば、 ペンタエリスリ トールなど) においては、 オリゴ糖に対して可塑化効果を発揮する温度を、 可塑化成分 (Β
2) の 「融点又は軟化点」 としてもよい。
助剤成分 (Β) の融点又は軟化点は、 樹脂成分 (Α) の熱変形温 度以上であってもよく、 以下であってもよい。 樹脂成分 (Α) 及び 助剤成分 (Β) は、 少なくとも混練温度 (又は成形加工温度) にお いて溶融又は軟化すればよい。 例えば、 助剤成分 (Β) の融点又は 軟化点と、 樹脂成分 (Α) の熱変形温度との温度差は、 0〜 1 0 0 の範囲で選択してもよく、 例えば、 3〜 8 0で (例えば 3〜 5 5で) 、 好ましくは 5〜 6 0で (例えば、 5〜4 5で) 、 さらに好 ましくは 5〜 40で (例えば、 1 0〜 3 5 ) 程度であってもよい なお、 助剤成分 (Β) の融点又は軟化点と、 樹脂成分 (Α) の熱変 形温度との温度差が小さい場合 (例えば前記温度差が 0〜 2 0で程 度である場合) 、 固化速度の高い助剤成分 (B) (例えば、 糖成 分) により短時間で分散形態を固定化できるという利点がある。 さらに、 助剤成分 (B) (例えば、 オリゴ糖 (B!) と可塑化成 分 (B2) とを含む助剤成分) のメルトフローレートは、 例えば、 樹脂成分 (A) の熱変形温度 (例えば、 前記ビカッ ト軟化点) より 3 Ot高い温度で J I S K 7 2 1 0で規定されるメルトフ口一 レートを測定したとき、 1以上 (例えば、 1〜40程度) 、 好まし くは 5以上 (例えば、 5〜 3 0程度) 、 さらに好ましくは 1 0以上 (例えば、 1 0〜 2 0程度) であってもよい。
助剤成分 (Β) において、 可塑化成分 (Β2) の割合 (重量比) は、 溶融混練に伴って、 可塑化成分が凝集などにより局在化せず、 オリゴ糖 を効率的に可塑化できる量、 例えば、 オリゴ糖 (Bj) 可塑化成分 (Β2) ^ θ θΖ ΐ δ Οノ 5 0から選択でき、 好ましくは 9 5 5〜6 0 /40 , さらに好ましくは 9 0/ 1 0〜 7 0 / 3 0程度である。
樹脂成分 (Α) と助剤成分 (Β) との相溶性は、 特に制限されず、 非相溶性であってもよく、 相溶性であってもよい。 樹脂成分と助剤 成分とが相溶する場合、 樹脂成分と助剤成分とが混練温度において 均一な単一相を形成しても、 混練後の冷却過程において、 両者の表 面張力と固化速度の相違により、 樹脂成分と助剤成分とを相分離で きる。 樹脂成分と助剤成分とが相溶する場合においても、 樹脂成分 と助剤成分とを相分離できる理由としては、 本発明の助剤成分が、 低い表面張力を有するとともに、 樹脂成分との混練温度においても 比較的高粘度を保持でき、 さらに低分子量であるために冷却時の固 化速度が樹脂成分に比して極端に速いという特異な物性を有してい ることが挙げられる。
樹脂成分 (Α) と助剤成分 (Β) との割合 (重量比) は、 樹脂成 分及び助剤成分の種類や粘度、 樹脂成分と助剤成分との相溶性など に応じて選択でき、 特に制限されないが、 通常、 成形性を損なわな い量、 例えば、 樹脂成分 (A) Z助剤成分 (B) = 9 9 / 1〜 1 Z 99程度の広い範囲から選択でき、 例えば、 90ノ1 0〜5Z95、 好ましくは 80Z20〜: 1 0Z90 (例えば、 80/2 0〜 1 5/ 85) 、 さらに好ましくは 7 5 Z 2 5〜 2 5 / 7 5 (特に、 60Z 40〜 2 5/7 5) 程度である。
なお、 分散体から得られる成形体 (樹脂成形体) が多孔質である 場合、 樹脂成分 (A) と助剤成分 (B) との割合 (重量比) は、 樹 脂成分 (A) /助剤成分 (B) = 7 5 2 5〜: L O/ 9 0の範囲か ら選択でき、 例えば、 多孔度及び機械的強度のバランスの観点から、 好ましくは 6 0ノ 40〜 1 5ノ 8 5 (例えば、 5 0/ 5 0〜 1 5Z 8 5) 、 さらに好ましくは 40ノ 6 0〜 2 5/7 5程度である。 例 えば、 (A) ノ (B) (重量比) = 40 / 6 0〜 2 5ノ 7 5程度で あるとき、 多孔質の樹脂成形体は、 分離膜として有用である。
また、 分散体から得られる成形体 (樹脂成形体) が粉粒体である 場合、 樹脂成分 (A) と助剤成分 (B) との割合 (重量比) は、 通 常、 樹脂成分 (A) Z助剤成分 (B) - δ δ /Ζ Α δ ΐΖθ θ, 好 ましくは 5 0/ 50〜 5/9 5、 さらに好ましくは 4 5 / 5 5〜 1 0/9 0程度である。
[他の添加剤]
前記分散体又は樹脂組成物には、 必要に応じて、 種々の添加剤、 例えば、 フィ ラー、 可塑剤又は軟化剤、 滑剤、 安定剤 (熱安定剤、 酸化防止剤、 紫外線吸収剤など) 、 増粘剤、 着色剤 (酸化チタン、 カーボンブラックなど) 、 分散剤、 難燃剤、 帯電防止剤などを配合 してもよい。
前記フィラー (又は補強剤) には、 例えば、 粉粒状フイラ一又は 補強剤 (マイ力、 クレー、 タルク、 ケィ酸類、 シリカ、 炭酸カルシ ゥム、 炭酸マグネシウム、 カーボンブラック、 フェライ トなど) 、 繊維状フイラ一又は補強剤 (レーヨン、 ナイロン、 ビニロン、 ァラ ミ ドなどの有機繊維、 炭素繊維、 ガラス繊維、 金属繊維、 ホイス力 一などの無機繊維) などが含まれる。
これらの添加剤は、 それぞれ有効量であればよく、 例えば、 樹脂 1 0 0重量部に対して、 添加剤の総量は、 0〜 5 0重量部程度、 好 ましくは 0. 1〜 2 0重量部程度、 さらに好ましくは 0. 5〜 1 0 重量部程度であってもよい。 また、 樹脂 1 0 0重量部に対して、 各 添加剤は、 0〜 3 0重量部程度、 好ましくは 0. 0 5〜 2 0重量部 程度、 さらに好ましくは 0. 1〜 1 0重量部程度であってもよい。 本発明の分散体又は樹脂組成物において、 相分離構造や分散構造 などは特に制限されず、 樹脂成分と助剤成分とが、 海島構造又は複 合分散相構造を形成してもよく、 両成分が、 連続相を形成してもよ レ 助剤成分 (B) が、 海島構造における連続相 (樹脂相が独立し た相分離構造) 、 又は共連続相を形成している場合、 助剤成分を速 やかに溶出できる。
助剤成分 (B) が、 海島構造における連続相を形成している場合、 樹脂成分で構成される分散相の形状は、 粒子状 (例えば、 球状、 楕 円体状、 多角体状、 角柱状、 円柱状、 棒状、 不定形状など) などで あってもよい。 好ましい分散相の形状は、 球状である。 なお、 分散 相の平均粒子径は、 特に制限されず、 用途に応じて 0. l im〜 l mm程度の範囲から選択でき、 例えば、 0. l〜 8 0 0 / m (例え ば 0. 1〜 5 0 0 m) 、 好ましくは 0. 1〜 : l 0 0 m (例えば, 0. 5〜 8 0 m) 、 さらに好ましくは 0. 5〜 5 0 /m (例えば, :!〜 40 m) 程度である。
助剤成分 (B) が、 樹脂成分 (A) と共連続相を形成している場 合、 助剤成分 (気孔形成剤) で構成される連続相の形状は、 ラメラ 構造、 O B DD (Ordered Bicontinuous Double Diamond) 構造、 シリンダ一構造などであってもよい。 このような構造を有する連続 相の大きさを測定する場合、 独立した粒子などの単位が存在しない ため、 従来の円換算などの測定方法を用いることができない。 この ような場合、 例えば、 分散体の一断面において、 1つの連続した相 (又はテトラポッ ト状の基本単位) の中で、 相の幅方向における最 小長さ (X) を測定することによって、 助剤成分で構成される連続 相の大きさを測定できる。 さらに、 無作為に抽出した複数の相 (又 は基本単位) において、 長さ (X) を測定すると、 長さ (X) の平 均値を算出できる。 平均の長さ (X) は、 特に制限されず、 用途に 応じて 0. 1 m〜 1 mm程度の範囲から選択でき、 例えば、 0. 1〜8 0 0 ΓΠ (例えば 0. :!〜 5 0 0 m) 、 好ましくは 0. 1 〜 1 0 0 m (例えば、 0. 5〜 8 0 m) 、 さらに好ましくは 0. 5〜 5 0 m (例えば、 1〜4 0 m) 程度である。
[成形体の製造方法]
本発明は、 前記分散体から、 助剤成分 (B) を溶出し、 樹脂成分 (A) で構成された成形体 (例えば、 多孔体や粒子) を製造する方 法も含む。
分散体は、 樹脂成分 (A) と助剤成分 (B) とを混練することに より調製でき、 通常、 混練した組成物を成形し、 予備成形体を調製 する場合が多い。 混練は、 慣用の混練機 (例えば、 単軸もしくは二 軸スクリュー押出機、 ニーダー、 カレンダ一ロールなど) を用いて 行なうことができる。 混練時間は、 例えば、 1 0秒〜 1時間の範囲 から選択してもよく、 通常 3 0秒〜 4 5分、 好ましくは 1〜 3 0分 (例えば、 1〜 1 0分) 程度である。 また混練に先立ち、 樹脂成分 および助剤成分は、 予め凍結粉砕機などで粉体状に予備加工したり、 ヘンシェルミキサー、 タンブルミキサー、 ポールミルなどで予備混 練してもよい。
成形法としては、 押出成形、 射出成形、 ブロー成形、 カレンダ一 成形などが挙げられ、 通常、 生産性や加工の容易さの点から、 押出 成形又は射出成形が使用される。 予備成形体の形状は、 特に制限さ れず、 0次元的形状 (粒状、 ペレッ ト状など) 、 1次元的形状 (ス トランド状、 棒状など) 、 2次元的形状 (板状、 シート状、 フィル ム状など) 、 3次元的形状 (管状、 ブロック状など) などであって もよい。 助剤成分の溶出性を考慮すると、 ストランド状、 棒状、 シ ート状、 又はフィルム状に加工することが望ましい。 また、 予備成 形体は、 成形過程において、 他の基材を積層して加工してもよい。 なお、 混練温度や成形加工温度は、 使用される原材料 (例えば、 樹脂成分及び助剤成分) に応じて適宜設定することが可能であり、 例えば、 9 0〜 3 0 0 、 好ましくは 1 1 0〜 2 6 0^、 さらに好 ましくは 1 40〜 240 (例えば、 1 7 0〜 240 ) 、 特に 1 7 0〜 2 30 (例えば、 1 8 0〜 2 2 0 ) 程度である。 助剤成 分 (オリゴ糖および可塑化成分) の熱分解を避けるため、 混練温度 や成形加工温度を 2 3 0 以下にしてもよい。
分散系 (樹脂成分と助剤成分とが分散した形態) は、 混練及び 又は成形加工後、 溶融物 (例えば、 混練物、 予備成形体) を、 適宜 冷却することにより形成してもよい。 例えば、 冷却温度は、 樹脂成 分の熱変形温度、 又は助剤成分の融点若しくは軟化点よりも少なく とも 1 0 程度低い温度であればよく、 例えば、 上記温度 (樹脂成 分の熱変形温度、 又は助剤成分の融点若しくは軟化点) より 1 0〜 1 00 X:程度低い温度、 好ましくは前記温度より 1 5〜 8 0 t:程度 低い温度、 さらに好ましくは前記温度より 2 0〜 6 0 程度低い温 度であってもよい。 具体的には、 例えば、 冷却温度は、 樹脂成分又 は助剤成分の種類に応じて 5〜 1 5 0での範囲から選択でき、 例え ば、 1 0〜: 1 2 0で (例えば、 1 0〜 6 0 ) 、 好ましくは 1 5〜 1 0 0 (例えば、 1 5〜 5 0 ) 、 さらに好ましくは 2 0〜 8 0で (例えば、 2 0〜40で) 程度であってもよい。 冷却時間は、 樹脂成分や助剤成分の種類、 冷却温度等に応じて適宜設定でき、 例 えば、 3 0秒〜 2 0時間の広い範囲から選択してもよく、 例えば、 4 5秒〜 1 0時間、 好ましくは 1分〜 5時間 (例えば、 1分〜 1時 間) 、 さらに好ましくは 1. 5〜 3 0分程度であってもよい。 冷却 によって、 樹脂成分と助剤成分とが相溶であっても、 冷却工程にお いて、 表面張力、 結晶化などの固化速度の相違などによって、 分散 系を形成でき、 分散体を得られる。
例えば、 多孔体又は粒子を製造する場合、 樹脂成分と助剤成分と の相溶性、 樹脂成分及び助剤成分の溶融粘度、 混練条件 (例えば、 混練時間、 混練温度など) 、 成形加工温度並びに冷却条件 (例えば、 冷却時間、 冷却温度など) を調整することにより、 多孔体の平均孔 径又は粒子の平均粒子径を変化させることができ、 空隙率が高いだ けでなく、 孔径均一性が非常に高い多孔体 (特に連続通孔を有する 多孔体) や、 粒度分布幅が狭く、 均一な粒子径を有する粒子を簡便 に得ることができる。 また、 前記条件 (例えば、 粘度や冷却条件な ど) を調整することにより、 目的物の形態も変化させることができ、 例えば、 樹脂成分と助剤成分とが同じ割合であっても、 条件によつ て多孔体と粒子とを選択し得る。
多孔体の平均孔径又は粒子の平均粒子径は、 特に制限されず、 用 途に応じて 0. 1 m〜 1 mm程度の範囲から選択でき、 例えば、 0. :!〜 8 0 0 j m (例えば 0. :!〜 5 0 0 / m) 、 好ましくは 0. 1〜: L 0 0 im (例えば、 0. 5〜 8 0 m) 、 さらに好ましくは 0. 5 ~ 5 0 m (例えば、 1〜 4 0 m) 程度である。
また、 孔径の変動係数 ( [孔径の標準偏差/平均孔径] X I 0 0) 又は粒子径の変動係数 ( [粒子径の標準偏差 Z平均粒子径] X 1 0 0 ) は、 6 0以下 (例えば 5〜 6 0程度) 、 さらに好ましくは 5 0以下 (例えば、 1 0〜 5 0程度) である。
上記のようにして得られた予備成形体 (又は分散体) は、 溶媒 [水、 水溶性溶媒 (例えば、 アルコール類 (メタノール、 エタノー ル、 プロパノール、 イソプロパノール、 ブ夕ノールなど) 、 エーテ ル類 (セロソルブ、 プチルセ口ソルブなど) など) など] 中に浸漬 して、 助剤成分を溶出または洗浄し、 成形体を得ることができる。 環境への負荷が少なく、 工業コス トを低減できるため、 溶媒は水が 好ましい。 助剤成分の溶出は、 慣用の方法を用いて、 例えば、 常圧 下 (例えば、 1 a t m又は 1 0万 P a程度) 、 減圧下、 又は加圧下 でできる。 助剤成分の溶出温度は、 樹脂成分及び助剤成分に応じて、 適宜設定することができ、 例えば 1 0〜 1 0 0で、 好ましくは 2 5 〜 9 0 :、 さらに好ましく は 3 0 〜 8 0 : (例えば、 4 0 〜 8 0で) 程度である。 本発明の水溶性助剤成分は、 水に易溶であるた め、 大量の水を必要としない。
成形体は、 濾過、 遠心分離などの回収方法を用いて回収できる。 得られた成形体中には、 助剤成分が残留していないことが望ましい が、 例えば、 洗浄過程のコスト削減などの点から、 助剤成分が成形 体に少量残存していても、 助剤成分が天然物由来の化合物であるた め、 成形体に与える悪影響は少ない。
なお、 溶媒で抽出された助剤成分は、 慣用の分離手段 (例えば、 蒸留、 濃縮、 再結晶など) を用いて簡便に回収できる。
上記の成形体としては、 樹脂成分から助剤成分を溶出して得られ るものであれば、 特に限定されず、 例えば、 多孔体 (シート状、 フ イルム状などの二次元的構造の多孔体など) や粒子 (例えば、 球状、 真球状などの粒子) が挙げられる。 なお、 得られた成形体は、 熱融 着などにより他の基材を積層して加工してもよい。
本発明によると、 糖類でありながら、 樹脂と均一に混練可能な水 溶性助剤成分 (又は水溶性助剤) を用いるので、 水溶性助剤成分と 樹脂成分とで構成された分散体 (又は分散系を形成する樹脂組成 物) を製造できる。 また、 幅広い種類の樹脂成分を用いても、 所定 の形状の成形体を工業的に有利に形成できるだけでなく、 樹脂成分 に対して助剤成分を高い割合で含有させても混練可能であり、 かつ 均一な相分離構造を有する分散体を形成できる。 さらに、 この水溶 性助剤成分は、 分散体から水で容易に溶出できるだけでなく、 その 溶出液を廃液とする場合でも、 天然物由来の成分であるため、 環境 へ悪影響を及ぼさない。 産業上の利用可能性 本発明の製造方法で得られた成形体は、 得られた形状に応じて、 様々な用途に使用できる。 例えば、 多孔体は、 液体用の分離膜、 フ ィル夕、 吸湿剤、 吸着剤、 保湿剤、 又は記録用シートの受像層 (又 は受像体) (例えば、 インクの受像体) として利用できる。
また、 粒子は、 広範囲にわたる種類の樹脂が適用できるため、 他 の微粒子 (例えば、 無機微粒子など) との混合適性を改良するため に使用できるほか、 塗料やコート剤 (例えば、 粉体塗料) 、 ブロッ キング防止剤 (例えば、 成形体のブロッキング防止剤) 、 スぺーサ ―、 トナーなどとして使用できる。 さらに、 化粧品等の日用品への 添加剤、 シー卜又はフィルム用添加剤などとしても使用できる。 実施例
以下に、 実施例に基づいて本発明をより詳細に説明するが、 本発 明はこれらの実施例によって限定されるものではない。
実施例 1〜 5及び比較例 1〜 3
表 1に示す組成の樹脂成分と助剤成分とで構成された樹脂組成物 を、 ブラベンダー (東洋精機 (株) 製、 ラボプラストミル) により 設定温度 2 0 0でで 5分間溶融混練した後、 30でで 1 0分間放置 し、 その後プレス機にて 2 0 0 、 2 0 0 k g/c m2 (約 2 0 M P a) 、 3分間の条件で、 厚さ 1 mmの板状の分散体を作製した。 分散体は、 2 0 0 k g/c m2 (約 2 0 MP a) の加圧下、 3 0 . 3分間の条件で速やかに冷却し、 その後 6 0 の湯水中に浸潰した, 助剤成分が当初の含有量の 5重量%程度に減少するまで、 分散体を 放置し、 最終的に多孔体を作製した。 なお、 用いた各成分及び得ら れた多孔体の評価方法は以下の通りである。 結果を表 1に示す。
(樹脂成分)
樹脂一 1 : エチレン一ビニルアルコール共重合樹脂 (クラレ (株) 製、 E P— L 1 0 1 B、 エチレン含量 1 9. 8重量%) 樹脂— 2 : ポリスチレン樹脂 (東洋スチレン (株) 製、 GP P S H R M 6 3 C )
樹脂一 3 : ポリプロピレン樹脂 (グランドポリマー (株) 製、 F 2 1 9 D )
(助剤成分)
助剤成分一 1 (オリゴ糖) : デンプン糖 (東和化成 (株) 製、 還 元デンプン糖化物 P O - 1 0 , 2 5 において B型粘度計で測定し た 5 0重量%水溶液の粘度 : 6 . 5 P a · s )
助剤成分一 2 (可塑化成分) :糖アルコール (和光純薬 (株) 製、 ペン夕エリスリ トール)
助剤成分一 3 (可塑化成分) : 糖アルコール (三菱化学フーズ (株) 製、 エリスリ トール)
(孔径の測定方法)
図 1 に実施例 2で得られた多孔体断面の S E M写真を示す。 図 1 に示すように、 多孔体の断面構造が、 三次元的に連続通孔性を有す る孔構造である場合、 独立した孔が存在せず、 従来の円換算などに よる孔径測定法が採用できない。 そのため、 走査型電子顕微鏡 (S E M : 日本電子 (株) 製) を用いて 1 0 0〜: I 0 0 0 0倍で撮影さ れた多孔体断面の写真を用いて、 一個の孔を形成している領域の中 で、 孔の幅方向における最小長さを孔径とした。 得られた多孔体に ついて、 無作為に抽出した 1 0 0偭の孔に対して孔径測定を行い、 平均孔径、 標準偏差、 及び変動係数を算出した。 さらに、 孔径 1 0 0 / mを超える穴の有無を調べた。
表 1
Figure imgf000039_0001
表 1から明らかなように、 実施例 1 5の多孔体では、 いずれも 変動係数が 6 0以下であり、 高い孔径の均一性を有する多孔体が得 られた。
比較例 1及び 3では、 溶融混練後の樹脂成形体に、 塊状に凝集し たペン夕エリスリ トールの存在が目視で明らかに認められ、 得られ た多孔体には 1 0 0 imを超える孔が散在した。 また、 比較例 2で は、 溶融混練時に溶融したエリスリ トールが、 樹脂成分から完全に 分離してしまった。 そのため、 均一な混合状態を得ることができず. 多孔体を得ることができなかった。
実施例 6 1 9及び比較例 4 5
表 2に示す組成の樹脂成分、 助剤成分を用いて、 実施例 1 と同様 の方法で分散体を作製した。 得られた分散体は、 速やかに 3 0で、 200 k gZcm2 (約 2 0 MP a) 、 3分間の条件で冷却し、 そ の後 6 Ot:の湯水中に浸漬し、 樹脂粒子の懸濁溶液を得た。 孔径 0 , 4 5 mのポリビニリデンフルオラィ ド製のメンブレン膜を用いて この懸濁溶液より不溶分を分離することにより樹脂の微粒子を回収 した。 なお、 用いた各成分や、 相溶性及び得られた微粒子の評価方 法は以下の通りである。 結果を表 2に示す。
(樹脂成分) 樹脂一 4 : ナイロン 1 2 (ポリアミ ド 1 2) 樹脂 (ダイセルデグ サ (株) 製、 ダイアミ ド L 1 6 0 0 )
樹脂一 5 : ポリスチレン樹脂 (東洋スチレン (株) 製、 G P P S HRM 6 3 C)
樹脂一 6 : セルロースアセテートプチレー卜樹脂 (イース トマン (株) 製、 C A B 1 7 1 _ 1 5 S )
樹脂一 7 : スチレン一ブタジエン共重合樹脂 (フイ リ ップス石油 (株) 製、 Kレジン KK 3 8 )
樹脂一 8 : ポリビニリデンフルオラィ ド樹脂 (ソルべィァドバン スドポリマ一 (株) 製、 P VD F 6 00 8 )
樹脂一 9 : ポリ乳酸 (三井化学 (株) 製、 レイシァ H— 1 0 0 P L)
樹脂一 1 0 : ポリカプロラク トン—ポリブチレンサクシネート共 重合樹脂 (ダイセル化学工業 (株) 製、 セルグリーン C B S 2 0 1 )
樹脂一 1 1 : エチレン—ビニルアルコール共重合樹脂 (クラレ (株) 製、 E P— L 1 0 1 B、 エチレン含量 1 9. 8重量%)
(助剤成分)
助剤成分一 4 (オリゴ糖) : デンプン糖 (東和化成 (株) 製、 還 元デンプン糖化物 P 0— 1 0、 2 5 において B型粘度計で測定し た 5 0重量%水溶液の粘度 : 6. 5 P a · s )
助剤成分一 5 ( a) (可塑化成分) : 糖アルコール (和光純薬 (株) 製、 ペンタエリスリ トール)
助剤成分一 5 (b) (可塑化成分) : 糖アルコール (和光純薬 (株) 製、 D (—) ソルビトール)
(樹脂成分と助剤成分の相溶性の評価)
樹脂成分と助剤成分が混練温度で相溶状態であるか否かの判定に は示差走査熱量測定 (D S C) による熱分析法を用いた。 以下にそ の方法を詳しく述べる。 測定装置は、 示差走査熱量測定装置 (D S C : 島津製作所 (株) 製、 D S C 6 0 0 E ) を用いた。 表 2に示す配合比の樹脂成分と助 剤成分とを、 予めブラベンダー (東洋精機 (株) 製、 ラボプラスト ミル) を用いて、 混練温度 ( 2 0 0 ) で 5分間混練し、 サンプル とした。 このサンプルを測定装置に供し、 一旦、 2 0 0 まで加熱 して 5分間放置後、 J I S K 7 1 2 1 に準拠して、 降温速度 1 0で/分で、 樹脂成分の結晶化に伴う発熱ピークのピーク トップ位 置から温度を読み取ることにより、 結晶化温度を測定した。 また樹 脂成分単独での結晶化温度は、 同様の操作を樹脂成分に対して行い、 結晶化温度を測定した。
結晶性の樹脂成分では、 樹脂成分単独の結晶化温度と、 樹脂成分 と助剤成分との混合体を用いて測定した樹脂成分の結晶化温度とを 比較して、 両者の温度差が 1 " 以内であった場合は、 樹脂成分と助 剤成分との間に相溶性があると判断した。
樹脂成分が非晶性樹脂である場合、 樹脂成分の結晶化温度が測定 できないため、 助剤成分について前記の手順で測定したオリゴ糖の 結晶化温度と、 樹脂成分と助剤成分の混合体について測定したオリ ゴ糖の結晶化温度とを比較し、 両者の温度差が 1で以内であった場 合は、 樹脂成分と助剤成分との間に相溶性があると判断した。
(樹脂粒子の数平均粒子径)
回収された樹脂微粒子を乾燥した後、 走査型電子顕微鏡を用いて 微粒子の形状観察を行った。 また、 乾燥した樹脂微粒子の適当量を 純水中に再び分散させることにより懸濁液を調製し、 レーザー回折 型粒度分布計 (島津製作所 (株) 製、 S A L D— 2 0 0 0 J ) を用 いて数平均粒子径を測定した。 また、 樹脂微粒子の中で、 無作為に 抽出した 1 0 0個の粒子に対して標準偏差及び変動係数を算出した, (環境性)
環境への影響は、 下記基準に従って評価した。
A : 助剤成分が、 天然物由来の化合物だけで構成される B : 助剤成分が、 天然物由来の化合物及び低分子量工業製品で 構成される 表 2
Figure imgf000042_0001
助剤成分 5 : ( a:ペンタエリスリ トール, b : D (—) ソルピトール) 実施例 6〜 1 9では、 樹脂成分と助剤成分とが、 相溶系又は非相 溶系のいずれにおいても、 真球状の球状樹脂微粒子を得ることがで きた。 参考のため、 実施例 1 3で得られたセルロースアセテートブ チレ一ト樹脂の球状微粒子の電子顕微鏡写真を図 2に示す。
また、 助剤成分として、 樹脂成分の熱変形温度で完全に可塑化し ない糖アルコールであるペン夕エリスリ トールを用いた比較例 4で は、 溶融混練により得られた分散体を水に浸潰して助剤成分を除去 しても樹脂成分は微粒子化せず、 孔径 1 0 0 z mを超える孔が存在 するスポンジ状の塊状物が得られた。
さらに、 助剤成分として、 融点が樹脂成分の熱変形温度より低い 糖アルコールであるソルビトールを用いた比較例 5では、 溶融混練 時に助剤成分の粘度が低すぎるために樹脂成分との混練を行うこと ができなかった。

Claims

請求の範囲
1. 樹脂成分 (A) 及び水溶性助剤成分 (B) で構成された分 散体であって、 助剤成分 (B) が、 少なく ともオリゴ糖 (B)) で 構成されている分散体。
2. 助剤成分 (B) が、 海島構造における連続相、 または共連 続相を形成する請求項 1記載の分散体。
3. 樹脂成分 (A) が熱可塑性樹脂で構成されている請求項 1 記載の分散体。
4. 樹脂成分 (A) 力 ポリエステル系樹脂、 ポリアミ ド系榭 脂、 ポリウレタン系樹脂、 ポリ (チォ) エーテル系樹脂、 ポリカー ポネート系樹脂、 ポリスルホン系樹脂、 ポリオレフイ ン系樹脂、
(メタ) アクリル系樹脂、 スチレン系樹脂、 ビニル系樹脂、 セル口 ース誘導体、 及び熱可塑性エラストマ一から選択された少なくとも 一種で構成されている請求項 1記載の分散体。
5. オリゴ糖 (B!) が、 樹脂成分 (A) の熱変形温度よりも 高い温度で融点又は軟化点を示すか、 若しくは分解する請求項 1記 載の分散体。
6. オリゴ糖 (B!) が、 二糖類、 三糖類、 四糖類、 五糖類、 六糖類、 七糖類、 八糖類、 九糖類、 及び十糖類から選択された少な くとも一種で構成されている請求項 1記載の分散体。
7. オリゴ糖 が、 少なく とも四糖類で構成されている 請求項 1記載の分散体。
8. オリゴ糖 (B が、 ( 1 ) マルトテトラオース、 ( 2 ) イソマルトテトラオース、 ( 3) ス夕キオース、 (4) セロテトラ オース、 ( 5) スコロドース、 ( 6) リキノース、 及び ( 7 ) パノ ースの還元末端に糖又は糖アルコールが結合したテトラオースから 選択された少なく とも一種の四糖類で構成されている請求項 1記載 の分散体。
9. オリゴ糖 (B!) が、 デンプン糖、 ガラク トオリゴ糖、 力 ップリングシュガー、 フルク トオリゴ糖、 キシロオリゴ糖、 大豆ォ リゴ糖、 キチンオリゴ糖及びキトサンオリゴ糖から選択された少な くとも一種で構成されている請求項 1記載の分散体。
1 0. オリゴ糖 (B が四糖類を 6 0重量%以上の割合で含 有する請求項 9記載の分散体。
1 1. オリゴ糖 (B の 5 0重量%水溶液の粘度が、 温度 2 5 で B型粘度計で測定したとき、 1 P a · s以上である請求項 1 記載の分散体。
1 2. 助剤成分 (B) が、 さらに、 オリゴ糖 (B!) を可塑化 するための水溶性可塑化成分 (B2) を含む請求項 1記載の分散体。
1 3. 可塑化成分 (B 2) の融点又は軟化点が、 樹脂成分 (A) の熱変形温度以下である請求項 1 2記載の分散体。
1 4. 可塑化成分 (B2) が、 糖類及び糖アルコールから選択 された少なくとも一種で構成されている請求項 1 2記載の分散体。
1 5. 糖類が、 単糖類及び二糖類から選択された少なく とも一 種で構成されている請求項 1 4記載の分散体。
1 6. 糖類が還元糖で構成されている請求項 1 4記載の分散体 c
1 7. 単糖類が、 トリオース、 テトロ一ス、 ペン卜一ス、 へキ ソース、 ヘプト一ス、 ォクトース、 ノノース、 デコース、 及びドデ コースから選択された少なくとも一種で構成され、 二糖類が、 前記 単糖類のホモ及びへテロ二糖類から選択された少なく とも一種で構 成されている請求項 1 5記載の分散体。
1 8. 糖アルコールが、 テトリ トール、 ペンチトール、 へキシ トール、 ヘプチトール、 ォクチトール、 ノニトール、 デキトール、 及びドデキトールから選択された少なく とも一種で構成されている 請求項 1 4記載の分散体。
1 9. 糖アルコールが、 エリスリ トール、 ペン夕エリスリ トー ル、 ァラビトール、 リビトール、 キシリ トール、 ソルビトール、 ズ ルシトール及びマンニトールから選択された少なくとも一種で構成 されている請求項 14記載の分散体。
2 0. 樹脂成分 (A) が、 J I S K 7 2 06で規定される ビカッ ト軟化点 6 0〜 3 0 0 を有し、 温度 2 5 で B型粘度計で 測定したとき、 オリゴ糖 の 5 0重量%水溶液の粘度が 3〜 1 0 0 P a · sであり、 前記ビカッ ト軟化点より 3 0 高い温度で J I S K 7 2 1 0で規定されるメルトフローレートを測定した とき、 オリゴ糖 (B と可塑化成分 (B2) とで構成された助剤成 分 (B) のメルトフローレートが 1以上である請求項 1 2記載の分 散体。
2 1. 樹脂成分 (A) と助剤成分 (B) との割合 (重量比) が、 樹脂成分 (A) Z助剤成分 (B) = 9 9 :!〜 1 /9 9である請求 項 1記載の分散体。
2 2. オリゴ糖 と可塑化成分 (B2) との割合 (重量 比) が、 オリゴ糖 可塑化成分 (B2) = 9 9 1〜 5 0 / 5 0である請求項 1 2記載の分散体。
2 3. 樹脂成分 (A) が、 ポリアミ ド系樹脂、 スチレン系樹脂、 ポリオレフイ ン系樹脂、 ビニルアルコール系樹脂、 セルロース誘導 体、 ハロゲン含有樹脂、 脂肪族ポリエステル系樹脂、 及び熱可塑性 エラストマ一から選択された少なく とも一種で構成され、 助剤成分
(B) を構成するオリゴ糖 (B!) が、 デンプン糖、 ガラク トオリ ゴ糖、 カップリングシュガー、 フルク トオリゴ糖、 キシロオリゴ糖, 大豆オリゴ糖、 キチンオリゴ糖及びキトサンオリゴ糖から選択され た少なくとも一種で構成され、 可塑化成分 (B2) が、 エリスリ ト ール、 ペン夕エリスリ トール、 キシリ トール、 及びソルビトールか ら選択された少なくとも一種で構成され、 樹脂成分 (A) と助剤成 分 (B) との割合 (重量比) が、 樹脂成分 (A) /助剤成分 (B) = 9 0 / 1 0〜 5 / 9 5であり、 オリ ゴ糖 (B !) と可塑化成分 (B2) との割合 (重量比) 力 オリゴ糖 可塑化成分 (B 2) = 9 5 5〜 6 0 Z40である請求項 1 2記載の分散体。
24. 少なく ともオリゴ糖 で構成され、 かつ樹脂と組 み合わせて分散体を形成するための水溶性助剤。
2 5. 請求項 1記載の分散体から、 助剤成分 (B) を溶出し、 樹脂成分 (A) で構成された成形体を製造する方法。
2 6. 成形体が、 多孔体又は粒子である請求項 2 5記載の製造 方法。
2 7. 多孔体の平均孔径が 0. 1〜 1 0.0 111で、 かつ孔径の 変動係数が 6 0以下である請求項 26記載の製造方法。
28. 粒子の平均粒子径が 0. 1〜 1 0 θ ίΐηで、 かつ粒子径 の変動係数が 6 0以下である請求項 2 6記載の製造方法。
PCT/JP2003/006171 2002-05-29 2003-05-16 Dispersion et procede de production de moulages utilisant une dispersion WO2003099933A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004508180A JP4464815B2 (ja) 2002-05-29 2003-05-16 粒子の製造方法
EP03730505A EP1512725B9 (en) 2002-05-29 2003-05-16 Dispersion and process for production of moldings by using the same
US10/515,420 US20050239925A1 (en) 2002-05-29 2003-05-16 Dispersion and process for production of moldings by using the same
KR1020047019193A KR100973602B1 (ko) 2002-05-29 2003-05-16 분산체 및 그것을 이용한 성형체의 제조 방법
US12/379,232 US7868069B2 (en) 2002-05-29 2009-02-17 Dispersed composition and process for producing shaped article using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-156112 2002-05-29
JP2002156112 2002-05-29
JP2003-23536 2003-01-31
JP2003023536A JP2004051942A (ja) 2002-05-29 2003-01-31 分散体及びそれを用いた成形体の製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10515420 A-371-Of-International 2003-05-16
US12/379,232 Division US7868069B2 (en) 2002-05-29 2009-02-17 Dispersed composition and process for producing shaped article using the same

Publications (1)

Publication Number Publication Date
WO2003099933A1 true WO2003099933A1 (fr) 2003-12-04

Family

ID=29586011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006171 WO2003099933A1 (fr) 2002-05-29 2003-05-16 Dispersion et procede de production de moulages utilisant une dispersion

Country Status (7)

Country Link
US (2) US20050239925A1 (ja)
EP (2) EP1512725B9 (ja)
JP (2) JP2004051942A (ja)
KR (1) KR100973602B1 (ja)
CN (1) CN100491472C (ja)
TW (1) TW200307715A (ja)
WO (1) WO2003099933A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004262962A (ja) * 2003-02-04 2004-09-24 Kao Corp 多孔性粒子及び化粧料
EP1690898A1 (en) * 2003-11-28 2006-08-16 Daicel Chemical Industries, Ltd. Dispersion and process for producing colored organic solid particle
JP2006328208A (ja) * 2005-05-26 2006-12-07 Daicel Degussa Ltd 真球状熱可塑性樹脂微粒子の製造法
JP2009019188A (ja) * 2007-06-12 2009-01-29 Japan Organo Co Ltd モノリス状有機多孔質体、その製造方法、モノリス状有機多孔質イオン交換体及びケミカルフィルター
JP2013091763A (ja) * 2011-10-27 2013-05-16 Nippon Starch Chemical Co Ltd 生分解性プラスチックおよびその製造方法

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4648684B2 (ja) * 2003-11-28 2011-03-09 ダイセル化学工業株式会社 分散体及び着色された有機固体粒子の製造方法
JP4574978B2 (ja) * 2003-11-28 2010-11-04 ダイセル化学工業株式会社 複合粒子及び分散体
JP4527487B2 (ja) * 2004-09-30 2010-08-18 ダイセル・エボニック株式会社 楕球状熱可塑性樹脂微粒子の製造法
JP4703247B2 (ja) * 2005-04-25 2011-06-15 ダイセル・エボニック株式会社 樹脂粒子の製造方法
JP2006328245A (ja) * 2005-05-26 2006-12-07 Daicel Chem Ind Ltd 保湿性に優れた有機固体粒子およびその製造方法
JP2006328218A (ja) * 2005-05-26 2006-12-07 Daicel Chem Ind Ltd 樹脂粒子の製造方法、そのための樹脂組成物及び樹脂粒子
JP2006328219A (ja) * 2005-05-26 2006-12-07 Daicel Chem Ind Ltd 親水性樹脂粒子及びその製造方法
JP2007002223A (ja) * 2005-05-27 2007-01-11 Daicel Chem Ind Ltd 分散体及び改質された有機固体粒子
JP2006328282A (ja) * 2005-05-27 2006-12-07 Daicel Chem Ind Ltd 有機組成物及び有機固体粒子の製造方法
JP2007119674A (ja) * 2005-10-31 2007-05-17 Daicel Chem Ind Ltd 水溶性助剤及びその用途
ATE441333T1 (de) * 2005-12-16 2009-09-15 Nutricia Nv Zusammensetzung enthaltend oligosaccharide als lísliche ballaststoffe zur verwendung gegen muskelschwund
DE102006005500A1 (de) * 2006-02-07 2007-08-09 Degussa Gmbh Verwendung von Polymerpulver, hergestellt aus einer Dispersion, in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Polymerpulver
JP5073214B2 (ja) * 2006-03-13 2012-11-14 ダイセル・エボニック株式会社 樹脂粒子の製造方法及び樹脂粒子
DE102006015791A1 (de) 2006-04-01 2007-10-04 Degussa Gmbh Polymerpulver, Verfahren zur Herstellung und Verwendung eines solchen Pulvers und Formkörper daraus
JP2007321027A (ja) * 2006-05-31 2007-12-13 Trial Corp 造粒装置及び造粒方法
JP5558702B2 (ja) * 2008-12-05 2014-07-23 ダイセル・エボニック株式会社 球状複合粒子およびその製造方法
JP5644338B2 (ja) 2010-03-31 2014-12-24 住友化学株式会社 熱可塑性ポリマー材料の製造方法
EP2559736A4 (en) * 2010-04-14 2015-09-16 Sumitomo Chemical Co THERMOPLASTIC POLYMER COMPOSITION AND STABILIZING COMPOSITION
US8703852B2 (en) 2011-06-03 2014-04-22 Sabic Innovative Plastics Ip B.V. Impact-resistant poly(arylene ether) resins with improved clarity
US8957143B2 (en) 2011-06-03 2015-02-17 Sabic Global Technologies B.V. Impact-resistant poly(arylene ether) resins with improved clarity
US9623595B2 (en) 2012-05-25 2017-04-18 National Institute Of Advanced Industrial Science And Technology Functional resin and manufacturing method therefor
US8703851B2 (en) 2012-09-26 2014-04-22 Sabic Innovative Plastics Ip B.V. Poly(phenylene ether) composition and article
US8669309B1 (en) 2012-09-26 2014-03-11 Sabic Innovative Plastics Ip B.V. Poly(phenylene ether) composition and article
JP5952165B2 (ja) * 2012-10-30 2016-07-13 株式会社クラレ エチレン−ビニルアルコール系共重合体多孔質粒子で構成された反応基材、およびその製造方法、ならびに前記反応基材を用いたグラフト共重合体粒子
JP6147162B2 (ja) * 2012-10-30 2017-06-14 株式会社クラレ エチレン−ビニルアルコール系共重合体のグラフト共重合体、その製造方法及びそれを用いた金属イオン吸着材
WO2014069474A1 (ja) * 2012-10-30 2014-05-08 株式会社クラレ 多孔質グラフト共重合体粒子、その製造方法及びそれを用いた吸着材
JP2014114436A (ja) * 2012-11-15 2014-06-26 Kuraray Co Ltd エチレン−ビニルアルコール系共重合体のグラフト共重合体、その製造方法及びそれを用いた金属吸着材
US8637131B1 (en) 2012-11-30 2014-01-28 Sabic Innovative Plastics Ip B.V. Poly(phenylene ether) article and composition
JP6183039B2 (ja) * 2012-12-12 2017-08-23 東洋製罐株式会社 掘削用分散液及びこれを用いた採掘方法
JP6139962B2 (ja) * 2013-04-30 2017-05-31 株式会社クラレ エチレン−ビニルアルコール系共重合体のグラフト共重合体、その製造方法及びそれを用いた金属吸着材
WO2015163064A1 (ja) * 2014-04-22 2015-10-29 株式会社ダイセル 可食性フィルム及びその製造方法
JP6413638B2 (ja) * 2014-10-30 2018-10-31 富士ゼロックス株式会社 静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置、及び画像形成方法
RU2725922C2 (ru) 2015-08-24 2020-07-07 Сайтек Индастриз Инк. Композитный материал и композиция смолы, содержащая метастабильные частицы
CN107903436A (zh) * 2017-11-28 2018-04-13 烟台史密得机电设备制造有限公司 一种涂覆多孔环氧树脂泡沫的制备方法
ES2907572T3 (es) 2018-02-07 2022-04-25 Daicel Corp Partículas de acetato de celulosa, composición cosmética, y procedimiento de producción de partículas de acetato de celulosa
US20220142900A1 (en) 2019-03-18 2022-05-12 Daicel Corporation Particles containing cellulose acetate, cosmetic composition, and method for producing particles containing cellulose acetate
JP7149885B2 (ja) 2019-03-22 2022-10-07 株式会社ダイセル セルロース誘導体粒子、化粧品組成物及びセルロース誘導体粒子の製造方法
CN114096234A (zh) 2019-07-12 2022-02-25 巴斯夫欧洲公司 生产载有挥发性有机活性物的微粒的方法
WO2022014084A1 (ja) 2020-07-13 2022-01-20 株式会社ダイセル セルロースアセテート粒子、化粧品組成物及びセルロースアセテート粒子の製造方法
KR102664658B1 (ko) * 2020-10-16 2024-05-08 주식회사 오트로닉 페라이트 소결 자석의 제조 방법
WO2022176825A1 (ja) 2021-02-19 2022-08-25 株式会社ダイセル セルロースアシレート組成物及びその製造方法
JP7421599B2 (ja) 2022-06-17 2024-01-24 株式会社ダイセル 生分解性球状粒子及びその製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5159049A (en) 1991-04-22 1992-10-27 Allen Robert C Method for stabilizing polyacrylamide gels
US5290832A (en) 1991-10-07 1994-03-01 Basf Aktiengesellschaft Moldings
JPH0948876A (ja) * 1995-08-04 1997-02-18 Mitsubishi Chem Corp 熱可塑性樹脂組成物
JPH09324117A (ja) * 1996-06-05 1997-12-16 Kinugawa Rubber Ind Co Ltd 導電性ポリウレタン組成物および導電性ロール
WO2001042367A1 (fr) 1999-12-08 2001-06-14 National Institute Of Advanced Industrial Science And Technology Compositions a base de resine biodegradable
JP2003020356A (ja) * 2001-07-10 2003-01-24 Foundation For Advancement Of Science & Technology 多孔質フィルムの製造方法
JP2003192823A (ja) * 2001-12-28 2003-07-09 Bridgestone Corp 熱可塑性ポリウレタン樹脂製多孔質材料の製造方法及び熱可塑性ポリウレタン樹脂製多孔質材料

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4370286A (en) * 1981-09-14 1983-01-25 The B. F. Goodrich Company Chlorinated polyvinyl chloride composition
JPS5915338B2 (ja) * 1981-10-06 1984-04-09 株式会社三元商会 吸水性プラスチツク複合材料の製造方法
JPS59189169A (ja) * 1983-04-12 1984-10-26 Kobayashi Koryo Kk ゲル形成用樹脂組成物
JPS6013816A (ja) 1983-07-06 1985-01-24 Showa Denko Kk 熱可塑性樹脂微粒子の製造法
JPS60192728A (ja) * 1984-01-26 1985-10-01 Technol Risooshizu Inkooporeetetsudo:Kk 熱可塑性樹脂微小球体の製法
JPS619433A (ja) 1984-06-26 1986-01-17 Technol Risooshizu Inkooporeetetsudo:Kk 熱可塑性樹脂微小球体の製法
JP3574249B2 (ja) 1995-12-13 2004-10-06 日本合成化学工業株式会社 樹脂微粒子の製造法
JPH10176065A (ja) 1996-12-17 1998-06-30 Dainippon Ink & Chem Inc 球状ポリマー微粉末の製造方法
JP4012595B2 (ja) 1997-02-03 2007-11-21 好幸 坂野 オリゴ糖組成物の製造方法
FR2761058B1 (fr) * 1997-03-19 1999-05-21 Goemar Lab Sa Composition et procede pour la stimulation de la germination des grains de pollen
JP3321048B2 (ja) * 1997-09-18 2002-09-03 グローリ産業株式会社 連続多孔性弾性体
JP2000191820A (ja) * 1997-09-30 2000-07-11 Inoac Corp ミクロ多孔体及びその製造方法
JP3678303B2 (ja) * 1999-04-01 2005-08-03 セイコーエプソン株式会社 非吸収性記録媒体に対するインクジェット記録方法
JP4759108B2 (ja) * 1999-06-24 2011-08-31 株式会社朝日ラバー 多孔体の製造方法
JP4019738B2 (ja) * 2002-02-27 2007-12-12 株式会社ブリヂストン 熱可塑性ポリウレタン樹脂製多孔性材料の製造方法及び熱可塑性ポリウレタン樹脂製多孔性材料
CN1886464B (zh) * 2003-11-28 2010-12-08 大赛璐化学工业株式会社 分散体以及着色的有机固体粒子的制造方法
JP4574978B2 (ja) * 2003-11-28 2010-11-04 ダイセル化学工業株式会社 複合粒子及び分散体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5159049A (en) 1991-04-22 1992-10-27 Allen Robert C Method for stabilizing polyacrylamide gels
US5290832A (en) 1991-10-07 1994-03-01 Basf Aktiengesellschaft Moldings
JPH0948876A (ja) * 1995-08-04 1997-02-18 Mitsubishi Chem Corp 熱可塑性樹脂組成物
JPH09324117A (ja) * 1996-06-05 1997-12-16 Kinugawa Rubber Ind Co Ltd 導電性ポリウレタン組成物および導電性ロール
WO2001042367A1 (fr) 1999-12-08 2001-06-14 National Institute Of Advanced Industrial Science And Technology Compositions a base de resine biodegradable
JP2003020356A (ja) * 2001-07-10 2003-01-24 Foundation For Advancement Of Science & Technology 多孔質フィルムの製造方法
JP2003192823A (ja) * 2001-12-28 2003-07-09 Bridgestone Corp 熱可塑性ポリウレタン樹脂製多孔質材料の製造方法及び熱可塑性ポリウレタン樹脂製多孔質材料

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OXLEY H. R.: "Macroporous Hydrogels for Biomedical Applications: methodology and morphology", BIOMATERIALS, vol. 14, no. 14, 30 November 1993 (1993-11-30), pages 1064 - 1072, XP024141470, DOI: doi:10.1016/0142-9612(93)90207-I
See also references of EP1512725A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004262962A (ja) * 2003-02-04 2004-09-24 Kao Corp 多孔性粒子及び化粧料
EP1690898A1 (en) * 2003-11-28 2006-08-16 Daicel Chemical Industries, Ltd. Dispersion and process for producing colored organic solid particle
EP2447327A1 (en) * 2003-11-28 2012-05-02 Daicel Chemical Industries, Ltd. Dispersion and process for producing colored organic solid particle
EP2450409A1 (en) * 2003-11-28 2012-05-09 Daicel Chemical Industries, Ltd. Dispersion and process for producing colored organic solid particle
EP1690898B1 (en) * 2003-11-28 2013-01-09 Daicel Chemical Industries, Ltd. Dispersion and process for producing colored organic solid particle
JP2006328208A (ja) * 2005-05-26 2006-12-07 Daicel Degussa Ltd 真球状熱可塑性樹脂微粒子の製造法
JP2009019188A (ja) * 2007-06-12 2009-01-29 Japan Organo Co Ltd モノリス状有機多孔質体、その製造方法、モノリス状有機多孔質イオン交換体及びケミカルフィルター
JP2013091763A (ja) * 2011-10-27 2013-05-16 Nippon Starch Chemical Co Ltd 生分解性プラスチックおよびその製造方法

Also Published As

Publication number Publication date
KR100973602B1 (ko) 2010-08-02
KR20050010840A (ko) 2005-01-28
TW200307715A (en) 2003-12-16
US7868069B2 (en) 2011-01-11
EP1512725B9 (en) 2012-12-05
US20050239925A1 (en) 2005-10-27
EP1512725A4 (en) 2007-09-05
EP1512725A1 (en) 2005-03-09
EP1512725B1 (en) 2012-07-18
EP2431411A1 (en) 2012-03-21
JP4464815B2 (ja) 2010-05-19
EP2431411B1 (en) 2013-07-17
US20090170981A1 (en) 2009-07-02
CN100491472C (zh) 2009-05-27
CN1668702A (zh) 2005-09-14
JPWO2003099933A1 (ja) 2005-09-22
JP2004051942A (ja) 2004-02-19

Similar Documents

Publication Publication Date Title
WO2003099933A1 (fr) Dispersion et procede de production de moulages utilisant une dispersion
JP4574978B2 (ja) 複合粒子及び分散体
KR101096879B1 (ko) 분산체 및 착색된 유기 고체 입자의 제조 방법
JP2004269865A (ja) 生分解性樹脂粒子の製造方法
JP2006328208A (ja) 真球状熱可塑性樹脂微粒子の製造法
JP6909065B2 (ja) 水溶性マトリックス、樹脂粒子を含む予備成形体、及び樹脂粒子の製造方法
JP2005162842A (ja) 有機固体粒子
JP2007262334A (ja) 異形状樹脂粒子を含む分散体の製造方法および異形状樹脂粒子
JP2006328219A (ja) 親水性樹脂粒子及びその製造方法
JP4648684B2 (ja) 分散体及び着色された有機固体粒子の製造方法
JP4464667B2 (ja) オリゴ糖を含む有機組成物及び有機固体粒子の製造方法
JP2006328245A (ja) 保湿性に優れた有機固体粒子およびその製造方法
JP2007186660A (ja) 水溶性糖組成物
JP2007224259A (ja) 軟質樹脂粒子およびその製造方法
JP2005162841A (ja) 水溶性助剤及びその用途
JP2006328282A (ja) 有機組成物及び有機固体粒子の製造方法
JP2007231038A (ja) 軟質樹脂からなる大粒径球状微粒子およびその製造方法
JP2007291168A (ja) 熱処理された有機固体粒子
JP2007154102A (ja) 有機固体粒子を含む分散液及び有機固体粒子の回収方法
JP2006103076A (ja) 溶融押出し法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003730505

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10515420

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004508180

Country of ref document: JP

Ref document number: 1020047019193

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038166569

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020047019193

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003730505

Country of ref document: EP