WO2006006592A1 - 封止用エポキシ樹脂成形材料及び電子部品装置 - Google Patents

封止用エポキシ樹脂成形材料及び電子部品装置 Download PDF

Info

Publication number
WO2006006592A1
WO2006006592A1 PCT/JP2005/012830 JP2005012830W WO2006006592A1 WO 2006006592 A1 WO2006006592 A1 WO 2006006592A1 JP 2005012830 W JP2005012830 W JP 2005012830W WO 2006006592 A1 WO2006006592 A1 WO 2006006592A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
group
sealing
molding material
magnesium hydroxide
Prior art date
Application number
PCT/JP2005/012830
Other languages
English (en)
French (fr)
Inventor
Ryoichi Ikezawa
Hidetaka Yoshizawa
Seiichi Akagi
Original Assignee
Hitachi Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co., Ltd. filed Critical Hitachi Chemical Co., Ltd.
Priority to CN2005800235580A priority Critical patent/CN1984960B/zh
Priority to US11/572,155 priority patent/US20080039556A1/en
Publication of WO2006006592A1 publication Critical patent/WO2006006592A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1483Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/2224Magnesium hydroxide

Definitions

  • the present invention relates to an epoxy resin molding material for sealing and an electronic component device provided with an element sealed with this molding material.
  • epoxy resin molding materials have been widely used.
  • epoxy resin is balanced in various properties such as electrical properties, moisture resistance, heat resistance, mechanical properties, and adhesion to inserts.
  • the flame retardancy of these epoxy resin molding materials for sealing is mainly carried out by a combination of brominated resin such as diglycidyl ether of tetrabromobisphenol A and acid antimony.
  • Halogens such as methods using organometallic compounds such as A method using a flame retardant other than antimony, a method of increasing the proportion of filler (for example, See Japanese Patent Laid-Open No. 7-82343. ), A method using a highly flame retardant resin (for example, see Japanese Patent Application Laid-Open No. 11-140277), a method using a metal hydroxide whose surface has been treated (for example, Japanese special (See Kaihei 1-24503 and JP-A-10-338818).
  • magnesium magnesium hydroxide may be suitably used for an epoxy resin molding material for sealing having high heat resistance.
  • flame retardancy does not appear, and this causes a problem that moldability such as fluidity is impaired.
  • acid resistance is inferior, there has been a problem that the surface is corroded and a whitening phenomenon occurs in the soldering process at the time of manufacturing a semiconductor device. Such a problem could not be solved by the above surface treatment.
  • the present invention has been made in view of the strong situation, and is non-halogen and non-antimony, and has good flame retardancy without reducing reliability such as formability, reflow resistance, moisture resistance, and high-temperature storage characteristics.
  • the present invention intends to provide an epoxy resin material for sealing and an electronic component device provided with an element sealed by this.
  • the present invention relates to the following (1) to (29).
  • [0011] (1) includes (A) epoxy resin, (B) curing agent, (C) magnesium hydroxide and (C) magnesium hydroxide coated with silica Epoxy resin molding material for sealing.
  • silica-coated magnesium hydroxide has a coating layer composed of 0.1 to 20% by mass of silica in terms of Si 2 O with respect to magnesium hydroxide.
  • Epoxy resin molding material
  • At least one selected from alumina, titer, and zirconia coated on the silica coating layer or contained in the silica coating layer is Al O, TiO with respect to magnesium hydroxide.
  • Epoxy resin molding material
  • At least one kind selected from alumina, titer, and zirconure force is coated on the silica coating layer or magnesium hydroxide containing the silica coating layer is a higher fatty acid, higher fatty acid alkali metal Salt, polyhydric alcohol higher fatty acid ester, cation surfactant, phosphoric ester, silane coupling agent, aluminum coupling agent, titane
  • (C) Magnesium hydroxide is contained in 5 to 300 parts by mass with respect to 100 parts by mass of (A) epoxy resin. Resin molding material.
  • Epoxy resin is biphenyl type epoxy resin, bisphenol F type epoxy resin, stilbene type epoxy resin, sulfur atom-containing epoxy resin, novolac type epoxy resin, dicyclo
  • the above (1) to (11) containing at least one of pentagen type epoxy resin, naphthalene type epoxy resin, trimethane type epoxy resin, biphenol type epoxy resin and naphthol / aralkyl type phenol resin The sealing epoxy resin molding material according to any one of the above.
  • RR 8 is selected from a hydrogen atom, a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and all may be the same or different.
  • N is 0 to 3 (14)
  • the curing agent is biphenyl type phenol resin, aralkyl type phenol resin, Epoxy resin molding for sealing as described in any one of (1) to (13) above, which contains at least one of clopentagen type phenolic resin, triphenylmethane type resin and novolak type phenolic resin material.
  • R 1 is selected from a hydrogen atom, an alkyl group having 1 to 6 carbon atoms and an alkoxy group having 1 to 2 carbon atoms
  • R 2 is an alkyl group having 1 to 6 carbon atoms
  • R 3 represents a methyl group or an ethyl group
  • n represents an integer of 1 to 6
  • m represents an integer of 1 to 3.
  • RR 2 and R 3 represent a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, an aryl group, an aralkyl group, or a hydrogen atom, and may be the same or different. (Except when all are hydrogen atoms)
  • the epoxy resin molding material for sealing according to the present invention has good flame retardancy, and products such as electronic component devices having good moldability, such as reflow resistance, moisture resistance, and high temperature storage properties. And its industrial value is great.
  • the epoxy resin used in the present invention is generally used in an epoxy resin composition for sealing and is not particularly limited.
  • a phenol novolac epoxy resin Orthocresol novolac type epoxy resin, epoxy resin having triphenylmethane skeleton (triphenylmethane type epoxy resin), phenol, cresol, xylenol, resorcin, catechol, bisphenol alcohol, bisphenol F Phenols such as ⁇ ⁇ and naphthols such as ⁇ or ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene and compounds having an aldehyde group such as formaldehyde, acetoaldehyde, propionaldehyde, benzaldehyde and salicylaldehyde in an acidic catalyst.
  • Epoxy resin of borak resin Rosolac type epoxy resin
  • diglycidyl ether such as bisphenol ⁇ , bisphenol F, bisphenol S, alkyl-substituted or unsubstituted biphenol
  • stilbene type epoxy resin hydroquinone type epoxy Glycidyl ester epoxy resin obtained by reaction of polybasic acids such as phthalic acid and dimer acid with epichlorohydrin
  • glycidyl acid obtained by reaction of polyamines such as diaminodiphenylmethane and isocyanuric acid with epichlorohydrin Min-type epoxy resin
  • Epoxy compound of co-condensation resin of dicyclopentagen and phenols (dicyclopentagen-type epoxy resin); Epoxy resin having naphthalene ring (naphthalene-type epoxy resin); Epoxidation of aralkyl-type phenolic resins such as 'aralkyl and naphthol' aralkyl resins; bi-phen
  • biphenyl type epoxy resin bisphenol F type epoxy resin, stilbene type epoxy resin and sulfur atom-containing epoxy resin are preferable from the viewpoint of curability.
  • dicyclopentagen type epoxy resin from naphthalene type epoxy resin and triphenylmethane
  • flame retardancy which is preferred for type epoxy resin, bi-phenylene type epoxy resin and naphthol aralkyl type epoxy resin are preferred. It preferably contains at least one of these epoxy resins.
  • Examples of the biphenyl type epoxy resin include an epoxy resin represented by the following general formula (V).
  • Examples of the bisphenol F type epoxy resin include an epoxy resin represented by the following general formula (VI).
  • Examples of the stilbene type epoxy resin include an epoxy resin represented by the following general formula (VII), and examples of the sulfur atom-containing epoxy resin include an epoxy resin represented by the following general formula (I). Examples include fats.
  • Ri R 8 is selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to carbon atoms: L 0, and all may be the same or different.
  • n represents an integer of 0 3 The
  • RR 8 is a hydrogen atom, an alkyl group having 1 to C0 carbon atoms, an alkoxy group having 1 to C0 carbon atoms, an aryl group having 6 to 10 carbon atoms, and an aryl group having 6 to 10 carbon atoms. Selected from aralkyl groups, all of which may be the same or different, n represents an integer of 0 to 3.
  • RR 8 is selected from a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms and a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms, all of which are the same or different.
  • N represents an integer of 0 to 3.
  • the stilbene-type epoxy resin represented by the general formula (VII) can be obtained by reacting the raw material stilbene phenols with epichlorohydrin in the presence of a basic substance.
  • the raw material stilbene phenols include 3-t-butyl-4,4'-dihydroxy-3 ', 5,5'-trimethylstilbene, 3-t-butyl-4,4'-dihydroxy-3' , 5 ', 6-trimethylstilbene, 4, 4'-dihydroxy 1, 3, 3', 5, 5'-tetramethylstilbene, 4, 4'-dihydroxy 3, 3'-di-t-butyl-5,5'-dimethylstilbene 4,4'-dihydroxy 3,3'-di-tert-butyl-6,6'-dimethylstilbene, among others, 3-t-butyl-4,4'-dihydroxy-3 ', 5,5'-trimethylstilbene, and 4, 4'—dihydroxy— 3, 3 5, 5′—tetramethylstilbene is preferred!
  • R 2 , R 6 and R 7 are hydrogen atoms
  • An epoxy resin in which R 4 , R 5 and R 8 are alkyl groups is preferred
  • R 2 , R 6 and R 7 are hydrogen atoms
  • R 1 and R 8 forces 3 ⁇ 4 butyl groups
  • R 4 and R 5 forces An epoxy resin that is a methyl group is more preferred.
  • YSLV-120TE trade name, manufactured by Toto Kasei Co., Ltd.
  • epoxy resins may be used alone or in combination of two or more, but the blending amount thereof is the total amount of epoxy resin in order to exert its performance. On the other hand, the total content is preferably 20% by mass or more, more preferably 30% by mass or more, and further preferably 50% by mass or more.
  • the novolac type epoxy resin include an epoxy resin represented by the following general formula (VIII).
  • R is selected from a hydrogen atom and a carbon number of 1 to: a substituted or unsubstituted monovalent hydrocarbon group of L0, and n represents an integer of 0 to 10.
  • the novolak-type epoxy resin represented by the general formula (VIII) can be easily obtained by reacting novolak-type phenol resin with epichlorohydrin.
  • R in the general formula (VIII) is, for example, a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, an isobutyl group, etc., having a carbon number of 1 to: L0 alkyl group, methoxy group, ethoxy group, propoxy
  • An alkoxyl group having 1 to C carbon atoms such as a butoxy group or the like: a hydrogen atom or a methyl group is preferable.
  • n is preferably an integer of 0 to 3.
  • novolak-type epoxy resins represented by the general formula (VIII) ortho-cresol novolac-type epoxy resins are preferred.
  • N-600 series Dainippon Ink Chemical Co., Ltd., trade name
  • N-600 series is available as a commercial product.
  • the blending amount is preferably 20% by mass or more based on the total amount of epoxy resin in order to exhibit its performance. preferable.
  • Examples of the dicyclopentagen type epoxy resin include an epoxy resin represented by the following general formula (IX).
  • R 1 and R 2 are each independently selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and n is 0 to 10).
  • M represents an integer of 0 to 6.
  • R 1 in the above formula (IX) is, for example, a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, a t-butyl group or other alkyl group, a vinyl group, an aryl group, a butenyl group, etc.
  • Substituted or unsubstituted monovalent hydrocarbon groups having 1 to 5 carbon atoms such as alkenyl groups, halogenialkyl groups, amino group-substituted alkyl groups, mercapto group-substituted alkyl groups, and the like.
  • An alkyl group such as an ethyl group and a hydrogen atom are preferred.
  • R 2 includes, for example, a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, a t-butyl group and other alkyl groups, a benzyl group, a aryl group, a butenyl group and other alkenyl groups, Examples thereof include substituted or unsubstituted monovalent hydrocarbon groups having 1 to 5 carbon atoms such as a halogenialkyl group, an amino group-substituted alkyl group, and a mercapto group-substituted alkyl group, and among them, a hydrogen atom is preferable.
  • HP-7200 (trade name, manufactured by Dainippon Ink and Chemicals, Inc.) is available as a commercial product.
  • the blending amount is preferably 20% by mass or more with respect to the total amount of epoxy resin in order to exert its performance 30% by mass or more Is more preferable.
  • Examples of the naphthalene type epoxy resin include an epoxy resin represented by the following general formula (X).
  • Examples of the trimethane type epoxy resin include an epoxy resin represented by the following general formula (XI). Etc.
  • Ri to R 3 are selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 12 carbon atoms, each of which may be the same or different.
  • P is 1 or 0, 1 and m are each 0 to: an integer of L 1 and (1 + m) is 1 to: an integer of L 1 and (1 + p) is an integer of 1 to 12 I is an integer from 0 to 3, j is an integer from 0 to 2, and k is an integer from 0 to 4.
  • the naphthalene-type epoxy resin represented by the general formula (X) includes a random copolymer containing one structural unit and m structural units at random, an alternating copolymer containing alternating units, and a regular copolymer. Copolymers and block copolymers contained in the form of blocks are listed. Either of these forces can be used alone or in combination of two or more.
  • R is selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and n represents an integer of 1 to 10.
  • EPPN-5 is an example of the triphenylmethane type epoxy resin represented by the general formula (XI).
  • the 00 series (trade name, manufactured by Nippon Gyaku Co., Ltd.) is available as a commercial product.
  • epoxy resins may be used alone or in combination, but the blending amount thereof is based on the total amount of epoxy resin in order to exhibit its performance.
  • the total content is preferably 20% by mass or more, more preferably 30% by mass or more, and even more preferably 50% by mass or more.
  • the biphenyl type epoxy resin, bisphenol F type epoxy resin, stilbene type epoxy resin, sulfur atom-containing epoxy resin, novolac type epoxy resin, dicyclopentagen type epoxy resin, naphthalene type Epoxy resin and triphenylmethane epoxy resin may be used either alone or in combination of two or more, but the blending amount should match the total amount of epoxy resin. It is preferably 50% by mass or more, more preferably 60% by mass or more, and even more preferably 80% by mass or more.
  • biolefin-type epoxy resin examples include an epoxy resin represented by the following general formula (XII), and examples of the naphthol aralkyl type epoxy resin include the following general formula ( ⁇ ). Examples include epoxy resin.
  • Ri R 9 may be the same or different, and may be a carbon atom such as a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, or an isobutyl group.
  • n represents an integer of 0 to 10).
  • Ri to R 2 are a hydrogen atom and a monovalent monovalent or substituted carbon having 1 to 12 carbon atoms. Selected from the following hydrocarbon groups, all of which may be the same or different. n represents an integer of 1 to 10. )
  • NC-3000 (trade name, manufactured by Nippon Kayaku Co., Ltd.) is available as a commercial product for bi-phenylene type epoxy resin.
  • naphthol aralkyl type epoxy resin ESN-175 (trade name, manufactured by Tohto Kasei Co., Ltd.) is commercially available.
  • bi-phenylene-type epoxy resins and naphthol-aralkyl-type epoxy resins may be used alone or in combination.
  • the total amount of epoxy resin is 20% by mass or more, more preferably 30% by mass or more, more preferably 50% by mass or more.
  • melt viscosity at 150 ° C of the (A) epoxy resin used in the present invention is preferably 2 boise or less from the viewpoint of fluidity, more preferably 1 boise or less, and further preferably 0.5 boise or less.
  • melt viscosity is the viscosity measured with an ICI cone plate viscometer.
  • the (B) curing agent used in the present invention is generally used in epoxy resin molding materials for sealing and is not particularly limited.
  • phenol, cresol, resorcin, catechol Phenols such as bisphenol A, bisphenol F, phenolphenol, and aminophenol, and naphthols such as Z or ⁇ -naphthol, ⁇ naphthol, and dihydroxynaphthalene, and compounds having aldehyde groups such as formaldehyde, benzaldehyde, and salicylaldehyde
  • a novolak-type phenol resin obtained by condensation or co-condensation in the presence of an acidic catalyst phenols and / or naphthols and dimethoxyparaxylene or bis (methoxymethyl) biphenol
  • Naphthol 'Aralkyl Kirin Bifuel' Aralkyl-type phenol resin such as aralkyl resin
  • bialkyl type phenolic resin is preferred from the viewpoint of flame retardancy, and aralkyl type phenolic resin is preferred from the viewpoint of reflow resistance and curability, and from the viewpoint of low hygroscopicity, dicyclohexane.
  • pentagen type phenol resin is preferred, from the viewpoint of curability that is preferred from triphenylmethane type resin, novolac type phenol resin is preferred. It is preferred to contain at least one of these phenolic resins.
  • Examples of the biphenyl type phenol resin include phenol resin represented by the following general formula (XIV).
  • the above formula all Ri ⁇ R 9 in (XIV) has Yogu hydrogen atom be the same or different, a methyl group, Echiru group, propyl group, butyl group, isopropyl group, 1 to 4 carbon atoms, such as an isobutyl group Alkyl group having 10 to 10 carbon atoms such as alkoxyl group having 1 to 10 carbon atoms such as alkyl group, methoxy group, ethoxy group, propoxy group, butoxy group, phenol group, tolyl group, xylyl group, etc.
  • aralkyl groups having 6 to 10 carbon atoms such as a benzyl group and a phenethyl group are selected, and among them, a hydrogen atom and a methyl group are preferable.
  • n represents an integer of 0 to 10.
  • Examples of the biphenol type resin represented by the general formula (XIV) include compounds in which ⁇ is all a hydrogen atom, among which n is 1 or more from the viewpoint of melt viscosity. Preference is given to mixtures of condensates containing 50% by weight or more of condensates. As such a compound, MEH-7851 (trade name, manufactured by Meiwa Kasei Co., Ltd.) is commercially available.
  • the blending amount is preferably 30% by mass or more with respect to the total amount of the curing agent in order to exert its performance, and preferably 50% by mass or more. 60 mass% or more is more preferable.
  • Examples of the aralkyl type phenol resin include phenol 'aralkyl resin, naphthol aralkyl resin, etc., and phenol aralkyl resin represented by the following general formula (XV):
  • a naphthol aralkyl resin represented by XVI) is preferred.
  • R is a hydrogen atom
  • the average value of n is preferably 0 to 8.
  • Specific examples include p-xylylene type phenol aralkyl resin, m-xylylene type phenol aralkyl resin, and the like.
  • the blending amount is preferably 30% by mass or more, more preferably 50% by mass or more, based on the total amount of the curing agent in order to exhibit the performance. .
  • R is selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and n represents an integer of 0 to 10.
  • Ri to R 2 are selected from a hydrogen atom and a substituted or unsubstituted monovalent hydrocarbon group having 1 to carbon atoms: L0, and all of them may be the same or different.
  • N is an integer from 0 to 10)
  • dicyclopentagen type phenol resin examples include a phenol resin represented by the following general formula (XVII).
  • R 1 and R 2 are each independently a hydrogen atom and a carbon number of 1 to: substituted or unsubstituted monovalent hydrocarbon groups of LO are each independently selected, and n is 0 to 10 represents an integer, and m represents an integer of 0 to 6.
  • the blending amount is preferably 30% by mass or more and more preferably 50% by mass or more with respect to the total amount of the curing agent in order to exhibit its performance.
  • triphenylmethane type phenol resin examples include phenol resin represented by the following general formula (XVIII).
  • R is selected from a hydrogen atom and a carbon number of 1 to: a substituted or unsubstituted monovalent hydrocarbon group of L0, and n represents an integer of 1 to 10.
  • the blending amount is preferably 30% by mass or more, more preferably 50% by mass or more, based on the total amount of the curing agent in order to exhibit its performance.
  • Examples of the novolak type phenolic resin include phenol novolak resin, talesol novolac resin, naphthol novolac resin, etc. Among them, phenol novolac resin is preferable.
  • the blending amount is preferably 30% by mass or more based on the total amount of the curing agent in order to exert its performance. More than the amount% is more preferable.
  • the above biphenyl type phenolic resin, aralkyl type phenolic resin, dicyclopentagen type phenolic resin, triphenylmethane type phenolic resin and novolac type phenolic resin are used alone. It may be used in combination or two or more types may be used, but the blending amount is preferably 60% by mass or more, more preferably 80% by mass or more, based on the total amount of the curing agent.
  • melt viscosity at 150 ° C of the (B) curing agent used in the present invention is preferably 2 boise or less from the viewpoint of fluidity, and more preferably 1 boise or less.
  • melt viscosity refers to ICI viscosity.
  • the number of epoxy groups is not particularly limited, but is preferably set in the range of 0.5 to 2 in order to keep each unreacted component small, more preferably 0.6 to 1.3. In order to obtain an epoxy resin composition for sealing excellent in moldability and reflow resistance, it is more preferable to set the ratio in the range of 0.8 to 1.2.
  • the (C) magnesium hydroxide used in the present invention acts as a flame retardant and contains magnesium hydroxide coated with silica.
  • the method for coating the magnesium hydroxide with silica is not particularly limited, but water-soluble silicate is added to the slurry in which magnesium hydroxide is dispersed in water, and the mixture is neutralized with an acid to water. A method in which silica is precipitated on the surface of magnesium oxide is preferred.
  • the temperature of the aqueous solution is 5 to 5 from the viewpoint of coatability: LOO ° C is preferable, and 50 to 95 ° C is more preferable.
  • Neutralization also has the power of coverage from 6 to 10 in terms of coverage. It is more preferable to use 6 to 9.5.
  • the amount of silica to be coated is preferably 0.1 to 20% by mass with respect to magnesium hydroxide in terms of SiO in terms of acid resistance, fluidity, other moldability, and flame retardancy.
  • Magnesium hydroxide used for coating is not particularly limited, but is a natural product obtained by pulverizing natural ore, or a synthetic product obtained by neutralizing an aqueous magnesium salt solution with an alkali. Also, these magnesium hydroxides may be treated with borate, phosphate, zinc salt, etc. Further, it may be a composite metal hydroxide represented by the following composition formula (XIX).
  • M 2 and M 3 are metal elements different from each other, M 1 is a magnesium element, a, b, c, d, p, q and m are positive numbers, and r is 0 or a positive number.
  • composition formula (XIX) a compound in which r in the composition formula (XIX) is 0, that is, a compound represented by the following composition formula (XlXa) is more preferable.
  • M 1 and M 2 are different metal elements, M 1 is a magnesium element, and a, b, c, d, m, n, and 1 are positive numbers.
  • M 1 and M 2 in the above thread and formulas (XIX) and (XlXa) are not particularly limited as long as M 1 is a magnesium element and one of them is a metal element different from the magnesium element.
  • Luo M 1 and M 2 is an element other than magnesium to avoid the same third cycle of metallic elemental, II a group alkaline earth metal elements, IVB group, Paibeta group, VIII group, IB group, Iotapaiarufa It is preferred that the metal element force belonging to the HI group and the IVA group is selected, and that M 2 is selected from the transition metal element force of ⁇ to ⁇ group ⁇ 1 is magnesium, ⁇ 2 is calcium, aluminum, tin, titanium, iron, co More preferably, baltic, nickel, copper and zinc forces are also selected.
  • magnesium Micromax 1 is, Micromax 2 and more preferably is preferable instrument Micromax 1 that is zinc or nickel is 2 zinc Micromax in Maguneshiu beam.
  • the metal element is classified into a long-period periodic table with the typical element as the sub-group and the transition element as the sub-group (Source: “Chemical Dictionary 4” published by Kyoritsu Shuppan Co., Ltd. 1987 2 The 15th edition of the 15th edition).
  • the silica-coated magnesium hydroxide further contains alumina, titer and zirconium. Applying a coating of at least one kind selected by Konica is also preferable in terms of acid resistance and filterability from the viewpoint of production, especially when filtering slurry.
  • the coating method is not particularly limited.
  • a silica coating was formed by using sodium aluminate and acid, in the case of titaure, by titanyl sulfate and alkali, and in the case of zircoyu, zirconyl sulfate and alkali.
  • titanyl sulfate and alkali in the case of titaure, by titanyl sulfate and alkali
  • zircoyu zirconyl sulfate and alkali.
  • At least one selected from alumina, titer, and zirconium coercivity may be coated on the silica coating layer by the above method, but by simultaneously coating silica and magnesium hydroxide together with silica, You may make it contain in a coating layer.
  • simultaneous coating for example, after adding silicate and sodium aluminate to a magnesium hydroxide slurry, the acid is removed to neutralize the silicate and sodium aluminate.
  • the silica-coated magnesium hydroxide of the present invention has a viewpoint power of improving acid resistance and has higher fatty acid, higher fatty acid alkali metal salt, polyhydric alcohol higher fatty acid ester, and cation-based surface activity on the silica coating layer. It is more preferable that the surface treatment is performed with at least one surface treatment agent selected from an agent, a phosphate ester, a silane coupling agent, an aluminum coupling agent, a titanate coupling agent, an organosilane, an organosiloxane, and an organosilazane force. .
  • Examples of the higher fatty acid include oleic acid and stearic acid, which are preferably saturated or unsaturated having 14 to 24 carbon atoms.
  • As the higher fatty acid alkali metal salt sodium salt, potassium salt and the like are preferable.
  • As the polyhydric alcohol higher fatty acid ester glycerol monostearate, glycerol monooleate and the like are preferable.
  • Examples of the ionic surfactant include sulfuric acid ester salts of higher alcohols such as stearyl alcohol and oleyl alcohol, sulfuric acid ester salts of polyethylene glycol ethers, sulfuric acid ester salts containing amide bonds, sulfuric acid ester salts containing ester bonds, and ester bonds.
  • sulfonate Containing sulfonate, amide bond containing sulfonate, ether bond containing sulfonate, ether bond containing Examples include alkylaryl sulfonates, ester bond-containing alkylaryl sulfonates, and amide bond-containing alkylaryl sulfonates.
  • phosphate ester phosphoric acid triester, diester, monoester or a mixture thereof is used.
  • phosphate triesters include trimethyl phosphate, triethyl phosphate, tripropinophosphate, tribubutinophosphate, tripentinophosphate, trihexinophosphate, trioctyl phosphate, triphenyl phosphate, tricresyl phosphate, Examples include lyxyl phosphate, hydroxyl-phenol diphosphate, cresyl di-phenol phosphate, xyle-no-resin-phosphate phosphate, oleinophosphate, stearyl phosphate and the like.
  • diesters and monoesters include methyl acid phosphate, ethyl acetate phosphate, isopropyl acid phosphate, butyl acid phosphate, 2-ethyl hexyl acid phosphate, isodecyl acid phosphate, dilauryl acid phosphate, lauryl acid phosphate, tridecyl acid Mention may be made of phosphate, monostearyl acid phosphate, distearyl acid phosphate, stearyl acid phosphate, isostearyl acid phosphate, oleyl acid phosphate, beryl acid phosphate, and the like.
  • These acidic phosphate esters may be metal salts, that is, salts of at least one metal selected from groups ⁇ , ⁇ , ⁇ , and ⁇ of the periodic table. Accordingly, preferred examples include lithium salt, magnesium salt, calcium salt, strontium salt, barium salt, zinc salt, aluminum salt and the like.
  • the silane coupling agent is an amino group, an epoxy group, a bulu group, an allyloyl group, a metatallyloyl group, a mercapto group, a chlorine atom or the like, and a hydrolysis represented by an alkoxyl group. ⁇ ⁇ ⁇ ⁇ Organosilanes having a functional group.
  • the silane coupling agent is not particularly limited.
  • vinylethoxysilane vinyltris (2-methoxyethoxy) silane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -aminopropyltrimethoxysilane, j8— ( 3, 4-epoxycyclohexenole) ethinoretrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, 3-chloropropyltrimethoxysilane and the like.
  • the aluminum coupling agent include acetyl alkoxy aluminum diisopropylate.
  • titanate coupling agents include isopropyl triisostearoyl titanate, isopropyl tris (dioctylpyrophosphate) titanate, isopropyl tri (N-aminoethylaminoethyl) titanate, isopropyl tridecyl benzenesulfo- Examples include lutitanate.
  • organosiloxane organosiloxane oligomers and organopolysiloxanes containing organodisiloxane are used.
  • organodisiloxane examples include hexamethyldisiloxane, hexethyldisiloxane, hexapropyldisiloxane, hexaphenyldisiloxane, sodium methylsiliconate, and the like.
  • organosiloxane oligomer include methyl phenol siloxane oligomer and phenol siloxane oligomer.
  • organosiloxanes those called silicone oils are particularly preferably used among organopolysiloxanes.
  • organopolysiloxanes include dimethylpolysiloxane, methylhydrogenpolysiloxane, Examples thereof include straight silicone oils such as methylphenylpolysiloxane and methylpolycyclosiloxane.
  • modified silicone oils having various organic groups are also preferably used. Examples of such modified silicone oils include, but are not limited to, polyether-modified, epoxy-modified, amino-modified, carboxyl-modified, mercapto-modified, carbinol-modified, methacryl-modified, and long-chain alkyl-modified silicone oil. It is not limited to.
  • an organosilicon compound having an alkyl group and a hydrolyzable group such as an alkoxyl group together with Z or aryl is used, for example, vinyltrimethoxysilane, dipheninoresimethoxymethoxysilane, dimethinoresimethoxymethoxy.
  • examples include silane, tetraethoxysilane, trimethylchlorosilane, hexyltriethoxysilane, decyltrimethoxysilane, and the like.
  • organosilazane examples include hexamethyldisilazane, hexethyldisilazane, hexaphenyldisilazane, hexaethylcyclotrisilazane, methylpolysilazane, and phenolpolysilazane.
  • Such a surface treatment agent is 0.1 to 20% by mass, preferably based on magnesium hydroxide. Is used in the range of 0.5 to 15% by mass, particularly preferably 1 to 10% by mass.
  • the surface treatment of the magnesium hydroxide particles with such a surface treatment agent can be carried out either by wet or dry method.
  • the surface treatment of the magnesium hydroxide particles is performed by a wet method, for example, as described above, the surface of the magnesium hydroxide particles is coated with silica on the surface of the magnesium hydroxide particles. Then, a surface treatment agent is added to the slurry of magnesium hydroxide and sodium hydroxide in an appropriate form such as emulsion, aqueous solution or dispersion, and the temperature is 20 to 95 ° C., preferably under heating, pH 6 to 12 After stirring and mixing in the above range, the magnesium hydroxide particles may be filtered, washed with water, dried and pulverized.
  • a surface treatment agent is added to the slurry of magnesium hydroxide and sodium hydroxide in an appropriate form such as emulsion, aqueous solution or dispersion, and the temperature is 20 to 95 ° C., preferably under heating, pH 6 to 12
  • the silica-magnesium particles are coated on the surfaces of the hydroxy-magnesium particles in a slurry. Then, the magnesium hydroxide particles are filtered, washed with water, dried, pulverized, and stirred and mixed with the surface treatment agent at 5 to 300 ° C., preferably under heating.
  • the flame retardant in the present invention is thus made of magnesium hydroxide particles including those having a coating layer made of silica on the surface.
  • such coated magnesium hydroxide particles are further added to the above-mentioned magnesium hydroxide particles. It is surface-treated with a surface treatment agent and has high acid resistance.
  • a flame retardant having excellent acid resistance can be obtained by using an organosiloxane, a silane coupling agent or an organosilane as a surface treatment agent.
  • the most preferable surface treatment agent is an organopolysiloxane, and among the organopolysiloxanes, methylnodrodiene polysiloxane is particularly preferable in terms of acid resistance.
  • At least one selected from the above-mentioned alumina, titer and zircore force is coated on a silica coating layer, or magnesium hydroxide hydroxide particles contained in the silica coating layer are further added.
  • the surface treatment may be performed with a surface treatment agent.
  • the blending amount of (C) magnesium hydroxide is preferably 5 to 300 parts by mass with respect to 100 parts by mass of the epoxy resin. 10 to 200 parts by mass is more preferable 20 to: LOO parts by mass is more preferable. When the blending amount is less than 5 parts by mass, the flame retardancy tends to be inferior, and when it exceeds 300 parts by mass, the moldability such as fluidity and the acid resistance tend to be inferior. [0108] From the viewpoint of improving flame retardancy, (D) a metal oxide can be used for the epoxy resin composition for sealing of the present invention.
  • the metal oxide is selected from the metal elements in the metal elements belonging to Group IA, Group V, Group IIIA to VIA, so-called typical metal elements, and the acidity of transition metal elements belonging to Group V to Group V. From the viewpoint of flame retardancy, it is preferably at least one of oxides of magnesium, copper, iron, molybdenum, tungsten, zirconium, manganese and calcium.
  • the amount of the metal oxide compound is (A) 0.1 to 100 parts by mass, preferably 1 to 50 parts by mass with respect to 100 parts by mass of the epoxy resin. Is more preferably 3 to 20 parts by mass. When the amount is less than 1 part by mass, the flame retardancy tends to be inferior, and when the amount exceeds 100 parts by mass, the fluidity and curability tend to decrease.
  • a curing accelerator is used as necessary to promote the reaction between (A) epoxy resin and (B) curing agent. Can do.
  • the curing accelerator is generally used in an epoxy resin molding material for sealing and is not particularly limited.
  • a quinone compound such as monobenzoquinone, phenenole 1,4 mono
  • Trietano Tertiary amines such as luamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol and their derivatives, imidazoles such as 2-methylimidazole, 2-phenolimidazole, 2-phenol-4-methylimidazole, etc.
  • tributylphosphine methyldiphenylphosphine, triphenylphosphine, tris (4-methylphenol)
  • Phosphine compounds such as phosphine, diphenylphosphine, and phenolphosphine, and compounds having a ⁇ bond such as maleic anhydride, the above quinone compounds, diazophenol methane, and phenol resin to these phosphine compounds.
  • Phosphorus compounds with intramolecular polarization tetraphenylphosphonium tetraphenol, triphenylphosphine tetraphosphate, 2-ethyl-4-methylimidazole tetraphenol, ⁇ -methylmorpholine tetraphosphate And the like, and the like. These may be used alone or in combination of two or more. In particular, an adduct of a phosphine compound and a quinone compound is preferable.
  • triphenylphosphine is preferred.
  • a third phosphine compound and a quinone compound are preferred. Adducts of are preferred.
  • the tertiary phosphine compound is not particularly limited, but tricyclohexylphosphine, tributylphosphine, dibutylphenylphosphine, butydiphenylphosphine, ethyldiphenylphosphine, triphenylphosphine, tris (4 —Methylphenol) phosphine, Tris (4-ethylphenyl) phosphine, Tris (4-propylphenyl) phosphine, Tris (4-butylphenol) phosphine, Tris (isopropylphenol) phosphine, Tris (t —Butylphenol) phosphine, Tris (2,4 dimethylphenol) phosphine, Tris (2,6 dimethylphenol) phosphine, Tris (2,4,6 trimethylphenol) phosphine, Tris (2,6 dimethyl-4 Ethoxyphenyl) phosphine, tri
  • quinone compounds include o-benzoquinone, p-benzozoquinone, diphenoquinone, 1,4 naphthoquinone, and anthraquinone.
  • p-benzoquinone is preferred from the viewpoint of moisture resistance and storage stability. Additional power of tris (4-methylphenol) phosphine and p-benzoquinone is more preferable from the viewpoint of releasability.
  • an adduct of a phosphinic compound in which at least one alkyl group is bonded to a phosphorus atom and a quinone compound is preferable from the viewpoints of curability, fluidity and flame retardancy.
  • the blending amount of the curing accelerator is not particularly limited as long as the curing acceleration effect is achieved, but is 0.005 to 2 mass% with respect to the epoxy resin composition for sealing. Is preferred 0.01 to 0.5 mass% is more preferable. If it is less than 0.005% by mass, the curability in a short time tends to be inferior, and if it exceeds 2% by mass, the curing rate tends to be too high and it tends to be difficult to obtain a good molded product.
  • an ⁇ inorganic filler can be blended as necessary.
  • Inorganic fillers have effects of hygroscopicity, reduction of linear expansion coefficient, improvement of thermal conductivity and improvement of strength, such as fused silica, crystalline silica, alumina, zircon, calcium silicate, calcium carbonate, potassium titanate, silicon carbide. , Silicon nitride, aluminum nitride, boron nitride, beryllia, zirconia, zircon, fosterite, steatite, spinel, mullite, titer, etc., or spherical beads of these, glass fiber, etc. It is done.
  • inorganic fillers having a flame retardant effect include aluminum hydroxide, zinc borate, zinc molybdate and the like.
  • FB-290, FB-500 (manufactured by US Borax), FRZ-500C (manufactured by Mizusawa Chemical Co., Ltd.) and the like as zinc borate are KEMGARD911B, 9 11C, 1100 (Sherwin —Williams) etc. are available as commercial products.
  • inorganic fillers may be used alone or in combination of two or more.
  • shape of inorganic fillers which is preferred for fused silica and reduced thermal expansion from the viewpoint of filling properties and linear expansion coefficient, and alumina from the viewpoint of high thermal conductivity, is from the viewpoint of filling properties and mold wear.
  • a spherical shape is preferred.
  • the amount of inorganic filler added is the sum of (C) magnesium hydroxide for sealing
  • Epoxy grease 50% by mass or more is preferable with respect to the molding material 60 to 95% by mass is more preferable 70 to 90% by mass is more preferable. If it is less than 60% by mass, the flame retardancy and reflow resistance tend to decrease, and if it exceeds 95% by mass, the fluidity tends to be insufficient, and the flame retardancy tends to decrease.
  • the epoxy resin composition for sealing of the present invention further includes (F) a coupling agent in order to improve the adhesion between the resin component and the filler. It is preferable to do.
  • the coupling agent is generally used in epoxy resin molding materials for sealing, and is not particularly limited.
  • a silane group having primary and ⁇ or secondary and ⁇ or tertiary amino groups for example, a silane group having primary and ⁇ or secondary and ⁇ or tertiary amino groups.
  • Examples include butyltrichlorosilane, butyltriethoxysilane, butyltris (j8-methoxyethoxy) silane, ⁇ -methacryloxypropyltrimethoxysilane, j8- (3,4-epoxycyclohexidoxypropylmethyldimethoxysilane.
  • silane coupling agent particularly a silane coupling agent having a secondary amino group.
  • the silane coupling agent having a secondary amino group is not particularly limited as long as it is a silane compound having a secondary amino group in the molecule.
  • Aminopuropiruto Methoxysilane ⁇ - ( ⁇ -methoxyphenyl) ⁇ -aminopropyltriethoxysilane, ⁇ - ( ⁇ -methoxyphenyl) ⁇ -aminopropylmethyldimethoxysilane, ⁇ - ( ⁇ -methoxyphenyl) ⁇ Minopropylmethyl jetoxysilane, ⁇ — ( ⁇ -methoxyphenyl) ⁇ —Aminopropylethyloxysilane, ⁇ — ( ⁇ -methoxyphenyl) ⁇ —Aminopropylethyldimethyloxysilane, ⁇ - ( ⁇ -methyl) ) Aminopropyltrimethoxysilane, ⁇ - ( ⁇ ethyl) aminopropyltrimethoxysilane, ⁇ — ( ⁇ butyl) aminopropyltrimethoxysilane, ⁇ - ( ⁇ benzyl) aminopropyltrimethoxysilane,
  • R 1 is selected from a hydrogen atom, an alkyl group having 1 to 6 carbon atoms and an alkoxy group having 1 to 2 carbon atoms
  • R 2 is an alkyl group having 1 to 6 carbon atoms
  • R 3 represents a methyl group or an ethyl group
  • n represents an integer of 1 to 6
  • m represents an integer of 1 to 3.
  • the total amount of coupling agent is It is preferably 0.037 to 5% by mass, more preferably 0.05 to 4.75% by mass, based on the epoxy resin molding material for sealing. 0.1 to 2.5% by mass % Is more preferable. If it is less than 0.037% by mass, the adhesion to the frame tends to be lowered, and if it exceeds 5% by mass, the moldability of the package tends to be lowered.
  • a compound having a phosphorus atom can be used for the epoxy resin composition for sealing of the present invention.
  • the compound having a phosphorus atom is not particularly limited as long as the effects of the present invention can be obtained. Phosphorus and nitrogen-containing compounds such as coated or uncoated red phosphorus, cyclophosphazene, etc.
  • Calcium salts such as methane mono 1-hydroxy mono 1,1-diphosphonic acid dicalcium salt, triphenylphosphine oxide, 2- (diphenylphosphier) hydroquinone, 2,2— [(2- (diphenol -Ruphosphier) -1,4,4-phenylene) bis (oxymethylene)] bismonoxylene, phosphines such as tri-n-octylphosphine oxide, phosphine oxide compounds, phosphate ester compounds, etc. Can be used alone or in combination of two or more.
  • red phosphorus coated red phosphorus such as red phosphorus coated with a thermosetting resin, red phosphorus coated with an inorganic compound and an organic compound is preferable.
  • thermosetting resin used for red phosphorus coated with thermosetting resin examples include epoxy resin, phenol resin, melamine resin, urethane resin, cyanate resin, urea-formalin. Examples include rosin, aniline formalin, furan, polyamide, polyamide imide, polyimide, etc. These may be used alone or in combination of two or more. Good. Further, the thermosetting resin may be coated with the monomer or oligomer of these resin and simultaneously coated with the thermosetting resin produced by polymerization. May be. Of these, epoxy resin, phenol resin and melamine resin are preferred from the viewpoint of compatibility with the base resin compounded in the epoxy resin composition for sealing.
  • Examples of inorganic compounds used for inorganic phosphorus and red phosphorus coated with an organic compound include aluminum hydroxide, magnesium hydroxide, calcium hydroxide, titanium hydroxide, hydroxide and zirconium, and hydrous acid. ⁇ Zirconium, bismuth hydroxide, barium carbonate, calcium carbonate, zinc oxide, titanium oxide, nickel oxide, iron oxide, etc. may be used, and these may be used alone or in combination of two or more. Good. Of these, hydroxide-zirconium, hydrous acid-zirconium, hydroxide-aluminum, and acid-zinc, which have an excellent phosphate scavenging effect, are preferred.
  • organic compounds used for red phosphorus coated with inorganic compounds and organic compounds include, for example, low molecular weight compounds used for surface treatment such as coupling agents and chelating agents, thermoplastic resins, Examples include relatively high molecular weight compounds such as thermosetting resin, and one of these may be used alone, or two or more may be used in combination.
  • low molecular weight compounds used for surface treatment such as coupling agents and chelating agents
  • thermoplastic resins examples include relatively high molecular weight compounds such as thermosetting resin, and one of these may be used alone, or two or more may be used in combination.
  • epoxy resin, phenol resin, and melamine resin are compatible from the viewpoint of compatibility with the base resin compounded in the epoxy resin composition for sealing, where thermosetting resin is preferred. Is more preferable.
  • the coating process may be performed by coating with the organic compound after coating with the organic compound, or coating with the organic compound after coating with the organic compound. Or you may coat
  • the amount of the inorganic compound and the organic compound is such that the mass ratio of the inorganic compound to the organic compound (inorganic compound Z organic compound) is preferably 1Z99 to 99Z1, more preferably 10Z90 to 95Z5, and further preferably 30 to 70 to 90 to 10 It is preferable to adjust the amount of the inorganic compound and the organic compound or the monomers and oligomers used as the raw materials so that the mass ratio is as desired.
  • the particle size of red phosphorus is preferably from 1 to: 5 to 50 / z m, with an average particle size (a particle size of 50 mass% cumulative in particle size distribution) being preferred. If the average particle size is less than 1 ⁇ m, the phosphate ion concentration of the molded product tends to be poor, and the moisture resistance tends to be inferior. If the average particle size exceeds 100 / zm, it is used for highly integrated semiconductor devices with narrow pad pitch. In such a case, defects due to wire deformation, short circuit, cutting, etc. tend to occur.
  • the phosphoric acid ester compound is not particularly limited as long as it is a phosphoric acid and alcoholic compound or an esteric compound of a phenolic compound.
  • trimethyl phosphate, triethyl phosphate, triphenyl phosphate, tricresino rephosphate examples include trixyleninorephosphate, cresyl diphenol-norephosphate, xylediphenol phosphate, tris (2,6 dimethylphenol) phosphate, and aromatic condensed phosphates.
  • the aromatic condensed phosphate ester compound represented by the following general formula ( ⁇ ) is included.
  • R's in the formula represent an alkyl group having 1 to 4 carbon atoms, and they may all be the same or different.
  • Ar represents an aromatic ring.
  • Examples of the phosphoric acid ester compound of the above formula (III) include phosphoric acid esters represented by the following structural formulas (XX) to (XXIV).
  • the addition amount of these phosphate ester compounds is preferably in the range of 0.2 to 3.0 mass% in terms of the amount of phosphorus atoms with respect to all the other components except the filler. If the amount is less than 2% by mass, the flame retardant effect tends to be low. 3. If the content exceeds 0% by mass, the moldability and moisture resistance may deteriorate, and these phosphate ester compounds may ooze out during molding, which may impair the appearance.
  • the phosphine oxide when used as a flame retardant, the phosphine oxide preferably contains a phosphine compound represented by the following general formula (IV).
  • R 2 and R 3 each represent a substituted or unsubstituted alkyl group having 1 to C carbon atoms: an aryl group, an aralkyl group, or a hydrogen atom, and may be the same or different. However, the case where all are hydrogen atoms is excluded. )
  • ⁇ ⁇ is preferably a substituted or unsubstituted aryl group, particularly preferably a phenol group.
  • the amount of phosphine oxide is preferably such that the amount of phosphorus atoms is 0.01 to 0.2 mass% with respect to the epoxy resin composition for sealing. More preferably, the content is 0.02-0. 1% by mass, and still more preferably 0.03 to 0.08% by mass. If the content is less than 0.01% by mass, the flame retardancy tends to decrease, and if it exceeds 0.2% by mass, the moldability and moisture resistance tend to decrease.
  • cyclophosphazenes cyclic phosphazene compounds containing the following formula (XXV) and Z or the following formula (XXVI) as repeating units in the main chain skeleton, or the substitution positions with respect to phosphorus atoms in the phosphazene ring are different. Examples thereof include compounds containing the following formula (XXVII) and Z or the following formula (XXVIII) as repeating units.
  • m in the formulas (XXV) and (XXVII) is an integer of 1 to 10
  • I ⁇ to R are alkyl groups having 1 to 12 carbon atoms, aryl groups and hydroxyl groups which may have a substituent. They are chosen and may all be the same or different.
  • A represents an alkylene group or arylene group having 1 to 4 carbon atoms.
  • N in the formula (XXVI) and the formula (XXVIII) is an integer of 1 to 10, and R 5 to R 8 may have a substituent, and an alkyl group having 1 to 12 carbon atoms or aryl base strength is also selected. All may be the same or different.
  • A represents an alkylene group or arylene group having 1 to 4 carbon atoms.
  • m R ⁇ R 2 , R 3 and R 4 may be the same or different, and n R 5 , R 6 and RR 8 are all the same or different. May be.
  • the alkyl group or aryl group having 1 to 12 carbon atoms is not particularly limited, but for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group , Isobutyl group, sec butyl group, tert butyl group and other alkyl groups, phenyl group, 1 naphthyl group, 2-naphthyl group and other aryl groups, o tolyl group, m tolyl group, p- allyl group, 2, 3 xylyl Group, 2, 4 xylyl group, o-tame group, m-tame group, p-tameyl group, alkyl group-substituted aryl group such as mesityl group, aryl group-substituted alkyl group such as benzyl group and phenethyl group
  • R 8 the alkyl group or aryl group having
  • the alkylene group or arylene group having 1 to 4 carbon atoms represented by A in the above formulas (XXV) to (XXVIII) is not particularly limited, but examples thereof include a methylene group, an ethylene group, and a propylene group. Isopropylene group, butylene group, isobutylene group, phenylene group, tolylene group, xylylene group, naphthylene group and biphenylene group, etc., from the viewpoint of heat resistance and moisture resistance of the epoxy resin molding material. Of the arylene groups, the phenylene group is more preferred.
  • the cyclic phosphazene compound may be any of the above formulas (XXV) to (XXVIII), a polymer of any one, a copolymer of the above formula (XXV) and the above formula (XXVI), or the above formula (XXVII).
  • a copolymer of the above formula (XXVIII) the copolymer may be a random copolymer, a block copolymer, or an alternating copolymer.
  • the copolymerization molar ratio mZn is not particularly limited, but 1Z0 to 1Z4 are preferred from the viewpoint of improving the heat resistance and strength of the cured epoxy resin, and 1 to: LZ1.5 is more preferred.
  • the polymerization degree m + n is 1 to 20, preferably 2 to 8, and more preferably 3 to 6.
  • Preferred examples of cyclic phosphazene compounds! / include polymers of the following formula (XXIX), copolymers of the following formula (XXX), and the like.
  • n in the general formula (XXIX) is an integer of 0 to 9, and! ⁇ ⁇ Each independently represents a hydrogen atom or a hydroxyl group.
  • n and n in the above general formula (XXX) are integers of 0 to 9, and I ⁇ to R are independently selected as a hydrogen atom or a hydroxyl group force.
  • the cyclic phosphazene compound represented by the general formula (XXX) includes the following m repeating units (a) and n repeating units (b) alternately, or in a block form. Any of these may be included, but those randomly included are preferred.
  • R 1 ! ⁇ Is independently selected as a hydrogen atom or a hydroxyl group.
  • the compounding amount of the compound having a phosphorus atom is not particularly limited, but excludes CO inorganic fillers
  • the amount of phosphorus atom is preferably 0.01 to 50% by mass, more preferably 0.1 to 10% by mass, and more preferably 0.5 to 3% by mass with respect to all other ingredients. If the blending amount is less than 0.01% by mass, the flame retardancy tends to be insufficient, and if it exceeds 50% by mass, the moldability and moisture resistance tend to decrease.
  • a compound obtained by esterifying a copolymer with an acid with a monohydric alcohol having 5 to 25 carbon atoms may be further contained.
  • (Ii) A linear oxidized polyethylene having a weight average molecular weight of 4,000 or more serves as a release agent.
  • the straight-chain polyethylene refers to polyethylene having a carbon number of the side chain alkyl chain of about 10% or less of the carbon number of the main chain alkyl chain, and is generally classified as polyethylene having a penetration of 2 or less. Is done.
  • the oxidized polyethylene refers to polyethylene having an acid value.
  • the weight average molecular weight of the component is preferably 4,000 or more from the viewpoint of releasability, and 30,000 or less from the viewpoint of preventing contamination of the mold 'package. 5,000-20,000 force S is more preferable, and 7,000-15,000 is more preferable.
  • the weight average molecular weight is a value measured by high temperature GPC (gel permeation chromatography).
  • the high-temperature GPC measurement method in the present invention is as follows.
  • Measuring instrument High temperature GPC manufactured by Waters
  • the acid value of the component (H) is not particularly limited, but is preferably 2 to 50 mg ZKOH, more preferably 10 to 35 mg ZKOH from the viewpoint of releasability.
  • the amount of component (H) is not particularly limited, but (A) 0.5 to the epoxy resin: L0 quality 1 to 5% by mass is preferred. If the blending amount is less than 0.5% by mass, the releasability tends to decrease, and if it exceeds 10% by mass, the effect of improving adhesiveness and mold package contamination may be insufficient.
  • the product also acts as a mold release agent, and the ( ⁇ ) component linear oxidized polyethylene and the ( ⁇ ) component epoxy resin are highly compatible with each other, resulting in poor adhesion and mold / package contamination. There is an effect to prevent.
  • the ⁇ -olefin having 5 to 30 carbon atoms used for the component (I) is not particularly limited.
  • linear ⁇ -olefins having 10 to 25 carbon atoms are preferred, and linear ⁇ -olefins having 15 to 25 carbon atoms such as 1-eicosene, 1-docosene and 1-tricosene are more preferable.
  • the monohydric alcohol having 5 to 25 carbon atoms used for the component (I) is not particularly limited. 1S For example, amyl alcohol, isoamyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, Forced prill alcohol, nor alcohol, decyl alcohol, undecyl alcohol, lauryl alcohol, tridecyl alcohol, myristinorenoreconole, pentadecinoreanoreconole, cetinoleanoreconole, heptadecinoreanolol, Linear or branched aliphatic saturated alcohols such as stearyl alcohol, nonadecyl alcohol, eicosyl alcohol, hexenol, 2-hexene 1-ol, 1-hexene 3-ol, pentenol, 2-methyl- 1 Pentenol, etc.
  • Linear or branched aliphatic unsaturated alcohols such as cyclopentanol and cyclohexanol, aromatic alcohols such as benzyl alcohol and cinnamyl alcohol, heterocyclic alcohols such as furfuryl alcohol, etc. These may be used alone or in combination of two or more. Of these, linear aliphatic saturated alcohols having 15 to 20 carbon atoms are preferred, and straight chain alcohols having 10 to 20 carbon atoms are more preferred.
  • the copolymer of exoolefin having 5 to 30 carbon atoms and maleic anhydride in the component (I) of the present invention is not particularly limited.
  • a compound represented by the following general formula (XXXI) a compound represented by the following general formula (XXXI):
  • the compounds represented by the general formula (XXXII) are listed, and commercially available products include 1-eicosene, 1-docosene and 1-tetracosene as raw materials for Nissan Electol WPB-1 (trade name, manufactured by Nippon Oil & Fat Co., Ltd.) Etc. are available.
  • R is selected from a monovalent aliphatic hydrocarbon group having 3 to 28 carbon atoms, n is an integer of 1 or more, and m is a positive number.
  • M in the above general formulas (XXXI) and (XXXII) indicates how many moles of ⁇ -olefin were copolymerized with respect to 1 mole of maleic anhydride, and is not particularly limited, but is preferably 0.5 to 10. 0.9-1.1 is more preferable.
  • a general copolymerization method without particular limitation can be used.
  • an organic solvent or the like in which OC 1-year-old ephin and maleic anhydride are soluble may be used.
  • the organic solvent is not particularly limited, but alcohol solvents, ether solvents, amine solvents and the like that are preferred for toluene can also be used.
  • the reaction temperature varies depending on the type of organic solvent used. From the viewpoint of reactivity and productivity, the reaction temperature is preferably 50 to 200 ° C, more preferably 80 to 120 ° C.
  • the reaction time is not particularly limited as long as a copolymer can be obtained, but it is preferably 1 to 30 hours from the viewpoint of productivity.
  • LO time After completion of the reaction, if necessary, unreacted components, solvent, etc. can be removed by heating under reduced pressure.
  • the condition is that the temperature is 100-220. C, more preferably 120-180. C, the pressure is preferably 13.3 ⁇ 10 3 Pa or less, more preferably 8 ⁇ 10 3 Pa or less, and the time is preferably 0.5 to LO time.
  • reaction catalysts such as an amine catalyst and an acid catalyst, to reaction as needed.
  • the pH of the reaction system is preferably about 1 to 10.
  • a method of esterifying the copolymer of component (I) with a monohydric alcohol having 5 to 25 carbon atoms there is no particular limitation such as addition reaction of monohydric alcohol to the copolymer.
  • a general method can be used.
  • the reaction molar ratio between the copolymer and the monohydric alcohol can be arbitrarily set without any particular limitation, but the degree of hydrophilicity can be controlled by adjusting the reaction molar ratio, so that the desired sealing can be achieved. It is preferable to set appropriately according to the epoxy resin molding material for stopping.
  • an organic solvent in which the copolymer is soluble may be used. Although there is no restriction
  • the reaction temperature varies depending on the type of organic solvent used. From the viewpoint of reactivity and productivity, the reaction temperature is preferably 50 to 200 ° C, more preferably 80 to 120 ° C.
  • the reaction time is not particularly limited, but from the viewpoint of productivity, it is preferably 1 to 30 hours, more preferably 2 to 15 hours, and even more preferably 4 to LO time. After completion of the reaction, if necessary, unreacted components, solvent, etc. can be removed under reduced pressure by heating.
  • the conditions are as follows: temperature is 100 to 220 ° C, more preferably 120 to 180 ° C, pressure is 13.3 X 10 3 Pa or less, more preferably 8 X 10 3 Pa or less, and time is 0.5 to LO Time is preferred.
  • a reaction catalyst such as an amine catalyst or an acid catalyst may be added to the reaction as necessary.
  • the pH of the reaction system is preferably about 1-10.
  • a compound obtained by esterifying a copolymer of ⁇ -olefin and maleic anhydride of component (I) with a monohydric alcohol for example, a diester represented by the following formula (a) or (b): And compounds containing in the structure one or more selected from monoesters represented by formulas (c) to (f) as repeating units.
  • a structure in which maleic anhydride is ring-opened to have two COOH groups May be included.
  • Such compounds include:
  • the main chain skeleton is composed of any one of the formulas (a) to (f),
  • main chain skeleton In the main chain skeleton, one or more of formulas (a) to (f) and at least one of formulas (g) and (h) are randomly or regularly contained And those contained in a block form, and these may be used alone or in combination of two or more.
  • the main chain skeleton contains formulas (g) and (h) randomly, regularly, and in a block form.
  • R 1 is a monovalent aliphatic hydrocarbon group having a carbon number of 328
  • R 2 is a monovalent hydrocarbon group having a carbon number of 525
  • m represents a positive number.
  • M in the above formulas (a) to (h) indicates how many moles of ⁇ -olefin were copolymerized with respect to 1 mole of maleic anhydride, and is not particularly limited. 9 1 is more preferred.
  • the monoester ratio of component (I) is preferably 20% or more from the viewpoint of force releasability, which can be appropriately selected depending on the combination with component (I).
  • the compound containing 20 mol% or more of any one or two or more of the monoesters represented by the formulas (c) to (f) is preferred.
  • a compound containing 30 mol% or more is more preferable.
  • the weight average molecular weight of component (I) should be set to 5,000 100,000 from the viewpoint of mold 'package dirt prevention and moldability, preferably from 10,000, 70,000 force S. 1 5,000-50,000 is more preferable. If the weight average molecular weight is less than 5,000, The effect of preventing cage soiling tends to be low, and when it exceeds 100,000, the softening point of the compound increases and the kneading property tends to be poor.
  • the weight average molecular weight is a value measured by normal temperature GPC.
  • the method for measuring the weight average molecular weight by normal temperature GPC in the present invention is as follows.
  • the amount of component (I) is not particularly limited, but 0.5 to 10% by mass is preferable to (A) epoxy resin, and 1 to 5% by mass is more preferable. If the blending amount is less than 0.5% by mass, the releasability tends to decrease, and if it exceeds 10% by mass, the reflow resistance tends to decrease.
  • At least one of the (H) component and the (I) component which is a release agent in the present invention, is used during the preparation of the epoxy resin molding material of the present invention. It is preferable to pre-mix with a part or all of the epoxy resin of component (A).
  • component (A) When at least one of component (H) and component (I) is premixed with component (A), the dispersibility of these components in the base resin increases, and this has the effect of preventing deterioration of reflow resistance and mold 'package contamination. is there.
  • the premixing method is not particularly limited. If at least one of the component (H) and the component (I) is dispersed in the epoxy resin of the component (A), For example, there is a method of stirring at room temperature to 220 ° C for 0.5 to 20 hours. From the viewpoints of dispersibility and productivity, the temperature is preferably 100 to 200 ° C, more preferably 150 to 170 ° C, and the stirring time is preferably 1 to 10 hours, more preferably 3 to 6 hours.
  • At least one of the (H) component and the (I) component for premixing may be premixed with the total amount of the component (A), but sufficient effects can be obtained by premixing with some of the components. It is done. In that case, the amount of component (A) to be premixed should be 10-50% by mass of the total amount of component (A). preferable.
  • premixing one of the components (H) and (I) with the component (A) an effect of improving the dispersibility can be obtained, but the components (H) and (I) It is preferable to premix both components with the component (A) because it is more effective.
  • the order of adding the three components in the case of premixing is to add and mix the component (H) or component (I) first, even if all the restrictions are added and mixed at the same time. Then, the remaining ingredients can be added and mixed.
  • non-halogen and non-antimony flame retardants can be blended as necessary for the purpose of further improving the flame retardancy.
  • non-halogen and non-antimony flame retardants can be blended as necessary for the purpose of further improving the flame retardancy.
  • examples include compounds containing metal elements such as dicyclopentagenyl iron, and one of these may be used alone or two or more of them may be used in combination.
  • an anion exchanger can be added to the epoxy resin molding material for sealing of the present invention from the viewpoint of improving the moisture resistance and high temperature storage characteristics of a semiconductor element such as an IC.
  • anion exchangers there can be used any conventionally known ones that are not particularly limited. Examples thereof include hydrated talcite, magnesium, aluminum, titanium, zirconium, bismuth, and the like. These can be used alone or in combination of two or more. Of these, the hydrotalcite represented by the following composition formula ( ⁇ ) is preferred.
  • release agents such as higher fatty acids, higher fatty acid metal salts, ester waxes, polyolefin waxes, polyethylenes, polyethylene oxides, etc.
  • a colorant such as carbon black, a stress relaxation agent such as silicone oil or silicone rubber powder, and the like can be blended as necessary.
  • the epoxy resin molding material for sealing of the present invention can uniformly disperse and mix various raw materials.
  • a low-pressure transfer molding method is the most common force injection molding. Method, compression molding method and the like. Dispense, casting, printing, etc. may be used.
  • the electronic component device of the present invention provided with an element sealed with the epoxy resin molding material for sealing obtained in the present invention includes a lead frame, a wired tape carrier, a wiring board, glass, silicon
  • An element such as an active element such as a semiconductor chip, a transistor, a diode, or a thyristor, or a passive element such as a capacitor, a resistor, or a coil is mounted on a mounting member such as a wafer, and a necessary portion is sealed in the present invention.
  • Examples include electronic component devices sealed with epoxy resin molding materials for fastening.
  • the mounting substrate is not particularly limited.
  • a semiconductor device for example, a semiconductor device can be cited. Specifically, an element such as a semiconductor chip is fixed on a lead frame (island, tab), and a bonding pad or the like is used. DIP (Dual Inline Package), PLCC (PLC () is formed by connecting the terminal and lead parts of the element by wire bonding or bump, and then sealing by transfer molding using the epoxy resin molding material for sealing of the present invention.
  • DIP Dual Inline Package
  • PLCC PLC
  • Resins such as Plastic Leaded Chip Carrier, QFP (Quad Flat Package), SOP (Small Outline Package), SOJ (Small Outline J—lead package), TSOP (Tnm Small Outline Package), TQFP (Thin Quad Flat Package) TCP (Tape Carrier Package) encapsulated with the sealing epoxy resin molding material of the present invention, a semiconductor chip lead-bonded to an encapsulated IC or tape carrier, wiring formed on a wiring board or glass, Wai COB (Chip On Board), CO G (Chip On Glass), etc., which is a semiconductor chip connected by semiconductor bonding, flip chip bonding, soldering, etc., and sealed with the epoxy resin molding material for sealing of the present invention Active elements such as semiconductor chips, transistors, diodes, thyristors, etc.
  • a semiconductor chip is mounted on an interposer substrate on which terminals for connection to a hybrid K, MCM (Multi Chip Module) mother board, in which passive elements are sealed with the epoxy resin molding material for sealing of the present invention, and bumps or wire bonders are mounted.
  • the sealing of the present invention BGA sealing the semiconductor chip mounting side with epoxy ⁇ molding material (Ball Grid Array), CSP (Chip Size Package), and the like MCP (Multi Chip Package).
  • these semiconductor devices can be used to seal two or more elements at a time even in a stacked package in which two or more elements are stacked on a mounting board. It may be a batch mold package sealed with a fat molding material.
  • magnesium hydroxide slurry (concentration: 150 g / liter) to 80 ° C and adding 1.5 g of sodium silicate as SiO, sulfuric acid was added for 1 hour until the slurry pH reached 9 And the slurry was heated at 80 ° C. for 1 hour.
  • This slurry force surface-treated magnesium hydroxide was separated by filtration, washed with water, dried and pulverized to obtain magnesium hydroxide 6.
  • magnesium hydroxide hydroxide 20 liters of a slurry of magnesium hydroxide hydroxide (concentration: 150 g / liter) was separated by filtration, washed with water, dried and ground. While stirring this magnesium hydroxide hydroxide in a dry manner, 90 g of methylhydrogenpolysiloxane was added and stirred for 10 minutes, followed by heat treatment at 150 ° C. for 1 hour to obtain magnesium hydroxide 8.
  • Magnesium hydroxide 9 which was not subjected to any treatment was designated as magnesium hydroxide 9.
  • Table 1 shows the treatment ratios of various synthesized magnesium hydroxides.
  • a copolymer of a-olefin and maleic anhydride 1 Eicosene, 1 Docosene And a copolymer of 1-tetracocene and maleic anhydride (trade name Nissan Electol WPB-1 manufactured by NOF Corporation), stearyl alcohol as a monohydric alcohol, dissolved in toluene and 100 ° After reacting at C for 8 hours, toluene was removed while gradually raising the temperature to 160 ° C, and further reacted at 160 ° C for 6 hours under reduced pressure to remove unreacted components, resulting in a weight average molecular weight of 34, An esterified compound (component (1): mold release agent 3) having a monoesterification rate of 70 mol% was obtained.
  • the weight average molecular weight is a value measured by GPC using THF (tetrahydrofuran) as a solvent.
  • an epoxy equivalent of 196 and a melting point of 106 ° C bi-type epoxy resin As an epoxy resin, an epoxy equivalent of 196 and a melting point of 106 ° C bi-type epoxy resin (Japan Epoxy Resin Co., Ltd. product name Epicoat YX-4000H: epoxy resin 1), epoxy equivalent of 245, melting point of 110 ° C Sulfur atom-containing epoxy resin (trade name YSLV-120TE: Epoxy resin 2) manufactured by Tohto Kasei Co., Ltd., epoxy equivalent 266, softening point 67 ° C ⁇ -naphthol aralkyl epoxy resin (manufactured by Toto Kasei Co., Ltd.) Product name ESN— 1 75: Epoxy resin 3) and epoxy equivalent 195, softening point 65 ° C ⁇ —Crezo novolak type epoxy resin (trade name ESCN— 190: Epoxy resin 4) As a curing agent, phenol aralkyl resin having a softening point of 70 °
  • Triphenylphosphine (curing accelerator 1), triphenylphosphine and 1,4-benzoquinone adduct (curing accelerator 2) and tributylphosphine and 1,4-benzoquinone adduct (curing accelerator) 3),
  • ⁇ -glycidoxypropyltrimethoxysilane epoxysilane
  • ⁇ -amino-trimethoxysilane anilinosilane
  • magnesium hydroxide As the flame retardant, various surface coatings of magnesium hydroxide (magnesium hydroxide 1-9) shown in Table 1 above, acid zinc, aromatic condensed phosphate ester (trade name, manufactured by Daihachi Chemical Industry Co., Ltd.) PX-200), bis-phenol phosphine oxide, antimony trioxide and epoxy equivalent 397, softening point 69 ° C, bromine content 49% by mass Bisphenol A type brominated epoxy resin (trade name YDB—manufactured by Toto Kasei Co., Ltd.) 400),
  • Epoxy resin 1 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
  • Curing accelerator 2 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
  • epoxy resin molding material for sealing is transferred at a mold temperature of 180 ° C, molding pressure of 6.9MPa, and curing time of 90 seconds.
  • the flow distance (cm) was determined.
  • the epoxy resin composition material for sealing was molded under the molding conditions described in (1) above, and further post-cured at 180 ° C for 5 hours. Flame retardancy was evaluated according to the UL-94 test method.
  • a pin flat package (QFP) is formed by molding and post-curing using the epoxy resin molding material for sealing under the conditions of (3) above, pre-treating, humidifying, and sealing at predetermined time intervals. Disconnection failure due to Lumi wiring corrosion was investigated, and the number of defective packages against the number of test packages (10) was evaluated.
  • the flat package was humidified under conditions of 85 ° C, 85% RH and 72 hours, and then a vapor phase reflow treatment at 215 ° C for 90 seconds was performed. Subsequent humidification was performed under the conditions of 0.2 MPa and 121 ° C.
  • Comparative Examples 5 and 6 using only the phosphorus flame retardant are inferior in moisture resistance.
  • Comparative Example 7 using brominated flame retardant / antimony flame retardant is inferior in high temperature storage characteristics.
  • Examples 1 to 21 including all the constituents of the present invention all achieved UL-94 V-0, good flame retardancy, and good acid resistance and moldability. . Furthermore, Examples 1 to 17 and 19 to 21 are excellent in reflow resistance, and Examples 1 to 21 are excellent in reliability such as excellent moisture resistance and high-temperature storage characteristics.
  • the epoxy resin molding material for sealing according to the present invention is a product such as an electronic component device having good flame retardancy and good reliability such as moldability, reflow resistance, moisture resistance and high-temperature storage characteristics. And its industrial value is great.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明は、(A)エポキシ樹脂、(B)硬化剤、(C)水酸化マグネシウムを含有し、(C)水酸化マグネシウムがシリカにて被覆されているものを含む封止用エポキシ樹脂成形材料に関する。これにより、ノンハロゲンかつノンアンチモンで、難燃性、成形性、耐リフロー性、耐湿性及び高温放置特性等の信頼性に優れ、VLSIの封止用に好適な封止用エポキシ樹脂成形材料、及びこの成形材料で封止した素子を備えた電子部品装置を提供する。

Description

明 細 書
封止用エポキシ樹脂成形材料及び電子部品装置
技術分野
[0001] 本発明は、封止用エポキシ榭脂成形材料及びこの成形材料で封止した素子を備 えた電子部品装置に関する。
背景技術
[0002] 従来から、トランジスタ、 IC等の電子部品装置の素子封止の分野では生産性、コス ト等の面力も榭脂封止が主流となり、エポキシ榭脂成形材料が広く用いられている。 この理由としては、エポキシ榭脂が電気特性、耐湿性、耐熱性、機械特性、インサー ト品との接着性などの諸特性にバランスがとれているためである。これらの封止用ェ ポキシ榭脂成形材料の難燃ィ匕は主にテトラブロモビスフエノール Aのジグリシジルェ 一テル等のブロム化榭脂と酸ィ匕アンチモンの組合せにより行われている。
[0003] 近年、環境保護の観点からハロゲンィ匕榭脂やアンチモンィ匕合物に量規制の動きが あり、封止用エポキシ榭脂成形材料にっ ヽてもノンハロゲン化 (ノンブロム化)及びノ ンアンチモンィ匕の要求が出てきている。また、プラスチック封止 ICの高温放置特性に ブロム化合物が悪影響を及ぼすことが知られており、この観点からもブロム化榭脂量 の低減が望まれている。
[0004] そこで、ブロム化榭脂ゃ酸化アンチモンを用いずに難燃化を達成する手法としては 、赤リンを用いる方法 (例えば日本国特開平 9— 227765号公報参照。)、リン酸エス テルィ匕合物を用いる方法 (例えば日本国特開平 9— 235449号公報参照。)、ホスフ ァゼン化合物を用いる方法 (例えば日本国特開平 8— 225714号公報参照。)、金属 水酸ィ匕物を用いる方法 (例えば日本国特開平 9 241483号公報参照。)、金属水 酸化物と金属酸化物を併用する方法 (例えば日本国特開平 9 100337号公報参 照。)、フエ口セン等のシクロペンタジェ二ルイ匕合物(例えば日本国特開平 11— 2693 49号公報参照。)、ァセチルァセトナート銅 (例えば、加藤寛、機能材料 (シーエムシ 一出版)、 11 (6)、 34 (1991)参照。)等の有機金属化合物を用いる方法などのハロ ゲン、アンチモン以外の難燃剤を用いる方法、充填剤の割合を高くする方法 (例えば 日本国特開平 7— 82343号公報参照。)、難燃性の高い榭脂を使用する方法 (例え ば日本国特開平 11— 140277号公報参照。)、表面に処理を施した金属水酸ィ匕物 を使用する方法 (例えば日本国特開平 1— 24503号公報及び特開平 10— 338818 号公報参照。)等が試みられている。
発明の開示
[0005] し力しながら、封止用エポキシ榭脂成形材料に赤リンを用いた場合は耐湿性の低 下の問題、リン酸エステルイ匕合物やホスファゼンィ匕合物を用いた場合は可塑ィ匕によ る成形性の低下や耐湿性の低下の問題、金属水酸化物を用いた場合は流動性や 金型離型性の低下の問題、金属酸化物を用いた場合や、充填剤の割合を高くした 場合は流動性の低下の問題がそれぞれある。また、ァセチルァセトナート銅等の有 機金属化合物を用いた場合は、硬化反応を阻害し成形性が低下する問題がある。さ らには難燃性の高い樹脂を使用する方法では、難燃性が電子部品装置の材料に求 められる規格 UL - 94 V- 0を十分に満足するものではな力つた。
[0006] また金属水酸ィ匕物の中で水酸ィ匕マグネシウムは耐熱性が高ぐ封止用エポキシ榭 脂成形材料に好適に使用される可能性が示唆されていた。しかし、多量に添加しな いと難燃性が発現せず、これにより流動性等の成形性が損なわれるといった問題が あった。また耐酸性に劣るため、半導体装置作製時の半田メツキ工程にて表面が腐 食され白化現象が起こるといった問題も有していた。このような問題は上記表面処理 にても解決できるものではなかった。
[0007] 以上のようにこれらノンハロゲン、ノンアンチモン系の難燃剤、充填剤の割合を高く する方法及び難燃性の高 、榭脂を使用する方法では、 V、ずれの場合もブロム化榭 脂と酸化アンチモンを併用した封止用エポキシ榭脂成形材料と同等の成形性、信頼 性及び難燃性を得るに至って ヽな ヽ。
[0008] 本発明は力かる状況に鑑みなされたもので、ノンハロゲンかつノンアンチモンで、成 形性、耐リフロー性、耐湿性及び高温放置特性等の信頼性を低下させずに難燃性 が良好な封止用エポキシ榭脂材料、及びこれにより封止した素子を備えた電子部品 装置を提供しょうとするものである。
[0009] 本発明者らは上記の課題を解決するために鋭意検討を重ねた結果、特定の水酸 化マグネシウムを配合した封止用エポキシ榭脂成形材料により上記の目的を達成し うることを見い出し、本発明を完成するに至った。
[0010] 本発明は以下の(1)〜(29)に関する。
[0011] (1) (A)エポキシ榭脂、(B)硬化剤、(C)水酸ィ匕マグネシウムを含有し、(C)水酸ィ匕 マグネシウムがシリカにて被覆されているものを含む封止用エポキシ榭脂成形材料。
[0012] (2)シリカにて被覆されている水酸ィ匕マグネシウムが水酸ィ匕マグネシウムに対して Si O換算にて 0.1〜20質量%のシリカからなる被覆層を有する上記(1)記載の封止用
2
エポキシ榭脂成形材料。
[0013] (3)シリカにて被覆されている水酸ィ匕マグネシウムがシリカ力もなる被覆層の上にァ ルミナ、チタ-ァ及びジルコユア力 選ばれる少なくとも 1種を被覆しているものを含 む上記(1)又は(2)記載の封止用エポキシ榭脂成形材料。
[0014] (4)シリカにて被覆されて 、る水酸ィ匕マグネシウムがシリカ力もなる被覆層の中にァ ルミナ、チタ-ァ及びジルコユア力 選ばれる少なくとも 1種を含有しているものを含 む上記(1)又は(2)記載の封止用エポキシ榭脂成形材料。
[0015] (5)シリカ被覆層の上に被覆又はシリカ被覆層に含有しているアルミナ、チタ-ァ及 びジルコニァから選ばれる少なくとも 1種が水酸化マグネシウムに対して Al O、 TiO
2 3 2 及び ZrO換算にて 0.03〜10質量%である上記(3)又は(4) V、ずれか記載の封止
2
用エポキシ榭脂成形材料。
[0016] (6)シリカにて被覆されている水酸ィ匕マグネシウムがシリカからなる被覆層の上に高 級脂肪酸、高級脂肪酸アルカリ金属塩、多価アルコール高級脂肪酸エステル、了二 オン系界面活性剤、リン酸エステル、シランカップリング剤、アルミニウムカップリング 剤、チタネートカップリング剤、オルガノシラン、オルガノシロキサン及びオルガノシラ ザン力 選ばれる少なくとも 1種の表面処理剤にて表面処理されてなる上記(1)又は (2) V、ずれか記載の封止用エポキシ榭脂成形材料。
[0017] (7)アルミナ、チタ-ァ及びジルコユア力も選ばれる少なくとも 1種をシリカ被覆層の 上に被覆又はシリカ被覆層に含有している水酸ィ匕マグネシウムがさらに高級脂肪酸 、高級脂肪酸アルカリ金属塩、多価アルコール高級脂肪酸エステル、ァ-オン系界 面活性剤、リン酸エステル、シランカップリング剤、アルミニウムカップリング剤、チタネ ートカップリング剤、オルガノシラン、オルガノシロキサン及びオルガノシラザンカゝら選 ばれる少なくとも 1種の表面処理剤にて表面処理されてなる上記(3)〜(5)いずれか 記載の封止用エポキシ榭脂成形材料。
[0018] (8) (C)水酸化マグネシウムが (A)エポキシ榭脂 100質量部に対し、 5〜300質量部 含有する上記(1)〜(7) V、ずれか記載の封止用エポキシ榭脂成形材料。
[0019] (9) (D)金属酸ィ匕物をさらに含有する上記(1)〜(8)いずれか記載の封止用ェポキ シ榭脂成形材料。
[0020] (10) (D)金属酸化物が典型金属元素の酸化物及び遷移金属元素の酸化物から選 ばれる上記(9)記載の封止用エポキシ榭脂成形材料。
[0021] (11) (D)金属酸ィ匕物が亜鉛、マグネシウム、銅、鉄、モリブデン、タングステン、ジル コ-ゥム、マンガン及びカルシウムの酸ィ匕物の少なくとも 1種である上記(10)記載の 封止用エポキシ榭脂成形材料。
[0022] ( 12) (A)エポキシ榭脂がビフエ-ル型エポキシ榭脂、ビスフエノール F型エポキシ榭 脂、スチルベン型エポキシ榭脂、硫黄原子含有エポキシ榭脂、ノボラック型エポキシ 榭脂、ジシクロペンタジェン型エポキシ榭脂、ナフタレン型エポキシ榭脂、トリフエ- ルメタン型エポキシ榭脂、ビフエ-レン型エポキシ榭脂及びナフトール ·ァラルキル型 フエノール榭脂の少なくとも 1種を含有する上記(1)〜(11)いずれか記載の封止用 エポキシ榭脂成形材料。
[0023] (13)硫黄原子含有エポキシ榭脂が下記一般式 (I)で示される化合物である上記(1 2)記載の封止用エポキシ榭脂成形材料。
[化 1]
CH CH" CH2
Figure imgf000005_0001
(一般式 (I)で、 R R8は水素原子、置換又は非置換の炭素数 1〜10の一価の炭化 水素基から選ばれ、全てが同一でも異なっていてもよい。 nは 0〜3の整数を示す。) (14) (B)硬化剤がビフヱ-ル型フヱノール榭脂、ァラルキル型フエノール榭脂、ジシ クロペンタジェン型フエノール榭脂、トリフエ-ルメタン型フエノール榭脂及びノボラッ ク型フ ノール榭脂の少なくとも 1種を含有する上記(1)〜(13) 、ずれか記載の封 止用エポキシ榭脂成形材料。
[0025] (15) (E)硬化促進剤をさらに含有する上記(1)〜(14)いずれか記載の封止用ェポ キシ榭脂成形材料。
[0026] (16) (E)硬化促進剤がホスフィン化合物とキノン化合物との付加物を含む上記(15) 記載の封止用エポキシ榭脂成形材料。
[0027] (17) (E)硬化促進剤が、リン原子に少なくとも一つのアルキル基が結合したホスフィ ン化合物とキノンィ匕合物との付加物を含む上記(16)記載の封止用エポキシ榭脂成 形材料。
[0028] (18) (F)カップリング剤をさらに含有する上記(1)〜(17)いずれか記載の封止用ェ ポキシ榭脂成形材料。
[0029] (19) (F)カップリング剤が 2級アミノ基を有するシランカップリング剤を含有する上記(
18)記載の封止用エポキシ榭脂成形材料。
[0030] (20) 2級アミノ基を有するシランカップリング剤が下記一般式 (Π)で示される化合物 を含有する上記(19)記載の封止用エポキシ榭脂成形材料。
[化 2]
Figure imgf000006_0001
[0031] (一般式 (II)で、 R1は水素原子、炭素数 1〜6のアルキル基及び炭素数 1〜2のアル コキシ基力 選ばれ、 R2は炭素数 1〜6のアルキル基及びフ -ル基力 選ばれ、 R3 はメチル基又はェチル基を示し、 nは 1〜6の整数を示し、 mは 1〜3の整数を示す。 ) (21) (G)リン原子を有する化合物をさらに含有する上記(1)〜(20)の 、ずれかに記 載の封止用エポキシ榭脂成形材料。
[0032] (22) (G)リン原子を有する化合物がリン酸エステル化合物を含有する上記(21)記 載の封止用エポキシ榭脂成形材料。 (23)リン酸エステルィヒ合物が下記一般式 (III)で示される化合物を含有する上記(2 2)記載の封止用エポキシ榭脂成形材料。
[化 3]
Figure imgf000007_0001
[0034] (一般式(III)で、式中の 8個の Rは炭素数 1〜4のアルキル基を示し、全て同一でも 異なっていてもよい。 Arは芳香族環を示す。 )
(24) (G)リン原子を有する化合物がホスフィンオキサイドを含有し、該ホスフィンォキ サイドが下記一般式 (IV)で示されるホスフィン化合物を含有する上記(21)記載の封 止用エポキシ榭脂成形材料。
[化 4]
Figure imgf000007_0002
[0035] (一般式 (IV)で、 R R2及び R3は炭素数 1〜10の置換又は非置換のアルキル基、 ァリール基、ァラルキル基または水素原子を示し、すべて同一でも異なってもよい。 ただしすべてが水素原子である場合を除く。 )
(25) (H)重量平均分子量が 4, 000以上の直鎖型酸化ポリエチレン、および (I)炭 素数 5〜30の α—ォレフインと無水マレイン酸との共重合物を炭素数 5〜25の一価 のアルコールでエステルィヒした化合物をさらに含有する上記(1)〜(24) 、ずれか記 載の封止用エポキシ榭脂成形材料。
[0036] (26) (Η)成分および (I)成分の少なくとも一方が、(Α)成分の一部または全部と予 備混合されてなる上記 (25)記載の封止用エポキシ榭脂成形材料。
[0037] (27) C 無機充填剤をさらに含有する上記(1)〜(26)いずれか記載の封止用ェポ キシ榭脂成形材料。
[0038] (28) (C)水酸化マグネシウムと CO無機充填剤の含有量の合計が封止用エポキシ榭 脂成形材料に対して 60〜95質量%である上記(27)記載の封止用エポキシ榭脂成 形材料。
[0039] (29)上記(1)〜(28)の 、ずれかに記載の封止用エポキシ榭脂成形材料で封止さ れた素子を備えた電子部品装置。
[0040] 本発明による封止用エポキシ榭脂成形材料は難燃性が良好で、かつ成形性ゃ耐リ フロー性、耐湿性及び高温放置特性等の信頼性が良好な電子部品装置等の製品を 得ることができ、その工業的価値は大である。
[0041] 本願の開示は、 2004年 7月 13日に出願された特願 2004— 206388号に記載の 主題と関連しており、それらの開示内容は引用によりここに援用される。
発明を実施するための最良の形態
[0042] 本発明にお ヽて用いられる (Α)エポキシ榭脂は、封止用エポキシ榭脂成形材料に 一般に使用されているもので特に制限はないが、たとえば、フエノールノボラック型ェ ポキシ榭脂、オルソクレゾールノボラック型エポキシ榭脂、トリフエ-ルメタン骨格を有 するエポキシ榭脂(トリフエ-ルメタン型エポキシ榭脂)をはじめとする、フエノール、ク レゾール、キシレノール、レゾルシン、カテコール、ビスフエノーノレ Α、ビスフエノール F 等のフエノール類及び Ζ又は α ナフトール、 β ナフトール、ジヒドロキシナフタレ ン等のナフトール類とホルムアルデヒド、ァセトアルデヒド、プロピオンアルデヒド、ベ ンズアルデヒド、サリチルアルデヒド等のアルデヒド基を有する化合物とを酸性触媒下 で縮合又は共縮合させて得られるノボラック榭脂をエポキシィ匕したもの(ノボラック型 エポキシ榭脂);ビスフエノール Α、ビスフエノール F、ビスフエノール S、アルキル置換 又は非置換のビフエノール等のジグリシジルエーテル;スチルベン型エポキシ榭脂; ハイドロキノン型エポキシ榭脂;フタル酸、ダイマー酸等の多塩基酸とェピクロルヒドリ ンの反応により得られるグリシジルエステル型エポキシ榭脂;ジアミノジフエ-ルメタン 、イソシァヌル酸等のポリアミンとェピクロルヒドリンの反応により得られるグリシジルァ ミン型エポキシ榭脂;ジシクロペンタジェンとフエノール類の共縮合榭脂のエポキシィ匕 物(ジシクロペンタジェン型エポキシ榭脂);ナフタレン環を有するエポキシ榭脂(ナフ タレン型エポキシ榭脂);フエノール 'ァラルキル榭脂、ナフトール'ァラルキル榭脂等 のァラルキル型フエノール榭脂のエポキシ化物;ビフエ-レン型エポキシ榭脂;トリメ チロールプロパン型エポキシ榭脂;テルペン変性エポキシ榭脂;ォレフィン結合を過 酢酸等の過酸で酸化して得られる線状脂肪族エポキシ榭脂;脂環族エポキシ榭脂; 硫黄原子含有エポキシ榭脂などが挙げられ、これらを単独で用いても 2種以上を組 み合わせて用いてもよい。
[0043] なかでも、耐リフロー性の観点からはビフエ-ル型エポキシ榭脂、ビスフエノール F 型エポキシ榭脂、スチルベン型エポキシ榭脂及び硫黄原子含有エポキシ榭脂が好 ましぐ硬化性の観点からはノボラック型エポキシ榭脂が好ましぐ低吸湿性の観点か らはジシクロペンタジェン型エポキシ榭脂が好ましぐ耐熱性及び低反り性の観点か らはナフタレン型エポキシ榭脂及びトリフエ-ルメタン型エポキシ榭脂が好ましぐ難 燃性の観点からはビフエ-レン型エポキシ榭脂及びナフトール'ァラルキル型ェポキ シ榭脂が好ましい。これらのエポキシ榭脂の少なくとも 1種を含有していることが好ま しい。
[0044] ビフエニル型エポキシ榭脂としてはたとえば下記一般式 (V)で示されるエポキシ榭 脂等が挙げられ、ビスフエノール F型エポキシ榭脂としてはたとえば下記一般式 (VI) で示されるエポキシ榭脂等が挙げられ、スチルベン型エポキシ榭脂としてはたとえば 下記一般式 (VII)で示されるエポキシ榭脂等が挙げられ、硫黄原子含有エポキシ榭 脂としてはたとえば下記一般式 (I)で示されるエポキシ榭脂等が挙げられる。
[化 5]
Figure imgf000009_0001
[0045] (一般式 (V)で、 Ri R8は水素原子及び炭素数 1〜: L0の置換又は非置換の一価の 炭化水素基から選ばれ、全てが同一でも異なっていてもよい。 nは 0 3の整数を示 す。)
[化 6]
Figure imgf000010_0001
(一般式 (VI)で、 R R8は水素原子、炭素数 1〜: L0のアルキル基、炭素数 1〜: L0の アルコキシル基、炭素数 6〜10のァリール基、及び炭素数 6〜 10のァラルキル基か ら選ばれ、全てが同一でも異なっていてもよい。 nは 0〜3の整数を示す。)
[化 7] 11)
Figure imgf000010_0002
(一般式 (VII)で、 〜 は水素原子及び炭素数 1〜5の置換又は非置換の一価の 炭化水素基から選ばれ、全てが同一でも異なっていてもよい。 nは 0〜10の整数を示 す。)
[化 8]
Figure imgf000010_0003
(一般式 (I)で、 R R8は水素原子、置換又は非置換の炭素数 1〜10のアルキル基 及び置換又は非置換の炭素数 1〜10のアルコキシ基力も選ばれ、全てが同一でも 異なっていてもよい。 nは 0〜3の整数を示す。 )
上記一般式 (V)で示されるビフエ-ル型エポキシ榭脂としては、たとえば、 4, 4' - ビス(2, 3 エポキシプロポキシ)ビフエ-ノレ又は 4, 4' ビス(2, 3 エポキシプロボ キシ)ー3, 3', 5, 5'—テトラメチルビフエニルを主成分とするエポキシ榭脂、ェピク ロノレヒドリンと 4, 4'ービフエノーノレ又は 4, 4' - (3, 3', 5, 5'—テトラメチノレ)ビフエノ 一ルとを反応させて得られるエポキシ榭脂等が挙げられる。なかでも 4, 4, ビス(2, 3—エポキシプロポキシ)ー 3, 3', 5, 5'—テトラメチルビフエ-ルを主成分とするェ ポキシ榭脂が好まし ヽ。 n=0を主成分とする YX— 4000 (ジャパンエポキシレジン株 式会社製商品名)等が市販品として入手可能である。
[0049] 上記一般式 (VI)で示されるビスフエノール F型エポキシ榭脂はとしては、例えば、 R
Figure imgf000011_0001
R6及び R8力メチル基で、 R2、 R5及び R7が水素原子であり、 n=0を主成分 とする YSLV— 80XY (新日鐡化学株式会社製商品名)等が市販品として入手可能 である。
[0050] 上記一般式 (VII)で示されるスチルベン型エポキシ榭脂は、原料であるスチルベン 系フエノール類とェピクロルヒドリンとを塩基性物質存在下で反応させて得ることがで きる。この原料であるスチルベン系フエノール類としては、たとえば 3—t—ブチルー 4 , 4' —ジヒドロキシ— 3' , 5, 5' —トリメチルスチルベン、 3—t—ブチル—4, 4' —ジヒドロキシ一 3' , 5' , 6—トリメチルスチルベン、 4, 4'—ジヒドロキシ一 3, 3', 5, 5'—テトラメチルスチルベン、 4, 4'ージヒドロキシ 3, 3'—ジ tーブチルー 5, 5'—ジメチルスチルベン、 4, 4'ージヒドロキシ 3, 3'—ジ tーブチルー 6, 6' - ジメチルスチルベン等が挙げられ、なかでも 3—t—ブチルー 4, 4' ージヒドロキシー 3' , 5, 5' —トリメチルスチルベン、及び 4, 4'—ジヒドロキシ— 3, 3 5, 5'—テト ラメチルスチルベンが好まし!/、。これらのスチルベン型フエノール類は単独で用いて も 2種以上を組み合わせて用いてもょ 、。
[0051] 上記一般式 (I)で示される硫黄原子含有エポキシ榭脂のなかでも、 R2
Figure imgf000011_0002
R6及び R7が水素原子で、
Figure imgf000011_0003
R4、 R5及び R8がアルキル基であるエポキシ榭脂が好ましぐ R2 、 R6及び R7が水素原子で、 R1及び R8力 ¾ ブチル基で、 R4及び R5力メチル基で あるエポキシ榭脂がより好ましい。このような化合物としては、 YSLV— 120TE (東都 化成株式会社製商品名)等が市販品として入手可能である。
[0052] これらのエポキシ榭脂は 、ずれ力 1種を単独で用いても 2種以上を組合わせて用い てもよいが、その配合量は、その性能を発揮するためにエポキシ榭脂全量に対して 合わせて 20質量%以上とすることが好ましぐ 30質量%以上がより好ましぐ 50質量 %以上とすることがさらに好ましい。 ノボラック型エポキシ榭脂としては、たとえば下記一般式 (VIII)で示されるエポキシ 榭脂等が挙げられる。
[化 9]
Figure imgf000012_0001
[0054] (一般式 (VIII)で、 Rは水素原子及び炭素数 1〜: L0の置換又は非置換の一価の炭 化水素基から選ばれ、 nは 0〜 10の整数を示す。 )
上記一般式 (VIII)で示されるノボラック型エポキシ榭脂は、ノボラック型フエノール 榭脂にェピクロルヒドリンを反応させることによって容易に得られる。なかでも、一般式 (VIII)中の Rとしては、メチル基、ェチル基、プロピル基、ブチル基、イソプロピル基、 イソブチル基等の炭素数 1〜: L0のアルキル基、メトキシ基、エトキシ基、プロポキシ基 、ブトキシ基等の炭素数 1〜: L0のアルコキシル基が好ましぐ水素原子又はメチル基 力 り好ましい。 nは 0〜3の整数が好ましい。上記一般式 (VIII)で示されるノボラック 型エポキシ榭脂のなかでも、オルトクレゾールノボラック型エポキシ榭脂が好まし 、。 N— 600シリーズ (大日本インキ化学工業株式会社製商品名)等が市販品として入 手可能である。
[0055] ノボラック型エポキシ榭脂を使用する場合、その配合量は、その性能を発揮するた めにエポキシ榭脂全量に対して 20質量%以上とすることが好ましぐ 30質量%以上 力 り好ましい。
[0056] ジシクロペンタジェン型エポキシ榭脂としては、たとえば下記一般式 (IX)で示される エポキシ榭脂等が挙げられる。
[化 10]
Figure imgf000013_0001
[0057] (一般式 (IX)で、 R1及び R2は水素原子及び炭素数 1〜10の置換又は非置換の一価 の炭化水素基力もそれぞれ独立して選ばれ、 nは 0〜 10の整数を示し、 mは 0〜6の 整数を示す。 )
上記式 (IX)中の R1としては、たとえば、水素原子、メチル基、ェチル基、プロピル基 、ブチル基、イソプロピル基、 t ブチル基等のアルキル基、ビニル基、ァリル基、ブ テニル基等のアルケニル基、ハロゲンィヒアルキル基、アミノ基置換アルキル基、メル カプト基置換アルキル基などの炭素数 1〜5の置換又は非置換の一価の炭化水素基 が挙げられ、なかでもメチル基、ェチル基等のアルキル基及び水素原子が好ましぐ メチル基及び水素原子がより好ましい。 R2としては、たとえば、水素原子、メチル基、 ェチル基、プロピル基、ブチル基、イソプロピル基、 t ブチル基等のアルキル基、ビ -ル基、ァリル基、ブテニル基等のァルケ-ル基、ハロゲンィヒアルキル基、アミノ基置 換アルキル基、メルカプト基置換アルキル基などの炭素数 1〜5の置換又は非置換 の一価の炭化水素基が挙げられ、なかでも水素原子が好ましい。 HP— 7200 (大日 本インキ化学工業株式会社製商品名)等が市販品として入手可能である。
[0058] ジシクロペンタジェン型エポキシ榭脂を使用する場合、その配合量は、その性能を 発揮するためにエポキシ榭脂全量に対して 20質量%以上とすることが好ましぐ 30 質量%以上がより好ましい。
[0059] ナフタレン型エポキシ榭脂としてはたとえば下記一般式 (X)で示されるエポキシ榭 脂等が挙げられ、トリフエ-ルメタン型エポキシ榭脂としてはたとえば下記一般式 (XI) で示されるエポキシ榭脂等が挙げられる。
[化 11]
Figure imgf000014_0001
[0060] (一般式 (X)で、 Ri〜R3は水素原子及び置換又は非置換の炭素数 1〜12の一価の 炭化水素基から選ばれ、それぞれ全てが同一でも異なっていてもよい。 pは 1又は 0 で、 1、 mはそれぞれ 0〜: L 1の整数であって、(1+m)が 1〜: L 1の整数でかつ(1+p)が 1〜12の整数となるよう選ばれる。 iは 0〜3の整数、 jは 0〜2の整数、 kは 0〜4の整 数を示す。 )
上記一般式 (X)で示されるナフタレン型エポキシ榭脂としては、 1個の構成単位及 び m個の構成単位をランダムに含むランダム共重合体、交互に含む交互共重合体、 規則的に含む共重合体、ブロック状に含むブロック共重合体が挙げられ、これらのい ずれ力 1種を単独で用いても、 2種以上を組み合わせて用いてもょ 、。
[化 12]
Figure imgf000014_0002
[0061] (一般式 (XI)で、 Rは水素原子及び炭素数 1〜10の置換又は非置換の一価の炭化 水素基から選ばれ、 nは 1〜10の整数を示す。 )
一般式 (XI)で示されるトリフエ-ルメタン型エポキシ榭脂としてはたとえば EPPN— 5
00シリーズ(日本ィ匕薬株式会社製商品名)が市販品として入手可能である。
[0062] これらのエポキシ榭脂は 、ずれか 1種を単独で用いても両者を組合わせて用いて もよいが、その配合量は、その性能を発揮するためにエポキシ榭脂全量に対して合 わせて 20質量%以上とすることが好ましぐ 30質量%以上がより好ましぐ 50質量% 以上とすることがさらに好ましい。 [0063] 上記のビフエ-ル型エポキシ榭脂、ビスフエノール F型エポキシ榭脂、スチルベン型 エポキシ榭脂、硫黄原子含有エポキシ榭脂、ノボラック型エポキシ榭脂、ジシクロべ ンタジェン型エポキシ榭脂、ナフタレン型エポキシ榭脂及びトリフエニルメタン型ェポ キシ榭脂は、いずれか 1種を単独で用いても 2種以上を組合わせて用いてもよいが、 その配合量はエポキシ榭脂全量に対して合わせて 50質量%以上とすることが好まし く、 60質量%以上がより好ましぐ 80質量%以上がさらに好ましい。
[0064] ビフエ-レン型エポキシ榭脂としてはたとえば下記一般式 (XII)で示されるエポキシ 榭脂等が挙げられ、ナフトール'ァラルキル型エポキシ榭脂としてはたとえば下記一 般式 (ΧΙΠ)で示されるエポキシ榭脂等が挙げられる。
[化 13]
Figure imgf000015_0001
[0065] (上記一般式 (XII)中の Ri R9は全てが同一でも異なっていてもよぐ水素原子、メチ ル基、ェチル基、プロピル基、ブチル基、イソプロピル基、イソブチル基等の炭素数 1 〜: L0のアルキル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等の炭素数 1 〜 10のアルコキシル基、フエ-ル基、トリル基、キシリル基等の炭素数 6〜 10のァリ ール基、及び、ベンジル基、フエネチル基等の炭素数 6〜 10のァラルキル基から選 ばれ、なかでも水素原子とメチル基が好ましい。 nは 0〜10の整数を示す。 )
[化 14]
Figure imgf000015_0002
[0066] (一般式 (XIII)で、 Ri〜R2は水素原子及び置換又は非置換の炭素数 1〜12の一価 の炭化水素基から選ばれ、それぞれ全てが同一でも異なっていてもよい。 nは 1〜10 の整数を示す。 )
ビフエ-レン型エポキシ榭脂としては NC - 3000 (日本化薬株式会社製商品名)等 が市販品として入手可能である。またナフトール'ァラルキル型エポキシ榭脂としては ESN- 175 (東都化成株式会社製商品名)等が市販品として入手可能である。
[0067] これらのビフエ-レン型エポキシ榭脂及びナフトール ·ァラルキル型エポキシ榭脂は いずれか 1種を単独で用いても両者を組合わせて用いてもよいが、その配合量は、 その性能を発揮するためにエポキシ榭脂全量に対して合わせて 20質量%以上とす ることが好ましぐ 30質量%以上がより好ましぐ 50質量%以上とすることがさらに好 ましい。
[0068] 上記エポキシ榭脂の中でも、特には耐リフロー性等の信頼性、成形性及び難燃性 の観点力ゝらは上記一般式 (I)で示される構造の硫黄原子含有エポキシ榭脂が最も好 ましい。
[0069] 本発明において用いられる (A)エポキシ榭脂の 150°Cにおける溶融粘度は、流動 性の観点から 2ボイズ以下が好ましぐ 1ボイズ以下がより好ましぐ 0.5ボイズ以下が さらに好ましい。ここで、溶融粘度とは ICIコーンプレート粘度計で測定した粘度を示 す。
[0070] 本発明にお ヽて用いられる (B)硬化剤は、封止用エポキシ榭脂成形材料に一般に 使用されているもので特に制限はないが、たとえば、フエノール、クレゾール、レゾル シン、カテコール、ビスフエノール A、ビスフエノール F、フエ-ルフエノール、ァミノフエ ノール等のフエノール類及び Z又は α—ナフトール、 β ナフトール、ジヒドロキシナ フタレン等のナフトール類とホルムアルデヒド、ベンズアルデヒド、サリチルアルデヒド 等のアルデヒド基を有する化合物とを酸性触媒下で縮合又は共縮合させて得られる ノボラック型フエノール榭脂;フエノール類及び/又はナフトール類とジメトキシパラキ シレン又はビス (メトキシメチル)ビフエ-ルカ 合成されるフエノール ·ァラルキル榭脂 、ナフトール'ァラルキル榭脂、ビフエ-ル 'ァラルキル榭脂等のァラルキル型フエノー ル榭脂;フエノール類及び Ζ又はナフトール類とジシクロペンタジェンから共重合に より合成されるジシクロペンタジェン型フエノール榭脂;テルペン変性フエノール榭脂 ;トリフエニルメタン型フエノール榭脂などが挙げられ、これらを単独で用いても 2種以 上を組み合わせて用いてもょ 、。
[0071] なかでも、難燃性の観点からはビフエニル型フエノール榭脂が好ましぐ耐リフロー 性及び硬化性の観点からはァラルキル型フエノール榭脂が好ましく、低吸湿性の観 点からはジシクロペンタジェン型フエノール榭脂が好ましぐ耐熱性、低膨張率及び 低そり性の観点からはトリフエ-ルメタン型フエノール榭脂が好ましぐ硬化性の観点 力もはノボラック型フエノール榭脂が好ましぐこれらのフエノール榭脂の少なくとも 1 種を含有して 、ることが好まし 、。
[0072] ビフエニル型フエノール榭脂としては、たとえば下記一般式 (XIV)で示されるフエノー ル榭脂等が挙げられる。
[化 15]
Figure imgf000017_0001
[0073] 上記式 (XIV)中の Ri〜R9は全てが同一でも異なっていてもよぐ水素原子、メチル 基、ェチル基、プロピル基、ブチル基、イソプロピル基、イソブチル基等の炭素数 1〜 10のアルキル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等の炭素数 1〜1 0のアルコキシル基、フエ-ル基、トリル基、キシリル基等の炭素数 6〜 10のァリール 基、及び、ベンジル基、フエネチル基等の炭素数 6〜 10のァラルキル基力も選ばれ、 なかでも水素原子とメチル基が好ましい。 nは 0〜 10の整数を示す。
[0074] 上記一般式 (XIV)で示されるビフエ-ル型フエノール榭脂としては、たとえば 〜 が全て水素原子である化合物等が挙げられ、なかでも溶融粘度の観点から、 nが 1以 上の縮合体を 50質量%以上含む縮合体の混合物が好ま 、。このような化合物とし ては、 MEH- 7851 (明和化成株式会社製商品名)が市販品として入手可能である
[0075] ビフエニル型フエノール榭脂を使用する場合、その配合量は、その性能を発揮する ために硬化剤全量に対して 30質量%以上とすることが好ましぐ 50質量%以上がよ り好ましぐ 60質量%以上がさらに好ましい。
[0076] ァラルキル型フエノール榭脂としては、たとえばフエノール 'ァラルキル榭脂、ナフト ール ·ァラルキル榭脂等が挙げられ、下記一般式 (XV)で示されるフエノール ·ァラル キル榭脂、下記一般式 (XVI)で示されるナフトール'ァラルキル榭脂が好ましい。一 般式 (XV)中の Rが水素原子で、 nの平均値が 0〜8であるフエノール 'ァラルキル榭脂 力 り好ましい。具体例としては、 p—キシリレン型フエノール'ァラルキル榭脂、 m— キシリレン型フエノール 'ァラルキル榭脂等が挙げられる。これらのァラルキル型フエノ 一ル榭脂を用いる場合、その配合量は、その性能を発揮するために硬化剤全量〖こ 対して 30質量%以上とすることが好ましぐ 50質量%以上がより好ましい。
[化 16]
Figure imgf000018_0001
[0077] (一般式 (XV)で、 Rは水素原子及び炭素数 1〜10の置換又は非置換の一価の炭化 水素基から選ばれ、 nは 0〜 10の整数を示す。 )
[化 17]
Figure imgf000018_0002
[0078] (一般式 (XVI)で、 Ri〜R2は水素原子及び炭素数 1〜: L0の置換又は非置換の一価 の炭化水素基から選ばれ、それぞれ全てが同一でも異なっていてもよい。 nは 0〜10 の整数を示す。 )
ジシクロペンタジェン型フエノール榭脂としては、たとえば下記一般式 (XVII)で示さ れるフ ノール榭脂等が挙げられる。
Figure imgf000019_0001
[0079] (一般式 (XVII)で、 R1及び R2は水素原子及び炭素数 1〜: LOの置換又は非置換の一 価の炭化水素基力もそれぞれ独立して選ばれ、 nは 0〜 10の整数を示し、 mは 0〜6 の整数を示す。 )
ジシクロペンタジェン型フエノール榭脂を用いる場合、その配合量は、その'性能を 発揮するために硬化剤全量に対して 30質量%以上とすることが好ましぐ 50質量% 以上がより好ましい。
[0080] トリフエ-ルメタン型フエノール榭脂としては、たとえば下記一般式 (XVIII)で示される フエノール榭脂等が挙げられる。
[化 19]
Figure imgf000019_0002
[0081] (一般式 (XVIII)で、 Rは水素原子及び炭素数 1〜: L0の置換又は非置換の一価の炭 化水素基から選ばれ、 nは 1〜10の整数を示す。 )
トリフエ-ルメタン型フエノール榭脂を用いる場合、その配合量は、その性能を発揮 するために硬化剤全量に対して 30質量%以上とすることが好ましぐ 50質量%以上 力 り好ましい。
[0082] ノボラック型フエノール榭脂としては、たとえばフエノールノボラック榭脂、タレゾール ノボラック榭脂、ナフトールノボラック榭脂等が挙げられ、なかでもフエノールノボラック 榭脂が好ましい。ノボラック型フエノール榭脂を用いる場合、その配合量は、その性 能を発揮するために硬化剤全量に対して 30質量%以上とすることが好ましぐ 50質 量%以上がより好ましい。
[0083] 上記のビフエ-ル型フエノール榭脂、ァラルキル型フエノール榭脂、ジシクロペンタ ジェン型フエノール榭脂、トリフエニルメタン型フエノール榭脂及びノボラック型フエノ 一ル榭脂は、 、ずれか 1種を単独で用いても 2種以上を組合わせて用いてもよ ヽが、 その配合量は硬化剤全量に対して合わせて 60質量%以上とすることが好ましぐ 80 質量%以上がより好ましい。
[0084] 本発明において用いられる(B)硬化剤の 150°Cにおける溶融粘度は、流動性の観 点から 2ボイズ以下が好ましぐ 1ボイズ以下がより好ましい。ここで、溶融粘度とは ICI 粘度を示す。
[0085] (A)エポキシ榭脂と(B)硬化剤との当量比、すなわち、エポキシ榭脂中のエポキシ 基数に対する硬化剤中の水酸基数の比 (硬化剤中の水酸基数 Zエポキシ榭脂中の エポキシ基数)は、特に制限はないが、それぞれの未反応分を少なく抑えるために 0 . 5〜2の範囲に設定されることが好ましぐ 0. 6〜1. 3がより好ましい。成形性及び 耐リフロー性に優れる封止用エポキシ榭脂成形材料を得るためには 0. 8〜1. 2の範 囲に設定されることがさらに好ましい。
[0086] 本発明にお 、て用いられる (C)水酸ィ匕マグネシウムは難燃剤として作用するもので 、シリカにて被覆されている水酸ィ匕マグネシウムを含むものである。水酸ィ匕マグネシゥ ムをシリカにて被覆する方法は特に限定するものではないが、水酸ィ匕マグネシウムを 水中に分散させたスラリーに水溶性の珪酸塩を加え、酸で中和して水酸ィ匕マグネシ ゥム表面にシリカを析出させる方法が好ましい。水溶液の温度は被覆性の観点から 5 〜: LOO°Cが好ましぐさらには 50〜95°Cとすることがより好ましぐまた中和は被覆性 の観点力もスラリーの pHを 6〜10とするのが好ましぐさらには 6〜9.5とするのがより 好ましヽ。被覆させるシリカの量は耐酸性と流動性他成形性及び難燃性の観点から SiO換算にて水酸ィ匕マグネシウムに対して 0.1〜20質量%とすることが好ましぐ 3
2
〜20質量%とすることがより好ましい。 0.1質量%未満であると耐酸性に劣る傾向が あり、 20質量%を超える場合は難燃性が劣る傾向にある。
[0087] 被覆に用いる水酸ィ匕マグネシウムは特に限定するものではないが、天然鉱石を粉 砕して得られた天然物、マグネシウム塩水溶液をアルカリで中和して得られた合成物 、またこれら水酸ィ匕マグネシウムをホウ酸塩、リン酸塩、亜鉛塩等で処理したものでも ょ ヽ。さらには下記組成式 (XIX)で示される複合金属水酸化物でもよ ヽ。
[0088] (化 20)
p M1 O ) · q(M2 O ) · r(M3 O ) · mH O (XIX)
a b d c d 2
(組成式 (XIX)で、
Figure imgf000021_0001
M2及び M3は互いに異なる金属元素を示し、 M1がマグネシゥ ム元素で、 a、 b、 c、 d、 p、 q及び mは正の数、 rは 0又は正の数を示す。 )
なかでも、上記組成式 (XIX)中の rが 0である化合物、すなわち、下記組成式 (XlXa )で示される化合物がさらに好ましい。
[0089] (化 21)
mCM1 O ) · n(M2 O ) · 1(H O) (XlXa)
a b c d 2
(組成式 (XlXa)で、 M1及び M2は互いに異なる金属元素を示し、 M1がマグネシウム 元素で、 a、 b、 c、 d、 m、 n及び 1は正の数を示す。 )
上記糸且成式(XIX)及び(XlXa)中の M1及び M2は、 M1がマグネシウム元素で一方 はマグネシウム元素と異なる金属元素であれば特に制限はないが、難燃性の観点か らは、 M1と M2が同一とならないようにマグネシウム以外の元素が第 3周期の金属元 素、 II A族のアルカリ土類金属元素、 IVB族、 ΠΒ族、 VIII族、 IB族、 ΙΠΑ族及び IVA族 に属する金属元素力 選ばれ、 M2が ΠΙΒ〜ΠΒ族の遷移金属元素力 選ばれること が好ましぐ Μ1がマグネシウム、 Μ2がカルシウム、アルミニウム、スズ、チタン、鉄、コ バルト、ニッケル、銅及び亜鉛力も選ばれることがより好ましい。流動性の観点からは 、 Μ1がマグネシウム、 Μ2が亜鉛又はニッケルであることが好ましぐ Μ1がマグネシゥ ムで Μ2が亜鉛であることがより好ましい。上記組成式 (XIX)中の p、 q、 rのモル比は 本発明の効果が得られれば特に制限はないが、 r = 0で、 p及び qのモル比 pZqが 9 9Zl〜50Z50であることが好ましい。すなわち、上記組成式(XlXa)中の m及び nの モル比 mZnが 99Zl〜50Z50であることが好ましい。
[0090] なお、金属元素の分類は、典型元素を Α亜族、遷移元素を B亜族とする長周期型 の周期律表(出典:共立出版株式会社発行「化学大辞典 4」 1987年 2月 15日縮刷版 第 30刷)に基づいて行った。
[0091] 上記シリカにて被覆した水酸ィ匕マグネシウムにはさらにアルミナ、チタ-ァ及びジル コニァカゝら選ばれる少なくとも 1種カゝらなる被覆を施すことが耐酸性や製造時、特にス ラリーをろ過する際のろ過性の観点力も好ま U 、。
[0092] 被覆方法は特に限定するものではないが、アルミナの場合はアルミン酸ナトリウムと 酸、チタユアの場合は硫酸チタニルとアルカリ、ジルコユアの場合は硫酸ジルコニル とアルカリをそれぞれ、シリカ被覆を形成させた水酸ィ匕マグネシウムスラリー中に加え て析出させる方法がある。
[0093] またアルミナ、チタ-ァ及びジルコユア力 選ばれる少なくとも 1種は、シリカ被覆層 の上に上記方法にて被覆させてもよいが、シリカと共に同時に水酸ィ匕マグネシウムを 被覆させることによりシリカ被覆層の中に含有させてもよい。同時に被覆させる場合は 、例えば水酸ィ匕マグネシウムスラリーに珪酸塩とアルミン酸ナトリウムをカ卩えた後、酸 をカロえて珪酸塩とアルミン酸ナトリウムを中和する方法等がある。
[0094] 本被覆の割合はどちらの場合も水酸ィ匕マグネシウムに対して Al O 、 TiO及び ZrO
2 3 2 換算にて 0.03〜: L0質量%であることが好ましい。 0.03質量%未満であると耐酸性
2
やろ過性に劣る傾向があり、 10質量%を超える場合は難燃性が劣る傾向にある。
[0095] 本発明のシリカ被覆水酸ィ匕マグネシウムには耐酸性向上の観点力もシリカ被覆層 の上に高級脂肪酸、高級脂肪酸アルカリ金属塩、多価アルコール高級脂肪酸エステ ル、ァ-オン系界面活性剤、リン酸エステル、シランカップリング剤、アルミニウムカツ プリング剤、チタネートカップリング剤、オルガノシラン、オルガノシロキサン及びオル ガノシラザン力 選ばれる少なくとも 1種の表面処理剤にて表面処理されることがさら に好ましい。
[0096] 上記高級脂肪酸としては炭素数 14〜24の飽和又は不飽和のものが好ましぐォレ イン酸ゃステアリン酸を挙げることができる。また高級脂肪酸アルカリ金属塩としては ナトリウム塩、カリウム塩等が好ましい。多価アルコール高級脂肪酸エステルとしては グリセリンモノステアレート、グリセリンモノォレエート等が好ましい。ァ-オン系界面活 性剤としてはステアリルアルコール、ォレイルアルコール等の高級アルコールの硫酸 エステル塩、ポリエチレングリコールエーテルの硫酸エステル塩、アミド結合含有硫 酸エステル塩、エステル結合含有硫酸エステル塩、エステル結合含有スルホネート、 アミド結合含有スルホン酸塩、エーテル結合含有スルホン酸塩、エーテル結合含有 アルキルァリルスルホン酸塩、エステル結合含有アルキルァリルスルホン酸塩、アミド 結合含有アルキルァリルスルホン酸塩等を挙げることができる。リン酸エステルとして はリン酸トリエステル、ジエステル、モノエステル又はこれらの混合物が用いられる。リ ン酸トリエステルの例としてはトリメチルホスフェート、トリェチルホスフェート、トリプロピ ノレホスフェート、トリブチノレホスフェート、トリペンチノレホスフェート、トリへキシノレホスフ エート、トリオクチルホスフェート、トリフエ-ルホスフェート、トリクレジルホスフェート、ト リキシレ-ルホスフェート、ヒドロキシルフエ-ルジフエ-ルホスフェート、クレジルジフ ェ-ノレホスフェート、キシレ-ノレジフエ-ノレホスフェート、ォレイノレホスフェート、ステア リルホスフェート等が挙げられる。ジエステル、モノエステルの例としてはメチルァシッ ドホスフェート、ェチルアシッドホスフェート、イソプロピルアシッドホスフェート、ブチル アシッドホスフェート、 2—ェチルへキシルアシッドホスフェート、イソデシルアシッドホ スフエート、ジラウリルアシッドホスフェート、ラウリルアシッドホスフェート、トリデシルァ シッドホスフェート、モノステアリルアシッドホスフェート、ジステアリルアシッドホスフエ ート、ステアリルアシッドホスフェート、イソステアリルアシッドホスフェート、ォレイルァ シッドホスフェート、ベへ-ルアシッドホスフェート等を挙げることができる。
[0097] これらの酸性リン酸エステルは金属塩、即ち周期律表第 ΙΑ、 ΠΑ、 ΠΒ及び ΠΙΑ族か ら選ばれる少なくとも 1種の金属の塩であってもよい。従って、好ましい例としてリチウ ム塩、マグネシウム塩、カルシウム塩、ストロンチウム塩、バリウム塩、亜鉛塩、アルミ- ゥム塩等を挙げることができる。
[0098] シランカップリング剤とは、アミノ基、エポキシ基、ビュル基、アタリロイル基、メタタリ ロイル基、メルカプト基、塩素原子等力 選ばれる反応性官能基と共に、アルコキシ ル基に代表される加水分解性基を有するオルガノシランを ヽぅ。シランカップリング剤 としては、特に限定されるものではないが、例えばビニルエトキシシラン、ビニルトリス (2—メトキシエトキシ)シラン、 γ —メタクリロキシプロピルトリメトキシシラン、 γ—ァミノ プロピルトリメトキシシラン、 j8 — (3, 4—エポキシシクロへキシノレ)ェチノレトリメトキシシ ラン、 Ί—グリシドキシプロピルトリメトキシシラン、 γ—メルカプトプロピルトリメトキシシ ラン、 3—クロ口プロピルトリメトキシシラン等を挙げることができる。また、アルミニウム カップリング剤としては、例えばァセチルアルコキシアルミニウムジイソプロピレートを 例示することができ、チタネートカップリング剤としては、例えば、イソプロピルトリイソ ステアロイルチタネート、イソプロピルトリス(ジォクチルパイロホスフェート)チタネート 、イソプロピルトリ(N—アミノエチルアミノエチル)チタネート、イソプロピルトリデシル ベンゼンスルホ-ルチタネート等を例示することができる。
[0099] オルガノシロキサンとしては、オルガノジシロキサンを含むオルガノシロキサンオリゴ マーやオルガノポリシロキサンが用いられる。オルガノジシロキサンとしては、例えば へキサメチルジシロキサン、へキサェチルジシロキサン、へキサプロピルジシロキサン 、へキサフエ-ルジシロキサン、ナトリウムメチルシリコネート等を挙げることができる。 また、オルガノシロキサンオリゴマーとしては、例えばメチルフエ-ルシロキサンオリゴ マーやフエ-ルシロキサンオリゴマー等を挙げることができる。本発明ではオルガノシ ロキサンとしては、特にオルガノポリシロキサンが好ましぐなかでもシリコーンオイルと 呼ばれるものが好適に用いられる、そのようなオルガノポリシロキサンの例としてはジ メチルポリシロキサン、メチルハイドロジェンポリシロキサン、メチルフエ二ルポリシロキ サン、メチルポリシクロシロキサン等のストレートシリコーンオイルを挙げることができる 。また種々の有機基を有する変性シリコーンオイルも好ましく用いられる。そのような 変性シリコーンオイルとして、例えば、ポリエーテル変性、エポキシ変性、ァミノ変性、 カルボキシル変性、メルカプト変性、カルビノール変性、メタクリル変性、長鎖アルキ ル変性シリコーンオイル等を挙げることができる力 しかし、これらに限定されるもので はない。
[oioo] オルガノシランとしては、アルキル基及び Z又はァリールと共にアルコキシル基のよ うな加水分解性基を有する有機ケィ素化合物を ヽ、例えばフエ-ルトリメトキシシラ ン、ジフエニノレジメトキシシラン、ジメチノレジメトキシシラン、テトラエトキシシラン、トリメ チルクロロシラン、へキシルトリエトキシシラン、デシルトリメトキシシラン等を挙げること ができる。
[0101] また、オルガノシラザンとしては、例えばへキサメチルジシラザン、へキサェチルジ シラザン、へキサフエ-ルジシラザン、へキサェチルシクロトリシラザン、メチルポリシラ ザン、フエ-ルポリシラザン等を挙げることができる。
[0102] このような表面処理剤は、水酸ィ匕マグネシウムに対して 0. 1〜20質量%、好ましく は、 0. 5〜15質量%、特に好ましくは、 1〜10質量%の範囲で用いられる。
[0103] また、このような表面処理剤による水酸ィ匕マグネシウム粒子の表面処理は、湿式、 乾式の 、ずれでも行うことができる。
[0104] 水酸化マグネシウム粒子を湿式にて表面処理する場合には、例えば、前述したよう に、水酸ィ匕マグネシウムのスラリー中にて水酸ィ匕マグネシウム粒子の表面にシリカか らなる被覆を形成し、次いで、その水酸ィ匕マグネシウムのスラリーにェマルジヨン、水 溶液又は分散液等の適宜の形態にて表面処理剤を加え、温度 20〜95°C、好ましく は加熱下に、 pH6〜12の範囲で攪拌、混合した後、水酸ィ匕マグネシウム粒子を濾過 、水洗、乾燥し、粉砕すればよい。
[0105] また、水酸ィ匕マグネシウム粒子を乾式にて表面処理する場合には、前述したように 水酸ィ匕マグネシウムのスラリー中にて水酸ィ匕マグネシウム粒子の表面にシリカ力 な る被覆を形成した後、水酸ィ匕マグネシウム粒子を濾過し、水洗、乾燥し、粉砕し、これ を 5〜300°C、好ましくは加熱下に、表面処理剤と攪拌、混合すればよい。本発明に おける難燃剤は、このように、表面にシリカからなる被覆層を有するものを含む水酸 化マグネシウム粒子カゝらなり、好ましくは、そのような被覆された水酸化マグネシウム 粒子を更に前記表面処理剤にて表面処理してなり、高い耐酸性を有する。特に本発 明によれば、表面処理剤として、オルガノシロキサン、シランカップリング剤又はオル ガノシランを用いることによって、すぐれた耐酸性を有する難燃剤を得ることができる。 中でも最も好まし 、表面処理剤はオルガノポリシロキサンであり、オルガノポリシロキ サンのなかでも、特に、メチルノヽィドロジエンポリシロキサンが耐酸性の観点力も好ま しい。
[0106] また、前記アルミナ、チタ-ァ及びジルコユア力 選ばれる少なくとも 1種をシリカ被 覆層の上に被覆したか、又はシリカ被覆層に含有した水酸ィ匕マグネシウム粒子が、さ らにに、同様に表面処理剤にて表面処理されても良い。
[0107] (C)水酸ィ匕マグネシウムの配合量はエポキシ榭脂 100質量部に対して、 5〜300質 量部配合することが好ましい。 10〜200質量部がより好ましぐ 20〜: LOO質量部がさ らに好ましい。配合量が 5質量部未満であると難燃性に劣る傾向があり、 300質量部 を超える場合、流動性等の成形性、耐酸性に劣る傾向がある。 [0108] 本発明の封止用エポキシ榭脂成形材料には、難燃性を向上させる観点から (D)金 属酸ィ匕物を用いることができる。(D)金属酸化物としては IA族、 ΠΑ族、 IIIA〜VIA族 に属する金属元素中の金属元素、いわゆる典型金属元素、及び ΠΙΒ〜ΠΒ族に属す る遷移金属元素の酸ィ匕物力 選ばれることが好ましぐ難燃性の観点からはマグネシ ゥム、銅、鉄、モリブデン、タングステン、ジルコニウム、マンガン及びカルシウムの酸 化物の少なくとも一種であることが好ましい。
[0109] なお、金属元素の分類は、典型元素を Α亜族、遷移元素を B亜族とする長周期型 の周期律表(出典:共立出版株式会社発行「化学大辞典 4」 1987年 2月 15日縮刷版 第 30刷)に基づいて行った。
[0110] (D)金属酸ィ匕物の配合量は (A)エポキシ榭脂 100質量部に対して 0. 1〜100質 量部であることが好ましぐ 1〜50質量部であることがより好ましぐ 3〜20質量部であ ることがさらに好ましい。 0. 1質量部未満であると、難燃性の効果に劣る傾向があり、 また 100質量部を超えると流動性や硬化性が低下する傾向にある。
[0111] 本発明の封止用エポキシ榭脂成形材料には、(A)エポキシ榭脂と (B)硬化剤の反 応を促進させるために必要に応じて (E)硬化促進剤を用いることができる。 (E)硬化 促進剤は、封止用エポキシ榭脂成形材料に一般に使用されているもので特に制限 はないが、たとえば、 1, 8 ジァザービシクロ(5, 4, 0)ゥンデセン 7、 1, 5 ジァ ザ一ビシクロ(4, 3, 0)ノネン、 5、 6 ジブチルァミノ一 1, 8 ジァザ一ビシクロ(5, 4 , 0)ゥンデセン 7等のシクロアミジン化合物及びこれらの化合物に無水マレイン酸 、 1, 4一べンゾキノン、 2, 5 トルキノン、 1, 4 ナフトキノン、 2, 3 ジメチルベンゾ キノン、 2, 6 ジメチルベンゾキノン、 2, 3 ジメトキシー 5—メチルー 1, 4一べンゾ キノン、 2, 3 ジメトキシ 1, 4一べンゾキノン、フエニノレー 1, 4一べンゾキノン等の キノンィ匕合物、ジァゾフエニルメタン、フエノール榭脂等の π結合をもつ化合物を付 加してなる分子内分極を有する化合物、ベンジルジメチルァミン、トリエタノールァミン 、ジメチルァミノエタノール、トリス(ジメチルアミノメチル)フエノール等の 3級ァミン類 及びこれらの誘導体、 2—メチルイミダゾール、 2—フエ-ルイミダゾール、 2—フエ- ルー 4ーメチルイミダゾール等のイミダゾール類及びこれらの誘導体、トリブチルホス フィン、メチルジフエ-ルホスフィン、トリフエ-ルホスフィン、トリス(4—メチルフエ-ル )ホスフィン、ジフエ-ルホスフィン、フエ-ルホスフィン等のホスフィン化合物及びこれ らのホスフィン化合物に無水マレイン酸、上記キノン化合物、ジァゾフエ-ルメタン、フ エノール榭脂等の π結合をもつ化合物を付加してなる分子内分極を有するリンィ匕合 物、テトラフエ-ルホスホ-ゥムテトラフエ-ルポレート、トリフエ-ルホスフィンテトラフ ェ-ルボレート、 2 ェチルー 4ーメチルイミダゾールテトラフエ-ルポレート、 Ν—メチ ルモルホリンテトラフヱ-ルポレート等のテトラフヱ-ルポロン塩及びこれらの誘導体 などが挙げられ、これらを単独で用いても 2種以上を組み合わせて用いてもよい。特 にホスフィンィ匕合物とキノンィ匕合物との付加物を含むのが好ましい。
[0112] なかでも、難燃性、硬化性の観点からは、トリフエ-ルホスフィンが好ましぐ難燃性 、硬化性、流動性及び離型性の観点からは第三ホスフィン化合物とキノン化合物との 付加物が好ましい。第三ホスフィンィ匕合物としては、特に限定するものではないが、ト リシクロへキシルホスフィン、トリブチルホスフィン、ジブチルフエニルホスフィン、ブチ ルジフエ-ルホスフィン、ェチルジフエ-ルホスフィン、トリフエ-ルホスフィン、トリス(4 —メチルフエ-ル)ホスフィン、トリス(4—ェチルフエ-ル)ホスフィン、トリス(4—プロピ ルフエ-ル)ホスフィン、トリス(4—ブチルフエ-ル)ホスフィン、トリス(イソプロピルフエ -ル)ホスフィン、トリス(t—ブチルフエ-ル)ホスフィン、トリス(2, 4 ジメチルフエ- ル)ホスフィン、トリス(2, 6 ジメチルフエ-ル)ホスフィン、トリス(2, 4, 6 トリメチル フエ-ル)ホスフィン、トリス(2, 6 ジメチルー 4 エトキシフエ-ル)ホスフィン、トリス( 4—メトキシフエ-ル)ホスフィン、トリス(4—エトキシフエ-ル)ホスフィンなどのアルキ ル基、ァリール基を有する第三ホスフィンィ匕合物が好ましい。またキノンィ匕合物として は o べンゾキノン、 p べンゾキノン、ジフエノキノン、 1, 4 ナフトキノン、アントラキ ノン等があげられ、なかでも耐湿性、保存安定性の観点力 p ベンゾキノンが好まし い。トリス(4—メチルフエ-ル)ホスフィンと p ベンゾキノンとの付カ卩物力 離型性の 観点からより好ましい。さらにはリン原子に少なくとも一つのアルキル基が結合したホ スフインィ匕合物とキノンィ匕合物との付加物が硬化性、流動性及び難燃性の観点から 好ましい。
[0113] 硬化促進剤の配合量は、硬化促進効果が達成される量であれば特に制限されるも のではないが、封止用エポキシ榭脂成形材料に対して 0. 005〜2質量%が好ましく 、 0. 01〜0. 5質量%がより好ましい。 0. 005質量%未満では短時間での硬化性に 劣る傾向があり、 2質量%を超えると硬化速度が速すぎて良好な成形品を得ることが 困難になる傾向がある。
[0114] 本発明では必要に応じて ω無機充填剤を配合することができる。無機充填剤は、 吸湿性、線膨張係数低減、熱伝導性向上及び強度向上の効果があり、たとえば、溶 融シリカ、結晶シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、チタン 酸カリウム、炭化珪素、窒化珪素、窒化アルミ、窒化ホウ素、ベリリア、ジルコユア、ジ ルコン、フォステライト、ステアタイト、スピネル、ムライト、チタ-ァ等の粉体、又はこれ らを球形ィ匕したビーズ、ガラス繊維等が挙げられる。さらに、難燃効果のある無機充 填剤としては水酸ィ匕アルミニウム、硼酸亜鉛、モリブデン酸亜鉛などが挙げられる。こ こで、ホウ酸亜鉛としては FB— 290、 FB— 500 (U. S. Borax社製)、 FRZ— 500C (水澤化学工業株式会社製)等が、モリブデン酸亜鉛としては KEMGARD911B、 9 11C, 1100 (Sherwin— Williams社製)等が各々市販品として入手可能である。
[0115] これらの無機充填剤は単独で用いても 2種以上を組み合わせて用いてもよい。なか でも、充填性、線膨張係数の低減の観点力ゝらは溶融シリカが、高熱伝導性の観点か らはアルミナが好ましぐ無機充填剤の形状は充填性及び金型摩耗性の点から球形 が好ましい。
[0116] 無機充填剤の配合量は、難燃性、成形性、吸湿性、線膨張係数低減、強度向上及 び耐リフロー性の観点から、 (C)水酸化マグネシウムと合計して封止用エポキシ榭脂 成形材料に対して 50質量%以上が好ましぐ 60〜95質量%がより好ましぐ 70〜9 0質量%がさらに好ましい。 60質量%未満では難燃性及び耐リフロー性が低下する 傾向があり、 95質量%を超えると流動性が不足する傾向があり、また難燃性も低下 する傾向にある。
[0117] ω無機充填剤を用いる場合、本発明の封止用エポキシ榭脂成形材料には、榭脂 成分と充項剤との接着性を高めるために、(F)カップリング剤をさらに配合することが 好ましい。(F)カップリング剤としては、封止用エポキシ榭脂成形材料に一般に使用 されているもので特に制限はないが、たとえば、 1級及び Ζ又は 2級及び Ζ又は 3級 アミノ基を有するシランィ匕合物、エポキシシラン、メルカプトシラン、アルキルシラン、ゥ レイドシラン、ビュルシラン等の各種シラン系化合物、チタン系化合物、アルミニウム キレート類、アルミニウム Zジルコニウム系化合物等が挙げられる。これらを例示する と、ビュルトリクロロシラン、ビュルトリエトキシシラン、ビュルトリス(j8—メトキシェトキシ )シラン、 γ—メタクリロキシプロピルトリメトキシシラン、 j8 —(3, 4—エポキシシクロへ リシドキシプロピルメチルジメトキシシラン、ビュルトリァセトキシシラン、 γ —メルカプト プロピルトリメトキシシラン、 γ—ァミノプロピルトリメトキシシラン、 γ—ァミノプロピノレメ チルジメトキシシラン、 γ—ァミノプロピルトリエトキシシラン、 γ—ァミノプロピルメチル ジエトキシシラン、 Ί—ァニリノプロピルトリメトキシシラン、 γ—ァニリノプロピルトリエト キシシラン、 γ - (Ν, Ν—ジメチル)ァミノプロピルトリメトキシシラン、 γ - (Ν, Ν—ジ ェチル)ァミノプロピルトリメトキシシラン、 γ— (Ν, Ν—ジブチル)ァミノプロピルトリメト キシシラン、 γ - (Ν—メチル)ァ-リノプロピルトリメトキシシラン、 γ - (Ν—ェチル) ァニリノプロピルトリメトキシシラン、 Ύ — (Ν, Ν—ジメチル)ァミノプロピルトリエトキシ シラン、 γ - (Ν, Ν—ジェチル)ァミノプロピルトリエトキシシラン、 γ - (Ν, Ν—ジブ チル)ァミノプロピルトリエトキシシラン、 γ— (Ν—メチル)ァ-リノプロピルトリエトキシ シラン、 γ - (Ν—ェチル)ァ-リノプロピルトリエトキシシラン、 γ - (Ν, Ν—ジメチル )ァミノプロピルメチルジメトキシシラン、 γ— (Ν, Ν—ジェチル)ァミノプロピルメチル ジメトキシシラン、 γ— (Ν, Ν—ジブチル)ァミノプロピルメチルジメトキシシラン、 γ— (Ν—メチル)ァ-リノプロピルメチルジメトキシシラン、 Ύ — (Ν—ェチル)ァ-リノプロ ジメトキシメチルシリルイソプロピル)エチレンジァミン、メチルトリメトキシシラン、ジメチ ルジメトキシシラン、メチルトリエトキシシラン、 γ—クロ口プロピルトリメトキシシラン、へ キサメチルジシラン、ビュルトリメトキシシラン、 γ —メルカプトプロピルメチルジメトキシ シラン等のシラン系カップリング剤、イソプロピルトリイソステアロイルチタネート、イソプ 口ピルトリス(ジォクチルパイロホスフェート)チタネート、イソプロピルトリ(Ν—アミノエ チル—アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスフアイト)チタネ ート、テトラ(2, 2—ジァリルォキシメチル一 1—ブチル)ビス(ジトリデシル)ホスフアイ トチタネート、ビス(ジォクチルパイロホスフェート)ォキシアセテートチタネート、ビス( ジォクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノィルチタネ ート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリドデシルべ ンゼンスルホ-ルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソ プロピルトリ(ジォクチルホスフェート)チタネート、イソプロピルトリタミルフエ-ルチタ ネート、テトライソプロピルビス(ジォクチルホスフアイト)チタネート等のチタネート系力 ップリング剤などが挙げられ、これらの 1種を単独で用いても 2種類以上を組み合わ せて用いてもよい。
なかでも流動性、難燃性の観点からはシランカップリング剤、特に 2級アミノ基を有 するシランカップリング剤を含むのが好ま 、。 2級アミノ基を有するシランカップリン グ剤は分子内に 2級アミノ基を有するシランィ匕合物であれば特に制限はないが、たと えば、 γ—ァ-リノプロピルトリメトキシシラン、 γ—ァ-リノプロピルトリエトキシシラン 、 γーァニリノプロピルメチルジメトキシシラン、 γ—ァニリノプロピルメチルジェトキシ シラン、 γ—ァニリノプロピルェチルジェトキシシラン、 Ίーァニリノプロピルェチルジ メトキシシラン、 γ—ァニリノメチルトリメトキシシラン、 γ—ァニリノメチルトリエトキシシ ラン、 γ—ァニリノメチルメチルジメトキシシラン、 γ—ァニリノメチルメチルジェトキシ シラン、 γ—ァニリノメチルェチルジェトキシシラン、 Ίーァニリノメチルェチルジメトキ シシラン、 Ν— (ρ—メトキシフエ-ル) γ—ァミノプロピルトリメトキシシラン、 Ν— (ρ —メトキシフエニル) γ—ァミノプロピルトリエトキシシラン、 Ν— (ρ—メトキシフエ二 ル) γ—ァミノプロピルメチルジメトキシシラン、 Ν— (ρ—メトキシフエ-ル) γ ァ ミノプロピルメチルジェトキシシラン、 Ν— (ρ—メトキシフエ-ル) γ—ァミノプロピル ェチルジェトキシシラン、 Ν— (ρ—メトキシフエ-ル) γ—ァミノプロピルェチルジメ トキシシラン、 γ - (Ν—メチル)ァミノプロピルトリメトキシシラン、 γ - (Ν ェチル)ァ ミノプロピルトリメトキシシラン、 γ— (Ν ブチル)ァミノプロピルトリメトキシシラン、 γ - (Ν ベンジル)ァミノプロピルトリメトキシシラン、 γ - (Ν—メチル)ァミノプロビルト リエトキシシラン、 Ί - (Ν ェチル)ァミノプロピルトリエトキシシラン、 γ - (Ν ブチ ル)ァミノプロピルトリエトキシシラン、 γ— (Ν ベンジル)ァミノプロピルトリエトキシシ ラン、 y - (N—メチル)ァミノプロピルメチルジメトキシシラン、 y - (N ェチル)アミ ノプロピルメチルジメトキシシラン、 γ—(N ブチル)ァミノプロピルメチルジメトキシ シラン、 γ - (Ν ベンジル)ァミノプロピルメチルジメトキシシラン、 N— j8— (アミノエ チル) γ—ァミノプロピルトリメトキシシラン、 γ—( 13—アミノエチル)ァミノプロピル トリメトキシシラン、 Ν— β— (Ν ビュルべンジルアミノエチル) γ—ァミノプロピル トリメトキシシラン等が挙げられる。なかでも下記一般式 (II)で示されるアミノシランカツ プリング剤を含むことが特に好まし 、。
[化 22]
Figure imgf000031_0001
[0119] (一般式 (II)で、 R1は水素原子、炭素数 1〜6のアルキル基及び炭素数 1〜2のアル コキシ基力 選ばれ、 R2は炭素数 1〜6のアルキル基及びフ -ル基力 選ばれ、 R3 はメチル基又はェチル基を示し、 nは 1〜6の整数を示し、 mは 1〜3の整数を示す。 ) カップリング剤の全配合量は、封止用エポキシ榭脂成形材料に対して 0. 037〜5 質量%であることが好ましぐ 0. 05〜4. 75質量%であることがより好ましぐ 0. 1〜2 . 5質量%であることがさらに好ましい。 0. 037質量%未満ではフレームとの接着性 が低下する傾向があり、 5質量%を超えるとパッケージの成形性が低下する傾向があ る。
[0120] 本発明の封止用エポキシ榭脂成形材料には、難燃性を向上させる観点から (G)リ ン原子を有する化合物を用いることができる。 (G)リン原子を有する化合物としては、 本発明の効果が得られれば特に制限はなぐ被覆又は無被覆の赤リン、シクロホスフ ァゼン等のリン及び窒素含有ィ匕合物、ユトリロトリスメチレンホスホン酸三カルシウム塩 、メタン一 1—ヒドロキシ一 1, 1—ジホスホン酸二カルシウム塩等のホスホン酸塩、トリ フエ-ルホスフィンオキサイド、 2- (ジフエ-ルホスフィエル)ハイドロキノン、 2,2— [ ( 2- (ジフエ-ルホスフィエル)一 1,4 フエ-レン)ビス(ォキシメチレン)]ビス一ォキシ ラン、トリー n—ォクチルホスフィンオキサイド等のホスフィン及びホスフィンオキサイド 化合物、リン酸エステル化合物などが挙げられ、これらの 1種を単独で用いても 2種 以上を組合わせて用いてもょ ヽ。 [0121] 赤リンとしては、熱硬化性榭脂で被覆された赤リン、無機化合物及び有機化合物で 被覆された赤リン等の被覆赤リンが好まし 、。
[0122] 熱硬化性榭脂で被覆された赤リンに用いられる熱硬化性榭脂としては、たとえば、 エポキシ榭脂、フエノール榭脂、メラミン榭脂、ウレタン榭脂、シアナート榭脂、尿素— ホルマリン榭脂、ァニリン ホルマリン榭脂、フラン榭脂、ポリアミド榭脂、ポリアミドイミ ド榭脂、ポリイミド榭脂等が挙げられ、これらの 1種を単独で用いても 2種以上組み合 わせて用いてもよい。また、これらの榭脂のモノマー又はオリゴマーを用いて被覆と重 合を同時に行い、重合によって製造された熱硬化榭脂が被覆されるものでもよぐ熱 硬化性榭脂は、被覆後に硬化されていてもよい。なかでも、封止用エポキシ榭脂成 形材料に配合されるベース樹脂との相溶性の観点からは、エポキシ榭脂、フエノール 榭脂及びメラミン榭脂が好ま ヽ。
[0123] 無機化合物及び有機化合物で被覆された赤リンに用いられる無機化合物としては 、たとえば、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化チ タン、水酸ィ匕ジルコニウム、含水酸ィ匕ジルコニウム、水酸ィ匕ビスマス、炭酸バリウム、 炭酸カルシウム、酸化亜鉛、酸化チタン、酸化ニッケル、酸化鉄等が挙げられ、これ らの 1種を単独で用いても 2種以上組み合わせて用いてもよい。なかでも、リン酸ィォ ン捕捉効果に優れる水酸ィ匕ジルコニウム、含水酸ィ匕ジルコニウム、水酸ィ匕アルミ-ゥ ム及び酸ィ匕亜鉛が好まし 、。
[0124] また、無機化合物及び有機化合物で被覆された赤リンに用いられる有機化合物と しては、たとえば、カップリング剤ゃキレート剤など表面処理に用いられる低分子量の 化合物、熱可塑性榭脂、熱硬化性榭脂等の比較的高分子量の化合物などが挙げら れ、これらの 1種を単独で用いても 2種以上組み合わせて用いてもよい。なかでも、被 覆効果の観点力 熱硬化性榭脂が好ましぐ封止用エポキシ榭脂成形材料に配合さ れるベース樹脂との相溶性の観点からエポキシ榭脂、フエノール榭脂及びメラミン榭 脂がより好ましい。
[0125] 赤リンを無機化合物及び有機化合物で被覆する場合、その被覆処理の順序は、無 機化合物で被覆した後に有機化合物で被覆しても、有機化合物で被覆した後に無 機化合物で被覆しても、両者の混合物を用いて両者を同時に被覆してもよい。また、 被覆形態は、物理的に吸着したものでも、化学的に結合したものでも、その他の形態 であってもよい。また、無機化合物と有機化合物は、被覆後に別個に存在していても 、両者の一部又は全部が結合した状態であってもよ 、。
[0126] 無機化合物及び有機化合物の量は、無機化合物と有機化合物の質量比 (無機化 合物 Z有機化合物)は、 1Z99〜99Z1が好ましぐ 10Z90〜95Z5がより好ましく 、 30Ζ70〜90Ζ10がさらに好ましぐこのような質量比となるように無機化合物及び 有機化合物又はその原料となるモノマー、オリゴマーの使用量を調整することが好ま しい。
[0127] 熱硬化性榭脂で被覆された赤リン、無機化合物及び有機化合物で被覆された赤リ ン等の被覆赤リンの製造方法は、たとえば、特開昭 62— 21704号公報、特開昭 52 — 131695号公報等に記載された公知の被覆方法を用いることができる。また、被覆 膜の厚さは本発明の効果が得られれば特に制限はなぐ被覆は、赤リン表面に均一 に被覆されたものでも、不均一であってもよい。
[0128] 赤リンの粒径は、平均粒径 (粒度分布で累積 50質量%となる粒径)が 1〜: LOO /z m が好ましぐ 5〜50 /z mがより好ましい。平均粒径が 1 μ m未満では、成形品のリン酸 イオン濃度が高くなつて耐湿性に劣る傾向があり、 100 /z mを超えると、狭いパッドピ ツチの高集積'高密度化半導体装置に用いた場合、ワイヤの変形、短絡、切断等に よる不良が生じやすくなる傾向がある。
[0129] (G)リン原子を有する化合物のなかでも流動性の観点からは、リン酸エステル化合 物またはホスフィンオキサイドを含むことが好ま 、。リン酸エステルイ匕合物はリン酸と アルコールィヒ合物又はフエノール化合物のエステルィヒ合物であれば特に制限はな いが、例えばトリメチルホスフェート、トリェチルホスフェート、トリフエ-ルホスフェート、 トリクレジノレホスフェート、トリキシレニノレホスフェート、クレジルジフエ-ノレホスフェート 、キシレ -ルジフエ-ルホスフェート、トリス(2, 6ジメチルフエ-ル)ホスフェート及び 芳香族縮合リン酸エステル等が挙げられる。なかでも耐加水分解性の観点カゝらは、 下記一般式 (ΠΙ)で示される芳香族縮合リン酸エステルイ匕合物を含むことが好ま U ヽ。
[化 23]
Figure imgf000034_0001
(一般式(III)で、式中の 8個の Rは炭素数 1〜4のアルキル基を示し、全て同一でも 異なっていてもよい。 Arは芳香族環を示す。 )
上記式 (III)のリン酸エステル化合物を例示すると、下記構造式 (XX)〜 (XXIV)で 示されるリン酸エステル等が挙げられる。
[化 24]
Figure imgf000035_0001
[0131] これらリン酸エステル化合物の添加量は、充填剤を除く他の全配合成分に対して、 燐原子の量で 0. 2〜3. 0質量%の範囲内であることが好ましい。 0. 2質量%ょり少 ない場合は難燃効果が低くなる傾向がある。 3. 0質量%を超えた場合は成形性、耐 湿性の低下や、成形時にこれらのリン酸エステルイ匕合物がしみ出し、外観を阻害する 場合がある。
[0132] ホスフィンオキサイドを難燃剤として用いる場合、ホスフィンオキサイドとしては下記 一般式 (IV)で示されるホスフィン化合物を含むことが好ま 、。
[化 25]
0
R1—— P—— R ,3
(IV)
R 2
[0133] (一般式 (IV)で、
Figure imgf000036_0001
R2及び R3は炭素数 1〜: L0の置換又は非置換のアルキル基、 ァリール基、ァラルキル基及び水素原子のいずれかを示し、すべて同一でも異なつ てもよい。ただしすべてが水素原子である場合を除く。 )
上記一般式 (IV)で示されるホスフィンィ匕合物の中でも、耐加水分解性の観点から は!^〜 が置換又は非置換のァリール基であることが好ましく、特に好ましくはフエ -ル基である。
[0134] ホスフィンオキサイドの配合量は封止用エポキシ榭脂成形材料に対してリン原子の 量が 0. 01-0. 2質量%であることが好ましい。より好ましくは 0. 02-0. 1質量%で あり、さらに好ましくは 0. 03〜0. 08質量%である。 0. 01質量%未満であると難燃 性が低下する傾向があり、 0. 2質量%を超えると成形性、耐湿性が低下する傾向が ある。
[0135] またシクロホスファゼンとしては主鎖骨格中に次式 (XXV)及び Z又は次式 (XXVI) を繰り返し単位として含む環状ホスファゼンィ匕合物、あるいはホスファゼン環中の燐 原子に対する置換位置が異なる次式 (XXVII)及び Z又は次式 (XXVIII)を繰り返し 単位として含む化合物等が挙げられる。
[化 26] I)
Figure imgf000037_0001
ここで、式(XXV)及び式(XXVII)中の mは 1〜10の整数で、 I^〜Rは置換基を有 しても良い炭素数 1〜12のアルキル基、ァリール基及び水酸基から選ばれ、全て同 一でも異なっていても良い。 Aは炭素数 1〜4のアルキレン基又はァリレン基を示す。 式 (XXVI)及び式 (XXVIII)中の nは 1〜10の整数で、 R5〜R8は置換基を有しても良 い炭素数 1〜12のアルキル基又はァリール基力も選ばれ、全て同一でも異なってい ても良ぐ Aは炭素数 1〜4のアルキレン基又はァリレン基を示す。また、式中 m個の R\ R2、 R3、 R4は m個全てが同一でも異なっていても良ぐ n個の R5、 R6、 R R8は n 個全てが同一でも異なっていても良い。上記式 (XXV)〜式 (xxvm)において、尺1
R8で示される置換基を有しても良 ヽ炭素数 1〜 12のアルキル基又はァリール基とし ては特に制限はないが、例えばメチル基、ェチル基、プロピル基、イソプロピル基、ブ チル基、イソブチル基、 sec ブチル基、 tert ブチル基等のアルキル基、フエニル 基、 1 ナフチル基、 2—ナフチル基等のァリール基、 o トリル基、 m トリル基、 p— 卜リル基、 2, 3 キシリル基、 2, 4 キシリル基、 o—タメ-ル基、 m—タメ-ル基、 p— タメ二ル基、メシチル基等のアルキル基置換ァリール基、ベンジル基、フエネチル基 等のァリール基置換アルキル基などが挙げられ、さらにこれらに置換する置換基とし ては、アルキル基、アルコキシル基、ァリール基、水酸基、アミノ基、エポキシ基、ビ- ル基、ヒドロキシアルキル基、アルキルアミノ基等が挙げられる。 [0137] これらの中で、エポキシ榭脂成形材料の耐熱性、耐湿性の観点からはァリール基 が好ましぐより好ましくはフエニル基もしくはヒドロキシフエ-ル基である。
[0138] また、上記式(XXV)〜式(XXVIII)中の Aで示される炭素数 1〜4のアルキレン基又 はァリレン基としては特に制限はないが、例えばメチレン基、エチレン基、プロピレン 基、イソプロピレン基、ブチレン基、イソブチレン基、フエ-レン基、トリレン基、キシリレ ン基、ナフチレン基及びビフエ-レン基等が挙げられ、エポキシ榭脂成形材料の耐 熱性、耐湿性の観点からはァリレン基が好ましぐ中でもフエ-レン基がより好ましい。
[0139] 環状ホスファゼン化合物は、上記式(XXV)〜式(XXVIII)の!、ずれかの重合物、上 記式(XXV)と上記式(XXVI)との共重合物、又は上記式(XXVII)と上記式(XXVIII) との共重合物が挙げられる力 共重合物の場合、ランダム共重合物でも、ブロック共 重合物でも、交互共重合物のいずれでも良い。その共重合モル比 mZnは特に限定 するものではないが、エポキシ榭脂硬化物の耐熱性や強度向上の観点から 1Z0〜 1Z4が好ましぐ 1ΖΟ〜: LZ1. 5がより好ましい。また、重合度 m+nは 1〜20であり 、好ましくは 2〜8、より好ましくは 3〜6である。
[0140] 環状ホスファゼンィヒ合物として好まし!/、ものを例示すると、次式 (XXIX)の重合物、 次式 (XXX)の共重合物等が挙げられる。
[化 27]
Figure imgf000038_0001
[0141] (ここで、一般式 (XXIX)中の nは、 0〜9の整数で、!^〜 はそれぞれ独立に水素原 子又は水酸基を示す。 )
[化 28]
Figure imgf000039_0001
[0142] ここで、上記一般式(XXX)中の m、 nは、 0〜9の整数で、 I^〜Rはそれぞれ独立 に水素原子または水酸基力 選ばれる。また、上記一般式 (XXX)で示される環状ホ スファゼンィ匕合物は、次に示す m個の繰り返し単位 (a)と n個の繰り返し単位 (b)を交 互に含むもの、ブロック状に含むもの、ランダムに含むもののいずれであってもかまわ ないが、ランダムに含むものが好ましい。
[化 29]
Figure imgf000039_0002
[0143] (上記一般式 (a)中の R1 !^はそれぞれ独立に水素原子または水酸基力 選ばれ る。)
中でも、上記式 (XXIX)で nが 3〜6の重合体を主成分とするものや、上記式 (XXX) で 〜1^6が全て水素原子又は 1つが水酸基であり、 nZmが 1Z2〜1Z3で、 n+m力 S 3〜6の共重合体を主成分とするものが好ましい。また、市販のホスファゼンィ匕合物と しては、 SPE— 100 (大塚化学株式会社製商品名)等が入手可能である。
[0144] (G)リン原子を有する化合物の配合量は特に制限はないが、 CO無機充填剤を除く 他の全配合成分に対して、リン原子の量で 0. 01〜50質量%が好ましぐ 0. 1〜10 質量%がより好ましぐ 0. 5〜3質量%がさらに好ましい。配合量が 0. 01質量%未満 では難燃性が不十分となる傾向があり、 50質量%を超えると成形性、耐湿性が低下 する傾向がある。
[0145] 本発明にお 、ては離型性の観点から (H)重量平均分子量が 4, 000以上の直鎖 型酸化ポリエチレン、および(I)炭素数 5〜30の α—ォレフィンと無水マレイン酸との 共重合物を炭素数 5〜25の一価のアルコールでエステル化した化合物をさらに含有 させてもよい。(Η)重量平均分子量が 4, 000以上の直鎖型酸化ポリエチレンは、離 型剤として働くものである。ここで、直鎖型ポリエチレンとは、側鎖アルキル鎖の炭素 数が主鎖アルキル鎖の炭素数の 10%程度以下のポリエチレンをいい、一般的には、 針入度が 2以下のポリエチレンとして分類される。
[0146] また、酸化ポリエチレンとは、酸価を有するポリエチレンをいう。(Η)成分の重量平 均分子量は、離型性の観点から 4, 000以上であることが好ましぐ接着性、金型'パ ッケージの汚れ防止の観点からは 30, 000以下であることが好ましぐ 5, 000-20, 000力 Sより好ましく、 7, 000-15, 000がさらに好ましい。ここで、重量平均分子量は 、高温 GPC (ゲルパーミエーシヨンクロマトグラフィ)で測定した値をいう。なお、本発 明での高温 GPC測定方法は以下のとおりである。
[0147] 測定器: Waters社製高温 GPC
(溶媒:ジクロ口ベンゼン
温度: 140°C、
標準物質:ポリスチレン)
カラム:ポリマーラボラトリーズ社製商品名 PLgel MIXED- B
10 (7. 5mm X 300mm) X 2本
流量: 1. OmlZ分 (試料濃度: 0. 3wt/vol%)
(注入量: 100 1)
また、(H)成分の酸価は、特に制限はないが、離型性の観点から 2〜50mgZKO Hであることが好ましぐ 10〜35mgZKOHがより好ましい。
[0148] (H)成分の配合量は、特に制限はないが、(A)エポキシ榭脂に対して 0. 5〜: L0質 量%が好ましぐ 1〜5質量%がより好ましい。配合量が 0. 5質量%未満では離型性 が低下する傾向にあり、 10質量%を超えると接着性及び金型'パッケージ汚れの改 善効果が不充分となる場合がある。
[0149] 本発明にお 、て用いられる(I)炭素数 5〜30の α—ォレフインと無水マレイン酸と の共重合物を炭素数 5〜25の一価のアルコールでエステルイ匕したィ匕合物も、離型剤 として働くもので、(Η)成分の直鎖型酸化ポリエチレンおよび (Α)成分のエポキシ榭 脂の 、ずれとも相溶性が高く、接着性の低下や金型 ·パッケージ汚れを防ぐ効果が ある。
[0150] (I)成分に用いられる炭素数 5〜30の α—ォレフインとしては、特に制限はないが、 たとえば、 1—ペンテン、 1—へキセン、 1—ヘプテン、 1—オタテン、 1—ノネン、 1—デ セン、 1—ゥンデセン、 1—ドデセン、 1—トリデセン、 1—テトラデセン、 1 ペンタデセ ン、 1一へキサデセン、 1一へプタデセン、 1ーォクタデセン、 1 ノナデセン、 1 エイ コセン、 1—ドコセン、 1ートリコセン、 1—テトラコセン、 1—ペンタコセン、 1—へキサコ セン、 1一へプタコセン等の直鎖型 α—ォレフイン、 3—メチルー 1ーブテン、 3, 4— ジメチルーペンテン、 3—メチル 1—ノネン、 3, 4 ジメチルーオタテン、 3 ェチル 1ードデセン、 4ーメチルー 5 ェチルー 1ーォクタデセン、 3, 4, 5 トリェチルー 1—1 エイコセン等の分岐型 α—ォレフイン等が挙げられ、これらを単独で用いても
2種以上を組み合わせて用いてもよい。中でも炭素数 10〜25の直鎖型 α ォレフィ ンが好ましぐ 1—エイコセン、 1—ドコセン、 1—トリコセン等の炭素数 15〜25の直鎖 型 α—ォレフィンがより好ましい。
[0151] (I)成分に用いられる炭素数 5〜25の一価のアルコールとしては、特に制限はない 1S たとえば、ァミルアルコール、イソアミルアルコール、へキシルアルコール、へプチ ルアルコール、ォクチルアルコール、力プリルアルコール、ノ-ルアルコール、デシル アルコール、ゥンデシルアルコール、ラウリルアルコール、トリデシルアルコール、ミリ スチノレアノレコーノレ、ペンタデシノレアノレコーノレ、セチノレアノレコーノレ、ヘプタデシノレアノレ コール、ステアリルアルコール、ノナデシルアルコール、エイコシルアルコール等の直 鎖型または分岐型の脂肪族飽和アルコール、へキセノール、 2—へキセン 1ーォ ール、 1一へキセンー3 オール、ペンテノール、 2—メチルー 1 ペンテノール等の 直鎖型または分岐型の脂肪族不飽和アルコール、シクロペンタノール、シクロへキサ ノール等の脂環式アルコール、ベンジルアルコール、シンナミルアルコール等の芳香 族アルコール、フルフリルアルコール等の複素環式アルコール等が挙げられ、これら を単独で用いても 2種以上を組み合わせて用いてもよい。中でも炭素数 10〜20の直 鎖型アルコールが好ましぐ炭素数 15〜20の直鎖型脂肪族飽和アルコールがより好 ましい。
[0152] 本発明の(I)成分における炭素数 5〜30の exーォレフインと無水マレイン酸との共 重合物は、特に制限はないが、たとえば、下記一般式 (XXXI)で示される化合物、下 記一般式 (XXXII)で示される化合物等が挙げられ、市販品としては、 1—エイコセン、 1 -ドコセンおよび 1—テトラコセンを原料としたニッサンエレクトール WPB— 1 (日本 油脂株式会社製商品名)等が入手可能である。
[化 30]
iXXXH)
Figure imgf000042_0001
[0153] (一般式 (XXXI)および (XXXII)で、 Rは炭素数 3〜28の一価の脂肪族炭化水素基 から選ばれ、 nは 1以上の整数、 mは正の数を示す。 )
上記一般式(XXXI)および(XXXII)中の mは、無水マレイン酸 1モルに対し α—ォ レフインを何モル共重合させたかを示し、特に制限はないが、 0. 5〜10が好ましぐ 0 . 9- 1. 1がより好ましい。
[0154] (I)成分の共重合物の製造方法としては、特に制限はなぐ一般的な共重合法を用 いることができる。反応には、 OC一才レフインと無水マレイン酸が可溶な有機溶媒等を 用いてもよい。有機溶媒としては特に制限はないが、トルエンが好ましぐアルコール 系溶媒、エーテル系溶媒、アミン系溶媒等も使用できる。反応温度は、使用する有機 溶媒の種類によっても異なる力 反応性、生産性の観点から、 50〜200°Cとすること が好ましぐ 80〜120°Cがより好ましい。反応時間は、共重合物が得られれば特に制 限はないが、生産性の観点から 1〜30時間とするのが好ましぐ 2〜15時間とするの 力 り好ましぐ 4〜: LO時間とするのがさらに好ましい。反応終了後、必要に応じて、 加熱減圧下等で未反応分、溶媒等を除去することができる。その条件は、温度を 10 0〜220。C、より好ましくは 120〜180。C、圧力を 13. 3 X 103Pa以下、より好ましくは 8 X 103Pa以下、時間を 0. 5〜: LO時間とすることが好ましい。また、反応には、必要 に応じてアミン系触媒、酸触媒等の反応触媒を加えてもよい。反応系の pHは、 1〜1 0程度とするのが好ましい。
[0155] (I)成分の共重合物を炭素数 5〜25の一価のアルコールでエステル化する方法と しては、特に制限はなぐ共重合物に一価のアルコールを付加反応させる等の一般 的な方法を用いることができる。共重合物と一価のアルコールの反応モル比は、特に 制限はなぐ任意に設定可能であるが、この反応モル比を調整することによって親水 性の度合いをコントロールすることができるので、目的の封止用エポキシ榭脂成形材 料に合わせて適宜設定することが好ましい。反応には、共重合物が可溶な有機溶媒 等を用いてもよい。有機溶媒としては特に制限はないが、トルエンが好ましぐアルコ ール系溶媒、エーテル系溶媒、アミン系溶媒等も使用できる。反応温度は、使用する 有機溶媒の種類によっても異なる力 反応性、生産性の観点から、 50〜200°Cとす ることが好ましぐ 80〜120°Cがより好ましい。反応時間は、特に制限はないが、生産 性の観点から 1〜30時間とするのが好ましぐ 2〜15時間とするのがより好ましぐ 4 〜: LO時間とするのがさらに好ましい。反応終了後、必要に応じて、加熱減圧下等で 未反応分、溶媒等を除去することができる。その条件は、温度を 100〜220°C、より 好ましくは 120〜180°C、圧力を 13. 3 X 103Pa以下、より好ましくは 8 X 103Pa以下 、時間を 0. 5〜: LO時間とすることが好ましい。また、反応には、必要に応じてアミン系 触媒、酸触媒等の反応触媒を加えてもよい。反応系の pHは、 1〜10程度とするのが 好ましい。
[0156] (I)成分の α—ォレフインと無水マレイン酸との共重合物を一価のアルコールでェ ステルイ匕した化合物としては、たとえば、下記の式 (a)または (b)で示されるジエステ ル、および式 (c)〜(f)で示されるモノエステルカゝら選ばれる 1種以上を繰り返し単位 として構造中に含む化合物等が挙げられる。また、式 (g)または (h)で示されるノンェ ステルを含んでいても、無水マレイン酸が開環して二つの COOH基を有する構造 を含んでいてもよい。
このような化合物としては、
(1)主鎖骨格が式 (a)〜 (f)の 、ずれか 1種単独で構成されるもの、
(2)主鎖骨格中に式 (a)〜 (f)の 、ずれか 2種以上をランダムに含むもの、規則的に 含むもの、ブロック状に含むもの、
(3)主鎖骨格中に式 (a)〜 (f)の 、ずれか 1種または 2種以上と式 (g)および (h)の少 なくとも一方とをランダム 含むもの、規則的に含むもの、ブロック状に含むもの、 等が挙げられ、これらを単独で用いても 2種以上を組み合わせて用いてもよい。また (4)主鎖骨格中に式 (g)および (h)をランダムに含むもの、規則的に含むもの、プロ ック状に含むもの、と
(5)主鎖骨格が式 (g)または (h)の 、ずれか単独で構成されるもの、
との、いずれかまたは両方を含んでいてもよい。
[化 31]
Figure imgf000044_0001
[化 32]
Figure imgf000045_0001
[化 33]
Figure imgf000045_0002
[0158] (上記式 (a)〜(h)で、 R1は炭素数 3 28の一価の脂肪族炭化水素基、 R2は炭素数 5 25の一価の炭化水素基力 選ばれ、 mは正の数を示す。 )
上記式(a)〜(h)中の mは、無水マレイン酸 1モルに対し α—ォレフインを何モル共 重合させたかを示し、特に制限はないが、 0. 5 10カ 子ましく、0. 9 1. 1がより好 ましい。
[0159] (I)成分のモノエステルイ匕率は、(Η)成分との組み合わせにより適宜選択可能であ る力 離型性の観点から 20%以上とすることが好ましぐ(I)成分としては式 (c)〜(f) で示されるモノエステルのいずれ力 1種または 2種以上を併せて 20モル%以上含む 化合物が好ましぐ 30モル%以上含む化合物がより好ましい。
[0160] また、(I)成分の重量平均分子量は、金型'パッケージ汚れ防止及び成形性の観点 力ら 5, 000 100, 000とすること力 S好ましく、 10, 000 70, 000力 Sより好ましく、 1 5, 000-50, 000がさらに好ましい。重量平均分子量が 5, 000未満では金型 'パッ ケージ汚れを防ぐ効果が低い傾向にあり、 100, 000を超えると化合物の軟化点が 上昇し、混練性等に劣る傾向がある。ここで、重量平均分子量は、常温 GPCで測定 した値をいう。本発明での常温 GPCによる重量平均分子量の測定方法は以下のと おりである。
[0161] 測定器:島津製作所製 LC— 6C
カラム: shodex KF-802.5 + KF-804+KF-806
溶媒: THF (テトラヒドロフラン)
温度:室温(25°C)
標準物質:ポリスチレン
流量: l.OmlZ分 (試料濃度約 0.2wtZvol%)
注入量: 200 /z l
(I)成分の配合量は、特に制限はないが、(A)エポキシ榭脂に対して 0. 5〜10質 量%が好ましぐ 1〜5質量%がより好ましい。配合量が 0. 5質量%未満では離型性 が低下する傾向にあり、 10質量%を超えると耐リフロー性が低下する傾向にある。
[0162] 耐リフロー性や金型'パッケージ汚れの観点から、本発明における離型剤である (H )成分および (I)成分の少なくとも一方は、本発明のエポキシ榭脂成形材料の調製時 に (A)成分のエポキシ榭脂の一部または全部と予備混合することが好ま 、。 (H) 成分および (I)成分の少なくとも一方を (A)成分と予備混合すると、これらのベース榭 脂中での分散性が上がり、耐リフロー性の低下や金型'パッケージ汚れを防ぐ効果が ある。
[0163] 予備混合の方法は、特に制限するものではなぐ(H)成分および (I)成分の少なく とも一方が (A)成分のエポキシ榭脂中に分散されれば 、かなる方法を用いてもょ 、 力 たとえば、室温〜 220°Cで 0. 5〜20時間撹拌する等の方法が挙げられる。分散 性、生産性の観点からは、温度を 100〜200°C、より好ましくは 150〜170°C、撹拌 時間を 1〜10時間、より好ましくは 3〜6時間とすることが好ましい。
[0164] 予備混合するための(H)成分および (I)成分の少なくとも一方は、(A)成分の全量 と予備混合してもよいが、一部と予備混合することでも十分な効果が得られる。その 場合、予備混合する (A)成分の量は、(A)成分の全量の 10〜50質量%とすることが 好ましい。
[0165] また、 (H)成分と (I)成分との ヽずれか一方を (A)成分と予備混合することで、分散 性向上の効果が得られるが、 (H)成分および (I)成分の両方を (A)成分と予備混合 した方がより効果が高く好ましい。予備混合する場合の 3成分の添加順序は、特に制 限はなぐ全てを同時に添加混合しても、(H)成分と (I)成分とのいずれか一方を先 に (A)成分と添加混合し、その後残りの成分を添加混合してもよ 、。
[0166] 本発明の封止用エポキシ榭脂成形材料には、さらに難燃性を向上する目的で従来 公知のノンハロゲン、ノンアンチモンの難燃剤を必要に応じて配合することができる。 たとえばメラミン、メラミン誘導体、メラミン変性フエノール榭脂、トリアジン環を有する 化合物、シァヌル酸誘導体、イソシァヌル酸誘導体等の窒素含有化合物、水酸化ァ ルミ二ゥム、錫酸亜鉛、硼酸亜鉛、モリブデン酸亜鉛、ジシクロペンタジェニル鉄等の 金属元素を含む化合物などが挙げられ、これらの 1種を単独で用いても 2種以上を組 合わせて用いてもよい。
[0167] また、本発明の封止用エポキシ榭脂成形材料には、 IC等の半導体素子の耐湿性 及び高温放置特性を向上させる観点力ゝら陰イオン交換体を添加することもできる。陰 イオン交換体としては特に制限はなぐ従来公知のものを用いることができる力 たと えば、ハイド口タルサイト類や、マグネシウム、アルミニウム、チタン、ジルコニウム、ビ スマス等力 選ばれる元素の含水酸ィ匕物等が挙げられ、これらを単独又は 2種以上 を組み合わせて用いることができる。なかでも、下記組成式 (ΧΧΧΙΠ)で示されるハイ ドロタルサイトが好ましい。
[0168] (化 34)
Mg Ο (ΧΧΧΙΙΙ)
Figure imgf000047_0001
(上記式(XXXIII)中 0<χ≤0.5、 mは正の数)
さらに、本発明の封止用エポキシ榭脂成形材料には、その他の添加剤として、高級 脂肪酸、高級脂肪酸金属塩、エステル系ワックス、ポリオレフイン系ワックス、ポリェチ レン、酸ィ匕ポリエチレン等の離型剤、カーボンブラック等の着色剤、シリコーンオイル やシリコーンゴム粉末等の応力緩和剤などを必要に応じて配合することができる。
[0169] 本発明の封止用エポキシ榭脂成形材料は、各種原材料を均一に分散混合できる のであれば、いかなる手法を用いても調製できるが、一般的な手法として、所定の配 合量の原材料をミキサー等によって十分混合した後、ミキシングロール、押出機、ら いかい機、プラネタリミキサ等によって混合又は溶融混練した後、冷却し、必要に応 じて脱泡、粉砕する方法等を挙げることができる。また、必要に応じて成形条件に合う ような寸法及び重量でタブレツトイ匕してもょ 、。
[0170] 本発明の封止用エポキシ榭脂成形材料を封止材として用いて、半導体装置等の 電子部品装置を封止する方法としては、低圧トランスファ成形法が最も一般的である 力 インジェクション成形法、圧縮成形法等も挙げられる。デイスペンス方式、注型方 式、印刷方式等を用いてもよい。
[0171] 本発明で得られる封止用エポキシ榭脂成形材料により封止した素子を備えた本発 明の電子部品装置としては、リードフレーム、配線済みのテープキャリア、配線板、ガ ラス、シリコンウェハ等の支持部材ゃ実装基板に、半導体チップ、トランジスタ、ダイ オード、サイリスタ等の能動素子、コンデンサ、抵抗体、コイル等の受動素子等の素 子を搭載し、必要な部分を本発明の封止用エポキシ榭脂成形材料で封止した、電子 部品装置等が挙げられる。
[0172] ここで、実装基板としては特に制限するものではなぐたとえば、有機基板、有機フ イルム、セラミック基板、ガラス基板等のインターポーザ基板、液晶用ガラス基板、 M CM (Multi Chip Module)用基板、ハイブリット IC用基板等が挙げられる。
[0173] このような素子を備えた電子部品装置としては、たとえば半導体装置が挙げられ、 具体的には、リードフレーム (アイランド、タブ)上に半導体チップ等の素子を固定し、 ボンディングパッド等の素子の端子部とリード部をワイヤボンディングやバンプで接続 した後、本発明の封止用エポキシ榭脂成形材料を用いてトランスファ成形などにより 封止してなる、 DIP (Dual Inline Package)、 PLCC (Plastic Leaded Chip C arrier)、 QFP (Quad Flat Package)、 SOP (Small Outline Package)、 SOJ (Small Outline J— lead package)、 TSOP (Tnm Small Outline Package ) , TQFP (Thin Quad Flat Package)等の榭脂封止型 IC、テープキャリアにリ ードボンディングした半導体チップを、本発明の封止用エポキシ榭脂成形材料で封 止した TCP (Tape Carrier Package)、配線板やガラス上に形成した配線に、ワイ ャボンディング、フリップチップボンディング、はんだ等で接続した半導体チップを、 本発明の封止用エポキシ榭脂成形材料で封止した COB (Chip On Board)、 CO G (Chip On Glass)等のベアチップ実装した半導体装置、配線板やガラス上に形 成した配線に、ワイヤボンディング、フリップチップボンディング、はんだ等で接続した 半導体チップ、トランジスタ、ダイオード、サイリスタ等の能動素子及び Z又はコンデ ンサ、抵抗体、コイル等の受動素子を、本発明の封止用エポキシ榭脂成形材料で封 止したハイブリッド K、 MCM (Multi Chip Module)マザ一ボード接続用の端子 を形成したインターポーザ基板に半導体チップを搭載し、バンプまたはワイヤボンデ イングにより半導体チップとインターポーザ基板に形成された配線を接続した後、本 発明の封止用エポキシ榭脂成形材料で半導体チップ搭載側を封止した BGA (Ball Grid Array)、 CSP (Chip Size Package)、 MCP (Multi Chip Package) などが挙げられる。また、これらの半導体装置は、実装基板上に素子が 2個以上重な つた形で搭載されたスタックド (積層)型パッケージであっても、 2個以上の素子を一 度に封止用エポキシ榭脂成形材料で封止した一括モールド型パッケージであっても よい。
実施例
[0174] 次に実施例により本発明を説明するが、本発明の範囲はこれらの実施例に限定さ れるものではない。
[0175] (実施例用水酸化マグネシウムの合成例)
(1)水酸ィ匕マグネシウム 1
水酸ィ匕マグネシウムのスラリー(濃度: 150g/リットル) 20リットルを 80°Cに加熱し、ケ ィ酸ナトリウムを SiOとして 450gカ卩えた後、スラリーの pHが 9になるまで硫酸を 1時間
2
かけて滴下し、このスラリーを 80°C/1時間加熱した。このスラリー力 表面処理水酸 化マグネシウムをろ過にて分離、水洗、乾燥、粉砕して水酸ィ匕マグネシウム 1を得た。
[0176] (2)水酸化マグネシウム 2
水酸ィ匕マグネシウムのスラリー(濃度: 150g/リットル) 20リットルを 80°Cに加熱し、ケ ィ酸ナトリウムを SiOとして 300gカ卩えた後、スラリーの pHが 9になるまで硫酸を 1時間
2
かけて滴下し、このスラリーを 80°C/1時間加熱した。次にこのスラリーにメチルノヽイド ロジェンポリシロキサン 90gを含むェマルジヨンをカ卩え、 80°Cで 1時間攪拌した後、こ のスラリー力 表面処理水酸ィ匕マグネシウムをろ過にて分離、水洗、乾燥、粉砕して 水酸化マグネシウム 2を得た。
[0177] (3)水酸化マグネシウム 3
水酸ィ匕マグネシウムのスラリー(濃度: 150g/リットル) 20リットルを 80°Cに加熱し、ケ ィ酸ナトリウムを SiOとして 90gカ卩えた後、スラリーの pHが 9になるまで硫酸を 1時間か
2
けて滴下し、このスラリーを 80°C/1時間加熱した。この後、 pHを 9に保ちながら、アル ミン酸ナトリウムを A1 0換算にて 30gと硫酸をカ卩え、 1時間加熱した。次にこのスラリ
2 3
一にメチルハイドロジエンポリシロキサン 90gを含むェマルジヨンをカ卩え、 80°Cで 1時 間攪拌した後、このスラリー力 表面処理水酸ィ匕マグネシウムをろ過にて分離、水洗 、乾燥、粉砕して水酸ィ匕マグネシウム 3を得た。
[0178] (4)水酸化マグネシウム 4
水酸ィ匕マグネシウムのスラリー(濃度: 150g/リットル) 20リットルを 80°Cに加熱し、ケ ィ酸ナトリウムを SiOとして 90gカ卩えた後、スラリーの pHが 9になるまで硫酸を 1時間か
2
けて滴下し、このスラリーを 80°C/1時間加熱した。次にこのスラリーにデシルトリメトキ シシラン 90gを含むェマルジヨンを加え、 80°Cで 1時間攪拌した後、このスラリーから 表面処理水酸ィ匕マグネシウムをろ過にて分離、水洗、乾燥、粉砕して水酸化マグネ シゥム 4を得た。
[0179] (5)水酸化マグネシウム 5
水酸ィ匕マグネシウムのスラリー(濃度: 150g/リットル) 20リットルを 80°Cに加熱し、ケ ィ酸ナトリウムを SiOとして 90gカ卩えた後、スラリーの pHが 9になるまで硫酸を 1時間か
2
けて滴下し、このスラリーを 80°C/1時間加熱した。次にこのスラリーにステアリン酸ナ トリウムの 10wt%水溶液 0.9リットルをカ卩え、 80°Cで 1時間攪拌した後、このスラリー 力 表面処理水酸ィ匕マグネシウムをろ過にて分離、水洗、乾燥、粉砕して水酸化マ グネシゥム 5を得た。
[0180] (6)水酸化マグネシウム 6
水酸ィ匕マグネシウムのスラリー(濃度: 150g/リットル) 20リットルを 80°Cに加熱し、ケ ィ酸ナトリウムを SiOとして 1.5gカ卩えた後、スラリーの pHが 9になるまで硫酸を 1時間 かけて滴下し、このスラリーを 80°C/1時間加熱した。このスラリー力 表面処理水酸 化マグネシウムをろ過にて分離、水洗、乾燥、粉砕して水酸ィ匕マグネシウム 6を得た。
[0181] (7)水酸化マグネシウム 7
水酸ィ匕マグネシウムのスラリー(濃度: 150g/リットル) 20リットルを 80°Cに加熱し、ケ ィ酸ナトリウムを SiOとして 900gカ卩えた後、スラリーの pHが 9になるまで硫酸を 1時間
2
かけて滴下し、このスラリーを 80°C/1時間加熱した。このスラリー力 表面処理水酸 化マグネシウムをろ過にて分離、水洗、乾燥、粉砕して水酸ィ匕マグネシウム 7を得た。
[0182] (8)水酸化マグネシウム 8
水酸ィ匕マグネシウムのスラリー (濃度: 150g/リットル) 20リットルをろ過にて分離、水 洗、乾燥、粉砕した。この水酸ィ匕マグネシウムを乾式で攪拌しながらメチルハイドロジ エンポリシロキサン 90gをカ卩え、 10分間攪拌した後、 150°C/1時間加熱処理して水 酸ィ匕マグネシウム 8を得た。
[0183] (9)水酸化マグネシウム 9
何も処理を施さない水酸化マグネシウムを水酸化マグネシウム 9とした。
[0184] 合成した各種水酸化マグネシウムの処理比率を表 1に示す。
[表 1] 表 1 各種水酸化マグネシウム
Figure imgf000051_0001
[0185] (離型剤の合成例)
aーォレフインと無水マレイン酸との共重合物として 1 エイコセン、 1ードコセンお よび 1ーテトラコセンの混合物と無水マレイン酸との共重合物(日本油脂株式会社製 商品名ニッサンエレクトール WPB— 1)、一価のアルコールとしてステアリルアルコー ルを用い、これらをトルエンに溶解して 100°Cで 8時間反応させた後、 160°Cまで段 階的に昇温しながらトルエンを除去し、さらに減圧下 160°Cで 6時間反応させて未反 応分を除去し、重量平均分子量 34, 000、モノエステル化率 70モル%のエステル化 化合物((1)成分:離型剤 3)を得た。ここで、重量平均分子量は、溶媒として THF (テ トラヒドロフラン)を用いて GPCで測定した値である。
(実施例 1〜21、比較例 1〜7)
エポキシ榭脂として、エポキシ当量 196、融点 106°Cのビフエ-ル型エポキシ榭脂( ジャパンエポキシレジン株式会社製商品名ェピコート YX—4000H:エポキシ榭脂 1 )、エポキシ当量 245、融点 110°Cの硫黄原子含有エポキシ榭脂 (東都化成株式会 社製商品名 YSLV—120TE :エポキシ榭脂 2)、エポキシ当量 266、軟化点 67°Cの β—ナフトール'ァラルキル型エポキシ榭脂 (東都化成株式会社製商品名 ESN— 1 75:エポキシ榭脂 3)及びエポキシ当量 195、軟化点 65°Cの ο—クレゾ一ルノボラック 型エポキシ榭脂 (住友化学工業株式会社製商品名 ESCN— 190:エポキシ榭脂 4)、 硬化剤として軟化点 70°C、水酸基当量 175のフエノール'ァラルキル榭脂(三井化学 株式会社製商品名ミレックス XLC— 3L :硬化剤 1)、軟ィ匕点 80°C、水酸基当量 199 のビフエニル ·ァラルキル榭脂 (明和化成株式会社製商品名 MEH - 7851 :硬化剤 2)及び軟ィ匕点 80°C、水酸基当量 106のフエノールノボラック榭脂(明和化成株式会 社製商品名 H— 1 :硬化剤 3)、
硬化促進剤としてトリフエニルホスフィン (硬化促進剤 1)、トリフエ-ルホスフィンと 1, 4 —ベンゾキノンの付加物(硬化促進剤 2)及びトリブチルホスフィンと 1, 4—ベンゾキノ ンの付加物 (硬化促進剤 3)、
カップリング剤として γ—グリシドキシプロピルトリメトキシシラン (エポキシシラン)、 2 級アミノ基を含有するシランカップリング剤として γ—ァ-リノプロピルトリメトキシシラ ン(ァニリノシラン)、
難燃剤として上記表 1に示す各種表面被覆水酸ィ匕マグネシウム (水酸化マグネシゥ ム 1〜9)、酸ィ匕亜鉛、芳香族縮合リン酸エステル (大八化学工業株式会社製商品名 PX— 200)、トリフエ-ルホスフィンオキサイド、三酸化アンチモン及びエポキシ当量 397、軟化点 69°C、臭素含量 49質量%のビスフエノール A型ブロム化エポキシ榭脂 (東都化成株式会社製商品名 YDB— 400)、
無機充填剤として平均粒径 14.5 m、比表面積 2.8m2Zgの球状溶融シリカ、 その他の添加剤としてカルナバワックス (離型剤 1)、重量平均分子量 8, 800、針入 度 1、酸価 30mgZKOHの直鎖型酸ィ匕ポリエチレン( (H)成分:離型剤 2:クラリアン トネ土製商品名 PED153)、上記で調製した (I)成分 (離型剤 3)、及びカーボンブラック (三菱ィ匕学株式会社製商品名 MA— 100)をそれぞれ表 2〜表 5に示す質量部で配 合し、混練温度 80°C、混練時間 10分の条件でロール混練を行い、実施例 1〜21、 比較例 1〜7を作製した。
[表 2] 表 2 配合組成 1
実 S例
配合成分
1 2 3 4 5 6 7 8
エポキシ樹脂 1 100 100 100 100 100 100 100 100
エポキシ樹脂 2
エポキシ樹脂 3
エポキシ樹脂 4
臭素化 'キシ樹脂
硬化剤 1 89 89 89 89 89 89 89 89
硬化剤 2
硬化剤 3
硬化促進剤 1
硬化促進剤 2 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
硬化促進剤 3
水酸化マグネシウム 1 100 100
水酸化マグネシウム 2 100
水酸化マグネシウム 3 100
水酸化マグネシウム 4 100
水酸化マグネシウム 5 100
水酸化マグネシウム 6 100
水酸化マグネシウム 7 100
水酸化マグネシウム 8
水酸化マグネシウム 9
酸化亜鉛
リン酸エステル
トリフ 1ニルポスフイン才キサ仆'
三酸化アンチモン
エポキシシラン 1.0 1.0 1.0 1.0 1.0 1.0 1.0
ァニリノシラン 1.0 離型剤 1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 離型剤 2
離型剤 3
为ーボンブラック 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 溶融シリカ 953 953 953 953 953 953 953 953 充填剤最 (重量 X〉 & 4 84 84 84 84 84 84 84 [表 3] 表 3 配合組成 2
Figure imgf000054_0001
[表 4]
表 4 配合組成 3
Figure imgf000055_0001
[表 5]
表 5 K合組成 4
Figure imgf000056_0001
[0187] 作製した実施例 1〜21、比較例 1〜7の封止用エポキシ樹脂成形材料の特性を、 次の各試験により求めた。結果を表 6〜9表に示す。
[0188] (1)スパイラルフロー
EMMI— 1— 66に準じたスパイラルフロー測定用金型を用いて、封止用エポキシ 榭脂成形材料をトランスファ成形機により、金型温度 180°C、成形圧力 6. 9MPa、硬 化時間 90秒の条件で成形し、流動距離 (cm)を求めた。
[0189] (2)熱時硬度 封止用エポキシ榭脂成形材料を上記(1)の成形条件で直径 50mm X厚さ 3mmの 円板に成形し、成形後直ちにショァ D型硬度計を用いて測定した。
[0190] (3)難燃性
厚さ 1Z16インチの試験片を成形する金型を用いて、封止用エポキシ榭脂成形材 料を上記(1)の成形条件で成形して、さらに 180°Cで 5時間後硬化を行い、 UL- 94 試験法に従って難燃性を評価した。
[0191] (4)耐酸性
8mm X 10mm X O. 4mmのシリコンチップを搭載した外开寸法 20mm X 14mm X 2mmの 80ピンフラットパッケージ (QFP)を、封止用エポキシ榭脂成形材料を用い て上記(3)の条件で成形、後硬化して作製し、半田メツキ処理を行い、表面の腐食の 度合いを目視で観察した。
[0192] (5)せん断離型性
縦 50mm X横 35mm X厚さ 0. 4mmのクロムめつきステンレス板を挿入し、この上 に直径 20mmの円板を成形する金型を用いて、封止用エポキシ榭脂成形材料を上 記条件で成形し、成形後直ちに該ステンレス板を引き抜!、て最大引き抜き力を記録 した。これを同一のステンレス板に対して連続で 10回繰り返し、 2回目から 10回目ま での引き抜き力の平均値を求めて評価した。
[0193] (6)耐リフロー性
8mm X 10mm X O. 4mmのシリコンチップを搭載した外开寸法 20mm X 14mm X 2mmの 80ピンフラットパッケージ (QFP)を、封止用エポキシ榭脂成形材料を用い て上記(3)の条件で成形、後硬化して作製し、 85°C、 85%RHの条件で加湿して所 定時間毎に 240°C、 10秒の条件でリフロー処理を行い、クラックの有無を観察し、試 験パッケージ数(5個)に対するクラック発生パッケージ数で評価した。
[0194] (7)耐湿性
5 μ m厚の酸化膜上に線幅 10 m、厚さ 1 mのアルミ配線を施した 6mm X 6mm X O. 4mmのテスト用シリコンチップを搭載した外形寸法 20mm X 14mm X 2. 7mm の 80ピンフラットパッケージ (QFP)を、封止用エポキシ榭脂成形材料を用いて上記( 3)の条件で成形、後硬化して作製し、前処理を行った後、加湿して所定時間毎にァ ルミ配線腐食による断線不良を調べ、試験パッケージ数(10個)に対する不良パッケ ージ数で評価した。
[0195] なお、前処理は 85°C、 85%RH、 72時間の条件でフラットパッケージを加湿後、 21 5°C、 90秒間のベーパーフェーズリフロー処理を行った。その後の加湿は 0. 2MPa 、 121°Cの条件で行った。
[0196] (8)高温放置特性
5 μ m厚の酸化膜上に線幅 10 m、厚さ 1 mのアルミ配線を施した 5mm X 9mm X O. 4mmのテスト用シリコンチップを、部分銀メツキを施した 42ァロイのリードフレー ム上に銀ペーストを用いて搭載し、サーモニック型ワイヤボンダにより、 200°Cでチッ プのボンディングパッドとインナリードを Au線にて接続した 16ピン型 DIP (Dual Inli ne Package)を、封止用エポキシ榭脂成形材料を用いて上記(3)の条件で成形、 後硬化して作製して、 200°Cの高温槽中に保管し、所定時間毎に取り出して導通試 験を行い、試験パッケージ数(10個)に対する導通不良パッケージ数で、高温放置 特性を評価した。
[表 6] 表 6 封止材物性 1
Figure imgf000058_0001
[表 7] 表 7 封止材物性 2
Figure imgf000059_0001
[表 8]
表 8 封止材物性 3
Figure imgf000059_0002
9] 表 9 封止材物性 3
Figure imgf000060_0001
[0197] 本発明におけるシリカにて被覆されて 、る水酸ィ匕マグネシウムを含まな 、水酸化マ グネシゥムを使用した比較例 1、 2は全て耐酸性に劣っており、また難燃剤を配合して V、な 、比較例 3及び酸ィ匕亜鉛のみを用いた比較例 4は難燃性に劣っており、 UL- 9 4 V—0を達成していない。またリン系難燃剤のみを使用した比較例 5、 6は耐湿性 に劣っている。臭素系難燃剤/アンチモン系難燃剤を使用した比較例 7は高温放置 特性に劣っている。
[0198] これに対し、本発明の構成成分を全て含んだ実施例 1〜21は全て UL— 94 V— 0 を達成し、難燃性が良好で、また耐酸性、成形性も良好である。さらには実施例 1〜1 7、 19〜21は耐リフロー性に優れ、実施例 1〜21は耐湿性及び高温放置特性に優 れるといった信頼性にも優れている。
産業上の利用の可能性
[0199] 本発明による封止用エポキシ榭脂成形材料は難燃性が良好で、かつ成形性ゃ耐リ フロー性、耐湿性及び高温放置特性等の信頼性が良好な電子部品装置等の製品を 得ることができ、その工業的価値は大である。

Claims

請求の範囲
[1] (A)エポキシ榭脂、(B)硬化剤、(C)水酸ィ匕マグネシウムを含有し、(C)水酸化マ グネシゥムがシリカにて被覆されて ヽるものを含む封止用エポキシ榭脂成形材料。
[2] シリカにて被覆されて 、る水酸ィ匕マグネシウムが水酸ィ匕マグネシウムに対して SiO
2 換算にて 0.1〜20質量%のシリカからなる被覆層を有する請求の範囲第 1項記載の 封止用エポキシ榭脂成形材料。
[3] シリカにて被覆されている水酸ィ匕マグネシウムがシリカ力もなる被覆層の上にアルミ ナ、チタ-ァ及びジルコユア力 選ばれる少なくとも 1種を被覆しているものを含む請 求の範囲第 1項又は第 2項記載の封止用エポキシ榭脂成形材料。
[4] シリカにて被覆されて!、る水酸ィ匕マグネシウムがシリカ力もなる被覆層の中にアルミ ナ、チタ-ァ及びジルコユア力 選ばれる少なくとも 1種を含有しているものを含む請 求の範囲第 1項又は第 2項記載の封止用エポキシ榭脂成形材料。
[5] シリカ被覆層の上に被覆又はシリカ被覆層に含有しているアルミナ、チタ-ァ及び ジルコニァから選ばれる少なくとも 1種が水酸化マグネシウムに対して Al O、 TiO及
2 3 2 び ZrO換算にて 0.03〜 10質量%である請求の範囲第 3項又は第 4項記載の封止
2
用エポキシ榭脂成形材料。
[6] シリカにて被覆されている水酸ィ匕マグネシウムがシリカからなる被覆層の上に高級 脂肪酸、高級脂肪酸アルカリ金属塩、多価アルコール高級脂肪酸エステル、ァニォ ン系界面活性剤、リン酸エステル、シランカップリング剤、アルミニウムカップリング剤 、チタネートカップリング剤、オルガノシラン、オルガノシロキサン及びオルガノシラザ ン力 選ばれる少なくとも 1種の表面処理剤にて表面処理されてなる請求の範囲第 1 項又は第 2項記載の封止用エポキシ榭脂成形材料。
[7] アルミナ、チタ-ァ及びジルコユアカゝら選ばれる少なくとも 1種をシリカ被覆層の上 に被覆又はシリカ被覆層に含有している水酸ィ匕マグネシウムがさらに高級脂肪酸、 高級脂肪酸アルカリ金属塩、多価アルコール高級脂肪酸エステル、ァニオン系界面 活性剤、リン酸エステル、シランカップリング剤、アルミニウムカップリング剤、チタネー トカップリング剤、オルガノシラン、オルガノシロキサン及びオルガノシラザンカゝら選ば れる少なくとも 1種の表面処理剤にて表面処理されてなる請求の範囲第 3項〜第 5項
V、ずれか記載の封止用エポキシ榭脂成形材料。
(C)水酸ィ匕マグネシウムが (A)エポキシ榭脂 100質量部に対し、 5〜300質量部含 有する請求の範囲第 1項〜第 7項いずれか記載の封止用エポキシ榭脂成形材料。
(D)金属酸ィ匕物をさらに含有する請求の範囲第 1項〜第 8項いずれか記載の封止 用エポキシ榭脂成形材料。
(D)金属酸ィ匕物が典型金属元素の酸ィ匕物及び遷移金属元素の酸ィ匕物カゝら選ば れる請求の範囲第 9項記載の封止用エポキシ榭脂成形材料。
(D)金属酸ィ匕物が亜鉛、マグネシウム、銅、鉄、モリブデン、タングステン、ジルコ- ゥム、マンガン及びカルシウムの酸ィ匕物の少なくとも 1種である請求の範囲第 10項記 載の封止用エポキシ榭脂成形材料。
(A)エポキシ榭脂がビフエニル型エポキシ榭脂、ビスフエノール F型エポキシ榭脂、 スチルベン型エポキシ榭脂、硫黄原子含有エポキシ榭脂、ノボラック型エポキシ榭脂 、ジシクロペンタジェン型エポキシ榭脂、ナフタレン型エポキシ榭脂、トリフエ-ルメタ ン型エポキシ榭脂、ビフエ-レン型エポキシ榭脂及びナフトール ·ァラルキル型フエノ ール榭脂の少なくとも 1種を含有する請求の範囲第 1項〜第 11項いずれか記載の封 止用エポキシ榭脂成形材料。
硫黄原子含有エポキシ榭脂が下記一般式 (I)で示される化合物である請求の範囲 第 12項記載の封止用エポキシ榭脂成形材料。
[化 1]
Figure imgf000062_0001
(一般式 (I)で、 R R8は水素原子、置換又は非置換の炭素数 1〜10の一価の炭化 水素基から選ばれ、全てが同一でも異なっていてもよい。 nは 0〜3の整数を示す。)
(B)硬化剤がビフエ-ル型フエノール榭脂、ァラルキル型フエノール榭脂、ジシクロ ペンタジェン型フエノール榭脂、トリフエ-ルメタン型フエノール榭脂及びノボラック型 フエノール榭脂の少なくとも 1種を含有する請求の範囲第 1項〜第 13項いずれか記 載の封止用エポキシ榭脂成形材料。
[15] (E)硬化促進剤をさらに含有する請求の範囲第 1項〜第 14項いずれか記載の封 止用エポキシ榭脂成形材料。
[16] (E)硬化促進剤がホスフィン化合物とキノン化合物との付加物を含む請求の範囲 第 15項記載の封止用エポキシ榭脂成形材料。
[17] (E)硬化促進剤が、リン原子に少なくとも一つのアルキル基が結合したホスフィン化 合物とキノンィ匕合物との付加物を含む請求の範囲第 16項記載の封止用エポキシ榭 脂成形材料。
[18] (F)カップリング剤をさらに含有する請求の範囲第 1項〜第 17項いずれか記載の 封止用エポキシ榭脂成形材料。
[19] (F)カップリング剤が 2級アミノ基を有するシランカップリング剤を含有する請求の範 囲第 1項〜第 18項いずれか記載の封止用エポキシ榭脂成形材料。
[20] 2級アミノ基を有するシランカップリング剤が下記一般式 (Π)で示される化合物を含 有する請求の範囲第 19項記載の封止用エポキシ榭脂成形材料。
[化 2]
Figure imgf000063_0001
(一般式 (II)で、 R1は水素原子、炭素数 1〜6のアルキル基及び炭素数 1〜2のアル コキシ基力 選ばれ、 R2は炭素数 1〜6のアルキル基及びフ -ル基力 選ばれ、 R3 はメチル基又はェチル基を示し、 nは 1〜6の整数を示し、 mは 1〜3の整数を示す。 )
[21] (G)リン原子を有する化合物をさらに含有する請求の範囲第 1項〜第 20項のいず れかに記載の封止用エポキシ榭脂成形材料。
[22] (G)リン原子を有する化合物がリン酸エステル化合物を含有する請求の範囲第 21 項記載の封止用エポキシ榭脂成形材料。
[23] リン酸エステルイ匕合物が下記一般式 (III)で示される化合物を含有する請求の範囲 第 22項記載の封止用エポキシ榭脂成形材料。 [化 3]
Figure imgf000064_0001
(一般式(III)で、式中の 8個の Rは炭素数 1〜4のアルキル基を示し、全て同一でも 異なっていてもよい。 Arは芳香族環を示す。 )
(G)リン原子を有する化合物がホスフィンオキサイドを含有し、該ホスフィンォキサイ ドが下記一般式 (IV)で示されるホスフィン化合物を含有する請求の範囲第 21項記 載の封止用エポキシ榭脂成形材料。
[化 4]
Figure imgf000064_0002
(一般式 (IV)で、 R IT及び R"は炭素数 1〜10の置換又は非置換のアルキル基、 ァリール基、ァラルキル基または水素原子を示し、すべて同一でも異なってもよい。 ただしすべてが水素原子である場合を除く。 )
[25] (H)重量平均分子量が 4, 000以上の直鎖型酸化ポリエチレン、および (I)炭素数 5〜30の aーォレフインと無水マレイン酸との共重合物を炭素数 5〜25の一価のァ ルコールでエステルィヒした化合物をさらに含有する請求の範囲第 1項〜第 24項 、ず れか記載の封止用エポキシ榭脂成形材料。
[26] (H)成分および (I)成分の少なくとも一方が、(A)成分の一部または全部と予備混 合されてなる請求の範囲第 25項記載の封止用エポキシ榭脂成形材料。
[27] CO無機充填剤をさらに含有する請求の範囲第 1項〜第 26項いずれか記載の封止 用エポキシ榭脂成形材料。
[28] (C)水酸化マグネシウムと ω無機充填剤の含有量の合計が封止用エポキシ榭脂 成形材料に対して 60〜95質量%である請求の範囲第 27項記載の封止用エポキシ 榭脂成形材料。
[29] 請求の範囲第 1項〜第 28項の 、ずれかに記載の封止用エポキシ榭脂成形材料で 封止された素子を備えた電子部品装置。
PCT/JP2005/012830 2004-07-13 2005-07-12 封止用エポキシ樹脂成形材料及び電子部品装置 WO2006006592A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2005800235580A CN1984960B (zh) 2004-07-13 2005-07-12 密封用环氧树脂成形材料及电子零件装置
US11/572,155 US20080039556A1 (en) 2004-07-13 2005-07-12 Encapsulated Epoxy-Resin Molding Compound, And Electronic Component Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004206388 2004-07-13
JP2004-206388 2004-07-13

Publications (1)

Publication Number Publication Date
WO2006006592A1 true WO2006006592A1 (ja) 2006-01-19

Family

ID=35783931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012830 WO2006006592A1 (ja) 2004-07-13 2005-07-12 封止用エポキシ樹脂成形材料及び電子部品装置

Country Status (6)

Country Link
US (1) US20080039556A1 (ja)
JP (1) JP2012025964A (ja)
KR (1) KR100846547B1 (ja)
CN (1) CN1984960B (ja)
TW (1) TW200610106A (ja)
WO (1) WO2006006592A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5576930B2 (ja) * 2010-03-26 2014-08-20 パナソニック株式会社 プリプレグ用エポキシ樹脂組成物、プリプレグ、及び多層プリント配線板

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126626A (ja) * 2003-10-27 2005-05-19 Fuji Xerox Co Ltd 難燃性樹脂組成物及びその製造方法、難燃樹脂成型物
US7846998B2 (en) * 2004-03-03 2010-12-07 Hitachi Chemical Co., Ltd. Sealant epoxy-resin molding material, and electronic component device
WO2006006593A1 (ja) * 2004-07-13 2006-01-19 Hitachi Chemical Co., Ltd. 封止用エポキシ樹脂成形材料及び電子部品装置
JP4997704B2 (ja) 2005-02-24 2012-08-08 富士ゼロックス株式会社 表面被覆難燃性粒子及びその製造方法、並びに難燃性樹脂組成物及びその製造方法
JP2006265417A (ja) * 2005-03-24 2006-10-05 Fuji Xerox Co Ltd 難燃性樹脂組成物及び難燃性樹脂成形品
JP4961677B2 (ja) * 2005-03-28 2012-06-27 富士ゼロックス株式会社 難燃性エポキシ樹脂組成物並びにそれを用いた電子部品装置、積層基板、多層回路基板及びプリント配線基板
JP2007002120A (ja) * 2005-06-24 2007-01-11 Fuji Xerox Co Ltd 難燃性樹脂組成物及び難燃性樹脂成形品
US20090137717A1 (en) * 2005-07-13 2009-05-28 Ryoichi Ikezawa Encapsulated epoxy resin composition and electronic component device
ATE508154T1 (de) * 2008-05-15 2011-05-15 Evonik Degussa Gmbh Elektronische verpackung
EP2385962B1 (en) * 2009-01-06 2015-09-02 Dow Global Technologies LLC Metal stabilizers for epoxy resins and advancement process
JP5441477B2 (ja) * 2009-04-01 2014-03-12 新日鉄住金化学株式会社 難燃性リン含有エポキシ樹脂組成物及びその硬化物
SG185503A1 (en) * 2010-05-28 2012-12-28 Sumitomo Bakelite Co Method of manufacturing esterified substance
ITMI20101492A1 (it) * 2010-08-04 2012-02-05 Claudio Martinuzzi Composizione per il rivestimento di utensili per lavorazione meccanica o stampi rotazionali e metodo per il suo impiego
JP5923942B2 (ja) * 2011-11-18 2016-05-25 日立化成株式会社 半導体封止用エポキシ樹脂組成物およびそれを用いた半導体装置
CN102585663B (zh) * 2012-02-06 2013-11-20 苏州太湖电工新材料股份有限公司 一种电机用无卤阻燃耐高温绝缘漆
CN102917574B (zh) * 2012-10-24 2015-05-27 华为技术有限公司 导热垫、制造导热垫的方法、散热装置和电子设备
JP5870912B2 (ja) * 2012-12-20 2016-03-01 住友金属鉱山株式会社 保護膜層用封止剤組成物及びそれを用いた電子部品
CN103861648A (zh) * 2014-03-14 2014-06-18 蔡海 催化剂及其制备方法
WO2016029452A1 (en) * 2014-08-29 2016-03-03 Blue Cube Ip Llc Naphthalene based epoxy for halogen-free and flame retardant compositions
CN105802127B (zh) * 2014-12-29 2018-05-04 广东生益科技股份有限公司 一种无卤热固性树脂组合物及使用它的预浸料以及印制电路用层压板
WO2018011904A1 (ja) * 2016-07-13 2018-01-18 三菱電機株式会社 熱硬化性樹脂組成物及びこれを用いた固定子コイル、並びに回転電機
JP6852627B2 (ja) * 2017-09-11 2021-03-31 味の素株式会社 樹脂組成物
JP6859916B2 (ja) * 2017-10-13 2021-04-14 味の素株式会社 樹脂組成物層
CN113897163B (zh) * 2021-12-09 2022-03-11 武汉市三选科技有限公司 一种粘接剂、芯片键合膜及其制备方法
CN114292615B (zh) * 2022-03-10 2022-06-03 武汉市三选科技有限公司 组合物、胶膜及芯片封装结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01320219A (ja) * 1988-06-23 1989-12-26 Nippon Chem Ind Co Ltd シリカ被覆水酸化マグネシウム及びその製造法
JPH10338818A (ja) * 1997-06-06 1998-12-22 Kyowa Chem Ind Co Ltd 耐酸性水酸化マグネシウム粒子難燃剤および難燃性樹脂組成物
WO2002077121A1 (fr) * 2001-03-27 2002-10-03 Kyowa Chemical Industry Co., Ltd. Produit ignifuge, procede de production associe et composition de resine ignifuge
JP2003289123A (ja) * 2000-09-25 2003-10-10 Hitachi Chem Co Ltd 封止用エポキシ樹脂成形材料の使用
JP2004107584A (ja) * 2002-09-20 2004-04-08 Hitachi Chem Co Ltd 封止用エポキシ樹脂成形材料及び素子を備えた電子部品装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3532668A (en) * 1968-07-01 1970-10-06 American Cyanamid Co Synergistic flame-retardant compositions
EP0978542B1 (en) * 1997-04-21 2007-10-24 Nitto Denko Corporation Semiconductor sealing resin composition, semiconductor device sealed with the same, and process for preparing semiconductor device
JP3460820B2 (ja) * 1999-12-08 2003-10-27 日本電気株式会社 難燃性エポキシ樹脂組成物
TW587094B (en) * 2000-01-17 2004-05-11 Sumitomo Bakelite Co Flame-retardant resin composition comprising no halogen-containing flame retardant, and prepregs and laminates using such composition
WO2002024808A1 (en) * 2000-09-25 2002-03-28 Hitachi Chemical Co., Ltd. Epoxy resin molding material for sealing
US6632530B1 (en) * 2001-05-18 2003-10-14 Ensci Inc Metal oxide coated substrates
JP2003226739A (ja) * 2002-02-07 2003-08-12 Toray Ind Inc エポキシ樹脂組成物及び半導体装置
JP3840989B2 (ja) * 2002-03-01 2006-11-01 日立化成工業株式会社 封止用エポキシ樹脂組成物および電子部品装置
AU2003202139A1 (en) * 2002-02-27 2003-09-09 Hitachi Chemical Co., Ltd. Encapsulating epoxy resin composition, and electronic parts device using the same
AU2002354468A1 (en) * 2002-03-22 2003-10-08 Hitachi Chemical Co., Ltd. Epoxy resin molding material for encapsulation and electronic components and devices
JP3976652B2 (ja) * 2002-09-10 2007-09-19 日東電工株式会社 半導体封止用エポキシ樹脂組成物およびそれを用いた半導体装置
CN1162513C (zh) * 2002-12-03 2004-08-18 中国铝业股份有限公司 一种氢氧化铝阻燃剂的制备方法
TWI281924B (en) * 2003-04-07 2007-06-01 Hitachi Chemical Co Ltd Epoxy resin molding material for sealing use and semiconductor device
JP4947612B2 (ja) * 2004-04-28 2012-06-06 神島化学工業株式会社 水酸化マグネシウム系難燃剤とその製造方法、及び難燃性樹脂組成物
JP5400267B2 (ja) * 2005-12-13 2014-01-29 日立化成株式会社 封止用エポキシ樹脂組成物及び電子部品装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01320219A (ja) * 1988-06-23 1989-12-26 Nippon Chem Ind Co Ltd シリカ被覆水酸化マグネシウム及びその製造法
JPH10338818A (ja) * 1997-06-06 1998-12-22 Kyowa Chem Ind Co Ltd 耐酸性水酸化マグネシウム粒子難燃剤および難燃性樹脂組成物
JP2003289123A (ja) * 2000-09-25 2003-10-10 Hitachi Chem Co Ltd 封止用エポキシ樹脂成形材料の使用
WO2002077121A1 (fr) * 2001-03-27 2002-10-03 Kyowa Chemical Industry Co., Ltd. Produit ignifuge, procede de production associe et composition de resine ignifuge
JP2004107584A (ja) * 2002-09-20 2004-04-08 Hitachi Chem Co Ltd 封止用エポキシ樹脂成形材料及び素子を備えた電子部品装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5576930B2 (ja) * 2010-03-26 2014-08-20 パナソニック株式会社 プリプレグ用エポキシ樹脂組成物、プリプレグ、及び多層プリント配線板

Also Published As

Publication number Publication date
CN1984960B (zh) 2011-04-20
CN1984960A (zh) 2007-06-20
US20080039556A1 (en) 2008-02-14
JP2012025964A (ja) 2012-02-09
KR20070039584A (ko) 2007-04-12
TWI360867B (ja) 2012-03-21
TW200610106A (en) 2006-03-16
KR100846547B1 (ko) 2008-07-15

Similar Documents

Publication Publication Date Title
WO2006006592A1 (ja) 封止用エポキシ樹脂成形材料及び電子部品装置
KR100840065B1 (ko) 밀봉용 에폭시 수지 성형 재료 및 전자 부품 장치
KR100870809B1 (ko) 봉지용 에폭시 수지 성형 재료 및 전자 부품 장치
KR101342206B1 (ko) 밀봉용 에폭시 수지 조성물 및 전자 부품 장치
JP5298400B2 (ja) 封止用エポキシ樹脂成形材料及び電子部品装置
JP2006193619A (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JP4977973B2 (ja) 封止用エポキシ樹脂成形材料及び電子部品装置
JP4930767B2 (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JP2010090216A (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JP2004115583A (ja) 封止用エポキシ樹脂成形材料及び電子部品装置
JP3840989B2 (ja) 封止用エポキシ樹脂組成物および電子部品装置
JP2006193618A (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JP2009221357A (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JP3982325B2 (ja) 封止用エポキシ樹脂成形材料及び電子部品装置
JP2007262385A (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JP3891022B2 (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JPWO2003080726A1 (ja) 封止用エポキシ樹脂成形材料及び電子部品装置
JP2010090300A (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JP2011246545A (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JP2010084091A (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JP2011252104A (ja) 封止用エポキシ樹脂組成物及びこの組成物で封止した素子を備えた電子部品装置
JP2009102635A (ja) 封止用エポキシ樹脂成形材料、及びこの封止用エポキシ樹脂成形材料で封止した素子を備えた電子部品装置
JP2008195820A (ja) 封止用エポキシ樹脂組成物及びこの樹脂組成物で封止された素子を備えた電子部品装置
JP2007161804A (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JP2007039652A (ja) 封止用エポキシ樹脂組成物及び電子部品装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580023558.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11572155

Country of ref document: US

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077002801

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020077002801

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11572155

Country of ref document: US