JP2010084091A - 封止用エポキシ樹脂組成物及び電子部品装置 - Google Patents

封止用エポキシ樹脂組成物及び電子部品装置 Download PDF

Info

Publication number
JP2010084091A
JP2010084091A JP2008257368A JP2008257368A JP2010084091A JP 2010084091 A JP2010084091 A JP 2010084091A JP 2008257368 A JP2008257368 A JP 2008257368A JP 2008257368 A JP2008257368 A JP 2008257368A JP 2010084091 A JP2010084091 A JP 2010084091A
Authority
JP
Japan
Prior art keywords
epoxy resin
group
carbon atoms
sealing
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008257368A
Other languages
English (en)
Other versions
JP5316853B2 (ja
Inventor
Ryoichi Ikezawa
良一 池澤
Hiroyuki Saito
裕之 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2008257368A priority Critical patent/JP5316853B2/ja
Publication of JP2010084091A publication Critical patent/JP2010084091A/ja
Application granted granted Critical
Publication of JP5316853B2 publication Critical patent/JP5316853B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

【課題】BGAパッケージにおける反りが小さく、かつ室温〜リフロー温度における反りの温度変化が小さく、2次実装時の不良が少なく、また流動性が良好でボイドや金線流れといった不良の発生も少なく、かつ成形性や耐湿性、高温放置特性等の信頼性を低下させずにノンハロゲン、ノンアンチモンで難燃性が良好な封止用エポキシ樹脂組成物、及びこれにより封止した素子を備えた電子部品装置を提供する。
【解決手段】(A)エポキシ樹脂、(B)硬化剤を含有し、(A)エポキシ樹脂が下記一般式(I)で示される化合物を含有する封止用エポキシ樹脂組成物。
Figure 2010084091

【選択図】なし

Description

本発明は、封止用エポキシ樹脂組成物及びこの組成物で封止した素子を備えた電子部品装置に関する。
近年、半導体素子の高密度実装化が進んでいる。これに伴い、樹脂封止型半導体装置は従来のDIPといったピン挿入型のパッケージからQFP、SOP等の面実装型のパッケージが主流になっている。面実装型のIC、LSI等は、実装密度を高くし、実装高さを低くするために薄型、小型のパッケージになっており、素子のパッケージに対する占有面積が大きくなり、パッケージの肉厚は非常に薄くなってきている。さらに実装密度を高める目的からBGA(Ball Grid Array)と呼ばれるエリアアレイタイプのパッケージの需要が増えてきている。本パッケージはチップを搭載した有機配線基板に対し片面に封止材をモールドするため、通常のリードフレームタイプのパッケージよりも反り量が大きくなる問題がある。特にはBGAをマザーボードに搭載する2次実装時に、リフロー工程で室温からリフロー温度(約260℃)に上げ、さらに冷却する際にパッケージの反りの変化量が大きいとはんだボールが外れる等の不良が発生する。また最近では生産性の観点から、複数のチップを搭載した有機配線基板の片面を一括封止した後、ダイシングして個片化するMAP(Mold Array Package)がBGAの中で増加している。本パッケージは大きな面積を一括でモールドするため、ボイドや金線流れといった不良を起こさないために高い流動性が要求される。特に近年、狭パッドピッチ化のため金線が細くなってきており、より一層の流動性が求められている。
このような要求に対して、特に反りを低減する目的として多官能樹脂を用いたり(例えば特許文献1参照)、充填剤量や硬化収縮率、線膨張係数を規定したり(例えば特許文献2参照)、シロキサン化合物を配合したり(例えば特許文献3参照)といった発明がある。また流動性を向上させる目的で結晶性エポキシ樹脂を配合する(例えば特許文献4参照)発明がある。
特開平10−279663号公報 特開平9−181226号公報 特開11−106612号公報 特開11−67982号公報
しかしながら、多官能樹脂を用いる場合(例えば特許文献1参照)、充填剤量や硬化収縮率、線膨張係数を規定する場合(例えば特許文献2参照)、シロキサン化合物を用いる場合(例えば特許文献3参照)においても、反り量やリフロー時の反りの変化量が大きく、2次実装時の不良を解決するに至っていない。また結晶性エポキシ樹脂を用いる場合(例えば特許文献4参照)においても流動性が十分ではなく、ボイドや金線流れといった不良を解決するに至っていない。
本発明はかかる状況に鑑みなされたもので、BGAパッケージにおける反りが小さく、かつ室温(25℃)〜リフロー温度における反りの温度変化が小さく、2次実装時の不良が少なく、また流動性が良好でボイドや金線流れといった不良の発生も少なく、かつ成形性や耐湿性、高温放置特性等の信頼性を低下させずにノンハロゲン、ノンアンチモンで難燃性が良好な封止用エポキシ樹脂組成物、及びこれにより封止した素子を備えた電子部品装置を提供するものである。
本発明者らは上記の課題を解決するために鋭意検討を重ねた結果、特定のエポキシ樹脂を配合した封止用エポキシ樹脂組成物により上記の目的を達成しうることを見い出し、本発明を完成するに至った。
本発明は以下に関する。
(1)(A)エポキシ樹脂、(B)硬化剤を含有し、(A)エポキシ樹脂が下記一般式(I)で示される化合物を含有する封止用エポキシ樹脂組成物。
Figure 2010084091
(一般式(I)中のRは、置換又は非置換の炭素数1〜12の炭化水素基及び置換又は非置換の炭素数1〜12のアルコキシ基から選ばれ、全てが同一でも異なっていてもよい。nは0〜2の整数を示す。またRは、置換又は非置換の炭素数1〜12の炭化水素基及び置換又は非置換の炭素数1〜12のアルコキシ基から選ばれ、全てが同一でも異なっていてもよい。mは0〜4の整数を示す。)
(2)(B)硬化剤が下記一般式(II)で示される化合物を含有する上記(1)記載の封止用エポキシ樹脂組成物。
Figure 2010084091
(ここで、Rは水素原子、炭素数1〜6のアルキル基及び炭素数1〜2のアルコキシ基から選ばれ、互いに同一であっても異なってもよい。nは整数を示す。)
(3)さらに(A)エポキシ樹脂が下記一般式(III)及び/又は(IV)で示されるエポキシ樹脂を含有する上記(1)又は(2)に記載の封止用エポキシ樹脂組成物。
Figure 2010084091

(ここで、R〜Rは水素原子、炭素数1〜10のアルキル基、炭素数1〜10のアルコキシル基、炭素数6〜10のアリール基、及び炭素数6〜10のアラルキル基から選ばれ、全てが同一でも異なっていてもよい。nは0〜3の整数を示す。)
Figure 2010084091
(ここで、R〜Rは水素原子、炭素数1〜10のアルキル基、炭素数1〜10のアルコキシル基、炭素数6〜10のアリール基、及び炭素数6〜10のアラルキル基から選ばれ、全てが同一でも異なっていてもよい。nは0〜3の整数を示す。)
(4)さらに(A)エポキシ樹脂が、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、硫黄原子含有エポキシ樹脂、ノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、一般式(I)以外のナフタレン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、ビフェニレン型エポキシ樹脂及びナフトール・アラルキル型エポキシ樹脂のうち少なくとも1種を含有する上記(1)〜(3)いずれかに記載の封止用エポキシ樹脂組成物。
(5)(B)硬化剤が、ビフェニレン型フェノールアラルキル樹脂、アラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、トリフェニルメタン型フェノール樹脂及びノボラック型フェノール樹脂のうち少なくとも1種を含有する上記(1)〜(4)いずれかに記載の封止用エポキシ樹脂組成物。
(6)さらに(C)硬化促進剤を含有する上記(1)〜(5)いずれかに記載の封止用エポキシ樹脂組成物。
(7)(C)硬化促進剤が第三ホスフィン化合物とキノン化合物との付加物である上記(6)記載の封止用エポキシ樹脂組成物。
(8)さらに(D)無機充填剤を含有する上記(1)〜(7)いずれかに記載の封止用エポキシ樹脂組成物。
(9)(D)無機充填剤の含有量が、60〜95重量%である上記(8)記載の封止用エポキシ樹脂組成物。
(10)さらに(E)カップリング剤を含有する上記(1)〜(9)いずれかに記載の封止用エポキシ樹脂組成物。
(11)(E)カップリング剤が2級アミノ基を有するシランカップリング剤を含有する上記(10)に記載の封止用エポキシ樹脂組成物。
(12)上記(1)〜(11)のいずれかに記載の封止用エポキシ樹脂組成物で封止された素子を備えた電子部品装置。
本発明による封止用エポキシ樹脂組成物はBGAにおける反りが小さく、かつ反りの温度変化が小さい電子部品装置等の製品を得ることができ、その工業的価値は大である。
本発明において用いられる(A)エポキシ樹脂は下記一般式(I)を含有することを特徴とする。
Figure 2010084091
(一般式(I)中のRは、置換又は非置換の炭素数1〜12の炭化水素基及び置換又は非置換の炭素数1〜12のアルコキシ基から選ばれ、全てが同一でも異なっていてもよい。nは0〜2の整数を示す。またRは、置換又は非置換の炭素数1〜12の炭化水素基及び置換又は非置換の炭素数1〜12のアルコキシ基から選ばれ、全てが同一でも異なっていてもよい。mは0〜4の整数を示す。)
上記一般式(I)で示されるエポキシ樹脂を含有することにより、BGAにおける反り量とリフロー時の反り変化量を低減することが可能となる。これは、ナフタレン環という剛直な骨格を有し、かつナフタレン環に2個のエポキシ基を有しているため、硬化物のガラス転移温度が高くなることに加え、ナフタレン環が有するスタッキング性によって分子鎖の拘束性が高まり、熱変化による収縮量が低減することによるものである。本性能を発揮するためには、その配合量はエポキシ樹脂全量に対して30重量%以上とすることが好ましく、50重量%以上とすることがより好ましく、70重量%以上とすることがさらに好ましい。
上記エポキシ樹脂の中でも、R、Rが水素原子であるものが反り量と反り変化量低減効果に優れることから好ましく、このような樹脂としてはYL−7619(ジャパンエポキシレジン株式会社製開発品名)が入手可能である。
本発明において用いられる(A)エポキシ樹脂は従来公知のエポキシ樹脂を併用することができる。併用可能なエポキシ樹脂としては、たとえば、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、トリフェニルメタン骨格を有するエポキシ樹脂をはじめとするフェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF等のフェノール類及び/又はα−ナフトール、β−ナフトール、ジヒドロキシナフタレン等のナフトール類とホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド、サリチルアルデヒド等のアルデヒド基を有する化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂をエポキシ化したもの、ビスフェノールA、ビスフェノールF、ビスフェノールS、アルキル置換又は非置換のビフェノール等のジグリシジルエーテル、スチルベン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、フタル酸、ダイマー酸等の多塩基酸とエピクロルヒドリンの反応により得られるグリシジルエステル型エポキシ樹脂、ジアミノジフェニルメタン、イソシアヌル酸等のポリアミンとエピクロルヒドリンの反応により得られるグリシジルアミン型エポキシ樹脂、ジシクロペンタジエンとフェノール類の共縮合樹脂のエポキシ化物、ナフタレン環を有するエポキシ樹脂、キシリレン骨格、ビフェニレン骨格を含有するフェノール・アラルキル樹脂、ナフトール・アラルキル樹脂等のアラルキル型フェノール樹脂のエポキシ化物、トリメチロールプロパン型エポキシ樹脂、テルペン変性エポキシ樹脂、オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂、脂環族エポキシ樹脂、硫黄原子含有エポキシ樹脂などが挙げられ、これらを単独で用いても2種以上を組み合わせて併用して用いてもよい。
なかでも流動性を向上させる観点からは、下記一般式(III)、(IV)で示されるエポキシ樹脂が好ましい。
Figure 2010084091

(ここで、R〜Rは水素原子、炭素数1〜10のアルキル基、炭素数1〜10のアルコキシル基、炭素数6〜10のアリール基、及び炭素数6〜10のアラルキル基から選ばれ、全てが同一でも異なっていてもよい。nは0〜3の整数を示す。)
Figure 2010084091
(ここで、R〜Rは水素原子、炭素数1〜10のアルキル基、炭素数1〜10のアルコキシル基、炭素数6〜10のアリール基、及び炭素数6〜10のアラルキル基から選ばれ、全てが同一でも異なっていてもよい。nは0〜3の整数を示す。)
上記一般式(III)で示されるエポキシ樹脂としては、例えば、R、R、R及びRがメチル基で、R、R、R及びRが水素原子であり、n=0を主成分とするYSLV−80XY(東都化成株式会社製商品名)等が市販品として入手可能である。また上記一般式(IV)で示されるエポキシ樹脂としては、例えば、R、R、R、R、R、R、R及びRが水素原子であり、n=0を主成分とするYL−6810(ジャパンエポキシ株式会社製商品名)等が市販品として入手可能である。
上記エポキシ樹脂の性能を発揮するためには、その配合量は、エポキシ樹脂全量に対して20重量%以上とすることが好ましく、30重量%以上がより好ましい。
また、流動性及び耐リフロー性の観点からはビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂及び硫黄原子含有エポキシ樹脂が好ましく、硬化性の観点からはノボラック型エポキシ樹脂が好ましく、低吸湿性の観点からはジシクロペンタジエン型エポキシ樹脂が好ましく、耐熱性及び低反り性の観点からはナフタレン型エポキシ樹脂及びトリフェニルメタン型エポキシ樹脂が好ましく、難燃性の観点からはビフェニレン型エポキシ樹脂及びナフトール・アラルキル型エポキシ樹脂が好ましい。また難燃性の良好な樹脂を用いてノンハロゲン、ノンアンチモンとすることが高温放置特性向上の観点から好ましい。
ビフェニル型エポキシ樹脂としてはたとえば下記一般式(V)で示されるエポキシ樹脂等が挙げられ、スチルベン型エポキシ樹脂としてはたとえば下記一般式(VI)で示されるエポキシ樹脂等が挙げられ、硫黄原子含有エポキシ樹脂としてはたとえば下記一般式(VII)で示されるエポキシ樹脂等が挙げられる。
Figure 2010084091
(ここで、R〜Rは水素原子及び炭素数1〜10の置換又は非置換の一価の炭化水素基から選ばれ、全てが同一でも異なっていてもよい。nは0〜3の整数を示す。)
Figure 2010084091
(ここで、R〜Rは水素原子及び炭素数1〜5の置換又は非置換の一価の炭化水素基から選ばれ、全てが同一でも異なっていてもよい。nは0〜10の整数を示す。)
Figure 2010084091
(ここで、R〜Rは水素原子、置換又は非置換の炭素数1〜10のアルキル基及び置換又は非置換の炭素数1〜10のアルコキシ基から選ばれ、全てが同一でも異なっていてもよい。nは0〜3の整数を示す。)
上記一般式(V)で示されるビフェニル型エポキシ樹脂としては、たとえば、4,4´−ビス(2,3−エポキシプロポキシ)ビフェニル又は4,4´−ビス(2,3−エポキシプロポキシ)−3,3´,5,5´−テトラメチルビフェニルを主成分とするエポキシ樹脂、エピクロルヒドリンと4,4´−ビフェノール又は4,4´−(3,3´,5,5´−テトラメチル)ビフェノールとを反応させて得られるエポキシ樹脂等が挙げられる。なかでも4,4´−ビス(2,3−エポキシプロポキシ)−3,3´,5,5´−テトラメチルビフェニルを主成分とするエポキシ樹脂が好ましい。このような化合物としてはYX−4000(ジャパンエポキシレジン株式会社製商品名)等が市販品として入手可能である。
上記一般式(VI)で示されるスチルベン型エポキシ樹脂は、原料であるスチルベン系フェノール類とエピクロルヒドリンとを塩基性物質存在下で反応させて得ることができる。この原料であるスチルベン系フェノール類としては、たとえば3−tert−ブチル−4,4′−ジヒドロキシ−3′,5,5′−トリメチルスチルベン、3−tert−ブチル−4,4′−ジヒドロキシ−3′,5′,6−トリメチルスチルベン、4,4´−ジヒドロキシ−3,3´,5,5´−テトラメチルスチルベン、4,4´−ジヒドロキシ−3,3´−ジ−tert−ブチル−5,5´−ジメチルスチルベン、4,4´−ジヒドロキシ−3,3´−ジ−tert−ブチル−6,6´−ジメチルスチルベン等が挙げられ、なかでも3−tert−ブチル−4,4′−ジヒドロキシ−3′,5,5′−トリメチルスチルベン、及び4,4´−ジヒドロキシ−3,3´,5,5´−テトラメチルスチルベンが好ましい。
上記一般式(VII)で示される硫黄原子含有エポキシ樹脂のなかでも、R、R、R及びRが水素原子で、R、R、R及びRがアルキル基であるエポキシ樹脂が好ましく、R、R、R及びRが水素原子で、R及びRがtert−ブチル基で、R及びRがメチル基であるエポキシ樹脂がより好ましい。このような化合物としては、YSLV−120TE(東都化成株式会社製商品名)等が市販品として入手可能である。
ノボラック型エポキシ樹脂としては、たとえば下記一般式(VIII)で示されるエポキシ樹脂等が挙げられる。
Figure 2010084091
(ここで、Rは水素原子及び炭素数1〜10の置換又は非置換の一価の炭化水素基から選ばれ、nは0〜10の整数を示す。)
上記一般式(VIII)で示されるノボラック型エポキシ樹脂は、ノボラック型フェノール樹脂にエピクロルヒドリンを反応させることによって容易に得られる。なかでも、一般式(VIII)中のRとしては、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、イソブチル基等の炭素数1〜10のアルキル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等の炭素数1〜10のアルコキシル基が好ましく、水素原子又はメチル基がより好ましい。nは0〜3の整数が好ましい。上記一般式(VIII)で示されるノボラック型エポキシ樹脂のなかでも、オルトクレゾールノボラック型エポキシ樹脂が好ましい。このような化合物としてはEOCN−1020(日本化薬株式会社製商品名)等が市販品として入手可能である。
ジシクロペンタジエン型エポキシ樹脂としては、たとえば下記一般式(IX)で示されるエポキシ樹脂等が挙げられる。
Figure 2010084091
(ここで、R及びRは水素原子及び炭素数1〜10の置換又は非置換の一価の炭化水素基からそれぞれ独立して選ばれ、nは0〜10の整数を示し、mは0〜6の整数を示す。)
上記式(IX)中のRとしては、たとえば、水素原子、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、tert−ブチル基等のアルキル基、ビニル基、アリル基、ブテニル基等のアルケニル基、ハロゲン化アルキル基、アミノ基置換アルキル基、メルカプト基置換アルキル基などの炭素数1〜5の置換又は非置換の一価の炭化水素基が挙げられ、なかでもメチル基、エチル基等のアルキル基及び水素原子が好ましく、メチル基及び水素原子がより好ましい。Rとしては、たとえば、水素原子、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、tert−ブチル基等のアルキル基、ビニル基、アリル基、ブテニル基等のアルケニル基、ハロゲン化アルキル基、アミノ基置換アルキル基、メルカプト基置換アルキル基などの炭素数1〜5の置換又は非置換の一価の炭化水素基が挙げられ、なかでも水素原子が好ましい。このような化合物としてはHP−7200(DIC株式会社製商品名)等が市販品として入手可能である。
ナフタレン型エポキシ樹脂としてはたとえば下記一般式(X)で示されるエポキシ樹脂等が挙げられ、トリフェニルメタン型エポキシ樹脂としてはたとえば下記一般式(XI)で示されるエポキシ樹脂等が挙げられる。
Figure 2010084091
(ここで、R〜Rは水素原子及び置換又は非置換の炭素数1〜12の一価の炭化水素基から選ばれ、それぞれ全てが同一でも異なっていてもよい。pは1又は0で、l、mはそれぞれ0〜11の整数であって、(l+m)が1〜11の整数でかつ(l+p)が1〜12の整数となるよう選ばれる。iは0〜3の整数、jは0〜2の整数、kは0〜4の整数を示す。)
上記一般式(X)で示されるナフタレン型エポキシ樹脂としては、l個の構成単位及びm個の構成単位をランダムに含むランダム共重合体、交互に含む交互共重合体、規則的に含む共重合体、ブロック状に含むブロック共重合体が挙げられ、これらのいずれか1種を単独で用いても、2種以上を組み合わせて用いてもよい。R、Rが水素原子で、Rがメチル基である上記化合物としては、NC−7000(日本化薬株式会社製商品名)等が市販品として入手可能である。
Figure 2010084091
(ここで、Rは水素原子及び炭素数1〜10の置換又は非置換の一価の炭化水素基から選ばれ、nは1〜10の整数を示す。)
Rが水素原子である上記化合物としてはE−1032(ジャパンエポキシレジン株式会社製商品名)等が市販品として入手可能である。
ビフェニレン型エポキシ樹脂としてはたとえば下記一般式(XII)で示されるエポキシ樹脂等が挙げられ、ナフトール・アラルキル型エポキシ樹脂としてはたとえば下記一般式(XIII)で示されるエポキシ樹脂等が挙げられる。
Figure 2010084091
(上記式中のR〜Rは全てが同一でも異なっていてもよく、水素原子、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、イソブチル基等の炭素数1〜10のアルキル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等の炭素数1〜10のアルコキシル基、フェニル基、トリル基、キシリル基等の炭素数6〜10のアリール基、及び、ベンジル基、フェネチル基等の炭素数6〜10のアラルキル基から選ばれ、なかでも水素原子とメチル基が好ましい。nは0〜10の整数を示す。)
Figure 2010084091
(ここで、R〜Rは水素原子及び置換又は非置換の炭素数1〜12の一価の炭化水素基から選ばれ、それぞれ全てが同一でも異なっていてもよい。nは1〜10の整数を示す。)
ビフェニレン型エポキシ樹脂としてはNC−3000(日本化薬株式会社製商品名)が市販品として入手可能である。またナフトール・アラルキル型エポキシ樹脂としてはESN−175等(東都化成株式会社製商品名)が市販品として入手可能である。
上記エポキシ樹脂を各々の観点で性能を発揮するためには、その配合量は、エポキシ樹脂全量に対して30重量%以上とすることが好ましく、50重量%以上がより好ましく、60重量%以上とすることがさらに好ましい。
本発明には従来公知の(B)硬化剤を使用することができる。使用可能な硬化剤としては、封止用エポキシ樹脂組成物に一般に使用されているもので特に制限はないが、たとえば、フェノール、クレゾール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール等のフェノール類及び/又はα−ナフトール、β−ナフトール、ジヒドロキシナフタレン等のナフトール類とホルムアルデヒド、ベンズアルデヒド、サリチルアルデヒド等のアルデヒド基を有する化合物とを酸性触媒下で縮合又は共縮合させて得られるノボラック型フェノール樹脂、フェノール類及び/又はナフトール類とジメトキシパラキシレン又はビス(メトキシメチル)ビフェニルから合成されるフェノール・アラルキル樹脂、ビフェニレン型フェノール・アラルキル樹脂、ナフトール・アラルキル樹脂等のアラルキル型フェノール樹脂、フェノール類及び/又はナフトール類とジシクロペンタジエンから共重合により合成される、ジシクロペンタジエン型フェノールノボラック樹脂、ジシクロペンタジエン型ナフトールノボラック樹脂等のジシクロペンタジエン型フェノール樹脂、トリフェニルメタン型フェノール樹脂、テルペン変性フェノール樹脂、パラキシリレン及び/又はメタキシリレン変性フェノール樹脂、メラミン変性フェノール樹脂、シクロペンタジエン変性フェノール樹脂、これら2種以上を共重合して得たフェノール樹脂などが挙げられる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
なかでも反り量と反り変化量低減効果の観点からは下記一般式(II)で示されるフェノール樹脂を含有することが好ましい。
Figure 2010084091
(ここで、Rは水素原子、炭素数1〜6のアルキル基及び炭素数1〜2のアルコキシ基から選ばれ、互いに同一であっても異なってもよい。nは整数を示す。)
上記一般式(II)で示されるフェノール樹脂を含有することにより、BGAにおける反り量とリフロー時の反り変化量を低減することが可能となる。これは、ナフタレン環という剛直な骨格を有し、かつ多官能であるため、硬化物のガラス転移温度が高くなることに加え、ナフタレン環に結合している2個の水酸基によって、硬化反応後、エポキシ樹脂、特には一般式(I)、(III)、(IV)及び(V)といった結晶性エポキシ樹脂を硬化物中でスタッキングさせることができ、これによって分子鎖の拘束性が高まり、熱変化による収縮量が低減することによるものである。本性能を発揮するためには、その配合量は硬化剤全量に対して30重量%とすることが好ましく、50重量%とすることがより好ましく、80重量%とすることがさらに好ましい。
上記フェノール樹脂の中でも、Rが水素原子であるものが反り量と反り変化量低減効果に優れることから好ましく、このような樹脂としてはSN−375、SN−395(ともに東都化成株式会社製商品名)が入手可能である。
また、難燃性、成形性、耐リフロー性の観点からは下記一般式(XIV)で示されるフェノール・アラルキル樹脂が好ましい
Figure 2010084091
(ここで、Rは水素原子及び炭素数1〜10の置換又は非置換の一価の炭化水素基から選ばれ、nは0〜10の整数を示す。)
一般式(XIV)中のRが水素原子で、nの平均値が0〜8であるフェノール・アラルキル樹脂がより好ましい。具体例としては、p−キシリレン型フェノール・アラルキル樹脂、m−キシリレン型フェノール・アラルキル樹脂等が挙げられる。このような化合物としてはXLC(三井化学株式会社製商品名)等が市販品として入手可能である。これらのアラルキル型フェノール樹脂を用いる場合、その配合量は、その性能を発揮するために硬化剤全量に対して30重量%以上とすることが好ましく、50重量%以上がより好ましい。
ナフトール・アラルキル樹脂としては、たとえば下記一般式(XV)で示されるフェノール樹脂等が挙げられる。
Figure 2010084091
(ここで、R、Rは水素原子、炭素数1〜6のアルキル基及び炭素数1〜2のアルコキシ基から選ばれ、互いに同一であっても異なってもよい。)
上記一般式(XV)で示されるナフトール・アラルキル樹脂としては、たとえばR、Rが全て水素原子である化合物等が挙げられ、このような化合物としては、SN−170(東都化成株式会社製商品名)が市販品として入手可能である。
ジシクロペンタジエン型フェノール樹脂としては、たとえば下記一般式(XVI)で示されるフェノール樹脂等が挙げられる。
Figure 2010084091
(ここで、R及びRは水素原子及び炭素数1〜10の置換又は非置換の一価の炭化水素基からそれぞれ独立して選ばれ、nは0〜10の整数を示し、mは0〜6の整数を示す。)
及びRが水素原子である上記化合物としてはDPP(新日本石油化学株式会社製商品名)等が市販品として入手可能である。
反り低減という観点からはトリフェニルメタン型フェノール樹脂が好ましい。トリフェニルメタン型フェノール樹脂としては、たとえば下記一般式(XVII)で示されるフェノール樹脂等が挙げられる。
Figure 2010084091
(ここで、Rは水素原子及び炭素数1〜10の置換又は非置換の一価の炭化水素基から選ばれ、nは1〜10の整数を示す。)
Rが水素原子である上記化合物としては、MEH−7500(明和化成株式会社製商品名)等が市販品として入手可能である。
トリフェニルメタン型フェノール樹脂の配合量は、(C)硬化剤全量に対して10〜50重量%であることが好ましく、15〜30重量%がさらに好ましい。10重量%以上であると反り低減効果が良好となり、50重量%以下であると難燃性が良好となる。
ノボラック型フェノール樹脂としては、たとえばフェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールノボラック樹脂等が挙げられ、なかでもフェノールノボラック樹脂が好ましい。
ビフェニレン型フェノール・アラルキル樹脂としては、たとえば下記一般式(XVIII)で示されるフェノール樹脂等が挙げられる。
Figure 2010084091
上記式(XVIII)中のR〜Rは全てが同一でも異なっていてもよく、水素原子、メチル基、エチル基、プロピル基、ブチル基、イソプロピル基、イソブチル基等の炭素数1〜10のアルキル基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等の炭素数1〜10のアルコキシル基、フェニル基、トリル基、キシリル基等の炭素数6〜10のアリール基、及び、ベンジル基、フェネチル基等の炭素数6〜10のアラルキル基から選ばれ、なかでも水素原子とメチル基が好ましい。nは0〜10の整数を示す。
上記一般式(XVIII)で示されるビフェニレン型フェノール・アラルキル樹脂としては、たとえばR〜Rが全て水素原子である化合物等が挙げられ、なかでも溶融粘度の観点から、nが1以上の縮合体を50重量%以上含む縮合体の混合物が好ましい。このような化合物としては、MEH−7851(明和化成株式会社製商品名)が市販品として入手可能である。
上記のアラルキル型フェノール樹脂、ナフトール・アラルキル樹脂、ジシクロペンタジエン型フェノール樹脂、トリフェニルメタン型フェノール樹脂、ノボラック型フェノール樹脂、ビフェニレン型フェノール・アラルキル樹脂は、いずれか1種を単独で用いても2種以上を組合わせて用いてもよい。
併用する上記硬化剤の中では特にノボラック型フェノール樹脂が硬化性の観点から好ましく、アラルキル型フェノール樹脂が流動性、耐リフロー性の観点から好ましい
本発明においては下記一般式(XIX)で示される化合物を含むこともできる。
Figure 2010084091
(一般式(XIX)中のRは水素原子及び炭素数1〜10の置換又は非置換の一価の炭化水素基から選ばれ、Rは水素原子及び炭素数1〜10の置換又は非置換の一価の炭化水素基から選ばれ、nは0〜10の整数を示し、mは0〜10の整数を示す。)
一般式(XIX)で示される化合物はフェノール化合物と芳香族アルデヒド及びビフェニレン化合物を酸触媒の存在下で反応させることにより得られる。フェノール化合物としてはフェノール、クレゾール、エチルフェノール、ブチルフェノール等の置換フェノール類が用いられる。芳香族アルデヒドは芳香族に結合した1個のアルデヒド基を持った芳香族化合物である。芳香族アルデヒドとしてはベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、tert−ブチルベンズアルデヒド等が挙げられる。またビフェニレン化合物としてはビフェニレングリコール、ビフェニレングリコールジメチルエーテル、ビフェニレングリコールジエチルエーテル、ビフェニレングリコールジアセトキシエステル、ビフェニレングリコールジプロピオキシエステル、ビフェニレングリコールモノメチルエーテル、ビフェニレングリコールモノアセトキシエステル等が挙げられる。特にビフェニレングリコール、ビフェニレングリコールジメチルエーテルが好ましい。また下記一般式(a)でしめされるビフェニレン化合物も用いることができる。
Figure 2010084091
一般式(XIX)で示される化合物としてはHE−610C、620C(エア・ウォーター株式会社製)等が入手可能である。
一般式(XIX)で示される化合物の配合量は、(B)硬化剤全量に対して、通常50〜90重量%であり、70〜85重量%が好ましい。50重量%以上であると難燃性が良好となり、90重量%以下であると反り低減効果が良好となる。
(A)エポキシ樹脂と硬化剤((B)フェノール樹脂と(C)硬化剤の和)との当量比、すなわち、エポキシ樹脂中のエポキシ基数に対する硬化剤中の水酸基数の比(硬化剤中の水酸基数/エポキシ樹脂中のエポキシ基数)は、特に制限はないが、それぞれの未反応分を少なく抑えるために0.5〜2の範囲に設定されることが好ましく、0.6〜1.3がより好ましい。成形性及び耐リフロー性に優れる封止用エポキシ樹脂組成物を得るためには0.8〜1.2の範囲に設定されることがさらに好ましい。
本発明の封止用エポキシ樹脂組成物には、(A)エポキシ樹脂と(B)硬化剤の反応を促進させるために必要に応じて(C)硬化促進剤を用いることができる。(C)硬化促進剤は、封止用エポキシ樹脂組成物に一般に使用されているもので特に制限はないが、たとえば、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7、1,5−ジアザ−ビシクロ(4,3,0)ノネン、5,6−ジブチルアミノ−1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7等のシクロアミジン化合物及びこれらの化合物に無水マレイン酸、1,4−ベンゾキノン、2,5−トルキノン、1,4−ナフトキノン、2,3−ジメチルベンゾキノン、2,6−ジメチルベンゾキノン、2,3−ジメトキシ−5−メチル−1,4−ベンゾキノン、2,3−ジメトキシ−1,4−ベンゾキノン、フェニル−1,4−ベンゾキノン等のキノン化合物、ジアゾフェニルメタン、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有する化合物、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の3級アミン類及びこれらの誘導体、2−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール等のイミダゾール類及びこれらの誘導体、トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィン、トリス(4−メチルフェニル)ホスフィン、ジフェニルホスフィン、フェニルホスフィン等のホスフィン化合物及びこれらのホスフィン化合物に無水マレイン酸、上記キノン化合物、ジアゾフェニルメタン、フェノール樹脂等のπ結合をもつ化合物を付加してなる分子内分極を有するリン化合物、テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレート、2−エチル−4−メチルイミダゾールテトラフェニルボレート、N−メチルモルホリンテトラフェニルボレート等のテトラフェニルボロン塩及びこれらの誘導体などが挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。
なかでも、難燃性、硬化性、流動性及び離型性の観点からは第三ホスフィン化合物とキノン化合物との付加物が好ましい。第三ホスフィン化合物としては、特に限定するものではないが、トリシクロヘキシルホスフィン、トリブチルホスフィン、ジブチルフェニルホスフィン、ブチルジフェニルホスフィン、エチルジフェニルホスフィン、トリフェニルホスフィン、トリス(4−メチルフェニル)ホスフィン、トリス(4−エチルフェニル)ホスフィン、トリス(4−プロピルフェニル)ホスフィン、トリス(4−ブチルフェニル)ホスフィン、トリス(イソプロピルフェニル)ホスフィン、トリス(t−ブチルフェニル)ホスフィン、トリス(2,4−ジメチルフェニル)ホスフィン、トリス(2,6−ジメチルフェニル)ホスフィン、トリス(2,4,6−トリメチルフェニル)ホスフィン、トリス(2,6−ジメチル−4−エトキシフェニル)ホスフィン、トリス(4−メトキシフェニル)ホスフィン、トリス(4−エトキシフェニル)ホスフィンなどのアルキル基、アリール基を有する第三ホスフィン化合物が好ましい。またキノン化合物としてはo−ベンゾキノン、p−ベンゾキノン、ジフェノキノン、1,4−ナフトキノン、アントラキノン等があげられ、なかでも耐湿性、保存安定性の観点からp−ベンゾキノンが好ましい。トリス(4−メチルフェニル)ホスフィンとp−ベンゾキノンとの付加物が離型性の観点からより好ましい。
(D)硬化促進剤の配合量は、硬化促進効果が達成される量であれば特に制限されるものではないが、封止用エポキシ樹脂組成物に対して0.005〜2重量%が好ましく、0.01〜0.5重量%がより好ましい。0.005重量%未満では短時間での硬化性に劣る傾向があり、2重量%を超えると硬化速度が速すぎて良好な成形品を得ることが困難になる傾向がある。
本発明では必要に応じて(D)無機充填剤を配合することができる。無機充填剤は、吸湿性、線膨張係数低減、熱伝導性向上及び強度向上の効果があり、たとえば、溶融シリカ、結晶シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、チタン酸カリウム、炭化珪素、窒化珪素、窒化アルミ、窒化ホウ素、ベリリア、ジルコニア、ジルコン、フォステライト、ステアタイト、スピネル、ムライト、チタニア等の粉体、又はこれらを球形化したビーズ、ガラス繊維等が挙げられる。さらに、難燃効果のある無機充填剤としては水酸化アルミニウム、水酸化マグネシウム、複合金属水酸化物、硼酸亜鉛、モリブデン酸亜鉛などが挙げられる。ここで、ホウ酸亜鉛としてはFB−290、FB−500(U.S.Borax社製)、FRZ−500C(水澤化学社製)等が、モリブデン酸亜鉛としてはKEMGARD911B、911C、1100(Sherwin−Williams社製)等が各々市販品として入手可能である。
これらの無機充填剤は単独で用いても2種以上を組み合わせて用いてもよい。なかでも、充填性、線膨張係数の低減の観点からは溶融シリカが、高熱伝導性の観点からはアルミナが好ましく、無機充填剤の形状は充填性及び金型摩耗性の点から球形が好ましい。
無機充填剤の配合量は、反り低減、流動性、難燃性、成形性、吸湿性、線膨張係数低減、強度向上及び耐リフロー性の観点から、封止用エポキシ樹脂組成物に対して50重量%以上が好ましく、60〜95重量%が難燃性の観点からより好ましく、70〜90重量%がさらに好ましい。50重量%未満では難燃性及び耐リフロー性が低下する傾向があり、95重量%を超えると流動性が不足する傾向があり、また難燃性も低下する傾向にある。
(D)無機充填剤を用いる場合、本発明の封止用エポキシ樹脂組成物には、樹脂成分と充項剤との接着性を高めるために、(E)カップリング剤をさらに配合することが好ましい。(E)カップリング剤としては、封止用エポキシ樹脂組成物に一般に使用されているもので特に制限はないが、たとえば、1級及び/又は2級及び/又は3級アミノ基を有するシラン化合物、エポキシシラン、メルカプトシラン、アルキルシラン、ウレイドシラン、ビニルシラン等の各種シラン系化合物、チタン系化合物、アルミニウムキレート類、アルミニウム/ジルコニウム系化合物等が挙げられる。これらを例示すると、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニルトリス(β−メトキシエトキシ)シラン、γ−メタクリロキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、ビニルトリアセトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルメチルジエトキシシラン、γ−アニリノプロピルトリメトキシシラン、γ−アニリノプロピルトリエトキシシラン、γ−(N,N−ジメチル)アミノプロピルトリメトキシシラン、γ−(N,N−ジエチル)アミノプロピルトリメトキシシラン、γ−(N,N−ジブチル)アミノプロピルトリメトキシシラン、γ−(N−メチル)アニリノプロピルトリメトキシシラン、γ−(N−エチル)アニリノプロピルトリメトキシシラン、γ−(N,N−ジメチル)アミノプロピルトリエトキシシラン、γ−(N,N−ジエチル)アミノプロピルトリエトキシシラン、γ−(N,N−ジブチル)アミノプロピルトリエトキシシラン、γ−(N−メチル)アニリノプロピルトリエトキシシラン、γ−(N−エチル)アニリノプロピルトリエトキシシラン、γ−(N,N−ジメチル)アミノプロピルメチルジメトキシシラン、γ−(N,N−ジエチル)アミノプロピルメチルジメトキシシラン、γ−(N,N−ジブチル)アミノプロピルメチルジメトキシシラン、γ−(N−メチル)アニリノプロピルメチルジメトキシシラン、γ−(N−エチル)アニリノプロピルメチルジメトキシシラン、N−(トリメトキシシリルプロピル)エチレンジアミン、N−(ジメトキシメチルシリルイソプロピル)エチレンジアミン、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、γ−クロロプロピルトリメトキシシラン、ヘキサメチルジシラン、ビニルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン等のシラン系カップリング剤、イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N−アミノエチル−アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2−ジアリルオキシメチル−1−ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート等のチタネート系カップリング剤などが挙げられ、これらの1種を単独で用いても2種類以上を組み合わせて用いてもよい。
なかでも反り低減、流動性、金線変形低減、難燃性の観点からは2級アミノ基を有するシランカップリング剤が好ましい。2級アミノ基を有するシランカップリング剤は分子内に2級アミノ基を有するシラン化合物であれば特に制限はないが、たとえば、γ−アニリノプロピルトリメトキシシラン、γ−アニリノプロピルトリエトキシシラン、γ−アニリノプロピルメチルジメトキシシラン、γ−アニリノプロピルメチルジエトキシシラン、γ−アニリノプロピルエチルジエトキシシラン、γ−アニリノプロピルエチルジメトキシシラン、γ−アニリノメチルトリメトキシシラン、γ−アニリノメチルトリエトキシシラン、γ−アニリノメチルメチルジメトキシシラン、γ−アニリノメチルメチルジエトキシシラン、γ−アニリノメチルエチルジエトキシシラン、γ−アニリノメチルエチルジメトキシシラン、N−(p−メトキシフェニル)−γ−アミノプロピルトリメトキシシラン、N−(p−メトキシフェニル)−γ−アミノプロピルトリエトキシシラン、N−(p−メトキシフェニル)−γ−アミノプロピルメチルジメトキシシラン、N−(p−メトキシフェニル)−γ−アミノプロピルメチルジエトキシシラン、N−(p−メトキシフェニル)−γ−アミノプロピルエチルジエトキシシラン、N−(p−メトキシフェニル)−γ−アミノプロピルエチルジメトキシシラン、γ−(N−メチル)アミノプロピルトリメトキシシラン、γ−(N−エチル)アミノプロピルトリメトキシシラン、γ−(N−ブチル)アミノプロピルトリメトキシシラン、γ−(N−ベンジル)アミノプロピルトリメトキシシラン、γ−(N−メチル)アミノプロピルトリエトキシシラン、γ−(N−エチル)アミノプロピルトリエトキシシラン、γ−(N−ブチル)アミノプロピルトリエトキシシラン、γ−(N−ベンジル)アミノプロピルトリエトキシシラン、γ−(N−メチル)アミノプロピルメチルジメトキシシラン、γ−(N−エチル)アミノプロピルメチルジメトキシシラン、γ−(N−ブチル)アミノプロピルメチルジメトキシシラン、γ−(N−ベンジル)アミノプロピルメチルジメトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−(β−アミノエチル)アミノプロピルトリメトキシシラン、N−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルトリメトキシシラン等が挙げられる。
カップリング剤の全配合量は、封止用エポキシ樹脂組成物に対して0.037〜4.75重量%であることが好ましく、0.05〜5重量%であることがより好ましく、0.1〜2.5重量%であることがさらに好ましい。0.037重量%未満ではフレームとの接着性が低下する傾向があり、4.75重量%を超えるとパッケージの成形性が低下する傾向がある。
本発明の封止用エポキシ樹脂組成物には、さらに難燃性を向上する目的で従来公知の難燃剤、特に環境対応、信頼性の観点からはノンハロゲン、ノンアンチモンの難燃剤を必要に応じて配合することができる。たとえば、赤リン、酸化亜鉛等の無機化合物とフェノール樹脂等の熱硬化性樹脂で被覆された赤リン及びリン酸エステル、ホスフィンオキサイド等のリン化合物、メラミン、メラミン誘導体、メラミン変性フェノール樹脂、トリアジン環を有する化合物、シアヌル酸誘導体、イソシアヌル酸誘導体等の窒素含有化合物、シクロホスファゼン等のリン及び窒素含有化合物、水酸化アルミニウム、水酸化マグネシウム、複合金属水酸化物、酸化亜鉛、錫酸亜鉛、硼酸亜鉛、酸化鉄、酸化モリブデン、モリブデン酸亜鉛、ジシクロペンタジエニル鉄等の金属元素を含む化合物などが挙げられ、これらの1種を単独で用いても2種以上を組合わせて用いてもよい。
なかでも流動性の観点からは、リン酸エステル、ホスフィンオキサイド及びシクロホスファゼンが好ましい。リン酸エステルはリン酸とアルコール化合物又はフェノール化合物のエステル化合物であれば特に制限はないが、例えばトリメチルホスフェート、トリエチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート、トリス(2,6ジメチルフェニル)ホスフェート及び芳香族縮合リン酸エステル等が挙げられる。なかでも耐加水分解性の観点からは、下記一般式(XX)で示される芳香族縮合リン酸エステルが好ましい。
Figure 2010084091
(ここで、Arはアリール基であり、Rは置換又は非置換の一価の炭化水素基を示す。)
上記式(XX)のリン酸エステルを例示すると、下記構造式(XXI)〜(XXV)で示されるリン酸エステル等が挙げられる。
Figure 2010084091
これらリン酸エステルの添加量は、充填剤を除く他の全配合成分に対して、燐原子の量で0.2〜3.0重量%の範囲内であることが好ましい。0.2重量%より少ない場合は難燃効果が低くなる傾向がある。3.0重量%を超えた場合は成形性、耐湿性の低下や、成形時にこれらのリン酸エステルがしみ出し、外観を阻害する場合がある。
ホスフィンオキサイドを難燃剤として用いる場合、ホスフィンオキサイドとしては下記一般式(XXVI)で示される化合物が好ましい。
Figure 2010084091
(ここで、R、R及びRは炭素数1〜10の置換又は非置換のアルキル基、アリール基、アラルキル基及び水素原子を示し、すべて同一でも異なってもよい。ただしすべてが水素原子である場合を除く。)
上記一般式(XXVI)で示されるリン化合物の中でも、耐加水分解性の観点からはR〜Rが置換又は非置換のアリール基であることが好ましく、特に好ましくはフェニル基である。
ホスフィンオキサイドの配合量は封止用エポキシ樹脂組成物に対してリン原子の量が0.01〜0.2重量%であることが好ましい。より好ましくは0.02〜0.1重量%であり、さらに好ましくは0.03〜0.08重量%である。0.01重量%未満であると難燃性が低下し、0.2重量%を超えると成形性、耐湿性が低下する。
シクロホスファゼンとしては主鎖骨格中に次式(XXVII)及び/又は次式(XXIII)を繰り返し単位として含む環状ホスファゼン化合物、あるいはホスファゼン環中の燐原子に対する置換位置が異なる次式(XXIX)及び/又は次式(XXX)を繰り返し単位として含む化合物等が挙げられる。
Figure 2010084091
ここで、式(XXVII)及び式(XXIX)中のmは1〜10の整数で、R〜Rは置換基を有しても良い炭素数1〜12のアルキル基、アリール基及び水酸基から選ばれ、全て同一でも異なっていても良い。Aは炭素数1〜4のアルキレン基又はアリレン基を示す。式(XXXVIII)及び式(XXX)中のnは1〜10の整数で、R〜Rは置換基を有しても良い炭素数1〜12のアルキル基又はアリール基から選ばれ、全て同一でも異なっていても良く、Aは炭素数1〜4のアルキレン基又はアリレン基を示す。また、式中m個のR、R、R、Rはm個全てが同一でも異なっていても良く、n個のR、R、R、Rはn個全てが同一でも異なっていても良い。
上記式(XXVII)〜式(XXX)において、R〜Rで示される置換基を有しても良い炭素数1〜12のアルキル基又はアリール基としては特に制限はないが、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基等のアルキル基、フェニル基、1−ナフチル基、2−ナフチル基等のアリール基、o−トリル基、m−トリル基、p−トリル基、2,3−キシリル基、2,4−キシリル基、o−クメニル基、m−クメニル基、p−クメニル基、メシチル基等のアルキル基置換アリール基、ベンジル基、フェネチル基等のアリール基置換アルキル基などが挙げられ、さらにこれらに置換する置換基としては、アルキル基、アルコキシル基、アリール基、水酸基、アミノ基、エポキシ基、ビニル基、ヒドロキシアルキル基、アルキルアミノ基等が挙げられる。
これらの中で、エポキシ樹脂組成物の耐熱性、耐湿性の観点からはアリール基が好ましく、より好ましくはフェニル基もしくはヒドロキシフェニル基である。
また、上記式(XXVII)〜式(XXX)中のAで示される炭素数1〜4のアルキレン基又はアリレン基としては特に制限はないが、例えばメチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、フェニレン基、トリレン基、キシリレン基、ナフチレン基等が挙げられ、エポキシ樹脂組成物の耐熱性、耐湿性の観点からはアリレン基が好ましく、中でもフェニレン基がより好ましい。
環状ホスファゼン化合物は、上記式(XXVII)〜式(XXX)のいずれかの重合物、上記式(XXVII)と上記式(XXX)との共重合物、又は上記式(XXIX)と上記式(XXX)との共重合物であるが、共重合物の場合、ランダム共重合物でも、ブロック共重合物でも、交互共重合物のいずれでも良い。その共重合モル比m/nは特に限定するものではないが、エポキシ樹脂硬化物の耐熱性や強度向上の観点から1/0〜1/4が好ましく、1/0〜1/1.5がより好ましい。また、重合度m+nは1〜20であり、好ましくは2〜8、より好ましくは3〜6である。
環状ホスファゼン化合物として好ましいものを例示すると、次式(XXXI)の重合物、次式(XXXII)の共重合物等が挙げられる。
Figure 2010084091
(ここで、式(XXXI)中のnは、0〜9の整数で、R〜Rはそれぞれ独立に水素又は水酸基を示す。)
Figure 2010084091
ここで、上記式(XXXII)中のm、nは、0〜9の整数で、R〜Rはそれぞれ独立に水素または水酸基から選ばれ、R〜Rはそれぞれ独立に水素または水酸基から選ばれる。また、上記式(XXXII)で示される環状ホスファゼン化合物は、次に示すm個の繰り返し単位(a)とn個の繰り返し単位(b)を交互に含むもの、ブロック状に含むもの、ランダムに含むもののいずれであってもかまわないが、ランダムに含むものが好ましい。
Figure 2010084091
中でも、上記式(XXXI)でnが3〜6の重合体を主成分とするものや、上記式(XXXII)でR〜Rが全て水素又は1つが水酸基であり、m/nが1/2〜1/3で、m+nが3〜6の共重合体を主成分とするものが好ましい。また、市販のホスファゼン化合物としては、SPE−100(大塚化学製商品名)が入手可能である。
複合金属水酸化物を難燃剤として用いる場合、複合金属水酸化物は下記組成式(XXXIII)で示される化合物が好ましい。
Figure 2010084091
(ここで、M、M及びMは互いに異なる金属元素を示し、a、b、c、d、e、f、p、q及びmは正の数、rは0又は正の数を示す。)
なかでも、上記組成式(XXXIII)中のrが0である化合物、すなわち、下記組成式(XXXIV)で示される化合物がさらに好ましい。
Figure 2010084091
(ここで、M及びMは互いに異なる金属元素を示し、a、b、c、d及びlは正の数を示す。)
上記組成式(XXXIII)及び(XXXIV)中のM、M及びMは互いに異なる金属元素であれば特に制限はないが、難燃性の観点からは、MとMが同一とならないようにMが第3周期の金属元素、IIA族のアルカリ土類金属元素、IVB族、IIB族、VIII族、IB族、IIIA族及びIVA族に属する金属元素から選ばれ、MがIIIB〜IIB族の遷移金属元素から選ばれることが好ましく、Mがマグネシウム、カルシウム、アルミニウム、スズ、チタン、鉄、コバルト、ニッケル、銅及び亜鉛から選ばれ、Mが鉄、コバルト、ニッケル、銅及び亜鉛から選ばれることがより好ましい。流動性の観点からは、Mがマグネシウム、Mが亜鉛又はニッケルであることが好ましく、MがマグネシウムでMが亜鉛であることがより好ましい。
上記組成式(XXXIII)中のp、q、rのモル比は本発明の効果が得られれば特に制限はないが、r=0で、p及びqのモル比p/qが99/1〜50/50であることが好ましい。すなわち、上記組成式(XXXIV)中のm及びnのモル比m/nが99/1〜50/50であることが好ましい。
市販品としては、例えば、上記組成式(XXXIV)のMがマグネシウム、Mが亜鉛で、pが7、qが3、lが10で、a、b、c及びdが1である水酸化マグネシウム・水酸化亜鉛固溶体複合金属水酸化物(タテホ化学工業株式会社製商品名エコーマグZ−10)を使用できる。なお、金属元素とは半金属元素といわれるものも含めるものとし、非金属元素を除く全ての元素をさす。
なお、金属元素の分類は、典型元素をA亜族、遷移元素をB亜族とする長周期型の周期率表(出典:共立出版株式会社発行「化学大辞典4」1987年2月15日縮刷版第30刷)に基づいて行った。
複合金属水酸化物の形状は特に制限はないが、流動性、充填性の観点からは、平板状より、適度の厚みを有する多面体形状が好ましい。複合金属水酸化物は、金属水酸化物と比較して多面体状の結晶が得られやすい。
複合金属水酸化物の配合量は特に制限はないが、封止用エポキシ樹脂組成物に対して0.5〜20重量%が好ましく、0.7〜15重量%がより好ましく、1.4〜12重量%がさらに好ましい。0.5重量%未満では難燃性が不十分となる傾向があり、20重量%を超えると流動性及び耐リフロー性が低下する傾向がある。
トリアジン環を有する化合物としては、フェノール性水酸基を有する化合物とトリアジン誘導体とアルデヒド基を有する化合物を共縮重合させたものが、難燃性、銅フレームとの接着性の観点から好ましい。フェノール性水酸基を有する化合物としては、フェノール、クレゾール、キシレノール、エチルフェノール、ブチルフェノール、ノニルフェノール、オクチルフェノール等のアルキルフェノール類、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、ビスフェノールS等の多価フェノール類、フェニルフェノール、アミノフェノール、又はα−ナフトール、β−ナフトール、ジヒドロキシナフタレン等のナフトール類あるいはこれらのフェノール性水酸基を有する化合物とホルムアルデヒド等のアルデヒド基を有する化合物とを酸性触媒下で縮合又は共縮合させて得られる樹脂等がある。中でも、成形性の観点からはフェノール、クレゾール、あるいはこれらとホルムアルデヒドとの共縮重合物が好ましい。また、トリアジン誘導体としては分子中にトリアジン核を有するものであれば特に限定はなく、メラミン、ベンゾグアナミン、アセトグアナミン等のグアナミン誘導体、シアヌル酸、メチルシアヌレート等のシアヌル酸誘導体が挙げられ、1種類のみまたは2種類以上の併用も可能である。中でも、成形性、信頼性の観点からはメラミン、ベンゾグアナミン等のグアナミン誘導体が好ましい。また、アルデヒド基を有する化合物としては、例えば、ホルマリン、パラホルムアルデヒド等が挙げられる。
フェノール性水酸基を有する化合物に対するアルデヒド基を有する化合物の配合量は、モル比(アルデヒド基を有する化合物(モル)/フェノール性水酸基を有する化合物(モル))で0.05〜0.9になるようにすることが好ましく、0.1〜0.8とするのがより好ましい。0.05未満ではフェノール性水酸基に対するアルデヒド基を有する化合物の反応が起こりにくく、未反応フェノールが残りやすく、生産性が悪く、0.9を超えると合成中ゲル化しやすくなる。
フェノール性水酸基を有する化合物に対するトリアジン誘導体の配合量は1〜30重量%とするのが好ましく、さらには5〜20重量%とするのがより好ましい。1重量%未満では難燃性に乏しく、30重量%を超えると軟化点が高くなり、組成物作製時の混練性が低下する。トリアジン誘導体に対するアルデヒド基を有する化合物の配合量(モル比)は特に制限はない。
フェノール性水酸基を有する化合物とトリアジン誘導体とアルデヒド基を有する化合物との共縮重合物の合成時の反応温度は特に制限はないが、60〜120℃で行うのが好ましい。また反応のpHは3〜9が好ましく、4〜8がさらに好ましい。pHが3未満では合成中に樹脂がゲル化し易く、9より高いとフェノール樹脂とトリアジン誘導体とアルデヒド基を有する化合物との共縮重合が起こりにくくなり、製造した樹脂の窒素含有量が低くなる。
必要に応じてフェノール性水酸基を有する化合物にアルデヒド基を有する化合物、トリアジン誘導体を反応させた後、常圧または減圧下での加熱蒸留等で、未反応のフェノール化合物及びアルデヒド基を有する化合物等を除去することができる。この時未反応フェノール化合物の残存量が3%以下であることが好ましい。3%を超える場合は成形性が低下しがちである。
また得られた共縮重合物の軟化点は40〜150℃であることが好ましい。40℃未満であるとブロッキングしやすく、150℃を超える場合は組成物の混練性が低下する。このフェノール性水酸基を有する化合物とトリアジン誘導体とアルデヒド基を有する化合物との共縮重合物を例示するならば、下記構造式(XXXV)〜(XXXX)のものが挙げられる(n,mは正の整数)。
Figure 2010084091
フェノール性水酸基を有する化合物とトリアジン誘導体とアルデヒド基を有する化合物との共縮重合物の数平均分子量は500〜1000であることが好ましく、550〜800がさらに好ましい。500未満であると成形性、耐リフロークラック性が低下し、1000を超える場合は流動性が低下しがちである。また重量平均分子量は1500〜10000であることが好ましく、1700〜7000がさらに好ましい。1500未満であると耐リフロークラック性が低下し、10000を超える場合は流動性が低下しがちである。さらに、このフェノール性水酸基を有する化合物とトリアジン誘導体とアルデヒド基を有する化合物との共縮重合物の分子量分布Mw/Mnは2.0〜10.0であることが好ましく、3.0〜6.0がさらに好ましい。2.0未満であると耐リフロークラック性が低下し、10.0を超える場合は流動性が低下しがちである。
上記共縮重合物の中でもフェノール樹脂とトリアジン誘導体とアルデヒド基を有する化合物との共重縮合物であることが、耐リフロー性の観点からより好ましい。ここで用いられるフェノール樹脂としては組成物で一般に使用されているもので特に限定はなく、例えば、フェノール、クレゾール、キシレノール、エチルフェノール、ブチルフェノール、ノニルフェノール、オクチルフェノール等のアルキルフェノール類、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、ビスフェノールS等の多価フェノール類、α−ナフトール、β−ナフトール、ジヒドロキシナフタレン等のナフトール類又はフェニルフェノール、アミノフェノール等のフェノール誘導体とホルムアルデヒド等のアルデヒド基を有する化合物とを酸性触媒下で縮合又は共縮合させて得られる樹脂等がある。中でも、成形性の観点からはフェノールとホルムアルデヒドとの重縮合物であるフェノール・ノボラック樹脂が好ましい。
フェノール樹脂は上記に列挙したようなものであれば、特にその合成方法は限定するものではないが、下記に示す方法により合成したものを用いた場合、その分子量、分子量分布を本発明で記載する好ましい範囲のものとして合成可能であるという点で、好適である。すなわち、フェノール樹脂を合成する際、フェノール誘導体とアルデヒド基を有する化合物の使用割合は、フェノール誘導体1モルに対してアルデヒド基を有する化合物が0.01〜2.0モルとすることが好ましく、0.05〜1.0モルとすることがより好ましい。0.01モル未満では、反応が不十分となり、分子量が上がらず、成形性、耐熱性、耐水性、難燃性、強度等が低下する傾向があり、2.0モルを超えると、分子量が大きくなりすぎて、混練性が低下する傾向がある。
この反応温度は、80〜220℃とすることが好ましく、100〜180℃とすることがより好ましい。80℃未満では、反応性が不充分となり、分子量が小さく、成形性が低下する傾向があり、220℃を超えるとフェノール樹脂を合成する際に、生産設備的に不利となる傾向がある。反応時間は、1〜30時間程度とするのが好ましい。
また、必要に応じてトリメチルアミン、トリエチルアミン等のアミン系触媒、p−トルエンスルホン酸、蓚酸等の酸触媒、水酸化ナトリウム、アンモニア等のアルカリ触媒などを、フェノール誘導体1モルに対して、0.00001〜0.01モル程度使用してもよい。また、反応系のpHは、1〜10程度とするのが好ましい。
このようにして、フェノール誘導体及びアルデヒド基を有する化合物を反応させた後、必要に応じて、未反応のフェノール誘導体、アルデヒド基を有する化合物、水等を加熱減圧下に除去することができるが、その条件は、一般的に、温度が80〜220℃、望ましくは100〜180℃、圧力が100mmHg以下、望ましくは60mmHg以下、時間が0.5〜10時間とすることが好ましい。
フェノール樹脂に、トリアジン誘導体及びアルデヒド基を有する化合物を添加し、反応させる際のトリアジン誘導体及びアルデヒド基を有する化合物の使用割合は、フェノール誘導体とアルデヒド基を有する化合物との重縮合物(フェノール樹脂)(未反応のフェノール誘導体、アルデヒド基を有する化合物、水等を加熱減圧下に除去したもの、あるいは前記除去を行っていないもの(この場合は、未反応フェノールも重縮合物の重量に含むこととする))100g対して、トリアジン誘導体を3〜50gとすることが好ましく、4〜30gとすることがより好ましい。また、アルデヒド基を有する化合物は、重縮合物(フェノール樹脂)100g対して、5〜100gとすることが好ましく、6〜50gとすることがより好ましい。トリアジン誘導体(b)及びアルデヒド基を有する化合物を上記のような範囲とすることで、最終的に得られる重縮合物の分子量分布、窒素含有量を所望の範囲に容易に調整することができる。
反応温度は、50〜250℃とすることが好ましく、80〜170℃とすることがより好ましい。50℃未満では、反応が不充分となり、分子量が上がらず、成形性、耐熱性、耐水性、難燃性、強度等が低下する傾向があり、250℃を超えると合成する際に、生産設備的に不利となる傾向がある。反応時間は、1〜30時間程度とするのが好ましい。
また、必要に応じてトリメチルアミン、トリエチルアミン等のアミン系触媒、蓚酸等の酸触媒を、フェノール誘導体1モルに対して、0.00001〜0.01モル程度使用してもよい。
また、反応系のpHは、1〜10程度とするのが好ましい。フェノール誘導体とアルデヒド基を有する化合物との重縮合物(フェノール樹脂)と、トリアジン誘導体及びアルデヒド基を有する化合物との反応の後、未反応のフェノール誘導体、アルデヒド基を有する化合物、水等を加熱減圧下に除去することができるが、その条件は、温度が80〜180℃、圧力が100mmHg以下、望ましくは60mmHg以下、時間が0.5〜10時間とすることが好ましい。合成に用いるトリアジン誘導体としては分子中にトリアジン核を有する化合物であれば特に限定はなく、メラミン、ベンゾグアナミン、アセトグアナミン等のグアナミン誘導体、シアヌル酸、メチルシアヌレート等のシアヌル酸誘導体等が挙げられ、1種類のみまたは2種類以上の併用も可能である。中でも、成形性、信頼性の観点からはメラミン、ベンゾグアナミン等のグアナミン誘導体が好ましい。また、アルデヒド基を有する化合物(c)としては、例えば、ホルムアルデヒド、ホルマリン、パラホルムアルデヒド等が挙げられる。
また本発明ではさらなる反り低減の観点からケイ素含有重合物を含有してもよい。ケイ素含有重合物としては下記の結合(c)及び(d)を有し、末端がR、水酸基及びアルコキシ基から選ばれた官能基であり、エポキシ当量が500〜4000であれば特に制限はないが、このような重合物として例えば分岐状ポリシロキサンなどが挙げられる。
Figure 2010084091

(ここで、Rは炭素数1〜12の置換または非置換の1価の炭化水素基から選ばれ、ケイ素含有重合物中の全Rはすべてが同一でも異なっていてもよい。Xはエポキシ基を含む1価の有機基を示す。)
上記一般式(c)及び(d)中のRとしてはメチル基、エチル基、プロピル基、ブチル基、イソプロピル基、イソブチル基、t−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、2−エチルヘキシル基等のアルキル基、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基等のアルケニル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニル基等のアリール基、ベンジル基、フェネチル基等のアラルキル基等が挙げられ、なかでもメチル基又はフェニル基が好ましい。
また、上記一般式(d)中のXとしては2,3−エポキシプロピル基、3,4−エポキシブチル基、4,5−エポキシペンチル基、2−グリシドキシエチル基、3−グリシドキシプロピル基、4−グリシドキシブチル基、2−(3,4−エポキシシクロヘキシル)エチル基、3−(3,4−エポキシシクロヘキシル)プロピル基等が挙げられ、中でも3−グリシドキシプロピル基が好ましい。
また、ケイ素含有重合物の末端は重合物の保存安定性の点から前述のR、水酸基及びアルコキシ基のいずれかである必要がある。この場合のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基が挙げられる。さらに、ケイ素含有重合物のエポキシ当量は、500〜4000の範囲であることが好ましく、より好ましくは1000〜2500である。500より小さいと封止用エポキシ樹脂組成物の流動性が低下する傾向にあり、4000より大きいと硬化物表面に染み出しやすく、成形不良を起こし易い傾向にある。ケイ素含有重合物はさらに下記の結合(e)を有することが得られる封止用エポキシ樹脂組成物の流動性と低反り性の両立の観点から好ましい。
Figure 2010084091
(ここで、Rはケイ素含有重合物中の全Rに対して炭素数1〜12の置換又は非置換の1価または2価の炭化水素基から選ばれ、ケイ素含有重合物中の全Rはすべてが同一でも異なっていてもよい。)
上記一般式(e)中のRとしてはメチル基、エチル基、プロピル基、ブチル基、イソプロピル基、イソブチル基、t−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、2−エチルヘキシル基等のアルキル基、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基等のアルケニル基、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニル基等のアリール基、ベンジル基、フェネチル基等のアラルキル基等が挙げられ、なかでもメチル基またはフェニル基が好ましい(2価の炭化水素基は、上記のRからH原子1個を除いてもの)。
このようなケイ素含有重合物の軟化点は40℃〜120℃に設定されることが好ましく、50℃〜100℃に設定されることがより好ましい。40℃より低いと得られる封止用エポキシ樹脂組成物の硬化物の機械強度が低下する傾向にあり、120℃より高いと封止用エポキシ樹脂組成物中へのケイ素含有重合物の分散性が低下する傾向にある。ケイ素含有重合物の軟化点を調整する方法としては、ケイ素含有重合物の分子量、構成結合単位(例えば(c)〜(e)含有比率等)、ケイ素原子に結合する有機基の種類を設定することで可能であるが、特に封止用エポキシ樹脂組成物へのケイ素含有重合物の分散性及び得られる封止用エポキシ樹脂組成物の流動性の観点からケイ素含有重合物中のアリール基の含有量を設定して軟化点を調整することが好ましい。この場合のアリール基とは、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニル基等が挙げられ、フェニル基がより好ましい。ケイ素含有重合物中のケイ素原子に結合した一価の有機基中のフェニル基の含有量を、好ましくは60モル%〜99モル%、より好ましくは70モル%〜85モル%に設定することで所望の軟化点を有するケイ素含有重合物を得ることができる。
ケイ素含有重合物の重量平均分子量(Mw)は、ゲルパーミュエーションクロマトグラフィー(GPC)で測定し標準ポリスチレン検量線を用いて換算した値で、好ましくは1000〜30000、より好ましくは2000〜20000、さらに好ましくは3000〜10000である。また。ケイ素含有重合物は、ランダム共重合体であることが好ましい。
このようなケイ素含有重合物は以下に示す製造方法により得ることができるが、市販品としては東レ・ダウコーニング・シリコーン株式会社製商品名AY42−119として入手可能である。
ケイ素含有重合物の製造方法は、特に制限なく公知の方法で製造することができる。例えば、加水分解縮合反応により上記(c)〜(e)単位を形成し得るオルガノクロロシラン、オルガノアルコキシシラン、シロキサン、あるいはそれらの部分加水分解縮合物を原料及び反応生成物を溶解可能な有機溶剤と原料のすべての加水分解性基を加水分解可能な量の水との混合溶液中に混合し、加水分解縮合反応させて得ることができる。この際、封止用エポキシ樹脂組成物中に不純物として含有される塩素量を低減させるためにオルガノアルコキシシラン及び/またはシロキサンを原料とすることが好ましい。この場合、反応を促進する触媒として、酸、塩基、有機金属化合物を添加することが好ましい。
(A)ケイ素含有重合物の原料となるオルガノアルコキシシラン及び/またはシロキサンとしては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトエトキシシラン、ジメチルジメトキシシラン、メチルフェニルジメトキシシラン、メチルビニルジメトキシシラン、フェニルビニルジメトキシシラン、ジフェニルジメトキシシラン、メチルフェニルジエトキシシラン、メチルビニルジエトキシシラン、フェニルビニルジエトキシシラン、ジフェニルジエトキシシラン、ジメチルジエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、ジメトキシジエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピル(メチル)ジメトキシシラン、3−グリシドキシプロピル(メチル)ジエトキシシラン、3−グリシドキシプロピル(フェニル)ジメトキシシラン、3−グリシドキシプロピル(フェニル)ジエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチル(メチル)ジメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチル(メチル)ジエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチル(フェニル)ジメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチル(フェニル)ジエトキシシラン、およびこれらの加水分解縮合物等が挙げられる。
ケイ素含有重合物の含有量は封止用エポキシ樹脂組成物全体の0.2重量%〜1.5重量%が好ましく、0.3重量%〜1.3重量%がさらに好ましい。0.2重量%より少ないと(A)ケイ素含有重合物の添加効果が見られず、1.5重量%より多いと得られる封止用エポキシ樹脂組成物の熱時硬度が低下する傾向にある。
また、本発明では必要に応じて下記組成式(XXXXII)で表される化合物及び/又は下記組成式(XXXXIII)で表される化合物をIC等の半導体素子の耐湿性及び高温放置特性を向上させる観点から含有することができる。
Figure 2010084091
(0<X≦0.5、mは正の数)
Figure 2010084091
(0.9≦x≦1.1 0.6≦y≦0.8 0.2≦z≦0.4)
なお、上記式(XXXXII)の化合物は市販品として協和化学工業株式会社製商品名DHT−4Aとして入手可能である。また、上記式(XXXXIII)の化合物は市販品として東亜合成株式会社製商品名IXE500として入手可能である。また必要に応じてその他の陰イオン交換体を添加することもできる。陰イオン交換体としては特に制限はなく、従来公知のものを用いることができるが、たとえば、マグネシウム、アルミニウム、チタン、ジルコニウム、アンチモン等から選ばれる元素の含水酸化物等が挙げられ、これらを単独又は2種以上を組み合わせて用いることができる。
さらに、本発明の封止用エポキシ樹脂組成物には、その他の添加剤として、高級脂肪酸、高級脂肪酸金属塩、エステル系ワックス、ポリオレフィン系ワックス、ポリエチレン、酸化ポリエチレン等の離型剤、カーボンブラック等の着色剤、シリコーンオイルやシリコーンゴム粉末等の応力緩和剤などを必要に応じて配合することができる。
本発明の封止用エポキシ樹脂組成物は、各種原材料を均一に分散混合できるのであれば、いかなる手法を用いても調製できるが、一般的な手法として、所定の配合量の原材料をミキサー等によって十分混合した後、ミキシングロール、押出機、らいかい機、プラネタリミキサ等によって混合又は溶融混練した後、冷却し、必要に応じて脱泡、粉砕する方法等を挙げることができる。また、必要に応じて成形条件に合うような寸法及び重量でタブレット化してもよい。
本発明の封止用エポキシ樹脂組成物を封止材として用いて、半導体装置等の電子部品装置を封止する方法としては、低圧トランスファ成形法が最も一般的であるが、インジェクション成形法、圧縮成形法等も挙げられる。ディスペンス方式、注型方式、印刷方式等を用いてもよい。
本発明で得られる封止用エポキシ樹脂組成物により封止した素子を備えた本発明の電子部品装置としては、リードフレーム、配線済みのテープキャリア、配線板、ガラス、シリコンウエハ等の支持部材や実装基板に、半導体チップ、トランジスタ、ダイオード、サイリスタ等の能動素子、コンデンサ、抵抗体、コイル等の受動素子等の素子を搭載し、必要な部分を本発明の封止用エポキシ樹脂組成物で封止した、電子部品装置等が挙げられる。
ここで、実装基板としては特に制限するものではなく、たとえば、有機基板、有機フィルム、セラミック基板、ガラス基板等のインターポーザ基板、液晶用ガラス基板、MCM(Multi Chip Module)用基板、ハイブリットIC用基板等が挙げられる。
このような素子を備えた電子部品装置としては、たとえば半導体装置が挙げられ、具体的には、リードフレーム(アイランド、タブ)上に半導体チップ等の素子を固定し、ボンディングパッド等の素子の端子部とリード部をワイヤボンディングやバンプで接続した後、本発明の封止用エポキシ樹脂組成物を用いてトランスファ成形などにより封止してなる、DIP(Dual Inline Package)、PLCC(Plastic Leaded Chip Carrier)、QFP(Quad Flat Package)、SOP(Small Outline Package)、SOJ(Small Outline J−lead package)、TSOP(Thin Small Outline Package)、TQFP(Thin Quad Flat Package)等の樹脂封止型IC、テープキャリアにリードボンディングした半導体チップを、本発明の封止用エポキシ樹脂組成物で封止したTCP(Tape Carrier Package)、配線板やガラス上に形成した配線に、ワイヤボンディング、フリップチップボンディング、はんだ等で接続した半導体チップを、本発明の封止用エポキシ樹脂組成物で封止したCOB(Chip On Board)、COG(Chip On Glass)等のベアチップ実装した半導体装置、配線板やガラス上に形成した配線に、ワイヤボンディング、フリップチップボンディング、はんだ等で接続した半導体チップ、トランジスタ、ダイオード、サイリスタ等の能動素子及び/又はコンデンサ、抵抗体、コイル等の受動素子を、本発明の封止用エポキシ樹脂組成物で封止したハイブリッドIC、MCM(Multi Chip Module)マザーボード接続用の端子を形成したインターポーザ基板に半導体チップを搭載し、バンプまたはワイヤボンディングにより半導体チップとインターポーザ基板に形成された配線を接続した後、本発明の封止用エポキシ樹脂組成物で半導体チップ搭載側を封止したBGA(Ball Grid Array)、CSP(Chip Size Package)、MCP(Multi Chip Package)などが挙げられる。また、これらの半導体装置は、実装基板上に素子が2個以上重なった形で搭載されたスタックド(積層)型パッケージであっても、2個以上の素子を一度に封止用エポキシ樹脂組成物で封止した一括モールド型パッケージであってもよい。
次に実施例により本発明を説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
(実施例1〜20、比較例1〜10)
エポキシ樹脂として、エポキシ当量144、融点88℃の上記一般式(I)のエポキシ樹脂(ジャパンエポキシレジン株式会社製開発品名YL−7619)(エポキシ樹脂1)、エポキシ当量180、融点105℃のジヒドロアントラセン型エポキシ樹脂(ジャパンエポキシレジン株式会社製商品名YX−8800)(エポキシ樹脂2)、エポキシ当量186、融点108℃の上記一般式(III)のビスフェノールF型エポキシ樹脂(東都化成株式会社製商品名YSLV−80XY)(エポキシ樹脂3)、エポキシ当量173の上記一般式(IV)のビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン株式会社商品名YL−6810)(エポキシ樹脂4)、エポキシ当量196、融点106℃のビフェニル型エポキシ樹脂(ジャパンエポキシレジン株式会社製商品名エピコートYX−4000H)(エポキシ樹脂5)、エポキシ当量245、融点110℃の硫黄原子含有エポキシ樹脂(東都化成株式会社製商品名YSLV−120TE)(エポキシ樹脂6)、エポキシ当量273、軟化点58℃のビフェニレン型エポキシ樹脂(日本化薬株式会社製商品名NC−3000)(エポキシ樹脂7)及びエポキシ当量190、及び軟化点65℃のo−クレゾールノボラック型エポキシ樹脂(東都化成株式会社製商品名YDCN−500)(エポキシ樹脂8)、硬化剤として、軟化点78℃、水酸基当量100の上記一般式(I)のフェノール樹脂(東都化成株式会社製商品名SN−375)(硬化剤1)、水酸基当量104のトリフェニルメタン型フェノール樹脂(明和化成株式会社製商品名MEH−7500)(硬化剤2)、水酸基当量199のビフェニレン型フェノール樹脂(明和化成株式会社製商品名MEH−7851)(硬化剤3)、軟化点67℃、水酸基当量178のナフトール・アラルキル樹脂(東都化成株式会社製商品名SN−170L)(硬化剤4)、軟化点70℃、水酸基当量175のフェノール・アラルキル樹脂(三井化学株式会社製商品名ミレックスXLC−3L)(硬化剤5)、及び軟化点80℃、水酸基当量106のフェノールノボラック樹脂(明和化成株式会社製商品名H−1)(硬化剤6)、硬化促進剤としてトリフェニルホスフィン(硬化促進剤1)、トリフェニルホスフィンと1,4−ベンゾキノンの付加物(硬化促進剤2)、カップリング剤としてγ−グリシドキシプロピルトリメトキシシラン(エポキシシラン)、2級アミノ基を含有するシランカップリング剤(γ−アニリノプロピルトリメトキシシラン)(アニリノシラン)、難燃剤として三酸化アンチモン及びエポキシ当量397、軟化点69℃、臭素含量49重量%のビスフェノールA型臭素化エポキシ樹脂(東都化成株式会社製YDB−400)、無機充填剤として平均粒径14.5μm、比表面積2.8m/gの球状溶融シリカ、その他の添加剤としてカルナバワックス(クラリアント社製)及びカーボンブラック(三菱化学株式会社製商品名MA−100)をそれぞれ表1〜表3に示す質量部で配合し、混練温度80℃、混練時間10分の条件でロール混練を行い、実施例1〜20、比較例1〜10を作製した。
Figure 2010084091
Figure 2010084091
Figure 2010084091
作製した実施例1〜20、比較例1〜10の封止用エポキシ樹脂組成物の特性を、次の各試験により求めた。結果を表4〜表6に示す。
(1)スパイラルフロー
EMMI−1−66に準じたスパイラルフロー測定用金型を用いて、封止用エポキシ樹脂組成物をトランスファ成形機により、金型温度180℃、成形圧力6.9MPa、硬化時間90秒の条件で成形し、流動距離(cm)を求めた。
(2)熱時硬度
封止用エポキシ樹脂組成物を上記(1)の成形条件で直径50mm×厚さ3mmの円板に成形し、成形後直ちにショアD型硬度計を用いて測定した。
(3)難燃性
厚さ1/16インチの試験片を成形する金型を用いて、封止用エポキシ樹脂組成物を上記(1)の成形条件で成形して、さらに180℃で5時間後硬化を行い、UL−94試験法に従って難燃性を評価した。
(4)反り特性
外形寸法60mm×85mm×0.4mmtのガラスエポキシ基板(日立化成工業株式会社製商品名E−679)に8mm×10mm×0.4mmのシリコンチップを9個搭載し、封止用エポキシ樹脂組成物を用いて上記(1)の条件で40mm×70mm×0.8mmtの寸法にMAP型BGAパッケージを成形し、さらに180℃で5時間後硬化を行って、アクロメトリックス社製サーモレイPS200を用いて室温状態での反り量と室温(25℃)〜260℃〜室温(25℃)の熱履歴をかけた際の260℃での反り量と熱履歴後の室温での反り量を測定した。加熱反り変化量は熱履歴をかけた際の初期の室温反り量と260℃での反り量の差の絶対値とした。なお、本MAP型BGAパッケージは室温(25℃)では封止面を上にして凹状態に反っており、260℃では凸状態に反っていた。
(5)耐湿性
5μm厚の酸化膜上に線幅10μm、厚さ1μmのアルミ配線を施した6mm×6mm×0.4mmのテスト用シリコンチップを搭載した外形寸法20mm×14mm×2.7mmの80ピンフラットパッケージ(QFP)を、封止用エポキシ樹脂組成物を用いて上記(3)の条件で成形、後硬化して作製し、前処理を行った後、加湿して所定時間毎にアルミ配線腐食による断線不良を調べ、試験パッケージ数(10個)に対する不良パッケージ数で評価した。
なお、前処理は85℃、85%RH、72時間の条件でフラットパッケージを加湿後、215℃、90秒間のベーパーフェーズリフロー処理を行った。その後の加湿は0.2MPa、121℃の条件で行った。
(6)高温放置特性
5μm厚の酸化膜上に線幅10μm、厚さ1μmのアルミ配線を施した5mm×9mm×0.4mmのテスト用シリコンチップを、部分銀メッキを施した42アロイのリードフレーム上に銀ペーストを用いて搭載し、サーモニック型ワイヤボンダにより、200℃でチップのボンディングパッドとインナリードをAu線にて接続した16ピン型DIP(Dual Inline Package)を、封止用エポキシ樹脂組成物を用いて上記(3)の条件で成形、後硬化して作製して、200℃の高温槽中に保管し、所定時間毎に取り出して導通試験を行い、試験パッケージ数(10個)に対する導通不良パッケージ数で、高温放置特性を評価した。
Figure 2010084091
Figure 2010084091
Figure 2010084091
上記一般式(I)の化合物を配合していない比較例2〜7、10は反り量、加熱反り量が大きく劣っている。また、比較例5、7は難燃性が劣っており、UL−94 V−0を達成していない。また比較例1、6〜10は流動性に劣っており、比較例10は高温放置特性が劣っている。
これに対し、上記一般式(I)の化合物を含有している実施例1〜20は反り量、加熱反り量が良好で、全てUL−94 V−0を達成し、難燃性が良好で、また成形性も良好である。さらには耐湿性及び高温放置といった信頼性にも優れている。

Claims (12)

  1. (A)エポキシ樹脂、(B)硬化剤を含有し、(A)エポキシ樹脂が下記一般式(I)で示される化合物を含有する封止用エポキシ樹脂組成物。
    Figure 2010084091
    (一般式(I)中のRは、置換又は非置換の炭素数1〜12の炭化水素基及び置換又は非置換の炭素数1〜12のアルコキシ基から選ばれ、全てが同一でも異なっていてもよい。nは0〜2の整数を示す。またRは、置換又は非置換の炭素数1〜12の炭化水素基及び置換又は非置換の炭素数1〜12のアルコキシ基から選ばれ、全てが同一でも異なっていてもよい。mは0〜4の整数を示す。)
  2. (B)硬化剤が下記一般式(II)で示される化合物を含有する請求項1記載の封止用エポキシ樹脂組成物。
    Figure 2010084091
    (ここで、Rは水素原子、炭素数1〜6のアルキル基及び炭素数1〜2のアルコキシ基から選ばれ、互いに同一であっても異なってもよい。nは整数を示す。)
  3. さらに(A)エポキシ樹脂が下記一般式(III)及び/又は(IV)で示されるエポキシ樹脂を含有する請求項1又は2に記載の封止用エポキシ樹脂組成物。
    Figure 2010084091
    (ここで、R〜Rは水素原子、炭素数1〜10のアルキル基、炭素数1〜10のアルコキシル基、炭素数6〜10のアリール基、及び炭素数6〜10のアラルキル基から選ばれ、全てが同一でも異なっていてもよい。nは0〜3の整数を示す。)
    Figure 2010084091
    (ここで、R〜Rは水素原子、炭素数1〜10のアルキル基、炭素数1〜10のアルコキシル基、炭素数6〜10のアリール基、及び炭素数6〜10のアラルキル基から選ばれ、全てが同一でも異なっていてもよい。nは0〜3の整数を示す。)
  4. さらに(A)エポキシ樹脂が、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、硫黄原子含有エポキシ樹脂、ノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、一般式(I)以外のナフタレン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、ビフェニレン型エポキシ樹脂及びナフトール・アラルキル型エポキシ樹脂のうち少なくとも1種を含有する請求項1〜3いずれかに記載の封止用エポキシ樹脂組成物。
  5. (B)硬化剤が、ビフェニレン型フェノール・アラルキル樹脂、アラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、トリフェニルメタン型フェノール樹脂及びノボラック型フェノール樹脂のうち少なくとも1種を含有する請求項1〜4いずれかに記載の封止用エポキシ樹脂組成物。
  6. さらに(C)硬化促進剤を含有する請求項1〜5いずれかに記載の封止用エポキシ樹脂組成物。
  7. (C)硬化促進剤が第三ホスフィン化合物とキノン化合物との付加物である請求項6記載の封止用エポキシ樹脂組成物。
  8. さらに(D)無機充填剤を含有する請求項1〜7いずれかに記載の封止用エポキシ樹脂組成物。
  9. (D)無機充填剤の含有量が、60〜95重量%である請求項8記載の封止用エポキシ樹脂組成物。
  10. さらに(E)カップリング剤を含有する請求項1〜9いずれかに記載の封止用エポキシ樹脂組成物。
  11. (E)カップリング剤が2級アミノ基を有するシランカップリング剤を含有する請求項10に記載の封止用エポキシ樹脂組成物。
  12. 請求項1〜11のいずれかに記載の封止用エポキシ樹脂組成物で封止された素子を備えた電子部品装置。
JP2008257368A 2008-10-02 2008-10-02 封止用エポキシ樹脂組成物及び電子部品装置 Expired - Fee Related JP5316853B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008257368A JP5316853B2 (ja) 2008-10-02 2008-10-02 封止用エポキシ樹脂組成物及び電子部品装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008257368A JP5316853B2 (ja) 2008-10-02 2008-10-02 封止用エポキシ樹脂組成物及び電子部品装置

Publications (2)

Publication Number Publication Date
JP2010084091A true JP2010084091A (ja) 2010-04-15
JP5316853B2 JP5316853B2 (ja) 2013-10-16

Family

ID=42248361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008257368A Expired - Fee Related JP5316853B2 (ja) 2008-10-02 2008-10-02 封止用エポキシ樹脂組成物及び電子部品装置

Country Status (1)

Country Link
JP (1) JP5316853B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018123245A (ja) * 2017-02-01 2018-08-09 日立化成株式会社 封止用樹脂組成物及び半導体装置
WO2020137989A1 (ja) 2018-12-27 2020-07-02 住友ベークライト株式会社 封止用樹脂組成物、半導体装置、及び半導体装置の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6173719A (ja) * 1984-09-20 1986-04-15 Dainippon Ink & Chem Inc 新規なエポキシ樹脂組成物
JPH0312417A (ja) * 1989-06-09 1991-01-21 Nippon Steel Chem Co Ltd 半導体封止用エポキシ樹脂組成物
JPH09324031A (ja) * 1996-06-04 1997-12-16 Toto Kasei Co Ltd エポキシ樹脂組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6173719A (ja) * 1984-09-20 1986-04-15 Dainippon Ink & Chem Inc 新規なエポキシ樹脂組成物
JPH0312417A (ja) * 1989-06-09 1991-01-21 Nippon Steel Chem Co Ltd 半導体封止用エポキシ樹脂組成物
JPH09324031A (ja) * 1996-06-04 1997-12-16 Toto Kasei Co Ltd エポキシ樹脂組成物

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018123245A (ja) * 2017-02-01 2018-08-09 日立化成株式会社 封止用樹脂組成物及び半導体装置
JP7172019B2 (ja) 2017-02-01 2022-11-16 昭和電工マテリアルズ株式会社 封止用樹脂組成物及び半導体装置
WO2020137989A1 (ja) 2018-12-27 2020-07-02 住友ベークライト株式会社 封止用樹脂組成物、半導体装置、及び半導体装置の製造方法
KR20210108992A (ko) 2018-12-27 2021-09-03 스미또모 베이크라이트 가부시키가이샤 봉지용 수지 조성물, 반도체 장치, 및 반도체 장치의 제조 방법

Also Published As

Publication number Publication date
JP5316853B2 (ja) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5445490B2 (ja) 封止用エポキシ樹脂成形材料及び電子部品装置
JP5400267B2 (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JP4822053B2 (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JP4930767B2 (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JP5205907B2 (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JP2010090216A (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JP2013237855A (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JP2008239983A (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JP2008214433A (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JP2009221357A (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JP4367023B2 (ja) 封止用エポキシ樹脂成形材料及び電子部品装置
JP2010100678A (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JP2010095709A (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JP2009249424A (ja) 封止用エポキシ樹脂成形材料及び電子部品装置
JP5316853B2 (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JP2011207944A (ja) エポキシ樹脂組成物及び電子部品装置
JP2008147494A (ja) 封止用エポキシ樹脂組成物、その製造方法及び電子部品装置
JP2007262385A (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JP4367024B2 (ja) 封止用エポキシ樹脂成形材料及び電子部品装置
JP2010090300A (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JP2011246545A (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JP2009127036A (ja) 封止用エポキシ樹脂組成物及びこの組成物で封止した素子を備えた電子部品装置
JP2011252104A (ja) 封止用エポキシ樹脂組成物及びこの組成物で封止した素子を備えた電子部品装置
JP2010090275A (ja) 封止用エポキシ樹脂組成物及び電子部品装置
JP2008195820A (ja) 封止用エポキシ樹脂組成物及びこの樹脂組成物で封止された素子を備えた電子部品装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130626

R151 Written notification of patent or utility model registration

Ref document number: 5316853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees