WO2003074871A1 - Compresseur ferme - Google Patents

Compresseur ferme Download PDF

Info

Publication number
WO2003074871A1
WO2003074871A1 PCT/JP2003/002090 JP0302090W WO03074871A1 WO 2003074871 A1 WO2003074871 A1 WO 2003074871A1 JP 0302090 W JP0302090 W JP 0302090W WO 03074871 A1 WO03074871 A1 WO 03074871A1
Authority
WO
WIPO (PCT)
Prior art keywords
casing
compression element
stator core
hermetic compressor
fixing member
Prior art date
Application number
PCT/JP2003/002090
Other languages
English (en)
French (fr)
Inventor
Masahide Higuchi
Eiji Kumakura
Takashi Hirouchi
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to EP03707078A priority Critical patent/EP1486672A4/en
Priority to US10/478,422 priority patent/US7618242B2/en
Priority to KR1020037016983A priority patent/KR100544786B1/ko
Priority to BR0303323-6A priority patent/BR0303323A/pt
Publication of WO2003074871A1 publication Critical patent/WO2003074871A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • F04C18/324Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members with vanes hinged to the inner member and reciprocating with respect to the outer member
    • F04C18/328Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members with vanes hinged to the inner member and reciprocating with respect to the outer member and hinged to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • F04C18/332Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members with vanes hinged to the outer member and reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/20Manufacture essentially without removing material
    • F04C2230/23Manufacture essentially without removing material by permanently joining parts together
    • F04C2230/231Manufacture essentially without removing material by permanently joining parts together by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2230/00Manufacture
    • F04C2230/60Assembly methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/805Fastening means, e.g. bolts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps
    • Y10S417/902Hermetically sealed motor pump unit

Definitions

  • the present invention relates to a hermetic compressor, and more particularly to a measure for improving the reliability of fixing a compression element and its drive motor in a casing.
  • the hermetic compressor in which the compression element and the drive motor were accommodated in the casing of the welding structure and hermetically closed was known. I have.
  • This hermetic compressor has high reliability because the working fluid does not leak when compressing the working fluid and there is no danger of water intrusion.
  • the hermetic compressor is provided in a refrigerant circuit of a refrigeration system. Used in air conditioners and the like.
  • the compression element of the hermetic compressor has a structure that compresses a working fluid by being driven by a drive motor, and includes, for example, a cylinder and a rotary piston.
  • the cylinder of the compression element is generally formed of rust, there is a problem that the joining strength between the casing and the compression element is insufficient.
  • ⁇ iron has the property of low ductility and brittleness.
  • welding of solids is liable to cause poor welding, for example, because the residual stress at the time of fabrication and the residual stress due to welding tend to cause cracks.
  • the drive motor is generally fixed in the casing by shrink fitting, there is a problem that the joining strength between the casing and the drive motor is insufficient. That is, when the casing expands and deforms due to the internal pressure, the interference with the drive motor is reduced, and the bonding strength may be insufficient.
  • a fluid with a very high pressure such as carbon dioxide
  • the working fluid is used as the working fluid. If used, the compression deformation of the casing due to the internal pressure increases, which may cause the welding of the compression element to come off or the drive motor to be displaced, reducing the reliability of fixing the storage components. Occurs.
  • an object of the present invention is to improve the reliability of fixing a storage component in a hermetic compressor. Disclosure of the invention
  • the present invention relates to a method for fixing a compression element (20) to a casing (10) with a fixing member (40) made of steel having a carbon content of 2.0% or less, or a drive motor.
  • the stator core (34) of (30) is welded to the casing (10).
  • the first invention is based on the premise that the compression element (20) for compressing the working fluid is enclosed in a casing (10), and the compression element (20) contains carbon. It is fixed to a fixing member (40) made of steel having a ratio of 2.0% or less and welded to a casing (10).
  • the fixing member (40) is a compression element.
  • the compression element (20) includes a main body (22), a lid (23) forming an upper surface of the compression chamber (26), and a compression chamber (26).
  • the fixing member (40) is welded to the casing (10), and the fixing member (40) is attached to the body (22) of the compression element (20). ), At least one of the lid (23) and the bottom (24) is fastened and fixed.
  • the compression element (20) is a cylinder.
  • the fixing member (40) is formed in an annular shape so that the compression element (20) is fitted therein, and the fixing member (40) is provided with lubricating oil.
  • An oil return hole (47) for flowing down is formed, and an opening area of the oil return hole (47) is set to 50% or more with respect to a bottom area of the fixing member (40).
  • the casing (10) is provided with a welding hole (28) corresponding to the fixing member (40), and the fixing member (40) is It is welded to the casing (10) through the welding hole (28).
  • a stator (32) in which a stator core (34) is wound with a winding is provided in the casing (10); And a rotor (33) rotatably disposed in the inner space and drivingly connected to the compression element (20), and a drive motor (30) for driving the compression element (20) is housed therein.
  • the stator core (34) of the motor (30) is welded to the casing (10).
  • An eighth invention provides a stator (32) in which a winding is mounted on a stator core (34), a stator (32) rotatably disposed in the stator (32), and a drive element driven by a compression element (20).
  • a drive motor (30) having a rotor (33) connected thereto and driving the compression element (20) is provided on the premise of a hermetic compressor housed in a casing (10).
  • the stator core (34) of 30) is welded to the casing (10).
  • the goosen '(10) is provided with a welding hole (38) corresponding to the stator core (34), and the stator core (34) It is welded to the casing (10) through the welding hole (38).
  • the stator core (34) has an oil return portion (83) having an area of 5% or more of a bottom area inside the casing (10). ) Is formed.
  • the oil return portion (83) of the stator core (34) is provided at a portion where the outer peripheral surface of the stator core (34) is in contact with the casing (10). They are formed adjacent to each other.
  • the high-pressure dome type in which the working fluid discharged from the compression element (20) fills the inside of the casing (10). has been established.
  • the working fluid is connected to a refrigerant circuit that performs a refrigeration cycle by compressing the working fluid to or above its critical pressure.
  • the compression element (20) for compressing the working fluid is fixed to the fixing member (40) made of steel having a carbon content of 2.0% or less and welded to the casing (10).
  • the fixing member (40) made of steel having a carbon content of 2.0% or less and welded to the casing (10).
  • a welding defect such as a disconnection of a weld at a welded portion, for example, welding of an object.
  • the reliability of the welding for fixing the compression element (20) can be improved.
  • the fixing member (40) is formed separately from the compression element (20) and the casing (10), and the compression element (40) is connected via the fixing member (40). (20) and the casing (10) are fixed, so that even if the welding part of the compression element (20) is made of, for example, a solid material, the reliability of the welding for fixing the compression element (20) is reduced. Performance can be improved.
  • the fixing member (40) is fixed to the casing (10) by welding, while the fixing member (40) is fixed to the body (22) of the compression element (20) by Since at least one of the lid (23) and the bottom (24) is fastened and fixed, the casing ( The reliability of welding fixation to 10) can be improved, and the compression element (20) can be securely fixed to the fixing member (40).
  • the compression element (20) is provided with a cylinder (21), an oscillating piston (25), and a bush (66).
  • the bush hole (65) is formed in 21).
  • the fixing member (40) has a bush through hole (46) communicating with the push hole (65). Therefore, the lubricating oil in the casing (10) passes through the bush through hole (46). And can easily flow into the bush hole (65). As a result, for example, even when a high-viscosity lubricating oil is used, the lubricating oil can reliably flow into the push hole (65).
  • the compression element (20) is inserted into the annular fixing member (40), and an oil return hole (47) is formed in the fixing member (40). ing. Since the opening area of the oil return hole (47) is 50% or more of the bottom area of the fixing member (40), the lubricating oil on the fixing member (40) can be easily dropped. Therefore, even when, for example, a high-viscosity lubricating oil is used, the lubricating oil in the goose (10) can be reliably returned to the oil reservoir.
  • the fixing member (40) is welded to the casing (10) through a welding hole (28) provided corresponding to the fixing member (40). With this configuration, the compression element (20) can be easily and reliably fixed.
  • the stator core (34) of the drive motor (30) for driving the compression element (20) is welded to the casing (10). Even if (10) expands and deforms, it is possible to prevent the stator core (34) from being displaced.
  • the stator core (34) is generally made of steel, the stator core (34) can be securely welded to the casing (10). As a result, it is possible to prevent the air gap between the stator core (34) and the rotor (33) from becoming worse, and prevent the stator core (34) from contacting the rotor (33), The reliability of the compressor (1) can be improved.
  • the stator core (34) is welded to the casing (10) through a welding hole (38) provided corresponding to the stator core (34).
  • the drive motor (30) can be easily and reliably fixed.
  • an oil return portion (83) is formed in the stator core (34), and an area of the oil return portion (83) is provided inside the casing (10).
  • the lubricating oil in the casing (10) can be easily returned to the oil storage section through the oil return section (83) of the stator core (34) because the bottom area is 5% or more of the bottom area. You. Further, even when a high-viscosity lubricating oil is used, the lubricating oil can be reliably returned to the oil reservoir.
  • the oil return portion (83) of the stator core (34) is adjacent to a portion where the outer peripheral surface of the stator core (34) is in contact with the casing (10). This allows the portion to be welded to the casing (10) to be secured, while ensuring that lubricating oil adhering to the inner wall of the casing (10) is returned to the oil reservoir.
  • the working fluid discharged from the compression element (20) is configured as a high-pressure dome type in which the inside of the casing (10) is filled. Therefore, since the fluid discharged under pressure is filled in the casing (10), the pressure in the casing (10) becomes high and the deformation of the casing (10) increases.
  • the compression element (20) is made of steel with a carbon content of 2.0% or less and the compression element (20) is fixed by the fixing member (40) welded to the casing (10), such deformation is caused. Even in a large case, it is possible to prevent a welding defect such as a welding error, such as when welding a solid.
  • the working fluid is configured to compress the working fluid to the critical pressure or more
  • the high pressure in the hermetic compressor (1) is extremely high. Become higher.
  • the compression element (20) is made of steel with a carbon content of less than 2.0% and the compression element (20) is fixed by the fixing member (40) welded to the casing (10), Even in the case of expansion and deformation, it is possible to prevent poor welding such as welding failure such as when welding a solid.
  • the casing (10) when the casing (10) is deformed due to an increase in the internal pressure of the casing (10), for example, welding at a welded portion such as welding of an object is performed. It is possible to prevent welding defects such as separation. As a result, the reliability of the welding for fixing the compression element (20) can be improved.
  • the welding part of the compression element (20) is compared with the conventional one in the same manner as before. Even in the case where the compression element (20) is made of a solid material, the reliability of welding for fixing the compression element (20) can be improved.
  • the reliability of welding fixation to the casing (10) can be improved as in the related art.
  • the compression element (20) can be securely fixed to the fixing member (40).
  • the lubricating oil in the casing (10) can easily flow into the bush hole (65) through the push through hole (46).
  • the lubricating oil can reliably flow into the bush hole (65).
  • the lubricating oil in the casing (10) can be reliably returned to the oil storage section.
  • the fixing member (40) is welded to the casing (10) through the welding hole (28) provided corresponding to the fixing member (40). (20) can be easily and reliably fixed by welding.
  • the stator core (34) it is possible to prevent the stator core (34) from being displaced even if the casing (10) expands and deforms due to an increase in the internal pressure, and the stator core (34) can be securely fixed to the casing (10).
  • the air gap between the stator core (34) and the rotor (33) is reduced, and the stator core (34) can be prevented from contacting the rotor (33).
  • the reliability of the compressor (1) can be improved.
  • the stator core (34) is welded to the casing (10) through the welding holes (38) provided corresponding to the stator core (34).
  • the drive motor (30) can be easily and reliably welded and fixed.
  • the lubricating oil in the casing (10) can be easily returned to the oil storage section through the oil return section (83) of the stator core (34). Further, even when a high-viscosity lubricating oil is used, the lubricating oil can be reliably returned to the oil reservoir.
  • a portion to be welded to the casing (10) is secured.
  • lubricating oil adhering to the inner wall of the casing (10) can be reliably returned to the oil reservoir.
  • the casing (10) expands and deforms due to the inside of the casing (10) being filled with the fluid that has been pressurized and discharged, for example, welding such as welding of solids can be performed. It is possible to prevent welding defects such as welding dislocation in the part.
  • FIG. 1 is a cross-sectional view showing the overall configuration of the hermetic compressor according to the embodiment.
  • FIG. 2 is a sectional view showing the configuration of the cylinder body and the swing.
  • FIG. 3 shows the configuration of the front head and the mounting plate.
  • FIG. 3A is a plan view
  • FIG. 3B is a cross-sectional view taken along line III-III in FIG. 3A.
  • FIG. 4 shows a configuration of the mounting plate.
  • FIG. 4A is a plan view
  • FIG. 4B is a cross-sectional view taken along line IV-IV of FIG. 4A.
  • FIG. 5 is a cross-sectional view taken along line VV of FIG. 3A.
  • FIG. 6 is a plan view of the stator core. BEST MODE FOR CARRYING OUT THE INVENTION
  • the hermetic compressor (1) relates to an oscillating piston type rotary compressor. As shown in FIG. 1, the hermetic compressor (1) includes a compression element (20) for compressing a refrigerant as a working fluid in a casing (10);
  • a compressor motor (30) which is a drive motor disposed at the top of (20), and is formed in a hermetically sealed type, so-called high-pressure dome type.
  • carbon dioxide (co 2 ) is used as a refrigerant, and is connected to a refrigerant circuit (not shown) for performing a refrigerating cycle of an air conditioner or the like, and compresses the refrigerant to a pressure higher than its critical pressure (1).
  • the high pressure of this refrigeration cycle is set to, for example, 13.7 MPa.
  • the casing (10) includes a cylindrical body (11) and bowl-shaped end plates (12, 13) welded and fixed to the upper and lower sides of the body (11).
  • the body (11) of the casing (10) is provided with a suction pipe (15) penetrating the body (11) and a body (11) above the connection part of the suction pipe (15).
  • a discharge pipe (16) penetrating and communicating the inside and outside of the casing (10) is provided.
  • the upper end plate (12) is provided with a terminal (17) that is connected to an external power supply (not shown) and supplies power to the compressor motor (30).
  • an oil storage section in which a predetermined amount of lubricating oil is stored is formed in a lower portion of the casing (10) (not shown).
  • hermetic compressor (1) in order to compress a refrigerant having a very high pressure, such as carbon dioxide, as a working fluid, an oil film of a sliding portion is secured in consideration of a bearing load. High-viscosity lubricating oils are used as much as possible.
  • a bracket (18) for supporting the compressor (1) is provided at the lower end of the lower end plate (13).
  • the compression element (20) includes a cylinder (21) and a swing (25) as a swinging piston that swings in the cylinder (21), and is arranged on a lower side in the casing (10).
  • the cylinder (21) includes a cylinder body (22) as a main body, a front head (23) as a lid, and a rear head (24) as a bottom.
  • the cylinder body (22) is formed in a cylindrical shape, and is arranged concentrically with the body (11) of the casing (10).
  • the front head (23) is located at the upper end of the cylinder body (22), and the rear head (24) is located at the lower end of the cylinder body (22).
  • This cylinder body (22), front head (23) and The rear head (24) is fastened with bolts (29) and assembled together.
  • the cylinder body (22), the front head (23), and the rear head (24) are made of animal.
  • the cylinder (21) is fixed to a body (11) of a casing (10) via a mounting plate (40) as a fixing member.
  • the mounting plate (40) is fastened to the front head (23) by bolts (42) and fixed to the body (11) of the casing (10) by welding. ing.
  • the molten metal flows in from the outside of the casing (10) through a welding hole (28) that penetrates the body (") of the casing (10) to form a fusion zone, thereby forming a fusion with the mounting plate (40).
  • the mounting plate (40) is welded and fixed to the body (11) of the casing (10) The details of the mounting plate (40) will be described later.
  • the cylinder (21) has an inner peripheral surface of the cylinder body (22), a lower end surface of the front head (23), an upper end surface of the rear head (24), and an outer peripheral surface of the swing (25).
  • a compression chamber (26) is defined.
  • the front head (23) and the rear head (24) are formed with shaft holes (23a, 24a) penetrating vertically through the center, and the drive shaft (31) is formed in the shaft holes (23a, 24a). Is rotatably fitted. That is, the drive shaft (31) is arranged to extend vertically in the center of the casing (10), and the front head (23), the compression chamber (26) and the rear head ( 24) penetrates vertically.
  • the compressor motor (30) includes a stator (32) as a stator and a rotor (33) as a rotor, and is arranged above the compression element (20).
  • the stator (32) includes a stator core (34), which is a cylindrical stator core, and three-phase windings mounted on the stator core (34). An axial end of each winding projects from an axial end of the stator core (34) and is formed at a coil end (36).
  • the stator (32) is configured to generate a rotating magnetic field by energizing each winding. Details of the stator core (34) will be described later.
  • the rotor (33) has a permanent magnet (not shown) fitted therein, is configured to be rotatable inside the stator (32), and has the drive shaft (31) fitted therein so as to be compressed. It is drivingly connected to (20).
  • the stator core (34) is shrink-fitted to the trunk (11) of the casing (10), and is fixed to the trunk (11) by welding.
  • the molten metal flows in from the outside of the casing (10) through a welding hole (38) penetrating the body (11) of the casing (10) to form a fusion portion, thereby forming the stator core (34) and the casing.
  • the body (11) of (10) is fixed by welding. 090
  • the rotor (33) rotates and the drive shaft (31) rotates, thereby applying a rotational driving force to the compression element (20). Then, the compression element (20) is driven.
  • the drive shaft (31) is provided with a centrifugal pump and an oil supply passage.
  • the centrifugal pump is provided at the lower end of the drive shaft (31), and is configured to pump up the lubricating oil stored in the lower portion of the casing (10) with the rotation of the drive shaft (31).
  • the oil supply passage extends in the drive shaft (31) in the vertical direction and communicates with oil supply ports provided in each part so as to supply lubricating oil pumped by the centrifugal pump to each sliding part. .
  • An accumulator (50) is connected to the hermetic compressor (1) via a suction pipe (15).
  • the accumulator (50) is a vertically long hermetically sealed container comprising a body member (51), a bowl-shaped upper member (52) and a lower member (53) joined to the upper end or lower end of the body member (51). Is configured.
  • the lower end of the lower member (53) has the lower end of the return pipe (54) inserted into the upper end of the suction pipe (15) 1 and the upper end of the upper member (52).
  • the return pipe (54) is for guiding the refrigerant circulating in the refrigerant circuit to the accumulator (50), and has an upper end connected to a pipe (not shown) constituting the refrigerant circuit.
  • the suction pipe (15) is arranged so as to extend in the closed container up to the height of the upper end of the body member (51).
  • the accumulator (50) is configured to separate the liquid refrigerant from the refrigerant flowing through the return pipe (54).
  • the cylinder body (22) has a swing (25) disposed inside thereof, and has a suction passage (64) and a bush hole (65) formed therein.
  • the swing (25) is formed by integrally forming a cylindrical rotor part (60) and a rectangular parallelepiped blade part (61), and the rotor part (60) is located in the compression chamber (26).
  • An eccentric part (62) formed integrally with the drive shaft (31) is fitted into the rotor part (60), and is rotatably supported by the eccentric part (62).
  • the swing (25) divides the compression chamber (26) into a low-pressure chamber (26a) and a high-pressure chamber (26b).
  • the suction passage (64) is formed so as to penetrate the outer peripheral surface and the inner peripheral surface of the cylinder body (22) in the radial direction.
  • the suction passage (64) has an inner end that opens to the compression chamber (26) and is configured to be able to communicate with the low-pressure chamber (26a).
  • a suction pipe (15) fitted into the body (11) of the casing (10) is fitted into the suction passage (64).
  • the push hole (65) is provided on the inner peripheral surface of the cylinder body (22) near the suction passage (64) and extends from the upper end surface to the lower end surface of the cylinder body (22). .
  • a pair of bushes (66) having a semi-lunar cross section are arranged so as to be swingable.
  • the bush (66) is disposed near the inner peripheral surface of the cylinder body (22) in the push hole (65), and a back space (67) is provided on the outer peripheral side of the bush (66) in the bush hole (65). Is formed.
  • a blade (61) of a swing (25) is inserted between the two bushes (66), and the blade (61) is supported by the bushes (66) so as to be able to move forward and backward.
  • the mounting plate (40) includes an annular bottom portion (44) and a side portion (45) erected on the periphery of the bottom portion (44). It has a U-shaped vertical section.
  • the front head (23) of the compression element (20) is inserted so as to close the opening inside the bottom part (44).
  • the front end of the front head (23) is flush with the lower end of the bottom surface (44) of the mounting plate (40).
  • the mounting plate (40) is made of steel having a carbon content of 2.0% by mass or less, and has a side member (45) welded to a body (11) of a casing (10). Make up.
  • the compression element (20) is composed of a mounting plate, which is a fixing member made of steel having a carbon content of 2.0% or less by mass and welded to the casing (10) with respect to the casing (10). Fixed to (40).
  • a bottom surface concave portion (46) is formed which is recessed outward in the radial direction.
  • This bottom recess (46) Is formed from the upper surface to the lower surface of the bottom portion (44) at a position corresponding to the position directly above the bush hole (65) of the cylinder body (22).
  • the space in the casing (10) and the cylinder body It is configured such that the bush hole (65) in (22) communicates with the back space (67).
  • the bottom recess (46) is for allowing the lubricating oil in the goose sink "(10) to flow into the bush hole (65), and constitutes a bush through-hole communicating with the bush hole (65). I have.
  • the bottom plate (44) of the mounting plate (40) has an oil return hole (47) for returning oil, and a through hole for inserting a bolt (42) to be fastened to the front head (23). (41) are formed. Three through holes (41) are formed.
  • the oil return holes (47) are constituted by a plurality of oblong holes (47a) which are arranged at substantially equal intervals in the circumferential direction and penetrate the bottom portion (44) to the upper portion and have an oval shape in plan view.
  • the oil return hole (47) is set to have an opening area of 50% or more of the bottom area of the bottom part (44) of the mounting plate (40). That is, the total area of the opening areas of the long holes (47a) is set to be 50% or more of the bottom area of the bottom surface (44).
  • the front head (23) has a plurality of fastening holes (70) and a cutout recess (71).
  • the fastening hole (70) is for screwing a port (42) for fastening and fixing to the mounting plate (40), and is formed at a position corresponding to the through hole (41) of the mounting plate (40).
  • the notch (71) has a substantially elliptical shape in plan view on the upper surface of the front head (23).
  • the front head (23) has a discharge hole (72) for discharging the high-pressure refrigerant in the compression chamber (26) and a fastening hole (74) for fastening the port (73).
  • the discharge hole (72) extends from the lower end surface of the front head (23) to the four notches (71) at a position adjacent to the inner peripheral surface of the cylinder body (22) and corresponding to the vicinity of the push hole (65). It is formed so as to penetrate and can communicate with the inside of the casing (10).
  • the discharge hole (72) is configured to be able to communicate with the high-pressure chamber (26b) of the compression chamber (26).
  • the front head (23) has a discharge valve (75) and a holding plate (76) by a port (73) screwed into the fastening hole (74). ) Are fastened and fixed.
  • the discharge valve (75) is formed as a plate-like on-off valve that closes the upper end of the discharge hole (72), and when the refrigerant pressure in the compression chamber (26) rises and becomes approximately equal to the pressure in the casing (10).
  • the discharge hole (72) is bent to open, and the inside of the compression chamber (26) is communicated with the inside of the casing (10).
  • the holding plate (76) is disposed above the discharge valve (75), and serves to regulate the amount of deflection of the discharge valve (75) so that the discharge valve (75) does not excessively bend. It is. In FIG. 3B, the discharge valve (75), the holding plate (76), and the bolt (73) are omitted.
  • the stator core (34) is formed in a cylindrical shape and has a winding insertion portion (a plurality of grooves extending in the axial direction of the drive shaft (31)) on its inner peripheral surface. 81) are formed at equal intervals in the circumferential direction. For example, 24 winding insertion portions (81) are formed, and windings of each phase of the three-phase windings are inserted into the winding insertion portion (81). Further, a core cut portion (83), which is an oil return portion, is formed on the outer peripheral surface of the stator core (34).
  • the core cut portion (83) is constituted by a plurality of outer surface recesses (83a) which are arranged at equal intervals in the circumferential direction and extend in the axial direction.
  • the outer surface concave portions (83a) are formed at four positions at 90 ° intervals from the upper end surface to the lower end surface of the stator core (34).
  • the core cut portion (83) is provided as a flow path for refrigerant and lubricating oil in the casing (10).
  • the area of the core cut portion (83) is set to be at least 5% of the bottom area of the inner surface of the casing (10).
  • the casing (10) is a bottom surface area of the inner surface of 9 8 5 2 mm 2
  • the area of Koakatsuto portion (83) is in the 9 5 1 mm 2.
  • the outer peripheral surface of the stator core (34) is in contact with the inner peripheral surface of the body (11) of the casing (10) except for the core cut portion (83).
  • the core cut portion (83) is formed adjacent to a portion in contact with the casing (10).
  • the operation of the hermetic compressor (1) according to the present embodiment will be described.
  • the compressor motor (30) When electric power is supplied to the compressor motor (30) through the terminal (19), the rotor (33) rotates, and the rotation of the rotor (33) causes the swing (25) of the compression element (20) via the drive shaft (31). Is transmitted to Thus, the compression element (20) performs a predetermined compression operation.
  • the compression operation of the compression element (20) will be described with reference to FIG. First, the state in which the cylinder body (22) and the swing (25) are in contact with the cylinder body (22) immediately to the right of the inner opening end of the suction passage (64) formed in the cylinder body (22) will be described. ) The volume of the low-pressure chamber (26a) is minimized. When the swing (25) is rotated clockwise by being driven by the compressor motor (30), the volume of the low-pressure chamber (26a) is increased according to the rotation of the swing (25), and the low-pressure chamber (26a) is supplied with the low-pressure chamber. Is sucked. This low-pressure refrigerant flows from the refrigerant circuit to the accumulator
  • the liquid refrigerant flows through the suction pipe (15).
  • the suction of the refrigerant continues until the swing (25) revolves once and the cylinder body (22) comes into contact with the swing (25) again immediately to the right of the inner open end of the suction passage (64).
  • the inner surface of the cylinder (21) and the swing (25) are covered with a lubricating oil film, and the refrigerant contains lubricating oil.
  • the part where the refrigerant has been sucked in this way is the high-pressure chamber where the refrigerant is compressed.
  • the volume of the high-pressure chamber (26b) is the maximum, and the high-pressure chamber (25b) is filled with a low-pressure refrigerant.
  • the discharge hole (72) of the front head (23) is connected to the discharge valve.
  • the casing (10) is filled with a high-pressure refrigerant.
  • the high-pressure refrigerant is discharged from the discharge pipe (16) and circulates through a refrigerant circuit (not shown).
  • part of the lubricating oil contained in the high-pressure refrigerant in the casing (10) adheres to the inner wall of the casing (10).
  • the oil flows down along the inner wall of the casing (10), flows between the outer surface recess (83a) of the stator core (34) and the casing (10), and then returns to the oil return hole (47) of the mounting plate (40). ) Or bottom recess
  • the fixing member for fixing the compression element (20) to the casing (10) is provided. It consists of a mounting plate (40) that is separate from the compression element (20) and the casing (10), and this mounting plate (40) is made of steel with a carbon content of 2.0% or less.
  • the mounting plate (40) is welded and fixed to the casing (10), while the mounting plate (40) is fixed to the front head of the compression element (20).
  • the compression element (20) is provided with a cylinder (21), an oscillating piston (25), and a bush (66), and a bush hole (65) is formed in the cylinder (21). ing.
  • the mounting plate (40) has the bush hole (65) 2090
  • a bottom recess (46) communicating with the bottom surface is formed. Therefore, the lubricating oil in the casing (10) can easily flow into the bush hole (65) through the bottom recess (46). As a result, high-viscosity lubricating oil can reliably flow into the bush hole (65).
  • the opening area of the oil return hole (47) formed in the mounting plate (40) is set to 50% or more of the bottom area of the mounting plate (40), the lubricating oil on the mounting plate (40) is Can be easily dropped. Therefore, high-viscosity lubricating oil can be reliably returned to the oil reservoir.
  • stator core (34) of the compressor motor (30) that drives the compression element (20) is welded to the casing (10), the casing (10) expands and deforms due to an increase in internal pressure. Therefore, the stator core (34) can be prevented from being displaced, and the steel stator core (34) can be securely welded to the casing (10). The air gap with (33) can be prevented from becoming worse, and the stator core (34) can be prevented from contacting the rotor (33), and the reliability of the compressor (1) can be improved.
  • the mounting plate (40) and the stator core (34) are welded through the welding holes (28, 38), they can be easily and reliably welded.
  • a core cut portion (83) was formed in the stator core (34), and the area of the core cut portion (83) was set to 5% or more of the bottom area inside the casing (10).
  • the lubricating oil in the parentheses can be easily returned to the oil reservoir through the core cut portion (83) of the stator core (34), and the high-viscosity lubricating oil can be reliably returned to the oil reservoir.
  • the core cut portion (83) of the stator core (34) is formed adjacent to the portion where the stator core (34) is in contact with the casing (10), a portion to be welded to the casing (10) is secured.
  • the lubricating oil adhering to the inner wall of the casing (10) can be reliably returned to the oil reservoir.
  • the refrigerant discharged from the compression element (20) fills the inside of the casing (10). Even if the casing (10) expands and deforms due to the inside of the casing (10) being filled with the pressurized and discharged refrigerant due to the high-pressure dome type that is filled, welding will not occur. Welding failure and displacement of the stator core (34) can be prevented.
  • the working fluid is configured to be compressed to the critical pressure or more, the high pressure becomes very high in the hermetic compressor (1).
  • the mounting plate (40) that fixes the compression element (20) to the casing (10) is made of steel with a carbon content of 2.0% or less, the inside of the casing (10) is Even when the steel is expanded and deformed due to a very high pressure, it is possible to prevent welding defects such as welding loss.
  • the stator core (34) is welded, even if the inside of the casing (10) expands and deforms due to a very high pressure, the displacement of the stator core (34) can be prevented.
  • the cylinder (21) is fixed to the casing (10) via the mounting plate (40) separate from the cylinder (21).
  • the fixing member has such a configuration. It is not limited. In short, it is only necessary that the compression element (20) is made of steel having a carbon content of 2.0% or less and is fixed by the fixed member (40) welded to the casing (10).
  • the mounting plate (40) is not limited to the configuration fixed and fixed to the front head (23).
  • the mounting plate (40) is fixed to the cylinder body (22) or the rear head (24). Is also good.
  • the compression element (20) is not limited to a configuration in which the rotor (60) and the blade (61) of the swing (25) are integrally formed. Further, in this case, the configuration may be such that the bottom concave portion (46) of the mounting plate (40) is omitted.
  • the oil return hole (47) of the mounting plate (40) may be omitted.
  • the working fluid that has a very high pressure is not used
  • the configuration in which the stator core (34) of the compressor motor (30) is welded to the casing (10) or the configuration in which the compression element (20) is fixed via the mounting plate (40) may be omitted.
  • the mounting plate (40) and the stator core (34) are not limited to welding through the welding holes (28, 38).
  • the cutout area of the core cut portion (83) of the stator core (34) may be reduced.
  • the hermetic compressor according to the present invention is useful for compressing a fluid having a very high pressure, and particularly suitable for use in an air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

明 細 書 密閉型圧縮機 技術分野
本願発明は、 密閉型圧縮機に関し、 特に、 圧縮要素やその駆動モータのケー シング内への固定に対する信頼性を向上させる対策に係るものである。 背景技術
従来より、例えば、特開平 6— 1 5 9 2 7 4号公報に開示されているように、 圧縮要素と駆動モータとを溶接構造のケーシングに収納して密閉した密閉型圧縮 機が知られている。 この密閉型圧縮機は、 作動流体を圧縮する際に作動流体が漏 洩せず、 水分の浸入等のおそれもないことから高い信頼性を有し、 例えば冷凍装 置の冷媒回路に設けられて空調機等に用いられている。
上記密閉型圧縮機の圧縮要素は、 駆動モータによって駆動されることにより 作動流体を圧縮する構造であり、 例えば、 シリンダと回転ピス トンとを備えてい る。 一解決課題—
しかしながら、 上記圧縮要素のシリンダは一般に銹物で成形されているため に、 ケーシングと圧縮要素との接合強度が不足するという問題点があった。 つま り、 铸鉄は延性が少なく且つもろいという性質を有している。 さらに、 鑤造時の 残留応力と溶接による残留応力とが相まつて割れが発生し易い等の理由により、 铸物の溶接では溶接不良となりやすい。
また、 駆動モータは一般に焼き嵌めによりケーシング内に固定されているた めに、 ケーシングと駆動モータとの接合強度が不足するという問題点があった。 つまり、 内部圧力によってケーシングが膨張変形すると駆動モータとの締め代が 少なくなることにより接合強度が不足することがあった。
特に、 作動流体として例えば二酸化炭素等のような高圧が非常に高い流体を 使用する場合には、 内圧によるケーシングの膨張変形が大きくなるために圧縮要 素の溶接が外れたり、 駆動モータが位置ずれしたりすることがあり、 収納部品の 固定に対する信頼性が低下するという問題が生ずる。
そこで、 本願発明は、 斯かる点に鑑みてなされたものであり、 その目的とす るところは、 密閉型圧縮機において収納部品の固定に対する信頼性を向上させる fcる。 発明の開示
上記の目的を達成するため、 本願発明は、 炭素の含有率が 2 . 0 %以下の鋼 からなる固定部材 (40) で圧縮要素 (20) をケーシング (10) に固定するか、 又は駆動モータ (30) の固定子コア (34) をケーシング (10) に溶接するよう にしたものである。
具体的に、 第 1の発明は、 作動流体を圧縮する圧縮要素 (20) がケーシン グ (10) 内に収納された密閉型圧縮機を前提として、 上記圧縮要素 (20) は、 炭素の含有率が 2 . 0 %以下の鋼からなり且つケーシング (10) に溶接された 固定部材 (40) に固定されている。
また、 第 2の発明は、 第 1の発明において、 固定部材 (40) は、 圧縮要素
(20) 及びケーシング (10) と別体により構成されている。
また、 第 3の発明は、 第 2の発明において、 圧縮要素 (20) は、 本体部 (22) と、 圧縮室 (26) の上面を形成する蓋部 (23) と、 圧縮室 (26) の下面を形成 する底部 (24) とにより構成され、 固定部材 (40) は、 ケーシング (10) に溶 接される一方、該固定部材(40) に上記圧縮要素(20) の本体部 (22)、蓋部 (23) 及び底部 (24) の少なくともいずれか 1つが締結固定されている。
また、 第 4の発明は、 第 2の発明において、 圧縮要素 (20) は、 シリンダ
(21 ) と、 該シリンダ (21 ) 内で揺動する揺動ピス トン (25) と、 該摇動ビス トン (25) を支持するブッシュ (66) とを備え、 上記シリンダ (21 ) には、 ブ ッシュ (66) を嵌め込むためのブッシュ孔 (65) が形成され、 固定部材 (40) は、 上記ブッシュ孔 (65) に連通し且つケーシング (10) 内の潤滑油を上記ブ ッシュ孔 (65) に流入させるブッシュ貫通孔 (46) が形成されている。 また、 第 5の発明は、 第 3の発明において、 固定部材 (40) は、 圧縮要素 (20) が嵌挿されるように円環状に形成され、 上記固定部材 (40) には、 潤滑 油を流れ落とすための油戻孔 (47) が形成されていて、 該油戻孔 (47) の開口 面積は、 固定部材 (40) の底面積に対して 5 0 %以上とされている。
また、 第 6の発明は、 第 1又は第 2の発明において、 ケーシング (10) に は、 固定部材 (40) に対応して溶接孔 (28) が設けられており、 固定部材 (40) は、 上記溶接孔 (28) を介してケーシング (10) に溶接されている。
また、 第 7の発明は、 第 1又は第 2の発明において、 ケーシング (10) 内 には、 固定子コア (34) に卷線が装着された固定子 (32) と、 該固定子 (32) 内に回転可能に配置され、 且つ圧縮要素 (20) に駆動連結された回転子 (33) とを備えていて該圧縮要素 (20) を駆動させる駆動モータ (30) が収納され、 上記駆動モータ (30) の固定子コア (34) は、 ケーシング (10) に溶接されて いる。
また、 第 8の発明は、 固定子コア (34) に卷線が装着された固定子 (32) と、 該固定子 (32) 内に回転可能に配置され、 且つ圧縮要素 (20) に駆動連結 された回転子 (33) とを備えていて該圧縮要素 (20) を駆動させる駆動モータ (30) がケーシング (10) 内に収納された密閉型圧縮機を前提として、 上記駆 動モータ (30) の固定子コア (34) は、 ケーシング (10) に溶接されている。
また、 第 9の発明は、 第 8の発明において、 グーシンク' ( 10) には、 固定 子コア (34) に対応して溶接孔 (38) が設けられおり、 固定子コア (34) は、 上記溶接孔 (38) を介してケーシング (10) に溶接されている。
また、 第 1 0の発明は、 第 8の発明において、 固定子コア (34) には、 ケ 一シング (10) の内側における底面積に対して 5 %以上の面積を有する油戻し 部 (83) が形成されている。
また、 第 1 1の発明は、 第 1 0の発明において、 固定子コア (34) の油戻 し部 (83) は、 該固定子コア (34) 外周面がケーシング (10) に接する部分に 隣接して形成されている。
また、 第 1 2の発明は、 第 1又は第 8の発明において、 圧縮要素 (20) か ら吐出された作動流体がケーシング (10) の内部に充満する高圧ドーム型に構 成されている。
また、 第 1 3の発明は、 第 1又は第 8の発明において、 作動流体をその臨界 圧力以上に圧縮して冷凍サイクルを行う冷媒回路に接続されている。 一作用一
すなわち、 第 1の発明では、 作動流体を圧縮する圧縮要素 (20) は、 炭素 の含有率が 2 . 0 %以下の鋼からなり且つケーシング (10) に溶接された固定 部材 (40) に固定されている。 したがって、 ケーシング (10) の内部圧力が上 昇することによってケーシング ( 10) が変形した場合において、 例えば錡物の 溶接のような溶接部での溶接の外れ等の溶接不良を防止することができる。 この 結果、 圧縮要素 (20) を固定する溶接に対する信頼性を向上させることができ る。
また、 第 2の発明では、 第 1の発明において、 固定部材 (40) を圧縮要素 (20) 及びケーシング (10) とは別体により構成し、 この固定部材 (40) を介 して圧縮要素 (20) とケーシング (10) とを固定するようにしたために、 従来 同様に圧縮要素 (20) の溶接個所を例えば鑤物により構成した場合においても、 圧縮要素 (20) を固定する溶接に対する信頼性を向上させることができる。
また、 第 3の発明では、 第 2の発明において、 固定部材 (40) をケーシン グ (10) に溶接固定する一方、 この固定部材 (40) に圧縮要素 (20) の本体部 (22)、 蓋部 (23) 及び底部 (24) の少なくともいずれか 1つを締結固定するよ うにしたために、 従来同様に圧縮要素 (20) の溶接個所を例えば铸物により構 成した場合においても、 ケーシング (10) への溶接固定の信頼性を向上させる ことができると共に、 圧縮要素 (20) を固定部材 (40) に確実に固定すること ができる。
また、 第 4の発明では、 第 2の発明において、 圧縮要素 (20) には、 シリ ンダ (21 ) と揺動ピス トン (25) とブッシュ (66) とが設けられて、 このシリ ンダ (21 ) にはブッシュ孔 (65) が形成されている。 そして、 固定部材 (40) には、 上記プッシュ孔 (65) に連通するブッシュ貫通孔 (46) が形成されてい る。 したがって、 ケーシング (10) 内の潤滑油をブッシュ貫通孔 (46) を通し て容易にブッシュ孔 (65) に流入させることができる。 この結果、 例えば高粘 度の潤滑油を使用した場合においても潤滑油をプッシュ孔 (65) に確実に流入 させることができる。
また、 第 5の発明では、 第 3の発明において、 円環状の固定部材 (40) に 圧縮要素 (20) を嵌挿されると共に、 固定部材 (40) には油戻孔 (47) が形成 されている。 そして、 この油戻孔 (47) の開口面積を固定部材 (40) の底面積 に対して 5 0 %以上としたために、 固定部材 (40) 上の潤滑油を容易に落とす ことができる。 したがって、 例えば高粘度の潤滑油を使用した場合においても、 グーシング ( 10) 内の潤滑油を確実に油貯留部に戻すことができる。
また、 第 6の発明では、 第 1又は第 2の発明において、 固定部材 (40) に 対応して設けられた溶接孔 (28) を介して固定部材 (40) をケーシング (10) に溶接するようにしたために、 圧縮要素 (20) を簡易且つ確実に固定すること ができる。
また、第 7又は 8の発明では、圧縮要素(20) を駆動させる駆動モータ (30) の固定子コア (34) をケーシング (10) に溶接するようにしたために、 内部圧 力の上昇によってケーシング (10) が膨張変形しても固定子コア (34) が位置 ずれするのを防止することができる。 また、 固定子コア (34) は一般に鋼製で あるために、 固定子コア (34) を確実にケーシング (10) に溶接することがで きる。 この結果、 固定子コア (34) と回転子 (33) とのエアギャップが悪くな つたり、 固定子コア (34) が回転子 (33) に接触したりするのを防止すること ができ、 圧縮機 (1 ) の信頼性を向上させることができる。
また、 第 9の発明では、 第 8の発明において、 固定子コア (34) に対応し て設けられた溶接孔 (38) を介して固定子コア (34) をケーシング (10) に溶 接するようにしたために、 駆動モータ (30) を簡易且つ確実に固定することが できる。
また、 第 1 0の発明では、 第 8の発明において、 固定子コア (34) に油戻 し部 (83) を形成し、 この油戻し部 (83) の面積をケーシング (10) の内側に おける底面積に対して 5 %以上としたために、 ケーシング (10) 内の潤滑油を 固定子コア (34) の油戻し部 (83) を通して容易に油貯留部に戻すことができ る。 また、 高粘度の潤滑油を使用した場合においても、 潤滑油を確実に油貯留部 に戻すことができる。
また、 第 1 1の発明では、 第 1 0の発明において、 固定子コア (34) の油 戻し部 (83) を、 該固定子コア (34) 外周面がケーシング (10) に接する部分 に隣接して形成するようにしたために、 ケーシング (10) に溶接する部分を確 保することができる一方で、 ケーシング (10) の内壁に付着した潤滑油を確実 に油貯留部に戻すことができる。
また、 第 1 2の発明では、 第 1又は第 8の発明において、 圧縮要素 (20) から吐出された作動流体がケーシング (10) の内部に充満する高圧ドーム型に 構成されている。 したがって、 昇圧されて吐出された流体がケーシング (10) の内部に充満されるために、 ケーシング ( 10) 内が高圧になって該ケーシング (10) の変形が大きくなる。 しかし、 炭素の含有率が 2 . 0 %以下の鋼からな り且つケーシング (10) に溶接された固定部材 (40) で圧縮要素 (20) が固定 されているために、 このように変形が大きな場合においても、 例えば錶物を溶接 する場合のような溶接外れ等の溶接不良を防止することができる。
また、 第 1 3の発明では、 第 1又は第 8の発明において、 作動流体をその臨 界圧力以上に圧縮するように構成されているために、 密閉型圧縮機 (1 ) 内では 高圧が非常に高くなる。 しかし、 炭素の含有率が 2 . 0 %以下の鋼からなり且つ ケーシング (10) に溶接された固定部材 (40) で圧縮要素 (20) が固定されて いるために、 グーシンク" ( 10) が膨張変形した場合においても、 例えば铸物を 溶接する場合のような溶接外れ等の溶接不良を防止することができる。 一発明の効果一
以上説明したように、 第 1の発明によれば、 ケーシング (10) の内部圧力 が上昇することによってケーシング (10) が変形した場合において、 例えば鎳 物の溶接のような溶接部での溶接の外れ等の溶接不良を防止することができる。 この結果、 圧縮要素 (20) を固定する溶接に対する信頼性を向上させることが できる。
また、 第 2の発明によれば、 従来同様に圧縮要素 (20) の溶接個所を例え ば铸物により構成した場合においても、 圧縮要素 (20) を固定する溶接に対す る信頼性を向上させることができる。
また、 第 3の発明によれば、 従来同様に圧縮要素 (20) の溶接個所を例え ば铸物により構成した場合においても、 ケーシング (10) への溶接固定の信頼 性を向上させることができると共に、 圧縮要素 (20) を固定部材 (40) に確実 に固定することができる。
また、 第 4の発明によれば、 ケーシング (10) 内の潤滑油をプッシュ貫通 孔 (46) を通して容易にブッシュ孔 (65) に流入させることができる。 この結 果、 例えば高粘度の潤滑油を使用した場合においても潤滑油をブッシュ孔 (65) に確実に流入させることができる。
また、 第 5の発明によれば、 例えば高粘度の潤滑油を使用した場合において も、 ケーシング (10) 内の潤滑油を確実に油貯留部に戻すことができる。
また、 第 6の発明によれば、 固定部材 (40) に対応して設けられた溶接孔 (28) を介して固定部材 (40) をケーシング (10) に溶接するようにしたため に、 圧縮要素 (20) を簡易且つ確実に溶接固定することができる。
また、 第 7及び第 8の発明によれば、 内部圧力の上昇によってケーシング ( 10) が膨張変形しても固定子コア (34) が位置ずれするのを防止することが できると共に、 固定子コア (34) を確実にケーシング (10) に固定することが できる。 この結果、 固定子コア (34) と回転子 (33) とのエアギャップが悪く なったり、 固定子コア (34) が回転子 (33) に接触したりするのを防止するこ とができ、 圧縮機 (1 ) の信頼性を向上させることができる。
また、 第 9の発明によれば、 固定子コア (34) に対応して設けられた溶接 孔 (38) を介して固定子コア (34) をケーシング (10) に溶接するようにした ために、 駆動モータ (30) を簡易且つ確実に溶接固定することができる。
また、 第 1 0の発明によれば、 ケーシング (10) 内の潤滑油を固定子コア (34) の油戻し部 (83) を通して容易に油貯留部に戻すことができる。 また、 高粘度の潤滑油を使用した場合においても、 潤滑油を確実に油貯留部に戻すこと ができる。
また、 第 1 1の発明によれば、 ケーシング (10) に溶接する部分を確保す ることができる一方で、 ケーシング (10) の内壁に付着した潤滑油を確実に油 貯留部に戻すことができる。
また、第 1 2の発明によれば、昇圧されて吐出された流体がケーシング(10) の内部に充満されてケーシング (10) が膨張変形した場合においても、 例えば 铸物の溶接のような溶接部での溶接の外れ等の溶接不良を防止することができ る。
また、 第 1 3の発明によれば、 作動流体をその臨界圧力以上に圧縮する場合 においても、 例えば錶物の溶接のような溶接部での溶接の外れ等の溶接不良を防 止することができる。 図面の簡単な説明
図 1は、 実施形態に係る密閉型圧縮機の全体構成を示す断面図である。
図 2は、 シリンダ本体及びスイングの構成を示す断面図である。
図 3は、 フロントへッド及びマウンティングプレートの構成を示しており、 図 3 Aは平面図であり、 図 3 Bは図 3 Aの ΠΙ— III線における断面図である。
図 4は、 マウンティングプレートの構成を示しており、 図 4 Aは平面図であ り、 図 4 Bは図 4 Aの IV— IV線における断面図である。
図 5は、 図 3 Aの V— V線における断面図である。
図 6は、 ステータコアの平面図である。 発明を実施するための最良の形態
以下、 本発明の実施形態を図面に基づいて詳細に説明する。
本実施形態の密閉型圧縮機 (1 ) は、 揺動ピス トン型のロータリ圧縮機に関 するものである。 図 1に示すように、 この密閉型圧縮機(1 ) は、ケーシング(10) 内に、 作動流体としての冷媒を圧縮するための圧縮要素 (20) と、 該圧縮要素
(20) の上部に配置された駆動モータである圧縮機モータ (30) とを収納し、 全密閉型に形成されていわゆる高圧ドーム型に構成されている。 そして、 冷媒と して例えば炭酸ガス (c o 2 ) が使用され、 空調機等の冷凍サイクルを行う冷媒 回路 (図示省略) に接続されて、 冷媒をその臨界圧力以上に圧縮する圧縮機 (1 ) に構成されている。 この冷凍サイクルの高圧は、 例えば 1 3 . 7 M P aに設定さ れている。
上記ケ一シング ( 10) は、 円筒状の胴部 (11 ) と、 該胴部 (11 ) の上下に それぞれ溶接固定された椀状の鏡板 (12, 13) とによって構成されている。 上 記ケーシング (10) の胴部 (11 ) には、 該胴部 (11 ) を貫通する吸入管 (15) と、 該吸入管 (15) の接続部よりも上部において胴部 (11 ) を貫通し、 ケーシ ング (10) の内外を連通する吐出管 (16) とが設けられている。 一方、 上部の 鏡板 (12) には、 図示しない外部電源に接続されて圧縮機モータ (30) に電力 を供給するターミナル (17) が設けられている。 また、 ケーシング (10) の下 部には所定量の潤滑油が貯留された油貯留部が形成されている (図示せず)。 本 実施形態に係る密閉型圧縮機 (1 ) では、 作動流体として炭酸ガスのように高圧 が非常に高くなる冷媒を圧縮するために、 軸受負荷を考慮して摺動部の油膜を確 保すべく高粘度の潤滑油が使用されている。 また、 下部の鏡板 (13) の下端に は、 この圧縮機 (1 ) を支えるためのブラケット (18) が設けられている。
上記圧縮要素 (20) は、 シリンダ (21 ) と、 該シリンダ (21 ) 内で揺動す る揺動ピス トンとしてのスイング (25) とを備え、 ケーシング (10) 内の下部 側に配置されている。 シリンダ (21 ) は、 本体部としてのシリンダ本体 (22) と、 蓋部としてのフロントヘッド (23) と、 底部としてのリアヘッド (24) と により構成されている。 シリンダ本体 (22) は円筒状に形成され、 ケーシング (10) の胴部 (11 ) と同心に配置されている。 フロントヘッド (23) がシリン ダ本体 (22) の上端に、 リアヘッド (24) がシリンダ本体 (22) の下端にそれ ぞれ配置されており、 このシリンダ本体 (22)、 フロントヘッド (23) 及びリア ヘッ ド (24) は、 ボルト (29) で締結されて一体に組み立てられている。 この シリンダ本体 (22)、 フロントヘッ ド (23) 及びリアヘッド (24) は铸物製とさ れている。
上記シリンダ (21 ) は、 固定部材としてのマウンティングプレート (40) を介してケーシング (10) の胴部 (11 ) に固定されている。 具体的に、 マウン ティングプレート (40) は、 ボルト (42) によってフロントヘッド (23) に締 結固定されると共に、 溶接によってケーシング (10) の胴部 (11 ) に固定され ている。 この溶接では、 ケーシング (10) の胴部 (") を貫通する溶接孔 (28) を通してケーシング (10) の外部から溶融金属を流入させて融合部を形成する ことにより、 マウンティングプレート (40) とケーシング (10) の胴部 (11 ) とを溶接固定している。 このマウンティングプレート (40) の詳細については 後述する。
上記シリンダ (21 ) には、 シリンダ本体 (22) の内周面と、 フロントへッ ド (23) の下端面と、 リアヘッド (24) の上端面と、 スイング (25) の外周面 とにより、 圧縮室 (26) が区画形成されている。
フロン トへッド (23) 及びリアヘッド (24) には、 中央を上下に貫通する 軸孔 (23a, 24a) が形成されており、 この軸孔 (23a, 24a) に上記駆動軸 (31 ) が回転自在に嵌め込まれている。 つまり、 上記駆動軸 (31 ) は、 ケーシング (10) 内の中心を上下方向に延びるように配置されており、 上記シリンダ (21 ) のフ ロントヘッド (23)、 圧縮室 (26) 及ぴリアヘッド (24) を上下方向に貫通して いる。
一方、 圧縮機モータ (30) は、 固定子であるステータ (32) と、 回転子で あるロータ (33) とを備え、 上記圧縮要素 (20) の上方に配置されている。
上記ステータ (32) は、 円筒状の固定子コアであるステータコア (34) と、 該ステータコア (34) に装着される 3相の卷線とを備えている。 各卷線の軸線 方向端部が、ステータコア (34) の軸心方向端部から突出してコイルエンド (36) に形成されている。 そして、 ステータ (32) は、 各卷線に通電することによつ て回転磁界を発生させるように構成されている。 ステータコア (34) の詳細に ついては後述する。 上記ロータ (33) は、 内部に永久磁石 (図示省略) が嵌め 込まれており、 ステータ (32) の内側で回転可能に構成されると共に、 上記駆 動軸 (31 ) が嵌め込まれて圧縮要素 (20) と駆動連結されている。
ステータコア (34) は、 ケーシング (10) の胴部 (11 ) に焼き嵌めされる と共に該胴部 (11 ) に溶接されて固定されている。 この溶接では、 ケーシング ( 10) の胴部 (11 ) を貫通する溶接孔 (38) を通してケーシング (10) の外部 から溶融金属を流入させて融合部を形成することにより、 ステータコア (34) とケーシング (10) の胴部 (11 ) とを溶接固定している。 090
1 1
そして、 ターミナル (19) を介して圧縮機モータ (30) に通電することに よりロータ (33) が回転することによって駆動軸 (31 ) が回転し、圧縮要素 (20) に回転駆動力を付与して該圧縮要素 (20) を駆動するようになっている。
なお、 上記駆動軸 (31 ) には、 図示しないが、 遠心ポンプと、 給油路とが 設けられている。遠心ポンプは駆動軸 (31 ) の下端部に設けられ、該駆動軸(31 ) の回転に伴ってケーシング (10) 内の下部に貯留する潤滑油を汲み上げるよう に構成されている。 そして、 給油路は、 駆動軸 (31 ) 内を上下方向に延びると ともに、 遠心ポンプが汲み上げた潤滑油を各摺動部分へ供給するように、 各部に 設けられた給油口と連通している。
上記密閉型圧縮機 (1 ) には、 吸入管 (15) を介してアキュームレータ (50) が接続されている。 このアキュームレータ (50) は、 胴部材 (51 ) と、 この胴 部材 (51 ) の上端又は下端に接合された椀状の上部材 (52) 及び下部材 (53) とによって上下方向に長い密閉容器に構成されている。 アキュムレータ (50) は、 下部材 (53) の下端に上記吸入管 (15) 1 上部材 (52) の上端に戻し管 (54) の下端がそれぞれ揷入されている。 戻し管 (54) は、 冷媒回路を循環す る冷媒をアキュムレータ (50) に導くためのものであり、 その上端が冷媒回路 を構成する図外の配管に接続可能に構成されている。 上記吸入管 (15) は、 胴 部材 (51 ) の上端高さまで密閉容器内を伸びるように配置されている。 そして、 アキュームレータ (50) は、 戻し管 (54) を通して流入した冷媒から液冷媒を 分離するように構成されている。
図 2に示すように、 上記シリンダ本体 (22) は、 その内側にスイング (25) が配置される一方、 吸入通路 (64) とブッシュ孔 (65) とが形成されている。
上記スイング (25) は、 円筒状のロータ部 (60) と直方体状のブレード部 (61 ) とが一体に形成されて構成されており、 ロータ部 (60) が圧縮室 (26) に位置するように配置されている。 上記ロータ部 (60) は、 駆動軸 (31 ) に一 体に形成される偏心部 (62) が嵌入され、 該偏心部 (62) に回動自在に支持さ れると共に、 外周面の一部がシリンダ本体 (22) の内周面と潤滑油の油膜を介 して接するように配置されている。 そして、 このスイング (25) により、 圧縮 室 (26) が低圧室 (26a) と高圧室 (26b) とに区画されている。 上記吸入通路 (64) は、 シリンダ本体 (22) の外周面と内周面とを半径方 向に貫通するように形成されている。 そして、 上記吸入通路 (64) は、 内側端 が圧縮室 (26) に開口し、 上記低圧室 (26a) に連通可能に構成されている。 上 記吸入通路 (64) には、 上記ケーシング (10) の胴部 (11 ) に嵌入された吸入 管 (15) が嵌め込まれている。
上記プッシュ孔 (65) は、 吸入通路 (64) の付近においてシリンダ本体 (22) の内周面に M設されると共に、 シリンダ本体 (22) の上端面から下端面に亘っ て形成されている。 上記ブッシュ孔 (65) には、 断面が半月状の一対のブッシ ュ (66) が揺動自在に配置されている。 このブッシュ (66) は、 プッシュ孔 (65) におけるシリンダ本体 (22) の内周面寄りに配置されており、 ブッシュ孔 (65) におけるブッシュ (66) の外周側には背面空間 (67) が形成されている。 上記 両ブッシュ (66) 間にはスイング (25) のブレード部 (61 ) が揷入され、 この ブレード部 (61 ) は、 両ブッシュ (66) によって進退移動自在に支持されてい る。 そして、 駆動軸 (31 ) が回転すると、 揺動する両ブッシュ (66) を揺動中 心としてスィング (25) が揺動するようになっている。
図 3及び図 4に示すように、 上記マウンティングプレート (40) は、 円環 状の底面部 (44) と、 該底面部 (44) の周縁に立設された側面部 (45) とを備 え、 縦断面コ字状に形成されている。 そして、 底面部 (44) 内側の開口を塞ぐ ように圧縮要素 (20) のフロントヘッ ド (23) が嵌挿されている。 このフロン トヘッド (23) は、 その下端面がマウンティングプレート (40) の底面部 (44) における下端面と面一の状態に配置されている。
上記マウンティングプレート (40) は、 炭素の含有率が質量百分率で 2 . 0 %以下の鋼からなり、 その側面部 (45) がケーシング (10) の胴部 (11 ) に 溶接された固定部材を構成している。 つまり、 圧縮要素 (20) は、 ケーシング ( 10) に対し、 炭素の含有率が質量百分率で 2 . 0 %以下の鋼からなり且つケ 一シング (10) に溶接された固定部材であるマウンティングプレート (40) に 固定されている。
上記マウンティングプレート (40) の底面部 (44) の内側端面には、 半径 方向外側に凹設された底面凹部 (46) が形成されている。 この底面凹部 (46) は、 シリンダ本体 (22) のブッシュ孔 (65) の真上に相当する位置において、 底面部 (44) の上面から下面に亘つて形成されており、 ケーシング (10) 内の 空間とシリンダ本体 (22) におけるブッシュ孔 (65) の背面空間 (67) とを連 通させるように構成されている。 つまり、 この底面凹部 (46) は、 グーシンク" ( 10) 内の潤滑油をブッシュ孔 (65) に流入させるためのものであり、 ブッシ ュ孔 (65) に連通するブッシュ貫通孔を構成している。
また、 マウンティングプレート (40) の底面部 (44) には、 油戻し用の油 戻孔 (47) と、 フロントヘッド (23) に締結されるボルト (42) を揷入するた めの貫通孔 (41 ) とが形成されている。 貫通孔 (41 ) は 3個所形成されている。 油戻孔 (47) は、 周方向に略等間隔に配置されて上記底面部 (44) を上部に貫 通する平面視が長円形状の複数の長孔 (47a) によって構成されている。 そして、 この油戻孔 (47) は、 マウンティングプレート (40) の底面部 (44) の底面積 に対して 5 0 %以上の開口面積に設定されている。 つまり、 長孔 (47a) の開口 面積を合計した面積が、 底面部 (44) の底面積に対して 5 0 %以上の面積に設 定されている。
図 3に示すように、 フロントヘッド (23) は、 複数の締結孔 (70) と切欠 凹部 (71 ) とが形成されている。 締結孔 (70) は、 マウンティングプレート (40) と締結固定するためのポルト (42) を螺合するためのものであり、 マウンティ ングプレート (40) の貫通孔 (41 ) に対応する位置に形成されている。 切欠凹 部 (71 ) は、 フロントヘッド (23) の上面において平面視がほぼ長円形状に形 成されている。
また、 フロントヘッド (23) には、 図 5に示すように、 圧縮室 (26) 内の 高圧冷媒を吐出させるための吐出孔 (72) と、 ポルト (73) 締結用の締結孔 (74) とが上記切欠回部 (71 ) に連続して、 その先端側又は基端側にそれぞれ形成さ れている。 吐出孔 (72) は、 シリンダ本体 (22) の内周面に隣接し且つプッシ ュ孔 (65) 付近に対応する位置において、 フロントヘッド (23) の下端面から 切欠四部 (71 ) に亘つて貫通するように形成されており、 ケーシング (10) の 内部と連通可能に構成されている。 また、 吐出孔 (72) は、 図 2に示すように、 圧縮室 (26) の高圧室 (26b) に連通可能に構成されている。 また、 フロントヘッ ド (23) には、 図 3 A及び図 5に示すように、 上記締 結孔 (74) に螺合されたポルト (73) によって、 吐出弁 (75) と押え板 (76) とが締結固定されている。 吐出弁 (75) は、 吐出孔 (72) の上端を塞ぐ板状の 開閉弁に形成され、 圧縮室 (26) 内の冷媒圧力が上昇してケーシング (10) 内 の圧力と同程度になると撓んで吐出孔 (72) を開口させ、 圧縮室 (26) 内とケ 一シング (10) 内とを連通させるように構成されている。 上記押え板 (76) は、 吐出弁 (75) の上側に配置され、 該吐出弁 (75) が過剰に橈むことのないよう に、 吐出弁 (75) の撓み量を規制するためのものである。 尚、 図 3 Bでは、 吐 出弁 (75)、 押え板 (76) 及びボルト (73) を省略している。
図 6に示すように、 上記ステータコア (34) は、 円筒状に構成されると共 に、 その内周面に駆動軸 (31 ) の軸線方向に延びる複数の凹溝からなる卷線揷 入部 (81 ) が周方向に等間隔をあけて形成されている。 この卷線揷入部 (81 ) は、 例えば 2 4個形成され、 この卷線揷入部 (81 ) に上記 3相の卷線のうちの 各相の卷線が嵌挿されている。 また、 上記ステータコア (34) の外周面には、 油戻し部であるコアカット部 (83) が形成されている。 コアカット部 (83) は、 周方向に等間隔をあけて配置され且つ軸線方向に延びる複数の外面凹部 (83a) により構成されている。 この外面凹部 (83a) は、 9 0 ° 間隔で 4箇所において ステータコア (34) の上端面から下端面に亘つて形成されている。 コアカッ ト 部 (83) は、 ケーシング (10) 内での冷媒及び潤滑油の流通路として設けられ るものである。 そして、 コアカット部 (83) の面積は、 ケーシング (10) 内面 の底面積に対して 5 %以上の面積に設定されている。 例えば、 ケーシング (10) の内面の底面積が 9 8 5 2 mm2であり、 コアカツト部 (83) の面積が 9 5 1 mm2 となっている。
また、 ステータコア (34) の外周面は、 コアカット部 (83) 以外の部分に おいてケーシング (10) の胴部 (11 ) の内周面に接しており、 この部分が胴部
( 11 ) とスポッ ト溶接により固定されている。 つまり、 コアカット部 (83) は、 ケーシング (10) に接する部分に隣接して形成されている。 続いて、 本実施形態に係る密閉型圧縮機 (1 ) の運転動作について説明する。 ターミナル (19) を通じて圧縮機モータ (30) に電力を供給するとロータ (33) が回転し、 該ロータ (33) の回転が駆動軸 (31 ) を介して圧縮要素 (20) のスイング (25) に伝達される。 これによつて、 圧縮要素 (20) が所定の圧縮 動作を行う。
具体的に、 図 2を参照しながら、 圧縮要素 (20) の圧縮動作について説明 する。 まず、 シリンダ本体 (22) に形成された吸入通路 (64) の内側開口端の すぐ右側においてシリンダ本体 (22) とスイング (25) とが接触する状態から 説明すると、 この状態で圧縮室 (26) の低圧室 (26a) の容積が最小となる。 圧 縮機モータ (30) に駆動されてスイング (25) が右回りに回転すると、 このス イング (25) の回転に従って低圧室 (26a) の容積が拡大し、 該低圧室 (26a) に低圧の冷媒が吸入される。 この低圧冷媒は、 冷媒回路からアキュームレータ
(50) に流入して液冷媒が分離された後に吸入管 (15) を通して流入される。 この冷媒の吸入は、 スイング (25) が 1回公転して再び吸入通路 (64) の内側 開口端のすぐ右側でシリンダ本体 (22) とスイング (25) とが接触する状態と なるまで続く。 このとき、 圧縮室 (26) ではシリンダ (21 ) の内面及びスイン グ (25) が潤滑油の油膜で覆われた状態となっており、 冷媒に潤滑油が含まれ た状態となっている。
このようにして冷媒の吸入を終えた部分は、 今度は冷媒が圧縮される高圧室
(26b) になっている。 そして、 この時点で高圧室 (26b) の容積は最大であり、 この高圧室 (25b) には低圧の冷媒が満たされている。 このとき、 高圧室 (26b) は、 室内が低圧であるために、 フロントヘッド (23) の吐出孔 (72) が吐出弁
(75) で閉鎖されて密閉空間となっている。 この状態からスイング (25) が回 転するに従って高圧室 (26b) の容積が減少し、 高圧室 (26b) 内の冷媒が圧縮 される。 そして、 高圧室 (26b) の圧力が所定値となると、 高圧室 (26b) の高 圧の冷媒に押されて吐出弁 (75) がたわみ、 吐出孔 (72) が開口状態となって、 高圧の冷媒が高圧室 (26b) からケーシング (10) 内に吐出される。 このとき、 冷媒はその臨界圧力以上に圧縮されており、 高圧の冷媒と一緒に潤滑油がケーシ ング (10) 内に吐出される。
そして、 ケーシング (10) 内には高圧冷媒が充満された状態となっており、 この高圧冷媒が吐出管 (16) から吐出されて、 図外の冷媒回路を循環する。 一 方、 ケ一シング (10) 内の高圧冷媒に含まれている潤滑油は、 その一部がケー シング (10) の内壁に付着する。 そして、 この油がケーシング (10) の内壁を 伝って流れ落ち、 ステータコア (34) の外面凹部 (83a) とケーシング (10) と の間を流れた後、 マウンティングプレート (40) の油戻孔 (47) 又は底面凹部
(46) を通過する。 この油戻孔 (47) を通過した潤滑油は、 ケーシンク" ( 10) の下部に貯留される。 一方、 底面凹部 (46) を通過した潤滑油は、 シリ ンダ本 体 (22) のブッシュ孔 (65) における背面空間 (67) に流入する。 以上説明したように、 本実施形態に密閉型圧縮機 (1 ) によれば、 圧縮要素 (20) をケーシング (10) に固定する固定部材が圧縮要素 (20) 及びケーシン グ (10) とは別体のマウンティングプレート (40) により構成され、 このマウ ンティングプレート (40) が炭素の含有率が 2 . 0 %以下の鋼により構成され ている。 したがって、 ケーシング (10) の内部圧力が上昇することによってケ 一シング (10) が膨張変形した場合において、 溶接部での溶接の外れ等の溶接 不良を防止することができる。 この結果、 圧縮要素 (20) を固定する溶接に対 する信頼性を向上させることができる。 また、 このマウンティングプレート (40) を介して圧縮要素 (20) とケーシング (10) とを固定するようにしたために、 従来同様の铸物製のシリンダ (21 ) を固定する溶接に対する信頼性を向上させ ることができる。
また、 マウンティングプレート (40) をケーシング (10) に溶接固定する 一方、 このマウンティングプレート (40) を圧縮要素 (20) のフロン トヘッド
(23) に締結固定するようにしたために、 従来同様の鏡物製のシリンダ (21 ) において、 マウンティングプレート (40) のケーシング (10) への溶接固定の 信頼性を向上させることができると共に、 シリンダ (21 ) をマウンティングプ レート (40) に確実に固定することができる。
また、 圧縮要素 (20) には、 シリ ンダ (21 ) と揺動ピス トン (25) とブッ シュ (66) とが設けられて、 このシリンダ (21 ) にはブッシュ孔 (65) が形成 されている。 そして、 マウンティングプレート (40) には、 上記ブッシュ孔 (65) 2090
17
に連通する底面凹部 (46) が形成されている。 したがって、 ケーシング (10) 内の潤滑油を底面凹部 (46) を通して容易にブッシュ孔 (65) に流入させるこ とができる。 この結果、 高粘度の潤滑油をブッシュ孔 (65) に確実に流入させ ることができる。
また、 マウンティングプレート (40) に形成された油戻孔 (47) の開口面 積をマウンティングプレート (40) の底面積に対して 5 0 %以上としたために、 マウンティングプレート (40) 上の潤滑油を容易に落とすことができる。 した がって、 高粘度の潤滑油を確実に油貯留部に戻すことができる。
また、 圧縮要素 (20) を駆動させる圧縮機モータ (30) のステータコア (34) をケーシンク" ( 10) に溶接するようにしたために、 内部圧力の上昇によってケ 一シング (10) が膨張変形してもステータコア (34) が位置ずれするのを防止 することができる。 また、 鋼製のステータコア (34) を確実にケーシング (10) に溶接することができる。 この結果、 ステータコア (34) とロータ (33) との エアギャップが悪くなつたり、 ステータコア (34) がロータ (33) に接触した りするのを防止することができ、 圧縮機 (1 ) の信頼性を向上させることができ る。
また、マウンティングプレート(40)及びステータコア(34)を溶接孔(28, 38) を介して溶接するようにしたために、 これらを簡易且つ確実に溶接することがで きる。
また、 ステータコア (34) にコアカッ ト部 (83) を形成し、 このコアカツ ト部 (83) の面積をケーシング (10) の内側における底面積に対して 5 %以上 としたために、 ケーシンク" (10) 内の潤滑油をステータコア (34) のコアカツ ト部 (83) を通して容易に油貯留部に戻すことができる。 また、 高粘度の潤滑 油を確実に油貯留部に戻すことができる。
また、 ステータコア (34) のコアカット部 (83) を、 該ステータコア (34) がケーシング ( 10) に接する部分に隣接して形成するようにしたために、 ケー シング (10) に溶接する部分を確保することができる一方で、 ケーシング (10) の内壁に付着した潤滑油を確実に油貯留部に戻すことができる。
また、 圧縮要素 (20) から吐出された冷媒がケ一シング (10) の内部に充 満する高圧ドーム型に構成されているために、 昇圧されて吐出された冷媒がケ一 シング (10) の内部に充満されてケーシング (10) が膨張変形した場合におい ても、 溶接の外れ等の溶接不良や、 ステータコア (34) の位置ずれを防止する ことができる。
また、作動流体をその臨界圧力以上に圧縮するように構成されているために、 密閉型圧縮機 (1 ) 内では高圧が非常に高くなる。 しかし、 圧縮要素 (20) をケ 一シング (10) に固定するマウンティングプレート (40) カ 、 炭素の含有率が 2 . 0 %以下の鋼により構成されているために、 ケーシング (10) の内部が非 常に高圧となって膨張変形した場合においても、 溶接の外れ等の溶接不良を防止 することができる。 また、 ステータコア (34) を溶接しているために、 ケーシ ング (10) の内部が非常に高圧となって膨張変形した場合においても、 ステー タコア (34) の位置ずれを防止することができる。 一他の実施形態一
上記実施形態では、シリンダ(21 ) とは別体のマウンティングプレート (40) を介してシリンダ (21 ) をケーシング ( 10) に固定する構成としたが、 固定部 材の構成はこのような構成に限られるものではない。 要は圧縮要素 (20) が炭 素の含有率が 2 . 0 %以下の鋼からなり且つケーシング (10) に溶接された固 定部材 (40) で固定されていればよい。
また、 上記実施形態について、 マウンティングプレート (40) は、 フロン トヘッド (23) に締結固定する構成に限られるものではなく、 例えばシリンダ 本体 (22) 又はリアヘッド (24) に締結固定する構成であってもよい。
また、 上記実施形態について、 圧縮要素 (20) は、 スイング (25) のロー タ部 (60) とブレード部 (61 ) とが一体に構成された構成に限られない。 また、 この場合において、 マウンティングプレート (40) の底面凹部 (46) を省略す る構成であってもよい。
また、 上記実施形態について、 高粘度の潤滑油を使用しない場合には、 マウ ンティングプレート (40) の油戻孔 (47) を省略する構成であってもよい。
また、 上記実施形態について、 高圧が非常に高くなる作動流体を使用しない 場合には、 圧縮機モータ (30) のステータコア (34) をケーシング (10) に溶 接する構成、 またはマウンティングプレート (40) を介して圧縮要素 (20) を 固定する構成を省略してもよい。
また、 上記実施形態について、 マウンティングプレート (40) 及びステー タコア (34) は溶接孔 (28, 38) を介した溶接に限られるものではない。
また、 上記実施形態について、 高粘度の潤滑油を使用しない場合には、 ステ ータコア (34) のコアカット部 (83) の切欠面積を小さくしてもよい。
また、 上記実施形態について、 高圧ドーム型の圧縮機 (1 ) には限られない。 産業上の利用可能性
以上のように、 本発明による密閉型圧縮機は、 高圧が非常に高い流体を圧縮 する場合に有用であり、 特に、 空調機に用いる場合に適している。

Claims

請 求 の 範 囲
1 . 作動流体を圧縮する圧縮要素 (20) がケーシング (10) 内に収納された密 閉型圧縮機において、
上記圧縮要素 (20) は、 炭素の含有率が 2 . 0 %以下の鋼からなり且つケ 一シング (10) に溶接された固定部材 (40) に固定されている
ことを特徴とする密閉型圧縮機。
2 . 請求項 1において、
固定部材 (40) は、 圧縮要素 (20) 及びケ一シンク' ( 10) と別体に構成さ れている
ことを特徴とする密閉型圧縮機。
3 . 請求項 2において、
圧縮要素 (20) は、 本体部 (22) と、 圧縮室 (26) の上面を形成する蓋部 (23) と、 圧縮室 (26) の下面を形成する底部 (24) とにより構成され、
固定部材 (40) は、 ケーシング (10) に溶接される一方、 該固定部材 (40) に上記圧縮要素 (20) の本体部 (22)、 蓋部 (23) 及び底部 (24) の少なくとも いずれか 1つが締結固定されている
ことを特徴とする密閉型圧縮機。
4 . 請求項 2において、
圧縮要素 (20) は、 シリンダ (21 ) と、 該シリンダ (21 ) 内で揺動する揺 動ピス トン (25) と、 該揺動ピス トン (25) を支持するブッシュ (66) とを備 上記シリンダ (21 ) には、 ブッシュ (66) を嵌め込むためのブッシュ孔 (65) が形成され、
固定部材 (40) は、 上記プッシュ孔 (65) に連通し且つケーシング (10) 内の潤滑油を上記ブッシュ孔 (65) に流入させるブッシュ貫通孔 (46) が形成 されている
ことを特徴とする密閉型圧縮機。
5 . 請求項 3において、
固定部材 (40) は、 圧縮要素 (20) が嵌挿されるように円環状に形成され、 上記固定部材 (40) には、 潤滑油を流れ落とすための油戻孔 (47) が形成 され、
該油戻孔 (47) の開口面積は、 固定部材 (40) の底面積に対して 5 0 %以 上とされている
ことを特徴とする密閉型圧縮機。
6 . 請求項 1又は 2において、
ケーシング (10) には、 固定部材 (40) に対応して溶接孔 (28) が設けら れており、
上記固定部材 (40) は、 上記溶接孔 (28) を介してケーシング (10) に溶 接されている
ことを特徴とする密閉型圧縮機。
7 . 請求項 1又は 2において、
ケーシング (10) 内には、 固定子コア (34) に卷線が装着された固定子 (32) と、 該固定子 (32) 内に回転可能に配置され、 且つ圧縮要素 (20) に駆動連結 された回転子 (33) とを備えていて該圧縮要素 (20) を駆動させる駆動モータ (30) が収納され、
上記駆動モータ (30) の固定子コア (34) は、 ケーシング (10) に溶接さ れている
ことを特徴とする密閉型圧縮機。
8 . 固定子コア (34) に卷線が装着された固定子 (32) と、 該固定子 (32) 内 に回転可能に配置され、 且つ圧縮要素 (20) に駆動連結された回転子 (33) と を備えていて該圧縮要素(20) を駆動させる駆動モータ (30) がケーシング (10) 内に収納された密閉型圧縮機において、
上記駆動モータ (30) の固定子コア (34) は、 ケーシング (10) に溶接さ れている
ことを特徴とする密閉型圧縮機。
9 . 請求項 8において、
ケーシング (10) には、 固定子コア (34) に対応して溶接孔 (38) が設け られぉり、
固定子コア (34) は、 上記溶接孔 (38) を介してケ一シング ( 10) に溶接 されている
ことを特徴とする密閉型圧縮機。
1 0 . 請求項 8において、
固定子コア (34) には、 ケーシング (10) の内側における底面積に対して 5 %以上の面積を有する油戻し部 (83) が形成されている
ことを特徴とする 閉型圧縮機。
1 1 . 請求項 1 0において、
固定子コア (34) の油戻し部 (83) は、 該固定子コア (34) 外周面がケー シング (10) に接する部分に隣接して形成されている
ことを特徴とする密閉型圧縮機。
1 2 . 請求項 1又は 8において、
圧縮要素 (20) から吐出された作動流体がケーシング (10) の内部に充満 する高圧ドーム型に構成されている
ことを特徴とする密閉型圧縮機。
1 3 . 請求項 1又は 8において、 冷凍サイクルを行う冷媒回路に接続されると共に、 作動流体をその臨界圧力 以上に圧縮するように構成されている
ことを特徴とする密閉型圧縮機。
PCT/JP2003/002090 2002-03-07 2003-02-25 Compresseur ferme WO2003074871A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03707078A EP1486672A4 (en) 2002-03-07 2003-02-25 COMPRESSOR CLOSES
US10/478,422 US7618242B2 (en) 2002-03-07 2003-02-25 Hermetic sealed compressor
KR1020037016983A KR100544786B1 (ko) 2002-03-07 2003-02-25 밀폐형 압축기
BR0303323-6A BR0303323A (pt) 2002-03-07 2003-02-25 Compressor vedado hermético

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002061665A JP2003262192A (ja) 2002-03-07 2002-03-07 密閉型圧縮機
JP2002-61665 2002-03-07

Publications (1)

Publication Number Publication Date
WO2003074871A1 true WO2003074871A1 (fr) 2003-09-12

Family

ID=27784866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/002090 WO2003074871A1 (fr) 2002-03-07 2003-02-25 Compresseur ferme

Country Status (8)

Country Link
US (1) US7618242B2 (ja)
EP (1) EP1486672A4 (ja)
JP (1) JP2003262192A (ja)
KR (1) KR100544786B1 (ja)
CN (1) CN1287087C (ja)
BR (1) BR0303323A (ja)
MY (1) MY135925A (ja)
WO (1) WO2003074871A1 (ja)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100513A (ja) * 2005-09-30 2007-04-19 Sanyo Electric Co Ltd 冷媒圧縮機及びその冷媒圧縮機を備えた冷媒サイクル装置
JP3960347B2 (ja) * 2005-12-16 2007-08-15 ダイキン工業株式会社 圧縮機
KR20080094111A (ko) * 2006-03-07 2008-10-22 다이킨 고교 가부시키가이샤 압축기의 제조 방법 및 압축기
JP2007239678A (ja) * 2006-03-10 2007-09-20 Matsushita Electric Ind Co Ltd 密閉型圧縮機
JP2007255332A (ja) * 2006-03-24 2007-10-04 Daikin Ind Ltd 圧縮機
JP5050393B2 (ja) * 2006-04-19 2012-10-17 ダイキン工業株式会社 圧縮機
JP2008045431A (ja) * 2006-08-11 2008-02-28 Daikin Ind Ltd 密閉型圧縮機
JP4548411B2 (ja) * 2006-11-30 2010-09-22 ダイキン工業株式会社 圧縮機
JP4241849B2 (ja) * 2007-04-02 2009-03-18 ダイキン工業株式会社 圧縮機
JP4251239B2 (ja) * 2007-07-25 2009-04-08 ダイキン工業株式会社 密閉式圧縮機
JP5134886B2 (ja) * 2007-08-20 2013-01-30 三洋電機株式会社 密閉式電動圧縮機
JP4758484B2 (ja) * 2008-01-24 2011-08-31 ダイキン工業株式会社 圧縮機
JP2009197622A (ja) * 2008-02-20 2009-09-03 Panasonic Corp 圧縮機用アキュムレータ
JP2008208839A (ja) * 2008-04-22 2008-09-11 Daikin Ind Ltd 圧縮機
KR101448648B1 (ko) * 2008-07-08 2014-10-08 엘지전자 주식회사 모터
JP4670984B2 (ja) 2009-03-31 2011-04-13 ダイキン工業株式会社 圧縮機
US8794941B2 (en) 2010-08-30 2014-08-05 Oscomp Systems Inc. Compressor with liquid injection cooling
US9267504B2 (en) 2010-08-30 2016-02-23 Hicor Technologies, Inc. Compressor with liquid injection cooling
CN104454540B (zh) * 2013-09-24 2018-01-23 珠海格力电器股份有限公司 压缩机
TWM472176U (zh) * 2013-11-07 2014-02-11 Jia Huei Microsystem Refrigeration Co Ltd 迴轉式壓縮機改良
US10670017B2 (en) 2013-12-01 2020-06-02 Aspen Compressor, Llc Compact low noise rotary compressor
JP6230441B2 (ja) * 2014-02-20 2017-11-15 三菱電機株式会社 単相誘導電動機、密閉型圧縮機及び冷凍サイクル装置
CN105156154B (zh) * 2014-09-29 2018-12-04 摩尔动力(北京)技术股份有限公司 摆动滑动机构
CZ307910B6 (cs) * 2015-03-24 2019-08-07 Mitsubishi Electric Corporation Hermetický rotační kompresor
JP6686615B2 (ja) * 2016-03-28 2020-04-22 株式会社富士通ゼネラル ロータリ圧縮機
CN106122018A (zh) * 2016-07-27 2016-11-16 广东美芝制冷设备有限公司 压缩机
CN106401918A (zh) * 2016-10-17 2017-02-15 珠海凌达压缩机有限公司 气缸以及压缩机
US11535425B2 (en) 2016-11-22 2022-12-27 Dometic Sweden Ab Cooler
USD933449S1 (en) 2016-11-22 2021-10-19 Dometic Sweden Ab Latch
WO2018126208A1 (en) 2016-12-30 2018-07-05 Aspen Compressor, Llc Flywheel assisted rotary compressors
CN108397385A (zh) * 2017-02-06 2018-08-14 上海海立电器有限公司 一种压缩机及制冷系统
USD836994S1 (en) 2017-05-17 2019-01-01 Dometic Sweden Ab Cooler
USD836993S1 (en) 2017-05-17 2019-01-01 Dometic Sweden Ab Cooler
KR102203250B1 (ko) 2017-11-29 2021-01-13 주식회사 엘지화학 엔드 프레임을 구비한 배터리 모듈
JP6648785B2 (ja) * 2018-07-11 2020-02-14 株式会社富士通ゼネラル 圧縮機
JP7216552B2 (ja) * 2019-01-07 2023-02-01 三菱重工サーマルシステムズ株式会社 ロータリ圧縮機
JP7105999B2 (ja) * 2019-05-20 2022-07-25 三菱電機株式会社 電動機、圧縮機、空気調和装置および電動機の製造方法
CN110388323B (zh) * 2019-08-26 2024-09-13 珠海格力节能环保制冷技术研究中心有限公司 上法兰、泵体组件、压缩机及空调器
CN113446201A (zh) * 2020-03-24 2021-09-28 安徽美芝制冷设备有限公司 气缸、气缸头组件、往复式压缩机和制冷设备
JP7393666B2 (ja) * 2020-11-25 2023-12-07 ダイキン工業株式会社 圧縮機および冷凍装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171888A (ja) * 1985-01-25 1986-08-02 Toshiba Corp 圧縮装置の製造方法
JPS6318190A (ja) * 1986-07-10 1988-01-26 Aichi Emason Denki Kk 密閉型電動圧縮機
JPS63166692U (ja) * 1987-04-20 1988-10-31
US5782622A (en) * 1995-12-11 1998-07-21 Kabushiki Kaisha Toshiba Hermetic compressor having a frame supporting the comprission mechanism
JPH10318169A (ja) * 1997-05-21 1998-12-02 Matsushita Refrig Co Ltd 縦型ロータリ圧縮機
JP2001280264A (ja) * 2000-03-31 2001-10-10 Daikin Ind Ltd 超臨界冷媒用のスイング圧縮機

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4214950A (en) * 1977-11-02 1980-07-29 Astafiev Anatoly A Steel for nuclear applications
JPS59101292A (ja) * 1982-11-30 1984-06-11 Toshiba Corp 密閉形圧縮機の形成方法
JPS62135877U (ja) 1986-02-21 1987-08-26
JPS62156183U (ja) 1986-03-27 1987-10-03
JPS63166692A (ja) 1986-12-27 1988-07-09 Takazawa Seisakusho:Kk 船舶用プロペラのピツチ変更装置
JPH0422789A (ja) * 1990-05-17 1992-01-27 Toshiba Corp 冷媒圧縮機
JP2712777B2 (ja) * 1990-07-13 1998-02-16 三菱電機株式会社 スクロール圧縮機
JPH0547449U (ja) 1991-11-29 1993-06-25 株式会社東芝 密閉型圧縮機
JP2876922B2 (ja) 1992-11-24 1999-03-31 ダイキン工業株式会社 ローリングピストン型圧縮機
US5322420A (en) 1992-12-07 1994-06-21 Carrier Corporation Horizontal rotary compressor
JPH06323272A (ja) * 1993-05-11 1994-11-22 Daikin Ind Ltd ロータリー圧縮機
JPH07180680A (ja) * 1993-12-22 1995-07-18 Toshiba Corp ロータリ式圧縮機
JP3077490B2 (ja) * 1993-12-28 2000-08-14 株式会社荏原製作所 ポンプ組立体
JP3473776B2 (ja) * 1994-02-28 2003-12-08 東芝キヤリア株式会社 密閉形コンプレッサ
JPH0932776A (ja) * 1995-07-18 1997-02-04 Matsushita Electric Ind Co Ltd 密閉型圧縮機
JP3742848B2 (ja) 1995-10-16 2006-02-08 ダイキン工業株式会社 スイング圧縮機
JPH1122682A (ja) * 1997-07-03 1999-01-26 Daikin Ind Ltd ケーシングにおけるシール構造
JPH11182433A (ja) 1997-12-16 1999-07-06 Sanyo Electric Co Ltd 密閉型圧縮機
JPH11351175A (ja) * 1998-06-08 1999-12-21 Denso Corp 電動圧縮機
JP2000213463A (ja) * 1999-01-25 2000-08-02 Matsushita Electric Ind Co Ltd 密閉型圧縮機及びその組立方法
TW552352B (en) * 1999-06-29 2003-09-11 Sanyo Electric Co Sealed rotary compressor
JP4592143B2 (ja) * 2000-04-06 2010-12-01 パナソニック株式会社 圧縮機および電動機
JP2003120534A (ja) 2001-10-05 2003-04-23 Hitachi Ltd 冷凍用圧縮機及びそのコンロッド製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61171888A (ja) * 1985-01-25 1986-08-02 Toshiba Corp 圧縮装置の製造方法
JPS6318190A (ja) * 1986-07-10 1988-01-26 Aichi Emason Denki Kk 密閉型電動圧縮機
JPS63166692U (ja) * 1987-04-20 1988-10-31
US5782622A (en) * 1995-12-11 1998-07-21 Kabushiki Kaisha Toshiba Hermetic compressor having a frame supporting the comprission mechanism
JPH10318169A (ja) * 1997-05-21 1998-12-02 Matsushita Refrig Co Ltd 縦型ロータリ圧縮機
JP2001280264A (ja) * 2000-03-31 2001-10-10 Daikin Ind Ltd 超臨界冷媒用のスイング圧縮機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1486672A4 *

Also Published As

Publication number Publication date
EP1486672A4 (en) 2010-08-18
KR100544786B1 (ko) 2006-01-23
BR0303323A (pt) 2004-03-30
CN1287087C (zh) 2006-11-29
KR20040010781A (ko) 2004-01-31
CN1498311A (zh) 2004-05-19
MY135925A (en) 2008-07-31
US7618242B2 (en) 2009-11-17
JP2003262192A (ja) 2003-09-19
EP1486672A1 (en) 2004-12-15
US20040219037A1 (en) 2004-11-04

Similar Documents

Publication Publication Date Title
WO2003074871A1 (fr) Compresseur ferme
JP4241849B2 (ja) 圧縮機
KR100982368B1 (ko) 압축기
EP1967738B1 (en) Compressor
US8647086B2 (en) Enclosed compressor
US6773244B2 (en) Discharging part structure for compressor
WO2008065802A1 (en) Compressor
JP2003097468A (ja) ロータリコンプレッサ
JP4120266B2 (ja) 圧縮機
JP3389682B2 (ja) 密閉型スクロール圧縮機
JP2009074555A (ja) 密閉型圧縮機
JP2005139973A (ja) 多段圧縮式ロータリ圧縮機
JP2009047176A (ja) 密閉型圧縮機
JP2003262193A (ja) 密閉型圧縮機
US10227982B2 (en) Scroll compression device
JP3976080B2 (ja) 圧縮機
JP2005140064A (ja) 電動圧縮機
JP2004150370A (ja) 密閉式電動圧縮機
JP4545030B2 (ja) 密閉型圧縮機および製造方法
JPH10103277A (ja) 回転式圧縮機
JP2007177634A (ja) ロータリ圧縮機
KR0139225Y1 (ko) 편심부를구비한회전압축기
JPH0716062Y2 (ja) 回転型圧縮機
KR20100069189A (ko) 로터리 압축기
KR100556955B1 (ko) 스크롤 압축기

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN ID IN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

WWE Wipo information: entry into national phase

Ref document number: 03800125X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1842/DELNP/2003

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2003707078

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10478422

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020037016983

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003707078

Country of ref document: EP