WO2003042139A1 - Procede de preparation de dihalogenoadamantanes - Google Patents

Procede de preparation de dihalogenoadamantanes Download PDF

Info

Publication number
WO2003042139A1
WO2003042139A1 PCT/JP2002/011718 JP0211718W WO03042139A1 WO 2003042139 A1 WO2003042139 A1 WO 2003042139A1 JP 0211718 W JP0211718 W JP 0211718W WO 03042139 A1 WO03042139 A1 WO 03042139A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
adamantane
stage
dihalogenated
temperature
Prior art date
Application number
PCT/JP2002/011718
Other languages
English (en)
French (fr)
Inventor
Norihiro Tanaka
Masao Yamaguchi
Original Assignee
Tokuyama Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corporation filed Critical Tokuyama Corporation
Priority to KR1020047007258A priority Critical patent/KR100649500B1/ko
Priority to EP02785930A priority patent/EP1445247B1/en
Priority to US10/493,892 priority patent/US6878853B2/en
Priority to DE60223070T priority patent/DE60223070T2/de
Publication of WO2003042139A1 publication Critical patent/WO2003042139A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C23/00Compounds containing at least one halogen atom bound to a ring other than a six-membered aromatic ring
    • C07C23/18Polycyclic halogenated hydrocarbons
    • C07C23/20Polycyclic halogenated hydrocarbons with condensed rings none of which is aromatic
    • C07C23/38Polycyclic halogenated hydrocarbons with condensed rings none of which is aromatic with three condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/10Preparation of halogenated hydrocarbons by replacement by halogens of hydrogen atoms

Definitions

  • the present invention relates to a method for producing adamantane dihalide useful as a raw material for producing a functional material or an electronic material.
  • Adamantane derivatives are expected to be used as raw materials for the production of high-functional materials such as heat-resistant polymer materials and electronic materials such as resists for semiconductors because of their characteristics of high heat resistance and high transparency.
  • dihalogenated adamantane is important as a raw material for synthesizing various adamantane derivatives having two functional groups.
  • adamantane halide produced by these methods is usually a mixture of a monohalide, a dihalide, and a trioctalogenate.
  • the main product of this mixture is usually adamantane monohalide, and the yield of dihalogenated adamantane is low.
  • the yield of 1,3-dichloroadamantane is 80% or less. It is.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems. As a result, they have found that the above problems can be solved by reacting adamantane with halosulfonic acid under specific temperature conditions, and have completed the present invention.
  • an object of the present invention is to provide a method for producing a high-purity dihalogenated adamantane in high yield under mild conditions without using metals and metal salts.
  • the present invention relates to a method for producing a dihalogenated adamantane by reacting adamantane, which may be substituted at the 1-position with an alkyl group, with halosulfonic acid, at a temperature of 15 to 15 ° C. in the first stage.
  • a method for producing a dihalogenated adamantane comprising performing a monohalogenation reaction, and then performing a second stage dihalogenation reaction at a temperature of 17 to 35 ° C.
  • adamantane as a reaction raw material is generally unsubstituted, but may be substituted at the 1-position with an alkyl group.
  • an alkyl group a linear alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, and a propyl group is preferable, and a methyl group is more preferable.
  • the halosulfonic acid used in the present invention is
  • halogen include fluorine, chlorine, bromine, and iodine.
  • halosulfonic acid include chlorosulfonic acid, bromosulfonic acid, and sulfonic acid. From the viewpoint of availability, chlorosulfonic acid is particularly preferred.
  • the above 1-position may be substituted with an alkyl group.
  • Reaction of damantane (hereinafter also simply referred to as adamantanes) with halosulfonic acid gives dihalogenated adamantane.
  • the main product of the synthesized dihalogenated adamantane is a 1,3-dihalogenated adamantane represented by the following formula (1).
  • the synthesized dihalogenated adamantane is mainly an alkyl-1,3,5-dihalogenated adamantine represented by the following formula (2).
  • R represents a linear alkyl group having 1 to 4 carbon atoms.
  • the ratio of adamantanes and halosulfonic acid charged is not particularly limited. However, if the proportion of octasulfonic acid is extremely small, the reaction does not proceed sufficiently. Therefore, the proportion of the halosulfonic acid to be added is preferably at least twice the molar amount with respect to the adamanone.
  • the proportion of halosulfonic acid used is set to adamantane so that the halosulfonic acid functions sufficiently as a reaction solvent and further improves the yield.
  • the amount is 5 to 15 times, most preferably 8 to 12 times, the molar amount of the compound.
  • the method for mixing the adamantane with the halosulfonic acid is not particularly limited. Usually, a method of dropping halosulfonic acid into adamantane or an organic solvent solution thereof is preferable.
  • the most important feature of the present invention is that, when reacting the adamantane with the halosulfonic acid, first, the first-stage monohalogenation reaction is carried out at a temperature of —5 to 15 ° C. The second stage dihalogenation reaction is performed at a temperature of 35 ° C. By performing such a two-step reaction at different characteristic reaction temperatures, the amount of by-products such as trihalogenated adamantane can be suppressed to a small level, and the desired dihalogenated adamantane can be obtained more selectively. become.
  • adamantane is first monohalogenated (hereinafter, this reaction is also referred to as monohalogenation reaction).
  • octalogenation proceeds to generate a dihalide (hereinafter, this reaction is also referred to as a dihalogenation reaction), and further proceeds to further generate a trihalide and a tetrahalide.
  • this reaction when the reaction temperature is maintained at 15 to 15 ° C., the monohalogenation reaction proceeds.
  • monohalogenation reaction starts to proceed actively when the reaction temperature exceeds 17 t.
  • reaction temperature When the reaction temperature is increased to 17 ° C. or higher from the beginning of the reaction, the reaction proceeds rapidly from the beginning of the reaction to generate a dihalide, and the halogenation reaction proceeds at a stretch until the formation of a trihalogenated product. It will be in an easy state. Therefore, under such temperature conditions, the production amount of the trihalide increases, and the yield of the dihalogenated adamantane decreases.
  • the first stage reaction temperature is more preferably 5 to 15 ° C.
  • the first-stage reaction temperature is lower than -5 ° C, the monohalogenation reaction hardly proceeds.
  • the liquid temperature is preferably kept at 5 ° C. or lower so that the reaction does not run away.
  • the first-stage monohalogenation reaction is carried out until most of the charged adamantane is monohalogenated.
  • the reaction time is generally 30 minutes or more, preferably 1 hour to 3 hours.
  • the reaction temperature in the second stage is preferably from 17 to 25 ° C from the viewpoint of obtaining a dihalogenated adamantane at a particularly high yield.
  • the reaction temperature in the second step is higher than 35, the trihalogenation reaction of the dihalogenated adamantane proceeds actively.
  • This second-stage reaction needs to be performed until the dihalogenation reaction sufficiently proceeds.
  • the reaction time is preferably from 1 hour to 24 hours, and more preferably from 3 hours to 8 hours.
  • the reaction temperature may be changed to a plurality of temperatures within the specified reaction temperature range.
  • the reaction pressure in each reaction step is not particularly limited, but normal pressure is generally used.
  • the above two-step reaction can be carried out either in the presence or absence of an organic solvent. However, it is particularly preferred to work in the absence of an organic solvent. In this case, the halosulfonic acid acts as a solvent.
  • the solubility of adamantane dihalogenated adamantane in halosulfonic acid is extremely low.
  • the solubility of monohalogenated adamantane in halosulfonic acid is large.
  • Halosulfonic acid exhibits such a unique solubility property. Therefore, when the halosulfonic acid as a reaction reagent is used as a reaction solvent without using an organic solvent, the above-mentioned specific solubility property of the halosulfonic acid can be effectively used. As a result, as described below, it is possible to selectively obtain a dihalogenated adamantane with high purity.
  • the reaction solution when adamantanes and halosulfonic acid are charged, the reaction solution is initially in a suspended state in which adamantanes are suspended. As the time elapses, the first-stage reaction proceeds to produce monohalogenated adamantane, the product dissolves well in halosulfonic acid, and the reaction solution changes to a transparent homogeneous solution. . Next, the resulting monohalogenated adamantane is further chlorinated in a solution of halosulfonic acid and smoothly transformed into a dihalide. However, most of the generated adamantane dihalide precipitates due to its extremely low solubility in halosulfonic acid as described above. . As a result, the reaction solution returns to a suspended state.
  • the reactivity between the dihalogenated adamantane and the halosulfonic acid is significantly reduced.
  • the amount of by-produced trihalogenated adamantane in the second-stage reaction can be greatly reduced.
  • the reaction solution changes from a suspended state to a homogeneous solution. From this change, the end of the first-stage reaction can be easily confirmed visually. As a result, the first-stage reaction proceeds to the second-stage reaction in an insufficient state, increasing the amount of trihalogenated adamantane produced or performing the first-stage reaction longer than necessary. Such inconvenience can be prevented.
  • the formation of the resulting dihalogenated adamantan in the reaction solution makes the isolation of the target product extremely advantageous. That is, when a crude product of a dihalogenated adamantane is obtained by, for example, reacting an adamantane with a halosulfonic acid, the physicochemical properties of the target product dihalogenated adamantane are similar to those of the dihalogenated adamantane according to a conventional method. In general, the separation from the monohalogenated adamantane is performed by a complicated purification means such as chromatography.
  • the filtration is preferably performed under a nitrogen atmosphere. If the temperature of the reaction solution during filtration exceeds the upper limit of the reaction temperature range of the second stage, the reaction of adamantane dihalide to adamantane trihalide may proceed. . There is also concern that the solubility of the dihalogenated adamantane will increase and the yield will decrease. Therefore, it is preferable to perform filtration within the range of the reaction temperature of the second stage.
  • the thus obtained precipitate of dihalogenated adamantane may be further purified to high purity by washing with water, solvent extraction, crystallization and the like, if necessary.
  • any organic solvent may be used without limitation as long as it has no reactivity with octarosulfonate.
  • chlorinated solvents such as dichloromethane and 1,2-dichloroethane are preferred.
  • the amount of the organic solvent used is not particularly limited, but is an amount that can sufficiently dissolve the reactants and does not significantly reduce the yield of the kettle. Specifically, the amount is preferably 5 to 20 times the weight of the adamantane.
  • the resulting dihalogenated adamantane is usually dissolved in the reaction solution at the end of the second-stage reaction.
  • a method for isolating dioctogenated adamantane from the reaction solution first, ice water is added to the reaction solution to decompose the halosulfonic acid, and then water and an organic solvent layer containing a dihalogenated adamantane are separated. Thereafter, the organic solvent layer is washed with water, then the solvent is distilled off, dried and crystallized.
  • the equipment used in the above reaction has a structure that cuts off contact with the atmosphere. This structure prevents the halosulfonic acid from reacting with water and decomposing to generate acid gas.
  • the inside of the equipment Prior to the reaction, the inside of the equipment should be thoroughly dried with an inert gas such as nitrogen and dried in advance. During the reaction, it is preferable that the reaction is sealed or that an inert gas such as nitrogen is continuously ventilated.
  • an inert gas such as nitrogen is continuously ventilated.
  • a high-purity and high-purity dihalogenated adamantine can be produced under mild conditions with high yield. When no solvent is used during the reaction, the difference in solubility of adamantan dihalide and monohalogen adamantane in halosulfonic acid is utilized to easily isolate adamantan dihalide in good yield. Can be purified.
  • the dihalogenated adamantane obtained by the method of the present invention can be derived into adamantanediol by hydrolysis or the like, or can be converted into a diaminoadamantane by ammonolysis or the like to obtain a functional material such as a heat-resistant polymer or the like. It can be used effectively as a raw material for electronic materials such as resists.
  • Example 1 was repeated except that chlorosulfonic acid was added dropwise to 5.0 g (0.037 mo1) of adamantane at 20 ° C and reacted at that temperature for 7 hours to complete the reaction. Upon operation, 5.6 g (75% yield) of a white solid was obtained.
  • Example 2 The same operation as in Example 1 was carried out, and chlorosulfonic acid was added dropwise to 5.0 g (0.037 mol) of adamantane at 10 ° C., followed by a reaction for 2 hours. The reaction solution became a clear homogeneous solution. Next, the temperature of the reaction solution was raised to 40 ° C., and the reaction was carried out for 5 hours. Thereafter, the same operation as in the example was performed. As a result, 5.3 g (yield 71%) of a white solid was obtained. The analysis of the obtained white solid showed that the purity of 1,3-dichloroadamantane was 80%.
  • Example 2 The operation was performed in the same manner as in Example 1 except that the first-stage reaction temperature was set to 15 ° C and the reaction time was set to 1 hour required for the reaction solution to become transparent and uniform. 6.7 g (89% yield) of a white solid was obtained.
  • the analysis result of the obtained white solid showed that the purity of 1,3-dichloroadamantane was 91%.
  • Example 2 The same procedure as in Example 1 was carried out except that the reaction temperature in the second stage was 30 ° C. and the reaction time was 3 hours, 6.8 g (yield 90%) of a white solid was obtained. I got The analysis result of the obtained white solid showed that the purity of 1,3-dichloroadamantane was 89%.
  • Example 2 The same operation as in Example 1 was carried out except that the amount of chlorosulfonic acid used was changed to 25.9 g (0.22 mol) and the reaction time in the second stage was changed to 8 hours. g (86% yield) of a white solid was obtained.
  • Example 2 The same operation as in Example 1 was carried out except that 5.0 g (0.037 mo 1) of adamantane was changed to 5.5 g (0.037 mo 1) of 1-methyladamantane. There were obtained 7.2 g (90% yield) of a white solid.
  • the analysis result of the obtained white solid showed that the purity of 1,3-jib-mouth modamantane was 92%.
  • the white solid was analyzed by gas chromatography to find that the purity of 1,3-dicopenic lodamantane was 89%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

明細書 ジハロゲン化ァダマンタンの製造方法 技術分野
本発明は、 機能性材料や電子材料の製造原料として有用なジハロゲン 化ァダマンタンの製造方法に関する。 背景技術
ァダマンタン誘導体は耐熱性に優れ透明性が高い特徴を有することか ら耐熱性高分子材料等の高機能性材料や半導体用レジスト等の電子材料 の製造原料に利用することが期待されている。 中でもジハロゲン化ァダ マンタンは、 二つの官能基をもつ種々のァダマンタン誘導体の合成原料 として重要である。
種々のハロゲン化ァダマン夕ン類をァダマンタンから合成する方法と しては、 ハロゲン化アルミニウムの存在下でァダマンタンにハロゲン化 アルカンを作用させる方法 [Synth. Commun. 19 (9-10) 1697-1704 (1989 ) ] や、 コバルト塩の存在下でァダマンタンにハロゲン化アルカンを反 応させる方法 [RU2125551 (1999) 〕 などが報告されている。 しかしなが ら、 これらの方法により製造されるハロゲン化ァダマンタンは、 通常、 モノハロゲン化体、 ジハロゲン化体及びトリ八ロゲン化体等の混合物で ある。 更に、 この混合物の主生成物は通常モノハロゲン化ァダマンタン であり、 ジハロゲン化ァダマンタンの収率は低い。
ジハロゲン化ァダマンタンを選択的に合成する方法として、 ァダマン タンとハロスルホン酸とを、 2 0 °Cの温度で混合して反応させる方法 [T etrahedron Letters 31, 3191-3192 ( 1972) ] がある。 しかし、 上記合成 方法においては反応初期に反応が激しく進行する。 このため、 この反応 において収率を向上させるためハロスルホン酸を十分量使用すると、 反 応が進行し過ぎてトリハロゲン化体が生成し易い。 従って、 上記合成方 法は、 ジハロゲン化ァダマンタンの収率の点で不十分である。 例えば、 ァダマンタンとクロロスルホン酸とを 1 : 8のモル比で仕込み、 1 0時 間程度反応させた場合、 1, 3—ジクロロアダマンタンの収率 (ガスク 口マトグラフィ一による測定) は 8 0 %以下である。
ジハロゲン化ァダマンタンを選択的に合成する方法として、 ハロゲン 化鉄を用いる方法 [ Z . Org. im. 22 (3) 540- 542 (1986)および He lv. Ch im. A c t a. 68 ( 5) 1 196-1203 ( 1985) ] 等がある。 しかし、 金属化合物を用い る合成方法によりジ八ロゲン化ァダマンタンを合成する場合は、 合成さ れるジハロゲン化ァダマンタン中に金属が混入する可能性が高くなる。 電子デバイス等には、 微量の金属の混入がその性能に悪影響を及ぼすも のがある。 従って、 このような電子デバイスの製造には、 上記方法で合 成したジハロゲン化ァダマンタンは使用できない。 また、 金属が混入し てるジハロゲン化ァダマンタンを高度に精製することは煩雑で、 製造コ ストの上昇を招く。
また、 上記製造方法は比較的高収率でジハロゲン化ァダマンタンを合 成できるが、 得られるジハロゲン化ァダマンタン中には中間体であるモ ノハロゲン化ァダマンタンが数%以上混入することが避けられない。 高 純度のジハロゲン化ァダマンタンを得るためには、 モノハロゲン化ァダ マンタンを分離する操作が不可欠である。 しかし、 これら二つの化合物 はその化学的性質が極めて類似しているので、 通常の簡便な分離方法は 利用しがたい。 このため、 分離方法は一般にクロマトグラフィーが採用 されている。 しかしながら、 クロマトグラフィーによる分離方法は一回 の処理量が小さく、 しかも時間がかかる。 このため、 全体の生産性が低 くなり、 大量生産には不向きであるという問題がある。 発明の開示
本発明者等は、 上記課題を解決すべく鋭意検討を行った。 その結果、 ァダマンタンとハロスルホン酸とを特定の温度条件で反応させることに より、 上記の課題が解決できることを見出し、 本発明を完成させるに至 つた。
従って、 本発明は、 金属及び金属塩を使用することなく、 温和な条件 で、 高収率で、 高純度のジハロゲン化ァダマンタンを製造する方法を提 供することを目的とする。
本発明は、 1位がアルキル基で置換されていても良いァダマンタンと ハロスルホン酸とを反応させてジハロゲン化ァダマンタンを製造するに 際し、 一 5〜 1 5 °Cの温度で第一段目のモノハロゲン化反応を行い、 次 いで、 1 7〜 3 5 °Cの温度で第二段目のジハロゲン化反応を行うことを 特徴とするジハロゲン化ァダマンタンの製造方法である。 発明を実施するための最良の形態
本発明において、 反応原料のァダマンタンは、 無置換体が一般的であ るが、 1位がアルキル基で置換されていても良い。 ここで、 アルキル基 としては、 メチル基、 ェチル基、 プロピル基等の炭素数 1〜 4の直鎖状 アルキル基が好ましく、 特にメチル基がより好ましい。
本発明で使用するハロスルホン酸は
X S 0 3 H , (式中、 Xはハロゲンを示す。 )
で示される化合物である。 ハロゲンとしては、 フッ素、 塩素、 臭素、 ョ ゥ素等が挙げられる。 具体的にはハロスルホン酸として、 クロロスルホ ン酸、 プロモスルホン酸、 ョ一ドスルホン酸等が挙げられる。 入手の容 易さの点から、 特にクロロスルホン酸が好ましい。
本発明においては、 上記 1位がアルキル基で置換されていても良いァ ダマンタン (以下、 単にァダマンタン類とも称する) とハロスルホン酸 とを反応させてジハロゲン化ァダマンタンを得る。
ァダマンタン類が無置換体である場合、 合成されるジハロゲン化ァダ マンタンは、 下記式 ( 1 ) で示される 1, 3—ジハロゲン化ァダマンタ ンが主生成物である。
Figure imgf000005_0001
通常は、 該 1 , 3—ジハロゲン化ァダマンタン以外に、 他のジハロゲ ン化ァダマンタンも少量生成する。
一方、 ァダマンタン類が 1位のアルキル基置換体である場合、 合成さ れるジハロゲン化ァダマンタンは、 下記式 ( 2 ) で示される 1 一アルキ ルー 3 , 5ージハロゲン化ァダマン夕ンが主生成物である。 ここで Rは 炭素数 1〜 4の直鎖状アルキル基を示す。
(2)
Figure imgf000005_0002
通常は、 該 1 一アルキル一 3 , 5ージハロゲン化ァダマンタン以外に 、 他のアルキルジハロゲン化ァダマンタンも少量生成する。
合成反応において、 ァダマンタン類とハロスルホン酸の仕込割合は、 特に制限がない。 しかし、 八ロスルホン酸の割合が極端に少ないと反応 が十分に進行しなくなるため、 ハロスルホン酸の仕込割合はァダマン夕 ン類に対して 2倍モル量以上であることが好ましい。 後述するように有 機溶媒を使用せずに反応を遂行する場合にハロスルホン酸が反応溶媒と して充分機能するように、 および収率をより向上させるため、 ハロスル ホン酸の仕込割合は、 ァダマンタン類に対して 5〜 1 5倍モル量、 最も 好適には 8〜 1 2倍モル量である。
ァダマンタン類とハロスルホン酸との混合方法は、 特に制限がない。 通常は、 ァダマンタン類またはその有機溶剤溶液に、 ハロスルホン酸を 滴下する方法が好ましい。
本発明の最大の特徴は、 上記ァダマンタン類とハロスルホン酸とを反 応させるに際して、 まず、 — 5〜 1 5 °Cの温度で第一段目のモノハロゲ ン化反応を行い、 次いで、 1 7〜 3 5 °Cの温度で第二段目のジハロゲン 化反応を行うことにある。 このように特徴的な反応温度を違えた二段階 反応を行うことにより、 トリハロゲン化ァダマンタン等の副生物の生成 量を小さく抑制でき、 目的とするジハロゲン化ァダマンタンをより選択 的に得ることが可能になる。
ァダマンタン類とハロスルホン酸との反応においては、 通常はまず、 ァダマンタン類がモノハロゲン化される (以下、 この反応をモノハロゲ ン化反応ともいう) 。 次いで、 八ロゲン化が進んでジハロゲン化体が生 成し (以下、 この反応をジハロゲン化反応ともいう) 、 さらにハロゲン 化反応が進んでトリハロゲン化体、 テトラハロゲン化体が順次生成して いく。 この反応において、 反応温度を一 5〜 1 5 °Cに維持すると、 モノ ハロゲン化反応は進行する。 しかし、 上記温度条件においてはモノハロ ゲン化体がジハロゲン化体等になる高次ハロゲン化反応はほとんど進行 しない。 ジハロゲン化反応は、 反応温度が 1 7 t を超えると活発に進行 し始める。
上記反応温度を、 反応開始当初から 1 7 °C以上にすると、 該反応開始 当初から反応が急速に進行してジハロゲン化体が生成し、 さらにトリハ ロゲン化体生成までハロゲン化反応が一気に進行し易い状態になる。 従 つて、 かかる温度条件では、 卜リハロゲン化体の生成量が多くなり、 ジ ハロゲン化ァダマンタンの収率が低下する。
これに対し、 反応の温度を二段階に設定し、 反応開始当初において反 応を穩かに進行させる場合、 続く前記二段目の反応において温度を 1 7 で以上に設定しても、 ジハロゲン化体が生成した後、 更にトリハロゲン 化体を生成する反応は殆ど進行しない。 その結果、 ジハロゲン化ァダマ ンタンが高収率で得られる。
反応温度が 5 °C未満の場合、 モノハロゲン化反応はあまり進行しない 。 従って、 第一段目の反応温度は、 5〜 1 5 °Cがより好ましい。 第一段 目の反応温度が、 _ 5 °C未満の場合、 モノハロゲン化反応はほとんど進 行しない。
なお、 ァダマンタン類とハロスルホン酸とを混合する段階では、 液温 は、 反応を暴走させることの無い様に 5 °C以下に保つことが好ましい。 上記第一段目のモノハロゲン化反応は、 仕込んだァダマンタン類のほ とんどがモノハロゲン化されるまで実施する。 反応時間としては、 通常 3 0分以上、 好適には 1時間〜 3時間が一般的である。
第一段目のモノハロゲン化反応に続いて第二段目のジハロゲン化反応 を行う。 第二段目の反応温度は、 ジハロゲン化ァダマンタンを特に高収 率で得る観点から、 1 7〜 2 5 °Cが好適である。 第二段目の反応温度が 、 3 5 より高い場合、 ジハロゲン化ァダマンタンのトリハロゲン化反 応が活発に進行するようになる。 この第二段目の反応は、 ジハロゲン化反応が十分に進行するまで行う ことが必要である。 しかし、 あまり反応時間が長いと、 トリハロゲン化 ァダマンタンが徐々に生成してくる。 このため、 反応時間は 1時間〜 2 4時間が好ましく、 好適には 3時間〜 8時間である。
なお、 所望により、 これらの第一段目および第二段目のそれぞれの反 応段階において、 反応温度は、 前記特定された反応温度範囲内において 複数の温度に変化させても良い。 また、 各反応段階における反応圧力は 、 特に制限されないが、 常圧が一般的である。
上記の二段階反応は、 有機溶媒の存在下及び不存在下の何れでも実施 できる。 しかし、 有機溶媒の不存在下で実施することが特に好ましい。 この場合は、 ハロスルホン酸が溶媒の働きをする。
ハロスルホン酸に対するァダマンタン類ゃジハロゲン化ァダマンタン の溶解度は極めて小さい。 これに対して、 ハロスルホン酸に対するモノ ハロゲン化ァダマンタンの溶解度は大きい。 ハロスルホン酸はこのよう な特異な溶解性状を示す。 従って、 有機溶媒を使用せず、 反応試剤であ るハロスルホン酸を反応溶媒として用いると、 該ハロスルホン酸が有す る上記特異な溶解性状を有効に利用できる。 その結果、 以下に述べるよ うにジハロゲン化ァダマンタンを選択的に、 高純度で得ることが可能に なる。
すなわち、 ァダマンタン類とハロスルホン酸を仕込むと、 反応液は当 初ァダマンタン類が懸濁した懸濁状態にある。 時間の経過に伴い、 第一 段目の反応が進行してモノハロゲン化ァダマンタンが生成してくると、 該生成物は、 ハロスルホン酸に良く溶解するため反応液は透明な均一溶 液に変化する。 次いで、 生成したモノハロゲン化ァダマンタンは、 ハロ スルホン酸の溶液中で更に塩素化されてジハロゲン化体にスムーズに変 化する。 しかし、 生成したジハロゲン化ァダマンタンは、 前記の如くハ ロスルホン酸に対して溶解度が極めて小さいためその大部分は析出する 。 その結果、 反応液は再び懸濁状態を呈してくる。 このようにハロスル ホン酸中でジハロゲン化ァダマンタンが析出状態になると、 ジハロゲン 化ァダマンタンとハロスルホン酸との反応性は著しく低下する。 その結 果、 第二段目の反応においてトリハロゲン化ァダマンタンの副生量を大 きく低下できる。
また、 前記第一段目の反応において、 モノハロゲン化反応が進行する と、 反応液が懸濁状態から均一溶液に変化する。 この変化から、 第一段 目の反応の終期を目視で簡単に確認することが可能になる。 その結果、 第一段目の反応が不十分な状態で第二段目の反応に移行し、 トリハロゲ ン化ァダマンタンの生成量を増加させたり、 必要以上に第一段目の反応 を長く実施するような不都合が防止できる。
さらに、 第二段目の反応において、 生成したジハロゲン化ァダマンタ ンが反応液中に析出してくることは、 該目的物の単離を極めて有利にす る。 すなわち、 ァダマンタン類とハロスルホン酸とを反応させる等して ジハロゲン化ァダマンタンの粗生成物を得た場合、 常法に従えば、 目的 物ジハロゲン化ァダマンタンと、 このジハロゲン化ァダマンタンに物理 化学的性質が近似するモノハロゲン化ァダマンタンとの分離は、 クロマ トグラフィ一等の煩雑な精製手段によるのが一般的である。
これに対して、 本発明の如く有機溶媒の不存在下で反応を実施して、 目的物であるジハロゲン化ァダマンタンを反応液中に懸濁状態で生成さ せる場合、 前述の如く該反応液中にはトリ八ロゲン化ァダマンタンは殆 ど生成していない。 且つ未反応のモノハロゲン化ァダマンタンは反応液 中に溶解している。 このため、 反応液を濾過することにより、 ジハロゲ ン化ァダマンタンのみを簡単に高純度に濾別できる。
濾過は、 窒素雰囲気下で実施するのが好ましい。 濾過中の反応液の温 度が第二段目の反応温度範囲の上限を超える場合は、 ジハロゲン化ァダ マンタンがトリハロゲン化ァダマンタンへ反応が進行する可能性がある 。 またジハロゲン化ァダマンタンの溶解度が増加し、 収量が減少する懸 念もある。 従って、 前記第二段目の反応温度の範囲内で濾過をすること が好ましい。
以上により得られたジハロゲン化ァダマンタンの析出物は、 必要に応 じてさらに水洗、 溶媒抽出、 晶析等により高純度に精製しても良い。 反応を、 有機溶媒中で実施する場合、 該有機溶媒としては、 八ロスル ホン酸と反応性を有さないものであれば制限なく使用できる。 具体的に は、 ジクロロメタン、 1 , 2—ジクロロェタン等の塩素系溶媒が好まし い。
有機溶媒の使用量は、 特に制限されるものではないが、 反応物を十分 に溶解でき、 かつ釜収率を著しく低下させない量である。 具体的には、 ァダマンタン類の重量に対して 5倍量〜 2 0倍量が好ましい。
本反応において、 有機溶媒を使用する場合、 第二段目の反応を終えた 時点で、 通常、 生成したジハロゲン化ァダマンタンは反応液中に溶解し ている。 この反応液からジ八ロゲン化ァダマンタンを単離する方法とし ては、 まず反応液に氷水を加えてハロスルホン酸を分解した後、 水とジ ハロゲン化ァダマンタンを含む有機溶媒層とを分液し、 その後有機溶媒 層を水洗、 次いで溶媒を留去して乾燥させ、 晶析させる方法が例示でき る。
上記本反応に用いる設備は、 大気との接触を断つ構造を有するもので あるのが好ましい。 この構造により、 ハロスルホン酸が水分と反応して 分解し、 酸性ガスを発生することを防ぐ。 また、 設備内部は、 反応に先 立ち、 あらかじめ窒素等の不活性ガスで十分置換し、 乾燥させておく。 反応中は密閉するか窒素等の不活性ガスを通気し続けることが好ましい 本発明の方法によれば、 所定の温度に制御した 2段階反応を採用して いるので、 製品に混入して各種問題の原因になる金属及び金属塩を使用 することなく、 温和な条件で高収率で高純度のジハロゲン化ァダマン夕 ンを製造することができる。 また、 反応中に溶媒を使用しない場合は、 ジハロゲン化ァダマンタンと、 モノハロゲン化ァダマン夕ンとのハロス ルホン酸に対する溶解度の差を利用して、 収率良く、 簡単にジハロゲン 化ァダマンタンの単離、 精製ができる。
本発明の方法により得られるジハロゲン化ァダマンタンは、 加水分解 等をすることによりァダマンタンジオールに誘導でき、 またはアンモノ リシス等によりジアミノアダマンタンに誘導することで、 耐熱性高分子 等の機能性材料やレジスト等の電子材料などの原料として有効に使用で きる。 実施例
以下、 実施例により本発明をさらに具体的に述べるが、 本発明はこれ らの実施例によって何ら制限されるものではない。
実施例 1
ァダマンタン 5 . 0 g ( 0 . 0 3 7 m o 1) を 1 0 0 m lの三つ口フラ スコに入れ、 窒素ガスを通じてフラスコ内を乾燥させた。 窒素をフ口一 したまま、 フラスコ内温度を 0 °Cまで冷却し、 これにクロロスルホン酸 4 3 . 1 g ( 0 . 3 7 m o 1 ) を滴下した。 懸濁状となった反応液の温 度を 1 0 °Cまで上げて、 第一段目の反応を開始させると、 反応液から発 泡が始まった。 発泡が収まるまでそのままの温度を維持した。 2時間後 反応液は透明な均一溶液となった。
温度を 2 0 °Cまで上げ、 第二段目の反応を開始させると、 穏やかに発 泡が再開し、 この状態で 5時間反応させた。 懸濁状となった反応溶液を 、 窒素雰囲気下濾過した。 得られた固体を氷水に注ぎ、 クロ口ホルムで 抽出し、 へキサンで溶媒置換して濾過した。 濾液に活性炭を加えて再度 濾過した。 溶媒留去、 次いで乾燥させて 7 . 0 g (収率 9 3 % ) の白色 の固体を得た。
この白色固体をガスクロマトグラフィ一により分析したところ、 1 , 3—ジクロロアダマン夕ンの純度は 94 %であった。
比較例 1
実施例 1に いて、 ァダマンタン 5. 0 g ( 0. 0 3 7 m o 1) にクロ ロスルホン酸を 20 °Cで滴下した後、 その温度で 7時間反応させて反応 を終えた以外は、 同様に操作したところ、 5. 6 g (収率 7 5 %) の白 色の固体を得た。
得られた白色固体の分析結果は、 1 , 3—ジクロロアダマンタンの純 度は 7 8 %であった。
比較例 2
実施例 1と同様に操作し、 ァダマンタン 5. 0 g ( 0. 0 3 7 m o 1 ) にクロルスルホン酸を 1 0°Cで滴下した後、 2時間反応させた。 反応 溶液は透明な均一溶液になった。 次いで、 反応溶液の温度を 40 °Cに挙 げて 5時間反応させ、 以後実施例と同様に操作した。 その結果、 5. 3 g (収率 7 1 %) の白色の固体を得た。 得られた白色固体の分析結果は 、 1 , 3ージクロロアダマンタンの純度は 80 %であった。
実施例 2
第一段目の反応温度を 1 5°Cにし、 その反応時間を反応液が透明で均 一な状態となるまでに要した 1時間とする以外は、 実施例 1と同様に操 作したところ、 6. 7 g (収率 8 9 %) の白色の固体を得た。
得られた白色固体の分析結果は、 1, 3—ジクロロアダマンタンの純 度が 9 1 %であった。
実施例 3
第二段目の反応温度を 3 0°Cにし、 その反応時間を 3時間とする以外 は、 実施例 1と同様に操作したところ、 6. 8 g (収率 9 0 %) の白色 の固体を得た。 得られた白色固体の分析結果は、 1, 3—ジクロロアダマンタンの純 度が 8 9 %であった。
実施例 4
クロロスルホン酸の使用量を 2 5. 9 g (0. 22 m o 1 ) にし、 第二段目の反応時間を 8時間に変える以外は、 実施例 1と同様に操作し たところ、 6. 5 g (収率 8 6 %) の白色の固体を得た。
得られた白色固体の分析結果は、 1, 3—ジクロロアダマンタンの純 度が 9 2 %であった。
実施例 5
ァダマンタン 5. 0 g ( 0. 0 3 7 m o 1) を、 1ーメチルァダマンタ ン 5. 5 g (0. 0 3 7 mo 1) に変える以外は、 実施例 1と同様に操作 したところ、 7. 2 g (収率 9 0 %) の白色の固体を得た。
得られた白色固体の分析結果は、 1—メチル _ 3, 5—ジクロロアダ マンタンの純度が 9 0 %であった。
実施例 6
クロロスルホン酸 43 g (0. 3 7 m o 1 ) を、 ブロモスルホン酸 5 9. 6 g ( 0. 3 7 mo 1 ) に変える以外は、 実施例 1 と同様に操作し たところ、 9. 5 g (収率 8 8 %) の白色の固体を得た。
得られた白色固体の分析結果は、 1 , 3—ジブ口モアダマンタンの純 度が 9 2 %であった。
実施例 7
ァダマンタン 5. 0 g ( 0. 0 3 7 m o 1) を 1 0 0m lの三つ口フラ スコに入れ、 窒素ガスを通じてフラスコ内を乾燥させた。 窒素をフロー したまま、 脱水ジクロロメタン 5 0m 1 を加え、 温度を 0°Cまで冷却し 、 クロロスルホン酸 43. 1 g ( 0. 3 7 m 0 1 ) を滴下した。 懸濁状 の反応液の温度を 1 0°Cまで上げて第一段目の反応を開始させると反応 液から発泡が始まった。 温度を 1 0 に維持して 2時間反応させた。 その後、 温度を 2 0°Cまで上げ第二段'目の反応を開始させると、 穩ゃ かに発泡が再開したので、 このまま 5時間反応させた。 反応溶液を氷水 に注ぎ、 室温になるまで攪拌した。 ジクロロメタンを 1 0 0m 1追加し て 2回抽出した。 これら抽出溶媒を合わせて 1回水洗後、 溶媒を留去し た。 へキサンに溶解して濾過し、 活性炭を加えて再度濾過し、 溶媒留去 、 乾燥させて 6. 8 g (収率 9 0 %) の白色の固体を得た。
この白色固体をガスクロマトグラフィ一により分析したところ、 1, 3—ジク口ロアダマンタンの純度は 8 9 %であった。
比較例 3
ァダマンタン 5. 0 g ( 0. 0 3 7 m o 1) を 1 0 0m lの三つ口フラ スコに入れ、 窒素ガスを通じてフラスコ内を乾燥させた。 窒素をフロー したまま、 三つ口フラスコに 2—クロロー 2—メチルプロパン 5 0 m 1 及び塩化アルミニウム 1. 0 gを加え 8時間還流した。 反応溶液を氷水 に注ぎ、 室温になるまで攪拌した。 溶液を濾過し、 クロ口ホルムを加え て 2回抽出し、 これらを合わせて 1回水洗後、 溶媒を留去した。 へキサ ンに溶解して濾過し、 活性炭を加えて再度濾過し、 溶媒留去、 乾燥させ て 5. 3 gの白色の固体を得た。
この白色固体をガスクロマ卜グラフィ一により分析したところ、 1一 クロロアダマンタンが 9 0 %、 1, 3—ジクロロアダマンタンが 5 %で あった。

Claims

請求の範囲
1 . 1位がアルキル基で置換されていても良いァダマンタンとハロ スルホン酸とを反応させてジハロゲン化ァダマンタンを製造するに際し て、 一 5〜 1 5 °Cの温度で第一段目のモノハロゲン化反応を行い、 次い で、 1 7〜 3 5 °Cの温度で第二段目のジハロゲン化反応を行うことを特 徵とするジ八ロゲン化ァダマンタンの製造方法。
2 . 第一段目のモノハロゲン化反応および第二段目のジ八ロゲン化 反応を、 有機溶媒の不存在下で実施する請求の範囲第 1項に記載のジハ ロゲン化ァダマンタンの製造方法。
3 . 第一段目のモノハロゲン化反応を、 反応液が均一溶液になるま で行う請求の範囲第 2項に記載のジハロゲン化ァダマンタンの製造方法
4 . 第二段目のジハロゲン化反応により得られた反応液を濾過する ことによりジハロゲン化ァダマンタンを分離する請求の範囲第 2項に記 載のジハロゲン化ァダマンタンの製造方法。
5 . ハロスルホン酸の仕込割合が、 1位がアルキル基で置換されて いても良いァダマンタンに対して 5〜 1 5倍モル量である請求項 1〜 4の 何れかに記載のジハロゲン化ァダマンタンの製造方法。
PCT/JP2002/011718 2001-11-14 2002-11-11 Procede de preparation de dihalogenoadamantanes WO2003042139A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020047007258A KR100649500B1 (ko) 2001-11-14 2002-11-11 디할로겐화 아다만탄의 제조 방법
EP02785930A EP1445247B1 (en) 2001-11-14 2002-11-11 Process for preparation of dihalogenoadamantanes
US10/493,892 US6878853B2 (en) 2001-11-14 2002-11-11 Process for preparing dihalogenated adamantanes
DE60223070T DE60223070T2 (de) 2001-11-14 2002-11-11 Verfahren zur herstellung von dihalogenadamantanen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001349102A JP4014856B2 (ja) 2001-11-14 2001-11-14 ジハロゲン化アダマンタンの製造方法
JP2001/349102 2001-11-14

Publications (1)

Publication Number Publication Date
WO2003042139A1 true WO2003042139A1 (fr) 2003-05-22

Family

ID=19161824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/011718 WO2003042139A1 (fr) 2001-11-14 2002-11-11 Procede de preparation de dihalogenoadamantanes

Country Status (8)

Country Link
US (1) US6878853B2 (ja)
EP (1) EP1445247B1 (ja)
JP (1) JP4014856B2 (ja)
KR (1) KR100649500B1 (ja)
CN (1) CN100425584C (ja)
DE (1) DE60223070T2 (ja)
TW (1) TWI249516B (ja)
WO (1) WO2003042139A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100537498C (zh) * 2003-09-03 2009-09-09 株式会社德山 二卤代金刚烷类的制造方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7838708B2 (en) 2001-06-20 2010-11-23 Grt, Inc. Hydrocarbon conversion process improvements
US20050171393A1 (en) 2003-07-15 2005-08-04 Lorkovic Ivan M. Hydrocarbon synthesis
US20080275284A1 (en) 2004-04-16 2008-11-06 Marathon Oil Company Process for converting gaseous alkanes to liquid hydrocarbons
US8642822B2 (en) 2004-04-16 2014-02-04 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons using microchannel reactor
US20060100469A1 (en) 2004-04-16 2006-05-11 Waycuilis John J Process for converting gaseous alkanes to olefins and liquid hydrocarbons
US7674941B2 (en) 2004-04-16 2010-03-09 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons
US7244867B2 (en) 2004-04-16 2007-07-17 Marathon Oil Company Process for converting gaseous alkanes to liquid hydrocarbons
US8173851B2 (en) 2004-04-16 2012-05-08 Marathon Gtf Technology, Ltd. Processes for converting gaseous alkanes to liquid hydrocarbons
WO2005105713A1 (ja) * 2004-04-27 2005-11-10 Tokuyama Corporation ハロゲン化アダマンタン類の製造方法
EP2457887A1 (en) 2006-02-03 2012-05-30 GRT, Inc. Continuous process for converting natural gas to liquid hydrocarbons
BRPI0707490A2 (pt) 2006-02-03 2011-05-03 Grt Inc separação de gases leves de halogênios
WO2008139868A1 (ja) 2007-05-07 2008-11-20 Central Glass Company, Limited 射出成形用金型
KR20100027141A (ko) 2007-05-24 2010-03-10 지알티, 인코포레이티드 가역적으로 할로겐화수소를 흡수 및 방출할 수 있는 존 반응기
US8282810B2 (en) 2008-06-13 2012-10-09 Marathon Gtf Technology, Ltd. Bromine-based method and system for converting gaseous alkanes to liquid hydrocarbons using electrolysis for bromine recovery
AU2009270801B2 (en) 2008-07-18 2014-04-24 Reaction 35, Llc Continuous process for converting natural gas to liquid hydrocarbons
US8198495B2 (en) 2010-03-02 2012-06-12 Marathon Gtf Technology, Ltd. Processes and systems for the staged synthesis of alkyl bromides
US8367884B2 (en) 2010-03-02 2013-02-05 Marathon Gtf Technology, Ltd. Processes and systems for the staged synthesis of alkyl bromides
US8815050B2 (en) 2011-03-22 2014-08-26 Marathon Gtf Technology, Ltd. Processes and systems for drying liquid bromine
RU2459797C1 (ru) * 2011-04-27 2012-08-27 Учреждение Российской Академии Наук Институт Нефтехимии И Катализа Ран Способ получения 1,3-дихлорадамантана
US8436220B2 (en) 2011-06-10 2013-05-07 Marathon Gtf Technology, Ltd. Processes and systems for demethanization of brominated hydrocarbons
US8829256B2 (en) 2011-06-30 2014-09-09 Gtc Technology Us, Llc Processes and systems for fractionation of brominated hydrocarbons in the conversion of natural gas to liquid hydrocarbons
US8802908B2 (en) 2011-10-21 2014-08-12 Marathon Gtf Technology, Ltd. Processes and systems for separate, parallel methane and higher alkanes' bromination
US9193641B2 (en) 2011-12-16 2015-11-24 Gtc Technology Us, Llc Processes and systems for conversion of alkyl bromides to higher molecular weight hydrocarbons in circulating catalyst reactor-regenerator systems

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138139A (ja) * 1988-11-21 1990-05-28 Sumikin Chem Co Ltd 1,3−ジブロム−5,7−ジメチルアダマンタンの製造方法
JP2002145809A (ja) * 2000-11-10 2002-05-22 Idemitsu Petrochem Co Ltd 1,3−ジブロモアダマンタンの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3485880A (en) * 1968-02-05 1969-12-23 Sun Oil Co Polyhalogenation of adamantane hydrocarbons
SU371193A1 (ru) * 1971-03-30 1973-02-22 Известен также способ хлорировани адамантана избытком Способ получения 1,3-дихлорадамантана
US4849565A (en) * 1986-07-21 1989-07-18 Kurt Baum 1,3-diethynyladamantane and methods of polymerization thereof
RU2125551C1 (ru) 1996-12-05 1999-01-27 Институт нефтехимии и катализа с опытным заводом АН Республики Башкортостан Способ получения смеси 1-хлор- и 1,3-дихлорадамантанов

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02138139A (ja) * 1988-11-21 1990-05-28 Sumikin Chem Co Ltd 1,3−ジブロム−5,7−ジメチルアダマンタンの製造方法
JP2002145809A (ja) * 2000-11-10 2002-05-22 Idemitsu Petrochem Co Ltd 1,3−ジブロモアダマンタンの製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP1445247A4 *
TOLSTIKOV G.A. ET AL.: "New method of polyhaloadamantana synthesis", TETRAHEDRON LETTERS, no. 31, 1972, pages 3191 - 3192, XP002964376 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100537498C (zh) * 2003-09-03 2009-09-09 株式会社德山 二卤代金刚烷类的制造方法

Also Published As

Publication number Publication date
TW200300136A (en) 2003-05-16
KR100649500B1 (ko) 2006-11-27
EP1445247B1 (en) 2007-10-17
EP1445247A1 (en) 2004-08-11
US6878853B2 (en) 2005-04-12
KR20040064707A (ko) 2004-07-19
JP2003146916A (ja) 2003-05-21
CN100425584C (zh) 2008-10-15
CN1589249A (zh) 2005-03-02
DE60223070D1 (de) 2007-11-29
TWI249516B (en) 2006-02-21
DE60223070T2 (de) 2008-07-24
EP1445247A4 (en) 2006-04-05
JP4014856B2 (ja) 2007-11-28
US20040260127A1 (en) 2004-12-23

Similar Documents

Publication Publication Date Title
WO2003042139A1 (fr) Procede de preparation de dihalogenoadamantanes
CN111303051A (zh) 制5-(3,6-二氢-2,6-二氧-4-三氟甲基-1(2h)-嘧啶基)苯硫酚方法
JP3166215B2 (ja) 1,2−ナフトキノンジアジド−5−スルホニルクロリドの製造方法
JP5023683B2 (ja) ベンゾフルオレン誘導体の製造方法およびその中間体
US11566037B2 (en) Process for producing isopropylidene bis(cyclopentadienyl)zirconium dichloride
JP4093842B2 (ja) ハロゲン化アダマンタン類の製造方法
JP4481589B2 (ja) ビスホスフィンの製造方法
KR19990015053A (ko) 2-(4-할로메틸페닐)프로피온산의 제조방법
WO2021240331A1 (en) Process for the preparation of 3,5-dichloro-2,2,2-trifluoroacetophenone
JPH0578308A (ja) 4−フエニルチオベンゼンチオールの製造方法
JP4435447B2 (ja) メトキシメチルトリアリールホスホニウムクロライドの製造法
RU2184739C1 (ru) Способ получения галогенидов металлоценов
JPH075493B2 (ja) ビス(2―ヒドロキシヘキサフルオロ―2―プロピル)ベンゼン誘導体の製造方法
JP4374693B2 (ja) アンチモントリフルオロメタンスルホネートの製造方法
JP4490152B2 (ja) 1,1−ジアルキル−3−(4−フェナントレニル)−2−プロピン−1−オール誘導体
JP2964160B2 (ja) シクロプロパンカルボン酸の単離方法及びその中間体の製造方法
JP5754842B2 (ja) p−ヨードフェノールの製造方法
JPH0539294A (ja) ジ(メタ)アリル・(ω−トリアルコキシシリルアルキル)イソシアヌレートの製造法
JP4050901B2 (ja) 1,3−アダマンタンジオールの製造方法
JP4463622B2 (ja) 1,3−アダマンタンジオール類の製造方法
JPH09124676A (ja) 非対称置換メタロセンの製法及びその種の化合物
JPS6122045A (ja) ビフエニルテトラカルボン酸の製造方法
JP2003012679A (ja) トリアリールホスホニウム塩の製造法
JP2003252805A (ja) ハロゲン化アダマンタン類の製造方法
JPS60209552A (ja) 4,4’−ビス(カルボアルコキシメチレンアミノ)ジフエニルメタンの製造法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN IN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10493892

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002785930

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020047007258

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002822731X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002785930

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002785930

Country of ref document: EP