WO2003007457A1 - Moteur electrique - Google Patents

Moteur electrique Download PDF

Info

Publication number
WO2003007457A1
WO2003007457A1 PCT/JP2002/007042 JP0207042W WO03007457A1 WO 2003007457 A1 WO2003007457 A1 WO 2003007457A1 JP 0207042 W JP0207042 W JP 0207042W WO 03007457 A1 WO03007457 A1 WO 03007457A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
electric motor
winding
skew
rotor
Prior art date
Application number
PCT/JP2002/007042
Other languages
English (en)
French (fr)
Inventor
Hideharu Hiwaki
Yoshinari Asano
Hisakazu Kataoka
Sunao Hashimoto
Shinichi Okuyama
Hiroshi Murakami
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/483,658 priority Critical patent/US6952064B2/en
Priority to DE60238122T priority patent/DE60238122D1/de
Priority to EP02745954A priority patent/EP1414132B1/en
Publication of WO2003007457A1 publication Critical patent/WO2003007457A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/022Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with salient poles or claw-shaped poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/06Magnetic cores, or permanent magnets characterised by their skew

Definitions

  • the present invention relates to a concentrated winding motor that realizes low noise and low vibration, and a hermetic compressor using the same.
  • a concentrated winding motor used for an air conditioner or a compressor of a refrigerator is configured as shown in FIGS. 10 to 12.
  • the stator 60 shown in FIGS. 10 and 12 is configured by laminating a stator core 6 1.
  • the stator core 61 is formed of a tooth 62 on which a wire is wound, and a substantially annular yoke 64 connecting the outer periphery of the tooth 62.
  • a tooth tip protrusion 65 protruding in the circumferential direction along the inner diameter of the stator core is formed.
  • the windings applied to the six teeth 62 provided on the stator core 61 are represented by three-phase windings 63 U, 63 V, and 63 W in FIG.
  • the dimensions and shapes of the phase windings 63 U, 63 V, and 63 W are not accurately described. When the dimensions and shapes are accurately described, the coils are wound as shown in FIG.
  • Fig. 11 is a cross-sectional view taken along the line X-X in Fig. 10, and the three-phase winding 63 U,
  • the windings 63 representing 63 V and 63 W are applied to the stator core 62 through an insulator 67 made of a film or resin molded insulator.
  • the three-phase windings 6 3 U, 6 3 V, and 6 3 W are connected to one another at a time, and at the same time, are driven by energization of two phases out of three phases. .
  • the applied voltage is changed by the PWM control.
  • stator cores 61 of this shape are stacked straight in the axial direction without forming skew.
  • the notch 66 formed on the outer periphery of the stator core 61 is formed by burning the stator 60 inside the shell 90 of the compressor. This acts as a through hole between the iron core 61 and the refrigerant core.
  • the rotor 80 is rotatably held inside the stator 60 so as to be concentric with the stator 60.
  • a permanent magnet 82 is embedded in a rotor core 81.
  • End plates (not shown) are attached to both ends of the rotor core ⁇ 1, and rivets (not shown) are passed through through holes provided in the rotor core to fix the end plates at both ends.
  • the shaft hole 83 has a shaft.
  • the rotor 80 is rotated by the rotating magnetic field generated by the current flowing through the three-phase windings 63 U, 63 V, and 63 W applied to the stator 60, and the rotating torque is a combination of the magnet torque and the reluctance torque.
  • the shaft rotates about the shaft.
  • the mutually acting or attracting or repelling stress acting between the adjacent tooth tip protrusions 65 increases. Therefore, the vibration tends to increase compared to the distributed winding. This includes rotating Not only directional vibrations, but also radial vibrations have a significant effect.
  • skew formation is effective as a method of reducing unevenness in rotational force and reducing vibration.
  • the skew is not limited to the stator.
  • Japanese Patent Application Laid-Open No. 2000-175530 discloses skew formation on the rotor or on both the stator and the rotor. By forming the skew, it is possible to reduce the vibration generated in the concentrated winding motor shown in FIG. 10 described above.
  • An object of the present invention is to suppress vibration and noise during operation of a concentrated winding motor, and an object of the present invention is to provide a motor with high efficiency and low vibration and low noise.
  • an electric motor according to the present invention has a skew formed on at least one of a stator and a rotor provided with a concentrated winding, and a winding is provided between the windings in the winding groove.
  • the wire damping body is inserted so as to be in contact with the winding directly or via an insulator, and the winding in the winding groove is supported by the winding damping body.
  • the relative skew angle formed by the stator and the rotor is not less than 4 ° and not more than (12 O / N p) °.
  • the electric motor according to claim 1 of the present invention has an annular yoke and a plurality of teeth arranged at substantially equal intervals in a substantially radial direction on an inner peripheral portion of the yoke, and a motor for winding between adjacent teeth.
  • An electric motor composed of a stator provided with a groove and having a central winding wound on the teeth, and a rotor which is rotatably opposed to the inner periphery of the stator with a small gap therebetween.
  • a skew is formed in at least one of the stator and the rotor, and a winding damper is inserted between the windings in the winding groove.
  • the strength of the stator is improved by supporting the winding in the winding groove with the winding damping body, thereby improving the strength of the stator. Vibration can be suppressed or attenuated.
  • Form skew on stator When the skew is formed not only on the rotor but also on the rotor, the cogging torque and torque pulsation can be reduced even if the skew angle formed on the stator is reduced.
  • the electric motor according to claim 2 of the present invention in claim 1, the ⁇ system isolator, non-magnetic or electric conductivity: constituted of a material Bigabiku 1 X 1 ( ⁇ 5 ⁇ _ 1 ⁇ 1
  • the electric motor according to claim 3 of the present invention is the electric motor according to claim 1 or claim 2, wherein the thermal expansion coefficient of the wound wire damper is: characterized in that it is a 0-5 k one 1. If this configuration. According, by increasing the coefficient of thermal expansion than the stator core can be more firmly held between tea scan by heat generated during the motor operation
  • a permanent magnet is embedded in a rotor core of the rotor.
  • the electric motor according to claim 5 of the present invention is the electric motor according to claim 4, wherein the rotor skewer is provided with a magnet embedding hole in the rotor axial direction and is divided into at least two in the rotor axial direction.
  • the rotor core unit thus formed is formed into a rotor core integrally formed by embedding permanent magnets in the respective magnet embedding holes and rotating it at an arbitrary angle in the circumferential direction. It is characterized by being. According to this configuration, the leakage magnetic flux of the permanent magnet can be reduced.
  • the electric motor according to claim 6 of the present invention is the electric motor according to claim 5, wherein the rotor core is divided axially, and the rotation angle of the rotor core unit in the circumferential direction is set at equal intervals for each rotor core unit.
  • the number of parts can be reduced.
  • the electric motor according to claim 7 of the present invention is the electric motor according to claims 1 to 6, wherein when the number of poles of the rotor is Np, the relative number of rotors formed by the stator and the rotor is relatively small.
  • the skew angle is not less than 4 ° and not more than (120 / N p) °. According to this configuration, the annular vibration of the stator and the rotor core can be suppressed. Further, when skew is formed on the stator and the rotor, the skew angle to be formed on each of the skew can be reduced.
  • An electric motor according to an eighth aspect of the present invention is the electric motor according to the first to seventh aspects, wherein the winding is made of a self-fusing electric wire.
  • the rigidity of the stator including the windings and the stator core can be improved.
  • the electric motor according to claim 11 of the present invention is the electric motor according to claims 1 to 8, wherein a groove or a protrusion is formed on the outer periphery of the stator core, and the groove on the outer periphery of the stator core is formed on the inner periphery.
  • a skew is formed by engaging a fixed core with a cylindrical frame having a projection or groove twisted in the axial direction by a skew angle corresponding to the projection.
  • the skew angle of the stator can be easily and accurately fixed.
  • a sealed compressor according to claim 12 of the present invention is characterized in that the electric motor according to any one of claims 1 to 10 is mounted. According to this configuration, a hermetic compressor with low vibration and low noise can be realized.
  • a sealed compressor according to claim 13 of the present invention is the hermetic compressor according to claim 12, wherein the stator of the electric motor is formed with a notch for a coolant passage on an outer periphery of a stator core corresponding to the teeth. It is characterized by.
  • a hermetic compressor according to claim 14 of the present invention is a hermetic compressor using the electric motor according to claim 10, wherein the cylindrical frame also serves as a seal of the hermetic compressor. It is characterized by. According to this configuration, a special jig for forming a skew on the stator is not required, and the number of assembling steps can be reduced.
  • the hermetic compressor according to claim 15 of the present invention is characterized in that, in claims 12 to 14, HFC or natural refrigerant is used as a control medium. According to this configuration, the environmental load can be reduced.
  • the hermetic compressor according to claim 16 of the present invention is characterized in that in claim 12 to claim 15, a voltage applied between terminals of a winding of the electric motor is 50 volts or less. According to this configuration, a low-vibration, low-noise hermetic compressor capable of battery driving can be realized.
  • a refrigeration cycle according to claim 1 of the present invention is characterized by using the hermetic compressor according to any one of claims 12 to 16. According to this configuration, a low-vibration, low-noise refrigeration cycle can be realized.
  • the air conditioner according to claim 18 of the present invention is a sealed type air conditioner according to any one of claims 13 to 16. It is characterized by using a compressor. According to this configuration, an air conditioner with low vibration and low noise can be realized.
  • An automobile according to a nineteenth aspect of the present invention is equipped with the air conditioner according to the eighteenth aspect. According to this configuration, a vehicle with low vibration and low noise can be realized.
  • a motor vehicle according to claim 20 of the present invention includes the motor according to any one of claims 1 to 10 mounted as an actuator, and a voltage applied between terminals of windings of the motor is provided. It is not more than 50 volts. According to this configuration, an automobile with low vibration and low noise can be realized.
  • the method of manufacturing an electric motor according to claim 21 of the present invention is characterized in that, in manufacturing the electric motor according to claim 9, the electromagnetic steel sheets are stacked while shifting the small holes formed in the electromagnetic steel sheet by one at a time. A pin is inserted into the small hole of the magnetic steel sheet to fix the magnetic steel sheet to manufacture a stator having a skew.
  • a pin is passed through the elongated hole of the punched electromagnetic steel sheet and laminated, and a stator is formed.
  • the skew is formed on the stator by twisting the upper layer around the axis with respect to the lower layer, and the stator is manufactured by fixing the outer periphery of the laminated electromagnetic steel sheets by welding or bonding or pressing.
  • a method for manufacturing a hermetic compressor according to claim 23 of the present invention when manufacturing a hermetic compressor using the electric motor according to claim 11, grooves or protrusions are formed on the outer periphery of the stator core.
  • a skew by engaging a stator core with the
  • FIG. 1 is a sectional view of a concentrated winding motor according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of the stator of the embodiment.
  • Fig. 3 is a cross-sectional view of the teeth and winding grooves of the stator core of the embodiment.
  • Fig. 4 is a characteristic diagram of the displacement of the outer periphery of the stator core and the skew angle formed on the stator core in the same embodiment.
  • Fig. 5 is a characteristic diagram of the torque pulsation and the skew angle of the embodiment.
  • FIG. 6 is a perspective view showing a first method of manufacturing the stator constituting the electric motor of the present invention.
  • FIG. 7 is a perspective view showing a second method for manufacturing the stator constituting the electric motor of the present invention.
  • FIG. 8 is a perspective view showing a third method of manufacturing the stator constituting the electric motor of the present invention.
  • FIG. 9 is a diagram showing a skewed rotor of the present invention.
  • Fig. 10 is a sectional view of a conventional concentrated winding motor.
  • Fig. 11 is a cross-sectional view of the teeth and winding grooves of the stator core in a conventional concentrated winding motor.
  • FIG. 12 is a perspective view of a stator core in a conventional concentrated winding motor.
  • FIGS. 10 to 12 show a concentrated winding motor according to an embodiment of the present invention.
  • the stator cores 61 are stacked in the axial direction straight and no skew is formed.
  • the end 65 a is a straight line extending along the axial direction
  • the circumferential end 15 a of the tooth tip end projection 15 of the stator core 10 is Skew is formed by layering so as to be inclined with respect to the direction.
  • the winding state around the teeth is such that a winding damper 18 is interposed between windings 13 of different phases in the winding groove 19 and between them.
  • a winding damper 18 is interposed between windings 13 of different phases in the winding groove 19 and between them.
  • Fig. 11 in the conventional winding state, there is a gap 100 between the windings of different phases 6 3-6 3 in the winding groove. Is different.
  • the structure of the stator, the connection state of the three-phase windings 13 U, 13 V, and 13 W, and the energized driving state of the three-phase windings 13 U to 13 W are the same as those of the conventional example. .
  • the motor shown in Fig. 1 used for air conditioners and refrigerator compressors consists of a stator 10 and a rotor 20.
  • the stator 10 has six stator cores 11 As shown in Fig. 3, a three-phase winding 13 U is provided between the winding 13 and the stator core 11 through an insulator 17 such as a film or insulator. 13 V, 13 W are applied.
  • a notch 16 is formed in the outer peripheral portion of the stator core 11, and the notch 16 is formed when the stator 10 is shrink-fitted inside the compressor shell 90. This acts as a through-hole between the shell and the stator core 11 to serve as a refrigerant passage.
  • the rotor 20 arranged in the hole formed in the rotor core 11 is configured by embedding a permanent magnet 22 in the rotor core 21.
  • the permanent magnets 22 are not limited to those shown in FIG. 1.
  • a plurality of permanent magnets may be arranged (embedded) in at least one layer in an inverted arc shape.
  • FIG. 2 shows a state in which a skew is formed in the stator 10 formed by stacking the stator iron cores 11 having the planar shape shown in FIG.
  • the components other than the stator core 11, for example, 13 U, 13 V, 13 W, etc. constituting the winding 13 are not shown.
  • the winding method of winding 13 is nozzle winding method, inserter method, or the end of copper wire (winding wire) passes multiple times through the winding groove ends on the top and bottom sides of the stator core. Then, it can be manufactured by any of the winding methods in which a winding is wound around the teeth 12.
  • the winding 13 When the winding 13 is applied by the 5-nozzle winding method, the winding can be arranged and the space factor can be improved, and the axial length of the motor can be kept small.
  • the skew When the skew is formed on the stator 10, the skew is formed on the stator 10, whereby a tensile force acts on the winding 13.
  • loosening the windings 13 in advance, or providing a space for the length corresponding to the skew on both ends or one end in the axial direction of the stator core 11 or 0- Can be alleviated.
  • the nozzle winding method is performed on the laminated stator core 11, a space for moving the nozzle is required in the winding groove 19, and the same winding wound on the adjacent teeth 1 and 2 is required.
  • the winding damper 18 may be used.
  • the width of the winding groove 1 • 9 opening (the width of the gap between the adjacent teeth tip protruding parts 15) is set to be smaller than that of the nozzle winding method. Since the size can be reduced, the magnetic flux can be effectively linked, the space factor can be improved, and the efficiency of the motor can be improved.
  • the winding 13 before insertion is temporarily wound larger than the width of the tooth tip protrusion 15, and the inner circumferential length thereof is set to the tooth 12 (the stator core 1 is smaller than the tooth tip protrusion 15). Since the outer circumference is longer than the outer circumference, when loaded in the winding groove 19, the axial end of the stator core 11 and the axial end of the winding 13 Between the inner circumference, Even if a space is formed and a skew is formed in the stator 10 after the winding, no tensile force acts on the winding 13. Therefore, it is advantageous in terms of productivity and reliability.
  • the end of the copper wire passes through the winding groove 19 end on the top and bottom sides of the stator 11 multiple times, and the winding 13 is wound around the teeth 12.
  • the size of the opening of the winding groove 19 can be set freely. It is easy to apply the alignment winding.
  • the winding nozzle cannot be inserted from the opening on the inner peripheral side of the winding groove 19, or the provisionally wound winding 13 can be inserted. Even if it does not exist, winding is possible. It is especially effective when the number of turns is small, and is suitable when using thick lines, rectangular lines, etc.
  • the stator core 11 includes teeth 12 around which the windings 13 are wound, and a teeth tip 1 which faces the outer periphery of the rotor 2. 5 and a substantially annular yoke 14 connecting the teeth 12 to each other.
  • FIG. 2 shows a state in which skew is formed in the stator 10 shown in FIG. Note that, in this drawing, portions other than the stator core 11 such as the winding 13 are not shown.
  • Notch 16 is formed on the outer periphery of stator core 11.
  • the notch 16 is formed at the position corresponding to the tooth 12, that is, on the same line as the tooth 12 (a radial line passing through the center of the stator core 12), and the same angle as the tooth 12 is formed. Is attached.
  • FIG. 3 shows a skew formed in the stator 10 and the windings 13 housed in the same winding groove 19 wound around the adjacent teeth via the winding damper 18. It shows the state of contact.
  • each tooth 12 adjacent to a certain skew angle as a boundary and the number of windings on these are determined by the skew angle and the amount of the wound winding 13. Since the windings 13 contact each other via the winding damper 1.8 in the same winding groove 19, the strength of the stator 10 '(stator core 1'1) is improved. The strength of the stator 10 that suppresses the vibration of the teeth 12 can be improved by the winding 13. Further, the vibration of the teeth 12 and the windings 13 is suppressed or attenuated by the damper effect of the windings 13 which are in contact with each other via the winding damper 18, and the noise and vibration of the motor are reduced. Can be reduced. ⁇
  • Conductivity 1x10— When a material of 1 is used, the generation of induced current due to the fluctuation of magnetic flux generated between the adjacent teeth 12 can be suppressed, so that the vibration of the teeth 12 can be reduced in a state in which Joule heat is suppressed.
  • Thermal expansion coefficient is material if using, by increasing the coefficient of thermal expansion than the iron-based material constituting the stator core 1 1, the motor Due to the heat generated during operation, the space between the teeth 12 can be more firmly held, and the vibration of the teeth 12 can be further suppressed. Especially when used at high temperatures, the effect is greater .
  • non-magnetic winding damper 18 using resin molded products such as PPS, PET, PB.T, PA, and PTFE improves the rigidity of the stator ⁇ 0 and reduces the vibration damping effect. We can expect to get.
  • these polyester resins are particularly suitable when used in a refrigerant such as a hermetic compressor.
  • the winding 13 is preferably wound around the teeth 12 via an insulating material 17 (insulating film, insulating film, etc.).
  • insulating material 17 insulating film, insulating film, etc.
  • a polyester-based film is preferable as the insulator 17.
  • the refrigerant specifically, HFC or the like can be used, and a natural refrigerant can also be used.
  • both ends of the film in the axial direction must be specified to secure a spatial insulation distance between the coil and the axial end face of the stator core 11. It is good to be folded back at the width so that the end hooks on the end of the stator core 11.
  • a film for insulating the stator core 11 and the winding 13 is arranged along the winding groove 19, and its end is extended, so that windings of different phases in the same winding groove 19 are formed. The insulation between 13 and 13 may be performed simultaneously.
  • an insulator formed of resin may be used along the winding groove 19.
  • an insulator 17 can be inserted between the winding 13 and the insulating support member 18.
  • Fig. 4 shows the displacement of the outer periphery of the stator core (excitation force during motor operation is set to the inner diameter of the stator) and the skew angle formed in the stator core.
  • Fig. 5 shows the relationship between torque pulsation and skew angle. Show.
  • Fig. 4 shows that when the stator core 11 is considered to be provided with protrusions that form teeth inside the ring that forms the yoke, that is, ribs, the ribs are not straight in the axial direction, but in the circumferential direction. By twisting the skew at a skew angle of 4 ° or more, annular vibration is suppressed. ⁇
  • ⁇ Fig. 4 shows the amount of displacement of the outer circumference of the stator with respect to an arbitrary constant load.
  • the diagram shown in the figure moves up and down in parallel due to the increase and decrease of the load.
  • the displacement is constant.
  • the skew angle is 4 ° or more, (120 / N p).
  • the winding 13 is fixed by heating or energizing the winding 13. By doing so, the windings 13 of the same phase are more firmly in contact with each other and fixed in the winding groove 19, so that the vibration of the winding 13 itself can be suppressed.
  • One method is to form a skew after winding (including the insertion of the winding 1.3 by the above-mentioned insulator method).
  • the other method is to form a skew on the stator 10 ⁇ It is a way to turn. .
  • FIG. 6 shows a specific example of forming a stagger in the stator 10.
  • a skew is formed on the stator 10 while shifting the small holes 41 one by one, and the stator core 1 1 is fixed to the small holes 4 1 through the pins 31 so that the skew angle of the stator core 1 1 can be easily adjusted. Can be determined accurately and fixed.
  • the present invention is applicable to a compressor having a large capacity, for example, a packaged air conditioner. Furthermore, if these holes are also provided at 180 ° symmetrical positions, the skew process can be performed more reliably. Further, after passing the pin 31 through the small hole 41, the outer periphery of the stator 10 can be fixed to the laminate by welding, bonding, or pressing (caulking).
  • the same punched shape can be used even if the lamination is changed, and it is possible to share parts.
  • only one long hole 42 is provided in the circumferential direction of the stator core 11 in FIG. 7, a plurality of long holes 42 may be provided.
  • FIG. 8 constitutes Note c shows another example of forming a skew on the stator 1 0, 8, the stator 1 0 such ⁇ 1 3 elements Is omitted.
  • At least one groove 43 is provided on the outer peripheral portion of the stator core 11, and the groove 43 is aligned at the same position before skew is formed.
  • a skewer can be easily formed on the stator 10, thereby improving productivity.
  • the stator core 11 may be press-fitted or shrink-fitted, but the punched electromagnetic steel sheet is not necessarily strongly bonded, so it is desirable that the shrinkage is small.
  • a means for fixing the shell 90 and the stator core 11 is required. ' ⁇ .
  • the seal 90 fitted to the outside of the stator core 11 was a compressor seal, so a special jig for forming a skewer on the stator 10 was required. Instead, it can be used as a part as it is, reducing materials used and simplifying production equipment, improving productivity.
  • stator 10 Before the stator 10 is housed in the shell 90, it can be divided into at least two parts in the circumferential direction in the same cylindrical shape as the shell 90, and the inner peripheral surface has grooves 4 3 A jig provided with a projection 51 that is twisted in the axial direction by a predetermined skew angle corresponding to the position of, and a stator 1 with skew formed using this jig It can also be configured to form 0 and to fit this in shell 90.
  • the skew is formed in the stator 10
  • the skew is formed in the rotor 20 in which the permanent magnet is embedded as shown in Fig. 1.
  • the rotor is formed, it is possible to suppress the vibration of the electric motor or to obtain an advantageous operation and effect as compared with a rotor having no skew.
  • the skew angle is a relative angle formed by the stator 10 and the rotor 20, when the skew is formed on the rotor 20, the skew angle formed on the stator 10 is reduced. And the manufacture of the stator 1 ⁇ becomes easier.
  • the relative angle at this time is 4 ° or more and (12 OZN p) ° or less, and the inclination direction of the skew of the stator 10 and that of the skew of the rotor 2.0 are opposite to each other. Formed in the direction. '
  • the stator core 11 is formed with the groove 4 ′ 3 and the shell 90 or the jig is formed with the projection 51 that engages with the groove 43.
  • the same configuration can be obtained by forming a projection on the shell 90 or 'forming a groove for engaging with the projection on the side of the stator core 11 in the jig.
  • the shell 90 on which the stator core 11 is attached is the shell 90 of the hermetic compressor, but the shell 90 of the electric motor used for various devices is also the same. Can be implemented.
  • FIG. 9 shows the rotor 20 having the skew.
  • the skewed rotor 20 is composed of two rotor core units 21 1 and 21 2 divided into two in the axial direction of the rotor 20.
  • Each of the rotor core units 21 ⁇ and 21 ⁇ has a magnet embedding hole 23 provided in the axial direction of the rotor 20.
  • the rotor core unit 21 and the rotor core unit 21B have permanent magnets 22A and 22B embedded in their respective magnet holes 23, and can be rotated at an arbitrary angle in the circumferential direction.
  • the rotor 20 is arranged in an X shape when projected from the end face side of the rotor 20, although the permanent magnets 22 A and 22 B are vertically divided.
  • magnetic flux flows from one side (for example, N pole) of the permanent magnet 22 A to the other side of the permanent magnet 22 B (S pole if one side of the permanent magnet 22 A has N pole).
  • the leakage magnetic flux can be reduced.
  • the skew of the rotor 20 may be continuously formed in the same manner as the skew of the stator 10.
  • the permanent magnets 22 A and 22 B may be formed by injection molding. If the resin magnet is capable of being manufactured, its manufacture becomes easy. .
  • the rotor core 21 is composed of two rotor core units 21 and 21B, but is divided into at least two in the axial direction of the rotor 20 and It may be configured by integrally forming by shifting by an arbitrary angle.
  • the skew is formed on the stator 10 or both the stator 10 and the rotor 20.
  • the skew may be formed only on the rotor 20. .
  • motors are used not only for hermetic compressors, but also for air-conditioners installed in mobile units (for example, automobiles, electric wheelchairs, electric bicycles, or electric catering vehicles). It can be used in a refrigeration cycle, and when driven by a battery mounted on the same moving object, the efficiency of the motor is high, so the power consumption of the battery can be reduced. In addition, because the efficiency of the motor is high, the size of the motor required to obtain the same output can be made smaller than before. Also, when the power supply for operating the motor is a battery, that is, when the voltage applied between the terminals of the winding of the motor is 5 volts or less, for example, 12, 24, or 42 volts, the efficiency of the motor is increased. Power consumption can be reduced, and long-term operation is possible.
  • a skew is formed in at least one of the stator and the rotor, and the winding damper is inserted between the windings in the winding groove of the stator. It is possible to improve the strength of the stator and to suppress or attenuate the vibration of the teeth and windings. ⁇ Low vibration and low noise can be realized. Even when the space factor is particularly low, it is possible to easily support the winding in the winding groove. -"In addition, since the rotor has a permanent magnet embedded inside the rotor core, the magnet torque generated by the permanent magnet and the reluctance torque caused by the saliency of Rho-Yu can be used effectively.
  • the rotor since the rotor has skew, cogging torque and torque pulsation can be reduced, and the skew angle formed in the stator can be reduced.
  • the rotor core unit which is divided into at least two parts in the rotor axis direction, is rotated at an arbitrary angle in the circumferential direction, and permanent magnets are embedded in the integrally formed stator core. Therefore, leakage flux can be reduced, and higher efficiency can be realized.
  • the relative skew angle formed by the stator and the rotor is 4. As described above, since it is not more than (120 ZN p) °, the ring vibration is suppressed, the natural frequency is increased, the displacement of the stator core vibration is reduced, and the vibration and noise during operation are reduced. Can be reduced. Further, when the skew is formed in both the stator and the rotor, the skew angle formed in each can be reduced, and the productivity can be improved.
  • the rigidity of the stator including the winding can be improved, and further vibration of the winding can be suppressed or attenuated.
  • a pin is inserted into a small hole provided in the vicinity, and the pin is inserted near the outer periphery of the punched magnetic steel sheet.
  • One or more elongated holes extending on the same circumference are provided over an angle of (angle corresponding to the width), and a skew is formed on the stator with the pins being inserted into the elongated holes, and the outer periphery of the stator is formed.
  • the skew angle of the stator core can be easily and accurately formed by fixing the laminated electromagnetic steel sheets by welding, welding or pressing. .
  • the electric motor according to the present invention having the above-described specific effects is used in a hermetic compressor or a hydraulic compressor, or the hermetic compressor is used in a refrigeration cycle or an air conditioner, or an automobile, these devices are used. Low vibration and low noise.
  • a notch for refrigerant passage is formed on the outer periphery corresponding to the teeth of the stator core of the motor for hermetic compressors used in these devices, so that the magnetic flux is required for passage. It is possible to secure a magnetic path, and it is possible to suppress a decrease in motor efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

明 細 書 電動機 技術分野
本発明は、 低騒音、 低振動を実現する集中巻電動機およびそれ を用いた密閉型圧縮機などに関するものである。 · 、 背景技術 従来、 エアコンや冷蔵庫の圧縮機などに使用される集中卷電動機 は、 図 1 0〜図 1 2に示すように構成されている。
これは、 固定子 60とその内側で回転自在に支持された回転子 8 0からなり、 図 1 0と図 1 2に示す固定子 6 0は、 固定子鉄心 6 1 を積層して構成されている。 この固定子鉄心 6 1は、 卷線が施され るティース 6 2と、 ティース 6 2の外周部をつなぐ略環状のヨーク 64から形成されている。 ティース 6 2の先端には、 固定子鉄心内 径部に沿って周方向に突出したティース先端突出部 6 5が形成され ている。
固定子鉄心 6 1に設けられた 6本のティース 6 2に施される巻線 は、図 1 0では 3相卷線 6 3U, 6 3 V, 6 3 Wで表されているが、 この 3相巻線 6 3 U, 6 3 V, 6 3 Wの寸法形状は正確に表記され ていない。 正確に寸法形状を表記すると、 図 1 1に示すように卷装 されている。
図 1 1は図 1 0の X— X 線に沿う断面図で、 3相卷線 63 U, 6 3 V , 6 3 Wを表す巻線 6 3は、 フィルム状または樹脂成形され たィンシユレ一夕からなる絶縁物 6 7を介して固定子鉄心の前記テ ィース 6 2に施されている。
3相卷線 6 3 U , 6 3 V , 6 3 Wは、 互いにス夕一結線されてお り、 同時に 3相中の 2相が通電して駆動される 1 2 0 ° 矩形波通電 である。 また、 印加電圧は P WM制御によって変化させられる。
また、 この形状の固定子鉄心 6 1は、 スキューを形成せずに軸方 向にまっすぐに積層されている。 固定子鉄心 6 1の外周に形成され た切り欠き 6 6は、 固定子 6 0が圧縮機のシェル 9 0の内側に焼.き. ばめ圧入された状態で、 前記シェル 9 0 と固定子鉄心 6 1 との間に 貫通孔として作用することになり、 冷媒の通路となる。
回転子 8 0は、 固定子 6 0の内側に、 固定子 6 0 と同心円状に、 回転自在に保持されている。 回転子 8 0は、 回転子鉄心 8 1に永久 磁石 8 2が埋め込まれている。 回転子鉄心^ 1の両端には端板 (図 示せず)が取り付き、回転子鉄心に設けられた貫通孔にリベッ ト (図 示せず) を通しかしめることで、 両端の端板が固定されている。 ま た、 軸孔 8 3にはシャフ トが入る。
したがって、回転子 8 0は固定子 6 0に施された 3相卷線 6 3 U , 6 3 V , 6 3 Wに流れる電流による回転磁界によって、 マグネヅ ト トルクとリラクタンス トルクとを合わせた回転力によって、 前記シ ャフ トを中心にして回転する。
上記のように、 スキュ一を形成せずに、 軸方向にまっすぐに積層 される固定子 6 0では、 互いに隣接したティース先端突出部 6 5の 間に、 作用する互いに引き合うあるいは反発する応力が増加するた めに、 分布卷に比べて振動が増加する傾向にある。 これには、 回転 方向の振動のみならず、 半径方向の振動も大きく影響を及ぼしてい る。
特に、 P W M制御を行う場合、 さらには 3相中 2相のみに通電す る 1 2 0 ° 矩形波通電では振動の増加が顕著であった。 これは、 正 弦波駆動に比べて、 巻線に流れる電流に高調波を多く含むためであ る。 また、 1 2 0 ° 矩形波通電では、 電流の変化が急峻であること から、 ティース先端突出部には強い加振力が発生し、 振動が増大す o
回転力のムラを低減し、 振動低減を図る方法として、 スキュー形 成が有効であることが従来から知られている。 スキューは固定子に ついてのみならず、 例えば、 特開 2 0 0 0— 1 7 5 3 8 0号には、 回転子、 または固定子と回転子との両方へのスキュー形成について 開示されており、 スキューを形成することによって前述の図 1 0に 示す集中卷電動機に発生する振動を低減することが可能である。
しかし、 固定子にスキューを形成することにより、 回転力のムラ を低減させると共に、 固定子鉄心を、 ヨークを形成す.る円環の内径 にティ一スを形成するリブを有する形状を考えた場合には、 スキュ 一により リブが斜めになり、 円環振動の発生を低減することはでき るが、 単に固定子にスキューすることのみでは、 完全になくすこと は不可能である。 そして、 発生するわずかな円環振動に対して、 非 接触状態で同一卷線用溝内に収納される卷線は質量となり、 振動を 増幅させていることが判明した。 発明の開示 本発明は、 集中巻電動機の運転時の振動、 騒音を抑制することで あり、 高効率で低振動、 低騒音である電動機を提供することを目的 とする。
上記課題を解決するために本発明の電動機は、 集中巻線を施して なる固定子と回転子の少なく とも一方にスキューを形成し、 かつ前 記卷線用溝内の前記卷線間に卷線制振体が前記巻線と直接または絶 縁物を介して接触するように挿入し、 卷線用溝内の卷線を卷線制振 体で支持したものである。
. また、'極数が N pである場合、 固定子と回転子により形成される 相対的なスキュー角度が、 4 ° 以上 ( 1 2 O /N p ) ° 以下とした ものである。 '
このような構成により、 集中巻線電動機の運転時の振動、 騒音を 抑制した高効率の電動機を実現できる。 本発明の請求項 1に記載の電動機は、 環状のヨークと前記ヨーク の内周部に略等間隔に略半径方向に配置された複数のティースを有 して隣接するティースの間に巻線用溝が設けられ前記ティースに集 中巻線を施してなる固定子と、 前記固定子の内周に僅かな空隙を介 して対向し回転自在に保持された回転子により構成される電動機に おいて、 前記固定子と前記回転子の少なく とも一方にスキューが形 成され、 かつ前記卷線用溝内の前記巻線間に卷線制振体を挿入した ことを特徴とする。
この構成によると、 巻線の占積率が低い場合であっても、 卷線用 溝内で卷線を卷線制振体で支持することで、 固定子の強度を向上さ せ、 卷線の振動を抑制または減衰できる。 固定子にスキューを形成 するだけでなく回転子にもスキューを形成した場合には、 固定子に 形成するスキュ一角度を小さく してもコギングトルクおよびトルク 脈動を低減できる。 本発明の請求項 2に記載の電動機は、 請求項 1において、 卷線制 振体を、 非磁性体あるいは導電率 : びがびく 1 X 1 (Τ5 Ω _ 1 πΓ 1の 材料で構成したことを特徴とする。 本発明の請求項 3に記載の電動機は、 旨青求項 1 または請求項 2に おいて、 卷線制振体の熱膨張係数 : が、 ひ > 1 . 1 X 1 0—5 k一1 であることを特徴とする。 この構成に.よると、 固定子鉄心よりも熱 膨張係数を大きくすることで、 電動機運転時の発熱によってティー ス間をより強固に保持できる。 本発明の請求項 4に記載の電動機は、 請求項 1〜請求項 3におい て、 前記回転子には回転子鉄心の内部に永久磁石が埋め込まれてい ることを特徴とする。 この構成によると、 永久磁石によるマグネヅ ト トルクとロータの突極性に起因するリラクタンス トルケを有効に 利用できる。 本発明の請求項 5に記載の電動機は、 請求項 4において、 回転子 スキュ一は、 回転子軸方向に磁石埋め込み孔が設けられ、 かつ回転 子軸方向に少なく とも 2つに分割された回転子鉄心ュニヅ トが、 そ れそれの前記磁石埋め込み孔に永久磁石を埋め込むとともに円周方 向に任意の角度回転させ一体に形成された回転子鉄心に形成されて いることを特徴とする。 この構成によると、' 永久磁石の漏れ磁束を 低減できる。 本発明の請求項 6に記載の電動機は、 請求項 5において、 回転子 鉄心の軸方向分割、 および回転子鉄心ユニッ トを円周方向への回転 角度は回転子鉄心ュニッ トごとに等間隔であることを特徴とする。 この構成によると、.部品点数を削減できる。
' 本発明の請求項 7に記載の電動機は、 請求項 1〜請求項 6におい · て、 前記回転子の極数が N pである場合、 固定子ど回転子により形 成される相対的なスキュ一角度が、 4 ° 以上、 ( 1 2 0 /N p ) ° 以下であることを特徴とする。 この構成によると、 固定子、 回転子 鉄心の円環振動を抑制できる。 また、 固定子および回転子にスキュ 一を形成した場合、各々に形成すべきスキュ一角度を小さくできる。 本発明の請求項 8に記載の電動機は、 請求項 1〜請求項 7におい て、 前記巻線が自己融着電線からなることを特徴とする。 この構成 によると、 巻線および固定子鉄心を含めた固定子の剛性が向上でき る ο 本発明の請求項 9に記載の電動機は、 請求項 1〜請求項 8におい て、 前記固定子が、 打ち抜いた電磁鋼板を積層してなり、 スキュー 角度を 0 s、 電磁鋼板の積層枚数を N s としたとき、 打ち抜いた電 磁鋼板の外周部付近に、 回転中心に対して 0 h = 0 s ÷ N s ( ° ) ピッチの小穴を少なく とも同一円周上に N s個設けたことを特徴と する。 この構成によると、 固定子鉄心のスキュー角度を、 容易に精 度良く固定できる。 本発明の請求項 1 0に記載の電動機は、 請求項 1〜請求項 8にお いて、 前記固定子が、 打ち抜いた電磁鋼板を積層してなり、 スキュ 一角度を 0 sとしたとき、 打ち抜いた電磁鋼板の外周部付近に、 回 転中心に対して、 0 h = O s +ひ (° ) の角度にわたって同一円周 上に伸びた長孔を設けたことを特徴とする。 この構成によると、 固 . 定子鉄心のスキュー角度を、 容易に精度良く固定できる。 本発明の請求項 1 1に記載の電動機は、 請求項 Ί〜請求項 8にお いて、 '固定子鉄心の外周に溝または突起を形成し、 かつ内周に固定 子鉄心の外周の前記溝または前記突起に対応してスキュー角度だけ 軸方向の回り方向に捻られた突起または溝を形成した円筒枠を固定 ' '子鉄心に係合させてスキュ一を形成したことを特徴とする。 この構 成によると、固定子のスキュー角度を、容易に精度良く固定できる。 本発明の請求項 1 2に記載の密閉型圧縮機は、 請求項 1から請求 項 1 0のいずれかに記載の電動機を搭載したことを特徴とする。 こ の構成によると、 低振動、 低騒音の密閉型圧縮機を実現できる。 本発明の請求項 1 3に記載の密閉型圧縮機は、 請求項 1 2におい て、 電動機の固定子は、 ティースに対応した固定子鉄心の外周に冷 媒通路用の切り欠きを形成したことを特徴とする。 この構成による と、 磁束が通過するために必要な磁路を確保しつつ、 固定子が圧縮 機のシェルに焼きばめ圧入された時、 圧縮機のシヱルと固定子鉄心 との間に冷媒通過用の貫通孔を形成できる。 本発明の請求項 1 4に記載の密閉型圧縮機は、 請求項 1 0に記載 の電動機を用いた密閉型圧縮機であって、 前記円筒枠が密閉型圧縮 機のシヱルを兼ねていることを特徴とする。 この構成によると、 固 定子にスキューを形成するための特別な治具を必要せず、 組立工数 を削減できる。 ' 本発明の請求項 1 5に記載の密閉型圧縮機は、 請求項 1 2〜請求 項 1 4において、 ί令媒として H F Cまたは自然冷媒を使用したこと を特徴とする。 この構成によると、 環境負荷を低減できる。 本発明の請求項 1 6に記載の密閉型圧縮機は、 請求項 1 2〜請求 項 1 5において、 電動機の卷線の端子間にかかる電圧が 5 0ボルト 以下であることを特徴とする。 この構成によると、 バヅテリー駆動 が可能な、 低振動、 低騒音の密閉型圧縮機を実現できる。 本発明の請求項 1 Ίに記載の冷凍サイクルは、 請求項 1 2から請 求項 1 6のいずれかに記載の密閉型圧縮機を用いたことを特徴とす る。 この構成によると、 低振動、 低騒音の冷凍サイクルを実現でき る ο 本発明の請求項 1 8に記載の空気調和機は、 請求項 1 3から請求 項 1 6のいずれかに記載の密閉型圧縮機を用いたことを特徴とする。 この構成によると、 低振動、 低騒音の空気調和機を実現できる。 本発明の請求項 1 9に記載の自動車は、 請求項 1 8に記載の空気 調和機を搭載したことを特徴とする。 この構成によると、 低振動、 低騒音の自動車を実現できる。 本発明の請求項 2 0に記載の自動車は、 請求項 1から請求項 1 0 のいずれかに記載の電動機をァクチユエ一夕として搭載し、 かつ前 記電動機の巻線の端子間にかかる電圧が 5 0ボルト以下であること を特徴とする。 この構成によると、 低振動、 低騒音の自動車を実現 できる。 ' 本発明の請求項 2 1に記載の電動機の製造方法は、 請求項 9記載 の電動機を製造するに際し、 電磁鋼板に形成された前記小穴を ίつ ずつずらしながら前記電磁鋼板を積層し、 積層された電磁鋼板の前 記小穴にピンを挿通して前記電磁鋼板を固定してスキューが形成さ れた固定子を製造することを特徴とする。 本発明の請求項 2 2に記載の電動機の製造方法は、 請求項 1 0記 載の電動機を製造するに際し、 打ち抜いた電磁鋼板の前記長孔にピ ンを揷通して積層し、 固定子の下層に対して上層を軸心回りに捻つ て固定子にスキューを形成し、 積層された電磁鋼板の外周を溶接ま たは接着あるいは加圧によりが固定して固定子を製造することを特 徴とする。 本発明の請求項 2 3に記載の密閉型圧縮機の製造方法は、 請求項 1 1記載の電動機を使用した密閉型圧縮機を製造するに際し、 固定 子鉄心の外周に溝または突起を形成し、 かつ内周に固定子鉄心の外 周の前記溝または前記突起に対応してスキュー角度だけ軸方向の回 り方向に捻られた突起または溝を形成した円筒枠の.密閉型圧縮機シ エルに固定子鉄心を係合させてスキューを形成することを特徴とす
^ o ' .
■ · ' 本発明の請求項 2 4に記載の密閉型圧縮機の製造方法は、' 請求項 1 1記載の電動機を使甩した密閉型圧縮機を製造するに際し、 固定 子鉄心の外周に溝または突起を形成し、 円筒粋でその円周方向に少 なく とも 2以上に分割でき内周に固定子鉄心の外周の前記溝または 前記突起に対応してスキュー角度だけ軸方向の回り方向に捻られた 突起または'溝を形成した治具に、 固定子鉄心を係合させてスキュー を形成し、 スキューが形成された固定子を前記治具から取り外して 密閉型圧縮機シェルの内側に取り付けることを特徴とする。 図面の簡単な説明 図 1は本発明の実施例の集中卷線電動機の断面図
図 2は同実施例の固定子の斜視図
図 3は同実施例の固定子鉄心のティースおよび卷線用溝部の断面 図
図 4は同実施例の固定子鉄心外周部変位量と固定子鉄心に形成さ れるスキュー角度の特性図 図 5は同実施例のトルク脈動とスキュー角度の特性図
図 6は本発明の電動機を構成する固定子の第一の製造方法を示す 斜視図
図 7は本発明の電動機を構成する固定子の第二の製造方法を示す 斜視図
図 8は本発明の電動機を構成する固定子の第三の製造方法を示す 斜視図 ·
図 9は本発明のスキューを形成した回転子を示す図
図 1 0は従来の集中巻電動機の断面図 . .
図 1 1は従来の集中卷電動機における固定子鉄心のティースおよ び卷線用溝部の断面図
図 1 2は従来の集中巻電動機における固定子鉄心の斜視図 発明を実施するための最良の形態 ' 以下、 本発明の実施例を図 1〜図 9に基づいて説明する。
図 1〜図 3は本発明の実施例の集中卷電動機を示す。 図 1 0〜図 1 2に示した従来の集中卷の電動機では固定子鉄心 6 1を軸方向に まっすぐに積層してスキューが形成されていないため、 ティース先 端突出部 6 5の周方向の端部 6 5 aは、 軸方向に沿って延びる直線 状であつたが、 この実施の形態では、 固定子鉄心 1 0のティース先 端突出部 1 5の周方向の端部 1 5 aが軸方向に対して傾くように積 層してスキューが形成されている。
また、 ティースへの巻線状態は図 3に示すように、 卷線用溝 1 9 内で異なる相の巻線同士 1 3の間に卷線制振体 1 8が介装されて互 いに接触しており、 図 1 1の従来の巻線状態の'ように、 卷線用溝内 で異なる相の卷線同士 6 3 - 6 3の間に隙間 1 0 0があるものとは 異なっている。
なお、 固定子の構造、 3相卷線 1 3 U , 1 3 V , 1 3 Wの結線状 態、 3相卷線 1 3 U〜 1 3 Wの通電駆動状態などは従来例と同様で ある。
以下に、 詳しく説明する。
空気調和機や冷蔵庫の圧縮機などに使用される図 1に示す電動機 は、 固定子 1 0 と回転子 2 0からなり、 固定子 1 0は、 固定子鉄心 1 1に設けられた 6本のティ一ス 1 2に、 図 3に示すように卷線 1 3 と固定子鉄心 1 1の間にフィルム状またはィンシユレ一夕等の絶 縁物 1 7を介して 3相卷線 1 3 U , 1 3 V, 1 3 Wが施されている。
固定子鉄心 1 1の外周部には切り欠き 1 6が形成されており、 こ の切り欠き 1 6は、 固定子 1 0が圧縮機のシェル 9 0の内側に焼き ばめ圧入された状態で、 前記シェルと固定子鉄心 1 1 との間に貫通 孔として作用することになり冷媒の通路となる。
回転子鉄心 1 1に形成した孔に配置される回転子 2 0は、 回転子 鉄心 2 1に永久磁石 2 2が埋め込まれて構成されている。 なお、 永 久磁石 2 2は、 図 1に示すものに制限するものではなく、 例えば、 少なく とも 1層以上に逆円弧状に複数配置 (埋め込む) したもので あっても良い。
図 2は図 1に示した平面形状の固定子鉄心 1 1 を積層して構成さ れる固定子 1 0にスキューを形成した状態を示している。 なお、 固 定子鉄心 1 1以外の構成部品、例えば、巻線 1 3を構成する 1 3 U , 1 3 V , 1 3 Wなどは、 その描画を省略してある。 巻線 1 3の卷線工法としては、 ノズル卷工法、 あるいはインサー 夕工法、 あるいは銅線 (卷線) の先端が固定子鉄心の天面側及び底 面側の巻線用溝端を複数回通過して、 ティース 1 2に巻線を卷回す る巻線工法のいずれによっても製造できる。
5 ノズル巻工法によって巻線 1 3を施す場合、 整列卷線が可能であ り占積率が向上すると共に、 電動機の軸方向長さを小さく抑えるこ とが可能である、 一方、 卷回後に前記スキューを固定子 1 0に形成 する場合、 固定子 1 0にスキューを形成することによって卷線 1 3 に引張力が作用する。 しかし、 あらかじめ緩めに巻線 1 3を施す、0 あるい-は固定子鉄心 1 1の軸方向の両端面または片端面に、 スキュ 一に対応する長さ分の空間を設けることで、 引張力を緩和すること が可能である。 また、 積層した固定子鉄心 1 1にノズル巻工法を行 う場合、 卷線用溝 1 9内にノズル移動するスペースが必要であり、 隣接するティース 1· 2に卷回された同一卷線用溝 1 9内に収納され5 る巻線 1 3同士の接触が、 前述の所定のスキュー角度範囲において 十分確保できないような場合、 卷線制振体 1 8を用いると良い。 次に、 インサ一夕工法によって巻線 1 3を施す場合、 卷線用溝 1 • 9開口部の幅 (隣接するティース先端突出部 1 5間の隙間の.幅) を ノズル巻工法に比べて小さくできるため有効に磁束を鎖交させるこ とができ、 占積率も向上させることが可能であり、 電動機の効率を 向上できる。 また、 通常、 挿入前の巻線 1 3は、 ティース先端突出 部 1 5の幅より大きく仮巻されており、 かつその内周長はティース 1 2 (ティース先端突出部 1 5より固定子鉄心 1 1の外径側部) 外 周長より長く してあるため、 巻線用溝 1 9内に装填したとき、 固定 子鉄心 1 1の軸方向端部と巻線 1 3の軸方向端部の内周部との間に、 スペースが形成され、 卷線後に固定子 1 0にスキューを形成しても 卷線 1 3に引張力は作用しない。 したがって、 生産性および信頼性 上有利となる。
最後に、 銅線 (巻線 1 3 ) の先端が固定子 1 1の天面側及び底面 側の卷線用溝 1 9端を複数回通過して、 ティース 1 2に卷線 1 3を 巻回する卷線工法の場合、 卷線用溝 1 9の開口部から卷線 1 3を揷 入する必要が無いため、 卷線用溝 1 9の開口部の大きさを自由に設 定でき、 整列卷線を施すのも容易である。 特に、 固定子 1 0にスキ ユーを形成することにより、 卷線用溝 1 9の内周側の開口部から卷 き線用ノズルが入らない、 あるいは、 仮巻した卷線 1 3が挿入でき ないような場合であっても、 巻回が可能である。 特に、 卷数の少な い場合に有効であり、 太線、 平角線などを使用する場合に適してい る o
固定子鉄心 1 1は、 卷線 1 3が卷回されているティース 1 2 と、 回転子 2 ひ外周に面し、 ティース 1 2の先端に、 通常幅広に配置さ れたティース先端突出部 1 5 と、 各ティース 1 2間を連結する略環 状のヨーク 1 4からなる。
図 2は図 1に示した固定子 1 0にスキューを形成した状態を示し ている。 なお、 本図においては、 固定子鉄心 1 1以外の部分、 例え ば卷線 1 3などは、 その描画を省略してある。
固定子 1 0にスキューを形成することによって、 主に回転力のム ラによる振動を緩和できる。
しかし、 騒音、 振動の原因としては半径方向の加振力や、 特に集 中巻の場合には隣接するティース 1 2間における吸引力の影響があ るため、 スキューのみでは振動を十分に低減することができない。 なお、 固定子鉄心 1 1には、 その外周に切り欠き 1 6が形成され ている。 切り欠き 1 6はティース 1 2に対応した位置、 すなわちテ ィース 1 2 と同一線 (固定子鉄心 1 2の中心を通る径方向線) 上に 形成されており、 ティース 1 2 と同様の角度が付されている。
図 3は固定子 1 0にスキューを形成し、 かつ隣接するティースに 卷回された同一卷線用溝 1 9内に収納される卷線 1 3同士が卷線制 振体 1 8を介して接触する状態を示したものである。
固定子 1 0にスキューを形成する場合、 スキュー角度と巻回され ている卷線 1 3の量により、 あるス'キュー角度を境にして隣接する 各ティース 1 2 と、 これらに卷回された巻線 1 3が同一卷線用溝 1 9内で、 卷線制振体 1 .8を介して互いに接触するため、 固定子 1 0 ' (固定子鉄心 1' 1 ) の強度を向上させると共に、 巻線 1 3により、 ' ティース 1 2の振動を抑制する固定子 1 0の強度を向上できる。 さ らに、 卷線制振体 1 8を介して互いに接触する各卷線 1 3のダンバ 効果により、 ティース 1 2および卷線 1 3の振動を抑制または減衰 させられ、 電動機の騒音、 振動を低減できる。 ·
特に、電動機の仕様により卷線量が少ない(占積率が低い)場合、 卷線 1 3の間に卷線制振体 1 8を挿入す.ることで、 上記のような作 用効果を確実かつ容易に得ることができる。
卷線制振体 1 8 としては、 非磁性体あるいは導電率 : びが
び < 1 X 1 O ^ Q ^ m"1 - である材料で、 さらに前記特性を有する材料で、 かつ熱膨張係数 : 力 ¾
> 1 . 1 x 1 0 ~5 k _ 1
である材料を使用することにより、 振動を抑制できる。 導電率 : びが び く 1 X 1 0—
Figure imgf000018_0001
1である材料を使用し た場合、 隣接するティース 1 2間で発生する磁束の変動による誘導 電流の発生を抑制できるため、 ジュール発熱を抑制した状態でティ —ス 1 2の振動を低減できる。
熱膨張係数 : が α > 1 . 1 X 1 0— 5 k— 1である材料を使用した場 合、 固定子鉄心 1 1を構成する鉄系材料よりも熱膨張係数を大きく することで、 電動機運転時の発熱によってティース 1 2の間をより 強固に保持することができ、 よりティース 1 2の振動を抑制可能と なる。 特に高温で使用される場合には効果が大きくなる ό
非磁性の卷線制振体 1 8 として ; P P S、 P E T、 P B .T、 P A、 P T F Eなどの樹脂成形品を使用することで固定子 Γ 0の剛性を向 上させる共に、 振動の減衰効果を得ることも期待できる。 特に、 こ れらのポリエステル系樹脂は、 密閉型圧縮機などのように、 冷媒中 で使用される場合に特に好適である。
なお、 巻線 1 3はティース 1 2に絶縁物 1 7 (絶縁フィルム、 ィ ンシユレ一夕など) を介して巻回すると良い。 特に、 密閉型圧縮機 などのように、 冷媒中で使用される場合、 絶縁物 1 7としてはポリ エステル系のフィルムが好適である。 冷媒としては、 具体的には H F Cなどが使用でき、 自然冷媒を使用することもできる。
固定子鉄心 1 1 と卷線 1 3の絶縁にフィルムを用いる場合、 コィ ルェンドと固定子鉄心 1 1の軸方向の端面との空間絶縁距離を確保 するために、 フィルムの軸方向両端を所定の幅で折り返し、 その端 部が固定子鉄心 1 1の端部に引つかかるようにすると良い。 また、 固定子鉄心 1 1 と卷線 1 3を絶縁するフィルムを卷線用溝 1 9に沿 わせ、 その端部を延長して、 同一巻線用溝 1 9内の異なる相の巻線 1 3間の絶縁も同時に行っても良い。
また、 固定子鉄心 1 1 と卷線 1 3の絶縁には樹脂にて成形したィ ンシュレ一夕を卷線用溝 1 9に沿わせて用いても良い。
さらに、 卷線 1 3 と絶縁支持部材 1 8間に絶縁物 1 7を挿入する ことも可能である。
図 4は、 固定子鉄心外周部変位量 (電動機運転時の加振力を固定 子内径に設定) と固定子鉄心に形成されるスキュー角度、 図 5は、 トルク脈動とスキュ一角度の関係を示す。
図 4は、 固定子鉄心 1 1を、 ヨークを形成する円環の内側にティ スを形成する突起、 即ちリブを設けたものとして考えるとき、 リ ブが軸方向にまっすぐではなく、 円周方向にスキュー角度 4 ° 以上 で捻られていることにより、 円環振動が抑制される。 ·
■ なお、 図 4は任意の一定荷重に対する固定子の外周変位量を示し たものであり、 例えば、 荷重の増減により、 図中に示す線図は上下 に平行移動するが、 どのような荷重においても、 スキュー角度 4 ° で、 変位量は一定となる関係にある。
また、 図 5によれば、 回転子 2 0の極数が N p = 4である場合に スキュー角度を 3 0 ( 1 2 0 /N p ) 。 以上で、 トルク脈動が増大 することが確認できる。
従って、 スキュー角度を 4 ° 以上、 ( 1 2 0 /N p ) 。 以下とす ることにより、 トルク脈動を低減しつつ、 円環振動の固有振動数が 高くなり、 固定子鉄心の振動の変位量が低下するため、 運転時の振 動や騒音が低減できる。
卷線 1 3を自己融着電線とし、 固定子 1 0にスキューを形成した 後に、 卷線 1 3を加熱または通電することにより巻線 1 3を固着さ せることで、 卷線用溝 1 9内で同相の巻線 1 3同士がより強固に接 触、 固着するため、 卷線 1 3そのものの振動を抑制できる。
次に、 本発明の電動機の固定子に適用されるスキュー形成につい て説明する。 '
固定子 1 0にスキューを形成する方法としては、 二通りの方法が 考えられる。
一方は、卷回(前述のィンサ一夕工法による卷線 1. 3の挿入含む。 以下同様) 後にスキュ一を形成する方法であり、 他方は、 固定子 1 0·にスキューを形成した後に巻回する方法である。 .
前者による場合、 卷線用溝 1 9の開口部が軸方向にまっすぐであ るので巻回'が容易であり、 生産性が良好である。
後者による場合、 固定子鉄心 1 1をスキューした状態で巻回する ことから、 巻回後、 固定子 1 0にスキューを形成する際に、 巻線 1 3を損傷することなく、絶縁性の良好な電動機の製造が可能である。 図 6に固定子 1 0にズ—キューを形成する具体例を示す。
スキュー角度を 0 s、電磁鋼板 4 0の積層枚数を N sとしたとき、 打ち抜いた電磁鋼板からなる固定子鉄心 1 1の外周部付近に、 回転 中心に対して 0 hピヅチの小穴 4 1を少なく とも同一円周上に N s 個設ける。 6> hは、 0 h = 0 s ÷ N s ) である。
この小穴 4 1を 1つずつずらしながら固定子 1 0にスキューを形 成し、 小穴 4 1にピン 3 1を通して固定子鉄心 1 1を固定すること で、 容易に固定子鉄心 1 1のスキュー角度を精度良く決め、 .固定で きる。
例えば、 4極 6卷線用溝の場合において、 1 5 ° のスキューを形 成する場合、 0 . 5 m mの厚みの電磁鋼板 4 0を 8 0枚積層し 4 0 m mの積厚とする場合、 0 h = 1 5 ÷ 8 O = O . 1 8 7 5 ° ピッチ の微少な穴を少なく とも 8 0個設けると良レ、。特に、容量の大きい、 例えば、 パッケージエアコンの圧縮機などに適用可能である。 さら に、 これらの穴は 1 8 0 ° 対称位置にも設けると、 スキューの工程 がより確実に行える。 また、 小穴 4 1にピン 3 1を通した後、 固定 子 1 0外周を溶接または接着または加圧 (かしめ) により積層間の 固着を行うことも可能である。 この場合、 巻線 1: 3の張力が強い場 合であっても、固定子鉄心 1 1の積層間の固着を保つことができる。 - .このような製造方法では、 積層枚数が異なった場合には同一の打 ち抜き形状の固定子鉄心 1 1を使用で'きないが、 図 7に示す製造方 法ではこの点を改善できる。
'図 7に示す製造方法では、 図 6における小穴 4 1の代わりに; 同 : ——円周上に伸びた長孔 4 2を、 回転中心に対して O h = 0 's + ひ ) (ひはピンの幅に相当する角度) の角度にわたって設け、 こ の長孔 4 2にピン 3 2を挿入した状態で積層した固定子鉄心 1 1の 下層に対して上層を軸心回りに捻って固定子 1 0にスキュー.を形成 した後、 積層した固定子鉄心 1 1の外周を溶接または接着または加 圧 (かしめ') により積層間の固着を行うことで、 固定子鉄心 1 1の スキュー角度を精度良く決め、 固定する。
このように、 積層が変更されても同一の打ち抜き形状を用いるこ とができ、 部品の共用化を図ることが可能である。 なお、 図 7では 長孔 4 2は固定子鉄心 1 1の周方向に 1個しか設けていなかつたが、 複数個を設けて構成することもできる。
図 8は固定子 1 0にスキューを形成する他の具体例を示している c なお、 図 8において、 卷線 1 3などの固定子 1 0を構成する要素 の描画は省略している。
固定子鉄心 1 1の外周部の少なく とも 1箇所に溝 4 3を設け、 ス キューを形成する前は、溝 4 3が同一箇所に揃えられている。一方、 固定子鉄心 1 1の外側に嵌合するシヱル 9 0の内側には、 溝 4 3の 位置に対応して、 所定のスキュ一角度だけ軸方向の回り方向に埝ら れた突起 5 1が設けられており、 前記シヱル 9 0に固定子鉄心 1 1 をシェル 9 0に収める際に、 固定子 1 0にスキューを形成する。
このような製造方法により、 固定子 1 0に容易にスキュ一を形成 できるため、 生産性が向上する。 この時、 固定子鉄心 1 1は圧入や 焼きばめでも良いが、 打ち抜いた電磁鋼板の 1枚 1枚が強く固着し ているわけではないので、 シメ代は小さい方が望ましい。 また、 隙 間嵌めの場合は、 シェル 9 0 と固定子鉄心 1 1を固定する手段が必 要である。 ' ■ .
上記の説明では、固定子鉄心 1 1の外側に嵌合するシヱル 9 0は、 圧縮機のシヱルであったので、 固定子 .1 0にスキュ一を形成するた めの特別な治具を必要とせず、 そのまま部品として利用でき使用材 料の低減や生産設備の簡素化ができ、 生産性が向上する。
このシェル 9 0に固定子 1 0を収める前に、 このシェル 9 0と同 様の筒状で、 その円周方向に少なく とも 2以上に分割することがで き、 内周面に溝 4 3の位置に対応して、 所定のスキュー角度だけ軸 方向の回り方向に捻られた突起 5 1が設けられた治具を使用し、 こ の治具を使用してスキューが形成された固定子 1 0を形成し、 これ をシェル 9 0に収めるようにも構成できる。
さらに、 固定子 1 0にスキューを形成した場合について記載した が、 図 1に示すような永久磁石を埋め込んだ回転子 2 0にスキュー を形成した場合も、 電動機の振動を抑制する、 あるいはスキューを 形成されていない回転子と比較し、 有利な作用効果を得ることが可 能となる。
そして、 さらに、 スキュー角度は固定子 1 0 と回転子 2 0により 形成される相対的な角度であるため、 回転子 2 0にスキューを形成 した場合、 固定子 1 0に形成するスキュー角度を小さくすることが でき、 固定子 1 ◦の製造がより容易になる。 このときの相対的な角 度は 4 ° 以上、 ( 1 2 O Z N p ) ° 以下であり、 固定子 1 0のスキ - ユーの傾き方向と回転子 2. 0のスキューの傾き方向とは、 逆方向に 形成される。'
上記の各実施例では、 固定子鉄心 1 1に溝 4' 3を形成し、 シェル 9 0または前記治具に前記溝 4 3に係合する突起 5 1を形成したが、 固定子鉄心 1 1に突起を形成し、 シェル 9 0または'前記治具に固定 子鉄心 1 1の側の突起に係合する溝を形成しても'同様に構成できる。
上記の各実施例では、 固定子鉄心 1 1が取り付けられるシェル 9 0は密閉圧縮機のシェル 9 0であったが、 各種装置のァクチユエ一 ダとして使用され.る電動機のシェルであつても同様に実施できる。 図 9にスキューを形成した回転子 2 0を示す。
■ スキューが形成された回転子 2 0は、 回転子 2 0の軸方向に 2つ に分割された回転子鉄心ュニヅ ト 2 1 Α, 2 1 Βで構成されている。 回転子鉄心ュニッ ト 2 1 Α , 2 1 Βは、 いずれも、 回転子 2 0の軸 方向に磁石埋め込み孔 2 3が設けられている。
回転子鉄心ュニヅ ト 2 1 Αと回転子鉄心ュニヅ ト 2 1 Bとは、 そ れそれの磁石埋め込み孔 2 3に永久磁石 2 2 A , 2 2 Bを埋め込み、 円周方向に任意の角度回転だけずらせて一体に形成した回転子鉄心 2 1によって構成されている。
このように構成したため: 回転子 2 0は、 永久磁石 2 2 A , 2 2 Bが上下に分割はされているものの、 回転子 2 0の端面側から投影 した場合、 X状に配置されており、 例えば、 永久磁石 2 2 Aの一方 側面 (例えば、 N極) から永久磁石 2 2 Bの他方側面 (前記永久磁 石 2 2 Aの一方側面が N極の場合、 S極) に磁束が流れ、 漏れ磁束 を低減できる。 ' '
また、 回転子 2 0へのスキュー形成は、 固定子 1 0へのスキュー '形成と同様に連続的に行っても良く、 このような場合、 永久磁石 2 2 A , 2 2 Bは射出成形などが可能である樹脂磁石とすると、 その 製造が容易となる。 .
図 9では回転子鉄心 2 1が、 · 2つの回転子鉄心ユニッ ト 2 1 , 2 1 Bで構成したが、 回転子 2 0の軸方向に少なぐとも 2つに分割さ れ、 円周方向に任意の角度回転だけずらせて一体に形成して構成す ればよい。
上記の各実施例では、 固定子 1 0または固定子 1 0と回転子 2 0 の両 にスキューを形成したが、 回転子 2 0にだけスキューを形成 して構成することもできる。 .
なお、 これらの電動機は密閉型圧縮機だけでなく、 移動体 (例え ば、 自動車、 電動車椅子、 電気自転車、 あるいは電動配膳車など) のァクチユエ一夕や、 移動体に搭載された空気調和機の冷凍サイク ルに使用することができ、 同一の移動体に搭載されたバッテリーに よる駆動に際しても、 電動機の効率が高いため、 バッテリーの電力 消費を低減できる。 また、 電動機の効率が高いので、 同じ出力を得 るために必要な電動機の大きさを従来よりも小さくできる。 また、 電動機運転用の電源がバッテリーである場合、 すなわち、 電動機の巻線の端子間にかかる電圧が 5 ◦ボルト以下、 例えば、 1 2、 2 4または 4 2ボルトなどである時、 電動機の効率が高いため バッテリーの電力消費を低減でき、 長時間運転ができる。 以上のように本発明によれば、 固定子と回転子の少なく とも一方 にスキューが形成され、 かつ前記固定子の卷線用溝内の卷線間に巻 線制振体を挿入したので、 固定子の強度を向上させ、 さらに、 ティ ースおよび卷線の振動を抑制または減衰させる.'ことが.可能であり ·、 低振動、 低騒音を実現できる。 また、 特に占積率が低い場合であつ ても、 '容易に卷線用溝内の卷線を支持できる。 - " また、 回転子は回転子鉄心内部に永久磁石が埋め込まれているの で、 永久磁石によるマグネッ ト トルクとロー夕の突極性に起因する リラクタンス トルクを有効に利用することができ、. 電動機の高効率 化を実現できる。 さらに、 回転子にスキューを形成しているので、 コギングトルクおよびトルク脈動を低減でき、 かつ固定子に形成す るスキュー角度を小さくできる。 さらにまた、 回転子スキューは、 回転子軸方向に少なく とも 2つに分割された回転子鉄心ュニッ トを、 円周方向に任意の角度回転させ一体的に形成された固定子鉄心に永 久磁石を埋め込み形成されているので、 漏れ磁束を低減することが でき、 さらなる高効率を実現できる。
また、 スキュー角度は、 .極数が N pである場合、 固定子と回転子 により形成される相対的なスキュー角度が、 4。 以上、 ( 1 2 0 Z N p ) ° 以下としたので、 円環振動が抑制され、 かつ固有振動数が 高くなり、 固定子鉄心振動の変位量が低下し、 運転時の振動や騒音 が低減できる。 さらに、 固定子と回転子共にスキューを形成した場 合、 各々に形成するスキュー角度を小さくすることができ、 生産性 を向上できる。
また、 自己融着電線を用いているので、 卷線を含めた固定子の剛 性を向上させることができ、 さらなる巻線の振動を抑制または減衰 できる。
· .また、 固定子は、 打ち抜いた電磁鋼板の外周部付近に設けた 6> h = θ s ÷ N s ( ° ) ピッチの小穴を 1つずつずらしながらスキュー が形成され、 かつ電磁鋼板外周部付近に設けた小穴にピンが挿通さ れ、 あ''るいは、 ·打ち抜いた電磁鋼板の外周部付近に、 '回転中心に対 して、 O h = O s + ひ ) (ひはピンの幅に相当する角度) の角 度にわたって、 同一円周上に伸びた長穴を 1個または複数個設け、 前記長穴にピンを挿入した状態で固定子にスキュ を形成し、 かつ 固定子外周を溶接または溶着あるいは加圧により積層された電磁鋼 ' 板を固定することにより、 固定子鉄心のスキュー角度を容易に精度 良く形成できる。 . .
また、 上記特有の効果を有する本発明による電動機を密閉型圧縮 機あるいは力一ァクチユエ一夕、 または前記密閉型圧縮機を冷凍サ ィクルあるいは空気調和機、 または自動車に用いているので、 これ ら機器の低振動、 低騒音を実現できる。
さらに.、 これら機器に用いられている密閉型圧縮機用の電動機の 固定子鉄心のティースに対応した外周に冷媒通過用の切り欠きを形 成しているので、 磁束が通過するために必要な磁路を確保すること が可能であり、 電動機の効率低下を抑制できる。

Claims

請 求 の 範 囲
1,
環状のヨークと前記ヨークの内周部に略等間隔に略半径方向に配 置された複数のティースを有して隣接するティースの間に卷線用溝 が設けられ前記ティースに集中卷線を施してなる固定子と、
前記固定子の内周に僅かな空隙を介して対向し回転自在に保持さ れた回転子により構成される電動機において、 +
前記固定子と前記回転子の少なく とも一方にスキューが形成され、 かつ前記卷線用溝内の前記巻線間に巻線制振体を挿入した
電動機。 '
2.
卷線制振体を、 非磁性体あるいは導電率: びがび< 1 X 1 0_5Ω一 im— 1の材料で構成した
請求項 1記載の電動機。
3.
卷線制振体の熱膨張係数 : ひが、 ひ > 1. 1 x 1 0— 5k—1である 請求項 1または請求項 2の何れかに記載の電動機。
4.
前記回転子には回転子鉄心の内部に永久磁石が埋め込まれている 請求項 1〜請求項 3の何れかに記載の電動機。
5. 回転子スキューは、 回転子軸方向に磁石埋め込み孔が設けられ、 かつ回転子軸方向に少なく とも 2つに分割された回転子鉄心ュニッ トが、 それぞれの前記磁石埋め込み孔に永久磁石を埋め込むととも に円周方向に任意の角度回転させ一体に形成された回転子鉄心に形 成されている .
請求項 4に記載の壩動機。
6 .
…回転子鉄心の軸方向分割、 および回転子鉄心ュニ'ッ トを円周方向 への回転角度は回転子鉄心ュニッ トごとに等間隔であることを特徴 とする '
請求項 5に記載の電動機。
7 .
前記回転子の極数が N pである場合、 固定子と回転子により形成 される相対的なスキュー角度が、 4 ° 以上、 ( 1 2 0 /N p ) 。 以 下であることを特徴とする
請求項 1から請求項 6のいずれかに記載の電動機。 .
8 .
前記卷線が自己融着電線からなることを特徴とする
請求項 1から請求項 7のいずれかに記載の電動機。
9 .
前記固定子が、 打ち抜いた電磁鋼板を積層してなり、 スキュー角 度を 0 s、 電磁鋼板の積層枚数を N s としたとき、 打ち抜いた電磁 鋼板の外周部付近に、 回転中心に対して ] = s ÷ N s ) ピ ツチの小穴を少なく とも同一円周上に N s個設けた
請求項 1から請求項 8のいずれかに記載の電動機。
1 0 .
前記固定子が、 打ち抜いた電磁鋼板を積層してなり、 スキュー角 度を 0 sとしたとき、 打ち抜いた電磁鋼板の外周部付近に、 回転中 心に対して、 Θ ι = θ s + a ) の角度にわたって同一円周上に 伸びた長孔を設けた
請求項 1から請求項 8のいずれかに記載の電動機。
1 1 .
固定子鉄心の外周に溝または突起を形成し、 かつ内周に固定子鉄 心の外周の前記溝または前記突起に対応してスキュー角度だけ軸方 向の回り方向に捻られた突起または溝を形成した円筒枠を固定子鉄 心に係合させてスキュ一を形成した
請求項 1から請求項 8のいずれかに記載の電動機。
1 2 .
請求項 1から請求項 1 0のいずれかに記載の電動機を搭載した密 閉型圧縮機。
1 3 .
電動機の固定子は、 ティースに対応した固定子鉄心の外周に冷媒 通路用の切り欠きを形成した
請求項 1 2に記載の密閉型圧縮機。
1 4.
請求項 1 0に記載の電動機を用いた密閉型圧縮機であって、 前記 円筒枠が密閉型圧縮機のシヱルを兼ねていることを特徴とする 密閉型圧縮機。 '
1 5
冷媒として H F Cまたは自然冷媒を使用したことを特徴とする 請求項 1 2から請求項 1 4のいずれかに記載の密閉型圧縮機。 '
1 6.
電動機の卷線の端子間にかかる電圧が 5 0ボルト以下であること を特徴とする
請求項 1 2から請求項 1 5のいずれかに記載の密閉型圧縮機。 1 7.
請求項 1 2から請求項 1 6のいずれかに記載の密閉型圧縮機を用 いたことを特徴とする
冷凍サイクル。
1 8.
請求項 1 3から請求項 1 6のいずれかに記載の密閉型圧縮機を用 いたことを特徴とする 空気調和機。 1 9 .
請求項 1 8に記載の空気調和機を搭載したことを特徴とする 自動車。
2 0 .
請求項 1から請求項 1 0のいずれかに記載の電動機をァクチユエ 一夕として搭載し、 かつ前記電動機の卷線の端子間にかかる電圧が 5 0ボルト以下であることを特徴とする
自動車。 ·
2 1 .
請求項 9記載の電動機を製造するに際し、
電磁鋼板に形成された前記小穴を 1つずつずらしながら前記電磁 鋼板を積層し、
積層された電磁鋼板の前記小穴にピンを挿通して前記電磁鋼板を 固定してスキューが形成された固定子を製造する
電動機の製造方法。
2 2 .
請求項 1 0記載の電動機を製造するに際し、 打ち抜いた電磁鋼板 の前記長孔にピンを挿通して積層し、
固定子の下層に対して上層を軸心回りに捻って固定子にスキュー を形成し、 積層された電磁鋼板の外周を溶接または接着あるいは加圧により が固定して固定子を製造する
電動機の製造方法。 '
2 3 .
請求項 1 1記載の電動機を使用した密閉型圧縮機を製造するに際 し、
固定子鉄心の外周に溝または突起を形成し、 かつ内周に固定子鉄 心の外周の前記溝または前記突起に対応してスキュー角度だけ軸方 向の回り方向に捻られた突起または溝を形成した円筒枠の密閉型圧 縮機シェルに固定子鉄心を係合させてスキューを形成する
密閉型圧縮機の製造方法。
2 4 .
請求項 1 1記載の電動機を使用した密閉-型圧縮機を製造するに際 し、
固定子鉄心'の外周に溝または突起を形成し、
- 円筒枠でその円周方向に少なく とも 2以上に分割.でき内周に固定 子鉄心の外周の前記溝または前記突起に対応してスキュー角度だけ 軸方向の回り方向に捻られた突起または溝を形成した治具に、 固定 子鉄心を係合させてスキューを形成し、
スキューが形成された固定子を前記治具から取り外して密閉型圧 縮機シヱルの内側に取り付ける
密閉型圧縮機の製造方法。
PCT/JP2002/007042 2001-07-11 2002-07-11 Moteur electrique WO2003007457A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/483,658 US6952064B2 (en) 2001-07-11 2002-07-11 Motor
DE60238122T DE60238122D1 (de) 2001-07-11 2002-07-11 Elektrischer Motor, Verfahren zu dessen Herstellung und hermetischer Kompressor mit einem solchen Motor
EP02745954A EP1414132B1 (en) 2001-07-11 2002-07-11 Electric motor, method of fabricating the same, and hermetic compressor comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001210071A JP4942259B2 (ja) 2001-07-11 2001-07-11 電動機
JP2001-210071 2001-07-11

Publications (1)

Publication Number Publication Date
WO2003007457A1 true WO2003007457A1 (fr) 2003-01-23

Family

ID=19045605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/007042 WO2003007457A1 (fr) 2001-07-11 2002-07-11 Moteur electrique

Country Status (5)

Country Link
US (1) US6952064B2 (ja)
EP (1) EP1414132B1 (ja)
JP (1) JP4942259B2 (ja)
DE (1) DE60238122D1 (ja)
WO (1) WO2003007457A1 (ja)

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7884522B1 (en) * 2004-10-25 2011-02-08 Novatorque, Inc. Stator and rotor-stator structures for electrodynamic machines
CN100385779C (zh) * 2003-04-11 2008-04-30 三菱电机株式会社 永磁式电动机
US7154368B2 (en) 2003-10-15 2006-12-26 Actown Electricoil, Inc. Magnetic core winding method, apparatus, and product produced therefrom
JP2005278298A (ja) * 2004-03-24 2005-10-06 Yaskawa Electric Corp 分割コア、スキュー付き分割積層コア、スキュー付き積層環状コア、分割積層コアスキュー形成装置、固定子、および電動機
JP4484616B2 (ja) * 2004-07-28 2010-06-16 株式会社三井ハイテック 積層鉄心の製造方法
US9093874B2 (en) 2004-10-25 2015-07-28 Novatorque, Inc. Sculpted field pole members and methods of forming the same for electrodynamic machines
US8330316B2 (en) 2011-03-09 2012-12-11 Novatorque, Inc. Rotor-stator structures including boost magnet structures for magnetic regions in rotor assemblies disposed external to boundaries of conically-shaped spaces
US8283832B2 (en) 2004-10-25 2012-10-09 Novatorque, Inc. Sculpted field pole members and methods of forming the same for electrodynamic machines
US8543365B1 (en) 2004-10-25 2013-09-24 Novatorque, Inc. Computer-readable medium, a method and an apparatus for designing and simulating electrodynamic machines implementing conical and cylindrical magnets
US8471425B2 (en) 2011-03-09 2013-06-25 Novatorque, Inc. Rotor-stator structures including boost magnet structures for magnetic regions having angled confronting surfaces in rotor assemblies
US7982350B2 (en) 2004-10-25 2011-07-19 Novatorque, Inc. Conical magnets and rotor-stator structures for electrodynamic machines
US7541710B2 (en) * 2005-01-21 2009-06-02 Hitachi, Ltd. Rotating electric machine
JP4444852B2 (ja) * 2005-02-24 2010-03-31 三菱電機株式会社 同期電動機の固定子の製造方法及び同期電動機の固定子及び送風機
WO2006120975A1 (ja) * 2005-05-06 2006-11-16 Mitsuba Corporation 電動機、回転電機及びそのステータ、並びにこのステータの製造方法
JP4641882B2 (ja) * 2005-07-13 2011-03-02 株式会社日立産機システム 電動機
US20070096585A1 (en) * 2005-11-02 2007-05-03 Kuen Yang Industrial Co., Ltd. AC motor stator
US20070114874A1 (en) * 2005-11-23 2007-05-24 Daewoo Electronics Corporation Motor having a stator and a rotor made of soft magnetic powder material
FR2894403A1 (fr) * 2005-12-02 2007-06-08 Leroy Somer Moteurs Machine electrique tournante a ondulations de couple reduites
CN101375484A (zh) * 2006-01-24 2009-02-25 株式会社安川电机 电动机定子的分裂铁芯、电动机定子、永磁式同步电动机以及利用分裂铁芯冲压模的冲压方法
EP1850457B1 (en) 2006-04-27 2017-03-15 Suntech Generator Co., Ltd Rotary device of generator or motor
DE102008012680A1 (de) * 2008-03-05 2009-09-17 Minebea Co., Ltd. Elektrische Maschine
JP2008017639A (ja) * 2006-07-06 2008-01-24 Fanuc Ltd 電動機および電動機製造方法
US7557482B2 (en) * 2006-07-31 2009-07-07 Caterpillar Inc. Axial-flux electric machine
US20080024035A1 (en) * 2006-07-31 2008-01-31 Caterpillar Inc. Power system
JP2008245471A (ja) * 2007-03-28 2008-10-09 Mitsubishi Electric Corp 回転電機
US20090001831A1 (en) * 2007-06-26 2009-01-01 Cho Chahee P Axial Field Electric Motor and Method
JP4427760B2 (ja) * 2007-07-26 2010-03-10 株式会社デンソー 積層鉄心の製造方法及び製造装置
US8018108B2 (en) * 2008-02-07 2011-09-13 Magnetic Applications, Inc. Compact high power alternator
JP5303958B2 (ja) * 2008-02-21 2013-10-02 Jfeスチール株式会社 電動機および電動機固定子の固定方法
TWM346978U (en) * 2008-06-27 2008-12-11 chao-xiong Lin Triphase rotary electric power generator
JP2008253135A (ja) * 2008-07-09 2008-10-16 Mitsui High Tec Inc 積層鉄心
CN101667770B (zh) * 2008-09-03 2013-09-04 德昌电机(深圳)有限公司 一种燃料泵及其无刷直流马达
JP4637218B2 (ja) * 2008-09-19 2011-02-23 本田技研工業株式会社 動力装置
US8227948B1 (en) 2009-01-09 2012-07-24 Hydro-Gear Limited Partnership Electric motor
JP5470015B2 (ja) * 2009-12-04 2014-04-16 株式会社日立製作所 回転電機
US8615976B1 (en) 2010-06-21 2013-12-31 Hydro-Gear Limited Partnership Electric motor clutch/brake assembly
US8581466B2 (en) 2010-08-27 2013-11-12 Hamilton Sundstrand Corporation Knurled multiple conductor windings
JP5572508B2 (ja) * 2010-09-30 2014-08-13 日立オートモティブシステムズ株式会社 回転電機
US20120080983A1 (en) * 2010-10-05 2012-04-05 Trevor Iund Stator with cooling system and associated motor
KR101255934B1 (ko) * 2011-07-29 2013-04-23 삼성전기주식회사 횡방향 스위치드 릴럭턴스 모터
JP2011250690A (ja) * 2011-08-03 2011-12-08 Mitsubishi Electric Corp 回転電機
US20130057107A1 (en) * 2011-09-02 2013-03-07 Steven Stretz Permanent magnet motors and methods of assembling the same
US20130057105A1 (en) * 2011-09-02 2013-03-07 Dean James Patterson Permanent magnet motors and methods of assembling the same
US20130057104A1 (en) * 2011-09-02 2013-03-07 Steven Stretz Permanent magnet motors and methods of assembling the same
US20140139067A1 (en) * 2012-10-18 2014-05-22 L.H. Carbide Corporation Die assembly and method for manufacturing wound motor laminated article
DE102012224153A1 (de) * 2012-12-21 2014-06-26 Robert Bosch Gmbh Stator für eine elektrische Maschine
DE102015200095A1 (de) * 2015-01-07 2016-07-07 Robert Bosch Gmbh Stator für eine elektrische Maschine und Verfahren zum Herstellen eines solchen
US10590929B2 (en) * 2015-05-04 2020-03-17 Penn United Technologies, Inc. Method of coupling stator/rotor laminates
WO2016199226A1 (ja) * 2015-06-09 2016-12-15 三菱電機株式会社 圧縮機用電動機、圧縮機、および冷凍サイクル装置
DE102015214106B3 (de) * 2015-07-27 2016-12-01 Bayerische Motoren Werke Aktiengesellschaft Verbesserter Stator für eine elektrische Maschine
US10541577B2 (en) 2016-01-13 2020-01-21 Ford Global Technologies, Llc Utilization of magnetic fields in electric machines having skewed rotor sections and separators with cutouts
US11146159B2 (en) * 2017-03-21 2021-10-12 Tti (Macao Commercial Offshore) Limited Brushless motor
WO2019123949A1 (ja) * 2017-12-18 2019-06-27 日本電産株式会社 電磁鋼板、ロータコア、ロータおよびモータ
EP3509188B1 (en) * 2018-01-09 2021-02-24 Siemens Gamesa Renewable Energy A/S Electric generator including a stator end plate
DE102018204876A1 (de) 2018-03-29 2019-10-02 Thyssenkrupp Ag Elektromotor mit geschrägtem Stator und/oder Rotor enthaltend mindestens eine Schicht eines Verbundwerkstoffs
US11888353B2 (en) * 2018-04-10 2024-01-30 Mitsubishi Electric Corporation Motor, compressor, and air conditioner
JP7351471B2 (ja) * 2018-08-27 2023-09-27 多摩川精機株式会社 ステータコア構造
KR102683454B1 (ko) * 2018-09-18 2024-07-10 엘지이노텍 주식회사 모터
JP7103122B2 (ja) 2018-09-27 2022-07-20 株式会社デンソー 回転電機
JP6997697B2 (ja) * 2018-11-19 2022-01-18 東芝三菱電機産業システム株式会社 回転電機、固定子および固定子の組み立て方法
JP7226088B2 (ja) * 2019-05-21 2023-02-21 株式会社デンソー ステータアセンブリ、及び、モータ
DE102019116822A1 (de) * 2019-06-21 2020-12-24 Valeo Siemens Eautomotive Germany Gmbh Statorblech, Statorblechpaket, Stator, elektrische Maschine, Fahrzeug und Verfahren zur Herstellung eines Stators
GB2590677B (en) * 2019-12-23 2023-09-27 Dyson Technology Ltd A motor core
EP3863161B1 (de) * 2020-02-05 2024-02-21 Grob-Werke GmbH & Co. KG Bestückungsvorrichtung und system umfassend eine bestückungsvorrichtung und einen rotor
DE102020211144A1 (de) * 2020-09-03 2022-03-03 Valeo Siemens Eautomotive Germany Gmbh Statorblechpaket, elektrische Maschine und Fahrzeug

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400872A (en) 1981-08-13 1983-08-30 General Electric Company Method of and apparatus for skewing a stack of laminations
JPH01157572U (ja) * 1988-04-13 1989-10-31
JPH0550961U (ja) * 1991-12-02 1993-07-02 松下電工株式会社 ブラシレスモータ
US5266859A (en) 1991-10-09 1993-11-30 General Electric Company Skewing of pole laminations of a switched reluctance machine to reduce acoustic noise
JPH10313556A (ja) * 1997-05-09 1998-11-24 Toshiba Corp 鉄心とその製造方法及び金型
EP0913909A1 (en) 1997-10-29 1999-05-06 Mitsubishi Denki Kabushiki Kaisha Reluctance motor and compressor-driving reluctance motor
JP2000175380A (ja) 1998-12-02 2000-06-23 Sanyo Electric Co Ltd 集中巻方式のブラシレスdcモータ
JP2000278895A (ja) * 1999-03-26 2000-10-06 Nissan Motor Co Ltd 電動機のロータ
DE19920818A1 (de) 1999-05-06 2000-11-09 Bosch Gmbh Robert Stator für eine elektrische Maschine, insbesondere für einen Elektromotor, sowie elektrische Maschine
EP1065778A2 (en) 1999-06-29 2001-01-03 SANYO ELECTRIC Co., Ltd. Brushless dc motor and refrigerant compressor employing the motor
JP2001218392A (ja) * 2000-02-03 2001-08-10 Nidec Shibaura Corp ブラシレスdcモータ
JP2002112473A (ja) * 2000-10-02 2002-04-12 Matsushita Electric Ind Co Ltd 電動機及びそれを用いた密閉型圧縮機
JP2002112488A (ja) * 2000-09-29 2002-04-12 Aichi Emerson Electric Co Ltd 電動機の固定子
JP2002171726A (ja) * 2000-11-30 2002-06-14 Fuji Electric Co Ltd 積層回転子鉄心のスキュー方法およびスキュー装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553157A (en) * 1978-10-12 1980-04-18 Kokusan Denki Co Ltd Method of manufacturing stator for rotary electric machine
US4388371A (en) * 1981-06-29 1983-06-14 General Electric Company Self-bonding acrylic polymer overcoat for coated metal substrates
JPS59226632A (ja) * 1983-06-02 1984-12-19 Matsushita Electric Ind Co Ltd ブラシレス電動機
JPS6166549A (ja) * 1984-09-07 1986-04-05 Oriental Motor Kk サ−ボモ−タ−のステ−タ−コアのスキユ−形成法
US4642502A (en) * 1986-04-24 1987-02-10 General Motors Corporation Dynamoelectric machine with permanent magnet and magnet mounting surface arrangement
JPH01157572A (ja) 1987-12-15 1989-06-20 Oki Electric Ind Co Ltd 半導体素子
US4995159A (en) * 1988-08-15 1991-02-26 Pacific Scientific Company Method of making an electronically commutated reluctance motor
JPH0354365U (ja) * 1989-06-01 1991-05-27
JP2593258B2 (ja) 1991-08-21 1997-03-26 ブリヂストンサイクル株式会社 自転車用ハブ発電装置
US5498916A (en) * 1994-02-23 1996-03-12 The United States Of America As Represented By The United States Department Of Energy Wedge and spring assembly for securing coils in electromagnets and dynamoelectric machines
JP3395332B2 (ja) * 1994-03-16 2003-04-14 三菱電機株式会社 車両用交流発電機の固定子およびその製造方法
JPH0833254A (ja) 1994-07-14 1996-02-02 Sankyo Seiki Mfg Co Ltd モータの電機子
JP3282493B2 (ja) * 1995-06-07 2002-05-13 松下電器産業株式会社 電動機の固定子及びその製造方法
JPH09201023A (ja) * 1996-01-18 1997-07-31 Fuji Xerox Co Ltd コアレスモータ
JP3631583B2 (ja) 1997-03-31 2005-03-23 三菱電機株式会社 永久磁石形モータ
JP3895824B2 (ja) 1997-04-09 2007-03-22 新日鐵住金ステンレス株式会社 ステンレス鋼の表面不動態化処理方法
JPH11299158A (ja) * 1998-04-10 1999-10-29 Mitsubishi Electric Corp 固定子巻線の固定構造
JP2000134853A (ja) 1998-10-27 2000-05-12 Calsonic Corp 電動機
JP3390684B2 (ja) 1998-12-18 2003-03-24 三菱電機株式会社 ステータおよびその製造方法
JP2000287397A (ja) 1999-03-30 2000-10-13 Sanyo Electric Co Ltd 圧縮機の電動機
JP3550678B2 (ja) * 1999-05-18 2004-08-04 株式会社安川電機 リニアモータ
JP2001025197A (ja) * 1999-07-06 2001-01-26 Nissan Motor Co Ltd 電動機のステータ
FR2802724B1 (fr) * 1999-12-15 2005-11-11 Leroy Somer Stator a dents convexes

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400872A (en) 1981-08-13 1983-08-30 General Electric Company Method of and apparatus for skewing a stack of laminations
JPH01157572U (ja) * 1988-04-13 1989-10-31
US5266859A (en) 1991-10-09 1993-11-30 General Electric Company Skewing of pole laminations of a switched reluctance machine to reduce acoustic noise
JPH0550961U (ja) * 1991-12-02 1993-07-02 松下電工株式会社 ブラシレスモータ
JPH10313556A (ja) * 1997-05-09 1998-11-24 Toshiba Corp 鉄心とその製造方法及び金型
EP0913909A1 (en) 1997-10-29 1999-05-06 Mitsubishi Denki Kabushiki Kaisha Reluctance motor and compressor-driving reluctance motor
JP2000175380A (ja) 1998-12-02 2000-06-23 Sanyo Electric Co Ltd 集中巻方式のブラシレスdcモータ
JP2000278895A (ja) * 1999-03-26 2000-10-06 Nissan Motor Co Ltd 電動機のロータ
DE19920818A1 (de) 1999-05-06 2000-11-09 Bosch Gmbh Robert Stator für eine elektrische Maschine, insbesondere für einen Elektromotor, sowie elektrische Maschine
EP1065778A2 (en) 1999-06-29 2001-01-03 SANYO ELECTRIC Co., Ltd. Brushless dc motor and refrigerant compressor employing the motor
JP2001218392A (ja) * 2000-02-03 2001-08-10 Nidec Shibaura Corp ブラシレスdcモータ
JP2002112488A (ja) * 2000-09-29 2002-04-12 Aichi Emerson Electric Co Ltd 電動機の固定子
JP2002112473A (ja) * 2000-10-02 2002-04-12 Matsushita Electric Ind Co Ltd 電動機及びそれを用いた密閉型圧縮機
JP2002171726A (ja) * 2000-11-30 2002-06-14 Fuji Electric Co Ltd 積層回転子鉄心のスキュー方法およびスキュー装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1414132A4 *

Also Published As

Publication number Publication date
EP1414132A4 (en) 2008-02-20
JP2003032939A (ja) 2003-01-31
EP1414132A1 (en) 2004-04-28
JP4942259B2 (ja) 2012-05-30
US6952064B2 (en) 2005-10-04
US20040195926A1 (en) 2004-10-07
EP1414132B1 (en) 2010-10-27
DE60238122D1 (de) 2010-12-09

Similar Documents

Publication Publication Date Title
WO2003007457A1 (fr) Moteur electrique
US11277045B2 (en) Radially embedded permanent magnet rotor and methods thereof
JP6711901B2 (ja) 電動機および空気調和機
US9831727B2 (en) Permanent magnet rotor and methods thereof
US9882440B2 (en) Radially embedded permanent magnet rotor and methods thereof
US9362792B2 (en) Radially embedded permanent magnet rotor having magnet retention features and methods thereof
EP1278293B1 (en) Method for manufacturing the stator of a low-noise motor-compressor
US6975049B2 (en) Electrical machine and method of manufacturing the same
US20140102674A1 (en) Radially embedded permanent magnet rotor and methods thereof
JP6832935B2 (ja) コンシクエントポール型の回転子、電動機および空気調和機
US20150061441A1 (en) Electric machine and associated method
US20140103772A1 (en) Radially embedded permanent magnet rotor and methods thereof
JP2003264947A (ja) 永久磁石電動機
JP6545393B2 (ja) コンシクエントポール型の回転子、電動機および空気調和機
CN113098171B (zh) 电机和家用电器
JPH10322948A (ja) 永久磁石埋込形回転子
JP2003061283A (ja) 回転電機の回転子、固定子、電動機、圧縮機、冷凍サイクル、回転電機の回転子製造方法
JPWO2022019074A5 (ja)
JP3828015B2 (ja) 永久磁石形モータ及び永久磁石形モータの製造方法及び圧縮機及び冷凍サイクル装置
JP2001218398A (ja) 永久磁石型モータの回転子
JP2002238190A (ja) 永久磁石形電動機の回転子及び永久磁石形電動機の回転子の製造方法及び永久磁石形電動機及び圧縮機及び冷凍サイクル
JPH09224338A (ja) モータ
CN113315286B (zh) 电机、家用电器及电机的制造方法
JP2001218397A (ja) 永久磁石型モータの回転子

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002745954

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10483658

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2002745954

Country of ref document: EP