WO2001042360A1 - Composition de resine epoxyde ignifuge et stratifie obtenu a partir de celle-ci - Google Patents

Composition de resine epoxyde ignifuge et stratifie obtenu a partir de celle-ci Download PDF

Info

Publication number
WO2001042360A1
WO2001042360A1 PCT/JP2000/008595 JP0008595W WO0142360A1 WO 2001042360 A1 WO2001042360 A1 WO 2001042360A1 JP 0008595 W JP0008595 W JP 0008595W WO 0142360 A1 WO0142360 A1 WO 0142360A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
flame
resin composition
group
derivatives
Prior art date
Application number
PCT/JP2000/008595
Other languages
English (en)
French (fr)
Inventor
Yukihiro Kiuchi
Masatoshi Iji
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to US10/070,827 priority Critical patent/US6730402B2/en
Priority to DE60041419T priority patent/DE60041419D1/de
Priority to EP20000979090 priority patent/EP1260551B1/en
Publication of WO2001042360A1 publication Critical patent/WO2001042360A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/063Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols with epihalohydrins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31511Of epoxy ether
    • Y10T428/31515As intermediate layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • the present invention relates to a flame-retardant epoxy resin composition having excellent flame retardancy and safety, and a varnish solution, a pre-preda, and a laminate prepared using the same.
  • the use of the above-described flame retardant or flame retardant auxiliary in the epoxy resin composition promotes corrosion of metal in addition to safety problems, and thus has a problem in its application.
  • the wiring corrosion resistance, particularly at high temperatures, has been reduced, and the reliability of the electronic parts has sometimes been impaired. Therefore, development of an epoxy resin composition that does not use a halogen-based flame retardant or antimony trioxide has been desired.
  • the second challenge is that the dielectric constant increases and the moisture resistance and solder heat resistance decrease. It is essential that these properties be maintained well in laminate applications, but metal hydroxides tend to absorb moisture and have a high dielectric constant. It is.
  • Japanese Patent Application Laid-Open No. 11-140,277 discloses a phenolic resin having a novolak structure containing a biphenyl derivative and / or a naphthalene derivative in the molecule, a biphenyl derivative and / or a naphthalene derivative in the molecule.
  • An epoxy resin composition for semiconductor encapsulation without a flame retardant which contains an epoxy resin having a novolak structure, an inorganic filler and a curing accelerator containing the same as essential components is disclosed.
  • the epoxy resin composition for semiconductor encapsulation has a structure in which a phenolic resin or an epoxy resin containing a polyaromatic compound such as a biphenyl derivative or a naphthylene derivative reacts to form a crosslinked structure, When ignited, the surface of the resin composition expands in a rubber-like manner to form a foamed layer. This foam layer blocks the supply of heat and oxygen to the unburned parts, and develops high flame retardancy.
  • the above resin composition is designed so as to be suitable for semiconductor encapsulation, and when applied to a laminated board or the like, sufficient flame retardancy is not necessarily obtained. This is due to the deformation of resin such as glass woven fabric and glass non-woven fabric during the structure of the laminate. This is due to the fact that there is a base material that hinders (expansion), so that it is difficult to sufficiently form a stable foam layer at the time of ignition. Disclosure of the invention
  • the present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a flame-retardant epoxy resin composition that achieves an unprecedentedly high level of flame retardancy and safety.
  • various properties required for laminates that is, good workability, dielectric properties, moisture resistance, solder heat resistance, etc.
  • the purpose is to provide high flame retardancy while maintaining.
  • a flame-retardant epoxy resin composition containing an epoxy resin, a curing agent and a metal hydroxide
  • the curing agent comprises a structural unit derived from phenols (A) and the phenols
  • a flame-retardant epoxy resin composition characterized in that it is a phenolic resin (C) containing in its molecular chain a structural unit derived from an aromatic (B) other than (A). .
  • a flame-retardant epoxy resin composition containing an epoxy resin, a curing agent and a metal hydroxide,
  • the epoxy resin is a phenol-based resin containing, in its molecular chain, a structural unit derived from a phenol (A) and a structural unit derived from an aromatic (B) other than the phenol (A).
  • a flame-retardant epoxy resin composition characterized by being a novolak-type epoxy resin (D) in which a phenolic hydroxyl group of the resin (C) is glycidyl etherified.
  • a flame-retardant epoxy resin composition comprising an epoxy resin, a curing agent and a metal hydroxide,
  • the curing agent is a phenol-based resin containing, in its molecular chain, a structural unit derived from a phenol (A) and a structural unit derived from an aromatic (B) other than the phenol (A).
  • the epoxy resin has a phenol containing a structural unit derived from a phenol ( ⁇ ') and a structural unit derived from an aromatic compound ( ⁇ ') excluding the phenol ( ⁇ ') in a molecular chain.
  • a flame-retardant epoxy resin composition characterized in that the phenolic hydroxyl group of the resin (C) is a nopolak epoxy resin (D) in which phenolic hydroxyl groups have been glycidyl etherified.
  • phenols ( ⁇ ) and phenols ( ⁇ '), aromatics ( ⁇ ) and aromatics ( ⁇ '), phenolic resins (C) and phenolic resins (C ') may be the same or different.
  • the description of phenols ( ⁇ ), aromatics ( ⁇ ) and phenolic resins (C) in this specification is based on phenols ( ⁇ ,), aromatics ( ⁇ ') and phenolic resins. The same applies to (C ').
  • an epoxy resin varnish solution obtained by dispersing the flame-retardant epoxy resin composition in an organic solvent, a pre-preda obtained by impregnating a substrate with the flame-retardant epoxy resin composition and hardening the same A laminate is provided by stacking a plurality of the prepregs and heating and pressing.
  • the present invention realizes a high flame retardant effect by using a phenol resin or an epoxy resin having the above specific structure and further using a metal hydroxide in combination.
  • a phenol resin or an epoxy resin having the above specific structure and further using a metal hydroxide in combination.
  • a more remarkable flame retardant effect can be obtained.
  • the flame-retardant epoxy resin composition of the present invention comprises a phenolic resin (C) containing, in its molecular chain, a structural unit derived from a phenol ( ⁇ ) and a structural unit derived from an aromatic ( ⁇ ). And / or an epoxy resin (D) in which the phenolic hydroxyl group of the phenolic resin (C) is glycidyl etherified, and further contains a metal hydroxide. Therefore, as shown below, a high degree of flame retardant effect can be obtained by the synergistic action of these.
  • an epoxy resin composition in which a phenolic resin (C) and / or an epoxy resin (D) containing an aromatic compound ( ⁇ ) in a molecular skeleton forms a crosslinked structure.
  • the resin layer on the surface expands in a rubber-like manner by a decomposition gas generated inside the cured product at the time of ignition to form a stable foamed layer, and exhibits a flame-retardant effect.
  • an epoxy resin composition such as a laminated board in which a base material that prevents deformation (expansion) of a resin component such as a glass woven fabric or a glass nonwoven fabric is present has a high flame retardant effect. It was difficult to efficiently form a layer, and sufficient flame retardancy was not obtained.
  • the flame-retardant epoxy resin composition of the present invention uses a metal hydroxide in addition to the epoxy resin and the curing agent having the specific structure described above. As a result, a synergistic action of the two provides a remarkable flame-retardant action not found in the prior art. Although the reason is not necessarily clear, it is considered that the flame retardancy of this flame retardant epoxy resin composition is expressed by the following mechanism.
  • the metal hydroxide When the cured body of the flame-retardant epoxy resin composition of the present invention ignites, the metal hydroxide is thermally decomposed to generate steam. The generated water vapor deforms and expands the resin cured body softened by heat, and promotes the formation of a foam layer. For this reason, even in a structure having a substrate that prevents deformation (expansion) of a resin component such as a glass woven fabric or a glass nonwoven fabric, a foam layer can be sufficiently formed at the time of ignition. In addition, this foamed layer has a high hot strength due to its unique cross-linking structure by using a special epoxy resin and a curing agent, and has a structure that is hard to break by heat. Since it is filled with such a material, it functions effectively as a combustion suppressing layer that effectively blocks heat and oxygen.
  • the metal hydroxide is converted into a metal oxide by combustion, but this metal oxide remains uniformly in the resin body. It is thought that this functions as a support and also plays a role in making the size of the foam layer uniform. Thus, it is considered that the metal hydroxide plays a role in suitably maintaining the structure of the foamed layer and improving the combustion suppressing effect of the foamed layer.
  • the present invention promotes the generation of a foam layer having high hot strength by using an epoxy resin or a curing agent having a specific structure in combination with a metal hydroxide, and fills the foam layer with water vapor.
  • the metal oxide serves as a support and the foamed layer has a structure suitable for suppressing combustion, thereby achieving a high degree of flame retardancy.
  • a metal hydroxide is used for such a purpose, a sufficient flame-retardant effect can be obtained with a small amount of addition as compared with the conventional technique in which a metal hydroxide is simply added for the purpose of lowering the temperature. It is done.
  • the flame retardancy can be significantly improved by adding a silicone compound having a branched main chain and having an aromatic compound in the structure.
  • the silicone compound reacts with the epoxy resin and the curing agent in the epoxy resin composition to form a flame-retardant product having excellent heat-decomposability.
  • a foamed layer that is difficult to foam is formed, and a higher degree of flame retardancy can be realized.
  • the silicone compound is used in combination, the amount of metal hydroxide added can be further reduced. Also, the deterioration of the moldability and the electrical characteristics (dielectric characteristics) can be prevented more effectively.
  • FIG. 1 is a diagram for explaining the parameters used in the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • the phenols (A) in the present invention are not particularly limited as long as they are aromatic compounds having a phenolic hydroxyl group.
  • naphthols such as phenol, or naphthol, and naphthol , Bisphenol fluorene type phenols, or polyphenols such as cresol, xylenol, ethyl phenol, butyl phenol, nonylphenol, octyl phenol, etc.
  • polyphenols such as bisphenol A, bisphenol F, bisphenol S, resorcinol, catechol, etc.
  • Phenylphenol aminophenol and the like.
  • the use of these phenols is not limited to one type, and two or more types can be used in combination.
  • the aromatics (B) in the present invention are one or more aromatic compounds excluding the phenols (A).
  • the aromatics (B) are not particularly restricted but include, for example, biphenyl and its derivatives, benzene and its derivatives, diphenyl ether And its derivatives, naphthalene and its derivatives, anthracene and its derivatives, fluorene and its derivatives, bisphenol fluorene and its derivatives, bisphenol S and its derivatives, bisphenol F and its derivatives, bisphenol A and its derivatives, etc. Is mentioned. Of these, biphenyl and its derivatives, and benzene and its derivatives are preferably used.
  • aromatics (B) containing a biphenyl derivative are highly effective in improving flame retardancy and are therefore preferred.
  • the distance between the cross-linking points of the cured resin is longer than that of the benzene derivative or the like, so that it can be assumed that foaming is more likely to occur at the time of ignition and flame retardancy is promoted.
  • the gaseous thermal decomposition product generated at the time of ignition causes the resin surface to foam, but the fact that the thermal decomposition product itself is difficult to ignite is also a factor in flame retardancy. I think it is affecting.
  • the aromatics (B) preferably have a chain-type bonding group containing an unsaturated bond having 1 to 6 carbon atoms or a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms.
  • Examples of the linking group having a chain structure containing an unsaturated bond include an aryl group.
  • Examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, and a propyl group.
  • the phenolic resin (C) in the present invention is not particularly limited as long as it is a phenolic resin having a novolak structure containing phenols (A) and aromatics (B) other than phenols.
  • the use of these phenolic resins is not limited to one type, and two or more types can be used in combination.
  • the aromatics (B) are preferably a phenol biphenyl aralkyl type resin or a phenol phenyl aralkyl type resin, which is biphenyl and its derivative or benzene and its derivative.
  • a phenol biphenyl aralkyl type resin or a phenol phenyl aralkyl type resin, which is biphenyl and its derivative or benzene and its derivative.
  • an epoxy resin composition having a moderately low bridge density can be obtained, and a rubber-like foamed layer having excellent heat decomposition resistance at the time of ignition is more preferably formed.
  • biphenyl and its derivatives and benzene and its derivatives are excellent in hydrophobicity, and therefore, when these are introduced, the moisture resistance of the resin composition is also improved.
  • the phenolic resin (C) in the present invention preferably has, for example, a repeating unit represented by any one of the following formulas (I) to (IV).
  • X and X 2 each independently represent a bonding group having a chain structure containing an unsaturated bond having 1 to 6 carbon atoms or a substituted or unsubstituted alkylene group having 1 to 6 carbon atoms, Represents a phenylene group, a biphenylene group, or a derivative group thereof.
  • a resin having such a repeating unit a rubber-like foamed layer having excellent thermal decomposition resistance at the time of ignition is more preferable.
  • the moisture resistance of the resin composition is improved.
  • the above-mentioned phenolic resin composition of the present invention the above-mentioned phenolic resin
  • a phenolic resin other than (C) may be used in combination.
  • the content of the phenolic resin (C) based on the total amount of the phenolic resin is preferably 5% by mass or more, more preferably 30% by mass or more. If the content is too low, the flame retardancy may be insufficient.
  • the curing agent in addition to the above-mentioned phenolic resin (C), other phenolic resin-based compounds can be used in combination.
  • the phenolic resin that can be used in combination is not particularly limited.
  • phenol biphenyl triazine type resin ⁇ k phenol phenylene triazine type resin, phenol triazine type resin, biphenyl-1,4'-diphenyl Droxyl ester and 3,3 ', 5,5'-tetramethylbiphenyl-1,4'-dihydroxyl ether, tetraphenylroleethane, trisphenylolethane, phenol novolak resin, cresol novolak resin , Bisphenol A resin, Bisphenol F resin, Bisphenol S resin, Polyphenol resin, Aliphatic phenol resin, Aromatic ester phenol resin, Cycloaliphatic ester resin
  • Phenolic resin and ether ester type phenol resin Phenolic resin and ether ester type phenol resin.
  • the amine compound that can be used in combination is not particularly limited, and examples thereof include diaminodiphenylmethane, diethylenetriamine, and diaminodiphenylsulfone.
  • These phenolic resin-based compounds may be used alone or as a mixture of several kinds. Among them, phenol biphenyl triazine type resin, phenol phenylene triazine type resin, and phenol triazine type resin are particularly preferable in view of enhancing flame retardancy.
  • the novolak epoxy resin (D) in the present invention comprises, in a molecular chain, a structural unit derived from a phenol (A) and a structural unit derived from an aromatic (B) other than the phenol (A).
  • This is a novolak epoxy resin in which the phenolic hydroxyl group of the phenolic resin (C) is glycidyl etherified.
  • Examples of such a novolak type epoxy resin include, for example, phenol biphenyl aralkyl type epoxy resin.
  • the use of these epoxy resins is not limited to one type, and two or more types can be used in combination.
  • the aromatics (B) are preferably phenol biphenyl aralkyl type epoxy resin or phenol phenylene aralkyl type epoxy resin in which biphenyl and its derivative or benzene and its derivative are used.
  • This is preferable in that an epoxy resin composition having a moderately low crosslink density can be obtained, and a rubber-like foamed layer having excellent thermal decomposition resistance at the time of ignition is more suitably formed.
  • biphenyl and its derivatives and benzene and its derivatives have extremely high flame retardant effects and are also excellent in hydrophobicity, so that their introduction improves the moisture resistance of the resin composition. 1
  • the content of the epoxy resin (D) is preferably 5% by mass or more, more preferably 30% by mass or more based on the total amount of the epoxy resin. If the content is too low, the flame retardancy may be insufficient.
  • the epoxy resin that can be used in combination with the epoxy resin (D) is not particularly limited. Examples thereof include phenol biphenyl triazine type epoxy resin, phenol phenylene triazine type epoxy resin, phenol triazine type epoxy resin, and biphenyl 4,4'-diglycidyl ether and 3,3 ', 5,5'-tetramethylbiphenyl-1,4,4'-diglycidyl ether at least one or a mixture of tetraphenylenediphenyl-type epoxy resin, Trisphenylol ethane epoxy resin, phenol novolak epoxy resin, cresol novolak epoxy resin, bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, polyphenol epoxy resin, aliphatic epoxy Tree , Aromatic ester type epoxy resin, cyclic aliphatic ester type Epoki shea resin and ether ester type epoxy resins.
  • glycidylated amine compounds such as diamino diphenyl: methane, diethylene triamine and diamino diphenyl sulfone can be used.
  • These epoxy resins may be used alone or as a mixture of several types.
  • phenol-biphenyl triazine type epoxy resin, phenol phenylene triazine type epoxy resin, and phenol triazine type epoxy resin are particularly preferable in terms of enhancing flame retardancy.
  • the weight average molecular weight of the phenolic resin (C) and the epoxy resin (D) contained in the flame-retardant epoxy resin composition of the present invention is not particularly limited, but is, for example, from 300 to 100000.
  • the weight average molecular weight can be measured by GPC (gel permeation chromatography).
  • the epoxy resin of the epoxy resin with respect to the total number of hydroxyl groups of the curing agent ( ⁇ H) If the ratio (OH / E p) of the total number of bases (E p) is ⁇ 7 ⁇ (OH / E p) ⁇ 2.5, the flame retardancy of the cured product obtained by curing these is improved. If (OHZEp) is less than 0.7, which is more appropriate above, it is derived from the epoxy group remaining in the crosslinked structure formed by the curing agent and the epoxy resin in the cured product. However, since the amount of flammable components such as aryl alcohol increases, it may hinder the improvement of flame retardancy.
  • the metal hydroxide contained in the flame-retardant epoxy resin composition of the present invention is selected from aluminum, magnesium, zinc, boron, calcium, nickel, cobalt, tin, molybdenum, copper, iron, and titanium. It is also preferable that the metal hydroxide is composed of at least one element.
  • metal hydroxides include aluminum hydroxide, magnesium hydroxide, zinc borate, calcium hydroxide, nickel hydroxide, cobalt hydroxide, tin hydroxide, zinc molybdate, copper hydroxide, and water.
  • Metal hydroxide mainly composed of iron oxide or the like can be used. These metal hydroxides may be used alone, or several kinds may be mixed or dissolved, or one of the metal hydroxides may be coated with another metal hydroxide for use.
  • aluminum hydroxide, magnesium hydroxide, and zinc borate are preferred in terms of improving flame retardancy.
  • aluminum hydroxide is particularly preferable because it has excellent resistance to acids and alkalis and also has excellent curability of the cured product.
  • the content of the metal hydroxide based on the total weight of the flame-retardant epoxy resin composition of the present invention is preferably 70% by mass or less.
  • the total amount of the above-mentioned flame-retardant epoxy resin composition refers to an amount including various additives such as a curing accelerator, a silicone compound, and a filler in addition to an epoxy resin and a curing agent. When used, it refers to the amount excluding the base material such as glass fiber. With such a content, a high degree of flame retardancy can be realized while maintaining good moldability and dielectric properties. For this reason, especially when used for laminates, it is possible to obtain high-quality laminates having high flame retardancy.
  • the content when the content is 60% by mass or less, solder heat resistance and moisture resistance become remarkable. Significantly improved. For this reason, for example, when used for laminates, a high-quality laminate excellent in solder heat resistance can be obtained. Further, when the content is 55% by mass or less, moldability, dielectric properties, and moisture resistance are further improved, which is preferable.
  • the lower limit of the content is preferably at least 10% by mass, more preferably at least 30% by mass. In this way, sufficient flame retardancy can be realized. In addition, in the case of using a powder having a melting force such as a melting force or a crystal force, sufficient flame retardancy can be obtained even when the content of the metal hydroxide is reduced.
  • the flame-retardant epoxy resin composition of the present invention may further include a silicone compound having a branched main chain and having an aromatic derivatizing group. In this way, the flame retardancy can be further improved, and the addition amount of the metal hydroxide can be further reduced, so that the deterioration of the moldability and the electrical properties (dielectric properties) can be more effectively prevented. .
  • the aromatic derivative group contained in the silicone compound in the present invention is a functional group derived from aromatics, and the aromatics are a benzene ring, a condensed benzene ring, a polyaromatic ring, a non-benzene-based aromatic ring. And compounds having an aromatic ring such as a heteroaromatic ring.
  • aromatics include benzene, naphthylene, anthracene, biphenyl, diphenyl ether, biphenylene, pyrrol, benzoguanamine, melamine, acetoguanamine, and derivatives thereof.
  • the derivative include those obtained by adding an alkyl group having 1 to 10 carbon atoms to the above compound.
  • a preferred embodiment of the aromatic derivative group is a phenyl group. This is because it is superior in the effect of improving the flame retardancy.
  • the silicone compound in the present invention preferably has a branched main chain, and preferably has a unit (T unit) represented by the formula RSiOu in its structure. Further, the expression S i 0 2.
  • the unit (Q unit) represented by may be contained.
  • the branched structure of the silicone compound is represented by a unit (T unit) represented by the formula RS and a formula R 2 Si 0. In unit represented (D units), wherein R, 3 S i ⁇ ⁇ . And is composed of units (Micromax units) represented by 5 particularly preferred in view of flame retardancy improvement. Of such a structure If it is, the thermal decomposition resistance can be more effectively improved, and the flame retardancy can be further improved.
  • Examples of such a silicone compound include those having a structure represented by the following formula.
  • the silicone compound in the present invention preferably has a reactive group capable of reacting with the epoxy resin and Z or a curing agent.
  • R and R 'each include at least one of a reactive group capable of reacting with an epoxy resin or a curing agent, for example, a hydroxyl group, an alkoxy group having 1 to 5 carbon atoms, an epoxy group, and a carboxyl group. It is preferred that These reactive groups are not limited to one kind, and may contain two or more kinds.
  • an alkyl group having 1 to 10 carbon atoms, particularly a methyl group is preferred, excluding aromatics.
  • the ratio of the reactive group to the total amount of the functional groups (R and R ′) constituting the silicone compound of the present invention is preferably 0.05 mol% or more and less than 20 mol%, and more preferably 0.1 mol%. It is preferably at least 10 mol%.
  • the weight-average molecular weight of the silicone compound contained in the flame-retardant epoxy resin composition of the present invention is not particularly limited, but is not limited to 200. 5500,000, preferably 100,000 to 100,000. Preferred. If the weight average molecular weight is too low, the flame retardancy of the silicone compound itself may decrease. On the other hand, if the weight average molecular weight is too large, the dispersibility of the silicone compound in the epoxy resin composition becomes insufficient, and the moldability may decrease. In addition, the weight average molecular weight can be measured by GPC (gel 'permeation' chromatography).
  • the molar ratio (T / D) of the T unit (unit represented by the formula RS iO) and the D unit (unit represented by the formula R 2 S i0 ⁇ ) constituting the silicone compound used in the present invention is represented by (T / D) It is preferable that 0.1Z1) ⁇ (T / D) ⁇ (9/1).
  • (T / D) is less than (0.1Z1), the heat resistance of the silicone compound itself deteriorates, so that the flame retardancy of the epoxy resin composition containing the silicone compound may decrease.
  • (T / D) exceeds (9/1), the moldability of the epoxy resin composition containing the silicone compound may decrease.
  • the proportion of the phenyl group in the total amount of the functional groups (R, R ') constituting the silicone compound of the present invention is preferably at least 20 mol%, particularly preferably at least 40 mol%. If the above ratio is less than 20 mol%, the compatibility of the silicone compound with the phenolic resin and the epoxy resin constituting the epoxy resin composition of the present invention is reduced, so that the moldability and flame retardancy of the epoxy resin composition are reduced. May decrease.
  • the content of the silicone compound contained in the flame-retardant epoxy resin composition of the present invention having a branched main chain and having aromatics in the structure simultaneously achieves good flame retardancy and moldability.
  • the content is preferably 0.1% by mass or more and 20% by mass or less based on the total amount of the phenolic resin, the epoxy resin, the metal hydroxide, and various additives constituting the flame-retardant epoxy resin composition. . If it is less than 0.1% by mass, the flame retardancy may be insufficient, and if it exceeds 20% by mass, the moldability of the epoxy resin composition may be reduced.
  • the silicone compound of the present invention can be used after it is preliminarily reacted with the phenolic resin or epoxy resin of the present invention and another curing agent epoxy resin to form a complex.
  • a metal oxide may be used in combination with the metal hydroxide contained in the flame-retardant epoxy resin composition of the present invention, if necessary.
  • Specific examples of metal oxides that can be used in combination include, but are not limited to, silicon oxide and calcium oxide. These metal oxides may be used alone or as a mixture or solid solution of several types. It may be mixed with a metal hydroxide or coated on the surface of the metal hydroxide or solid-solved with the metal hydroxide before use.
  • a combination of aluminum hydroxide, magnesium hydroxide, and silicon oxide is preferable from the viewpoint of improving flame retardancy.
  • those obtained by subjecting a metal hydroxide constituting the epoxy resin composition of the present invention to a surface treatment with an organic substance such as a phenol resin or other various polymers may be used.
  • the surface treatment of metal hydroxide coated with metal oxide, or metal hydroxide solidified with metal oxide is treated with an organic substance such as phenolic resin or other various polymers. It can also be used.
  • the flame-retardant epoxy resin composition of the present invention may contain various additives such as a curing accelerator, a release agent, a surface treatment agent, and a filler other than metal hydroxide, if necessary. Is also good.
  • the curing accelerator those generally used for curing an epoxy resin and a curing agent can be used.
  • diazabicycloalkenes and derivatives thereof such as 1,8-diazabicyclo (5,4,0) indene-17, triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (Dimethylaminomethyl) tertiary amines such as phenol, imidazoles such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-14-methylimidazole, 2-hepcidecylimidazole, and tris Organic phosphines such as butylphosphine, methyldiphenylphosphine, triphenylphosphine, etc., tetra-substituted phosphonium / tetra-substituted borate such as tetraphenylphosphonium / te
  • the flame-retardant epoxy resin composition of the present invention may contain, as necessary, other additives such as a coloring agent such as Ripbon black, a low stress component such as silicone oil and silicone rubber, and a silicone powder.
  • a coloring agent such as Ripbon black
  • a low stress component such as silicone oil and silicone rubber
  • silicone powder a silicone powder.
  • Various additives such as an agent may be appropriately compounded.
  • an organosilane compound that is, an alkoxysilane having a reactive functional group
  • an alkoxysilane having a reactive functional group is important for improving the strength, chemical resistance, and electrical properties of the flame-retardant epoxy resin composition of the present invention.
  • the alkoxysilane include aminosilane compounds such as aminopropyl triethoxysilane and N-phenyl-aminoaminopropyl methoxysilane, ⁇ -glycidoxypropyl trimethoxysilane, and ⁇ -glycidoxy.
  • Epoxy silane compounds such as provyl methyl ethoxy silane, vinyl silane compounds such as vinyl tris (5-methoxetoxy) silane, acryl silane compounds such as a-methacryloxy propyl trimethoxy silane, and mercapto silane compounds such as a-mercapto propyl trimethoxy silane And the like.
  • these coupling agents an aminosilane compound or an epoxysilane compound is preferable, and an aminosilane compound is particularly preferable, from the viewpoint of improving the adhesion between the resin component constituting the epoxy resin composition of the present invention and the metal hydroxide. .
  • the flame-retardant epoxy resin composition of the present invention can use a known filler other than the metal hydroxide.
  • a known filler for example, powders of carbon fiber, fused silica, crystalline silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, boron nitride, beryllia, talc, titanium oxide, zirconium, etc., or spherical beads of these And single crystal fibers such as potassium titanate, silicon carbide, silicon nitride, and alumina.
  • One of these fillers may be used alone, or two or more thereof may be used in combination.
  • powders of fused silica and crystalline silica are preferred.
  • the flame-retardant epoxy resin composition of the present invention is more effective when used for a composite material obtained by impregnating and curing a base material such as glass fiber, paper, or aramide fiber.
  • a base material such as glass fiber, paper, or aramide fiber.
  • impregnating the flame-retardant epoxy resin composition of the present invention into a glass fiber substrate ⁇ paper substrate When a prepreg or a laminated board is manufactured, a high degree of flame retardancy can be realized while maintaining various properties such as moldability, dielectric properties, and moisture resistance (solder heat resistance). It is preferable that the laminate satisfies the following conditions (a) to (d).
  • 3 ⁇ 12s preferably 3 ⁇ ⁇ 10
  • represents the bending strength (MPa) of the laminate at 230 ⁇ 10 ° C
  • E represents the flexural modulus (GPa) of the laminate at 230 ⁇ 10 ° C.
  • the foamed layer of the resin can be suitably formed, and the strength and toughness of the foamed layer can be sufficiently increased.
  • the effect of suppressing the combustion of the foamed layer can be sufficiently enhanced. it can. If the elastic modulus is too small, it will be difficult to obtain a foam layer having sufficient strength. On the other hand, if the elastic modulus is too large, it is difficult to sufficiently increase the toughness of the foam layer.
  • G represents the ratio (% by mass) of the base material to the total amount of the laminate.
  • the amount of the base material is too small, the outflow of the resin during molding becomes remarkable, and molding may be difficult.
  • the amount of the substrate is too large, sufficient adhesion may not be obtained and delamination may occur.
  • R The amount of pyrolysis products other than moisture generated from room temperature (25 ° C) to 500 ° C, calculated by the following formula.
  • R laminates total (W - the residual amount of the laminate at 500 ° C (W 2) - .. 3 ⁇ 40 emission under 5 00 ° C (W H2Q / 5 0 C)
  • FIG. 1 is a schematic diagram illustrating a method for obtaining the value of F.
  • the amount of pyrolysis products other than water indicates the amount of combustible components during resin combustion.
  • V is the total amount of laminates generated from room temperature (25 ° C) to 500 ° C when pyrolyzed at a heating rate of 10 ° C / min and an air flow rate of 0.2 l / min. Indicates the amount of water vapor (% by mass) with respect to. ) ⁇
  • V V is too small, sufficient steam to fill the foamed layer is not generated, and it is difficult to obtain sufficient flame retardancy. On the other hand, if this value is too large, the flame retardancy may be impaired. The reason for this is not necessarily clear, but it is thought to be due to the rupture of the foam layer.
  • the flame-retardant epoxy resin composition of the present invention may further contain a nitrogen-based flame retardant such as melamine and isocyanuric acid compound, and a phosphorus-based flame retardant such as red phosphorus, a phosphoric acid compound and an organic phosphorus compound. It can be appropriately added as a flame retardant aid.
  • the amount of the flame retardant to be added may be small, and a decrease in other physical properties such as moisture resistance can be suppressed.
  • the flame-retardant epoxy resin composition of the present invention is diluted with a suitable organic solvent such as methyl ethyl ketone or propylene glycol monomethyl ether to form a varnish.
  • a prepreg can be manufactured by a usual method of coating, impregnating and heating a porous glass substrate. It is also possible to produce a glass-epoxy copper-clad laminate by laminating a plurality of prepregs, laminating copper foil on one or both sides of the laminated structure, and heating and pressing the laminate under ordinary conditions. it can. At this time, if no copper foil is used, a laminate can be obtained.
  • the multilayer board is formed by forming a circuit on a copper-clad laminate (inner board), etching the copper foil, and then laminating a prepreg and copper foil on at least one side of the inner board. , prepared by conventional methods of heating at a pressure of 4 0 kg / cm 2 9 0 min can do. Further, the printed wiring board can be manufactured by a usual method of forming a through hole in a copper-clad laminate or a multilayer board, performing through-hole plating, and then forming a predetermined circuit.
  • the laminate of the present invention thus produced is excellent in high flame retardancy and safety.
  • the flame-retardant epoxy resin composition of the present invention When used as a sealing material for a semiconductor device, it is preliminarily kneaded with a ribbon blender, a Henschel mixer, or the like, and then obtained using a heating roll or a kneader.
  • the mixture of the flame-retardant epoxy resin composition of the present invention is used after dewatering if necessary. This mixture is heated and melted under a predetermined molding condition by a transfer molding machine or the like and applied as a sealing material for a semiconductor device.
  • a semiconductor device using the flame-retardant epoxy resin composition of the present invention as a sealing material is particularly excellent in flame retardancy and safety.
  • a semiconductor device in which a semiconductor element is mounted on a die pad of a lead frame and connected by wire-to-wire bonding is sealed with a resin, and a lead-on-chip resin sealing is used.
  • the flame-retardant epoxy resin composition of the present invention has excellent flame retardancy and safety even in other uses, that is, when used as molding materials, casting materials, adhesives, paints, and the like. .
  • E glass cloth having a thickness of 0.18 mm was used as the glass woven fabric.
  • Silane coupling agent A KBE903 (alphaaminopropyltriethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd. was used.
  • Silane force coupling agent B Shin-Etsu Chemical, KBM403
  • Curing-promoting catalyst A U-CAT-SA 102 (Diazavic crowundesene octylate) manufactured by Sanpro Co., Ltd. was used.
  • Curing acceleration catalyst B Shikoku Chemicals, 2E4MZ
  • a phenolic resin and an epoxy resin represented by the following formulas (1) to (8) were used.
  • Phenol biphenyl aralkyl resin (Phenol resin 1)
  • Phenol biphenyl aralkyl epoxy resin (Epoxy resin 1)
  • G represents a glycidyl group.
  • N 0.0 to 10, softening point 57 ° C, epoxy equivalent 270 g / eq
  • Phenol phenylene aralkyl resin (Phenol resin 2)
  • Phenol phenylene aralkyl epoxy resin (Epoxy resin 2) Formula (4)
  • G represents a glycidyl group.
  • N 0.10-10, softening point 55 ° C, epoxy equivalent 234 g / eq
  • Phenol novolak resin (Phenol resin 3)
  • Cresol novolak epoxy resin (Epoxy resin 3)
  • G represents a glycidyl group.
  • N 0.10-10, softening point 68 ° C, epoxy equivalent 194 g / e q)
  • G represents a glycidyl group.
  • N 0.10-10, viscosity 1500 at 25 ° 0 1500 ise, epoxy equivalent 180 g / eq)
  • Epoxy resin 5 bisphenol A type epoxy resin 2
  • Epoxy resin 6 (phenol novolak epoxy resin) Nippon Kayaku, EPPN-201, epoxy equivalent 191
  • Aluminum hydroxide BW103 manufactured by Nippon Light Metal Co., Ltd.
  • Zinc borate Firebrake @ 290 manufactured by US Borax Inc.
  • Aluminum hydroxide B CL-310, manufactured by Sumitomo Chemical
  • ⁇ F indicates the total after-flame time of the test performed on five molded plates. That is, F1 and F'2 were measured for one molded plate, and The total after-flame time is defined as the total after-flame time per molded plate F. This F was measured for five molded plates, and the total was defined as ⁇ F. “Time” indicates the value of ⁇ F described above.)
  • the relative permittivity of the molded plate (length 2 cm ⁇ width 2 cm ⁇ thickness 1.6 mm) was measured using a Hewlett-Packard 4291BRF IMPEDANCE / MATERIAL ANALYZER. The measurement frequency was 1 GHz.
  • the criteria for determining the relative permittivity are as follows. When the relative permittivity is 5.0 or less:
  • a copper-clad double-sided laminate (25 mm square x 1.6 mm thick) is boiled in boiling water (approximately 100 ° C) for 1 hour, cooled in running water for 30 minutes, and then the surface moisture is removed. After wiping well, it was floated in a solder bath at about 260 ° C. for 20 seconds to evaluate solder heat resistance.
  • the evaluation criteria for the solder heat resistance are as follows.
  • the obtained epoxy resin varnish was continuously applied and impregnated on a glass woven fabric, and dried at 120 ° C. to produce a prepreg.
  • a laminate of eight prepregs was heated and pressurized at 170 ° C and a pressure of 40 kg / cm2 for 20 minutes, and then post-cured at 175 ° C for 6 hours.
  • a glass epoxy laminate having a thickness of 1.6 mm was obtained.
  • the obtained laminate was evaluated for flame retardancy, dielectric constant and formability.
  • Table 2 shows the results.
  • the epoxy resin varnish obtained in Example 1 was continuously applied and impregnated on a glass woven fabric.
  • the prepreg was dried by drying in a C oven.
  • the prep thus obtained The laminate obtained by superposing 8 sheets of legs, sandwiching copper foil (thickness 18Yum), in 1 ⁇ 0 ° C, 40 kg / after heated and pressurized for 20 minutes at a pressure of cm 2, further 175 ° C 6 After a period of time, the glass epoxy copper-clad laminate having a thickness of 1.6 mm was obtained.
  • the obtained copper-clad laminate was evaluated for solder heat resistance.
  • a laminate was molded in the same manner as in Example 1 except that the flame-retardant epoxy resin compositions having the formulations shown in Tables 2 to 5 were used, and evaluation of flame retardancy, measurement of dielectric constant, moldability, and c Each heat resistance was evaluated. The results are shown in Tables 2 to 5.
  • a laminate was molded in the same manner as in Example 1 except that the epoxy resin compositions having the formulations shown in Tables 6 to 8 were used, and evaluation of flame retardancy, measurement of dielectric constant, moldability and solder heat resistance were performed. The evaluation went all the way. The results are shown in Tables 6 to 8.
  • phenol biphenyl aralkyl resin 15.59% by mass of phenol biphenyl aralkyl resin (phenolic resin 1), 12.57% by mass of bisphenol A type epoxy resin (epoxy resin 4), 15.0% by mass of aluminum hydroxide, melt crushing 55.0% by mass of silica powder, 1.40% by mass of silane coupling agent, 0.20% by mass of carnapa wax, 0.24% by mass of triphenylphosphine (TPP) were premixed at room temperature, and then mixed at 100 ° C. The mixture obtained by kneading for about 5 minutes on a jar was cooled and pulverized to obtain a resin composition. C.
  • Example 25 The resin composition shown in Example 25 was compressed into tablets (evening bullet) at 85 ° Preheated to C, using a single plunger type transfer molding machine, injection time 15 seconds, injection pressure 10 OkgZcm 2 (execution pressure), molding temperature 175 ° C, molding time 120 seconds, UL94 flame retardant After molding according to the standard, post-curing (1 15 ° C, 6 hours) to obtain a molded plate for a flame retardancy test.
  • the moldability was evaluated based on the criteria shown below.
  • Table 9 shows the evaluation results.
  • a molded article was prepared in the same manner as in Example 25 except that the flame-retardant epoxy resin composition having the composition shown in Table 9 was used, and evaluation of flame retardancy, moisture resistance, and moldability was performed. I went there. Table 9 shows the results.
  • a molded body was prepared in the same manner as in Example 25 except that the epoxy resin composition having the composition shown in Table 10 was used, and the evaluation of flame retardancy, evaluation of moisture resistance, and evaluation of moldability were performed. I did it. The results are shown in Table 10. Table 2
  • Phenol phenyl aralkyl epoxy resin (epoxy resin 2) 25.41% by mass, phenol phenol aralkyl resin (phenolic resin 2) 19.01% by mass, aluminum hydroxide B 55.0% by mass, silane cup
  • a mixture consisting of 0.55% by weight of ring agent B and 0.03% by weight of curing accelerator B (total amount of 100% by mass) 41 phr of methyl ethyl ketone was added to give a non-volatile content of 71% by mass.
  • An epoxy resin varnish was prepared.
  • the obtained epoxy resin varnish was continuously applied and impregnated on a glass woven fabric, and dried in an oven at 120 ° C to produce a prepreg. Under the specified conditions (heating rate 5 ° C, 180 ° C ⁇ 1 hour, cooling to 80 ° C in 30 minutes, 32 kg / cm 2 ) By heating and pressing, a glass epoxy laminate having a thickness of 1.6 mm was obtained.
  • the temperature is raised from room temperature to 500 and 800 ° C.
  • Predetermined conditions (5 ° CZ for 5 ° CZ, 180 ° C for 1 hour, 30 minutes for the laminate obtained by stacking seven prepregs obtained in Example 31 between copper foils (18 / m)) Then, the mixture was cooled to 80 ° C and heated at 32 kg / cm 2 ) to obtain a glass-epoxy copper-clad laminate having a thickness of 1.6 mm. The obtained copper-clad laminate was evaluated for solder heat resistance.
  • a solution A was prepared by dissolving dicyandiamide in DMF (dimethylformamide), and a solution B was prepared by dissolving bisphenol A type epoxy resin, aluminum hydroxide B, and silane coupling agent B in methyl ethyl ketone.
  • curing accelerator B was added to solution C obtained by mixing these solutions A and B to prepare an epoxy resin varnish having a nonvolatile content of 68.0% by mass.
  • the non-volatile content in this varnish is 1.89% by mass of dicyandiamide, 42.46% by mass of bisphenol A type epoxy resin 2 (epoxy resin 5), 55.0% by mass of aluminum hydroxide B, and silane coupling agent B It is a mixture of 0.5% by mass and 10% by mass of a curing accelerator B O.
  • the volatile content of the above-mentioned penis is a mixed solvent of 41 phr of methyl ethyl ketone and 6 phr of DMF with respect to 100% by mass of the mixture.
  • the obtained epoxy resin varnish was continuously applied to a glass woven fabric, impregnated, and dried in an oven at 130 ° C to produce a prepreg. Under the specified conditions (heating rate 5 ° C / min, 180 ° C ⁇ 1 hour, cooling to 80 ° C in 30 minutes, 32 kg / cm 2 ) By heating and pressing, a glass epoxy laminate having a thickness of 1.6 mm was obtained.
  • a laminate obtained by laminating seven prepregs obtained in Comparative Example 20 was sandwiched between copper foils (18 ⁇ ), and under predetermined conditions (heating rate 5 ° C / min, 180 ° C for 1 hour, 30 minutes Then, the mixture was cooled to 80 C and heated and pressurized at 32 kg / cm 2 ) to obtain a 1.6 mm-thick glass-epoxy copper-clad laminate.
  • the obtained copper-clad laminate was evaluated for solder heat resistance.
  • Comparative Examples 21, 22, 23 and Reference Examples 27, 28 were performed (however, the content of the nonvolatile components and the molding pressure were different).
  • Tables 13 and 14 show the evaluation results. From the results shown in the table, it was found that the flame-retardant epoxy resin composition according to the present invention was more excellent in flame retardancy than the flame-retardant epoxy resin compositions of Comparative Examples according to the prior art. It was also found that by appropriately setting the amount of metal hydroxide added, various properties such as dielectric properties, moldability, solder heat resistance, and moisture resistance can be effectively improved.
  • Example 31 Example 32 Example 33 Example 34 Example 35 Example 36
  • Example 37 Epoxy resin 1 (phenol biphenyl aralkyl epoxy resin) (gs%:-1-1 1 1 1 1 1 Phenol resin 1 ( Phenol biphenyl aralkyl resin (gsw) 111-1-1 Epoxy resin 2 (phenol phenyl aralkyl epoxy resin) (SS%) 25.41 13.62 8.32-39.85 19.64 2.83 Phenol resin 2 (phenol phenol) Nylene aralkyl resin (g content%) 19.01 8.59 5.00 21.25 29.80 14.69 1.61 Epoxy resin 3 (cresol nopolak epoxy resin) (g content%)--1---1 Epoxy resin 5 (bisphenol A type epoxy resin 2) ) (mass 1 H) Single - - A - A one epoxy resin 6 (phenol novolac epoxy resin) (g location%) Single 13.62 19.44 23.17 eleven 25.49 resin composition phenol-based ⁇ fat 3 (Fueno Noporakku resin) (g
  • Dicyandiamide (Shitsu ⁇ %) Single - - - - - - A aluminum hydroxide B (mass 0/0) 55 55 55 55 55 30 65 55 silane coupling agent B (mass 0/0) 0.55 0.55 0.55 0.55 0.30 0.65 0.55 curing accelerator catalyst B (wt%) 0.03 0.03 0.03 0.03 0.05 0.02 0.03 total weight (mass 15/0) 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 number
  • Epoxy resin 6 (phenol novolak epoxy resin) (Au 3 ⁇ 4%)
  • Resin composition phenolic resin 3 (phenol novolak resin) (Amount of 3 ⁇ 4)
  • Dicyandiamide (quality 3.81 1.89-water SS) :: room B (quality%) 25 0 10 55 25/5
  • the flame-retardant epoxy resin composition of the present invention comprises phenols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)

Description

明細書 難燃性ェポキシ樹脂組成物およびそれを用いた積層板 技術分野
本発明は、 難燃性および安全性に優れる難燃性エポキシ樹脂組成物、 および、 これを用いて作成したワニス溶液、 プリプレダ、 積層板に関するものである。 背景技術 ·
従来、 火災防止のために、 エポキシ樹脂組成物に難燃特性が要求される場合、 通常、 難燃剤としてハロゲン系難燃剤が、 また難燃助剤として三酸化アンチモン が使用されてきた。
ところがエポキシ樹脂組成物において上記の難燃剤や難燃助剤を用いると、 安 全性の問題に加え、 金属の腐食を促進することとなり、 かかる点でその適用に課 題を有していた。 たとえばこのようなエポキシ樹脂組成物を電子部品の絶縁材と して使用した場合、 特に高温での耐配線腐食性が低下し、 電子部品の信頼性を損 なう場合があった。 従って、 ハロゲン系難燃剤や三酸化アンチモンを使用しない エポキシ樹脂組成物の開発が望まれていた。
ハロゲン系難燃剤等を用いない難燃性付与手段として、 エポキシ樹脂組成物中 に金属水酸化物を配合する方法が知られている。 しかしながら、 金属水酸化物に よる難燃性発現は、 樹脂硬化体の温度を下げる (吸熱) ことによる燃焼抑制作用 によるものであり、 難燃性の付与手段としては補助的なものと位置づけられるも のである。 したがって、 上記吸熱作用によって充分な難燃性を得るためには大量 の添加量が必要となる。 このため、 電子部品用途等においては、 成形性等が大幅 に低下するため、 その適用は困難であった。
特に、 ガラス繊維等にエポキシ樹脂組成物を含浸 ·硬化させてなる積層板を作 製するための難燃性エポキシ樹脂組成物に関しては、 金属水酸化物を大量に添加 した場合、 種々の課題が生じる。 この点について、 以下、 説明する。 第一の課題は、 積層板の加工性が損なわれることである。 この点に関し、 たと えば 「最新 難燃剤 ·難燃化技術 (技術情報協会 1 9 9 9年 7月 3 0曰発 行) 」 の第 2 7 0頁〜第 2 7 1頁には、 水酸化アルミを大量に加える (エポキシ 樹脂組成物全体に対し 7 5質量%) ことにより U L 9 4 V— 0を達成できるもの の、 その配合量は実用的には非現実的なものであり、 「プリント配線板加工工程 時の打ち抜き ' ドリル加工性、 および部品実装時の半田処理工程において不具合 が生じる」 ことが記載されている。
第二の課題は、 誘電率が上昇すること、 耐湿性やハンダ耐熱性が低下すること である。 積層板用途においてはこれらの物性が良好に維持されることが必須とな るが、 金属水酸化物は吸湿しやすい上、 誘電率が高いため、 大量に添加した場合、 上記物性の低下をもたらすのである。
以上のことから、 既存のエポキシ樹脂に対し金属水酸化物を添加する手法では、 積層板用途において要求される諸物性を高水準に維持しつつ、 高度の難燃性を実 現することは困難であった。
. 一方、 エポキシ樹脂や硬化剤の分子構造を変えることにより難燃性を付与する 検討も種々行われている。 特開平 1 1— 1 4 0 2 7 7号報には、 分子中にビフエ ニル誘導体および/またはナフタレン誘導体を含むノボラック構造のフエノール 系樹脂、 分子中にビフエ二ル誘導体および/またはナフ夕レン誘導体を含むノボ ラック構造のエポキシ樹脂、 無機充填材および硬化促進剤を必須成分とする、 難 燃剤無添加の半導体封止用エポキシ樹脂組成物が開示されている。
上記半導体封止用ェポキシ樹脂組成物は、 構造中にビフェニル誘導体やナフ夕 レン誘導体等の多芳香族類を含有するフェノール系樹脂やエポキシ樹脂が反応し て架橋構造を形成しているために、 着火した際に、 樹脂組成物の表面がゴム状に 膨張して発泡層を形成する。 この発泡層により、 未燃焼部への熱と酸素の供給が 遮断され高度な難燃性が発現するのである。
しかしながら、 上記樹脂組成物は半導体封止用途に適するように設計されたも のであり、 積層板用途等に適用した場合、 必ずしも充分な難燃性は得られない。 これは、 積層板の構造中にはガラス織布やガラス不織布のような樹脂分の変形 (膨張) を妨げる基材が存在するため、 着火時に安定な発泡層が充分に形成され にくいことに起因するものである。 発明の開示
本発明は上述した事情に鑑みてなされたものであり、 従来にない高水準の難燃 性と安全性を実現する難燃性エポキシ樹脂組成物を提供することを目的とする。 特に、 積層板の製造に使用される難燃性エポキシ樹脂組成物において、 積層板 に要求される諸物性、 すなわち、 積層板の加工性、 誘電特性、 耐湿性およびハン ダ耐熱性等を良好に維持しつつ高度の難燃性を付与することを目的とする。 上記課題を解決する本発明によれば、 エポキシ樹脂、 硬化剤および金属水酸化 物を含む難燃性エポキシ樹脂組成物であって、
前記硬化剤は、 フヱノール類 (A) から誘導される構成単位と該フエノール類
(A) を除く芳香族類 (B ) から誘導される構成単位とを分子鎖中に含むフエノ —ル系樹脂 (C ) であることを特徴とする難燃性エポキシ樹脂組成物が提供され る。
また本発明によれば、 エポキシ樹脂、 硬化剤および金属水酸化物を含む難燃性 ェポキシ樹脂組成物であって、
前記エポキシ樹脂は、 フエノール類 (A) から誘導される構成単位と該フエノー ル類 (A) を除く芳香族類 (B ) から誘導される構成単位とを分子鎖中に含むフ エノ一ル系樹脂 (C ) のフエノール性水酸基がグリシジルエーテル化されたノボ ラック型エポキシ樹脂 ( D ) であることを特徴とする難燃性エポキシ樹脂組成物 が提供される。
また本発明によれば、 エポキシ樹脂、 硬化剤および金属水酸化物を含む難燃性 エポキシ樹脂組成物であって、
前記硬化剤は、 フエノール類 (A) から誘導される構成単位と該フヱノール類 (A ) を除く芳香族類 (B ) から誘導される構成単位とを分子鎖中に含むフエノ —ル系樹脂 (C ) であって、 前記エポキシ樹脂は、 フヱノール類 (Α') から誘導される構成単位と該フエノ ール類 (Α') を除く芳香族類 (Β') から誘導される構成単位とを分子鎖中に 含むフエノール系樹脂 (C ) のフエノール性水酸基がグリシジルエーテル化さ れたノポラック型エポキシ樹脂 (D) であることを特徴とする難燃性エポキシ樹 脂組成物が提供される。 ここで、 フエノール類 (Α) とフヱノール類 (Α')、 芳香族類 (Β) と芳香族類 (Β') 、 フエノール系樹脂 (C) とフエノール系樹 脂 (C') は、 それそれ同じであっても異なっていてもよい。 なお、 本明細書中 におけるフエノール類 (Α) 、 芳香族類 (Β) およびフヱノール系樹脂 (C) に 関する記述は、 フエノール類 (Α,) 、 芳香族類 (Β') およびフヱノール系樹 脂 (C') に対しても同様にあてはまる。
また本発明によれば、 上記難燃性エポキシ樹脂組成物を有機溶剤に分散させて なるエポキシ樹脂ワニス溶液、 上記難燃性エポキシ樹脂組成物を基材に含浸、 硬 化させてなるプリプレダ、 および、 このプリプレグを複数枚重ね、 加熱加圧して なる積層板が提供される。
本発明は、 上記特定構造のフエノール樹脂やエポキシ樹脂を用い、 さらに金属 水酸化物を併用することにより、 高度な難燃効果を実現するものである。 特に、 上記特定構造のフエノール系樹脂と上記特定構造のエポキシ樹脂とを併用すれば、 一層顕著な難燃効果が得られる。
本発明の難燃性エポキシ樹脂組成物は、 フヱノール類 (Α) から誘導される構 成単位と芳香族類 (Β) から誘導される構成単位とを分子鎖中に含むフエノール 系樹脂 (C) および/またはこのフエノール系樹脂 (C) のフエノール性水酸基 をグリシジルエーテル化したエポキシ樹脂 (D) を含み、 さらに、 金属水酸化物 を含んでいる。 このため、 以下に示すように、 これらの相乗作用による高度の難 燃効果が得られる。
従来技術の項で述べたように、 芳香族類 (Β) を分子骨格中に含有するフエノ —ル系樹脂 (C) および/またはエポキシ樹脂 (D) が架橋構造を形成するェポ キシ樹脂組成物の硬化物は、 着火時に硬化物の内部で発生する分解ガスによって、 表面の樹脂層がゴム状に膨張して安定な発泡層を形成して、 難燃効果を発現する。 しかしながら、 この作用のみでは、 ガラス織布やガラス不織布のような樹脂分の 変形 (膨張) を妨げる基材が内在する積層板などのエポキシ樹脂組成物では、 高 度な難燃効果を発現する発泡層を効率的に形成することが困難であり、 充分な難 燃性が得られなかった。
そこで、 本発明の難燃性エポキシ樹脂組成物は、 上記特定構造のエポキシ樹脂 や硬化剤を用いるとともに、 金属水酸化物を使用している。 これにより、 両者の 相乗作用により、 従来技術にない顕著な難燃作用が得られる。 この理由は必ずし も明らかではないが、 この難燃性エポキシ樹脂組成物の難燃性が、 以下の機構に より発現していることによるものと考えられる。
本発明の難燃性エポキシ樹脂組成物の硬化体に着火すると、 金属水酸化物が熱 分解して水蒸気が発生する。 発生した水蒸気は、 熱により軟化した樹脂硬化体を 変形、 膨張させ、 発泡層の形成を促す。 このため、 ガラス織布やガラス不織布の ような樹脂分の変形 (膨張) を妨げる基材が存在する構造体中にあっても、 着火 時に発泡層を充分に形成することができる。 また、 この発泡層は、 特有のェポキ シ樹脂と硬化剤の使用による特有の架橋構造のために、 高い熱間強度を有し、 熱 により破泡しにくい構造となっている上、 内部が水蒸気等によって満たされてい ることから、 熱や酸素を効果的に遮断する燃焼抑止層として有効に機能するので ある。
また、 金属水酸化物は燃焼により金属酸化物に転化するが、 この金属酸化物が 樹脂体中に均一に残存することとなる。 これが支持体として機能するとともに、 発泡層のサイズを均一にする役割を果たすものと考えられる。 このように金属水 酸化物は発泡層の構造を好適に維持し、 発泡層の燃焼抑止効果を向上させる役割 を果たしているものと考えられる。
以上のように本発明は、 特定構造のエポキシ樹脂や硬化剤と金属水酸化物を併 用することにより、 熱間強度の高い発泡層の発生を促進するとともに、 この発泡 層に水蒸気を充填して燃焼抑止効果を付与し、 さらに、 金属酸化物が支持体とな つて発泡層を燃焼抑止に適した構造にしており、 これにより、 高度の難燃作用を 実現しているものと推定される。 本発明においては、 このような目的で金属水酸化物を用いているため、 単に温 度を下げる目的で金属水酸化物を添加する従来技術と比べ、 少量の添加で充分な 難燃効果が得られるのである。
本発明において、 特に、 主鎖が分岐構造でその構造中に芳香族類を持つシリコ ーン化合物を添加すると難燃性を著しく向上できる。 このようにした場合、 シリ コーン化合物が、 エポキシ樹脂組成物中のエポキシ樹脂や硬化剤と反応して耐熱 分解性に優れる難燃化物を形成するため、 樹脂硬化体に着火した場合において、 より破泡しにくい発泡層が形成され、 一層高度な難燃性を実現することができる 加えて、 前記シリコーン化合物を併用すれば、 金属水酸化物の添加量をさらに低 減できるので、 エポキシ樹脂組成物の成形性や電気特性 (誘電特性) の低下もよ り効果的に防止できる。 図面の簡単な説明
図 1は、 本発明で用いたパラメ一夕を説明するための図である。 発明を実施するための最良の形態
本発明におけるフヱノール類 (A ) としては、 フヱノール性水酸基を有する芳 香族化合物である限り、 特に限定されるものではなく、 例えば、 フヱノール、 あ るいはひ一ナフトール、 ?一ナフトール等のナフトール類、 ビスフエノールフ ルオレン型フエノール、 あるいはクレゾール、 キシレノール、 ェチルフエノール、 ブチルフエノール、 ノニルフエノール、 ォクチルフエノール等のアルキルフエノ —ル、 ビスフエノール A、 ビスフエノール F、 ビスフエノール S、 レゾルシン、 カテコール等の多価フエノール類、 フエニルフエノール、 ァミノフエノール等が 挙げられる。 また、 これらのフエノール類は、 その使用にあたって一種類に限定 されるものではなく、 二種類以上の併用も可能である。
本発明における芳香族類 (B ) は、 前記フヱノール類 (A) を除く一または二 以上の芳香族化合物である。 芳香族類 (B ) は、 特に限定されるものではなく、 例えば、 ビフヱニルとその誘導体、 ベンゼンとその誘導体、 ジフエニルエーテル とその誘導体、 ナフタレンとその誘導体、 アントラセンとその誘導体、 フルォレ ンとその誘導体、 ビスフヱノールフルオレンとその誘導体、 ビスフエノール Sと その誘導体、 ビスフエノール Fとその誘導体、 ビスフエノール Aとその誘導体等 が挙げられる。 このうち、 ビフエニルとその誘導体、 ベンゼンとその誘導体が好 ましく用いられる。 難燃化の効果が極めて高く、 さらに疎水性に優れるので、 こ れらを導入すると樹脂組成物の耐湿性も大幅に改良されるからである。 特にビフ ェニル誘導体を含む芳香族類 (B ) は、 難燃性向上の効果が高く、 好ましい。 こ の理由は、 必ずしも明らかではないが、 ビフエニル誘導体を含有する樹脂の硬化 体が発泡化しやすいこと、 さらに、 ビフエニル誘導体自体の引火点が高いことが 影響したものと考える。 すなわち、 ビフエニル誘導体を含有すると、 ベンゼン誘 導体等に比べ、 樹脂硬化物の架橋点間の距離が長くなるため、 着火時に一層発泡 化しやすくなつて、 難燃化が促進されたものと想定できる。 また、 本発明の樹脂 組成物では、 着火の際に発生するガス状の熱分解生成物が樹脂表面を発泡化させ るが、 この熱分解生成物自体が引火しにくいことも難燃化には影響していると考 える。 ビフ;ニル誘導体を含む樹脂組成物からは、 ビフエニル自体も発生するの で、 この引火点の高さ (ビフエニルは 1 1 0 °C、 ベンゼンは- 1 0 °C) も、 難燃 化に寄与した可能性が高い。
芳香族類 (B ) は、 炭素数 1乃至 6の不飽和結合を含む鎖式構造の結合基また は炭素数 1乃至 6の置換または無置換のアルキル基を有することが好ましい。 上記不飽和結合を含む鎖式構造の結合基としてはァリル基が挙げられる。 また、 上記炭素数 1乃至 6のアルキル基としてはメチル基、 ェチル基、 プロピル基等が 挙げられる。
本発明におけるフエノール系樹脂 (C ) としては、 フエノール類 (A) および フエノール類を除く芳香族類 (B ) を含むノボラック構造のフエノール系樹脂で ある限り、 特に限定されるものではなく、 例えば、 フエノ一ルビフエニルァラル キル型樹脂、 フエノールフエ二レンァラルキル型樹脂、 フエノールジフエニルェ —テルァラルキル型樹脂、 ナフ夕レン含有フエノールノボラック型樹脂、 アント ラセン含有フエノールノボラヅク型樹脂、 ビフエ二レン含有フエノールノボラッ ク型樹脂、 フルオレン含有フエノールノボラック型樹脂、 ビスフエノールフルォ レン含有フエノールノボラック型樹脂、 ビスフエノール S含有フエノールノボラ ヅク型樹脂、 ビスフエノール F含有フエノールノボラック型樹脂、 ビスフエノー ル A含有フエノールノボラック型樹脂等が挙げられる。 また、 これらのフエノー ル系樹脂は、 その使用にあたって一種類に限定されるものではなく、 二種類以上 の併用も可能である。
以下、 フエノール系樹脂 (C ) の具体例を示す。 但し本発明はこれらの例に限 定されるものではない。
Figure imgf000009_0001
Figure imgf000009_0002
Figure imgf000009_0003
Figure imgf000010_0001
Figure imgf000010_0002
S6S80/00df/IDd 09£ひ /10 O .
Figure imgf000011_0001
このうち、 芳香族類 (B ) が、 ビフエニルとその誘導体またはベンゼンとその 誘導体である、 フエノールビフエ二ルァラルキル型樹脂またはフエノールフエ二 レンァラルキル型樹脂であることが好ましい。 このようにすれば、 適度に低い架 橋密度を持つエポキシ樹脂組成物を得られる点で好ましく、 着火時において耐熱 分解性に優れたゴム状の発泡層が一層好適に形成される。 さらに、 ビフエ二ルと その誘導体や、 ベンゼンとその誘導体は、 疎水性に優れるので、 これらを導入す ると樹脂組成物の耐湿性も改良される。
本発明におけるフエノール系樹脂 ( C ) は、 たとえば下記式 (I ) から(IV)の いずれかに示される繰り返し単位を有するものであることが好ましい。
Figure imgf000012_0001
Figure imgf000012_0002
Figure imgf000012_0003
(式中、 X,および X2は、 それそれ独立に、 炭素数 1〜 6の不飽和結合を含む鎖 式構造の結合基または炭素数 1〜 6の置換または無置換のアルキレン基を示し、 はフエ二レン基、 ビフエ二レン基、 またはこれらの誘導基を示す。 ) このような繰り返し単位を有する樹脂とすることにより、 着火時において耐熱 分解性に優れたゴム状の発泡層が一層好適に形成され、 さらに、 樹脂組成物の耐 湿性も改良される。 本発明の難燃性エポキシ樹脂組成物において、 上記したフエノール系樹脂
( C ) 以外のフエノール系樹脂を併用してもよい。 この場合、 総フエノール系樹 脂量に対する上記フエノール系樹脂 ( C ) の含有率を、 5質量%以上、 好ましく は 3 0質量%以上配合することが好ましい。 含有率が低すぎると難燃性が不十分 となる場合がある。
本発明の難燃性エポキシ樹脂組成物において、 硬化剤として、 上記フヱノール 系樹脂 (C ) 以外に、 その他のフヱノール系樹脂ゃァミン系化合物を組み合わせ て使用することができる。
併用できるフエノール系樹脂は、 特に限定されるものではないが、 例えば、 フ エノールビフエニルトリアジン型樹^ k フエノールフエ二レントリアジン型樹脂、 フエノールトリアジン型樹脂、 ビフエ二ル一 4, 4 ' —ジヒ ドロキシルェ一テ一 ルと 3 , 3 ' , 5, 5 ' —テトラメチルビフエニル一 4, 4 ' —ジヒ ドロキシル ェ一テル、 テトラフエ二ロールェタン、 トリスフェニロールェタン、 フエノール ノボラック樹脂、 クレゾ一ルノボラック樹脂、 ビスフエノール A型樹脂、 ビスフ 工ノール F型樹脂、 ビスフヱノール S型樹脂、 ポリフエノール型樹脂、 脂肪族フ ヱノール樹脂、 芳香族エステル型フエノール樹脂、 環状脂肪族エステル型フ Iノ
—ル樹脂およびエーテルエステル型フエノール樹脂等が挙げられる。
また、 併用できるアミン系化合物は、 特に限定されるものではないが、 例えば、 ジアミノジフエ二ルメタン、 ジエチレン トリアミンおよびジァミノジフエニルス ルフォン等が挙げられる。 これらのフヱノール系樹脂ゃァミン系化合物を、 単独 または数種類混合して用いても差し支えない。 これらの中で、 フエノールビフエ ニルトリアジン型樹脂、 フエノールフエ二レント リアジン型樹脂、 フエノールト リアジン型樹脂が難燃性強化の点で特に好ましい。
本発明におけるノボラヅク型エポキシ樹脂 (D ) は、 フエノール類 (A ) から 誘導される構成単位と該フエノール類 (A ) を除く芳香族類 (B ) から誘導され る構成単位とを分子鎖中に含むフエノール系樹脂 (C ) のフエノール性水酸基が グリシジルエーテル化されたノボラック型エポキシ樹脂である。 このようなノボ ラック型エポキシ樹脂として、 例えば、 フエノールビフエニルァラルキル型ェポ キシ樹脂、 フエノールフエ二レンァラルキル型エポキシ樹脂、 フエノールジフエ ニルエーテルァラルキル型エポキシ樹脂、 ナフ夕レン含有ノボラック型エポキシ 樹脂、 アントラセン含有ノボラック型エポキシ樹脂、 ビフエ二レン含有ノボラッ ク型エポキシ樹脂、 フルオレン含有ノボラヅク型エポキシ樹脂、 ビスフエノール フルオレン含有ノボラック型エポキシ樹脂、 ビスフエノール S含有ノボラック型 エポキシ樹脂、 ビスフエノール F含有ノボラック型エポキシ樹脂、 ビスフエノー ル A含有ノボラック型エポキシ樹脂等が挙げられる。 また、 これらのエポキシ樹 脂は、 その使用にあたって一種類に限定されるものではなく、 二種類以上の併用 も可能である。
以下、 ノボラヅク型エポキシ樹脂 ( D ) の具体例を示す。 但し本発明はこれら の例に限定されるものではない。 なお、 式中、 「G」 はグリシジル基を表す。
Figure imgf000014_0001
9
Figure imgf000015_0001
S6S80/00df/XDd 09£ひ /10 O
Figure imgf000016_0001
Figure imgf000016_0002
このうち、 芳香族類 (B ) が、 ビフエ二ルとその誘導体またはベンゼンとその 誘導体である、 フエノールビフエニルァラルキル型エポキシ樹脂またはフエノー ルフエ二レンァラルキル型エポキシ樹脂であることが好ましい。 このようにすれ ば、 適度に低い架橋密度を持つエポキシ樹脂組成物を得られる点で好ましく、 着 火時において耐熱分解性に優れたゴム状の発泡層が一層好適に形成される。 さら に、 ビフエニルとその誘導体やベンゼンとその誘導体は難燃化の効果が極めて高 く、 さらに、 疎水性に優れるので、 これらを導入すると樹脂組成物の耐湿性も改 良される。 1
本発明の難燃性エポキシ樹脂組成物において、 上記エポキシ樹脂 ( D ) 以外に、 その他のエポキシ樹脂を組み合わせて使用することができる。 この場合、 総ェポ キシ樹脂量に対する上記エポキシ樹脂 (D ) の含有率を、 5質量%以上、 好まし くは 3 0質量%以上配合することが好ましい。 含有率が低すぎると難燃性が不十 分となる場合がある。
上記エポキシ樹脂 (D ) と併用できるエポキシ樹脂は、 特に限定されるもので はないが、 例えば、 フエノールビフエニルトリアジン型エポキシ樹脂、 フエノー ルフエ二レントリアジン型エポキシ樹脂、 フエノールトリアジン型エポキシ樹脂、 ビフエニル一 4 , 4 ' —ジグリシジルエーテールと 3 , 3 ' , 5 , 5 ' —テトラ メチルビフエニル一 4, 4 ' —ジグリシジルェ一テルの内の少なくとも一つまた は混合物、 テトラフエ二ロールェ夕ン型エポキシ樹脂、 トリスフェニロールエタ ン型エポキシ樹脂、 フエノールノボラックエポキシ樹脂、 クレゾ一ルノボラック エポキシ樹脂、 ビスフエノール A型エポキシ樹脂、 ビスフエノール F型エポキシ 樹脂、 ビスフエノール S型エポキシ樹脂、 ポリフエノール型エポキシ樹脂、 脂肪 族エポキシ樹脂、 芳香族エステル型エポキシ樹脂、 環状脂肪族エステル型ェポキ シ樹脂およびエーテルエステル型エポキシ樹脂等が挙げられる。 また、 ジァミノ ジフ: ニルメタン、 ジエチレントリアミンおよびジアミノジフエニルスルフォン 等のアミン系化合物のグリシジル化物を用いることもできる。 これらのエポキシ 樹脂を単独または数種類混合して用いても差し支えない。 これらの中で、 フエノ 一ルビフエニルトリアジン型エポキシ樹脂、 フエノールフエ二レントリアジン型 エポキシ樹脂、 フエノールトリアジン型エポキシ樹脂が難燃性強化の点で特に好 ましい。
本発明の難燃性エポキシ樹脂組成物に含まれるフヱノール系樹脂 ( C ) および エポキシ樹脂 (D ) の重量平均分子量は、 特に制限はないが、 例えば 3 0 0〜 1 0 0 0 0とする。 重量平均分子量は、 G P C (ゲル ·パ一ミエ一シヨン .クロマ トグラフィ) により測定することができる。
さらに、 本発明の難燃性エポキシ樹脂組成物を構成する硬化剤とエポキシ樹脂 について、 硬化剤の水酸基数の合計 (〇H ) に対する、 エポキシ樹脂のエポキシ 基数の合計 (E p ) の比 (O H/E p ) が、 ◦. 7≤ ( O H/E p ) ≤2 . 5で あると、 これらを硬化させてなる硬化物の難燃性を向上する上でより適当である 前記 (O HZE p ) が 0 . 7に満たない場合には、 前記硬化物中の硬化剤とェポ キシ樹脂が形成した架橋構造に残余しているエポキシ基に由来する、 ァリルアル コール等の可燃成分の発生量が増加することから、 難燃性の向上を阻害する可能 性がある。 また、 前記 (O H/E p ) が 2 . 5を超える場合には、 前記エポキシ 樹脂と硬化剤を反応させてなる、 前記硬化物の架橋密度が低くなりすぎて硬化が 不十分となる場合があり、 硬化物の耐熱性や強度が不十分となることがある。 また、 本発明の難燃性エポキシ樹脂組成物に含まれる金属水酸化物は、 アルミ 二ゥム、 マグネシウム、 亜鉛、 ホウ素、 カルシウム、 ニッケル、 コバルト、 スズ、 モリブデン、 銅、 鉄、 チタンから選ばれた少なくとも一つの元素から構成される 金属水酸化物であることが好ましい。 金属水酸化物の具体的な例としては、 水酸 化アルミニウム、 水酸化マグネシウム、 ホウ酸亜鉛、 水酸化カルシウム、 水酸化 ニッケル、 水酸化コバルト、 水酸化スズ、 モリブデン酸亜鉛、 水酸化銅、 水酸化 鉄等を主成分とする金属水酸化物が挙げられる。 これらの金属水酸化物を単独ま たは、 数種類を混合あるいは固溶化、 あるいは、 一方の金属水酸化物の表面に他 の金属水酸化物を被覆させて用いても差し支えない。 これらの中で、 水酸化アル ミニゥム、 水酸化マグネシウム、 ホウ酸亜鉛が難燃性向上の点で好ましい。 さら に、 水酸化アルミニウムは、 酸やアルカリに対する耐性に優れる上、 硬化体の加 ェ性に優れるので特に好ましい。
本発明の難燃性エポキシ樹脂組成物の総重量に対する金属水酸化物の含有率は、 7 0質量%以下とすることが好ましい。 ここで、 上記難燃性エポキシ樹脂組成物 の総量とは、 エポキシ樹脂、 硬化剤のほか、 硬化促進剤、 シリコーン化合物ゃ充 填剤等の各種添加剤を含む量をいい、 積層板用途等に用いた場合におけるガラス 繊維等の基材を除く量をいう。 上記のような含有率にすれば、 成形性や誘電特性 を良好に維持しつつ高度の難燃性を実現することができる。 このため、 特に積層 板用途に用いた場合、 高度の難燃性を備えた高品質の積層板を得ることが可能と なる。 また、 上記含有率を 6 0質量%以下とすれば、 ハンダ耐熱性や耐湿性が顕 著に向上する。 このため、 たとえば積層板用途に用いた場合、 ハンダ耐熱性に優 れた高品質の積層板を得ることができる。 さらに上記含有率を 5 5質量%以下と すれば、 成形性、 誘電特性、 耐湿性がさらに向上するため、 好ましい。 一方、 上 記含有率の下限については、 好ましくは 1 0質量%以上、 より好ましくは 3 0質 量%以上とする。 このようにすれば充分な難燃性を実現することができる。 なお、 溶融シリ力や結晶シリ力等のシリ力粉末を併用する場合は、 金属水酸化物の含有 量を低めにしても十分な難燃性を得ることができる。 さらに、 シリコーン化合物 と併用する場合は、 上記したよりも少ない含有率としても十分な難燃性を得るこ とができ、 好ましくは 5質量%以上、 より好ましくは 2 0質量%以上とする。 本発明の難燃性エポキシ樹脂組成物は、 分岐構造の主鎖を有し芳香族誘導基を 有するシリコーン化合物をさらに含んでいてもよい。 このようにすれば、 難燃性 を一層向上させることができ、 また、 金属水酸化物の添加量をさらに低減できる ので、 成形性や電気特性 (誘電特性) の低下もより効果的に防止できる。
本発明におけるシリコーン化合物に含まれる芳香族誘導基とは、 芳香族類から 誘導される官能基であり、 芳香族類とは、 ベンゼン環、 縮合ベンゼン環、 多芳香 族環、 非ベンゼン系芳香環、 複素芳香環などの芳香環を有する化合物をいう。 芳 香族類の例としてはベンゼン、 ナフ夕レン、 アントラセンのほか、 ビフエ二ル、 ジフエニルエーテル、 ビフエ二レン、 ピロ一ル、 ベンゾグアナミン、 メラミン、 ァセトグアナミン、 またはこれらの誘導体等が例示される。 誘導体としては、 上 記化合物に炭素数 1乃至 1 0のアルキル基の付加したもの等が例示される。 芳香 族誘導基の好ましい態様として、 フエニル基が挙げられる。 難燃性改良効果に優 れるからである。
本発明におけるシリコーン化合物は、 分岐構造の主鎖を有しており、 その構造 中に、 式 R S i Ouで示される単位 (T単位) を含むものであることが好まし い。 さらに、 式 S i 02.。で示される単位 (Q単位) を含有しても良い。 さらに、 前記シリコーン化合物の分岐構造が、 式 R S で示される単位 (T単位) 、 式 R2 S i 0し。で示される単位 (D単位) 、 式 R,3 S i Οβ.5で示される単位 (Μ 単位) から構成されていると難燃性改良の点で特に好ましい。 このような構造の ものであれば、 耐熱分解性をより効果的に改善することができ、 難燃性を一層向 上することができる。 このようなシリコーン化合物として、 たとえば下記式のよ うな構造のものが挙げられる。
R' R R R'
R,一 Si— CHSi— o]"fsi— O Si— R
m
R' R O R'
I なお、 上記式はシリコーン化合物の構造の一例を示すことを意図したものであり、 各々の Rおよび R'は、 それそれ同じであっても異なっていても良い。
本発明におけるシリコーン化合物は、 エポキシ樹脂および Zまたは硬化剤と反 応し得る反応性基を有することが好ましい。 たとえば、 上記式中、 Rおよび R' が、 エポキシ樹脂や硬化剤と反応できる反応性基、 たとえば、 水酸基、 炭素数 1 乃至 5のアルコキシ基、 エポキシ基、 カルボキシル基の内少なくとも一つを含む ものであることが好ましい。 これらの反応性基は一種類に限定されるものではな く、 二種類以上を含有していてもよい。 この他の官能基としては、 芳香族類を除 けば、 炭素数 1乃至 1 0のアルキル基、 特にメチル基が好ましい。
本発明のシリコーン化合物を構成する官能基 (Rおよび R ' ) の総量に占める、 上記反応性基の割合は、 0 . 0 5モル%以上 2 0モル%未満が好ましく、 さらに 0 . 1モル%以上 1 0モル%未満であることが好ましい。 このような範囲とする ことにより、 シリコーン同士が反応して凝集体を形成することを防止できるとと もに、 耐熱分解性を効果的に改善することができる。
本発明の難燃性エポキシ樹脂組成物に含まれる、 主鎖が分岐構造でその構造中 に芳香族類を持つシリコーン化合物の重量平均分子量は、 特に制限されるもので はないが、 2 0 0〜5 0万であることが好ましく、 1 0 0 0〜 1 0万であると特 に好ましい。 重量平均分子量が低すぎるとシリコーン化合物自体の難燃性が低下 する場合がある。 一方、 重量平均分子量が大きすぎると、 エポキシ樹脂組成物中 でのシリコーン化合物の分散性が不十分になって成形性が低下する場合がある。 なお、 重量平均分子量は、 GPC (ゲル 'パーミエーシヨン 'クロマトグラフ ィ) により測定することができる。
また、 本発明で使用するシリコーン化合物を構成する T単位 (式 RS iO で示される単位) と D単位 (式 R2S i 0^で示される単位) のモル比 (T/ D) は、 (0. 1Z1) ≤ (T/D) ≤ (9/1) であることが好ましい。 (T /D) が、 (0. 1Z1)未満であると、 シリコーン化合物自体の耐熱性が劣化 するため、 前記シリコーン化合物を含有するエポキシ樹脂組成物の難燃性が低下 する場合がある。 また、 (T/D) が、 (9/1) を超えると、 前記シリコーン 化合物を含有するエポキシ樹脂組成物の成形性が低下する場合がある。
本発明のシリコーン化合物を構成する官能基 (R、 R') の総量に占める、 フ ェニル基の割合が、 20モル%以上であることが好ましく、 特に 40モル%以上 であることが好ましい。 上記割合が 20モル%未満であると、 本発明のエポキシ 樹脂組成物を構成するフヱノール系樹脂及びエポキシ樹脂に対する、 シリコーン 化合物の相溶性が低下するので、 エポキシ樹脂組成物の成形性や難燃性が低下す る場合がある。
さらに、 本発明の難燃性エポキシ樹脂組成物に含まれる、 主鎖が分岐構造でそ の構造中に芳香族類を持つシリコーン化合物の含有量は、 良好な難燃性と成形性 を同時に達成する点で、 難燃性エポキシ樹脂組成物を構成するフエノール系樹脂、 エポキシ樹脂、 金属水酸化物及び各種添加剤の総量に対して、 0. 1質量%以上 20質量%以下であることが好ましい。 0. 1質量%未満であると難燃性が不十 分の場合があり、 20質量%を超えるとエポキシ樹脂組成物の成形性が低下する 場合がある。
さらに本発明のシリコーン化合物は、 本発明のフエノール系樹脂やエポキシ樹 脂、 さらに他の硬化剤ゃェポキシ樹脂とあらかじめ反応させて複合化させてから 用いることも可能である。 さらに、 本発明の難燃性エポキシ樹脂組成物に含まれる金属水酸化物に必要に 応じて金属酸化物を併用してもよい。 併用できる金属酸化物の具体的な例として は、 酸化ケィ素、 酸化カルシウムが挙げられるが、 特に限定されるものではない これらの金属酸化物を単独または、 数種類を混合あるいは固溶化させたものを、 金属水酸化物と混合または、 金属水酸化物の表面に被覆あるいは金属水酸化物と 固溶化させて用いても差し支えない。 これらの中で、 水酸化アルミニウムや水酸 化マグネシウムと、 酸化ケィ素の組み合わせが難燃性向上の点で好ましい。 また、 本発明のエポキシ樹脂組成物を構成する金属水酸化物を、 フエノール樹脂をはじ めとする各種ポリマー等の有機物によって表面処理したものも用いることができ る。 さらに、 金属水酸化物の表面に金属酸化物を被覆したもの、 あるいは、 金属 水酸化物に金属酸化物を固溶化したものを、 フエノール系樹脂をはじめとする各 種ポリマーなどの有機物によって表面処理したものを用いることもできる。
また、 本発明の難燃性エポキシ樹脂組成物は、 必要に応じて、 硬化促進剤、 離 型剤、 表面処理剤、 金属水酸化物以外の充填剤をはじめとする各種添加剤を含有 してもよい。
上記の各種添加剤のうち、 硬化促進剤としては、 一般にエポキシ樹脂と硬化剤 の硬化に用いられているものが使用できる。 例えば、 1 , 8—ジァザビシクロ ( 5 , 4, 0 ) ゥンデセン一 7等のジァザビシクロアルケン及びその誘導体、 ト リエチレンジァミン、 ベンジルジメチルァミン、 トリエタノールァミン、 ジメチ ルアミノエ夕ノール、 トリス (ジメチルアミノメチル) フエノール等の三級アミ ン類、 2—メチルイミダゾ—ル、 2—フエ二ルイミダゾール、 2—フエニル一 4 ーメチルイミダゾール、 2—ヘプ夕デシルイミダゾール等のィミダゾール類、 ト リブチルホスフィン、 メチルジフエニルホスフィン、 トリフエニルホスフィンな どの有機ホスフィン類、 テトラフェニルホスホニゥム ·テトラボレート等のテト ラ置換ホスホニゥム ·テトラ置換ボレート、 2—ェチルー 4—メチルイミダゾ一 ル ·テトラフエニルボレート、 N—メチルモルホリン ·テトラフェニルボレ一ト 等のテトラフエニルボロン塩等が挙げられる。 これらの硬化促進剤は、 1種を単 独で用いてもよく、 2種以上を混合して用いてもよい。 本発明の難燃性エポキシ樹脂組成物には、 他の添加剤として、 必要に応じて、 力一ボンブラック等の着色剤、 シリコーンオイル、 シリコーンゴム等の低応力成 分、 シリコーンパウダー等の可撓剤、 天然ワックス、 合成ワックス、 高級脂肪酸、 高級脂肪酸金属塩、 エステル系ワックス、 ポリオレフイン系ワックス、 パラフィ ン等の離型剤、 有機シラン化合物、 有機チタネート化合物、 有機アルミネート化 合物等のカツプリング剤といった各種添加剤を適宣配合しても差し支えない。 特 に、 前記カップリング剤のうち有機シラン化合物、 すなわち反応性官能基を有す るアルコキシシランは、 本発明の難燃性エポキシ樹脂組成物の強度、 耐薬品性、 電気特性の向上に重要である。 前記アルコキシシランの具体例としては、 ァ-ァ ミノプロビルトリエトキシシラン、 N-フエニル-ァ-ァミノプロビルト リメ トキ シシラン等のアミノシラン化合物、 ァ-グリシドキシプロビルトリメ トキシシラ ン、 ァ-グリシドキシプロビルメチルジェトキシシラン等のエポキシシラン化合 物、 ビニルトリス ( 5メ トキシェトキシ) シラン等のビニルシラン化合物、 ァ- メタクリロキシプロピルトリメ トキシシラン等のァクリルシラン化合物、 ァ-メ ルカプトプロピルトリメ トキシシラン等のメルカプトシラン化合物等が挙げられ る。 これらのカップリング剤の中でも、 本発明のエポキシ樹脂組成物を構成する 樹脂分と金属水酸化物の密着性を向上する点で、 アミノシラン化合物やエポキシ シラン化合物が好ましく、 さらに、 アミノシラン化合物が特に好ましい。
本発明の難燃性エポキシ樹脂組成物は、 金属水酸化物以外に公知の充填剤を使 用することができる。 例えば、 カーボンファイバ一、 溶融シリカ、 結晶シリカ、 アルミナ、 ジルコン、 珪酸カルシウム、 炭酸カルシウム、 炭化珪素、 窒素化ホウ 素、 ベリリア、 タルク、 酸化チタン、 ジルコニァ等の粉体、 またはこれらを球形 化したビーズ、 チタン酸カリウム、 炭化珪素、 窒化珪素、 アルミナ等の単結晶繊 維などが挙げられる。 これらの充填剤は、 1種を単独で用いてもよく、 2種以上 を混合して用いてもよい。 特に、 溶融シリカと結晶シリカの粉体が好ましい。 本発明の難燃性エポキシ樹脂組成物は、 ガラス繊維、 紙、 ァラミ ド繊維等の基 材に含浸、 硬化させてなるコンポジッ ト材料用に用いた場合、 一層効果的である。 特に、 本発明の難燃性エポキシ樹脂組成物をガラス繊維基材ゃ紙基材に含浸、 硬 化させ、 プリプレグや積層板を作製すると、 成形性や誘電特性、 耐湿性 (ハンダ 耐熱性) 等の諸特性を良好に維持しつつ、 高度の難燃性を実現することができる 本発明に係る積層板は、 下記条件 (a) 〜 (d) を満たすものとすることが好 ましい。
(a) 45≤σ≤ 100, 好ましく 50≤σ≤ 100、 かつ、
3≤Ε≤ 12s 好ましくは 3 ^Ε≤ 10
σは 230 ± 10°Cにおける積層板の曲げ強度 (MPa) 、 Eは 230± 1 0°C における積層板の曲げ弾性率 (GPa) を表す。
このような範囲とすることにより、 樹脂の発泡層が好適に形成され、 かつ、 発 泡層の強度および靱性を充分に高くでき、 この結果、 発泡層の燃焼抑止作用を充 分に高めることができる。 弾性率が小さすぎると充分な強度の発泡層を得ること が困難となる。 一方、 弾性率が大きすぎると発泡層の靱性を充分に高めることが 困難となる。
(b) 30≤G≤ 60
Gは、 積層板の総量に占める基材の割合 (質量%) を表す。
基材の量が少なすぎると成形時の樹脂の流出が顕著となり成形が困難となる場合 がある。 一方、 基材の量が多すぎると充分な密着性が得られず層間剥離が発生す る場合がある。
(c) F≤45 (質量%) 、 好ましくは F≤40 (質量%)
F (質量%) 二 Rx 1 0 Ό/Χ
R :室温 (25°C) から 5 00°Cまでに発生する、 水分以外の熱分解生成物の量 であって、 次式により算出される。
R=積層板総量 (W - 500°Cでの積層板の残存量 (W2) - 5 00°Cでの ¾0発生量 (W H2Q/50C)
X :積層板中の樹脂分 (エポキシ樹脂および硬化剤の総量をいう。 難燃性ェポキ シ樹脂組成物中にカツプリング剤や触媒を配合した場合は、 これらの配合量も含 む。 ) の含有量であって、 次式により算出される。 X =積層板の総量 (W 一 8 0 0 °Cでの残存量 (W3) — 8 0 0 °Cでの H20発生量
( ^ HZ0/800°c )
なお、 図 1に、 上記 Fの値を求める方法を説明する模式図を示す。
水分以外の熱分解生成物の量は、 樹脂の燃焼時における可燃成分の量を表す。 Fを上記範囲とすることにより、 難燃性をより高めることができる。
( d ) 4≤V≤ 1 3
Vは、 昇温速度 1 0 °C/分、 空気流量 0 . 2リットル/分で熱分解したときに、 室温 (2 5 °C) から 5 0 0 °Cまでに発生する、 積層板の総量に対する水蒸気量 ( V質量%) を表す。 ) ·
Vの値が小さすぎると発泡層を満たすべき水蒸気が充分に発生せず、 充分な難燃 性を得ることが困難である。 一方、 この値が大きすぎるとかえつて難燃性が損な われる場合がある。 この理由は必ずしも明らかではないが、 発泡層の破裂等が発 生することによるものと考えられる。
本発明の難燃性エポキシ樹脂組成物には、 この他必要に応じて、 メラミン、 ィ ソシァヌル酸化合物等の窒素系難燃剤、 赤リン、 リン酸化合物、 有機リン化合物 等のリン系難燃剤を難燃助剤として適宜添加することができる。 但し、 本発明の 難燃性エポキシ樹脂組成物においては、 上記難燃剤の添加量は少なくて済み、 耐 湿性等の他の物性が低下するのを抑えることができる。
本発明の難燃性エポキシ樹脂組成物を、 メチルェチルケトンやプロピレングリ コ一ルモノメチルエーテル等の好適な有機溶剤で希釈してワニスとし、 このヮニ スをガラス織布やガラス不織布等の多孔質ガラス基材に塗布 '含浸させ、 加熱す るという通常の方法によりプリプレグを製造することができる。 また、 このプリ プレグを複数枚重ね合わせ、 その積層構造の片面または両面に銅箔を重ね合わせ た後に、 これを通常の条件で加熱 ·加圧してガラスエポキシ銅張積層板を製造す ることができる。 この時、 銅箔を用いなければ、 積層板が得られる。 多層板は、 銅張積層板 (内層板) に回路を形成し、 ついで銅箔をエッチング処理した後、 内 層板の少なくとも片面にプリプレグおよび銅箔を重ね合わせ、 これを例えば 1 7 0 °C、 4 0 k g/ c m2の圧力で 9 0分間加熱するという通常の方法により製造 することができる。 さらに、 ブリント配線板は、 銅張積層板もしくは多層板にス ルーホールを形成し、 スル一ホールメツキを行った後、 所定の回路を形成すると いう通常の方法により製造することができる。 このようにして製造した本発明の 積層板は、 高度な難燃性と安全性に優れる。
また、 本発明の難燃性エポキシ樹脂組成物を半導体装置の封止材として使用す る場合は、 リボンプレンダ一やヘンシェルミキサーなどで予備混練した後、 加熱 ロールやニーダーなどを用いて得られた本発明の難燃性エポキシ樹脂組成物の混 合物を、 必要に応じて水分を脱気してから使用する。 この混合物を、 トランスフ ァー成型機等によって所定の成形条件で加熱して溶融させたものを、 半導体装置 の封止材として適用する。
本発明の難燃性エポキシ樹脂組成物を封止材として使用した半導体装置は、 難 燃性と安全性に特に優れる。 前記の半導体装置としては、 半導体素子をリードフ レームのダイパッド上に搭載し、 これらをワイヤ一ボンディングして接続したも のを、 樹脂で封止してなる半導体装置、 リードオンチップ方式の樹脂封止型半導 体装置、 ボールグリッドァレ.ィ ( B G A ) の樹脂封止型半導体装置等を挙げるこ とができるが、 これらに限定されるものではなく、 半導体素子等の電子部品を、 本発明のエポキシ樹脂組成物で封止したものを全て包含する。
加えて、 本発明の難燃性エポキシ樹脂組成物は、 この他の用途、 すなわち、 成 形材、 注型材、 接着剤、 塗料等として使用した場合にも、 難燃性と安全性に優れ る。
実施例および比較例
以下、 実施例により本発明をさらに詳細に説明する。
まず、 実施例および比較例で用いた原材料について説明する。
(ガラス織布)
ガラス織布は、 0 . 1 8 mm厚の Eガラスクロスを用いた。
(シランカツプリング剤)
シランカヅプリング剤 A :信越化学工業 (株) 製、 K B E 9 0 3 (ァ一ァミノ プロピルトリエトキシシラン) を用いた。 シラン力プリング剤 B :信越化学工業製、 KBM403
(硬化促進触媒)
硬化促進触媒 A:サンァプロ (株) 製、 U— CAT— SA 102 (ジァザビシ クロウンデセン一ォクチル酸塩) を用いた。
硬化促進触媒 B :四国化成工業製、 2 E 4 M Z
(フエノ一ル系樹脂およびエポキシ樹脂)
下記式 ( 1) 〜 (8) に示されるフエノール系樹脂およびエポキシ樹脂を用い た。
フエノールビフエ二ルァラルキル樹脂 (フエノール系樹脂 1 )
Figure imgf000027_0001
(n=0. 0〜10、 軟化点 120。C、 水酸基当量 205 g/eq)
フエノールビフエニルァラルキルエポキシ樹脂 (エポキシ樹脂 1 )
Figure imgf000027_0002
(式中、 Gはグリシジル基を示す。 n=0. 0〜 10、 軟化点 57°C、 エポキシ 当量 270 g/e q)
フエノールフエ二レンァラルキル樹脂 (フエノール系樹脂 2 )
(3)
Figure imgf000027_0003
(η=0. 0〜1 0、 軟化点 83°C、 水酸基当量 175 g/e q)
フエノールフエ二レンァラルキルエポキシ樹脂 (エポキシ樹脂 2) 式 (4)
Figure imgf000028_0001
(式中、 Gはグリシジル基を示す。 n=0. 0-10, 軟化点 55°C、 エポキシ 当量 234 g/eq)
フエノールノボラック樹脂 (フエノール系樹脂 3)
Figure imgf000028_0002
(n=0. 0〜10、 軟化点 106°C、 水酸基当量 106 g/eq)
クレゾ一ルノボラックエポキシ樹脂 (エポキシ樹脂 3 )
Figure imgf000028_0003
(式中、 Gはグリシジル基を示す。 n=0. 0-10, 軟化点 68°C、 エポキシ 当量 194 g/e q)
ビスフエノール A型エポキシ樹脂 (エポキシ樹脂 4)
Figure imgf000028_0004
(式中、 Gはグリシジル基を示す。 n=0. 0-10, 25°0の粘度150 0 i s e、 エポキシ当量 180 g/ e q)
エポキシ樹脂 5 (ビスフエノール A型エポキシ樹脂 2)
油化シェルエポキシ製、 ェビコート 1001、 エポキシ当量 473
エポキシ樹脂 6 (フエノールノボラックエポキシ樹脂) 日本化薬製、 EPPN- 201、 エポキシ当量 191
ジシアンジアミ ド
エア一プロダクツジャパン製、 AMI CURE CG— NA、 活性水素当: 2 (シリコーン化合物)
表 1に示すシリコーン化合物を用いた。
表 1 シリコーン化合物の構造
Figure imgf000029_0001
(金属水酸化物)
水酸化アルミニウム : 日本軽金属 (株) 製 BW103
水酸化マグネシウム : ブロモケム ' ファーイースト (株) 製 FR— 98— 01 0
ホウ酸亜鉛: US Borax Inc.製 Firebrake@ 290
水酸化アルミニウム B:住友化学製、 CL— 310
(無機充填剤)
溶融破砕シリ力 :電気化学工業 (株) 製 F S— 892 平均粒径 18 m 次に、 実施例および比較例における難燃性、 誘電率、 成形性及びハンダ耐熱性 の評価方法を示す。
(難燃性)
成形板 (長さ 13 cmx幅 13mmx厚み 1. 6mm) の長さ方向と地面が垂 直になるように、 サンプル支持具 (クランプ) で成形板を固定する。 次に、 クラ ンプと反対側の成形板の端面にバーナーで 10秒間接炎した後、 バーナーを遠ざ
28
差替え用紙 (規則 26) けて成形板上に炎が残っている時間 (残炎時間、 秒) を測定する ( 1回目の残炎 時間 =F 1) 。 この炎が消えたら、 再度バーナーで 10秒間接炎した後、 パーナ —を遠ざけて、 1回目と同じように残炎時間 (2回目の残炎時間 =F 2) を測定 する。 この試験を、 一つの樹脂硬化物につき 5枚の成形板を用いて行い、 難燃性 を評価した。 ただし、 難燃性の判定基準を最高のものから最低のものの順に並べ ると、 UL 94V— 0、 V— 1、 V— 2、 NOT V— 2の順番になる。
① UL 94 V— 0
• ∑F≤50秒 (∑Fは、 5枚の成形板を用いて行った試験の残炎時間の合計を 示す。 すなわち、 1枚の成形板について F 1および F'2を測定し、 これらを合計 した時間を 1枚の成形板あたりの合計残炎時間 Fとする。 この Fを 5枚の成形 板について測定して、 合計したものを ∑Fとした。 なお、 表中の 「残炎時間」 は、 上記∑Fの値を示す。 )
- Fmax≤ 10秒 (Fmaxは、 試験で得られた F 1または F 2の中で最長の 残炎時間を示す。 )
•発煙物質または滴下物による標識用綿の着火なし、. クランプまで燃えない。
② UL 94 V— 1
• ∑F≤ 250秒、 Fmax 30秒、 発煙物質または滴下物による標識用綿 の着火なし、 クランプまで燃えない。
③ UL 94 V- 2
• ∑F≤ 250秒、 Fmax≤ 30秒、 発煙物質または滴下物による標識用綿 の着火あり、 クランプまで燃えない。
④ UL 94 NOT V- 2
• ∑ F > 250秒または F m a X > 30秒。
(誘電率の測定)
成形板 (縦 2 cmx横 2 cmx厚さ 1. 6 mm) の比誘電率を、 ヒューレット パッカード社製 4291BRF IMPEDANCE/MATERIAL ANALYZERで測定した。 なお、 測 定周波数は 1 GHzとした。
比誘電率の判定基準は以下の通りである。 比誘電率 5 . 0以下の場合:〇
比誘電率 5 . 0を超える場合:△
(成形性)
成形性が良好:〇
含浸樹^^の流動不良による成形性の低下:△
シリコーン樹脂の染み出しによる成形性の低下:▲
(ハンダ耐熱性)
銅張両面積層板 ( 2 5 mm角 x 1 . 6 mm厚) を、 沸騰水 (約 1 0 0 °C) で 1 時間煮沸した後、 流水で 3 0分間冷却してから、 表面の水分をよくふき取って、 約 2 6 0 °Cのハンダ浴に、 2 0秒間浮かべて、 ハンダ耐熱性を評価した。
ハンダ耐熱性の評価基準は以下の通りである。
ふくれなし—〇
ふくれぁり"
実施例 1
フエノールビフエニルァラルキルエポキシ樹脂 (エポキシ樹脂 1 ) を 3 3 . 4 8質量%、 フエノールビフエニルァラルキル樹脂 (フエノール系樹脂 1 ) を 2 5 . 4 3質量%、 水酸化アルミニウム 4 0 . 0質量%、 シランカップリング剤 0 . 8 0質量%、 硬化促進触媒 0 . 2 9質量%から成る混合物に、 メチルェチルケトン を加えて、 不揮発成分が 6 5質量%のエポキシ樹脂ワニスを調整した。
得られたエポキシ樹脂ワニスをガラス織布に連続的に塗布 ·含浸させて、 1 2 0 °Cのオープンで乾燥してプリプレグを製造した。 このプリプレグを 8枚重ね合 わせた積層体を 1 7 0 °C、 4 0 k g/ c m2の圧力で 2 0分間加熱 ·加圧した後、 さらに 1 7 5 °Cで 6時間後硬化させて、 厚さ 1 . 6 mmのガラスエポキシ積層板 を得た。
得られた積層板について難燃性、 誘電率および成形性を評価した。 結果を表 2 に示す。
実施例 1で得たエポキシ樹脂ワニスをガラス織布に連続的に塗布 ·含浸させて、 1 2 0。Cのオーブンで乾燥してプリプレグを製造した。 こうして得られたプリプ レグを 8枚重ね合わせた積層体を、 銅箔 (厚み 18yum) で挟んで、 1 Ί 0°C、 40 kg/cm2の圧力で 20分間加熱 ·加圧した後、 さらに 175°Cで 6時間後硬ィ匕 させて、 厚さ 1. 6 mmのガラスエポキシ銅張積層板を得た。
得られた銅張積層板についてハンダ耐熱性を評価した。
実施例 2〜 24
表 2〜 5に示した配合の難燃性エポキシ樹脂組成物を用いたこと以外は実施例 1と同様にして積層板を成型し、 難燃性の評価、 誘電率の測定、 成形性およびハ ンダ耐熱性の評価をそれそれ行った。 結果を表 2 ~ 5に示す。
比較例 1 ~ 14
表 6〜 8に示した配合のエポキシ樹脂組成物を用いたこと以外は実施例 1と同様 にして積層板を成型し、 難燃性の評価、 誘電率の測定、 成形性およびハンダ耐熱 性の評価をそれそれ行った。 結果を表 6~8に示す。
実施例 25
フエノールビフエニルァラルキル樹脂 (フエノール系樹脂 1) を 15. 59質 量%、 ビスフエノール A型エポキシ樹脂 (エポキシ樹脂 4) を 12. 57質量%、 水酸化アルミニウム 15. 0質量%、 溶融破砕シリカ粉末 55. 0質量%、 シラ ンカップリング剤 1. 40質量%、 カルナパワックス 0. 20質量%、 トリフエ ニルホスフィン (T. P. P. ) 0.24質量%を、 常温で予備混合した後、 1 00 °Cの口ール上で約 5分間混練したものを、 冷却後粉砕して樹脂組成物とした c 実施例 25に示した樹脂組成物を、 錠剤状に圧縮したもの (夕ブレット) を、 85°Cに予熱して、 シングルプランジャータイプのトランスファ一成形機を用い て、 注入時間 15秒、 注入圧力 10 OkgZcm2 (実行圧) 、 成形温度 17 5°C、 成形時間 120秒で、 UL94難燃規格に従って成形した後、 後硬化 ( 1 Ί 5°C、 6時間) させて難燃性試験用の成形板を得た。
以下に、 耐湿性の評価に用いた、 半導体装置の成型方法を示す。
線幅及び線間隔 10 mのアルミニウム製の配線 (ただし、 パッド部は 7 Ομ. m角) を施した縦 3. Ommx横 3. 5 mm x厚さ 350 Atmのシリコン製チッ プを、 16ピン DIP用の 42ァロイのフレームに搭載して、 前記パッド部に直 径が 2 8 At mの金線をワイヤボンドした後、 これをシングルプランジャータイプ のトランスファー成形機を用いて、 上記実施例 2 5の夕ブレットで封入して (予 熱温度 8 5 °C、 注入時間 1 5秒、 注入圧力 1 0 0 k g/ c m2 〈実行圧〉 、 成型 温度 1 7 5 °C、 成形時間 1 2 0秒) 、 1 6ピン DIP型 (縦 1 8 x横 5 x厚さ 3 mm) の半導体装置を成型した。 これを、 1 7 5 eCで 4時間、 後硬化させたもの を、 耐湿性の評価用の半導体装置とした。
耐湿性試験
上記の 1 6ビン DIP型の半導体装置 1 0個を用いて、 1 2 5。C、 1 0 O R H %、 印可電圧 2 0 Vの条件で、 プレッシャー 'クッカー 'バイァス ·試験 ( P C B T ) を行い、 回路のオープン不良率が、 2 0 % (不良が発生した前記装置が 2個) に達した時間を測定し、 これを耐湿性の指標とした。 すなわち、 この不良 発生時間が長いほど耐湿性に優れているといえる。
成形性を以下に示した基準で評価した。
(成形性)
成形性が良好:〇
含浸樹脂の流動不良による成形性の低下:△
シリコーン樹脂の染み出しによる成形性の低下:▲
評価結果を表 9に示す。
実施例 2 6 ~ 3 0
表 9に示した配合の難燃性エポキシ樹脂組成物を用 、たこと以外は実施例 2 5 と同様にして成形体を作成し、 難燃性の評価、 耐湿性の評価、 成形性の評価をそ れそれ行った。 結果を表 9に示す。
比較例 1 5〜: L 7
表 1 0に示した配合のエポキシ樹脂組成物を用いたこと以外は実施例 2 5と同 様にして成形体を作成し、 難燃性の評価、 耐湿性の評価、 成形性の評価をそれそ れ行った。 結果を表 1 0に示す。 表 2
Figure imgf000034_0001
Figure imgf000035_0001
表 4
Figure imgf000036_0001
表 5
Figure imgf000037_0001
-J
Figure imgf000038_0001
表 7
Figure imgf000039_0001
表 8
Figure imgf000040_0001
表 9 ο
Figure imgf000041_0001
表 10
Figure imgf000042_0001
表に示した結果から、 本発明に係る難燃性エポキシ樹脂組成物は、 従来技術に 係る各比較例の難燃性エポキシ樹脂組成物よりも難燃性に優れていることが分か つた。 また、 金属水酸化物の添加量を適切に設定することにより、 誘電特性、 成 形性、 ハンダ耐熱性、 耐湿性等の諸特性を効果的に改善できることが分かった。 実施例 31
フエノールフエ二レンァラルキルエポキシ樹脂 (エポキシ樹脂 2) 25. 41 質量%、 フエノールフエ二レンァラルキル樹脂 (フエノール系樹脂 2) 19. 0 1質量%、 水酸化アルミニウム B 55. 0質量%、 シランカップリング剤 B 0. 55質量%、 硬化促進触媒 B 0. 03質量%からなる混合物 (総量 100質 量%) に対して、 メチルェチルケトン 41 p h rを加えて、 不揮発分が 71質 量%のエポキシ樹脂ワニスを作成した。
得られたエポキシ樹脂ワニスをガラス織布に連続的に塗布 ·含浸させて、 12 0°Cのオーブンで乾燥してプリプレグを製造した。 このプリプレグを 7枚重ね合 わせた積層体を、 所定の条件 (昇温速度 5 °Cノ分、 180°C · 1時間保持、 30 分で 80°Cまで冷却、 32 kg/cm2) で加熱 '加圧して、 厚さ 1. 6 mmの ガラスエポキシ積層板を得た。
得られたガラスエポキシ積層板について、 高温曲げ特性および熱分解特性を以 下の条件で評価した。
①高温曲げ試験
J I S— C— 6481、 試験速度 0. SmmZ分、 スパン 25. 6 mm、 試験片 形状 25 X 50 X 1. 6 mm、 試験温度 24◦ °C (ノッチなし)
②熱分解方法
昇温速度 10 °C /分、 空気流量 0. 2リットル /分で、 室温から 500及び 80 0°Cまで昇温。
実施例 31で得たプリプレグを 7枚重ね合わせた積層体を、 銅箔 (18 /m) で 挟んで; 所定の条件 (昇温速度 5°CZ分、 180°C · 1時間保持、 30分で 8 0°Cまで冷却、 32 kg/cm2) で加熱 '加圧して、 厚さ 1. 6mmのガラス エポキシ銅張積層板を得た。 得られた銅張積層板についてハンダ耐熱性を評価した。
同様にして実施例 32— 43、 比較例 18、 19、 24、 参考例 25、 26、 29、 30を行った (ただし不揮発分の含量及び成型圧力が異なる) 。 評価結果 を表 1 1〜 14に示す。
比較例 20
ジシアンジアミ ドを DMF (ジメチルホルムアミ ド) に溶かした溶液 Aと、 ビ スフエノール A型エポキシ樹脂、 水酸化アルミニウム B、 シランカップリング剤 Bをメチルェチルケトンに溶かした溶液 Bを調整した。 つぎに、 これらの溶液 A と Bを混合した溶液 Cに、 硬化促進触媒 Bを添加して、 不揮発分が 68. 0質 量%のエポキシ樹脂ワニスを作成した。 このワニス中の不揮発分は、 ジシアンジ アミ ド 1. 89質量%、 ビスフエノール A型エポキシ樹脂 2 (エポキシ樹脂 5) 42. 46質量%、 水酸化アルミニウム B 55. 0質量%、 シランカップリング 剤 B 0. 55質量%、 硬化促進触媒 B O. 10質量%の混合物である。 上記ヮニ スの揮発分は、 前記混合物 100質量%に対する割合が、 41 phrのメチルェ チルケトン及び 6 phrの DM Fの混合溶剤である。
得られたエポキシ樹脂ワニスをガラス織布に連続的に塗布 '含浸させて、 13 0°Cのオーブンで乾燥してプリプレグを製造した。 このプリプレグを 7枚重ね合 わせた積層体を、 所定の条件 (昇温速度 5 °C/分、 180°C · 1時間保持、 30 分で 80°Cまで冷却、 32 k g/cm2) で加熱 -加圧して、 厚さ 1. 6 mmの ガラスエポキシ積層板を得た。
比較例 20で得たプリプレグを 7枚重ね合わせた積層体を、 銅箔 ( 18 πι) で 挟んで、 所定の条件 (昇温速度 5 °C/分、 180°C · 1時間保持、 30分で 8 0 Cまで冷却、 32kg/cm2) で加熱 '加圧して、 厚さ 1. 6mmのガラス ェポキシ銅張積層板を得た。
得られた銅張積層板についてハンダ耐熱性を評価した。
同様にして比較例 2 1、 22、 23、 参考例 27、 28を行った (ただし不揮発 分の含量及び成型圧力が異なる) 。 評価結果を表 13〜14に示す。 表に示した結果から、 本発明に係る難燃性エポキシ樹脂組成物は、 従来技術に 係る各比較例の難燃性エポキシ樹脂組成物よりも難燃性に優れていることが分か つた。 また、 金属水酸化物の添加量を適切に設定することにより、 誘電特性、 成 形性、 ハンダ耐熱性、 耐湿性等の諸特性を効果的に改善できることが分かった。
表 1 1
実施例 31 実施例 32 実施例 33 実施例 34 実施例 35 実施例 36 実施例 37 エポキシ樹脂 1 (フエノールビフエニルァラルキルエポキシ樹脂)(gs%: ― 一 ― 一 一 一 一 フエノール系樹脂 1 (フエノールビフエニルァラルキル樹脂)(gsw) 一 一 一 一 ― 一 一 エポキシ樹脂 2 (フエノールフエ二レンァラルキルエポキシ樹脂)(SS%) 25.41 13.62 8.32 ― 39.85 19.64 2.83 フエノール系樹脂 2 (フエノールフエ二レンァラルキル ¾脂)(g量%) 19.01 8.59 5.00 21.25 29.80 14.69 1.61 エポキシ樹脂 3 (クレゾールノポラックエポキシ樹脂)(g量%) ― ― 一 一 ― ― 一 エポキシ樹脂 5 (ビスフエノール A型エポキシ樹脂 2) (質量1 H) 一 ― ― 一 ― 一 一 エポキシ樹脂 6 (フエノールノボラックエポキシ樹脂)(g置%) 一 13.62 19.44 23.17 一 一 25.49 樹脂組成物 フエノール系^脂 3 (フエノールノポラック樹脂)(gfi%) 一 8.59 1 1.66 ― 一 一 14.49
ジシアンジアミド(質置%) 一 ― ― ― ― ― 一 水酸化アルミニウム B (質量0 /0) 55 55 55 55 30 65 55 シランカップリング剤 B (質量0 /0) 0.55 0.55 0.55 0.55 0.30 0.65 0.55 硬化促進触媒 B (質量%) 0.03 0.03 0.03 0.03 0.05 0.02 0.03 樹脂組成物の総重量(質量15 /0) 100 100 100 100 100 100 100 ガラスクロスの層数 7 7 7 7 7 7 7 ガラスクロス含有量(質量 <½) 積層板の総重量 43 43 43 43 48 42 43 難燃性 判定 V— 0 V- 0 V— 0 V-0 V- 1 V— 0 V-0
残炎時間(秒) 22 25 30 27 70 16 40 誘電率 〇 〇 〇 〇 〇 O 〇 成形性 〇 〇 〇 〇 〇 〇 〇 N ,ヽノヌ耐熱性 リ リ U U U
高温曲げ強度(MPa) 70 85 90 . 84 58 74 92 σ 〇 〇 〇 o 〇 〇 〇 高温曲げ弾性率 (GPa) 6.5 7J 8.2 7.6 4.5 7.1 9.0
E 〇 〇 〇 〇 〇 〇 O 水分以外の熱分解生成物の量(質量%) 32 35 37 36 34 31 41
F 〇 〇 〇 〇 O 〇 〇 水蒸気発生量(質量1 ¼) 積層板の総重量 10 10 10 10 5 12 10
V 〇 o 〇 〇 〇 〇 〇
Figure imgf000047_0001
表 13
N
Figure imgf000048_0001
表 1 4
参考例 25 参考例 26 参考例 27 参考例 28 参考例 29 参考例 30 エポキシ樹脂 2 (フエノールフエ二レンァラルキルエポキシ樹脂)(質量 <½) 42.73 57.1 6 一 一 42.73 13.86 フエノール系樹脂 2 (フエノールフエ二レンァラルキル樹脂)(質量 ¾) 31 .97 4277 Z : 31 .97 10.37 エポキシ樹脂 3 (クレゾ一ルノボラックエポキシ樹脂)(質置¾) 二 .7 二 エポキシ樹脂 5 (ビスフエノール A型エポキシ樹脂 2) (質 85.91 42.46
エポキシ樹脂 6 (フエノールノボラックエポキシ樹脂)(莨 ¾%)
樹脂組成物 フエノール系樹脂 3 (フエノールノボラック ί脂)(莨量 ¾)
ジシアンジアミド(質 3.81 1 .89 ― 水 SS化尸ル::ーゥ厶 B (質更%) 25 0 10 55 25 /5
;谷 破砕ンリカ 一 ― 一 ンフンカップリンク剤 B (質量0 /o) 0.25 一 0.10 0.55 0.25 0,75 硬化促進触媒 B (質量%) 0.05 0.07 0.1 8 0.10 0.05 0.02 樹脂組成物の総 S (質: Ε°/ο) 100 1 00 1 00 100 100 100 カフスクロスの餍数 5 5 7 8 8 フ カフスクロス含有; E (質; Ε。/ο) · /積層板の総重 21 41 42 49 52 56 38
00
ϋ燃性 半リ定 V— 1 V— 1 NOT V - 2 NOTV-2 V— 1 V— 0 残炎時間(秒) 1 20 21 5 > 250 250 1 1 5 9 s¾電卓 〇 〇 〇 〇 Δ 成形性 〇 〇 〇 〇 〇 Δ 、
ハノダ耐熱性 〇 〇 0 〇 〇
古-'曰 l 1-丁PH 5*虫 J5、IVIド U ゥ 0 00 OU σ X X X X X 〇 高温曲げ弾性率 (GPa) 2.1 2.0 0.5 4.4 4.9 8.1
E X X X 〇 〇 o 水分以外の熱分解生成物の量(質量%) 33 35 56 56 33 29
F 〇 〇 X X 〇 〇 水蒸気発生量(質量 <½) 積層板の総重量 5 0 2 8 4 15
V 〇 X X 〇 〇
産業上の利用可能性
以上説明したように、 本発明の難燃性エポキシ樹脂組成物は、 フエノール類
( A) から誘導される構成単位と芳香族類 (B ) から誘導される構成単位とを分 子鎖中に含むフヱノール系樹脂 (C ) および/またはこのフエノール系樹脂
( C ) のフエノール性水酸基をグリシジルエーテル化したエポキシ樹脂 (D ) を 含み、 さらに、 金属水酸化物を含んでいる。 このため、 従来にない高水準の難燃 性と安全性を実現することができる。 特に、 積層板の製造に使用された場合、 積 層板に要求される諸物性、 すなわち、 積層板の加工性、 誘電特性、 耐湿性および ハンダ耐熱性等を良好に維持しつつ高度の難燃性を付与することができる。

Claims

請求の範囲
1. エポキシ樹脂、 硬化剤および金属水酸化物を含む難燃性エポキシ樹脂組成物 であって、
前記硬化剤は、 フヱノール類 (A) から誘導される構成単位と該フヱノール類
(A) を除く芳香族類 (B) から誘導される構成単位とを分子鎖中に含むフエノ ール系樹脂 (C) であることを特徴とする難燃性エポキシ樹脂組成物。
2. エポキシ樹脂、 硬化剤および金属水酸化物を含む難燃性エポキシ樹脂組成物 であって、
前記エポキシ樹脂は、 フヱノール類 (A) から誘導される構成単位と該フヱノー ル類 (A) を除く芳香族類 (B) から誘導される構成単位とを分子鎖中に含むフ エノ一ル系樹脂 (C) のフエノール性水酸基がグリシジルエーテル化されたノボ ラック型エポキシ樹脂 (D) であることを特徴とする難燃性エポキシ樹脂組成物 c
3. エポキシ樹脂、 硬化剤および金属水酸化物を含む難燃性エポキシ樹脂組成物 であって、
前記硬化剤は、 フヱノール類 (A) から誘導される構成単位と該フヱノール類
(A) を除く芳香族類 (B) から誘導される構成単位とを分子鎖中に含むフエノ ール系樹脂 (C) であって、
前記エポキシ樹脂は、 フヱノール類 (Α') から誘導される構成単位と該フエノ ール類 (Α') を除く芳香族類 (Β') から誘導される構成単位とを分子鎖中に 含むフエノール系樹脂 (C ) のフエノール性水酸基がグリシジルエーテル化さ れたノポラック型エポキシ樹脂 (D) であることを特徴とする難燃性エポキシ樹 脂組成物。
4. 前記芳香族類 (Β) は、 ビフヱニルとその誘導体、 ベンゼンとその誘導体、 ジフエニルエーテルとその誘導体、 ナフ夕レンとその誘導体、 アントラセンとそ の誘導体、 フルオレンとその誘導体、 ビスフエノールフルオレンとその誘導体、 ビスフエノール Sとその誘導体、 ビスフエノール Fとその誘導体およびビスフヱ ノール Αとその誘導体からなる群から選ばれるいずれかの化合物であることを特 徴とする請求項 1に記載の難燃性エポキシ樹脂組成物。
5 . 前記芳香族類 (B ) は、 ビフエニルとその誘導体、 ベンゼンとその誘導体、 ジフエ二ルェ一テルとその誘導体、 ナフ夕レンとその誘導体、 アントラセンとそ の誘導体、 フルオレンとその誘導体、 ビスフエノールフルオレンとその誘導体、 ビスフエノール Sとその誘導体、 ビスフエノール Fとその誘導体およびビスフエ ノール Aとその誘導体からなる群から選ばれるいずれかの化合物であることを特 徴とする請求項 2に記載の難燃性エポキシ樹脂組成物。
6 . 前記芳香族類 (B ) は、 ビフエニルとその誘導体、 ベンゼンとその誘導体、 ジフエ二ルェ一テルとその誘導体、 ナフ夕レンとその誘導体、 アントラセンとそ の誘導体、 フルオレンとその誘導体、 ビスフエノールフルオレンとその誘導体、 ビスフエノール Sとその誘導体、 ビスフエノール Fとその誘導体およびビスフエ ノール Aとその誘導体からなる群から選ばれるいずれかの化合物であることを特 徴とする請求項 3に記載の難燃性エポキシ樹脂組成物。
7 . 前記フエノール系樹脂 (C ) が、 下記式 (I) から(IV)のいずれかに示され る繰り返し単位を有することを特徴とする請求項 1に記載の難燃性エポキシ樹脂 組成物。
Figure imgf000053_0001
(I V)
Figure imgf000053_0002
(式中、 X,および X2は、 それそれ独立に、 炭素数 1〜6の不飽和結合を含む鎖 式構造の結合基または炭素数 1〜6の置換または無置換のアルキレン基を示し、 はフエ二レン基、 ビフエ二レン基、 またはこれらの誘導基を示す。 )
8 . 前記フエノール系樹脂 (C ) が、 下記式 (I ) から(IV)のいずれかに示され る繰り返し単位を有することを特徴とする請求項 2に記載の難燃性エポキシ樹脂 組成物。
Figure imgf000054_0001
Figure imgf000054_0002
(式中、 X,および X2は、 それそれ独立に、 炭素数 1〜 6の不飽和結合を含む鎖 式構造の結合基または炭素数 1〜 6の置換または無置換のアルキレン基を示し、 1^はフエ二レン基、 ビフエ二レン基、 またはこれらの誘導基を示す。 )
9 . 前記フヱノール系樹脂 (C ) 、 下記式 (I) から(IV)のいずれかに示され る繰り返し単位を有することを特徴とする請求項 3に記載の難燃性エポキシ樹脂 組成物。
Figure imgf000055_0001
Figure imgf000055_0002
(式中、 X!および X2は、 それそれ独立に、 炭素数 1〜 6の不飽和結合を含む鎖 式構造の結合基または炭素数 1 〜 6の置換または無置換のアルキレン基を示し、 はフエ二レン基、 ビフエ二レン基、 またはこれらの誘導基を示す。 )
1 0 . 前記金属水酸化物の含有率が、 難燃性エポキシ樹脂組成物の総量に対し、 1 0質量%以上 7 0質量%以下であることを特徴とする請求項 1に記載の難燃性 エポキシ樹脂組成物。
1 1 . 前記金属水酸化物の含有率が、 難燃性エポキシ樹脂組成物の総量に対し、
1 0質量%以上 7 0質量%以下であることを特徴とする請求項 2に記載の難燃性 エポキシ樹脂組成物。
1 2 . 前記金属水酸化物の含有率が、 難燃性エポキシ樹脂組成物の総量に対し、
1 0質量%以上 7 0質量%以下であることを特徴とする請求項 3に記載の難燃性 エポキシ樹脂組成物。
1 3 . 分岐構造の主鎖を有し芳香族誘導基を有するシリコーン化合物をさらに含 むことを特徴とする請求項 1に記載の難燃性エポキシ樹脂組成物。
1 4 . 分岐構造の主鎖を有し芳香族誘導基を有するシリコーン化合物をさらに含 むことを特徴とする請求項 2に記載の難燃性エポキシ樹脂組成物。
1 5 . 分岐構造の主鎖を有し芳香族誘導基を有するシリコーン化合物をさらに含 むことを特徴とする請求項 3に記載の難燃性ェポキシ樹脂組成物。
1 6 . 前記金属水酸化物の含有率が、 難燃性エポキシ樹脂組成物の総量に対し、 5質量%以上 7 0質量%以下であることを特徴とする請求項 1 3に記載の難燃性 エポキシ樹脂組成物。
1 7 . 前記金属水酸化物の含有率が、 難燃性エポキシ樹脂組成物の総量に対し、 5質量%以上 7 0質量%以下であることを特徴とする請求項 1 4に記載の難燃性 エポキシ樹脂組成物。
1 8 . 前記金属水酸化物の含有率が、 難燃性エポキシ樹脂組成物の総量に対し、 5質量%以上 7 0質量%以下であることを特徴とする請求項 1 5に記載の難燃性 エポキシ樹脂組成物。
1 9 . 前記シリコーン化合物が、 式 R S i 0し5で示される単位 (T単位) を含 むことを特徴とする請求項 1 3に記載の難燃性エポキシ樹脂組成物。
2 0 . 前記シリコーン化合物が、 式 R S i O で示される単位 (T単位) を含 むことを特徴とする請求項 1 4に記載の難燃性エポキシ樹脂組成物。
2 1 . 前記シリコーン化合物が、 式 R S i。 で示される単位 (T単位) を含 むことを特徴とする請求項 1 5に記載の難燃性エポキシ樹脂組成物。
2 2 . 前記シリコーン化合物が、 前記エポキシ樹脂および/または前記硬化剤と 反応し得る反応性基を有することを特徴とする請求項 1 3に記載の難燃性ェポキ シ樹脂組成物。
2 3 . 前記シリコーン化合物が、 前記エポキシ樹脂および/または前記硬化剤と 反応し得る反応性基を有することを特徴とする請求項 1 4に記載の難燃性ェポキ シ樹脂組成物。
2 4 . 前記シリコーン化合物が、 前記エポキシ樹脂および/または前記硬化剤と 反応し得る反応性基を有することを特徴とする請求項 1 5に記載の難燃性ェポキ シ樹脂組成物。
2 5 . 前記反応性基が、 水酸基、 炭素数 1 ~ 5のアルコキシ基、 エポキシ基また はカルボキシル基であることを特徴とする請求項 2 2に記載の難燃性エポキシ樹 脂組成物。
2 6 . 前記反応性基が、 水酸基、 炭素数 1〜 5のアルコキシ基、 エポキシ基また はカルボキシル基であることを特徴とする請求項 2 3に記載の難燃性エポキシ樹 脂組成物。
2 7 . 前記反応性基が、 水酸基、 炭素数 1〜 5のアルコキシ基、 エポキシ基また はカルボキシル基であることを特徴とする請求項 2 4に記載の難燃性エポキシ樹 脂組成物。
2 8 . 基材に含浸、 硬化させ、 積層板を形成するのに用いられることを特徴とす る請求項 1に記載の難燃性エポキシ樹脂組成物。
2 9 . 基材に含浸、 硬化させ、 積層板を形成するのに用いられることを特徴とす る請求項 2に記載の難燃性エポキシ樹脂組成物。
3 0 . 基材に含浸、 硬化させ、 積層板を形成するのに用いられることを特徴とす る請求項 3に記載の難燃性エポキシ樹脂組成物。
3 1 . 前記金属水酸化物が、 アルミニウム、 マグネシウム、 亜鉛、 ホウ素、 カル シゥム、 ニッケル、 コバルト、 スズ、 モリブデン、 銅、 鉄およびチタンからなる 群より選ばれる少なくとも一つの元素を含む金属水酸化物であることを特徴とす る請求項 1に記載の難燃性エポキシ樹脂組成物。
3 2 . 前記金属水酸化物が、 アルミニウム、 マグネシウム、 亜鉛、 ホウ素、 カル シゥム、 ニッケル、 コバルト、 スズ、 モリブデン、 銅、 鉄およびチタンからなる 群より選ばれる少なくとも一つの元素を含む金属水酸化物であることを特徴とす る請求項 2に記載の難燃性エポキシ樹脂組成物。
3 3 . 前記金属水酸化物が、 アルミニウム、 マグネシウム、 亜鉛、 ホウ素、 カル シゥム、 ニッケル、 コバルト、 スズ、 モリブデン、 銅、 鉄およびチタンからなる 群より選ばれる少なくとも一つの元素を含む金属水酸化物であることを特徴とす る請求項 3に記載の難燃性エポキシ樹脂組成物。
3 4 . 前記金属水酸化物が、 水酸化アルミニウム、 水酸化マグネシウムまたはホ ゥ酸亜鉛であることを特徴とする請求項 3 1に記載の難燃性エポキシ樹脂組成物 c
3 5 . 前記金属水酸化物が、 水酸化アルミニウム、 水酸化マグネシウムまたはホ ゥ酸亜鉛であることを特徴とする請求項 3 2に記載の難燃性エポキシ樹脂組成物 c
3 6 . 前記金属水酸化物が、 水酸化アルミニウム、 水酸化マグネシウムまたはホ ゥ酸亜鉛であることを特徴とする請求項 3 3に記載の難燃性エポキシ樹脂組成物 c
3 7 . 請求項 1に記載の難燃性エポキシ樹脂組成物を有機溶剤に分散させてなる エポキシ樹脂ワニス溶液。
3 8 . 請求項.2に記載の難燃性エポキシ樹脂組成物を有機溶剤に分散させてなる エポキシ樹脂ワニス溶液。
3 9 . 請求項 3に記載の難燃性エポキシ樹脂組成物を有機溶剤に分散させてなる エポキシ樹脂ワニス溶液。
4 0 . 請求項 1に記載の難燃性エポキシ樹脂組成物を、 基材に含浸、 硬化させて なるプリプレグ。
4 1 . 請求項 2に記載の難燃性エポキシ樹脂組成物を、 基材に含浸、 硬化させて なるプリプレグ。
4 2 . 請求項 3に記載の難燃性エポキシ樹脂組成物を、 基材に含浸、 硬化させて なるプリプレグ。
43. エポキシ樹脂、 硬化剤および金属水酸化物を含む難燃性エポキシ樹脂組成 物を基材に含浸、 硬化させてプリプレグを得、 該プリプレグを複数枚重ねた状態 で加熱加圧して得られる積層板であって、
前記硬化剤は、 フエノール類 (A) から誘導される構成単位と該フエノール類
(A) を除く芳香族類 (B) から誘導される構成単位とを分子鎖中に含むフエノ ール系樹脂 (C) であることを特徴とする積層板。
44. エポキシ樹脂、 硬化剤および金属水酸化物を含む難燃性エポキシ樹脂組成 物を基材に含浸、 硬化させてプリプレグを得、 該プリプレグを複数枚重ねた状態 で加熱加圧して得られる積層板であって、
前記エポキシ樹脂は、 フエノール類 (A) から誘導される構成単位と該フヱノー ル類 (A) を除く芳香族類 (B) から誘導される構成単位とを分子鎖中に含むフ ェノール系樹脂 (C) のフエノール性水酸基がグリシジルエーテル化されたノボ ラック型エポキシ樹脂 (D) であることを特徴とする積層板。
45. エポキシ樹脂、 硬化剤および金属水酸化物を含む難燃性エポキシ樹脂組成 物を基材に含浸、 硬化させてプリプレグを得、 該プリプレグを複数枚重ねた状態 で加熱加圧して得られる積層板であって、
前記硬化剤は、 フエノール類 (A) から誘導される構成単位と該フエノ一ル類
(A) を除く芳香族類 (B) から誘導される構成単位とを分子鎖中に含むフエノ ール系樹脂 (C) であって、
前記エポキシ樹脂は、 フエノール類 (Α') から誘導される構成単位と該フエノ —ル類 (Α') を除く芳香族類 (Β') から誘導される構成単位とを分子鎖中に 含むフエノール系樹脂 (C,) のフエノール性水酸基がグリシジルェ一テル化さ れたノポラック型エポキシ樹脂 (D) であることを特徴とする積層板。
46. 前記芳香族類 (B) は、 ビフヱニルとその誘導体、 ベンゼンとその誘導体、 ジフエ二ルェ一テルとその誘導体、 ナフ夕レンとその誘導体、 アントラセンとそ の誘導体、 フルオレンとその誘導体、 ビスフエノールフルオレンとその誘導体、 ビスフエノール Sとその誘導体、 ビスフエノール Fとその誘導体およびビスフエ ノール Aとその誘導体からなる群から選ばれるいずれかの化合物であることを特 徴とする請求項 4 3に記載の積層板。
4 7 . 前記芳香族類 (B ) は、 ビフヱニルとその誘導体、 ベンゼンとその誘導体、 ジフエニルエーテルとその誘導体、 ナフ夕レンとその誘導体、 アントラセンとそ の誘導体、 フルオレンとその誘導体、 ビスフエノールフルオレンとその誘導体、 ビスフエノール Sとその誘導体、 ビスフエノール Fとその誘導体およびビスフエ ノール Aとその誘導体からなる群から選ばれるいずれかの化合物であることを特 徴とする請求項 4 4に記載の積層板。
4 8 . 前記芳香族類 (B ) は、 ビフヱニルとその誘導体、 ベンゼンとその誘導体、 ジフヱ二ルェ一テルとその誘導体、 ナフ夕レンとその誘導体、 アントラセンとそ の誘導体、 フルオレンとその誘導体、 ビスフエノールフルオレンとその誘導体、 ビスフヱノール Sとその誘導体、 ビスフヱノール Fとその誘導体およびビスフエ ノール Aとその誘導体からなる群から選ばれるいずれかの化合物であることを特 徴とする請求項 4 5に記載の積層板。
4 9 . 前記フエノール系樹脂 (C ) が、 下記式 (I) から(IV)のいずれかに示さ れる繰り返し単位を有することを特徴とする請求項 4 3に記載の積層板。
Figure imgf000061_0001
Figure imgf000061_0002
(式中、 X!および X2は、 それぞれ独立に、 炭素数 1〜 6の不飽和結合を含む鎖 式構造の結合基または炭素数 1〜 6の置換または無置換のアルキレン基を示し、 はフエ二レン基、 ビフエ二レン基、 またはこれらの誘導基を示す。 )
5 0 . 前記フエノール系樹脂 (C ) が、 下記式 (I) から(IV)のいずれかに示さ れる繰り返し単位を有することを特徴とする請求項 4 4に記載の積層板。
(I )
Figure imgf000062_0001
Figure imgf000062_0002
(式中、 X,および X2は、 それそれ独立に、 炭素数 1〜 6の不飽和結合を含む鎖 式構造の結合基または炭素数 1〜 6の置換または無置換のアルキレン基を示し、 R,はフエ二レン基、 ビフエ二レン基、 またはこれらの誘導基を示す。 )
5 1 . 前記フエノール系樹脂 (C ) が、 下記式 (I) から(IV)のいずれかに示さ れる繰り返し単位を有することを特徴とする請求項 4 5に記載の積層板。
Figure imgf000063_0001
( I V)
Figure imgf000063_0002
(式中、 X,および X2は、 それそれ独立に、 炭素数 1〜 6の不飽和結合を含む鎖 式構造の結合基または炭素数 1〜6の置換または無置換のアルキレン基を示し、 R,はフエ二レン基、 ビフエ二レン基、 またはこれらの誘導基を示す。 )
5 2 . 前記金属水酸化物の含有率が、 難燃性エポキシ樹脂組成物の総量に対し、 1 0質量%以上 7 0質量%以下であることを特徴とする請求項 4 3に記載の積層 板。
5 3 . 前記金属水酸化物の含有率が、 難燃性エポキシ樹脂組成物の総量に対し、 1 0質量%以上 7 0質量%以下であることを特徴とする請求項 4 4に記載の積層 板。
5 4 . 前記金属水酸化物の含有率が、 難燃性エポキシ樹脂組成物の総量に対し、 1 0質量%以上 7 0質量%以下であることを特徴とする請求項 4 5に記載の積層 板。 .
5 5 . 分岐構造の主鎖を有し芳香族誘導基を有するシリコーン化合物をさらに含 むことを特徴とする請求項 4 3に記載の積層板。
5 6 . 分岐構造の主鎖を有し芳香族誘導基を有するシリコーン化合物をさらに含 むことを特徴とする請求項 4 4に記載の積層板。
5 7 . 分岐構造の主鎖を有し芳香族誘導基を有するシリコーン化合物をさらに含 むことを特徴とする請求項 4 5に記載の積層板。
5 8 . 前記金属水酸化物の含有率が、 難燃性エポキシ樹脂組成物の総量に対し、 5質量%以上 7 0質量%以下であることを特徴とする請求項 4 3に記載の積層板 c
5 9 . 前記金属水酸化物の含有率が、 難燃性エポキシ樹脂組成物の総量に対し、
5質量%以上 Ί 0質量%以下であることを特徴とする請求項 4 4に記載の積層板 c
6 0 . 前記金属水酸化物の含有率が、 難燃性エポキシ樹脂組成物の総量に対し、
5質量%以上 7 0質量%以下であることを特徴とする請求項 4 5に記載の積層板 c
6 1 . 前記シリコーン化合物が、 式 R S i O ! .5で示される単位 (T単位) を含 むことを特徴とする請求項 4 3に記載の積層板。
6 2 . 前記シリコーン化合物が、 式 R S i 0 で示される単位 (T単位) を含 むことを特徴とする請求項 4 4に記載の積層板。
6 3 . 前記シリコーン化合物が、 式 R S i 0し5で示される単位 (T単位) を含 むことを特徴とする請求項 4 5に記載の積層板。
6 4 . 前記シリコーン化合物が、 前記エポキシ樹脂および/または前記硬化剤と 反応し得る反応性基を有することを特徴とする請求項 4 3に記載の積層板。
6 5 . 前記シリコーン化合物が、 前記エポキシ樹脂および/または前記硬化剤と 反応し得る反応性基を有することを特徴とする請求項 4 4に記載の積層板。
6 6 . 前記シリコーン化合物が、 前記エポキシ樹脂および/または前記硬化剤と 反応し得る反応性基を有することを特徴とする請求項 4 5に記載の積層板。
6 7 . 前記反応性基が、 水酸基、 炭素数 1〜 5のアルコキシ基、 エポキシ基また はカルボキシル基であることを特徴とする請求項 4 3に記載の積層板。
6 8 . 前記反応性基が、 水酸基、 炭素数 1〜 5のアルコキシ基、 エポキシ基また はカルボキシル基であることを特徴とする請求項 4 4に記載の積層板。
6 9 . 前記反応性基が、 水酸基、 炭素数 1〜 5のアルコキシ基、 エポキシ基また はカルボキシル基であることを特徴とする請求項 4 5に記載の積層板。
7 0 . 前記金属水酸化物が、 アルミニウム、 マグネシウム、 亜鉛、 ホウ素、 カル シゥム、 ニッケル、 コバルト、 スズ、 モリブデン、 銅、 鉄およびチタンからなる 群より選ばれる少なくとも一つの元素を含む金属水酸化物であることを特徴とす る請求項 4 3に記載の積層板。
7 1 . 前記金属水酸化物が、 アルミニウム、 マグネシウム、 亜鉛、 ホウ素、 カル シゥム、 ニッケル、 コバルト、 スズ、 モリブデン、 銅、 鉄およびチタンからなる 群より選ばれる少なくとも一つの元素を含む金属水酸化物であることを特徴とす る請求項 4 4に記載の積層板。
7 2 . 前記金属水酸化物が、 アルミニウム、 マグネシウム、 亜鉛、 ホウ素、 カル シゥム、 ニッケル、 コバルト、 スズ、 モリブデン、 銅、 鉄およびチタンからなる 群より選ばれる少なくとも一つの元素を含む金属水酸化物であることを特徴とす る請求項 4 5に記載の積層板。
7 3 . 前記金属水酸化物が、 水酸化アルミニウム、 水酸化マグネシウムまたはホ ゥ酸亜鉛であることを特徴とする請求項 4 3に記載の積層板。
7 4 . 前記金属水酸化物が、 水酸化アルミニウム、 水酸化マグネシウムまたはホ ゥ酸亜鉛であることを特徴とする請求項 4 4に記載の積層板。
75. 前記金属水酸化物が、 水酸化アルミニウム、 水酸化マグネシウムまたはホ ゥ酸亜鉛であることを特徴とする請求項 45に記載の積層板。
76. 下記条件 (a) 〜 (d) を満たすことを特徴とする請求項 43に記載の積
(a) 45≤σ≤ 100, 3≤Ε≤ 12
(σは 230 ± 10。Cにおける積層板の曲げ強度 (MPa) 、 Eは 230 ± 10°C における積層板の曲げ弾性率 (GPa) を表す。 )
(b) 30≤G≤ 60
(Gは、 積層板の総量に占める基材の割合 (質量%) を表す。 )
(c) F≤45 (質量%)
F (質量%) =Rx 100/X
(Rは室温から 500°Cまでに発生する、 水分以外の熱分解生成物の量であり、 Xは積層板中の樹脂分の含有量を表す。 )
(d) 4≤V≤ 13
(Vは、 昇温速度 l O^Z分、 空気流量 0. 2リットル/分で熱分解したときに、 室温から 500°Cまでに発生する、 積層板の総量に対する水蒸気量 (V質量%) を表す。 )
77. 下記条件 (a) 〜 (d) を満たすことを特徴とする請求項 44に記載の積 層板。
(a) 45≤σ≤ 100, 3≤Ε≤ 12
(σは 230± 10°Cにおける積層板の曲げ強度 (MPa) 、 Eは 230 ± 10°C における積層板の曲げ弾性率 (GPa) を表す。 )
(b) 30≤G≤ 60
(Gは、 積層板の総量に占める基材の割合 (質量%) を表す。 )
(c) F≤45 (質量%)
F (質量%) =Rx 100/X - (Rは室温から 500°Cまでに発生する、 水分以外の熱分解生成物の量であり、 Xは積層板中の樹脂分の含有量を表す。 )
(d) 4≤V≤ 13
(Vは、 昇温速度 10°CZ分、 空気流量 0. 2リットル/分で熱分解したときに、 室温から 500°Cまでに発生する、 積層板の総量に対する水蒸気量 (V質量%) を表す。 )
78. 下記条件 (a) 〜 (d) を満たすことを特徴とする請求項 45に記載の積
(a) 45≤σ≤ 100, 3≤Ε≤ 12
(σは 230± 10°Cにおける積層板の曲げ強度 (MPa) 、 Eは 230± 10。C における積層板の曲げ弾性率 (GPa) を表す。 )
(b) 30≤G≤ 60
(Gは、 積層板の総量に占める基材の割合 (質量%) を表す。 )
(c) F≤45 (質量%)
F (質量%) =Rx 100/X
(Rは室温から 500°Cまでに発生する、 水分以外の熱分解生成物の量であり、 Xは積層板中の樹脂分の含有量を表す。 )
(d) 4≤V≤ 13
(Vは、 昇温速度 10°CZ分、 空気流量 0. 2リットル/分で熱分解したときに、 室温から 500°Cまでに発生する、 積層板の総量に対する水蒸気量 (V質量%) を表す。 )
PCT/JP2000/008595 1999-12-08 2000-12-05 Composition de resine epoxyde ignifuge et stratifie obtenu a partir de celle-ci WO2001042360A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/070,827 US6730402B2 (en) 1999-12-08 2000-12-05 Flame-retardant epoxy resin composition and laminate made with the same
DE60041419T DE60041419D1 (de) 1999-12-08 2000-12-05 Er hergestelltes mehrschichtmaterial
EP20000979090 EP1260551B1 (en) 1999-12-08 2000-12-05 Flame-retardant epoxy resin composition and laminate made with the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP34944099 1999-12-08
JP11/349440 1999-12-08
JP2000-361170 2000-11-28
JP2000361170A JP3460820B2 (ja) 1999-12-08 2000-11-28 難燃性エポキシ樹脂組成物

Publications (1)

Publication Number Publication Date
WO2001042360A1 true WO2001042360A1 (fr) 2001-06-14

Family

ID=26578951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/008595 WO2001042360A1 (fr) 1999-12-08 2000-12-05 Composition de resine epoxyde ignifuge et stratifie obtenu a partir de celle-ci

Country Status (7)

Country Link
US (1) US6730402B2 (ja)
EP (1) EP1260551B1 (ja)
JP (1) JP3460820B2 (ja)
CN (1) CN1169878C (ja)
DE (1) DE60041419D1 (ja)
TW (1) TW538093B (ja)
WO (1) WO2001042360A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7095125B2 (en) * 1999-04-26 2006-08-22 Shin-Etsu Chemical Co., Ltd. Semiconductor encapsulating epoxy resin composition and semiconductor device
US7105614B2 (en) * 2001-06-29 2006-09-12 Dow Corning Toray Silicone Co., Ltd. Curable epoxy resin composition

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1416390A (zh) 2000-01-05 2003-05-07 美国圣戈班技术织物有限公司 光滑增强水泥板及其制备方法
JP4524837B2 (ja) * 2000-02-07 2010-08-18 住友ベークライト株式会社 エポキシ樹脂組成物及び半導体装置
TWI287554B (en) * 2000-10-05 2007-10-01 Nippon Kayaku Kk Sheet made of epoxy resin composition and cured product thereof
US6706409B2 (en) * 2000-10-13 2004-03-16 Hitachi Chemical Co., Ltd. Incombustible resin composition, prepreg, laminated plate, metal-clad laminated plate, printed wiring board and multi-layer printed wiring board
US20050011592A1 (en) * 2001-11-30 2005-01-20 Smith James B. Stabilizer bar
JP2003268079A (ja) * 2002-03-18 2003-09-25 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物及び半導体装置
JP4240448B2 (ja) * 2002-08-22 2009-03-18 三井金属鉱業株式会社 樹脂層付銅箔を用いた多層プリント配線板の製造方法
EP1593652A4 (en) * 2003-01-21 2010-10-13 Yazaki Corp MAGNESIUM HYDROXIDE, MAGNESIUM HYDROXIDE / SILICON DIOXIDE COMPOSITE PARTICLES, METHOD OF MANUFACTURING THEREOF, METHOD OF SURFACE TREATMENT THEREOF AND RESIDUAL COMPOSITION AND ELECTRIC WIRE CONTAINING THEREWITH OR THEREWITH
US7049251B2 (en) * 2003-01-21 2006-05-23 Saint-Gobain Technical Fabrics Canada Ltd Facing material with controlled porosity for construction boards
JP4251612B2 (ja) * 2003-01-30 2009-04-08 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. エポキシ含有物質を含むネガ型感光性樹脂組成物
JP4397601B2 (ja) * 2003-02-06 2010-01-13 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. フェノール−ビフェニレン樹脂を含むネガ型感光性樹脂組成物
NL1023563C2 (nl) * 2003-05-28 2004-11-30 Dsm Ip Assets Bv Thermohardend materiaal; werkwijze en installatie voor het vervormen van een al dan niet uitgehard thermohardend materiaal.
WO2005003208A1 (ja) * 2003-07-03 2005-01-13 Nec Corporation エポキシ樹脂組成物
TWI274771B (en) * 2003-11-05 2007-03-01 Mitsui Chemicals Inc Resin composition, prepreg and laminate using the same
WO2005061626A1 (ja) * 2003-12-19 2005-07-07 Nec Corporation 難燃性熱可塑性樹脂組成物
WO2006006593A1 (ja) * 2004-07-13 2006-01-19 Hitachi Chemical Co., Ltd. 封止用エポキシ樹脂成形材料及び電子部品装置
WO2006006592A1 (ja) * 2004-07-13 2006-01-19 Hitachi Chemical Co., Ltd. 封止用エポキシ樹脂成形材料及び電子部品装置
WO2006137884A2 (en) * 2004-09-28 2006-12-28 Brewer, Science Inc. Curable high refractive index resins for optoelectronic applications
KR101254524B1 (ko) * 2004-11-02 2013-04-19 스미토모 베이클라이트 가부시키가이샤 에폭시 수지 조성물 및 반도체 장치
WO2006051731A1 (ja) * 2004-11-11 2006-05-18 Kaneka Corporation エポキシ樹脂組成物
CN1989166B (zh) * 2004-11-30 2010-04-28 松下电工株式会社 预浸料用环氧树脂组合物、预浸料及多层印刷电路板
JP4633500B2 (ja) * 2005-03-01 2011-02-16 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. エポキシ含有物質を含むネガ型感光性樹脂組成物
JP4662793B2 (ja) * 2005-03-01 2011-03-30 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. エポキシ含有物質を含むネガ型感光性樹脂組成物
EP1647576A1 (en) * 2005-04-01 2006-04-19 Huntsman Advanced Materials (Switzerland) GmbH Composition comprising benzoxazine and epoxy resin
US8029704B2 (en) * 2005-08-25 2011-10-04 American Thermal Holding Company Flexible protective coating
US7601429B2 (en) 2007-02-07 2009-10-13 Mitsubishi Gas Chemical Company, Inc. Prepreg and laminate
KR101141902B1 (ko) * 2007-04-10 2012-05-03 스미토모 베이클리트 컴퍼니 리미티드 에폭시 수지 조성물, 프리프레그, 적층판, 다층 프린트 배선판, 반도체 장치, 절연 수지 시트, 다층 프린트 배선판의 제조 방법
TWI347330B (en) * 2007-04-23 2011-08-21 Ind Tech Res Inst Flame retardant crosslink agent and epoxy resin compositions free of halogen and phosphor
JP5307804B2 (ja) * 2007-06-19 2013-10-02 フレキシブル セラミックス,インク.ア カリフォルニア コーポレーション 高温耐性弾性複合材のアプリケーション用のシリコン樹脂複合材およびその製造方法
US20120148753A1 (en) * 2007-12-12 2012-06-14 Masanori Kubota Prepreg
JP5185218B2 (ja) * 2009-06-30 2013-04-17 エムテックスマツムラ株式会社 半導体装置用中空パッケージおよび半導体部品装置
JP5380325B2 (ja) * 2010-02-18 2014-01-08 日東電工株式会社 光半導体素子封止用熱硬化性樹脂組成物およびその硬化体、ならびにそれを用いて得られる光半導体装置
EP2554561B1 (en) * 2010-03-26 2019-09-04 Panasonic Intellectual Property Management Co., Ltd. Epoxy resin composition for prepreg, prepreg, and multilayer printed circuit board
SG184504A1 (en) 2010-04-08 2012-11-29 Mitsubishi Gas Chemical Co Resin composition, prepreg, and laminated sheet
JP2012116892A (ja) * 2010-11-29 2012-06-21 Hitachi Chemical Co Ltd 難燃性樹脂組成物並びにこれを用いたプリプレグ及び積層板
JP2012116890A (ja) * 2010-11-29 2012-06-21 Hitachi Chemical Co Ltd 難燃性樹脂組成物並びにこれを用いたプリプレグ及び積層板
JP2012116891A (ja) * 2010-11-29 2012-06-21 Hitachi Chemical Co Ltd 難燃性樹脂組成物並びにこれを用いたプリプレグ及び積層板
CN102408545B (zh) * 2011-10-19 2013-06-26 江苏华海诚科新材料有限公司 一种稀土永磁无铁芯节能电机密封用树脂组合物
CN102504490B (zh) * 2011-11-08 2013-06-26 桂林电器科学研究院 一种可注射成型的电工环氧模塑料及其制备方法
JP6008104B2 (ja) * 2012-09-04 2016-10-19 住友ベークライト株式会社 プリプレグおよび金属張積層板
JP2014109027A (ja) * 2012-12-04 2014-06-12 Hitachi Chemical Co Ltd エポキシ樹脂組成物、プリプレグ、金属張積層板及びこれらを用いた印刷配線板
JPWO2014184859A1 (ja) * 2013-05-14 2017-02-23 株式会社日立製作所 エポキシ樹脂組成物、エポキシ樹脂硬化物、モータ及びアキシャルギャップ型モータ
JP2017088656A (ja) * 2015-11-04 2017-05-25 信越化学工業株式会社 難燃性樹脂組成物、難燃性樹脂フィルム及び半導体装置とその製造方法
KR102623238B1 (ko) * 2020-09-11 2024-01-10 삼성에스디아이 주식회사 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0597965A (ja) * 1991-10-04 1993-04-20 Mitsui Toatsu Chem Inc エポキシ樹脂組成物
EP0906933A1 (en) * 1997-10-01 1999-04-07 Kyowa Chemical Industry Co., Ltd. Flame retardant resin composition
EP0915118A1 (en) * 1997-11-10 1999-05-12 Sumitomo Bakelite Company Limited Epoxy resin composition and semiconductor device encupsulated therewith
JPH11246741A (ja) * 1998-02-27 1999-09-14 Sumitomo Bakelite Co Ltd 積層板用エポキシ樹脂組成物
JP2000053845A (ja) * 1998-08-06 2000-02-22 Toshiba Chem Corp ガラスエポキシ銅張積層板用樹脂組成物
JP2000103839A (ja) * 1998-09-25 2000-04-11 Matsushita Electric Works Ltd 封止用樹脂組成物及び半導体装置
WO2000023494A1 (en) * 1998-10-21 2000-04-27 Nec Corporation Flame-retardant epoxy resin composition and semiconductor device made using the same
EP1036811A1 (en) * 1999-03-18 2000-09-20 Mitsubishi Gas Chemical Company, Inc. Prepreg and laminated board

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05318653A (ja) 1992-05-23 1993-12-03 Toshiba Chem Corp 難燃性銅張積層板の製造方法
WO1997012925A1 (en) 1995-09-29 1997-04-10 Toshiba Chemical Corporation Halogen-free flame-retardant epoxy resin composition, and prepreg and laminate containing the same
JPH09208666A (ja) 1996-01-30 1997-08-12 Nippon Steel Chem Co Ltd 低誘電率樹脂組成物、及びその硬化物
JP3317481B2 (ja) 1996-11-21 2002-08-26 住友ベークライト株式会社 半導体封止用樹脂組成物
JPH10279782A (ja) 1997-04-08 1998-10-20 Sumitomo Chem Co Ltd エポキシ樹脂組成物および樹脂封止型半導体装置
JPH1112439A (ja) 1997-06-20 1999-01-19 Nec Corp 難燃性熱硬化性樹脂組成物
KR100635710B1 (ko) * 1997-08-01 2007-06-12 니폰 가야꾸 가부시끼가이샤 흑색 액정시일제 및 액정 셀
JP3466884B2 (ja) 1997-09-03 2003-11-17 東洋通信機株式会社 フィルタバンク回路
JP3297014B2 (ja) 1997-10-01 2002-07-02 協和化学工業株式会社 難燃性樹脂組成物
JPH11179841A (ja) 1997-12-24 1999-07-06 Shin Kobe Electric Mach Co Ltd コンポジット金属箔張り積層板
JP3388537B2 (ja) 1998-05-15 2003-03-24 信越化学工業株式会社 半導体封止用エポキシ樹脂組成物及び半導体装置
JP2001048957A (ja) 1999-05-31 2001-02-20 Hitachi Chem Co Ltd 封止用エポキシ樹脂成形材料及び電子部品装置
JP2001089641A (ja) 1999-09-27 2001-04-03 Nippon Kayaku Co Ltd 難燃性エポキシ樹脂組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0597965A (ja) * 1991-10-04 1993-04-20 Mitsui Toatsu Chem Inc エポキシ樹脂組成物
EP0906933A1 (en) * 1997-10-01 1999-04-07 Kyowa Chemical Industry Co., Ltd. Flame retardant resin composition
EP0915118A1 (en) * 1997-11-10 1999-05-12 Sumitomo Bakelite Company Limited Epoxy resin composition and semiconductor device encupsulated therewith
JPH11246741A (ja) * 1998-02-27 1999-09-14 Sumitomo Bakelite Co Ltd 積層板用エポキシ樹脂組成物
JP2000053845A (ja) * 1998-08-06 2000-02-22 Toshiba Chem Corp ガラスエポキシ銅張積層板用樹脂組成物
JP2000103839A (ja) * 1998-09-25 2000-04-11 Matsushita Electric Works Ltd 封止用樹脂組成物及び半導体装置
WO2000023494A1 (en) * 1998-10-21 2000-04-27 Nec Corporation Flame-retardant epoxy resin composition and semiconductor device made using the same
EP1036811A1 (en) * 1999-03-18 2000-09-20 Mitsubishi Gas Chemical Company, Inc. Prepreg and laminated board

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1260551A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7095125B2 (en) * 1999-04-26 2006-08-22 Shin-Etsu Chemical Co., Ltd. Semiconductor encapsulating epoxy resin composition and semiconductor device
US7105614B2 (en) * 2001-06-29 2006-09-12 Dow Corning Toray Silicone Co., Ltd. Curable epoxy resin composition

Also Published As

Publication number Publication date
EP1260551B1 (en) 2009-01-14
JP3460820B2 (ja) 2003-10-27
EP1260551A1 (en) 2002-11-27
JP2001226465A (ja) 2001-08-21
US6730402B2 (en) 2004-05-04
TW538093B (en) 2003-06-21
CN1169878C (zh) 2004-10-06
EP1260551A4 (en) 2003-03-19
CN1390246A (zh) 2003-01-08
DE60041419D1 (de) 2009-03-05
US20030152776A1 (en) 2003-08-14

Similar Documents

Publication Publication Date Title
WO2001042360A1 (fr) Composition de resine epoxyde ignifuge et stratifie obtenu a partir de celle-ci
JP6129277B2 (ja) 低誘電のリン含有ポリエステル化合物の組成及びその調製方法
CN102365310B (zh) 热固化性树脂组合物、以及使用了该组合物的预浸料、带支撑体的绝缘膜、层叠板及印刷布线板
KR101464008B1 (ko) 반도체 패키지, 코어층 재료, 빌드업층 재료 및 시일링 수지 조성물
TWI596153B (zh) Resin composition, prepreg and laminated board
CN107254144B (zh) 树脂组合物和使用其的预浸料以及层压板
CN105860436B (zh) 树脂组合物、预浸料及层叠板
JP5186221B2 (ja) 難燃性樹脂組成物、それを用いたプリプレグ、積層板、金属張積層板、印刷配線板及び多層印刷配線板
KR101316105B1 (ko) 난연성 절연층을 포함하는 인쇄회로기판의 제조방법
JP2012180521A (ja) エポキシ樹脂組成物
TWI666248B (zh) 馬來醯亞胺樹脂組合物、預浸料、層壓板和印刷電路板
CN105400142A (zh) 树脂组合物、预浸料、层压板和覆金属箔层压板
WO2020047920A1 (zh) 热固性树脂组合物及含有它的预浸料、层压板和高频电路基板
JP6752886B2 (ja) ノンハロゲン系熱硬化性樹脂組成物及びそれを含むプリプレグ、積層板及びプリント回路基板
WO2019127391A1 (zh) 马来酰亚胺树脂组合物、预浸料、层压板和印刷电路板
TWI274771B (en) Resin composition, prepreg and laminate using the same
JP2003147052A (ja) 難燃性エポキシ樹脂組成物
CN103965588A (zh) 无卤热固性树脂组合物、半固化片及层压板
CN106543686A (zh) 一种树脂组合物及使用其制作的半固化片、层压板和层间绝缘膜
JP3664124B2 (ja) 難燃性樹脂組成物、それを用いたプリプレグ、積層板、金属張積層板、印刷配線板及び多層印刷配線板
JP2001288339A (ja) エポキシ樹脂組成物の難燃化方法および難燃性エポキシ樹脂組成物
CN111849122B (zh) 一种树脂组合物及其应用
CN109535653B (zh) 含磷环氧树脂组合物及应用其制备的半固化片和层压板
JP2003277588A (ja) 熱硬化性樹脂組成物及びこれを用いた積層板
JP2002060460A (ja) リン含有難燃性エポキシレジン、およびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10070827

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 008155453

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2000979090

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000979090

Country of ref document: EP