WO2002042644A1 - Compresseur ferme et dispositifs de congelation et de conditionnement de l'air - Google Patents

Compresseur ferme et dispositifs de congelation et de conditionnement de l'air Download PDF

Info

Publication number
WO2002042644A1
WO2002042644A1 PCT/JP2001/010279 JP0110279W WO0242644A1 WO 2002042644 A1 WO2002042644 A1 WO 2002042644A1 JP 0110279 W JP0110279 W JP 0110279W WO 0242644 A1 WO0242644 A1 WO 0242644A1
Authority
WO
WIPO (PCT)
Prior art keywords
muffler
suction
suction muffler
closed container
pipe
Prior art date
Application number
PCT/JP2001/010279
Other languages
English (en)
French (fr)
Inventor
Masahiko Osaka
Hidetoshi Nishihara
Toshihiko Ota
Akihiko Kubota
Manabu Motegi
Hiroki Awashima
Takeshi Kojima
Kazuhito N0Guchi
Ichiro Kita
Masahiro Kakutani
Original Assignee
Matsushita Refrigeration Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Company filed Critical Matsushita Refrigeration Company
Priority to US10/432,028 priority Critical patent/US7381032B2/en
Priority to EP01997644A priority patent/EP1338795A4/en
Priority to MXPA03004723A priority patent/MXPA03004723A/es
Priority to BR0115644-6A priority patent/BR0115644A/pt
Priority to KR1020037007116A priority patent/KR100557069B1/ko
Priority to AU2002224095A priority patent/AU2002224095A1/en
Publication of WO2002042644A1 publication Critical patent/WO2002042644A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0027Pulsation and noise damping means
    • F04B39/0055Pulsation and noise damping means with a special shape of fluid passage, e.g. bends, throttles, diameter changes, pipes

Definitions

  • the present invention relates to a hermetic compressor in a refrigeration / air-conditioning apparatus such as a refrigerator and a showcase.
  • hermetic compressors for refrigerators, showcases, and other refrigerators and air conditioners have been required to provide technologies that improve efficiency, reduce noise, and have high reliability. Is also an important factor.
  • a conventional hermetic compressor is shown in US Pat. No. 5,971,720.
  • FIG. 14 is a sectional view of a conventional hermetic compressor.
  • FIG. 15 is an exploded perspective view of a suction muffler attached to a cylinder head of a conventional hermetic compressor.
  • reference numeral 1 denotes a closed container.
  • Reference numeral 2 denotes a compression element, which is housed in a sealed container 1.
  • Reference numeral 3 denotes an electric element, which is connected to the compression element 2.
  • Reference numeral 4 denotes a cylinder, which forms a compression chamber 5 of the compression element 2.
  • Reference numeral 6 denotes a piston, which reciprocates in the cylinder 4.
  • Reference numeral 7 denotes a valve plate, which seals one end of the cylinder 4.
  • Reference numeral 8 denotes a cylinder head, which fixes the knob plate 7 to the cylinder 4 and also fixes the suction muffler (not shown in FIGS. 13 to 13) to the valve plate 7.
  • 10 is a suction pipe.
  • 1 1 is a refrigerating machine oil, which is stored at the bottom of the closed container 1.
  • 1 and 2 are generated in the compression chamber 5 and the suction valve (not shown).
  • This is a suction muffler as a muffling means for attenuating generated noise.
  • a material having low thermal conductivity for example, a synthetic resin material.
  • the synthetic resin material is PBT or PPS material.
  • the suction muffler 1 2 is composed of a muffler body 13 and a muffler cover 9.
  • the muffler body 13 and the muffler cover 9 are joined by welding or fitting to form a muffler space 14.
  • Reference numeral 15 denotes an inlet pipe, one end of which opens into the hermetically sealed container 1 and the other end of which opens into the muffler space 14.
  • An outlet pipe 16 has one end open to the valve plate 7 side and the other end opening to the muffler space 14.
  • the operation of the hermetic compressor configured as described above will be described below.
  • the refrigerant gas returned from the refrigeration cycle (not shown) to the hermetic compressor is once released into the hermetic container 1 through the suction pipe 10. Thereafter, the refrigerant gas flows into the compression chamber 5 through the suction muffler 112 and the valve plate 7.
  • the piston 6 reciprocating due to the rotational movement of the electric element 3 it is sent to the refrigeration cycle.
  • FIG. 16 is a cross-sectional view of another conventional hermetic compressor.
  • reference numeral 18 denotes a closed container.
  • Reference numeral 19 denotes a compression element, which is accommodated in a closed container 18.
  • Reference numeral 20 denotes an electric element, which is connected to the compression element 19.
  • 2 1 is a cylinder, and the compression element 1 9
  • the compression chamber 22 is formed.
  • Reference numeral 23 denotes a piston, which reciprocates in the cylinder 21.
  • Reference numeral 24 denotes a valve plate, which seals one end of the cylinder 21.
  • Reference numeral 25 denotes a suction valve interposed between the valve plate 24 and the cylinder 21.
  • Reference numeral 26 denotes a cylinder head, which fixes the valve plate 24 to the cylinder 21 and also fixes the suction muffler 27 to the valve plate 24.
  • 28 is a suction pipe.
  • Reference numeral 29 denotes refrigerating machine oil, which is stored at the bottom of the sealed container 18.
  • the suction muffler 27 includes a suction muffler body 30 and a suction muffler cover 31.
  • the suction muffler main body 30 and the suction muffler cover 31 are joined by welding or fitting to form a muffler space 32.
  • Reference numeral 33 denotes an inlet portion, which fluidly connects the sealed container 18 and the muffler space 32.
  • Reference numeral 34 denotes an outlet pipe, one end of which is open to the valve plate 24 side, and the other end of which is open to the muffler space 32.
  • the refrigerant gas returned to the hermetic compressor from the refrigeration cycle (not shown) is once discharged into the hermetic container 18. Thereafter, the refrigerant gas flows into the compression chamber 22 through the suction muffler 27 and the knurl plate 24. Here, after being compressed by the piston 8 reciprocating by the rotational movement of the electric element 20, it is sent to the refrigeration cycle.
  • the pressure pulsation generated in the compression chamber 22 propagates in the opposite direction to the flow of the refrigerant gas, is once opened to the muffler space 32 through the outlet pipe 34, and then sealed through the inlet section 33. It is attenuated by being opened to the container 18 and radiated as low noise.
  • the above-described conventional configuration has a complicated shape due to the muffler body 13 and the muffler cover 19 forming the side wall surface of the suction muffler 12, so that the cost required for manufacturing is reduced. Since it causes an increase and deformation during molding becomes large, the muffler body 13 and the muffler There was a disadvantage that a sufficient noise reduction effect could not be obtained due to insufficient connection of the fuller cover 9 to cause leakage.
  • the muffler cover has a simple shape having only a single wall, the cost required for manufacturing can be reduced and the deformation can be reduced.
  • the purpose of the present invention is to provide an inexpensive, quiet and quiet hermetic compressor which can sufficiently close the cover.
  • the above-mentioned conventional configuration is composed of a muffler space 14 opening of the inlet pipe 15 and a muffler space 14 opening of the outlet pipe 16 or a muffler space 3 32 opening of the inlet 33. It is an effective means to increase the efficiency by reducing the fluid resistance by bringing the opening on the muffler space 32 side of the outlet pipe 34 into close proximity to the compression chamber 5 and the compression chamber 22. Fluid resistance to the generated pressure pulsation was similarly reduced, so that there was a drawback that a sufficient noise reduction effect could not be obtained.
  • Another object of the present invention is to add a fluid resistance means between the muffler space side opening of the inlet pipe and the muffler space side opening of the outlet pipe to reduce the pressure pulsation generated in the compression chamber. It provides a hermetic compressor that can be attenuated and has low noise.
  • the pressure pulsation generated in the compression chamber 5 and the compression chamber 22 is only released from the opening on the inlet pipe 15 or the closed vessel 1 and 18 side of the inlet section 33 as a sound source. Instead, it had the drawback of creating a new noise source by vibrating the walls of the suction mufflers 11 and 27.
  • Another object of the present invention is to integrate the wall surface of the suction muffler with the inlet pipe and the outlet pipe. By doing so, the rigidity of the wall surface of the suction muffler can be improved, so that wall vibration can be suppressed, and a hermetic compressor with quiet noise can be provided.
  • Another object of the present invention is to increase the volume of the closed container side opening without reducing the volume of the suction muffler by forming the volume of the closed container side opening on a wall surface different from the wall surface of the suction muffler. This makes it possible to simplify the shape of the suction muffler, thereby providing a low-noise, high-efficiency, closed-type compressor with low noise.
  • Another object of the present invention is to increase the flow rate of the refrigerant gas in the outlet pipe, thereby ensuring a sufficient supply of refrigerating machine oil from the capillary tube, and to provide a highly reliable hermetic compressor. To provide.
  • Another object of the present invention is to provide an environmentally safe hermetic compressor by applying the hermetic compressor incorporating the above-described suction muffler to a refrigerant containing no chlorine.
  • Another object of the present invention is to apply a sealed compressor incorporating the above-described suction muffler to a hydrocarbon-based refrigerant, thereby achieving environmentally safe operation. It is intended to provide a hermetic compressor.
  • Another object of the present invention is to reduce the noise caused by the hermetic compressor by applying the hermetic compressor described above to refrigerators, showcases, and other refrigerating and refrigeration systems and air conditioners, thereby achieving high reliability and environmental protection. It also provides safe refrigeration equipment and air conditioners.
  • the present invention provides a suction muffler including a closed container, an electric element, a compression element rotationally driven by the electric element, a suction pipe arranged in the closed container, a muffler body and a muffler cover.
  • the muffler body comprises: an inlet pipe having one end opened in the closed container and the other end opened in the suction muffler; and an outlet pipe having one end opened in the suction muffler and the other end opened to the compression element.
  • a muffler cover wherein the muffler cover is formed by forming only the upper side wall surface among the wall surfaces forming the muffler empty space, and the muffler cover is provided.
  • the wall forming the resonance space is formed integrally with the muffler cover, and the resonance space can be easily added without changing the muffler body at all. In addition, it has the effect of reducing noise at a frequency corresponding to the resonance space.
  • At least one of the wall surfaces forming the resonance space is formed along the inner wall surface of the suction muffler, so that the volume of the resonance space can be increased, which corresponds to the resonance space. This has the effect that the effect of reducing the pressure pulsation component of the frequency can be increased.
  • the present invention provides a closed container, an electric element, and a rotational drive by the electric element.
  • a shield wall is provided between the outlet pipe and the pressure pulsation generated in the compression chamber is not directly propagated from the outlet pipe to the inlet pipe, but the propagation path is lengthened through reflection by the shield wall. This has the effect that large attenuation can be obtained.
  • the shielding wall is formed integrally with any one of the wall surfaces of the suction muffler.
  • the shielding wall can be easily manufactured without separately providing a coupling means for connecting the shielding wall and the suction muffler, and can be formed in the compression chamber. Since the propagation path of the pressure pulsation can be lengthened, a large attenuation can be obtained.
  • the shielding wall is formed integrally with the muffler cover, and the shielding wall can be easily added without changing the muffler main body at all.
  • the propagation path of the pressure pulsation generated in the compression chamber can be lengthened, a large damping can be obtained.
  • the lower end of the shielding wall is located on a straight line connecting the center of the inlet muffler-side opening of the inlet pipe and the center of the inlet muffler-side opening of the outlet pipe or at a position closer to the upper end of the shielding wall.
  • the path of the refrigerant gas flowing from the inlet pipe to the outlet pipe is close to a straight line connecting the center of the inlet muffler side opening of the inlet pipe and the center of the suction muffler side opening of the outlet pipe.
  • the path of the refrigerant gas flowing from the outlet pipe with the pressure pulsation generated in the compression chamber to the inlet pipe is the same as the suction muffler of the outlet pipe. Pressure pulsation generated in the compression chamber without impeding efficiency by being radial with the one-side opening as the center and providing fluid resistance only to pressure pulsation generated in the compression chamber This has the effect that a large attenuation can be obtained.
  • the present invention includes a closed container, an electric element, a compression element rotationally driven by the electric element, a suction pipe disposed in the closed container, a suction muffler including a muffler body and a muffler cover.
  • the muffler main body has an inlet pipe having one end opened in the closed container and the other end opened in the suction muffler, and one end opened in the suction muffler and the other end opened in the compression element.
  • the inlet pipe and the outlet pipe are formed integrally with the wall face, respectively, except for the upper wall face among the wall faces forming the muffler space. It has the effect of suppressing wall vibration by improving the rigidity.
  • the suction muffler-side opening of the outlet pipe is located substantially at the center of the suction muffler internal space, and the operation of suppressing the low-order resonance vibration that the muffler space alone has can be suppressed. Having.
  • the outlet pipe is formed integrally with the side wall surface of the closed container of the suction muffler, and the wall surface of the closed container side which is likely to appear as noise by improving the rigidity of the side wall surface of the closed container of the suction muffler. It has the effect of suppressing vibration.
  • the present invention includes a closed container, an electric element, a compression element rotated and driven by the electric element, a suction pipe disposed in the closed container, and a suction muffler.
  • the introduction portion is formed by a wall surface different from the wall surface of the suction muffler, and the opening on the suction muffler side of the introduction portion has a direction facing the suction pipe by the introduction portion wall surface.
  • the refrigerant gas flowing from the suction pipe can be guided to the suction muffler at a low temperature. This has the effect that the shape of the can be simplified.
  • the introduction portion has a substantially rectangular closed container side opening and a substantially rectangular parallelepiped internal space, and the volume of the introduction portion can be increased without reducing the muffler space.
  • the refrigerant gas flowing from the suction pipe can be guided to the suction muffler at a higher temperature and at a lower temperature, and the shape of the suction muffler can be simplified.
  • the present invention provides a closed container, an electric element, a compression element rotated by the electric element, a refrigerating machine oil stored in a lower portion of the closed container, a suction pipe arranged in the closed container, A muffler, and a capillary having one end open to the refrigerating machine oil and the other end open to an outlet pipe of the suction muffler, wherein the suction muffler has one end opened in the closed container and the other end in the suction muffler.
  • the inner diameter of the compression element side pipe of the outlet pipe is made smaller than the inner diameter of the suction muffler side pipe of the outlet pipe, and the outlet pipe goes from the opening of the suction muffler side to the opening of the compression element side.
  • the flow rate of the refrigerant gas in the outlet muffler side pipe of the outlet pipe is determined based on the flow rate of the refrigerant gas so as not to obstruct the flow of the refrigerant gas. Since it is possible to increase the flow rate of the refrigerant gas in the compression element side tube of the mouth tube, there is an effect that a sufficient amount of refrigerating machine oil can be supplied from the capillary tube.
  • connection position between the compression element side pipe of the outlet pipe and the suction muffler side pipe of the outlet pipe is almost the same as the outlet pipe opening position of the capillary tube or is shifted to the suction muffler side opening of the outlet pipe. Since the flow rate of the refrigerant gas in the vicinity of the outlet opening position of the capillary can be increased, the supply amount of the refrigerating machine oil from the capillary can be sufficiently secured. Having.
  • the present invention is a hermetic compressor used for a chlorine-free refrigerant, and can exert all the above-mentioned functions even in a chlorine-free refrigerant environment.
  • the present invention is directed to a hermetic compressor used for a hydrocarbon-based refrigerant, and can exhibit all the above-described functions even in a hydrocarbon-based refrigerant refrigerant environment.
  • the present invention is a refrigeration or refrigerator such as a refrigerator or a showcase incorporating a hermetic compressor, and an air conditioner. Can be demonstrated (
  • FIG. 1 is a front view of a main part of a hermetic compressor according to Embodiment 1,
  • FIG. 2 is a cross-sectional view of a main part of the hermetic compressor according to the first embodiment
  • FIG. 3 is a cross-sectional view of a main part of a suction muffler used in the hermetic compressor according to Embodiment 1.
  • FIG. 4 shows a suction muffler used in the hermetic compressor according to the second embodiment. Sectional view of the main part of
  • FIG. 5 is a top view of a muffler cover used in the hermetic compressor according to Embodiment 2,
  • FIG. 6 is a cross-sectional view of a main part of a suction muffler used in a hermetic compressor according to Embodiment 3.
  • FIG. 7 is a cross-sectional view of a main part of a suction muffler used in a hermetic-type compressor according to Embodiment 4.
  • FIG. 8A is a cross-sectional view of a main part of a suction muffler used in a hermetic compressor according to Embodiment 5
  • FIG. 8B is a side view of the suction muffler shown in FIG. 8A,
  • FIG. 9 is a rear view of a suction muffler used in a hermetic compressor according to Embodiment 5,
  • FIG. 10 is a cross-sectional view of a main part of the hermetic compressor according to the sixth embodiment.
  • FIG. 11 is a cross-sectional view of a main part of a suction muffler used in the hermetic compressor according to the sixth embodiment.
  • FIG. 12 shows the noise of a hermetic compressor incorporating a suction muffler including Embodiments 1 to 6 of the present invention in a refrigeration system using R134a refrigerant as a chlorine-free refrigerant.
  • FIG. 13 shows the noise of a hermetic compressor incorporating a suction muffler including Embodiments 1 to 6 of the present invention in a refrigeration apparatus using R600a refrigerant as a hydrocarbon-based refrigerant.
  • Fig. 14 is a cross-sectional view of a conventional hermetic compressor
  • FIG. 15 is an exploded perspective view of a suction muffler installed in a conventional hermetic compressor
  • FIG. 16 is a cross-sectional view of another conventional hermetic compressor. BEST MODE FOR CARRYING OUT THE INVENTION
  • Figure 1 is a fragmentary cross-sectional view of a hermetic compressor according to a first embodiment of the c Figure 2 present invention is a partial front view of a hermetic compressor according to a first embodiment of the present invention.
  • FIG. 3 is a sectional view of a main part of the suction muffler used in the hermetic compressor according to the first embodiment of the present invention.
  • Reference numeral 36 denotes a compression element, which is housed in a closed container 35.
  • Reference numeral 37 denotes an electric element, which is connected to the compression element 36.
  • Reference numeral 38 denotes a cylinder, which forms a compression chamber 39 of the compression element 36.
  • Reference numeral 40 denotes a piston, which reciprocates in the cylinder 38.
  • Reference numeral 41 denotes a valve plate, which seals one end of the cylinder 38.
  • Reference numeral 42 denotes a suction valve, which is interposed between the knob plate 41 and the cylinder 38.
  • Numeral 43 denotes a cylinder head, which fixes the knob plate 41 to the cylinder 38 and the suction muffler 44 to the valve plate 41.
  • 45 is a suction pipe.
  • Reference numeral 46 denotes refrigerating machine oil, which is stored at the bottom of the sealed container 35.
  • the suction muffler 44 is a silencer as a means for attenuating noise generated in the compression chamber 39 and the suction valve 42. From the viewpoint of improving the performance of hermetic compressors, it is desirable to use a material with low thermal conductivity, for example, a synthetic resin material. Considering the usage environment such as a refrigerant gas atmosphere and high temperature, it is preferable that the synthetic resin material is a PBT or PPS material.
  • the suction muffler 44 is formed by welding and bonding to each other by a method such as a deposition method.
  • the muffler cover 48 has a flat and simple shape and has a function as an upper wall surface forming a muffler space 49.
  • Reference numeral 50 denotes an inlet pipe, one end of which is opened in the closed vessel 35 and the other end of which is opened in the suction muffler 44, and is formed integrally with the muffler body 47.
  • Reference numeral 51 denotes an outlet pipe, one end of which opens into the suction muffler 44 and the other end opens to the compression element 36 side, and is formed integrally with the muffler body 47.
  • Refrigerant gas returned from the refrigerating cycle (not shown) to the hermetic compressor passes through the suction pipe 45 and is once released into the hermetic container 35. After that, the refrigerant gas flows into the compression chamber 39 through the suction muffler 44 and the valve plate 41. Here, after being compressed by the biston 40 reciprocating due to the rotational movement of the electric element 37, it is sent to the refrigeration cycle.
  • the pressure pulsation of the refrigerant gas occurs in the compression chamber 39 due to the reciprocating motion of the piston 40 and the closing motion of the suction valve 42.
  • the pressure pulsation generated in the compression chamber 39 propagates in the direction opposite to the flow of the refrigerant gas, and is once released to the muffler space 49 through the outlet pipe 51.
  • the muffler cover 48 has a simple flat plate shape, the wall thickness is made uniform, and deformation due to sink and distortion during molding is reduced.
  • the connection with the muffler body 47 is more easily welded and a good seal is obtained, so that pressure is applied from the connection between the muffler body 47 and the muffler cover 48. Pulsation hardly leaks, and the noise reduction effect of the suction muffler 44 is sufficiently exhibited. Therefore, after the pressure pulsation released to the muffler space 49 through the outlet pipe 51 is sufficiently attenuated, the pressure pulsation can be released to the closed vessel 35 through the inlet pipe 50, thereby reducing noise more effectively. Will be done.
  • the muffler cover 48 has a simple flat plate shape, the cost of the mold can be reduced and the weight of the material can be reduced, so that the cost required for manufacturing the muffler force bar 48 can be reduced. Further, since the shape of the receiving jig required for ultrasonic welding is the same as the simple shape of the muffler cover 148, the jig die cost can be reduced.
  • FIG. 4 is a sectional view of a main part of a suction muffler used in a hermetic compressor according to Embodiment 2 of the present invention
  • FIG. 5 is a top view of the muffler cover.
  • the hermetic compressor using the suction muffler shown in FIG. 4 is not shown because it differs only in the suction muffler from the hermetic compressor shown in FIG.
  • reference numeral 52 denotes a suction muffler, which is composed of a muffler main body 53 and a muffler cover 54, which are connected to each other by a method such as welding to form a muffler space 55.
  • Reference numeral 56 denotes a resonance space wall, which is formed integrally with the muffler cover 54 along the inner wall surface of the muffler body 53 to form a resonance space 57.
  • Reference numeral 58 denotes an inlet pipe, one end of which is open in the closed vessel 35 and the other end of which is open in the suction muffler 52, and is formed integrally with the muffler body 53.
  • An outlet pipe 59 has one end opened into the suction muffler 52 and the other end opened to the compression element 36 side, and is formed integrally with the muffler body 53.
  • the pressure pulsation generated in the compression chamber 39 propagates in the direction opposite to the flow of the refrigerant gas, and is once released to the muffler space 55 through the outlet pipe 59, and the pressure pulsation component having a frequency corresponding to the resonance space 57.
  • the inlet pipe 5 By opening the closed container 35 through 8, noise can be reduced more effectively.
  • the space in the closed vessel 35 has a resonance frequency of about 500 Hz in a refrigerant environment of R1 34a, and a resonance frequency of about 500 in a refrigerant environment of R600a. Since it has a resonance frequency of 63 to 63 OHz, if the silencing at these frequencies is not sufficient, the hermetic compressor will produce very high noise.
  • the resonance frequency of the resonance space 57 matches the resonance frequency of the resonance space 57 to these frequencies, these frequency components contained in the pressure pulsation can be absorbed in the resonance space 57, so that the inside of the closed container 35 is The vibration to the space can be reduced, and the noise as a hermetic compressor can be reduced. Further, since the absorption amount of the pressure pulsation is determined according to the volume of the resonance space 57, the resonance space wall extends along the inner wall surface of the muffler body 53.
  • FIG. 6 is a sectional view of a main part of a suction muffler used in a hermetic compressor according to Embodiment 3 of the present invention.
  • the hermetic compressor using the suction muffler shown in FIG. 6 is not shown because it differs only in the suction muffler from the hermetic compressor shown in FIG.
  • reference numeral 60 denotes a suction muffler, which is composed of a muffler body 61 and a muffler cover 62, which are connected to each other by a method such as welding to form a muffler space 63.
  • Reference numeral 6 4 denotes a shielding wall, which is formed integrally with the muffler cover 62 at the upper end side of the shielding wall 6 4.
  • the lower end of the shielding wall 64 is located on the upper end side of the shielding wall 64 from a straight line connecting the center of the 60 side opening and the center of the suction muffler of the outlet pipe 66.
  • the inlet pipe 65 has one end opened in the closed vessel 35 and the other end opened in the suction muffler 60, and is formed integrally with the muffler body 61. exit One end of the pipe 66 opens into the suction muffler 60 and the other end opens to the compression element 36 side, and is formed integrally with the muffler body 61.
  • the refrigerant gas is substantially linearly moved from the suction muffler 60 opening of the inlet pipe 65 to the suction muffler 60 opening of the outlet pipe 66 by the suction force generated by the reciprocating motion of the piston 40. Since the gas flows in the compression chamber 39 smoothly regardless of the shielding wall 64, the efficiency can be maintained. On the other hand, the pressure pulsation generated in the compression chamber 39 propagates in the opposite direction to the flow of the refrigerant gas, and is radially opened to the muffler space 63 through the outlet pipe 66.
  • the pressure pulsation generated in the compression chamber 39 includes a wide range from low-frequency components such as the operating frequency to high-frequency components of 5 kHz or more, and particularly from 2 kHz to 4 kHz.
  • the pulsation level of the high frequency component is large.
  • the shielding wall 64 is formed integrally with the muffler cover 62, the shielding wall 64 is provided with separate connecting means in addition to the muffler body 61 in order to obtain the same effect on noise. As a result, the production becomes easier, and the cost required for providing the coupling means can be omitted. (Embodiment 4)
  • FIG. 7 is a sectional view of a main part of a suction muffler used in a hermetic compressor according to Embodiment 4 of the present invention.
  • the hermetic compressor using the suction muffler shown in FIG. 7 is not shown because it differs from the hermetic compressor shown in FIG. 1 only in the suction muffler.
  • reference numeral 67 denotes a suction muffler, which comprises a muffler main body 68 and a muffler cover 69, which are connected to each other by a method such as welding to form a muffler space 70.
  • Reference numeral 71 denotes an inlet pipe, one end of which is opened in the closed vessel 35 and the other end of which is opened in the suction muffler 67, and is formed integrally with the wall surface of the muffler body 68.
  • 7 2 is an outlet pipe, one end of which is opened at the approximate center of the muffler space 70 of the suction muffler 67 and the other end is opened to the compression element 36 side, and the closed vessel 3 5 of the muffler body 6 8 It is formed integrally with the side wall surface.
  • the operation of the hermetic compressor configured as described above will be described below.
  • the pressure pulsation generated in the compression chamber 39 propagates in a direction opposite to the flow of the refrigerant gas, and is once released to the muffler space 70 through the outlet pipe 72.
  • the wall of the muffler main body 68 is improved in rigidity against the vibration caused by the pressure pulsation by forming the inlet pipe 71 and the outlet pipe 72 integrally, so that the muffler body 68
  • the vibration of the wall surface is sufficiently suppressed. Therefore, the noise caused by the wall vibration can be reduced.
  • the vibration of the wall of the closed vessel 35 side with respect to the wall of the electric element 37 of the muffler body 68 is closer to the closed vessel 35 which is the radiation surface of noise as a hermetic compressor. Therefore, increasing the rigidity of the side wall surface of the sealed container 35 of the muffler body 68 is effective in reducing noise.
  • the outlet pipe 72 substantially at the center of the muffler space 70
  • FIG. 8A is a cross-sectional view of a main part of a suction muffler used in a hermetic compressor according to Embodiment 5 of the present invention
  • FIG. 8B is a side view thereof
  • FIG. 9 is a back view of a suction muffler used in a hermetic compressor according to Embodiment 5 of the present invention.
  • the hermetic compressor using the suction muffler shown in FIGS. 8 and 9 is not shown because it differs from the hermetic compressor shown in FIG. 1 only in the suction muffler.
  • reference numeral 73 denotes a suction muffler, which is composed of a muffler body 74 and a muffler cover 75, which are combined with each other by a method such as welding to form a muffler space 76. .
  • Reference numeral 7 7 denotes an introduction part, which is integrally formed with the muffler body 74, and has one end opened in the closed vessel 35 and the other end opened to the inlet pipe 78, and the wall and the muffler body forming the introduction part 77.
  • the wall forming 7 4 coincides only with the back 7 9, and the remaining walls are different.
  • the closed vessel 35 side opening 80 of the introduction section 7 7 has a substantially rectangular opening shape. It has a substantially rectangular parallelepiped internal space and has a direction facing the suction pipe 45.
  • the inlet pipe 78 has one end opened to the introduction portion 77 and the other end opened to the suction muffler 73, and is formed integrally with the muffler body 74.
  • 8 1 is an outlet pipe, one end of which is open into the suction muffler 7 3 and the other end is a compression element 3 6 And is formed integrally with the muffler body 74.
  • the operation of the hermetic compressor configured as described above will be described below.
  • the refrigerant gas returned from the suction pipe 45 flows into the muffler space 76 from the inlet pipe 78 through the introduction portion 77, and is sent to the compression chamber 39 through the outlet pipe 81.
  • the introduction portion 77 which has a substantially rectangular opening shape and has a substantially rectangular parallelepiped internal space, can hold a large amount of refrigerant gas in the internal space, and is temporarily removed from the atmosphere in the high-temperature closed container 35. As a result, the refrigerant gas can be sent to the compression chamber 39 at a lower temperature.
  • the pressure pulsation generated in the compression chamber 39 propagates in the direction opposite to the flow of the refrigerant gas, and is once opened to the muffler space 76 through the outlet pipe 81.
  • it is desirable to increase the size of the muffler space 76 because the amount of attenuation of the pressure pulsation is determined according to the volume of the muffler space 76.
  • the inside space of the introduction section 77 is made substantially rectangular parallelepiped, and the suction muffler 73 only matches the wall of the introduction section 77 on the back side 79. Since the volume of 7.6 can be increased, noise can be reduced more effectively.
  • the introduction portion 77 has the same back surface 79 as the muffler main body 74, it is possible to reduce the cost of the mold as compared with the case where a separate introduction portion is provided, and to reduce the material. As a result, manufacturing costs can be reduced.
  • FIG. 10 is a cross-sectional view of a main part of a hermetic-type compressor according to Embodiment 6 of the present invention.
  • FIG. 11 shows a suction compressor used in a hermetic compressor according to Embodiment 6 of the present invention. It is principal part sectional drawing of an input muffler.
  • reference numeral 82 denotes a capillary tube, one end of which is open to the refrigerating machine oil 46, and the other end of which is open to the outlet tube 84 of the suction muffler 83.
  • the suction muffler 83 includes a muffler main body 85 and a muffler cover 86, and is connected to each other by a method such as welding to form a muffler space 87.
  • the muffler body 85 has an inlet pipe 88 having one end opened in the closed vessel 35 and the other end opened in the suction muffler space 87, and one end opened in the suction muffler space 87 and the other end compressed. It has an outlet pipe 84 open to the element 36 side.
  • the outlet pipe 84 is substantially the same as the opening position of the capillary pipe 82 on the outlet pipe 84 side or the compression element 36 side of the outlet pipe 84 with the position close to the suction muffler 83 opening side of the outlet pipe 84 Is smaller than the inside diameter of the outlet pipe 84 on the suction muffler space 87 side.
  • the inlet pipe 88 is formed in the muffler body 85 —body.
  • the refrigerant gas flows into the muffler space 87 from the inlet pipe 88 and is sent to the compression chamber 39 through the outlet pipe 84.
  • the flow velocity of the refrigerant gas in the outlet pipe 84 increases in inverse proportion to the inner diameter of the outlet pipe 84 from the suction muffler space 87 side of the outlet pipe 84 toward the compression element 36 side.
  • a sufficiently large flow velocity can be obtained at the opening of the capillary tube 82 on the outlet tube 84 side.
  • the pressure in the vicinity of the opening on the outlet pipe 84 side of the capillary tube 82 becomes smaller than the pressure in the sealed container 35, so that a pressure difference is generated, and the refrigerating machine oil 4 stored in the lower portion of the sealed container 35 6 can be delivered from the capillary tube 82 to the compression chamber 39 through the outlet tube 84.
  • the inner diameter of the outlet pipe 84 is smaller.
  • the pressure loss at the outlet pipe 84 is large, and the efficiency of the hermetic compressor is reduced. Therefore, the inner diameter of the compression element 36 side of the outlet pipe 84 is smaller than the inner diameter of the suction muffler 83 side of the outlet pipe 84 from the position close to the opening of the outlet muffler 83 on the side of the outlet pipe 84.
  • Embodiment 7 of the present invention incorporates the hermetic compressor according to Embodiments 1 to 6 of the present invention, and uses a refrigerant containing no chlorine or a hydrocarbon-based refrigerant as a refrigerant, such as a refrigerator or a showcase, for refrigeration. Refrigerators and air conditioners (not shown).
  • Figures 12 and 13 show the results of checking the noise during operation of these refrigerators and showcases.
  • Figure 12 shows the noise of a hermetic compressor incorporating a suction muffler including Embodiments 1 to 6 of the present invention in a refrigeration system using R134a refrigerant as a chlorine-free refrigerant.
  • FIG. 13 shows the noise of a hermetic compressor incorporating a suction muffler including Embodiments 1 to 6 of the present invention in a refrigeration system using R600a refrigerant as a hydrocarbon-based refrigerant. is there.
  • the horizontal axis represents the 1/3 octave frequency
  • the right end represents the whole sound.
  • the vertical axis is the noise level.
  • open plots indicate the noise of the conventional hermetic compressor, and the noise according to the seventh embodiment of the present invention is indicated by black circles. From this result, any refrigerant Even in this case, a high noise reduction effect was obtained with respect to the conventional hermetic compressor.
  • the noise of 500 Hz is generated as R6 as the hydrocarbon-based refrigerant in FIG.
  • the noise of 500 to 63 Hz was reduced by 2 to 3 [dB] by the arrangement of the resonance space.
  • noise reduction was achieved by installing shielding walls and improving wall rigidity. It was confirmed.
  • the muffler cover has a simple shape having only a single wall surface, the deformation can be reduced, so that the connection between the muffler body and the muffler cover can be sufficiently adhered. Since almost no pressure pulsation leaks from the connection between the muffler body and the muffler cover, the noise reduction effect of the suction muffler is sufficiently exhibited, and the noise can be further attenuated.
  • the muffler cover since the muffler cover has a simple shape, the cost of the mold can be reduced and the weight of the material can be reduced. Machine can be realized.
  • the wall surface forming the resonance space is formed integrally with the muffler cover, and the pressure pulsation component having a frequency corresponding to the resonance space can be reduced intensively, so that noise can be further attenuated.
  • the cost required for manufacturing can be reduced, and an inexpensive hermetic compressor can be realized.
  • at least one wall surface among the wall surfaces forming the resonance space extends along the inner wall surface of the suction muffler, and the volume of the resonance space can be increased, which corresponds to the resonance space. Since the effect of reducing the frequency can be increased, the noise can be further attenuated.
  • the present invention includes a shielding wall between an inlet muffler-side opening of an inlet pipe and an inlet muffler-side opening of an outlet pipe, and a pressure generated in a compression chamber due to reflection by the shielding wall. Since the pulsation propagation path can be lengthened, large attenuation can be obtained, and noise can be effectively reduced.
  • the shielding wall is formed integrally with any one of the wall surfaces of the suction muffler. Since the shielding wall can be easily manufactured without separately providing a coupling means for connecting the shielding wall and the suction muffler, the manufacturing cost can be reduced.
  • the shielding wall is formed integrally with the muffler cover, and the shielding wall can be easily added without changing the muffler body at all. Pressure pulsation generated in the compression chamber due to reflection from the shielding wall.
  • the lower end of the shielding wall is located on a straight line connecting the center of the inlet muffler-side opening of the inlet pipe and the center of the inlet muffler-side opening of the outlet pipe or at a position closer to the upper end of the shielding wall.
  • the suction muffler-side opening of the outlet pipe is positioned substantially at the center of the space inside the suction muffler, and the low-order resonance vibration that the muffler space alone has can be suppressed. Therefore, noise can be more effectively reduced.
  • the outlet pipe is formed integrally with the side wall surface of the closed container of the suction muffler, and by improving the rigidity of the side wall surface of the closed container of the suction muffler, the wall vibration on the closed container side that is likely to appear as noise is improved.
  • the inlet is formed by a wall different from the wall of the suction muffler, and the opening of the inlet on the suction muffler side is oriented to the suction pipe by the wall of the inlet so that the muffler space is reduced. Therefore, the volume of the introduction portion can be increased. Therefore, since the volume of the muffler space is not reduced, noise can be reduced more effectively.
  • the refrigerant gas can be temporarily isolated from the atmosphere in the closed container having a high temperature and held, the refrigerant gas can be guided to the suction muffler at a low temperature, so that high efficiency can be obtained.
  • the cost of the mold can be reduced as compared with the case where a separate introduction section is provided, and the material can be reduced.
  • the introduction portion has a substantially rectangular closed container side opening and an inner space of a substantially rectangular parallelepiped, and the volume of the introduction portion can be increased without reducing the muffler space.
  • higher efficiency can be obtained because more medium gas can be led to the suction muffler at a low temperature.
  • the outlet pipe of the suction muffler is made of a continuous body of pipes having at least two different inner diameters, and since the flow rate of the refrigerant gas in the outlet pipe can be increased, refrigeration from the capillary pipe is performed.
  • the inner diameter of the compression element side pipe of the outlet pipe is made smaller than the inner diameter of the suction muffler side pipe of the outlet pipe, and the refrigerant gas flowing from the suction muffler side opening of the outlet pipe to the compression element side opening is formed. Since the flow rate of the refrigerant gas in the compression element side pipe of the outlet pipe can be made larger than the flow rate of the refrigerant gas in the suction muffler side pipe of the outlet pipe so as not to obstruct the flow, a sufficient supply of refrigeration oil from the capillary pipe is secured.
  • the present invention provides a connection position between the compression element side pipe of the outlet pipe and the suction muffler side pipe of the outlet pipe which is substantially the same as the outlet pipe opening position of the capillary pipe or the outlet pipe.
  • the suction muffler is located closer to the opening on one side, and the pressure near the opening of the capillary outlet is smaller than the pressure in the sealed container. Sufficient lubrication can be obtained because a sufficient amount of refrigerating machine oil can be delivered to the compression through the capillary tube.
  • the present invention is directed to a hermetic compressor used for a chlorine-free refrigerant. Thus, all the above-mentioned effects can be obtained even in a medium containing no chlorine.
  • the present invention is a hermetic compressor used for a hydrocarbon-based refrigerant, and can obtain all the effects described above even in a hydrocarbon-based refrigerant environment.
  • the present invention is an application of a hermetic compressor to a refrigerator or a showcase or other refrigerating or refrigeration equipment or an air conditioner, and can achieve all the effects described above. This will enable safe refrigeration and air conditioning systems with high reliability and environmental protection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)

Description

明 細 書 密閉型圧縮機及び冷凍空調装置
技術分野
本発明は、 冷蔵庫, ショーケース等の冷凍空調装置における密閉型圧 縮機に関する。 背景技術
近年、 冷蔵庫、 ショーケース等の冷凍冷蔵装置や空調装置における密 閉型圧縮機には、 効率向上, 低騒音化、 高い信頼性の技術が求められる と共に、 これを安価に提供していくということも重要な要素である。 従来の密閉型圧縮機としては U S P 5 9 7 1 7 2 0号に示されている ものがある。
以下、 図面を参照しながら上記従来の密閉型圧縮機を説明する。 図 1 4は従来の密閉型圧縮機の断面図である。 図 1 5は従来の密閉型圧縮機 のシリンダへッドに取り付けられる吸入マフラーの分解斜視図である。 図 1 4において、 1は密閉容器である。 2は圧縮要素であり、 密閉容 器 1内に収容されている。 3は電動要素であり、 圧縮要素 2に結合され ている。 4はシリンダであり、 圧縮要素 2の圧縮室 5を構成する。 6は ピス トンであり、 シリンダ 4内を往復運動する。 7はバルブプレートで あり、 シリンダ 4の一端を封止する。 8はシリンダヘッ ドであり、 ノ ル ブプレート 7をシリンダ 4に固着すると共に吸入マフラー (図 1 3には 図示せず) をバルブプレート 7に固着する。 1 0は吸入管である。 1 1 は冷凍機油であり、 密閉容器 1の底部に溜まっている。
図 1 5において、 1 2は圧縮室 5や吸入バルブ (図示せず) で発生し た騒音を減衰する消音手段としての吸入マフラ一である。 密閉型圧縮機 の性能向上の観点から熱伝導率の低い材料、 たとえば合成樹脂材で構成 されることが望ましい。 合成樹脂材としては、 冷媒ガス雰囲気, 高温下 という使用環境を考慮すると P B Tや P P Sの材料であるとよい。
吸入マフラ一 1 2はマフラ一本体 1 3とマフラ一カバ一 9とからなつ ている。 マフラ一本体 1 3とマフラ一カバー 9は溶着や嵌め込みなどに より結合し、 マフラ一空間 1 4を形成する。 1 5は入口管で、 一端は密 閉容器 1内に開口し、 他端はマフラー空間 1 4に開口している。 1 6は 出口管で、 一端はバルブプレート 7側に開口し、 他端はマフラー空間 1 4に開口している。
以上のように構成された密閉型圧縮機について、 以下その動作を説明 する。 冷凍サイクル (図示せず) より密閉型圧縮機に戻った冷媒ガスは 吸入管 1 0を通って密閉容器 1内に一旦開放される。 その後、 冷媒ガス は吸入マフラ一 1 2 , バルブプレート 7を通過して圧縮室 5へと流入す る。 ここで、 電動要素 3の回転運動により往復運動するピストン 6によ つて圧縮された後、 冷凍サイクルへと送られる。
このとき、 ピストン 6の往復運動や吸入バルブの開閉運動によって圧 縮室 5内で冷媒ガスの圧力脈動が生じる。 この圧縮室 5内で生じた圧力 脈動は冷媒ガスの流れとは逆向きに伝播し、 出口管 1 6を通じてマフラ 一空間 1 4に一旦開放され、 その後、 入口管 1 5を通して密閉容器 1に 開放されることによつて減衰し、低い騒音として放射されることとなる。 また、 他の従来の密閉型圧縮機としては U S . P A T . 5 4 9 6 1 5 6号に示されているものがある。 図 1 6は他の従来の密閉型圧縮機の断 面図である。 図 1 6において、 1 8は密閉容器である。 1 9は圧縮要素 であり、 密閉容器 1 8内に収容されている。 2 0は電動要素であり、 圧 縮要素 1 9に結合されている。 2 1はシリンダであり、 圧縮要素 1 9の 圧縮室 2 2を構成する。 2 3はピストンであり、 シリンダ 2 1内を往復 運動する。 2 4はバルブプレートであり、 シリンダ 2 1の一端を封止す る。 2 5は吸入バルブであり、 バルブプレート 2 4とシリンダ 2 1の間 に介在する。 2 6はシリンダへヅ ドであり、 バルブプレート 2 4をシリ ンダ 2 1に固着すると共に吸入マフラー 2 7をバルブプレート 2 4に固 着する。 2 8は吸入管である。 2 9は冷凍機油であり、 密閉容器 1 8の 底部に溜まっている。 吸入マフラー 2 7は吸入マフラー本体 3 0と吸入 マフラ一カバ一 3 1とからなっている。 吸入マフラ一本体 3 0と吸入マ フラーカバ一 3 1は溶着や嵌め込みなどにより結合し、 マフラー空間 3 2を形成する。 3 3は入口部で、 密閉容器 1 8とマフラ一空間 3 2を流 体的に結合している。 3 4は出口管で、 一端はバルブプレート 2 4側に 開口し、 他端はマフラー空間 3 2に開口している。
以上のように構成された密閉型圧縮機について、 以下その動作を説明 する。 冷凍サイクル (図示せず) より密閉型圧縮機に戻った冷媒ガスは 密閉容器 1 8内に一旦閧放される。 その後、 冷媒ガスは吸入マフラー 2 7 , ノ ルププレート 2 4を通過して圧縮室 2 2へと流入する。 ここで、 電動要素 2 0の回転運動により往復運動するビストン 2 3によって圧縮 された後、 冷凍サイクルへと送られる。
このとき、 圧縮室 2 2内で生じた圧力脈動は冷媒ガスの流れとは逆向 きに伝播し、 出口管 3 4を通じてマフラ一空間 3 2に一旦開放され、 そ の後入口部 3 3を通して密閉容器 1 8に開放されることにより減衰し、 低い騒音として放射されることとなる。
しかしながら、 上記従来の構成は、 吸入マフラ一 1 2の側壁面をマフ ラー本体 1 3及ぴマフラーカバ一 9の各々が形成していることにより複 雑な形状を有するので、 製作に要するコストの増大を招いてしまうと共 に、 成形時の変形が大きくなつてしまうので、 マフラー本体 1 3及びマ フラーカバー 9の結合が不十分で漏れを生じるため十分な消音効果を得 られないという欠点を有していた。
発明の開示 本発明は、 マフラ一カバーを単一壁面のみの簡素な形状とすることに よって、 製作に要するコス トを小さくすると共に、 変形を少なくするこ とができるので、 マフラ一本体及びマフラーカバーの結合を十分に密着 することができ、 安価で騒音の静かな密閉型圧縮機を提供するものであ る。
また、 上記従来の構成は、 入口管 1 5のマフラ一空間 1 4側開口部と 出口管 1 6のマフラ一空間 1 4側開口部, もしくは入口部 3 3のマフラ 一空間 3 2側開口部と出口管 3 4のマフラ一空間 3 2側開口部を近接し て流体的な抵抗を小さくすることは高効率化を図るために有効な手段で あるが、 圧縮室 5及び圧縮室 2 2内 生じた圧力脈動に対しても流体的 な抵抗は同様に小さくなるため十分な消音効果を得られないという欠点 を有していた。
本発明の他の目的は、 入口管のマフラー空間側開口部と出口管のマフ ラ一空間側開口部との間に流体的な抵抗手段を付加することによって、 圧縮室内で生じた圧力脈動を減衰することができ、 騒音の静かな密閉型 圧縮機を提供するものである。
また、 上記従来の構成は、 圧縮室 5及び圧縮室 2 2内で生じた圧力脈 動は音源として入口管 1 5もしくは入口部 3 3の密閉容器 1及び 1 8側 開口部から開放されるだけではなく、 吸入マフラ一 1 2及び吸入マフラ - 2 7の壁面を加振し新たな騒音源をつくるという欠点を有していた。 本発明の他の目的は、 吸入マフラーの壁面と入口管及び出口管を一体 にすることによって、 吸入マフラーの壁面の剛性を向上させることがで きるので壁面振動を抑制することができ、 騒音の静かな密閉型圧縮機を 提供するものである。
また、 上記従来の構成は、 入口管 1 5の密閉容器 1側開口部に容積を 有することは高効率化を図るために有効な手段であるが、 吸入マフラー 1 2を形成する壁面と全く異なる壁面にて入口管 1 5の密閉容器 1側開 口部の容積を成形することは吸入マフラ一 1 2の形状を複雑にしてしま い、 製作に要するコス トの増大を招いてしまう。 一方、 吸入マフラー 2 7を形成する壁面上にある入口部 3 3の密閉容器 1 8側開口部に十分な 容積を設けるにはスペース的な限りがあり、 高効率化を図るために入口 部 3 3の密閉容器 1 8側開口部の容積を大きくするとマフラー空間 3 2 は小さくなってしまい、 十分な消音効果が得られないという欠点を有し ていた。
本発明の他の目的は、 吸入マフラーの壁面と異なる壁面にて密閉容器 側開口部の容積を形成することによって、 吸入マフラーの容積を減じる ことがなく、 密閉容器側開口部の容積を大きくすることができ、 吸入マ フラーの形状を簡素化することができるので、 騒音が静かで効率の高い 安価な密閉型圧縮機を提供するものである。
本発明の他の目的は、 出口管内の冷媒ガスの流速を大きくすることに よって、 毛細管からの冷凍機油供給量を十分に確保することができるこ ととなり、 信頼性の高い密閉型圧縮機を提供するものである。
本発明の他の目的は、 上述した吸入マフラーを組み込んだ密閉型圧縮 機を塩素を含まない冷媒に適用することによって、 環境面においても安 全な密閉型圧縮機を提供するものである。
本発明の他の目的は、 上述した吸入マフラーを組み込んだ密閉型圧縮 機を炭化水素系冷媒に適用することによって、 環境面においても安全な 密閉型圧縮機を提供するものである。
本発明の他の目的は、 上述した密閉型圧縮機を冷蔵庫, ショーケース 等の冷凍冷蔵装置や空調装置に適用することによって、 密閉型圧縮機に 起因する騒音を減じ、 高い信頼性や環境面においても安全な冷凍冷蔵装 置や空調装置を提供するものである。
本発明は、 密閉容器と、 電動要素と、 前記電動要素により回転駆動す る圧縮要素と、 前記密閉容器に配設された吸入管と、 マフラ一本体とマ フラーカバーとからなる吸入マフラ一を備え、 前記マフラー本体は、 一 端が密閉容器内に開口し他端は前記吸入マフラー内に開口した入口管と、 一端が前記吸入マフラー内に開口し他端は前記圧縮要素に開口した出口 管と、 マフラ一空間を形成する壁面のうち上側壁面を除く壁面を備え、 前記マフラーカバーは、 前記マフラー空閭を形成する壁面のうち上側壁 面のみを形成したものであり、 前記マフラ一カバ一を単一壁面のみの簡 素な形状とすることで、 製作に要するコストを小さくすると共に、 変形 を少なくすることができるので、 前記マフラー本体及び前記マフラ一力 バーの結合を十分に密着することができ、 前記吸入マフラーの消音効果 をより一層大きくすることができるという作用を有する。
本発明は、 共鳴空間を形成する壁面をマフラーカバーに一体に形成し たものであり、 マフラー本体を何ら変更することなく、 容易に共鳴空間 を付加することができるので、製作に要するコストを小さくすると共に、 共鳴空間に相応する周波数の騒音を低減するという作用を有する。
本発明は、 共鳴空間を形成する壁面のうち少なくとも 1つの壁面は吸 入マフラ一の内壁面に沿うこととしたものであり、 共鳴空間の容積を大 きくすることができ、 共鳴空間に相応する周波数の圧力脈動成分低減効 果を大きくすることができるという作用を有する。
本発明は、 密閉容器と、 電動要素と、 前記電動要素により回転駆動す る圧縮要素と、 前記密閉容器に配設された吸入管と、 吸入マフラ一とを 備え、 前記吸入マフラ一は、 一端が密閉容器内に開口し他端は前記吸入 マフラー内に開口した入口管と、 一端が前記吸入マフラ一内に開口し他 端は圧縮要素に開口した出口管と、 前記入口管の前記吸入マフラ一側開 口部と前記出口管の前記吸入マフラ一側開口部との間に遮蔽壁とを備え たものであり、 圧縮室内で生じた圧力脈動を前記出口管から前記入口管 へ直接伝播させることなく、 前記遮蔽壁による反射を経ることにより伝 播経路を長くすることができるので、 大きな減衰を得ることができると いう作用を有する。
本発明は、 遮蔽壁は吸入マフラーのいずれか 1つの壁面に一体に形成 するものであり、 前記遮蔽壁と吸入マフラ一との結合手段を別途設ける ことなく容易に製作できると共に、 圧縮室内で生じた圧力脈動の伝播経 路を長くすることができるので、 大きな減衰を得ることができるという 作用を有する。
本発明は、 遮蔽壁はマフラ一カバーに一体に形成されたものであり、 マフラ一本体を何ら変更することなく、 容易に前記遮蔽壁を付加するこ とができるので、 製作に要するコストを小さくすると共に、 圧縮室内で 生じた圧力脈動の伝播経路を長くすることができるので、 大きな減衰を 得ることができるという作用を有する。
本発明は、 遮蔽壁の下端部は入口管の吸入マフラー側開口部の中心と 出口管の吸入マフラー側開口部の中心とを結ぶ直線上もしくはより前記 遮蔽壁の上端部側の位置にあるものであり、 前記入口管から前記出口管 へ流れる冷媒ガスの経路は前記入口管の前記吸入マフラー側開口部の中 心と前記出口管の前記吸入マフラー側開口部の中心とを結ぶ直線に近い ものであることに対して、 圧縮室内で生じた圧力脈動を伴う前記出口管 から前記入口管へ流れる冷媒ガスの経路は前記出口管の前記吸入マフラ 一側開口部を中心とする放射状であり、 前記圧縮室内で生じた圧力脈動 に対してのみに流体的な抵抗となることにより、 効率を阻害することな く、 前記圧縮室内で生じた圧力脈動に対して大きな減衰を得ることがで きるという作用を有する。
本発明は、 密閉容器と、 電動要素と、 前記電動要素により回転駆動す る圧縮要素と、 前記密閉容器に配設された吸入管と、 マフラー本体とマ フラーカバーとからなる吸入マフラ一を備え、 前記マフラ一本体は、 一 端が前記密閉容器内に開口し他端は前記吸入マフラ一内に開口した入口 管と、 一端が前記吸入マフラ一内に開口し他端は前記圧縮要素に開口し た出口管と、 マフラ一空間を形成する壁面のうち上側壁面を除く壁面を 備え、 前記入口管と前記出口管は前記壁面にそれそれ一体に形成したも のであり、 前記吸入マフラーの壁面の剛性を向上させることによって壁 面振動を抑制することができるという作用を有する。
本発明は、 出口管の吸入マフラー側開口部は、 吸入マフラー内空間の 略中央に位置することとしたものであり、 マフラー空間が単独で有する 低次の共鳴振動を抑制することができるという作用を有する。
本発明は、 出口管は吸入マフラーの密閉容器側壁面に一体に形成され ているものであり、 前記吸入マフラーの密閉容器側壁面の剛性を向上さ せることによって騒音として現れやすい密閉容器側の壁面振動を抑制す ることができるという作用を有する。
本発明は、 密閉容器と、 電動要素と、 前記電動要素により回転駆動す る圧縮要素と、 前記密閉容器に配設された吸入管と、 吸入マフラーとを 備え、 前記吸入マフラ一は、 一端が前記密閉容器内に開口し他端は入口 管に開口した導入部と、 一端が前記導入部に開口し他端は前記吸入マフ ラ一内に開口した前記入口管と、 一端が前記吸入マフラー内に開口し他 端は前記圧縮要素に開口した出口管と、 マフラ一空間を形成する壁面と からなり、 前記導入部は、 前記吸入マフラ一の壁面と異なる壁面により 形成されると共に、 前記導入部の前記吸入マフラー側開口部は前記導入 部壁面により前記吸入管に相対する向きを有するものであり、 前記マフ ラー空間を減じることなく、 前記導入部の容積を大きくすることができ るので、 前記吸入管より流入する冷媒ガスを低温で前記吸入マフラーへ 導くことができる、 併せて前記吸入マフラーの形状を簡素化することが できるという作用を有する。
本発明は、 導入部は略矩形の密閉容器側開口部と、 略直方体の内部空 間を有するものであり、 マフラー空間を減じることなく、 前記導入部の 容積をより大きくすることができるので、 前記吸入管より流入する冷媒 ガスをより多くかつ低温で吸入マフラーへ導くことができる、 併せて前 記吸入マフラ一の形状を簡素化することができるという作用を有する。 本発明は、 密閉容器と、 電動要素と、 前記電動要素により回転駆動す る圧縮要素と、 前記密閉容器の下部に貯留した冷凍機油と、 前記密閉容 器に配設された吸入管と、 吸入マフラーと、 一端が前記冷凍機油に開口 し他端は前記吸入マフラーの出口管内に開口した毛細管とを備え、 前記 吸入マフラーは、 一端が前記密閉容器内に開口し他端は前記吸入マフラ 一内に開口した入口管と、 一端が前記吸入マフラー内に開口し他端は前 記圧縮要素に開口した少なくとも 2つの異なる内径を有する管の連続体 からなる出口管としたものであり、 前記出口管内の冷媒ガスの流速を大 きくすることができるので、 前記毛細管からの冷凍機油供給量を十分に 確保することができるという作用を有する。
本発明は、 出口管の圧縮要素側管の内径を前記出口管の吸入マフラー 側管の内径より小さくしたものであり、 前記出口管の前記吸入マフラ一 側開口部から圧縮要素側開口部へ向かう冷媒ガスの流れを阻害しないよ うに前記出口管の前記吸入マフラー側管内の冷媒ガスの流速より前記出 口管の圧縮要素側管の冷媒ガスの流速を大きくすることができるので、 前記毛細管からの冷凍機油供給量を十分に確保することができるという 作用を有する。
本発明は、 出口管の圧縮要素側管と前記出口管の吸入マフラ一側管の 接続位置を毛細管の前記出口管開口位置とほぼ同じもしくは前記出口管 の前記吸入マフラ一側開口部に寄った位置としたものであり、 前記毛細 管の前記出口管開口位置付近の冷媒ガスの流速を大きくすることができ るので、 前記毛細管からの冷凍機油供給量を十分に確保することができ るという作用を有する。
本発明は、 塩素を含まない冷媒に用いられる密閉型圧縮機としたもの であり、 塩素を含まない冷媒環境下においても上述した全ての作用を発 揮することができる。
本発明は、 炭化水素系冷媒に用いられる密閉型圧縮機としたものであ り、 炭化水素系冷媒冷媒環境下においても上述した全ての作用を発揮す ることができる。
本発明は、 密閉型圧縮機を組み込んだ冷蔵庫, ショーケース等の冷凍 冷蔵装置や空調装置であり、 前記冷凍冷蔵装置や空調装置としてのいず れの運転状況下においても上述した全ての作用を発揮することができる (
図面の簡単な説明
図 1は、 実施の形態 1による密閉型圧縮機の要部正面図、
図 2は、 実施の形態 1による密閉型圧縮機の要部断面図、
図 3は、 実施の形態 1による密閉型圧縮機に用いられる吸入マフラー の要部断面図、
図 4は、 実施の形態 2による密閉型圧縮機に用いられる吸入マフラー の要部断面図、
図 5は、 実施の形態 2による密閉型圧縮機に用いられるマフラーカバ 一の上面図、
図 6は、 実施の形態 3による密閉型圧縮機に用いられる吸入マフラー の要部断面図、
図 7は、 実施の形態 4による密閉型圧縮機に用いられる吸入マフラ一 の要部断面図、
図 8 Aは、 実施の形態 5による密閉型圧縮機に用いられる吸入マフラ —の要部断面図、 図 8 Bは、 図 8 Aに示す吸入マフラ一の側面図、
図 9は、 実施の形態 5による密閉型圧縮機に用いられる吸入マフラー の背面図、
図 1 0は、 実施の形態 6による密閉型圧縮機の要部断面図、 図 1 1は、 実施の形態 6による密閉型圧縮機に用いられる吸入マフラ 一の要部断面図、
図 1 2は、 塩素を含まない冷媒として R 1 3 4 a冷媒を用いた冷凍冷 蔵装置に本発明の実施の形態 1から 6を含んだ吸入マフラーを組み込ん だ密閉型圧縮機の騒音を示す図、
図 1 3は、 炭化水素系冷媒として R 6 0 0 a冷媒を用いた冷凍冷蔵装 置に本発明の実施の、 形態 1から 6を含んだ吸入マフラーを組み込んだ 密閉型圧縮機の騒音を示す図、
図 1 4は、 従来の密閉型圧縮機の断面図、
図 1 5は、 従来の密閉型圧縮機内に取り付けられる吸入マフラーの分 解斜視図、
図 1 6は、 他の従来の密閉型圧縮機の断面図である。 発明を実施する最良の形態
以下、 本発明の密閉型圧縮機の好ましい実施の形態について図面を参 照しながら説明する。
(実施の形態 1 )
図 1は本発明の実施の形態 1による密閉型圧縮機の要部正面図である c 図 2は本発明の実施の形態 1による密閉型圧縮機の要部断面図である。 図 3は本発明の実施の形態 1による密閉型圧縮機に用いられる吸入マフ ラ一の要部断面図である。
図 1, 2, 3において、 3 5は密閉容器である。 3 6は圧縮要素であ り、 密閉容器 3 5内に収容されている。 3 7は電動要素であり、 圧縮要 素 3 6に結合されている。 3 8はシリンダであり、 圧縮要素 3 6の圧縮 室 3 9を構成する。 4 0はピス トンであり、 シリンダ 3 8内を往復運動 する。 4 1はバルブプレートであり、 シリンダ 3 8の一端を封止する。 4 2は吸入バルブであり、 ノ レブプレート 4 1とシリンダ 3 8の間に介 在する。 4 3はシリンダへヅドであり、 ノ ルブプレート 4 1をシリンダ 3 8に固着すると共に吸入マフラ一 4 4をバルブプレート 4 1に固着す る。 4 5は吸入管である。 4 6は冷凍機油であり、 密閉容器 3 5の底部 に溜まっている。
吸入マフラー 4 4は、 圧縮室 3 9や吸入バルブ 4 2で発生した騒音を 減衰する手段としての消音器である。 密閉型圧縮機の性能向上の観点か ら熱伝導率の低い材料、 たとえば合成樹脂材で構成されることが望まし い。 合成樹脂材としては、 冷媒ガス雰囲気, 高温下という使用環境を考 慮すると P B Tや P P Sの材料であるとよい。
4 7はマフラ一本体, 4 8はマフラーカバ一であり、 通常、 超音波溶 着法等の方法により互いに溶着結合させることで、 吸入マフラー 4 4を 形成する。 マフラ一カバー 4 8は、 平板状で簡素な形状をしており、 マ フラー空間 4 9を形成する上側壁面としての機能を備えている。 5 0は 入口管で、 一端は密閉容器 3 5内に開口し他端は吸入マフラー 4 4内に 開口しており、 マフラ一本体 4 7に一体に形成されている。 5 1は出口 管で、 一端は吸入マフラー 4 4内に開口し他端は圧縮要素 3 6側に開口 しており、 マフラー本体 4 7に一体に形成されている。
以上のように構成された密閉型圧縮機について、 以下その動作を説明 する。 冷凍サイクル (図示せず) より密閉型圧縮機に戻った冷媒ガス は吸入管 4 5を通って密閉容器 3 5内に一旦開放される。 その後、 冷媒 ガスは吸入マフラー 4 4, バルブプレート 4 1を通過して圧縮室 3 9へ と流入する。 ここで、 電動要素 3 7の回転運動により往復運動するビス トン 4 0によって圧縮された後、 冷凍サイクルへと送られる。
このとき、 ピストン 4 0の往復運動や吸入バルブ 4 2の閧閉運動によ つて圧縮室 3 9内で冷媒ガスの圧力脈動が生じる。 圧縮室 3 9内で生じ た圧力脈動は冷媒ガスの流れとは逆向きに伝播し、 出口管 5 1を通じて マフラ一空間 4 9に一旦開放される。 ここで、 マフラ一カバ一 4 8は平 板状の簡素な形状を有しているので均肉化しており成形時のひけや歪に よる変形が少なくなる。 よって、 マフラ一本体 4 7との結合を成形時の 変形が大きい場合と比べて溶着性がよくなり、 良好なシールが得られる ため、 マフラー本体 4 7とマフラーカバー 4 8との結合部から圧力脈動 がほとんど漏れることがなく、 吸入マフラー 4 4が有する消音効果を十 分に発揮することとなる。 従って、 出口管 5 1を通じてマフラー空間 4 9に開放された圧力脈動を十分に減衰してから後、 入口管 5 0を通して 密閉容器 3 5に開放することができるので、 より効果的に騒音を低減す ることとなる。 また、 マフラ一カバ一 4 8を平板状の簡素な形状とすることにより、 金型費を小さくできると共に材料重量を小さくできるので、 マフラー力 バー 4 8の製作に要する費用を小さくできることとなる。 更に、 超音波 溶着に要する受け治具の形状もマフラーカバ一 4 8の簡素な形状と同じ 形をとるため、 治具金型費用を小さくすることができる。
(実施の形態 2 )
図 4は本発明の実施の形態 2による密閉型圧縮機に用いられる吸入マ フラーの要部断面図,図 5はそのマフラ一カバ一の上面図である。なお、 図 4に示した吸入マフラーを用いた密閉型圧縮機は、 図 1に示した密閉 型圧縮機とは吸入マフラ一が異なるのみであるので、 図示しない。
図 4 , 5において、 5 2は吸入マフラ一であり、 マフラ一本体 5 3と マフラ一カバ一 5 4からなり、 溶着などの方法により互いに結合し、 マ フラー空間 5 5を形成する。
5 6は共鳴空間壁で、 マフラー本体 5 3の内壁面に沿うようにマフラ 一カバ一 5 4に一体に形成されており、 共鳴空間 5 7を形成する。 5 8 は入口管で、 一端は密閉容器 3 5内に開口し他端は吸入マフラ一 5 2内 に開口しており、 マフラー本体 5 3に一体に形成されている。 5 9は出 口管で、 一端は吸入マフラー 5 2内に開口し他端は圧縮要素 3 6側に開 口しており、 マフラ一本体 5 3に一体に形成されている。 以上のように構成された密閉型圧縮機について、 以下その動作を説明 する。 圧縮室 3 9内で生じた圧力脈動は冷媒ガスの流れとは逆向きに伝 播し、 出口管 5 9を通じてマフラー空間 5 5に一旦開放され、 共鳴空間 5 7に相応した周波数の圧力脈動成分を集中的に低減した後、 入口管 5 8を通して密閉容器 3 5に開放されることによって、 より効果的に騒音 を低減することとなる。 より具体的には、 密閉容器 3 5内の空間は R 1 3 4 aの冷媒環境下においては約 5 0 0 H zの共鳴周波数を、 R 6 0 0 a冷媒環境下においては約 5 0 0から 6 3 O H zの共鳴周波数を有して いるので、 これらの周波数での消音が十分でないと、 密閉型圧縮機とし て非常に高い騒音となってしまう。 そこで、 共鳴空間 5 7の共鳴周波数 をこれらの周波数に合致させることによって、 圧力脈動中に含まれるこ れらの周波数成分を共鳴空間 5 7に吸収することができるので、 密閉容 器 3 5内の空間への加振を低減し、 密閉型圧縮機としての騒音を低くす ることができる。 更に、 共鳴空間 5 7の容積に応じて圧力脈動の吸収量 が定まることから、 マフラー本体 5 3の内壁面に沿うように共鳴空間壁
5 6を形成することで有効な騒音低減手段である
ο
(実施の形態 3 )
図 6は本発明の実施の形態 3による密閉型圧縮機に用いられる吸入マ フラーの要部断面図である。 なお、 図 6に示した吸入マフラーを用いた 密閉型圧縮機は、 図 1に示した密閉型圧縮機とは吸入マフラ一が異なる のみであるので、 図示しない。
図 6において、 6 0は吸入マフラ一であり、 マフラー本体 6 1とマフ ラ一カバ一 6 2からなり、 溶着などの方法により互いに結合し、 マフラ 一空間 6 3を形成する。 6 4は遮蔽壁で、 遮蔽壁 6 4の上端部側でマ フラーカバー 6 2に一体に形成されており、 入口管 6 5の吸入マフラー
6 0側開口部中心と出口管 6 6の吸入マフラー 6 0側開口部中心とを結 ぶ直線より遮蔽壁 6 4の上端部側に遮蔽壁 6 4の下端部がある。
入口管 6 5は、 一端は密閉容器 3 5内に開口し他端は吸入マフラー 6 0内に開口しており、 マフラー本体 6 1に一体に形成されている。 出口 管 6 6は、 一端は吸入マフラー 6 0内に開口し他端は圧縮要素 3 6側に 開口しており、 マフラ一本体 6 1に一体に形成されている。
以上のように構成された密閉型圧縮機について、 以下その動作を説明 する。 冷媒ガスは、 ピストン 4 0の往復運動により生じた吸引力によつ て入口管 6 5の吸入マフラー 6 0側開口部から出口管 6 6の吸入マフラ 一 6 0側開口部へ向かって略直線的に流れるので、 遮蔽壁 6 4と関係せ ずスムーズに圧縮室 3 9へ流入することができ、 効率の維持が図れるこ ととなる。 一方、 圧縮室 3 9内で生じた圧力脈動は冷媒ガスの流れとは 逆向きに伝播し、 出口管 6 6を通じてマフラー空間 6 3へ放射状に開放 される。 このとき、 圧力脈動としてはマフラー空間 6 3からの出口とな る入口管 6 5へ向かう圧力脈動を遮蔽壁 6 4によって直接放射すること なく反射することで、 圧力脈動の伝播経路を長くする'ことができるので 大きな減衰を得うことができ、より効果的に騒音を低減することとなる。 より具体的には、 圧縮室 3 9で生じる圧力脈動は運転周波数のような低 周波の成分から 5 k H z以上の高周波の成分まで幅広く含んでおり、 特 に 2 k〜4 k H zの高周波成分はその脈動レベルが大きい。 脈動レベル を低減する方法としては入口管 6 5や出口管 6 6の内径を小さくするな どの方法が周知であるが、 密閉型圧縮機として重要な特性の 1つである 効率を減じてしまうという負の効果を有している。 そこで高周波の成分 は伝播経路の長さに応じてよく減衰する性質であるので、 圧縮室 3 9で 生じた圧力脈動に対してのみ伝播経路を長くすることのできる遮蔽壁 6 4は、効率を維持しながら騒音を低減するに有効な手段であるといえる。 また、 遮蔽壁 6 4をマフラ一カバ一 6 2に一体に形成することによつ て、 騒音について同様の効果を得るために遮蔽壁 6 4をマフラー本体 6 1他に別途結合手段を設ける場合と比べて製作が容易になり、 結合手段 を設けるに要するコストを省略することができることとなる。 (実施の形態 4 )
図 7は本発明の実施の形態 4による密閉型圧縮機に用いられる吸入マ フラーの要部断面図である。 なお、 図 7に示した吸入マフラ一を用いた 密閉型圧縮機は、 図 1に示した密閉型圧縮機とは吸入マフラ一が異なる のみであるので、 図示しない。
図 7において、 6 7は吸入マフラ一であり、 マフラ一本体 6 8とマフ ラ一カバー 6 9からなり、 溶着などの方法により互いに結合し、 マフラ —空間 7 0を形成している。
7 1は入口管で、 一端は密閉容器 3 5内に開口し他端は吸入マフラー 6 7内に開口しており、 マフラ一本体 6 8の壁面と一体に形成されてい る。 7 2は出口管で、 一端は吸入マフラ一 6 7のマフラ一空間 7 0の略 中央に開口し他端は圧縮要素 3 6側に開口しており、 マフラ一本体 6 8 の密閉容器 3 5側壁面に一体に形成されている。
以上のように構成された密閉型圧縮機について、 以下その動作を説明 する。 圧縮室 3 9内で生じた圧力脈動は冷媒ガスの流れとは逆向きに伝 播し、 出口管 7 2を通じてマフラ一空間 7 0に一旦開放される。 このと き、圧力脈動による加振に対してマフラ一本体 6 8の壁面は入口管 7 1、 出口管 7 2を一体に形成することにより剛性が向上されているので、 マ フラー本体 6 8の壁面の振動は十分に抑制される。 従って、 壁面振動に 伴う騒音を低減することができることとなる。 特に、 マフラ一本体 6 8 の電動要素 3 7側の壁面に対して密閉容器 3 5側の壁面の振動は、 密閉 型圧縮機としての騒音の放射面である密閉容器 3 5により近いことから 騒音として現れやすいので、 マフラー本体 6 8の密閉容器 3 5側壁面の 剛性を高くすることは騒音低減を行なう上で有効である。 また、 マフラー空間 7 0の略中央に出口管 7 2の一端を開口すること により、 マフラー空間 7 0が単独で有する低次の共鳴振動、 即ちマフラ —空間 7 0の略中央を振動の腹とする振動を抑制することができるので、 圧力振動のこの振動に相応する周波数成分を減衰することとなり、 より 効果的に騒音を低減することとなる。
(実施の形態 5 )
図 8 Aは本発明の実施の形態 5による密閉型圧縮機に用いられる吸入 マフラ一の要部断面図であり、 図 8 Bは、 その側面図である。 図 9は本 発明の実施の形態 5による密閉型圧縮機に用いられる吸入マフラーの背 面図である。 なお、 図 8 , 9に示した吸入マフラ一を用いた密閉型圧縮 機は、 図 1に示した密閉型圧縮機とは吸入マフラ一が異なるのみである ので、 図示しない。
図 8 A、 8 B , 9において、 7 3は吸入マフラーであり、 マフラ一本 体 7 4とマフラ一カバー 7 5からなり、 溶着などの方法により互いに結 合し、 マフラー空間 7 6を形成する。
7 7は導入部で、 マフラー本体 7 4に一体に形成すると共に、 一端が 密閉容器 3 5内に開口し他端は入口管 7 8に開口し、 導入部 7 7を形成 する壁面とマフラー本体 7 4を形成する壁面とは背面 7 9でのみ一致し 残る他の壁面は異なり、 図 8 Bに示すように導入部 7 7の密閉容器 3 5 側開口部 8 0は略矩形の開口形状を有すると共に略直方体の内部空間を 有し吸入管 4 5に相対する向きを有している。
入口管 7 8は、 一端が導入部 7 7に開口し他端は吸入マフラー 7 3内 に開口していると共に、 マフラ一本体 7 4に一体に形成されている。 8 1は出口管で、 一端が吸入マフラー 7 3内に開口し他端は圧縮要素 3 6 に開口していると共に、 マフラ一本体 7 4に一体に形成されている。 以上のように構成された密閉型圧縮機について、 以下その動作を説明 する。 吸入管 4 5より戻った冷媒ガスは、 導入部 7 7を通って入口管 7 8よりマフラー空間 7 6へ流入し、 出口管 8 1を通して圧縮室 3 9へ送 られる。 このとき、 重要なことは冷媒ガスをより低い温度のまま圧縮室 3 9へ送ることで、 より高い効率を得ることができる。 略矩形の開口形 状を有すると共に略直方体の内部空間を有した導入部 7 7は、 その内空 間に多くの冷媒ガスを保持することができると共に温度の高い密閉容器 3 5内雰囲気より一時的に隔絶することができるので、 冷媒ガスをより 低い温度のまま圧縮室 3 9へ送ることが可能となる。
一方、 圧縮室 3 9内で生じた圧力脈動は冷媒ガスの流れとは逆向きに 伝播し、 出口管 8 1を通じてマフラ一空間 7 6に一旦開放される。 この とき、 マフラ一空間 7 6の容積に応じて圧力脈動の減衰量が定まること からマフラ一空間 7 6を大きくすることが望ましい。 導入部 7 7の内部 空間を略直方体とすると共に背面 7 9でのみ吸入マフラー 7 3と導入部 7 7の壁面を一致させることにより導入部 7 7の内部空間の容積を大き いままにマフラー空間 7 6の容積を大きくすることができるので、 より 効果的に騒音を低減することとなる。
また、 導入部 7 7は、 背面 7 9をマフラ一本体 7 4と同じくしている ので、 別途導入部を設ける場合と比して金型費を低くすることができる と共に、 材料を少なくすることができるので、 製作に要するコストを小 さくできることとなる。
(実施の形態 6 )
図 1 0は本発明の実施の形態 6による密閉型圧縮機の要部断面図であ る。 図 1 1は本発明の実施の形態 6による密閉型圧縮機に用いられる吸 入マフラ一の要部断面図である。
図 1 0 , 1 1において、 8 2は毛細管であり、 一端が冷凍機油 4 6に 開口し他端は吸入マフラ一 8 3の出口管 8 4に開口している。 吸入マフ ラー 8 3は、 マフラ一本体 8 5とマフラ一カバー 8 6からなり、 溶着な どの方法により互いに結合し、 マフラー空間 8 7を形成する。
マフラー本体 8 5は、 一端が密閉容器 3 5内に開口し他端が吸入マフ ラー空間 8 7内に開口した入口管 8 8と、 一端が吸入マフラー空間 8 7 内に開口し他端が圧縮要素 3 6側に開口した出口管 8 4を備えている。 出口管 8 4は、 毛細管 8 2の出口管 8 4側開口位置とほぼ同じもしくは 出口管 8 4の吸入マフラー 8 3側開口部に寄った位置を境として出口管 8 4の圧縮要素 3 6側の内径が出口管 8 4の吸入マフラ一空間 8 7側の 内径より小さいものとなっている。 入口管 8 8は、 マフラー本体 8 5に —体に形成されている。 以上のように構成された密閉型圧縮機について、 以下その動作を説明 する。 冷媒ガスは、 入口管 8 8よりマフラ一空間 8 7へ流入し、 出口管 8 4を通して圧縮室 3 9へ送られる。 このとき、 出口管 8 4内の冷媒ガ スの流速は出口管 8 4の内径に反比例して出口管 8 4の吸入マフラ一空 間 8 7側より圧縮要素 3 6側に向かって大きくなるので、 毛細管 8 2の 出口管 8 4側開口部において十分大きな流速が得られることとなる。 こ れにより密閉容器 3 5内の圧力に対して毛細管 8 2の出口管 8 4側開口 部付近の圧力が小さくなるので圧力差が発生し、 密閉容器 3 5内の下部 に貯留する冷凍機油 4 6を、 毛細管 8 2から出口管 8 4を通じて圧縮室 3 9へ送出できることとなる。
一般に、 良好な潤滑を図るために出口管 8 4における冷媒ガスの大き な流速を得る方法としては出口管 8 4の内径をより小さくすることが周 知である。 しかしながら、 この方法によれば、 出口管 8 4における圧力 損失が大きく、 密閉型圧縮機の効率を減じることとなる。 従って、 出口 管 8 4の吸入マフラー 8 3側開口部に寄った位置を境として出口管 8 4 の圧縮要素 3 6側の内径が出口管 8 4の吸入マフラ一 8 3側の内径より 小さいものとすることは、 出口管 8 4内における泠媒ガスの流れを次第 に速めることができ、 冷媒ガスの流れを阻害することないので、 密閉型 圧縮機の効率を維持しながら、 良好な潤滑を得るに十分な量の冷凍機油 4 6を毛細管 8 2を通じて圧縮室 3 9へ供給することができる有効な手 段である。
(実施の形態 7 )
本発明の実施の形態 7は、 本発明の実施の形態 1から 6による密閉型 圧縮機を組み込み、 塩素を含まない冷媒もしくは、 炭化水素系冷媒を泠 媒として用いた冷蔵庫, ショーケース等の冷凍冷蔵装置や空調装置 (図 示せず) である。 これら冷蔵庫, ショーケース等の冷凍空調装置につい て、 その運転時の騒音を確認した結果を図 1 2, 1 3に示す。図 1 2は、 塩素を含まない冷媒として R 1 3 4 a冷媒を用いた冷凍冷蔵装置に本発 明の実施の形態 1から 6を含んだ吸入マフラ一を組み込んだ密閉型圧縮 機の騒音で、 図 1 3は、 炭化水素系冷媒として R 6 0 0 a冷媒を用いた 冷凍冷蔵装置に本発明の実施の形態 1から 6を含んだ吸入マフラーを組 み込んだ密閉型圧縮機の騒音である。 図 1 2, 1 3共、 横軸は 3分の 1 オクターブ周波数を表し、 その右端は全体音を表す。 縦軸は騒音レベル である。. 図中、 白抜きのプロッ トは従来の密閉型圧縮機の騒音を示した もので、 本発明の実施の形態 7による騒音は黒丸で示している。 この結 果からいずれの冷媒に おいても従来の密閉型圧縮機に対して高い騒音低減効果を得た。
具体的には、 図 1 2の塩素を含まない冷媒として R 1 3 4 a冷媒を用 いた場合においては、 5 0 0 H zの騒音が、 図 1 3の炭化水素系冷媒と して R 6 0 0 a冷媒を用いた場合においては 5 0 0〜 6 3 0 H zの騒音 が、 共鳴空間を配したことによりそれそれ 2〜3 [ d B ]低減したことを 確認した。 また、 1 . 6 k H z〜4 k H zの騒音についても各周波数帯 で効果幅に差異はあるものの遮蔽壁を設置したこと、 及び壁面剛性を向 上したことにより騒音を低減できたことを確認した。
産業上の利用可能性
以上説明したように本発明は、 マフラ一カバーを単一壁面のみの簡素 な形状とすることにより変形を少なくすることができるので、 マフラー 本体及びマフラ一カバマの結合を十分に密着することができ、 マフラー 本体とマフラーカバーとの結合部からほとんど圧力脈動が漏れることな いので、 吸入マフラーが有する消音効果を十分に発揮することとなり、 より騒音の減衰が可能となる。 また、 マフラ一カバ一を簡素な形状とす ることにより、 金型費を小さくできると共に材料重量を小さくできるの で、 マフラ一カバーの製作に要する費用を小さくできることとなり、 安 価な密閉型圧縮機を実現できる。 また本発明は、 共鳴空間を形成する壁面をマフラーカバーに一体に形 成したものであり、 共鳴空間に相応した周波数の圧力脈動成分を集中的 に低減できるため、 より騒音の減衰が可能となる。 また、 マフラー本体 を何ら変更することなく、容易に共鳴空間を付加することができるので、 製作に要するコストを小さくできるので、 安価な密閉型圧縮機を実現で きる。 本発明は、 共鳴空間を形成する壁面のうち少なくとも 1つ以上の壁面 は吸入マフラ一の内壁面に沿うこととしたものであり、 共鳴空間の容積 を大きくすることができ、 共鳴空間に相応する周波数の低減効果を大き くすることができるので、 より一層の騒音の減衰が可能となる。 本発明は、 入口管の吸入マフラ一側開口部と出口管の吸入マフラー側 開口部との間に遮蔽壁とを備えたものであり、 遮蔽壁による反射を経る ことにより圧縮室内で生じた圧力脈動の伝播絰路を長くすることができ るので、 大きな減衰を得ることができ、 効果的に騒音の低減が図れるこ ととなる。 本発明は、 遮蔽壁を吸入マフラーのいずれか 1つの壁面に一体に形成 したものであり、 遮蔽壁と吸入マフラーとの結合手段を別途設けること なく容易に製作できるので製作に要するコストを小さくできると共に、 遮蔽壁による反射を経ることにより圧縮室内で生じた圧力脈動の伝播経 路を長くすることができるので、 大きな減衰を得ることができ、 効果的 に騒音の低減が図れることとなる。 本発明は、 遮蔽壁をマフラーカバーに一体に形成したものであり、 マ フラー本体を何ら変更することなく、 容易に遮蔽壁を付加することがで きるので、 製作に要するコストを小さくできると共に、 遮蔽壁による反 射を経ることにより圧縮室内で生じた圧力脈 .
動の伝播経路を長くすることができるので、 大きな減衰を得ることがで き、 効果的に騒音の低減が図れることとなる。
本発明は、 遮蔽壁の下端部が入口管の吸入マフラー側開口部の中心と 出口管の吸入マフラー側開口部の中心とを結ぶ直線上もしくはより遮蔽 壁の上端部側の位置にあるものであり、 圧縮室内で生じた圧力脈動に対 してのみに流体的な抵抗となることにより、 効率を阻害することなく、 遮蔽壁による反射を経ることにより圧縮室内で生じた圧力脈動の伝播経 路を長くすることができるので、 大きな減衰を得ることができ、 効率を 維持したまま、 効果的に騒音の低減が図れることとなる。 本発明は、 吸入マフラーの壁面と入口管と出口管を一体に形成したも のであり、 吸入マフラ一の壁面の剛性を向上させることにより圧力脈動 による加振によっても壁面振動を抑制することができるので、 効果的に 騒音の低減が図れることとなる。 本発明は、 出口管の吸入マフラー側開口部を吸入マフラ一内空間の略 中央に位置することとしたものであり、 マフラ一空間が単独で有する低 次の共鳴振動を抑制することができるので、 より効果的に騒音の低減が 図れることとなる。 本発明は、 出口管は吸入マフラーの密閉容器側壁面に一体に形成され ているものであり、 吸入マフラーの密閉容器側壁面の剛性を向上させる ことによって騒音として現れやすい密閉容器側の壁面振動を抑制するこ とができるので、 より効果的に騒音の低減が図れることとなる。 本発明は、 導入部を吸入マフラ一の壁面と異なる壁面により形成する と共に、 導入部の吸入マフラー側開口部を導入部壁面により吸入管に相 対する向きとしたものであり、 マフラー空間を減じることなく、 導入部 の容積を大きくすることができる。 従って、 マフラー空間の容積を減じ ることがないので、 より効果的に騒音を低減することとなる。 また、 冷 媒ガスを温度の高い密閉容器内雰囲気より一時的に隔絶し保持すること ができるので、 冷媒ガスを低温のまま吸入マフラ一へ導くことができる ので、 高い効率を得ることができる。 併せて別途導入部を設ける場合と 比して金型費を低くすることができると共に、 材料を少なくすることが できるので、 コストの低減が図れることとなる。 本発明は、 導入部を略矩形の密閉容器側開口部と略直方体の内部空間 を有するものとしたものであり、 マフラ一空間を減じることなく、 導入 部の容積をより大きくすることができるので、 より多くの泠媒ガスを低 温で吸入マフラーへ導くことができるので、 より高い効率を得ることが できる。 本発明は、 吸入マフラーの出口管を少なくとも 2つの異なる内径を有 する管の連続体からなるものとしたものであり、 出口管内の冷媒ガスの 流速を大きくすることができるので、 毛細管からの冷凍機油供給量を十 分に確保することができるので、 良好な潤滑を得ることができる。 本発明は、 出口管の圧縮要素側管の内径を前記出口管の吸入マフラー 側管の内径より小さくしたものであり、 出口管の吸入マフラー側開口部 から圧縮要素側開口部へ向かう冷媒ガスの流れを阻害しないように出口 管の吸入マフラー側管内の冷媒ガスの流速より出口管の圧縮要素側管の 冷媒ガスめ流速を大きくすることができるので、 毛細管からの冷凍機油 供給量を十分に確保することができ、 より良好な潤滑を得ることができ ο 本発明は、 出口管の圧縮要素側管と出口管の吸入マフラー側管の接続 位置を毛細管の出口管開口位置とほぼ同じもしくは出口管の吸入マフラ 一側開口部に寄った位置としたものであり、 密閉容器内の圧力に対して 毛細管の出口管開口位置付近の圧力が小さくなるので圧力差が発生し、 良好な潤滑を得るに十分な量の冷凍機油を毛細管を通じて圧縮へ送出す ることができるので、 より一層良好な潤滑を得ることができる。 本発明は、 塩素を含まない冷媒に用いられる密閉型圧縮機としたもの であり、 塩素を含まない泠媒環境下においても上述した全ての効果を得 ることができる。 本発明は、 炭化水素系冷媒に用いられる密閉型圧縮機としたものであ り、 炭化水素系冷媒環境下においても上述した全ての効果を得ることが できる。 本発明は、 密閉型圧縮機を冷蔵庫, ショーケース等の冷凍冷蔵装置や 空調装置に適用したものであり、 上述した全ての効果を得ることができ るので、 密閉型圧縮機に起因する騒音を減じ、 高い信頼性や環境面にお いても安全な冷凍冷蔵装置や空調装置が可能となる。

Claims

請 求 の 範 囲
1 . 密閉容器と、 前記密閉容器内に配設した電動要素と、 前記電 動要素により回転駆動する圧縮要素と、 前記密閉容器に配設された吸入 管と、 マフラ一本体とマフラ一カバ一とからなる吸入マフラーを備え、 前記マフラー本体は、 一端が前記密閉容器内に開口し、 他端は前記吸入 マフラ一内に開口した入口管と、 一端が前記吸入マフラー内に開口し他 端は前記圧縮要素に開口した出口管と、 マフラー空間を形成する壁面の うち上側壁面を除く壁面を備え、 前記マフラーカバーは、 前記マフラー 空間を形成する壁面のうち前記上側壁面のみを形成するよう構成された 密閉型圧縮機。
2 . 共鳴空間を形成する壁面を前記マフラ一カバ一に一体に形成 した請求項 1記載の密閉型圧縮機。
3 . 前記共鳴空間を形成する壁面のうち少なくとも 1つ以上の壁 面は吸入マフラ一の内壁面に沿うよう構成されている請求項 2記載の密 閉型圧縮機。
4 . 密閉容器と、 前記密閉容器内に配設した電動要素と、 前記電 動要素により回転駆動する圧縮要素と、 前記密閉容器に配設された吸入 管と、 吸入マフラ一とを備え、 前記吸入マフラーは、 一端が前記密閉容 器内に開口し他端は前記吸入マフラー内に開口した入口管と、 一端が前 記吸入マフラ一内に開口し他端は前記圧縮要素に開口した出口管と、 前 記入口管の前記吸入マフラ一側開口部と前記出口管の前記吸入マフラー 側開口部との間に遮蔽壁とを備えた構成である密閉型圧縮機 c
5 . 前記遮蔽壁は、 前記吸入マフラーのいずれか 1つの壁面に · 体に形成されている請求項 4記載の密閉型圧縮機。
6 . 前記遮蔽壁は、 前記マフラーカバーに一体に形成されている 請求項 4記載の密閉型圧縮機。
7 . 前記遮蔽壁の下端部は前記入口管の前記吸入マフラー側開口 部の中心と出口管の吸入マフラー側開口部の中心とを結ぶ直線上、 もし くはより遮蔽壁の上端部側の位置にある請求項 4記載の密閉型圧縮機。
8 . 密閉容器と、 前記密閉容器内に配設した電動要素と、 前記電 動要素により回転駆動する圧縮要素と、 前記密閉容器に配設された吸入 管と、 マフラ一本体とマフラ一カバ一とからなる吸入マフラ一を備え、 前記マフラー本体は、 一端が前記密閉容器内に開口し他端は前記吸入マ フラー内に開口した入口管と、 一端が前記吸入マフラー内に開口し他端 は前記圧縮要素に開口した出口管と、 前記マフラー空間を形成する壁面 のうち上側壁面を除く壁面を備え、 前記入口管と前記出口管は前記壁面 にそれぞれ一体に形成されている密閉型圧縮機。
9 . 前記出口管の前記吸入マフラ一側開口部は、 前記吸入マフラ 一内空間の略中央に位置する請求項 8記載の密閉型圧縮機 c
1 0 . 前記出口管は、 前記吸入マフラーの密閉容器側壁面に一体 に形成されている請求項 8記載の密閉型圧縮機。
Γ
1 1 . 密閉容器と、 前記密閉容器内に配設した電動要素と、 前記 電動要素により回転駆動する圧縮要素と、 前記密閉容器に配設された吸 入管と、 吸入マフラーとを備え、 前記吸入マフラ一は、 一端が前記密閉 容器内に開口し他端は入口管に開口した導入部と、 一端が前記導入部に 開口し他端は前記吸入マフラー内に開口した前記入口管と、 一端が前記 吸入マフラ一内に開口し他端は前記圧縮要素に開口した出口管と、 マフ ラー空間を形成する壁面とからなり、 前記導入部は、 前記吸入マフラー の壁面と異なる壁面により形成されると共に、 前記導入部の前記吸入マ フラ一側開口部は前記導入部壁面により前記吸入管に相対するよう構成 されている密閉型圧縮機。
1 2 . 前記導入部は、 略矩形の密閉容器側開口部と、 略直方体の 内部空間を有する請求項 1 1記載の密閉型圧縮機。 '
1 3 . 密閉容器と、 電動要素と、 前記電動要素により回転駆動す る圧縮要素と、 前記密閉容器の下部に貯留した冷凍機油と、 前記密閉容 器に配設された吸入管と、 吸入マフラ一と、 一端が前記冷凍機油に開口 し他端は前記吸入マフラーの出口管内に開口した毛細管とを備え、 前記 吸入マフラーは、 一端が前記密閉容器内に開口し他端は前記吸入マフラ 一内に開口した入口管と、 一端が前記吸入マフラ一内に開口し他端は前 記圧縮要素に開口した少なくとも 2つの異なる内径を有する管の連続体 からなる出口管とを有する密閉型圧縮機。
1 4 . 前記出口管の前記圧縮要素側管の内径は、 前記出口管の前 記吸入マフラー側管の内径より小さい請求項 1 3記載の密閉型圧縮機。
1 5 . 前記出口管の前記圧縮要素側管と前記出口管の前記吸入マ フラー側管の接続位置は、前記毛細管の前記出口管開口位置とほぼ同じ、 もしくは前記出口管の前記吸入マフラー側開口部に寄った位置である請 求項 1 3記載の密閉型圧縮機。
1 6 . 塩素を含まない冷媒に用いられる請求項 1から 1 5のいず れか 1つに記載の密閉型圧縮機。
1 7 . 炭化水素系冷媒に用いられる請求項 1から 1 5のいずれか つに記載の密閉型圧縮機。
1 8 . 密閉容器と、 前記密閉容器内に配設した電動要素と、 前記 電動要素により回転駆動する圧縮要素と、 前記密閉容器に配設された吸 入管と、マフラ—本体とマフラーカバ—とからなる吸入マフラ—を備え、 前記マフラー本体は、 一端が前記密閉容器内に開口した他端は前記吸入 マフラー内に開口した入口管と、 一端が前記吸入マフラー内に開口し他 端は前記圧縮要素に開口した出口管と、 マフラー空間に形成する壁面の うち上側壁面を除く壁面を備え、 前記マフラーカバ一は、 前記マフラー 空間を形成する壁面のうち前記上側壁面のみを形成するよう構成された 密閉型圧縮機を組み込んだ冷蔵庫、 ショーケース、 その他の冷凍空調装
1 9 . 密閉容器と、 前記密閉容器内に配設した電動要素と、 前記 電動要素により回転駆動する圧縮要素と、 前記密閉容器に配設された吸 入管と、 吸入マフラーとを備え、 前記吸入マフラーは、 一端が前記密閉 容器内に閧口し他端は前記吸入マフラ一内に開口した入口管と、 一端が 前記吸入マフラー内に開口し他端は前記圧縮要素に開口した出口管と、 前記入口管の前記吸入マフラー側開口部と前記出口管の前記吸入マフラ —側開口部との間に遮蔽壁とを備えた構成である密閉型圧縮機を組み込 んだ冷蔵庫、 ショーケース、 その他の冷凍空調装置。
2 0 . 密閉容器と、 前記密閉容器内に配設した電動要素と、 前記 電動要素により回転駆動する圧縮要素と、 前記密閉容器に配設された吸 入管と、マフラー本体とマフラ一カバ一とからなる吸入マフラーを備え、 前記マフラー本体は、 一端が前記密閉容器内に開口し他端は前記吸入マ フラー内に開口した入口管と、 一端が前記吸入マフラー内に開口し他端 は前記圧縮要素に開口した出口管と、 前記マフラ一空間を形成する壁面 のうち上側壁面を除く壁面を備え、 前記入口管と前記出口管は前記壁面 にそれぞれ一体に形成されている密閉型圧縮機を組み込んだ冷蔵庫、 シ ョ一ケース、 その他の冷凍空調装置。
2 1 . 密閉容器と、 前記密閉容器内に配設した電動要素と、 前記 電動要素により回転駆動する圧縮要素と、 前記密閉容器に配設された吸 入管と、 吸入マフラ一とを備え、 前記吸入マフラ一は、 一端が前記密閉 容器内に開口し他端は入口管に開口した導入部と、 一端が前記導入部に 開口し他端は前記吸入マフラー内に開口した前記入口管と、 一端が前記 吸入マフラー内に開口し他端は前記圧縮要素に開口した出口管と、 マフ ラ一空間を形成する壁面とからなり、 前記導入部は、 前記吸入マフラー の壁面と異なる壁面により形成されると共に、 前記導入部の前記吸入マ フラー側開口部は前記導入部壁面により前記吸入管に相対するよう構成 されている密閉型圧縮機を組み込んだ冷蔵庫、 ショーケース、 その他の 冷凍空調装置。
2 2 . 密閉容器と、 電動要素と、 前記電動要素により回転駆動す る圧縮要素と、 前記密閉容器の下部に貯留した冷凍機油と、 前記密閉容 器に配設された吸入管と、 吸入マフラーと、 一端が前記冷凍機油に開口 し他端は前記吸入マフラ一の出口管内に開口した毛細管とを備え、 前記 吸入マフラーは、 一端が前記密閉容器内に開口し他端は前記吸入マフラ 一内に開口した入口管と、 一端が前記吸入マフラー内に開口し他端は前 記圧縮要素に開口した少なくとも 2つの異なる内径を有する管の連続体 からなる出口管とを有する密閉型圧縮機を組み込んだ冷蔵庫、 ショーケ —ス、 その他の冷凍空調装置。
PCT/JP2001/010279 2000-11-27 2001-11-26 Compresseur ferme et dispositifs de congelation et de conditionnement de l'air WO2002042644A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US10/432,028 US7381032B2 (en) 2000-11-27 2001-11-26 Hermetic compressor and freezing air-conditioning system
EP01997644A EP1338795A4 (en) 2000-11-27 2001-11-26 CLOSED COMPRESSOR AND FREEZING AND AIR CONDITIONING DEVICES
MXPA03004723A MXPA03004723A (es) 2000-11-27 2001-11-26 Compresora hermetica y sistema de congelamiento por aire acondicionado.
BR0115644-6A BR0115644A (pt) 2000-11-27 2001-11-26 Compressor hermético, e, sistema de condicionamento de ar congelante
KR1020037007116A KR100557069B1 (ko) 2000-11-27 2001-11-26 밀폐형 압축기 및 냉동공조장치
AU2002224095A AU2002224095A1 (en) 2000-11-27 2001-11-26 Closed compressor and freezing and air conditioning devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000359012A JP3677447B2 (ja) 2000-11-27 2000-11-27 密閉型圧縮機
JP2000-359012 2000-11-27

Publications (1)

Publication Number Publication Date
WO2002042644A1 true WO2002042644A1 (fr) 2002-05-30

Family

ID=18830843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010279 WO2002042644A1 (fr) 2000-11-27 2001-11-26 Compresseur ferme et dispositifs de congelation et de conditionnement de l'air

Country Status (9)

Country Link
US (1) US7381032B2 (ja)
EP (1) EP1338795A4 (ja)
JP (1) JP3677447B2 (ja)
KR (1) KR100557069B1 (ja)
CN (3) CN100538070C (ja)
AU (1) AU2002224095A1 (ja)
BR (1) BR0115644A (ja)
MX (1) MXPA03004723A (ja)
WO (1) WO2002042644A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005019646A1 (en) * 2003-08-26 2005-03-03 Matsushita Electric Industrial Co., Ltd. Hermetic compressor

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100972364B1 (ko) 2003-09-08 2010-07-26 삼성광주전자 주식회사 밀폐형 압축기
JP2005133707A (ja) * 2003-10-10 2005-05-26 Matsushita Electric Ind Co Ltd 密閉型圧縮機
KR100593846B1 (ko) * 2004-09-01 2006-06-28 삼성광주전자 주식회사 압축기용 흡입머플러
JP4576944B2 (ja) * 2004-09-13 2010-11-10 パナソニック株式会社 冷媒圧縮機
JP4734901B2 (ja) * 2004-11-22 2011-07-27 パナソニック株式会社 圧縮機
JP4682596B2 (ja) * 2004-11-24 2011-05-11 パナソニック株式会社 密閉型圧縮機
JP4752255B2 (ja) * 2004-12-06 2011-08-17 パナソニック株式会社 密閉型圧縮機
JP4735084B2 (ja) 2005-07-06 2011-07-27 パナソニック株式会社 密閉型圧縮機
KR100778485B1 (ko) 2006-04-26 2007-11-21 엘지전자 주식회사 연결관 결합형 머플러 및 그를 구비한 압축기
JP2011144719A (ja) * 2010-01-13 2011-07-28 Sanden Corp 圧縮機
SG185556A1 (en) 2010-05-24 2012-12-28 Whirlpool Sa Suction arrangement for a refrigeration compressor
CN101955668A (zh) * 2010-09-30 2011-01-26 广东美的电器股份有限公司 用于制作空调压缩机消音器的复合材料
JP5632334B2 (ja) 2011-06-10 2014-11-26 サンデン株式会社 圧縮機の吸入マフラ
JP2013231429A (ja) * 2012-04-06 2013-11-14 Panasonic Corp 密閉型圧縮機
EP2909480B1 (en) 2012-09-13 2020-06-24 Emerson Climate Technologies, Inc. Compressor assembly with directed suction
BR112015006395A2 (pt) * 2012-09-26 2017-07-04 Teijin Pharma Ltd compressor, e, dispositivo para concentração de oxigênio
CZ308291B6 (cs) * 2014-04-10 2020-04-22 Hanon Systems Tlumicí zařízení a způsob jeho výroby
GB2568285B (en) * 2017-11-10 2020-07-08 Aspen Pumps Ltd Pulsation damper
TWI700434B (zh) * 2017-12-18 2020-08-01 日商日東工器股份有限公司 泵浦
WO2020204825A1 (en) * 2019-03-29 2020-10-08 Panasonic Appliances Refrigeration Devices Singapore Suction muffler for reciprocating compressor
US11236748B2 (en) 2019-03-29 2022-02-01 Emerson Climate Technologies, Inc. Compressor having directed suction
US11767838B2 (en) 2019-06-14 2023-09-26 Copeland Lp Compressor having suction fitting
US11248605B1 (en) 2020-07-28 2022-02-15 Emerson Climate Technologies, Inc. Compressor having shell fitting
US11387593B2 (en) * 2020-08-05 2022-07-12 Lg Electronics Inc. High voltage connector assembly and motor-operated compressor including the same
US11619228B2 (en) 2021-01-27 2023-04-04 Emerson Climate Technologies, Inc. Compressor having directed suction

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10169561A (ja) * 1996-12-06 1998-06-23 Matsushita Refrig Co Ltd 密閉型電動圧縮機
JP2000130147A (ja) * 1998-10-23 2000-05-09 Matsushita Refrig Co Ltd マフラー
JP2000130327A (ja) * 1998-10-23 2000-05-12 Matsushita Refrig Co Ltd 密閉型電動圧縮機

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184386A (ja) * 1983-04-05 1984-10-19 Copyer Co Ltd 電子複写機
JPH03258980A (ja) * 1990-03-06 1991-11-19 Matsushita Refrig Co Ltd 密閉型電動圧縮機
US5220811A (en) * 1990-11-13 1993-06-22 Tecumseh Products Company Suction muffler tube
JPH05126045A (ja) * 1991-11-05 1993-05-21 Matsushita Refrig Co Ltd 密閉型圧縮機
KR200141490Y1 (ko) * 1993-04-24 1999-05-15 김광호 압축기의소음감쇠장치
US5496156A (en) * 1994-09-22 1996-03-05 Tecumseh Products Company Suction muffler
SG93793A1 (en) * 1996-05-02 2003-01-21 Matsushita Refrigeration Ind S Cylinder head-suction muffler assembly for hermetic compressor
US5733108A (en) * 1996-05-28 1998-03-31 White Consolidated Industries, Inc. Hermetic refrigeration compressor
KR100222924B1 (ko) * 1996-07-12 2000-01-15 배길성 밀폐형 왕복동식 압축기
BR9604126A (pt) * 1996-08-21 1998-05-26 Brasil Compressores Sa Amortecedor de sucção para compressor hermético
KR19980027501U (ko) * 1996-11-16 1998-08-05 박병재 자동차의 연료탱크 구조
KR100207792B1 (ko) * 1997-02-24 1999-07-15 윤종용 밀폐형 압축기
KR100269951B1 (ko) * 1997-11-05 2000-10-16 배길성 압축기의 흡입 머플러

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10169561A (ja) * 1996-12-06 1998-06-23 Matsushita Refrig Co Ltd 密閉型電動圧縮機
JP2000130147A (ja) * 1998-10-23 2000-05-09 Matsushita Refrig Co Ltd マフラー
JP2000130327A (ja) * 1998-10-23 2000-05-12 Matsushita Refrig Co Ltd 密閉型電動圧縮機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1338795A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005019646A1 (en) * 2003-08-26 2005-03-03 Matsushita Electric Industrial Co., Ltd. Hermetic compressor
CN100381701C (zh) * 2003-08-26 2008-04-16 松下电器产业株式会社 封闭式压缩机

Also Published As

Publication number Publication date
US7381032B2 (en) 2008-06-03
EP1338795A4 (en) 2009-11-11
EP1338795A1 (en) 2003-08-27
JP2002161855A (ja) 2002-06-07
US20050100456A1 (en) 2005-05-12
CN100538071C (zh) 2009-09-09
AU2002224095A1 (en) 2002-06-03
CN101063443A (zh) 2007-10-31
KR20030064795A (ko) 2003-08-02
MXPA03004723A (es) 2005-01-25
CN101063442A (zh) 2007-10-31
KR100557069B1 (ko) 2006-03-03
CN1494636A (zh) 2004-05-05
CN100538070C (zh) 2009-09-09
JP3677447B2 (ja) 2005-08-03
BR0115644A (pt) 2004-07-06
CN100353057C (zh) 2007-12-05

Similar Documents

Publication Publication Date Title
WO2002042644A1 (fr) Compresseur ferme et dispositifs de congelation et de conditionnement de l'air
CN1109196C (zh) 用于密封压缩机的抽吸消音器
JPS62271974A (ja) 冷凍コンプレツサ
JP2008540891A (ja) 冷却コンプレッサ用サクションマフラ
JP4101505B2 (ja) 密閉型圧縮機
JP4159111B2 (ja) 往復動密閉圧縮機の吸込み装置
JP4735718B2 (ja) 冷媒圧縮機
JP4792675B2 (ja) 密閉型圧縮機
JPH11311179A (ja) 密閉型電動圧縮機
JP4492032B2 (ja) 密閉型圧縮機
JP4407523B2 (ja) 密閉型圧縮機
JP4407522B2 (ja) 密閉型圧縮機
JP5934880B2 (ja) 密閉型圧縮機
JP4475125B2 (ja) 密閉型圧縮機
JP4470747B2 (ja) 密閉型圧縮機
JPH0942183A (ja) 圧縮機のマフラ装置
JP5793649B2 (ja) 密閉型圧縮機
KR100199967B1 (ko) 밀폐형 왕복동식 압축기용 흡입머플러
KR100497462B1 (ko) 왕복동식밀폐형압축기의흡입장치
JPH11101181A (ja) 密閉型電動圧縮機
JP2011196190A (ja) 密閉型圧縮機および冷凍装置
JP2004036512A (ja) 空調装置
JPH10103041A (ja) 密閉型往復動式圧縮器用吸入マフラー
JPH10318147A (ja) 密閉型電動圧縮機

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CN IN KR MX SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001997644

Country of ref document: EP

Ref document number: 2002224095

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 653/KOLNP/2003

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: PA/a/2003/004723

Country of ref document: MX

Ref document number: 1020037007116

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018223303

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020037007116

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001997644

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10432028

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 1020037007116

Country of ref document: KR