WO2020137989A1 - 封止用樹脂組成物、半導体装置、及び半導体装置の製造方法 - Google Patents

封止用樹脂組成物、半導体装置、及び半導体装置の製造方法 Download PDF

Info

Publication number
WO2020137989A1
WO2020137989A1 PCT/JP2019/050401 JP2019050401W WO2020137989A1 WO 2020137989 A1 WO2020137989 A1 WO 2020137989A1 JP 2019050401 W JP2019050401 W JP 2019050401W WO 2020137989 A1 WO2020137989 A1 WO 2020137989A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
sealing
epoxy resin
mass
mpa
Prior art date
Application number
PCT/JP2019/050401
Other languages
English (en)
French (fr)
Inventor
信哉 河村
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to KR1020217023279A priority Critical patent/KR20210108992A/ko
Priority to CN201980086337.XA priority patent/CN113227192A/zh
Priority to US17/417,852 priority patent/US20220073727A1/en
Priority to JP2020563260A priority patent/JP7343096B2/ja
Priority to EP19906119.3A priority patent/EP3904417A4/en
Publication of WO2020137989A1 publication Critical patent/WO2020137989A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/0645Macromolecular organic compounds, e.g. prepolymers obtained otherwise than by reactions involving carbon-to-carbon unsaturated bonds
    • C09K2200/0647Polyepoxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48153Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate
    • H01L2224/48175Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/186Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Definitions

  • the present invention relates to a sealing resin composition, a semiconductor device, and a method for manufacturing a semiconductor device.
  • Patent Document 1 an epoxy resin containing a specific dihydroanthracene skeleton-containing epoxy resin in an amount of 30 to 100% by mass, a phenol curing agent, an inorganic filler, and a stearic acid wax are contained, and warpage is small, and Disclosed is a resin composition for encapsulation in which the temperature change of the warp between room temperature and reflow temperature is small.
  • the present invention is a resin composition for encapsulation in which generation of a wire flow during resin encapsulation is small, and warpage is small during post-curing of a semiconductor device encapsulated using the resin composition for encapsulation.
  • the purpose is to provide.
  • the epoxy resin (A) contains an epoxy resin (A-1) having a naphthyl ether skeleton,
  • the glass transition temperature of the cured product of the sealing resin composition is Tg (° C.)
  • the linear expansion coefficient at 190°C to 230°C is ⁇ 2 (ppm/°C)
  • E 2 (MPa) is the elastic modulus at heat at 260° C.
  • ⁇ 2 (MPa) A sealing resin composition satisfying the following formula (1) is provided.
  • a semiconductor device including an encapsulating resin formed by curing the encapsulating resin composition.
  • a step of mounting a semiconductor element on a substrate Using the sealing resin composition, a sealing step of sealing a semiconductor element, A method of manufacturing a semiconductor device is provided.
  • production of the wire flow at the time of resin sealing is small, and the warp which generate
  • a composition, a semiconductor device including a sealing resin formed by curing the sealing resin composition, and a method for manufacturing the semiconductor device are provided.
  • the term “electronic device” refers to a semiconductor chip, a semiconductor element, a printed wiring board, an electric circuit display device, an information communication terminal, a light emitting diode, a physical battery, a chemical battery, or any other device to which electronics technology is applied. , Device, final product, etc.
  • the same constituents will be referred to with the same numerals, and the description thereof will not be repeated.
  • the figure is a schematic view and does not match the actual dimensional ratio.
  • the encapsulating resin composition of the present embodiment contains (A) epoxy resin, (B) curing agent, and (C) filler.
  • the encapsulating resin composition according to the present embodiment has a glass transition temperature of Tg (° C.) of a cured product of the encapsulating resin composition,
  • the linear expansion coefficient at 190°C to 230°C is ⁇ 2 (ppm/°C)
  • E 2 (MPa) is the elastic modulus at heat at 260° C.
  • the rectangular pressure at 175° C. of the encapsulating resin composition measured by the following method is ⁇ 2 (MPa)
  • the following formula (1) is satisfied.
  • the present inventors have conducted diligent studies in order to simultaneously achieve the suppression of wire flow and the suppression of warp, and for sealing including (A) epoxy resin, (B) curing agent, and (C) filler.
  • the resin composition the glass transition temperature Tg, the linear expansion coefficient ⁇ 2 , the thermal elastic modulus E 2 , and the rectangular pressure ⁇ 2 are set to satisfy a specific relationship, that is, the formula (1).
  • the present invention has been accomplished by finding that the resin composition for encapsulation can achieve two problems at the same time.
  • the product of the residual stress S 2 and the rectangular pressure ⁇ 2 indicating the melt viscosity at high temperature satisfies the specific condition, whereby the internal stress accumulated at high temperature is
  • the fluidity at high temperature can be optimally balanced, and it is possible to achieve both suppression of wire flow during filling and suppression of warpage of the cured product of the resin composition after it has undergone thermal history. Thought to be a thing. Further, the above characteristics can be achieved by appropriately adjusting the types and blending amounts of the respective components constituting the encapsulating resin composition of the present embodiment.
  • E 2 ⁇ ( ⁇ 2 ⁇ 10 ⁇ 6 ) ⁇ (175 ⁇ Tg) ⁇ 2 represented by the formula (1) is 0.3 or less, preferably 0.28 or less, and 0. It is particularly preferable that it is 0.25 or less.
  • the lower limit of “E 2 ⁇ ( ⁇ 2 ⁇ 10 ⁇ 6 ) ⁇ (175 ⁇ Tg) ⁇ 2 ” is not particularly limited, but may be 0.01 or more, for example.
  • the thermal elastic modulus E 2 can be measured by the following method, for example, according to JISK-6911. First, a low-pressure transfer molding machine (“KTS-15” manufactured by Kotaki Seiki Co., Ltd.) was used to mold the encapsulating resin composition by injection molding at a mold temperature of 175° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds. A 4 mm ⁇ 4 mm test piece is obtained. Then, this test piece was measured by a three-point bending method using a DMA measuring device (manufactured by Seiko Instruments Inc.) in a temperature range of 0° C. to 300° C. and a temperature increase of 5° C./min to measure a cured product at 260° C. The elastic modulus at the time of heating was measured. The unit of the elastic modulus E 2 under heat is MPa.
  • the thermal elastic modulus E 2 is not particularly limited as long as it satisfies the above formula (1) in relation to other parameters, but from the viewpoint of increasing the strength of the cured product, it is preferably 100 MPa or more, more preferably 500 MPa or more. , And more preferably 1000 MPa or more. Further, from the viewpoint of realizing a cured product having excellent stress relaxation characteristics, the thermal elastic modulus E 2 is preferably 10000 MPa or less, preferably 8000 MPa or less, and more preferably 6000 MPa or less.
  • the elastic modulus E 1 at room temperature at 25° C. of the cured product of the encapsulating resin composition measured by DMA in the same manner as the thermal elastic modulus E 2 is preferably 1000 Pa or more from the viewpoint of increasing the strength of the cured product. And more preferably 3000 MPa or more, and further preferably 5000 MPa or more. Further, from the viewpoint of realizing a cured product having excellent stress relaxation characteristics, the storage elastic modulus E 1 at 25° C. is preferably 40,000 MPa or less, more preferably 30,000 MPa or less, still more preferably 25,000 MPa or less.
  • the glass transition temperature Tg (° C.) and the linear expansion coefficient ⁇ 2 (ppm/° C.) can be measured, for example, by the following methods. First, using a transfer molding machine, the resin composition for semiconductor encapsulation is injection-molded at a mold temperature of 175° C., an injection pressure of 9.8 MPa, and a curing time of 3 minutes to obtain a test piece of 15 mm ⁇ 4 mm ⁇ 4 mm. Then, after the obtained test piece is post-cured at 175° C. for 4 hours, a thermomechanical analyzer (TMA100 manufactured by Seiko Denshi Kogyo Co., Ltd.) is used to measure temperature range 0° C. to 320° C. The measurement is performed under the condition of 5°C/min.
  • TMA100 manufactured by Seiko Denshi Kogyo Co., Ltd.
  • the glass transition temperature Tg (° C.) and the linear expansion coefficient ( ⁇ 2 ) at the glass transition temperature or higher are calculated.
  • the coefficient of linear expansion at 190°C to 230°C is ⁇ 2 (ppm/°C).
  • the unit of the linear expansion coefficient ⁇ 2 is ppm/° C., and the unit of the glass transition temperature is° C.
  • the coefficient of linear expansion ⁇ 2 is not particularly limited as long as it satisfies the above expression (1) in relation to other parameters, but the coefficient of linear expansion is made low during thermal history and, for example, with other materials constituting a semiconductor package. From the viewpoint of suppressing the difference between the amount of expansion and the amount of contraction, it is preferably 75 ppm/° C. or less, more preferably 70 ppm/° C. or less, and further preferably 65 ppm/° C. or less.
  • the lower limit of the average linear expansion coefficient ⁇ 2 is not limited, but may be, for example, 10 ppm/° C. or more.
  • the glass transition temperature of the cured product is not limited as long as it satisfies the above formula (1) in relation to other parameters, but it is preferably 100°C or higher, more preferably 110°C or higher, and even more preferably 120. It is particularly preferable that the temperature is not less than 0°C, and even more than 125°C.
  • the upper limit of the glass transition temperature of the cured product is not limited, but from the viewpoint of improving the toughness of the cured product, it is, for example, 300° C. or less, more preferably less than 175° C., and even 140° C. or less. Good.
  • the lower limit of the average linear expansion coefficient ⁇ 1 is not limited, but may be, for example, 1 ppm/° C. or more.
  • the rectangular pressure (injection pressure into the rectangular space) of the resin composition for semiconductor encapsulation of the present embodiment is not particularly limited as long as it satisfies the above formula (1) in relation to other parameters, but its upper limit
  • the value is, for example, preferably 2.0 MPa or less, more preferably 1.0 MPa or less, even more preferably 0.3 MPa or less, and particularly preferably 0.2 MPa or less. This makes it possible to more effectively improve the filling property when the resin composition for semiconductor encapsulation is filled between the substrate and the semiconductor element.
  • the lower limit value of the rectangular pressure is preferably 0.03 MPa or more, more preferably 0.04 MPa or more, and particularly preferably 0.05 MPa or more. This makes it possible to prevent resin leakage from the mold gap during molding.
  • the encapsulating resin composition according to the present embodiment is a cured product of the encapsulating resin composition,
  • the glass transition temperature is Tg (°C)
  • the linear expansion coefficient at 40°C to 80°C is ⁇ 1 (ppm/°C)
  • E 1 (MPa) When the elastic modulus at room temperature at 25° C. is E 1 (MPa),
  • the gel time of the encapsulating resin composition is preferably 10 seconds or more, and more preferably 20 seconds from the viewpoint of increasing the molding cycle while improving the moldability of the encapsulating resin composition. That is all.
  • the gel time of the encapsulating resin composition is preferably 100 seconds or less, more preferably 80 seconds or less, and further preferably 70 seconds or less. The gel time can be measured by measuring the time (gel time) until the resin composition for sealing is melted on a hot plate heated to 175° C. and then kneaded with a spatula to cure.
  • the spiral flow length of the encapsulating resin composition is preferably 40 cm or more, and more preferably from the viewpoint of more effectively improving the filling property when molding the encapsulating resin composition. Is 50 cm, more preferably 60 cm.
  • the upper limit of the spiral flow length is not limited, but may be 200 cm, for example.
  • the shrinkage rate S 1 when heat-treated at 175° C. for 2 minutes can be, for example, 0.05% or more and 2% or less, and is 0.1%. It is more preferably 0.5% or less.
  • the shrinkage rate S 2 when heat-treated at 175° C. for 4 hours can be set to, for example, 0.05% or more and 2% or less. It is more preferably 1% or more and 0.5% or less.
  • the encapsulating resin composition according to the present embodiment includes (A) epoxy resin, (B) curing agent, and (C) filler.
  • the epoxy resin (A) includes the epoxy resin (A-1) having a naphthyl ether skeleton.
  • the encapsulating resin composition according to the present embodiment contains an epoxy resin (A-1) having a naphthyl ether skeleton, has rigidity due to a structural unit containing the naphthalene skeleton, and has a too high crosslink density. Therefore, it is presumed that a resin composition for encapsulation having an excellent balance between the viscosity characteristics upon melting and the shrinkage ratio and elastic modulus when it becomes a cured product can be obtained.
  • A-1 epoxy resin having a naphthyl ether skeleton
  • the encapsulating resin composition according to this embodiment may include at least one epoxy resin represented by the following general formula (NE) as the epoxy resin (A-1) having a naphthyl ether skeleton.
  • NE general formula
  • R 1's each independently represent a hydrogen atom or a methyl group
  • Ar 1 and Ar 2's each independently represent a naphthylene group or a phenylene group, and both groups each have a carbon number. It may have 1 to 4 alkyl groups or phenylene groups as a substituent.
  • R 2's each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or an aralkyl group
  • p and q each independently represent an integer of 0 to 4, provided that p and q One of them is 1 or more
  • R 3's each independently represent a hydrogen atom, an aralkyl group or an epoxy group-containing aromatic hydrocarbon group.
  • the aralkyl group when R 2 is an aralkyl group, the aralkyl group can be represented by the following formula (A). Further, in the formula (NE), when R 3 is an aralkyl group, the aralkyl group can be represented by the following formula (A).
  • R 4 and R 5 each independently represent a hydrogen atom or a methyl group
  • Ar 3 is a phenylene group
  • 1 to 3 hydrogen atoms are nuclear-substituted with an alkyl group having 1 to 4 carbon atoms.
  • r is a number of 0.1 to 4 on average.
  • R 3 is an epoxy group-containing aromatic hydrocarbon group
  • the epoxy group-containing aromatic hydrocarbon group can be represented by the following formula (E).
  • R 6 represents a hydrogen atom or a methyl group
  • Ar 4 represents a naphthylene group, or a naphthylene group having an alkyl group having 1 to 4 carbon atoms, an aralkyl group or a phenylene group as a substituent.
  • s is an integer of 1 or 2.
  • the encapsulating resin composition according to the present embodiment contains the epoxy resin (A-1) having the naphthyl ether skeleton of the above aspect, and thus has a viscosity characteristic at the time of melting and a shrinkage rate when it becomes a cured product, It is considered that the resin composition for sealing has an excellent balance with the elastic modulus.
  • the epoxy resin (A) preferably contains an epoxy resin (A-2) in addition to the above-mentioned epoxy resin (A-1) having a naphthyl ether skeleton.
  • the epoxy resin (A-2) is, for example, a biphenyl type epoxy resin; a bisphenol type epoxy resin such as a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, or a tetramethylbisphenol F type epoxy resin; a stilbene type epoxy resin; a phenol novolac type.
  • the epoxy resin (A-2) is a bisphenol type epoxy resin, a biphenyl type epoxy resin, a novolac type epoxy resin, a phenol aralkyl type epoxy resin, and It is more preferable to include at least one of triphenol methane type epoxy resins. Further, from the viewpoint of suppressing warpage of the semiconductor device, it is particularly preferable to contain at least one of a phenol aralkyl type epoxy resin and a novolac type epoxy resin. Further, a biphenyl type epoxy resin is particularly preferable for improving the fluidity, and a phenol aralkyl type epoxy resin having a biphenylene skeleton is particularly preferable for controlling the elastic modulus at high temperature.
  • Examples of the epoxy resin (A-2) include an epoxy resin represented by the following formula (1), an epoxy resin represented by the following formula (2), an epoxy resin represented by the following formula (3), and a following formula ( A resin containing at least one selected from the group consisting of the epoxy resin represented by 4) and the epoxy resin represented by the following formula (5) can be used.
  • Ar 1 represents a phenylene group or a naphthylene group, and when Ar 1 is a naphthylene group, the glycidyl ether group may be bonded to either the ⁇ -position or the ⁇ -position.
  • Ar 2 represents any one group of a phenylene group, a biphenylene group and a naphthylene group.
  • R a and R b each independently represent a hydrocarbon group having 1 to 10 carbon atoms.
  • g is an integer of 0 to 5 and h is an integer of 0 to 8.
  • n 3 represents the degree of polymerization, and its average value is 1 to 3.
  • a plurality of R c's each independently represent a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms.
  • n 5 represents the degree of polymerization, and its average value is 0 to 4.
  • a plurality of R d and R e independently represent a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms.
  • n 6 represents the degree of polymerization, and its average value is 0 to 4.
  • a plurality of R f's each independently represent a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms.
  • n 7 represents the degree of polymerization, and its average value is 0 to 4.
  • a plurality of R g each independently represent a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms.
  • n 8 represents the degree of polymerization, and its average value is 0 to 4.
  • the epoxy resin (A-2) one containing the epoxy resin represented by the above formula (5) is mentioned as a more preferable embodiment.
  • the epoxy resin (A) including the epoxy resin (A-1) having a naphthyl ether skeleton is 100 parts by mass, or the epoxy resin (A-1) having a naphthyl ether skeleton, and When the total amount of the epoxy resin (A) including the epoxy resin (A-2) other than the epoxy resin (A-1) is 100 parts by mass, the epoxy resin (A-1) is 1 part by mass or more and 70 parts by mass or more. It is preferably not more than 10 parts by mass, more preferably not less than 10 parts by mass and not more than 65 parts by mass, particularly preferably not less than 30 parts by mass and not more than 60 parts by mass.
  • the curing agent (B) in the present embodiment is not particularly limited as long as it is generally used in the resin composition for semiconductor encapsulation, and examples thereof include a phenol-based curing agent, an amine-based curing agent, and an acid anhydride-based curing agent.
  • a curing agent and a mercaptan-based curing agent are included, and at least one selected from these can be included.
  • the phenol-based curing agent is not particularly limited as long as it is one generally used in resin compositions for semiconductor encapsulation, and examples thereof include phenol novolac resin, cresol novolac resin and other phenols, cresol, resorcin, and catechol.
  • Novolak resins obtained by condensing or co-condensing phenols such as bisphenol A, bisphenol F, phenylphenol, aminophenol, ⁇ -naphthol, ⁇ -naphthol, and dihydroxynaphthalene with formaldehyde and ketones under an acidic catalyst.
  • amine curing agent As the amine curing agent, aliphatic polyamines such as diethylenetriamine (DETA), triethylenetetramine (TETA) and metaxylylenediamine (MXDA), diaminodiphenylmethane (DDM), m-phenylenediamine (MPDA) and diaminodiphenylsulfone ( In addition to aromatic polyamines such as DDS), polyamine compounds including dicyandiamide (DICY), organic acid dihydralazide and the like can be mentioned, and these may be used alone or in combination of two or more kinds.
  • DETA diethylenetriamine
  • TETA triethylenetetramine
  • MXDA metaxylylenediamine
  • DDM diaminodiphenylmethane
  • MPDA m-phenylenediamine
  • DINK diaminodiphenylsulfone
  • acid anhydride-based curing agents include alicyclic acid anhydrides such as hexahydrophthalic anhydride (HHPA), methyltetrahydrophthalic anhydride (MTHPA) and maleic anhydride, trimellitic anhydride (TMA) and pyromellitic anhydride. (PMDA), benzophenone tetracarboxylic acid (BTDA), aromatic acid anhydrides such as phthalic anhydride, etc. may be used, and these may be used alone or in combination of two or more.
  • HHPA hexahydrophthalic anhydride
  • MTHPA methyltetrahydrophthalic anhydride
  • TMA trimellitic anhydride
  • BTDA benzophenone tetracarboxylic acid
  • aromatic acid anhydrides such as phthalic anhydride, etc.
  • mercaptan-based curing agent examples include trimethylolpropane tris(3-mercaptobutyrate) and trimethylolethanetris(3-mercaptobutyrate). These may be used alone or in combination of two or more. Good.
  • ⁇ Other curing agents examples include isocyanate compounds such as isocyanate prepolymers and blocked isocyanates, organic acids such as carboxylic acid-containing polyester resins, and the like, which may be used alone or in combination of two or more kinds. .. Moreover, you may use combining the 2 or more types of hardeners of a different type among the above.
  • the encapsulating resin composition may include only one type of curing agent (B), or may include two or more types.
  • the curing agent (B) is preferably contained in an amount of 30 to 70 parts by mass, more preferably 35 to 65 parts by mass, and even more preferably 40 to 60 parts by mass with respect to 100 parts by mass of the epoxy resin (A). It is particularly preferable to include a part.
  • the content of the curing agent (B) is, for example, preferably 0.5% by mass or more, and more preferably 1% by mass or more, based on 100% by mass of the total solid content of the encapsulating resin composition. More preferably, it is still more preferably 1.5% by mass or more. As a result, excellent fluidity is obtained during molding, and filling properties and moldability are improved.
  • the content of the curing agent (B) it is preferably 9% by mass or less, and preferably 8% by mass or less, based on 100% by mass of the total solid content of the encapsulating resin composition. It is more preferable that the content is 7% by mass or less. As a result, it is possible to improve the moisture resistance reliability and reflow resistance of the electronic device. In addition, it can contribute to further suppression of warpage of the base material.
  • the encapsulating resin composition of the present embodiment contains a filler (C).
  • a filler (C) include inorganic fillers such as silica, alumina, titanium white, aluminum hydroxide, talc, clay, mica and glass fiber.
  • the filler (C) preferably contains silica.
  • silica include fused crushed silica, fused spherical silica, crystalline silica, and secondary agglomerated silica. Of these, fused spherical silica is particularly preferable.
  • the filler (C) is usually particles.
  • the shape of the particles is preferably substantially spherical.
  • the average particle size of the filler (C) is not particularly limited, but is typically 1 to 100 ⁇ m, preferably 1 to 50 ⁇ m, and more preferably 1 to 20 ⁇ m. When the average particle size is appropriate, it is possible to ensure appropriate fluidity during curing. It should be noted that by making the average particle size relatively small (for example, 1 to 20 ⁇ m), it is conceivable to enhance the filling property into a narrow gap portion in the most advanced wafer level package.
  • a laser diffraction/scattering particle size distribution measuring device for example, a wet particle size distribution measuring device LA-950 manufactured by Horiba Ltd.
  • LA-950 a wet particle size distribution measuring device manufactured by Horiba Ltd.
  • the measurement is usually performed by a wet method.
  • the filler (C) such as silica may be surface-modified with a coupling agent such as a silane coupling agent.
  • a coupling agent such as a silane coupling agent.
  • aggregation of the filler (C) is suppressed, and better fluidity can be obtained.
  • affinity between the filler (C) and other components is increased, and the dispersibility of the filler (C) is improved. This is considered to contribute to improving the mechanical strength of the cured product and suppressing the generation of microcracks.
  • the coupling agent for surface modification those mentioned below as the coupling agent (E) can be used.
  • the encapsulating resin composition may include only one type of filler (C), or may include two or more types.
  • the content of the filler (C) is not particularly limited, but, for example, it is preferably 65 parts by mass or more and 98 parts by mass or less with respect to 100% by mass of the total solid content of the encapsulating resin composition, and 68. It is more preferably contained in an amount of not less than 95 parts by mass and not more than 95 parts by mass, particularly preferably not less than 70 parts by mass and not more than 93 parts by mass.
  • the amount of the filler (C) is appropriately increased and the amount of the resin component (epoxy resin (A), curing agent (B), etc.) is relatively small, the curing shrinkage theoretically decreases, so that the warpage is reduced. It can be further reduced.
  • the content of the filler (C) it becomes possible to suppress deterioration of moldability due to deterioration of fluidity during molding.
  • the resin composition of the present embodiment even if the amount of the filler (C) is appropriately increased, it is possible to suppress deterioration of fluidity during molding.
  • the encapsulating resin composition of this embodiment may include a curing accelerator.
  • the curing accelerator may be one that accelerates the curing of the thermosetting resin, and is selected according to the type of thermosetting resin.
  • the curing accelerator is, for example, a phosphorus atom-containing compound such as an organic phosphine, a tetra-substituted phosphonium compound, a phosphobetaine compound, an adduct of a phosphine compound and a quinone compound, an adduct of a phosphonium compound and a silane compound; 2 -Methylimidazole, 2-ethyl-4-methylimidazole (EMI24), 2-phenyl-4-methylimidazole (2P4MZ), 2-phenylimidazole (2PZ), 2-phenyl-4-methyl-5-hydroxyimidazole (2P4MHZ ), 1-benzyl-2-phenylimidazole (1B2PZ) and other phosphorus atom
  • the content of the curing accelerator in the encapsulating resin composition is preferably 0.01% by mass or more with respect to the entire encapsulating resin composition from the viewpoint of effectively improving the curability of the resin composition. %, more preferably 0.03% by mass or more, and further preferably 0.05% by mass or more. From the viewpoint of improving the handling of the encapsulating resin composition, the content of the curing accelerator in the encapsulating resin composition is preferably 5% by mass or less with respect to the entire encapsulating resin composition. , More preferably 3% by mass or less, further preferably 1% by mass or less.
  • the encapsulating resin composition of this embodiment may include a coupling agent.
  • a coupling agent By including the coupling agent in the encapsulating resin composition, it is possible to further improve the adhesiveness with the substrate and the dispersibility of the filler in the composition, for example. When the dispersibility of the filler is improved, the homogeneity of the finally obtained cured product is improved. This can contribute to improving the mechanical strength of the cured product.
  • the coupling agent for example, various silane compounds such as epoxysilane, mercaptosilane, aminosilane, alkylsilane, ureidosilane, vinylsilane, and methacrylsilane, titanium compounds, aluminum chelates, aluminum/zirconium compounds, and the like are known.
  • a coupling agent can be used. More specifically, the following can be exemplified.
  • Silane coupling agent vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris( ⁇ -methoxyethoxy)silane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -(3,4-epoxycyclohexyl)ethyltri Methoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ -methacryloxypropylmethyldiethoxysilane, ⁇ -methacryloxypropyltriethoxy Silane, vinyltriacetoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -anilinopropyltrimethoxysilane, ⁇ -anilino
  • Titanate coupling agent isopropyl triisostearoyl titanate, isopropyl tris(dioctyl pyrophosphate) titanate, isopropyl tri(N-aminoethyl-aminoethyl) titanate, tetraoctyl bis(ditridecyl phosphite) titanate, tetra(2,2) -Diallyloxymethyl-1-butyl)bis(ditridecyl)phosphite titanate, bis(dioctylpyrophosphate)oxyacetate titanate, bis(dioctylpyrophosphate)ethylene titanate, isopropyl trioctanoyl titanate, isopropyl dimethacryl isostearoyl titanate, isopropyl Tridodecylbenzene sulfonyl titanate, isopropyl isostearoyl diacrylic titanate, iso
  • the encapsulating resin composition may contain only one coupling agent or two or more coupling agents.
  • the lower limit of the content of the coupling agent is not particularly limited, but for example, it is preferably 0.05% by mass or more, and more preferably 0.1% by mass or more, with respect to the entire encapsulating resin composition. ..
  • the upper limit of the content of the coupling agent is not particularly limited, but it is preferably 2.0% by mass or less, and more preferably 1.0% by mass or less, based on the whole encapsulating resin composition.
  • the encapsulating resin composition of the present embodiment further includes, if necessary, a pH adjusting agent, an ion scavenger, a flame retardant, a colorant, a release agent, a low stress agent, an antioxidant, a heavy metal deactivator, and the like. Various additives may be included.
  • hydrotalcite can be used as the pH adjuster. Hydrotalcite is said to maintain the pH of the composition in the vicinity of neutrality and, as a result, hardly generate ions such as Cl ⁇ .
  • ion trapping agent also called an ion catcher or ion trapping agent
  • bismuth oxide, yttrium oxide, or the like can be used.
  • a pH adjuster and/or an ion scavenger only 1 type may be used and 2 or more types may be used together.
  • the amount thereof is, for example, 0.05 to 0.3% by mass, preferably 0.1 to 0.2% by mass, based on the whole encapsulating resin composition. Is.
  • flame retardants examples include inorganic flame retardants (for example, hydrated metal compounds such as aluminum hydroxide, available from Sumitomo Chemical Co., Ltd.), halogen flame retardants, phosphorus flame retardants, organic metal salt flame retardants, etc. Can be mentioned. When using a flame retardant, you may use only 1 type and may use 2 or more types together. When a flame retardant is used, the content is not particularly limited, but is, for example, 10% by mass or less, preferably 5% by mass or less, based on the entire encapsulating resin composition. By setting the upper limit value or less, the electrical reliability of the package can be maintained.
  • inorganic flame retardants for example, hydrated metal compounds such as aluminum hydroxide, available from Sumitomo Chemical Co., Ltd.
  • halogen flame retardants for example, hydrated metal compounds such as aluminum hydroxide, available from Sumitomo Chemical Co., Ltd.
  • halogen flame retardants for example, halogen flame retardants, phosphorus flame retardants, organic
  • the colorant include carbon black, red iron oxide, and titanium oxide.
  • a colorant one type or a combination of two or more types can be used.
  • a coloring agent when used, its amount is, for example, 0.1 to 0.5% by mass, preferably 0.2 to 0.4% by mass, based on the whole encapsulating resin composition.
  • the release agent examples include natural wax, synthetic wax such as montanic acid ester, higher fatty acid or its metal salt, paraffin, polyethylene oxide and the like.
  • synthetic wax such as montanic acid ester, higher fatty acid or its metal salt, paraffin, polyethylene oxide and the like.
  • the amount thereof is, for example, 0.1 to 0.5% by mass, preferably 0.2 to 0.3% by mass, based on the whole encapsulating resin composition.
  • low stress agent examples include silicone oil, silicone rubber, polyisoprene, 1,2-polybutadiene, polybutadiene such as 1,4-polybutadiene, styrene-butadiene rubber, acrylonitrile-butadiene rubber, polychloroprene, poly(oxypropylene).
  • thermoplastic elastomers such as poly(oxytetramethylene) glycol, polyolefin glycol, poly- ⁇ -caprolactone, polysulfide rubber, and fluororubber.
  • the amount thereof may be, for example, 0.05 to 1.0 mass% with respect to the entire encapsulating resin composition.
  • the encapsulating resin composition of the present embodiment is obtained, for example, by mixing the above-mentioned components by a known means, further melt-kneading with a kneader such as a roll, a kneader or an extruder, cooling and then pulverizing. be able to. Further, a tablet-molded product of these may be used as a sealing resin composition. Thereby, a granular or tablet-shaped encapsulating resin composition can be obtained. By using such a tablet-molded composition, it becomes easy to carry out sealing molding using a known molding method such as transfer molding, injection molding, and compression molding.
  • a known molding method such as transfer molding, injection molding, and compression molding.
  • the encapsulating resin composition of the present embodiment is a semiconductor element encapsulating resin composition such as a general semiconductor element or a power semiconductor, a wafer encapsulating resin composition, a pseudo-wafer forming resin composition, an in-vehicle electronic device. It can be used for various applications such as a control unit forming sealing resin composition, a wiring board forming sealing resin composition, and a rotor fixing member sealing resin composition.
  • the semiconductor device will be described below.
  • the semiconductor device according to the present embodiment is a semiconductor device including a sealing resin formed by curing the sealing resin composition according to the present embodiment.
  • FIG. 1 is a cross-sectional view showing the configuration of the semiconductor device 100 according to this embodiment.
  • the semiconductor device 100 shown in FIG. 1 includes a semiconductor element 20 mounted on a substrate 30 and a sealing material 50 that seals the semiconductor element 20.
  • the encapsulating material 50 is composed of a cured product obtained by curing the encapsulating resin composition in the present embodiment.
  • FIG. 1 illustrates the case where the board 30 is a circuit board.
  • a plurality of solder balls 60 are formed on the other surface of the substrate 30 opposite to the one surface on which the semiconductor element 20 is mounted.
  • the semiconductor element 20 is mounted on the substrate 30 and is electrically connected to the substrate 30 via the wires 40.
  • the semiconductor element 20 may be flip-chip mounted on the substrate 30.
  • the wire 40 is made of, for example, copper.
  • the sealing material 50 seals the semiconductor element 20 so as to cover, for example, the other surface of the semiconductor element 20 opposite to the one surface facing the substrate 30.
  • the sealing material 50 is formed so as to cover the other surface and the side surface of the semiconductor element 20.
  • the encapsulant 50 can be formed, for example, by encapsulating the encapsulating resin composition using a known method such as a transfer molding method or a compression molding method.
  • the reflow temperature in the reflow step may be, for example, 200° C. or higher, 230° C. or higher, and particularly 260° C. or higher.
  • the encapsulating material 50 is formed by using the encapsulating resin composition according to the present embodiment described above, so that the occurrence of warpage can be suppressed even after such high temperature reflow. it can. Therefore, the reliability of the semiconductor device 100 can be improved.
  • FIG. 2 is a cross-sectional view showing the configuration of the semiconductor device 100 according to this embodiment, and shows an example different from FIG.
  • the semiconductor device 100 shown in FIG. 2 uses a lead frame as the substrate 30.
  • the semiconductor element 20 is mounted on, for example, the die pad 32 of the substrate 30, and is electrically connected to the outer lead 34 via the wire 40.
  • the sealing material 50 is formed using the resin composition for sealing which concerns on this embodiment similarly to the example shown in FIG.
  • Examples 1 to 9 and Comparative Example 1 (Production of resin composition for sealing)> First, the components in the blending amounts (parts by mass) shown in Table 1 were mixed at room temperature with a mixer to obtain a mixture. Next, the mixture was heated and kneaded at a temperature of 70° C. or higher and 100° C. or lower. Then, it was cooled to room temperature and then pulverized to obtain a sealing resin composition.
  • Epoxy resin 1 an epoxy resin containing an epoxy resin having a naphthyl ether skeleton represented by the formula (NE) as a main component (manufactured by DIC, product number: HP6000L)
  • Epoxy resin 2 Biphenylene skeleton-containing phenol aralkyl type epoxy resin (manufactured by Nippon Kayaku Co., product number: NC3000)
  • Epoxy resin 3 Epoxy resin containing an epoxy resin having a triphenylmethane skeleton represented by the formula (5) as a main component (manufactured by JER Corporation, product number: YL6677)
  • Epoxy resin 4 biphenyl type epoxy resin represented by the above formula (2) (manufactured by Mitsubishi Chemical Co., product number: YX-4000K)
  • Epoxy resin 5 dicyclopentadiene type epoxy resin (manufactured by DIC, product number: HP-7200L)
  • (Curing agent) -Curing agent 1 Biphenylene skeleton-containing phenol aralkyl type resin (manufactured by Nippon Kayaku Co., product number: GPH-65) -Curing agent 2: Trisphenylmethane type phenol resin (Air Water Co., Ltd., HE910-20) -Curing agent 3: Biphenyl aralkyl type phenol resin (manufactured by Meiwa Kasei Co., product number: MEH-7851H) -Curing agent 4: Biphenyl dimethylene type phenol resin (manufactured by Meiwa Kasei Co., product number: MEH-7851SS) -Curing agent 5: Biphenyl aralkyl type phenol resin (manufactured by Meiwa Kasei Co., product number: SH-002-02)
  • Inorganic filler ⁇ Inorganic filler 1: fused spherical silica (ES series, manufactured by Tokai Mineral Co., Ltd.) Inorganic filler 2: fused spherical silica (TS series, manufactured by Micron Corp.) Inorganic filler 3: fused spherical silica having an average particle size of 0.6 ⁇ m, a specific surface area of 6.4 m 2 /g and an upper limit cut of 45 ⁇ m (manufactured by Admatechs, product number: SC-2500-SQ) Inorganic filler 4: fused spherical silica having an average particle size of 1.6 ⁇ m, a specific surface area of 4.4 m 2 /g and an upper limit cut of 45 ⁇ m (manufactured by Admatechs, product number: SC-5500-SQ) Inorganic filler 5: fused spherical silica (manufactured by Admatechs, product number: FEB24
  • Curing accelerator Tetraphenylphosphonium-4,4'-sulfonyldiphenolate (Sumitomo Bakelite Co., Ltd.)
  • Curing accelerator 2 Tetraphenylphosphonium bis(naphthalene-2,3-dioxy)phenyl silicate (Sumitomo Bakelite Co., Ltd.)
  • Coupling agent N-phenyl-3-aminopropyltrimethoxysilane (Toray Dow Corning, CF4083)
  • Release agent ⁇ Release agent 1: Oxidized polyethylene wax (Clariant Japan, product number: Licowax PED191) -Release agent 2: Carnauba wax (manufactured by Toa Kasei Co., product number: TOWAX-132)
  • Low stress agent ⁇ Low-stress agent 1: Carboxyl group-terminated butadiene/acrylonitrile copolymer (manufactured by Ube Industries, Part number: CTBN1008SP)
  • Low stress agent 2 dimethylsiloxane-alkylcarboxylic acid-4,4'-(1-methylethylidene)bisphenol diglycidyl ether copolymer (melt reaction product A described in paragraph 0068 of Japanese Patent No. 5157473)
  • ⁇ Low stress agent 3 Silicone resin (KR-480, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • the thermal modulus of the cured product was measured by the following method according to JIS K-6911. First, a low-pressure transfer molding machine (“KTS-15” manufactured by Kotaki Seiki Co., Ltd.) was used to mold the encapsulating resin composition by injection molding at a mold temperature of 175° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds. A 4 mm ⁇ 4 mm test piece was obtained. Then, this test piece was measured by a three-point bending method using a DMA measuring device (manufactured by Seiko Instruments Inc.) at a measuring temperature range of 0° C. to 300° C. and a temperature increase of 5° C./min, and a cured product at 25° C. The elastic modulus at room temperature and the thermal modulus of the cured product at 260° C. were measured. The unit is MPa.
  • the glass transition temperature and the coefficient of linear expansion of the cured product of the resin composition for semiconductor encapsulation obtained in each of Examples and Comparative Examples were measured as follows. First, the resin composition for semiconductor encapsulation was injection-molded using a transfer molding machine at a mold temperature of 175° C., an injection pressure of 9.8 MPa, and a curing time of 3 minutes to obtain a test piece of 15 mm ⁇ 4 mm ⁇ 4 mm. Then, after the obtained test piece is post-cured at 175° C. for 4 hours, a thermomechanical analyzer (TMA100 manufactured by Seiko Denshi Kogyo Co., Ltd.) is used to measure temperature range 0° C.
  • TMA100 thermomechanical analyzer manufactured by Seiko Denshi Kogyo Co., Ltd.
  • the maximum amount of warpage was determined as the amount of warpage, and the average value of the amounts of warpage of the four packages was determined to be ⁇ , and 150 ⁇ m or more was determined to be x. Further, when the semiconductor package using the encapsulating resin composition of the example was further subjected to reflow treatment under the condition of 260° C. for 10 minutes, the average value of the warpage amount of the four packages after the reflow treatment was less than 150 ⁇ m. I confirmed that there is.
  • the BGA package molded by the evaluation of the package warpage amount was observed with a soft X-ray transmission apparatus.
  • the flow amount of the most deformed wire in one package is (F) and the length of the wire is (L), and the flow amount is F/L ⁇ 100 (%) was calculated, and an average value of 4 packages was determined to be ⁇ when it was less than 5% and 5 when it was 5% or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

本発明によれば、(A)エポキシ樹脂、(B)硬化剤、及び、(C)充填材、を含有する封止用樹脂組成物であって、エポキシ樹脂(A)は、ナフチルエーテル骨格を有するエポキシ樹脂(A-1)を含み、封止用樹脂組成物の硬化物のガラス転移温度をTg(℃)、190℃~230℃における線膨張係数をα2(ppm/℃)、260℃における熱時弾性率をE2(MPa)とし、以下の方法により測定された、封止用樹脂組成物の175℃における矩形圧をη2(MPa)としたとき、下記式(1)を満足する封止用樹脂組成物が提供される。 式(1) E2×(α2×10-6)×(175-Tg)×η2≦0.3 (方法) 低圧トランスファー成形機を用いて、金型温度170℃、注入流量177mm3/秒の条件にて、幅15mm、厚さ1mm、長さ175mmの矩形状の流路に、前記封止用樹脂組成物を注入し、流路の上流先端から25mmの位置に埋設した圧力センサーにて圧力の経時変化を測定し、前記封止用樹脂組成物の流動時における最低圧力(MPa)を測定し、これを矩形圧とする。

Description

封止用樹脂組成物、半導体装置、及び半導体装置の製造方法
 本発明は、封止用樹脂組成物、半導体装置、及び半導体装置の製造方法に関する。
 半導体パッケージ等の封止用樹脂組成物として様々な技術が開発されている。また、半導体パッケージ等の電子部品は様々な線膨張係数を有する部材で構成されており、その製造過程において、後硬化やリフロー等の加熱を伴う工程を経ることで、反りが発生する問題が生じている。そこで、例えば、特許文献1には、特定のジヒドロアントラセン骨格含有エポキシ樹脂を30~100質量%含有するエポキシ樹脂、フェノール硬化剤、無機充填剤、およびステアリン酸ワックスを含有する、反りが小さく、かつ室温~リフロー温度における反りの温度変化が小さい封止用樹脂組成物が開示されている。
特開2010-084091号公報
 一方、半導体パッケージ等を樹脂封止する際、封止用の樹脂の流動中に、半導体チップに接続しているボンディングワイヤーが変形して、断線や接触等を起こすという問題があった。
 本発明者らの検討によれば、特許文献1に記載の封止用樹脂組成物を用いた場合、該封止用樹脂組成物を用いて封止する際のワイヤー流れと、該封止用樹脂組成物を用いて封止した半導体装置の後硬化やリフロー時に発生する反りとを、同時に抑制することが困難であることが判明した。本発明は、樹脂封止する際のワイヤー流れの発生が少なく、かつ、封止用樹脂組成物を用いて封止した半導体装置の後硬化時等に発生する反りが少ない封止用樹脂組成物の提供を目的とするものである。
 本発明によれば、
 (A)エポキシ樹脂、
 (B)硬化剤、及び、
 (C)充填材、
 を含有する封止用樹脂組成物であって、
 エポキシ樹脂(A)は、ナフチルエーテル骨格を有するエポキシ樹脂(A-1)を含み、
 前記封止用樹脂組成物の硬化物の
 ガラス転移温度をTg(℃)、
 190℃~230℃における線膨張係数をα(ppm/℃)、
 260℃における熱時弾性率をE(MPa)とし、
 以下の方法により測定された、前記封止用樹脂組成物の175℃における矩形圧をη(MPa)としたとき、
 下記式(1)を満足する封止用樹脂組成物が提供される。
 式(1) E×(α×10-6)×(175-Tg)×η≦0.3
(方法)
 低圧トランスファー成形機を用いて、金型温度170℃、注入流量177mm/秒の条件にて、幅15mm、厚さ1mm、長さ175mmの矩形状の流路に、前記封止用樹脂組成物を注入し、流路の上流先端から25mmの位置に埋設した圧力センサーにて圧力の経時変化を測定し、前記封止用樹脂組成物の流動時における最低圧力(MPa)を測定し、これを矩形圧とする。
 また、本発明によれば、上記封止用樹脂組成物を硬化することにより形成された封止樹脂を備える半導体装置が提供される。
 また、本発明によれば、基板上に半導体素子を搭載する工程と、
 上記封止用樹脂組成物を用いて、半導体素子を封止する封止工程と、
を備える半導体装置の製造方法が提供される。
 本発明によれば、樹脂封止する際のワイヤー流れの発生が少なく、かつ、封止用樹脂組成物を用いて封止した半導体装置の後硬化時等に発生する反りが少ない封止用樹脂組成物、該封止用樹脂組成物を硬化することにより形成された封止樹脂を備える半導体装置、該半導体装置の製造方法が提供される。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
実施形態における半導体装置の構成を示す断面図である。 実施形態における半導体装置の構成を示す断面図である。
 以下、本発明の実施形態について、詳細に説明する。
 本明細書中、数値範囲の説明における「a~b」との表記は、特に断らない限り、a以上b以下のことを表す。例えば、「1~5質量%」とは「1質量%以上5質量%以下」の意である。
 本明細書における「電子装置」の語は、半導体チップ、半導体素子、プリント配線基板、電気回路ディスプレイ装置、情報通信端末、発光ダイオード、物理電池、化学電池など、電子工学の技術が適用された素子、デバイス、最終製品等を包含する意味で用いられる。
 尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、図は概略図であり、実際の寸法比率とは一致していない。
<封止用樹脂組成物>
 まず、本実施形態に係る封止用樹脂組成物について説明する。
 本実施形態の封止用樹脂組成物は、(A)エポキシ樹脂、(B)硬化剤、及び、(C)充填材を含む。
 そして、本実施形態に係る封止用樹脂組成物は、かかる封止用樹脂組成物の硬化物のガラス転移温度をTg(℃)、
 190℃~230℃における線膨張係数をα(ppm/℃)、
 260℃における熱時弾性率をE(MPa)とし、
 以下の方法により測定された、前記封止用樹脂組成物の175℃における矩形圧をη(MPa)としたとき、下記式(1)を満足する。
 式(1) E×(α×10-6)×(175-Tg)×η≦0.3
(方法)
 低圧トランスファー成形機を用いて、金型温度170℃、注入流量177mm/秒の条件にて、幅15mm、厚さ1mm、長さ175mmの矩形状の流路に、前記封止用樹脂組成物を注入し、流路の上流先端から25mmの位置に埋設した圧力センサーにて圧力の経時変化を測定し、前記封止用樹脂組成物の流動時における最低圧力(MPa)を測定し、これを矩形圧とする。
 半導体パッケージ等の電子部品は様々な線膨張係数を有する部材で構成されており、その製造過程において、加熱を伴う工程を経ると、様々な部材は、収縮量、膨張量が異なるため、結果として反りが発生する。大きな反りの発生は接合不良による信頼性の悪化や、パッケージ個片化における切断の難化に繋がるため、低温から高温までの広範囲な反りの抑制は重要な課題になっている。また、一方で、半導体パッケージ等を樹脂封止する際、封止用樹脂の充填中に、半導体チップに接続しているボンディングワイヤーが変形して、断線や接触等を起こすという問題があった。しかしながら、ワイヤー流れの抑制と反りの抑制を同時に達成することは困難であった。
 本発明者らは、ワイヤー流れの抑制と反りの抑制を同時に達成するために、鋭意検討を行い、(A)エポキシ樹脂、(B)硬化剤、及び、(C)充填材を含む封止用樹脂組成物において、ガラス転移温度Tg、線膨張係数α、熱時弾性率E、及び、矩形圧ηとが、特定の関係、すなわち式(1)を満たす構成とすることで、上記2つの課題を同時に達成することができる封止用樹脂組成物となることを見出し、本発明を成し得たものである。
 封止用樹脂組成物が上述した成分を有するとともに、封止用樹脂組成物が、上述した式(1)を満たすことにより、ワイヤー流れの抑制と反りの抑制を同時に達成することができる理由は必ずしも明らかではないが、以下の点が推察される。
 上記式(1)における「E×(α×10-6)×(175-Tg)」は、ガラス転移温度以上における熱時弾性率と、ガラス転移温度以上における線膨張係数と、硬化温度とガラス転移温度との差分との積であり、高温時の残留応力Sを示す。また、矩形圧ηは高温時における溶融粘度を示す。本実施形態に係る樹脂組成物によれば、残留応力Sと、高温時における溶融粘度を示す矩形圧ηとの積が、特定の条件を満たすことにより、高温時に蓄積される内部応力と、高温時における流動性を最適なバランスとすることができ、充填時のワイヤー流れの抑制と該樹脂組成物の硬化物の、熱履歴を経た後の反りの抑制との両立を図ることができるものと考えられる。
 また、以上のような特性は、本実施形態の封止用樹脂組成物を構成する各成分の種類、配合量を適切に調整することで達成することができる。
 式(1)で表される「E×(α×10-6)×(175-Tg)×η」は、0.3以下であり、0.28以下であることが好ましく、0.25以下であること特に好ましい。「E×(α×10-6)×(175-Tg)×η」の下限は特に制限されないが、例えば0.01以上とすることができる。
 熱時弾性率E(MPa)は、例えば、JISK-6911に準じて以下の方法で測定することができる。まず、低圧トランスファー成形機(コータキ精機社製「KTS-15」)を用いて金型温度175℃、注入圧力6.9MPa、硬化時間120秒で封止用樹脂組成物を注入成形し、10mm×4mm×4mmの試験片を得る。次いで、この試験片をDMA測定装置(セイコーインスツルメンツ社製)を用いた3点曲げ法により、測定温度範囲0℃~300℃、5℃/minで昇温測定し、260℃での硬化物の熱時弾性率を測定した。なお、熱時弾性率Eの単位はMPaである。
 熱時弾性率Eは、その他のパラメーターとの関係において、上記式(1)を満たせば特に制限されないが、硬化物の強度を高める観点から、好ましくは100MPa以上であり、より好ましくは500MPa以上、さらに好ましくは1000MPa以上である。また、応力緩和特性に優れた硬化物を実現する観点から、上記熱時弾性率Eは、好ましくは10000MPa以下であり、好ましくは8000MPa以下であり、より好ましくは6000MPa以下である。
 熱時弾性率Eと同様の方法でDMAにより測定される封止用樹脂組成物の硬化物の25℃における常温時弾性率Eは、硬化物の強度を高める観点から、好ましくは1000Pa以上であり、より好ましくは3000MPa以上、さらに好ましくは5000MPa以上である。
 また、応力緩和特性に優れた硬化物を実現する観点から、上記25℃における貯蔵弾性率Eは、好ましくは40000MPa以下であり、より好ましくは30000MPa以下、さらに好ましくは25000MPa以下である。
 ガラス転移温度Tg(℃)、線膨張係数α(ppm/℃)は、例えば、以下の方法で測定することができる。まず、トランスファー成形機を用いて金型温度175℃、注入圧力9.8MPa、硬化時間3分で半導体封止用樹脂組成物を注入成形し、15mm×4mm×4mmの試験片を得る。次いで、得られた試験片を175℃、4時間で後硬化した後、熱機械分析装置(セイコー電子工業(株)製、TMA100)を用いて、測定温度範囲0℃~320℃、昇温速度5℃/分の条件下で測定を行う。この測定結果から、ガラス転移温度Tg(℃)、ガラス転移温度以上における線膨張係数(α)を算出する。なお、本実施形において、190℃~230℃における線膨張係数をα(ppm/℃)とした。なお、線膨張係数αの単位はppm/℃であり、ガラス転移温度の単位は℃である。
 線膨張係数αは、その他のパラメーターとの関係において、上記式(1)を満たせば特に制限されないが、熱履歴時における線膨張係数を低くし、たとえば半導体パッケージを構成する他の材料との膨張量・収縮量差を抑制する観点から、好ましくは75ppm/℃以下であり、より好ましくは70ppm/℃以下であり、さらに好ましくは65ppm/℃以下である。上記平均線膨張係数αの下限値は限定されないが、たとえば10ppm/℃以上としてもよい。
 また、硬化物のガラス転移温度は、その他のパラメーターとの関係において、上記式(1)を満たせば制限されないが、100℃以上であることが好ましく、より好ましくは110℃以上、さらに好ましくは120℃以上、さらには125℃より大きいことが特に好ましい。
 また、硬化物のガラス転移温度の上限に制限はないが、硬化物の靭性を向上させる観点から、たとえば300℃以下であり、175℃未満であることがより好ましく、140℃以下であってもよい。
 線膨張係数αと同様の方法で求められる硬化物の40℃~80℃における線膨張係数αは、たとえば半導体パッケージを構成する他の材料との膨張量・収縮量差を抑制する観点から、好ましくは50ppm/℃以下であり、より好ましくは45ppm/℃以下であり、さらに好ましく40/℃以下である。上記平均線膨張係数αの下限値は限定されないが、たとえば1ppm/℃以上としてもよい。
 本実施形態の半導体封止用樹脂組成物の矩形圧(矩形状の空間内への注入圧)は、その他のパラメーターとの関係において、上記式(1)を満たせば特に制限されないが、その上限値は、例えば、2.0MPa以下であることが好ましく、1.0MPa以下であることがより好ましく、0.3MPa以下であることがさらにより好ましく、0.2MPa以下であることがとくに好ましい。これにより、半導体封止用樹脂組成物を基板と半導体素子との間に充填する際の充填性をより効果的に向上させることができる。また、上記矩形圧の下限値は、0.03MPa以上であることが好ましく、0.04MPa以上であることがより好ましく、0.05MPa以上であることがとくに好ましい。これにより成形時における金型隙間からの樹脂漏れを防ぐことができる。
 本実施形態に係る封止用樹脂組成物は、該封止用樹脂組成物の硬化物の、
 ガラス転移温度をTg(℃)、
 40℃~80℃における線膨張係数をα(ppm/℃)、
 25℃における常温時弾性率をE(MPa)としたとき、
 下記式(2)で表される残留応力S(MPa)が、10MPa以上90MPa以下であることが好ましく、20MPa以上、80MPa以下であることがより好ましく、30MPa以上70MPa以下であることが特に好ましい。
 式(2) 残留応力S=E×(α×10-6)×(Tg-(-40))
 本実施形態において、封止用樹脂組成物のゲルタイムは、封止用樹脂組成物の成形性の向上を図りつつ成形サイクルを速くする観点から、好ましくは10秒以上であり、より好ましくは20秒以上である。
 また、硬化性に優れた硬化物を実現する観点から、封止用樹脂組成物のゲルタイムは、好ましくは100秒以下であり、より好ましくは80秒以下、さらに好ましくは70秒以下である。
 ゲルタイムの測定は、175℃に加熱した熱板上で封止用樹脂組成物を溶融した後、へらで練りながら硬化するまでの時間(ゲルタイム)を測定することによりおこなうことができる。
 本実施形態において、封止用樹脂組成物のスパイラルフロー流動長は、封止用樹脂組成物を成形する際の充填性をより効果的に向上させる観点から、好ましくは40cm以上であり、より好ましくは50cm、さらに好ましくは60cmである。また、スパイラルフロー流動長の上限値は、限定されないが、たとえば200cmとすることができる。
 本実施形態の半導体封止用樹脂組成物において、175℃、2分で熱処理した際の収縮率Sは、例えば、0.05%以上、2%以下とすることができ、0.1%以上0.5%以下がより好ましい。また、本実施形態の半導体封止用樹脂組成物において、175℃、4時間で熱処理した際の収縮率Sは、例えば、0.05%以上、2%以下とすることができ、0.1%以上0.5%以下がより好ましい。このように半導体封止用樹脂組成物の成形時における収縮率を特定の範囲とすることによって、有機基板等の基板の収縮量と樹脂組成物の硬化時の収縮量との整合がとれて半導体パッケージの反りが抑制された形状に安定させることができる。
 本実施形態に係る封止用樹脂組成物は、(A)エポキシ樹脂、(B)硬化剤、及び、(C)充填材を含む。
(エポキシ樹脂(A))
 本実施形態に係る封止用樹脂組成物において、エポキシ樹脂(A)は、ナフチルエーテル骨格を有するエポキシ樹脂(A-1)を含む。
 本実施形態に係る封止用樹脂組成物は、ナフチルエーテル骨格を有するエポキシ樹脂(A-1)を含み、該ナフタレン骨格を含む構造単位に起因する剛直性を有し、架橋密度が高くなりすぎることがないため、溶融時の粘度特性と、硬化物となった際の収縮率、弾性率とのバランスに優れた封止用樹脂組成物が得られるものと推測される。
 本実施形態に係る封止用樹脂組成物は、ナフチルエーテル骨格を有するエポキシ樹脂(A-1)として、下記一般式(NE)で表される、エポキシ樹脂を少なくとも1種含むことができる。
Figure JPOXMLDOC01-appb-C000002
 上記式(NE)中、Rは、それぞれ独立して、水素原子又はメチル基を示し、Ar及びArは、それぞれ独立して、ナフチレン基又はフェニレン基を示し、両基はそれぞれ炭素数1~4のアルキル基又はフェニレン基を置換基として有してもよい。Rは、それぞれ独立して、水素原子、炭素数1~4のアルキル基又はアラルキル基を示し、p及びqは、それぞれ独立して、0~4の整数であり、ただし、pとqの何れか一方は1以上であり、Rは、それぞれ独立して、水素原子、アラルキル基又はエポキシ基含有芳香族炭化水素基を示す。
 式(NE)中、Rがアラルキル基である場合、該アラルキル基は、下記式(A)で表すことができる。
 また、式(NE)中、Rがアラルキル基である場合、該アラルキル基は、下記式(A)で表すことができる。
Figure JPOXMLDOC01-appb-C000003
 式(A)中、R及びRは、それぞれ独立して、水素原子又はメチル基を示し、Arはフェニレン基、1~3の水素原子が炭素数1~4のアルキル基で核置換されたフェニレン基、若しくはナフチレン基、又は1~3の水素原子が炭素数1~4のアルキル基で核置換されたナフチレン基を表す。rは、平均で0.1~4の数である。
 式(NE)中、Rがエポキシ基含有芳香族炭化水素基である場合、該エポキシ基含有芳香族炭化水素基は、下記式(E)で表すことができる。
Figure JPOXMLDOC01-appb-C000004
 式(E)中、Rは、水素原子又はメチル基を示し、Arは、ナフチレン基、又は、炭素原子数1~4のアルキル基、アラルキル基若しくはフェニレン基を置換基として有するナフチレン基を示し、sは1又は2の整数である。
 本実施形態に係る封止用樹脂組成物は、上記態様のナフチルエーテル骨格を有するエポキシ樹脂(A-1)を含むことにより、溶融時の粘度特性と、硬化物となった際の収縮率、弾性率とのバランスに優れた封止用樹脂組成物となるものと考えられる。
 本実施形態に係る封止用樹脂組成物において、エポキシ樹脂(A)は、上述のナフチルエーテル骨格を有するエポキシ樹脂(A-1)以外に、エポキシ樹脂(A-2)を含むことが好ましい。
 エポキシ樹脂(A-2)は、例えば、ビフェニル型エポキシ樹脂;ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂;スチルベン型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂等の多官能エポキシ樹脂;フェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂等のフェノールアラルキル型エポキシ樹脂;トリグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート等のトリアジン核含有エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂等の有橋環状炭化水素化合物変性フェノール型エポキシ樹脂から選択される一種類または二種類以上を含むものである。
 これらのうち、耐湿信頼性と成形性のバランスを向上させる観点からは、エポキシ樹脂(A-2)は、ビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、およびトリフェノールメタン型エポキシ樹脂のうちの少なくとも一つを含むことがより好ましい。また、半導体装置の反りを抑制する観点からは、フェノールアラルキル型エポキシ樹脂およびノボラック型エポキシ樹脂のうちの少なくとも一つを含むことがとくに好ましい。さらに流動性を向上させるためにはビフェニル型エポキシ樹脂がとくに好ましく、高温の弾性率を制御するためにはビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂がとくに好ましい。
 エポキシ樹脂(A-2)としては、たとえば下記式(1)で表されるエポキシ樹脂、下記式(2)で表されるエポキシ樹脂、下記式(3)で表されるエポキシ樹脂、下記式(4)で表されるエポキシ樹脂、および下記式(5)で表されるエポキシ樹脂からなる群から選択される少なくとも1種を含有するものを用いることができる。
Figure JPOXMLDOC01-appb-C000005
 上記式(1)中、Arはフェニレン基またはナフチレン基を表し、Arがナフチレン基の場合、グリシジルエーテル基はα位、β位のいずれに結合していてもよい。Arはフェニレン基、ビフェニレン基またはナフチレン基のうちのいずれか1つの基を表す。RおよびRは、それぞれ独立に炭素数1~10の炭化水素基を表す。gは0~5の整数であり、hは0~8の整数である。nは重合度を表し、その平均値は1~3である。
Figure JPOXMLDOC01-appb-C000006
 式(2)中、複数存在するRは、それぞれ独立に水素原子または炭素数1~4の炭化水素基を表す。nは重合度を表し、その平均値は0~4である。
Figure JPOXMLDOC01-appb-C000007
 式(3)中、複数存在するRおよびRは、それぞれ独立に水素原子又は炭素数1~4の炭化水素基を表す。nは重合度を表し、その平均値は0~4である。
Figure JPOXMLDOC01-appb-C000008
 式(4)中、複数存在するRは、それぞれ独立に水素原子又は炭素数1~4の炭化水素基を表す。nは重合度を表し、その平均値は0~4である。
Figure JPOXMLDOC01-appb-C000009
 式(5)中、複数存在するRは、それぞれ独立に水素原子又は炭素数1~4の炭化水素基を表す。nは重合度を表し、その平均値は0~4である。
 上記の中でも、エポキシ樹脂(A-2)として、上記式(5)で表されるエポキシ樹脂を含むものがより好ましい態様の一つとして挙げられる。
 本実施形態において、ナフチルエーテル骨格を有するエポキシ樹脂(A-1)を含むエポキシ樹脂(A)の全量を100質量部としたとき、またはナフチルエーテル骨格を有するエポキシ樹脂(A-1)、及び、エポキシ樹脂(A-1)以外のエポキシ樹脂(A-2)を併せた、エポキシ樹脂(A)の全量を100質量部としたとき、エポキシ樹脂(A-1)は、1質量部以上70質量部以下であることが好ましく、10質量部以上、65質量部以下であることがより好ましく、30質量部以上、60質量部以下であることが特に好ましい。
(硬化剤(B))
 本実施形態における硬化剤(B)は、半導体封止用樹脂組成物に一般に使用されているものであれば特に制限はないが、例えば、フェノール系硬化剤、アミン系硬化剤、酸無水物系硬化剤、及び、メルカプタン系硬化剤が挙げられ、これらから選択される少なくとも1種を含むことができる。これらの中でも、耐燃性、耐湿性、電気特性、硬化性、保存安定性等のバランスの点からフェノール系硬化剤を含むことが好ましい。
<フェノール系硬化剤>
 フェノール系硬化剤としては、半導体封止用樹脂組成物に一般に使用されているものであれば特に制限はないが、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂をはじめとするフェノール、クレゾール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール、アミノフェノール、α-ナフトール、β-ナフトール、ジヒドロキシナフタレン等のフェノール類とホルムアルデヒドやケトン類とを酸性触媒下で縮合又は共縮合させて得られるノボラック樹脂、上記したフェノール類とジメトキシパラキシレン又はビス(メトキシメチル)ビフェニルから合成されるビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレン骨格を有するフェノールアラルキル樹脂などのフェノールアラルキル樹脂、トリスフェニルメタン骨格を有するフェノール樹脂、などが挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。
<アミン系硬化剤>
 アミン系硬化剤としては、ジエチレントリアミン(DETA)やトリエチレンテトラミン(TETA)やメタキシリレンジアミン(MXDA)などの脂肪族ポリアミン、ジアミノジフェニルメタン(DDM)やm-フェニレンジアミン(MPDA)やジアミノジフェニルスルホン(DDS)などの芳香族ポリアミンのほか、ジシアンジアミド(DICY)や有機酸ジヒドララジドなどを含むポリアミン化合物などが挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。
<酸無水物系硬化剤>
 酸無水物系硬化剤としては、ヘキサヒドロ無水フタル酸(HHPA)やメチルテトラヒドロ無水フタル酸(MTHPA)や無水マレイン酸などの脂環族酸無水物、無水トリメリット酸(TMA)や無水ピロメリット酸(PMDA)やベンゾフェノンテトラカルボン酸(BTDA)、無水フタル酸などの芳香族酸無水物などが挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。
<メルカプタン系硬化剤>
 メルカプタン系硬化剤としては、トリメチロールプロパントリス(3-メルカプトブチレート)、トリメチロールエタントリス(3-メルカプトブチレート)などが挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。
<その他硬化剤>
 その他の硬化剤としては、イソシアネートプレポリマーやブロック化イソシアネートなどのイソシアネート化合物、カルボン酸含有ポリエステル樹脂などの有機酸類などが挙げられ、これらを単独で用いても2種以上を組み合わせて用いてもよい。
 また、上記のうち異なる系の硬化剤の2種以上を組み合わせて用いてもよい。
 封止用樹脂組成物は、硬化剤(B)を1種のみ含んでもよいし、2種以上含んでもよい。
 本実施形態において、硬化剤(B)は、エポキシ樹脂(A)100質量部に対し、30~70質量部含まれることが好ましく、35~65質量部含まれることがより好ましく、40~60質量部含まれることが特に好ましい。
 また、硬化剤(B)の含有量は、例えば、封止用樹脂組成物の全固形分100質量%に対して0.5質量%以上であることが好ましく、1質量%以上であることがより好ましく、1.5質量%以上であることがさらに好ましい。これにより、成形時に優れた流動性となり、充填性や成形性の向上が図られる。
 硬化剤(B)の含有量の上限値は特に無いが、例えば、封止用樹脂組成物の全固形分100質量%に対して9質量%以下であることが好ましく、8質量%以下であることがより好ましく、7質量%以下であることがさらに好ましい。
 これにより、電子装置としての耐湿信頼性や耐リフロー性を向上させることができる。また、基材の反りの一層の抑制に寄与しうる。
(充填材(C))
 本実施形態の封止用樹脂組成物は、充填材(C)を含む。
 充填材(C)として具体的には、シリカ、アルミナ、チタンホワイト、水酸化アルミニウム、タルク、クレー、マイカ、ガラス繊維等の無機充填剤が挙げられる。
 充填材(C)は、シリカを含むことが好ましい。シリカとしては、溶融破砕シリカ、溶融球状シリカ、結晶シリカ、2次凝集シリカ等を挙げることができる。これらの中でも特に溶融球状シリカが好ましい。
 充填材(C)は、通常、粒子である。粒子の形状は、略真球状であることが好ましい。
 充填材(C)の平均粒径は、特に限定されないが、典型的には1~100μm、好ましくは1~50μm、より好ましくは1~20μmである。平均粒径が適当であることにより、硬化時の適度な流動性を確保すること等ができる。なお、平均粒径を比較的小さくする(例えば1~20μm)ことで、例えば、最先端のウエハーレベルパッケージにおける狭いギャップ部分への充填性を高めることも考えられる。
 充填材(C)の平均粒径は、レーザ回折/散乱式粒子径分布測定装置(例えば、株式会社堀場製作所製の湿式粒度分布測定機LA-950)により体積基準の粒子径分布のデータを取得し、そのデータを処理することで求めることができる。測定は、通常、湿式で行われる。
 シリカ等の充填材(C)には、シランカップリング剤などのカップリング剤による表面修飾が行われていてもよい。これにより、充填材(C)の凝集が抑制され、より良好な流動性を得ることができる。また、充填材(C)と他の成分との親和性が高まり、充填材(C)の分散性が向上する。このことは、硬化物の機械的強度の向上や、マイクロクラックの発生抑制などに寄与すると考えられる。
 表面修飾のためのカップリング剤としては、後述のカップリング剤(E)として挙げているもの等を用いることができる
 封止用樹脂組成物は、充填材(C)を1種のみ含んでもよいし、2種以上含んでもよい。
 充填材(C)の含有量は特に制限が無いが、例えば、封止用樹脂組成物の全固形分100質量%に対して65質量部%以上98質量部%以下含まれることが好ましく、68質量部%以上95質量部%以下含まれることがより好ましく、70質量部%以上93質量部%以下含まれることが特に好ましい。充填材(C)の含有量を適度に多くすることにより、低吸湿性などを向上させ、電子装置の耐湿信頼性や耐リフロー性をより効果的に向上させることができる。特に、充填材(C)を適度に多くして、相対的に樹脂成分(エポキシ樹脂(A)や硬化剤(B)など)を少なくすれば、理論上は硬化収縮が少なくなるため、反りを一層低減しうる。充填材(C)の含有量を適度に少なくすることにより、成形時の流動性の低下にともなう成形性の低下等を抑制することが可能となる。本実施形態の樹脂組成物によれば、充填材(C)を適度に多くしても、成形時の流動性の低下等を抑制することが可能となる。
 (硬化促進剤)
 本実施形態の封止用樹脂組成物は、硬化促進剤を含むことができる。硬化促進剤は、熱硬化性樹脂の硬化を促進させるものであればよく、熱硬化性樹脂の種類に応じて選択される。
 本実施形態において、硬化促進剤は、たとえば有機ホスフィン、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物等のリン原子含有化合物;2-メチルイミダゾール、2-エチル-4-メチルイミダゾール(EMI24)、2-フェニル-4-メチルイミダゾール(2P4MZ)、2-フェニルイミダゾール(2PZ)、2-フェニル-4-メチル-5-ヒドロキシイミダゾール(2P4MHZ)、1-ベンジル-2-フェニルイミダゾール(1B2PZ)などのイミダゾール化合物;1,8-ジアザビシクロ[5.4.0]ウンデセン-7、ベンジルジメチルアミン等が例示されるアミジンや3級アミン、上記アミジンやアミンの4級塩等の窒素原子含有化合物からなる群から選択される1種類または2種類以上を含む。封止用樹脂組成物の硬化性を向上する観点および封止材と金属との密着性を向上する観点から、硬化促進剤は好ましくはイミダゾール化合物を含む。
 封止用樹脂組成物中の硬化促進剤の含有量は、樹脂組成物の硬化性を効果的に向上させる観点から、封止用樹脂組成物全体に対して好ましくは0.01質量%以上であり、より好ましくは0.03質量%以上、さらに好ましくは0.05質量%以上である。
 また、封止用樹脂組成物のハンドリングを向上させる観点から、封止用樹脂組成物中の硬化促進剤の含有量は、封止用樹脂組成物全体に対して好ましくは5質量%以下であり、より好ましくは3質量%以下、さらに好ましくは1質量%以下である。
(カップリング剤)
 本実施形態の封止用樹脂組成物は、カップリング剤を含むことができる。封止用樹脂組成物がカップリング剤を含むことにより、例えば、基材との密着性の更なる向上や、組成物中での充填材の分散性の向上などを図ることができる。充填材の分散性が向上すると、最終的に得られる硬化物の均質性が向上する。これは硬化物の機械的強度の向上などに寄与しうる。
 カップリング剤としては、例えば、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、ビニルシラン、メタクリルシラン等の各種シラン系化合物、チタン系化合物、アルミニウムキレート類、アルミニウム/ジルコニウム系化合物等の公知のカップリング剤を用いることができる。
 より具体的には、以下を例示することができる。
・シラン系カップリング剤
 ビニルトリクロロシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、ビニルトリアセトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アニリノプロピルトリメトキシシラン、γ-アニリノプロピルメチルジメトキシシラン、γ-[ビス(β-ヒドロキシエチル)]アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、フェニルアミノプロピルトリメトキシシラン、γ-(β-アミノエチル)アミノプロピルジメトキシメチルシラン、N-(トリメトキシシリルプロピル)エチレンジアミン、N-(ジメトキシメチルシリルイソプロピル)エチレンジアミン、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、ヘキサメチルジシラン、ビニルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミンの加水分解物等。
・チタネート系カップリング剤
 イソプロピルトリイソステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、イソプロピルトリ(N-アミノエチル-アミノエチル)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート等。
 封止用樹脂組成物がカップリング剤を含む場合、カップリング剤を1種のみ含んでもよいし、2種以上のカップリング剤を含んでもよい。
 カップリング剤の含有量の下限は特にないが、例えば、封止用樹脂組成物の全体に対して0.05質量%以上であることが好ましく、0.1質量%以上であることがより好ましい。カップリング剤の含有量をこれら下限値以上とすることにより、カップリング剤を添加することによる効果を十分に得やすくなる。
 カップリング剤の含有量の上限は特にないが、封止用樹脂組成物の全体に対して2.0質量%以下であることが好ましく、1.0質量%以下であることがより好ましい。カップリング剤の含有量をこれら上限値以下とすることにより、封止成形時における封止用樹脂組成物の流動性が適当となり、良好な充填性や成形性が得られる。
(その他の成分)
 本実施形態の封止用樹脂組成物は、さらに必要に応じて、pH調整剤、イオン捕捉剤、難燃剤、着色剤、離型剤、低応力剤、酸化防止剤、重金属不活性化剤等の各種添加剤を含んでもよい。
 pH調整剤としては、例えば、ハイドロタルサイトを用いることができる。ハイドロタルサイトは、組成物中のpHを中性付近に保持し、その結果としてClなどのイオンを生じにくくすると言われている。
 イオン捕捉剤(イオンキャッチャー、イオントラップ剤などとも呼ばれる)としては、例えば、ビスマス酸化物やイットリウム酸化物などを用いることができる。
 pH調整剤および/またはイオン捕捉剤を用いる場合、1種のみを用いてもよいし、2種以上を併用してもよい。
 pH調整剤および/またはイオン捕捉剤を用いる場合、その量は、封止用樹脂組成物の全体に対して例えば0.05~0.3質量%、好ましくは0.1~0.2質量%である。
 難燃材としては、無機系難燃剤(例えば水酸化アルミニウム等の水和金属系化合物、住友化学株式会社等から入手可能)、ハロゲン系難燃剤、リン系難燃剤、有機金属塩系難燃剤などを挙げることができる。
 難燃剤を用いる場合、1種のみ用いてもよいし、2種以上を併用してもよい。
 難燃材を用いる場合、含有量に特に制限はないが、封止用樹脂組成物の全体に対して例えば10質量%以下、好ましくは5質量%以下である。これら上限値以下とすることにより、パッケージの電気信頼性を保持することができる。
 着色剤としては、具体的には、カーボンブラック、ベンガラ、酸化チタン等が挙げられる。
 着色剤を用いる場合、1種または2種以上を組み合わせて用いることができる。
 着色剤を用いる場合、その量は、封止用樹脂組成物の全体に対して例えば0.1~0.5質量%、好ましくは0.2~0.4質量%である。
 離型剤としては、天然ワックス、モンタン酸エステル等の合成ワックス、高級脂肪酸もしくはその金属塩類、パラフィン、酸化ポリエチレン等が挙げられる。
 離型剤を用いる場合、1種のみ用いてもよいし、2種以上を併用してもよい。
 離型剤を用いる場合、その量は、封止用樹脂組成物の全体に対して例えば0.1~0.5質量%、好ましくは0.2~0.3質量%である。
 低応力剤としては、例えば、シリコーンオイル、シリコーンゴム、ポリイソプレン、1,2-ポリブタジエン、1,4-ポリブタジエン等のポリブタジエン、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム、ポリクロロプレン、ポリ(オキシプロピレン)、ポリ(オキシテトラメチレン)グリコール、ポリオレフィングリコール、ポリ-ε-カプロラクトン等の熱可塑性エラストマー、ポリスルフィドゴム、フッ素ゴム等を挙げることができる。
 低応力剤を用いる場合、1種のみ用いてもよいし、2種以上を併用してもよい。
 低応力剤を用いる場合、その量は、封止用樹脂組成物の全体に対して例えば0.05~1.0質量%とすることができる。
 次に、封止用樹脂組成物の製造方法を説明する。
 本実施形態の封止用樹脂組成物は、たとえば前述の各成分を、公知の手段で混合し、さらにロール、ニーダーまたは押出機等の混練機で溶融混練し、冷却した後に粉砕することで得ることができる。さらには、これらをタブレット状に打錠成形したものを封止用樹脂組成物として用いることもできる。これにより、顆粒状またはタブレット状の封止用樹脂組成物を得ることができる。
 このような打錠成形した組成物とすることにより、トランスファー成形、射出成形、および圧縮成形等の公知の成型方法を用いて封止成形することが容易となる。
 本実施形態の封止用樹脂組成物は、一般的な半導体素子やパワー半導体などの半導体素子封止用樹脂組成物、ウェハ封止用樹脂組成物、疑似ウェハ形成用樹脂組成物、車載用電子制御ユニット形成用封止用樹脂組成物、配線基板形成用封止用樹脂組成物、ローター固定部材用封止用樹脂組成物などの各種の用途に用いることができる。
 以下、半導体装置について説明する。
<半導体装置>
 本実施形態における半導体装置は、本実施形態における封止用樹脂組成物を硬化することにより形成された封止樹脂を備える半導体装置である。
 図1は、本実施形態に係る半導体装置100の構成を示す断面図である。図1に示した半導体装置100は、基板30上に搭載された半導体素子20と、半導体素子20を封止してなる封止材50と、を備えている。
 封止材50は、本実施形態における封止用樹脂組成物を硬化して得られる硬化物により構成されている。
 また、図1には、基板30が回路基板である場合が例示されている。この場合、図1に示すように、基板30のうちの半導体素子20を搭載する一面とは反対側の他面には、たとえば複数の半田ボール60が形成される。半導体素子20は、基板30上に搭載され、かつワイヤ40を介して基板30と電気的に接続される。一方で、半導体素子20は、基板30に対してフリップチップ実装されていてもよい。ここで、ワイヤ40は、たとえば銅で構成される。
 封止材50は、たとえば半導体素子20のうちの基板30と対向する一面とは反対側の他面を覆うように半導体素子20を封止する。図1に示す例においては、半導体素子20の上記他面と側面を覆うように封止材50が形成されている。封止材50は、たとえば封止用樹脂組成物をトランスファー成形法または圧縮成形法等の公知の方法を用いて封止成形することにより形成することができる。
 上記半導体装置100の製造方法としては、例えば、
 基板30上に半導体素子20を搭載する工程と、
 本実施形態に係る封止用樹脂組成物を用いて、前記半導体素子を封止する封止工程と、
を含む製造方法が挙げられる。
 また、半導体装置100をさらに、他の基板と電気的に接合した半導体装置を得るための製造方法として、上記封止工程の後に、リフロー工程を有する半導体装置の製造方法が挙げられる。本実施形態に係る製造方法においては、前記リフロー工程におけるリフロー温度を例えば、200℃以上とすることができ、230℃以上とすることもでき、特には260℃以上とすることも可能である。本実施形態においては、封止材50が前述した本実施形態における封止用樹脂組成物を用いて形成されているため、このような高温のリフローを経ても、反りの発生を抑制することができる。このため、半導体装置100の信頼性を向上させることが可能となる。
 図2は、本実施形態に係る半導体装置100の構成を示す断面図であって、図1とは異なる例を示すものである。図2に示す半導体装置100は、基板30としてリードフレームを使用している。この場合、半導体素子20は、たとえば基板30のうちのダイパッド32上に搭載され、かつワイヤ40を介してアウターリード34へ電気的に接続される。また、封止材50は、図1に示す例と同様にして、本実施形態に係る封止用樹脂組成物を用いて形成される。
 なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
 以下、本発明について実施例を参照して詳細に説明するが、本発明は、これらの実施例の記載に何ら限定されるものではない。
<実施例1~9、比較例1(封止用樹脂組成物の製造)>
 まず、表1に記載の配合量(質量部)の各成分を、常温でミキサーを用いて混合して混合物を得た。
 次に、その混合物を、70℃以上100℃以下の温度で加熱混練した。
 そして、常温まで冷却し、その後粉砕して、封止用樹脂組成物を得た。
 表1に記載の各原料成分の詳細は以下のとおりである。
(エポキシ樹脂)
・エポキシ樹脂1:前記式(NE)で表されるナフチルエーテル骨格を有するエポキシ樹脂を主成分とするエポキシ樹脂(DIC社製、品番:HP6000L)
・エポキシ樹脂2:ビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂(日本化薬社製、品番:NC3000)
・エポキシ樹脂3:前記式(5)で表されるトリフェニルメタン骨格を有するエポキシ樹脂を主成分とするエポキシ樹脂(JER(株)製、品番:YL6677)
・エポキシ樹脂4:前記式(2)で表されるビフェニル型エポキシ樹脂(三菱化学社製、品番:YX-4000K)
・エポキシ樹脂5:ジシクロペンタジエン型エポキシ樹脂(DIC社製、品番:HP-7200L)
(硬化剤)
・硬化剤1:ビフェニレン骨格含有フェノールアラルキル型樹脂(日本化薬社製、品番:GPH-65)
・硬化剤2:トリスフェニルメタン型フェノール樹脂(エアー・ウォーター株式会社、HE910-20)
・硬化剤3:ビフェニルアラルキル型フェノール樹脂(明和化成社製、品番:MEH-7851H)
・硬化剤4:ビフェニルジメチレン型フェノール樹脂(明和化成社製、品番:MEH-7851SS)
・硬化剤5:ビフェニルアラルキル型フェノール樹脂(明和化成社製、品番:SH-002-02)
(無機充填材)
・無機充填材1:溶融球状シリカ(東海ミネラル社製、ESシリーズ)
・無機充填材2:溶融球状シリカ(マイクロン社製、TSシリーズ)
・無機充填材3:平均粒径0.6μm、比表面積6.4m/g、上限カット45μmの溶融球状シリカ(アドマテックス社製、品番:SC-2500-SQ)
・無機充填材4:平均粒径1.6μm、比表面積4.4m/g、上限カット45μmの溶融球状シリカ(アドマテックス社製、品番:SC-5500-SQ)
・無機充填材5:溶融球状シリカ(アドマテックス社製、品番:FEB24S5)
・無機充填材6:溶融球状シリカ(アドマテックス社製、品番:SD2500-SQ)
・無機充填材7:溶融球状シリカ(アドマテックス社製、品番:SD5500-SQ)
・無機充填材8:溶融球状シリカ(デンカ社製、品番:FB-950)
・無機充填材9:溶融球状シリカ(デンカ社製、品番:FB-105)
(硬化促進剤)
・硬化促進剤1:テトラフェニルホスホニウム-4,4'-スルフォニルジフェノラート(住友ベークライト(株)製)
・硬化促進剤2:テトラフェニルホスホニウムビス(ナフタレン-2,3-ジオキシ)フェニルシリケート(住友ベークライト(株)製)
(カップリング剤)
・カップリング剤1:N-フェニル-3-アミノプロピルトリメトキシシラン(東レ・ダウコーニング株式会社、CF4083)
(イオン捕捉剤)
・イオン捕捉剤1:マグネシウム・アルミニウム・ハイドロオキサイド・カーボネート・ハイドレート(協和化学工業社製、品番:DHT-4H)
(離型剤)
・離型剤1:酸化ポリエチレンワックス(クラリアント・ジャパン社製、品番:リコワックス PED191)
・離型剤2:カルナバワックス(東亜化成社製、品番:TOWAX-132)
(着色剤)
・着色剤1:カーボンブラック(三菱ケミカル株式会社、カーボン♯5)
(低応力剤)
・低応力剤1:カルボキシル基末端ブタジエン・アクリロニトリル共重合体(宇部興産社製、品番:CTBN1008SP)
・低応力剤2:ジメチルシロキサン-アルキルカルボン酸-4,4'-(1-メチルエチリデン)ビスフェノールジグリシジルエーテル共重合体(特許5157473号公報段落0068記載の溶融反応物A)
・低応力剤3:シリコーンレジン(信越化学工業社製、KR-480)
(難燃剤)
・難燃剤1:水酸化アルミニウム(住友化学(株)製、商品名CL303)
Figure JPOXMLDOC01-appb-T000010
[評価項目]
(流動性(スパイラルフロー))
 低圧トランスファー成形機(コータキ精機(株)製KTS-15)を用いて、ANSI/ASTM D 3123-72に準じたスパイラルフロー測定用金型に、金型温度175℃、注入圧力6.9MPa、保圧時間120秒の条件にて、上記で得られた半導体封止用樹脂組成物を注入し、流動長を測定した。スパイラルフローは、流動性のパラメーターであり、数値が大きい方が、流動性が良好である。単位はcmである。
(ゲルタイム)
 175℃としたホットプレート上に各実施例・比較例の封止用エポキシ樹脂組成物からなる試料を置き、試料が溶融後、へらで練りながら硬化するまでの時間を測定した。この時間が短いほど、硬化速度が速いことを示す。
 結果を表2に示す。
(成形収縮率)
 実施例および比較例のそれぞれの封止用エポキシ樹脂組成物について、樹脂封止(ASM:as Mold)を行った後、本硬化させて樹脂封止基板を作製することを想定した加熱条件(PMC:Post Mold Cure)で収縮率を評価した。まず、円盤状の金型の室温における寸法を4箇所測定し、その平均値を算出した。続けて、金型に封止用エポキシ樹脂組成物を投入して円盤状の硬化物を得、得られた硬化物に熱処理を施した後の室温における直径を、当該金型で測定した箇所に対応する4箇所で測定し、その平均値を算出した。次に、得られた平均値を、次式:〔(室温における金型寸法-熱処理後の硬化物の室温における寸法)/室温における金型寸法〕×100(%)に当てはめて、硬化物の収縮率S(%)を算出した。
 結果を表2に示す。樹脂封止を想定した温度条件は、175℃、120秒、本硬化を想定した温度条件は175℃、4時間とした。
(常温時弾性率・熱時弾性率)
 硬化物の熱時弾性率は、JISK-6911に準じて以下の方法で測定した。まず、低圧トランスファー成形機(コータキ精機社製「KTS-15」)を用いて金型温度175℃、注入圧力6.9MPa、硬化時間120秒で封止用樹脂組成物を注入成形し、10mm×4mm×4mmの試験片を得た。次いで、この試験片をDMA測定装置(セイコーインスツルメンツ社製)を用いた3点曲げ法により、測定温度範囲0℃~300℃,5℃/minで昇温測定し、25℃での硬化物の常温時弾性率、及び、260℃での硬化物の熱時弾性率を測定した。なお、単位は、MPaである。
(溶融粘度(矩形圧))
 低圧トランスファー成形機(日本電気(株)製40tマニュアルプレス)を用いて、金型温度170℃、注入流量177mm/秒の条件にて、幅15mm、厚さ1mm、長さ175mmの矩形状の流路に、上記で得られた半導体封止用樹脂組成物を注入し、流路の上流先端から25mmの位置に埋設した圧力センサーにて圧力の経時変化を測定し、半導体封止用樹脂組成物の流動時における最低圧力を測定した。矩形圧は、溶融粘度のパラメータであり、数値が小さい方が、溶融粘度が低いことを示す。
(ガラス転移温度、線膨張係数(α、α))
 各実施例および各比較例について、得られた半導体封止用樹脂組成物の硬化物のガラス転移温度および線膨張係数を、次のように測定した。まず、トランスファー成形機を用いて金型温度175℃、注入圧力9.8MPa、硬化時間3分で半導体封止用樹脂組成物を注入成形し、15mm×4mm×4mmの試験片を得た。次いで、得られた試験片を175℃、4時間で後硬化した後、熱機械分析装置(セイコー電子工業(株)製、TMA100)を用いて、測定温度範囲0℃~320℃、昇温速度5℃/分の条件下で測定を行った。この測定結果から、ガラス転移温度Tg(℃)、ガラス転移温度以下における線膨張係数(α)、ガラス転移温度以上における線膨張係数(α)を算出した。αは、40℃~80℃における線膨張係数、αは、190℃~230℃における線膨張係数とした。結果を表2に示す。表2中、αとαの単位はppm/℃であり、ガラス転移温度の単位は℃である。
(パッケージ反り)
 低圧トランスファー成形機を用い、金型温度175℃、注入圧力6.9MPa、硬化時間2分で実施例・比較例の封止用樹脂組成物を用いて封止成形し、半導体パッケージを作製した。この半導体装置は、ボールグリッドアレイ(BGA)パッケージ(樹脂封止部分サイズ:35mm×35mm×厚み1.2mm)であり、チップサイズは7mm×7mmである。また、ワイヤーは金線であり、ワイヤー径が20μm、平均ワイヤー長さが5mmである。得られた半導体装置各4パッケージを175℃、4時間で後硬化し、室温に冷却後、パッケージのゲートから対角線方向に、表面粗さ計を用いて高さ方向の変異を測定し、変異差の最も大きい値を反り量とし、4パッケージの反り量の平均値が150μm未満を○、150μm以上を×と判定した。
 また、実施例の封止用樹脂組成物を用いた半導体パッケージについて、さらに260℃、10分の条件でリフロー処理を実施したところ、リフロー処理後の4パッケージの反り量の平均値は150μm未満であることを確認した。
(ワイヤー流れ)
 パッケージ反り量の評価で成形したBGAパッケージを軟X線透過装置で観察した。ワイヤー流れ量の計算方法としては、1個のパッケージの中で最も流れた(変形した)ワイヤーの流れ量を(F)、そのワイヤーの長さを(L)として、流れ量=F/L×100(%)を算出し、4パッケージの平均値が5%未満を○、5%以上を×と判定した。
Figure JPOXMLDOC01-appb-T000011
 この出願は、2018年12月27日に出願された日本出願特願2018-244444号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (11)

  1.  (A)エポキシ樹脂、
     (B)硬化剤、及び、
     (C)充填材
    を含有する封止用樹脂組成物であって、
     エポキシ樹脂(A)は、ナフチルエーテル骨格を有するエポキシ樹脂(A-1)を含み、
     前記封止用樹脂組成物の硬化物の
     ガラス転移温度をTg(℃)、
     190℃~230℃における線膨張係数をα(ppm/℃)、
     260℃における熱時弾性率をE(MPa)とし、
     以下の方法により測定された、前記封止用樹脂組成物の175℃における矩形圧をη(MPa)としたとき、
     下記式(1)を満足する封止用樹脂組成物。
     式(1) E×(α×10-6)×(175-Tg)×η≦0.3
    (方法)
     低圧トランスファー成形機を用いて、金型温度170℃、注入流量177mm/秒の条件にて、幅15mm、厚さ1mm、長さ175mmの矩形状の流路に、前記封止用樹脂組成物を注入し、流路の上流先端から25mmの位置に埋設した圧力センサーにて圧力の経時変化を測定し、前記封止用樹脂組成物の流動時における最低圧力(MPa)を測定し、これを矩形圧とする。
  2.  エポキシ樹脂(A)は、ナフチルエーテル骨格を有するエポキシ樹脂(A-1)以外のエポキシ樹脂(A-2)を含む請求項1に記載の封止用樹脂組成物。
  3.  ナフチルエーテル骨格を有するエポキシ樹脂(A-1)は、エポキシ樹脂(A)100質量部に対し、1質量部以上70質量部以下の量で含まれる、請求項1又は2に記載の封止用樹脂組成物。
  4.  ナフチルエーテル骨格を有するエポキシ樹脂(A-1)は、下記一般式(NE)で表される化合物を少なくとも1種含む、請求項1~3のいずれか一項に記載の封止用樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (前記一般式(NE)中、Rは、それぞれ独立して、水素原子又はメチル基を示し、Ar及びArは、それぞれ独立して、ナフチレン基又はフェニレン基を示し、両基はそれぞれ炭素数1~4のアルキル基又はフェニレン基を置換基として有してもよい。Rは、それぞれ独立して、水素原子、炭素数1~4のアルキル基又はアラルキル基を示し、p及びqは、それぞれ独立して、0~4の整数であり、ただし、pとqの何れか一方は1以上であり、Rは、それぞれ独立して、水素原子、アラルキル基又はエポキシ基含有芳香族炭化水素基を示す。)
  5.  充填材(C)は、前記封止用樹脂組成物100質量部に対し、65質量部%以上98質量部%以下の量で含まれる、請求項1~4のいずれか一項に記載の封止用樹脂組成物。
  6.  硬化剤(B)は、フェノール系硬化剤、アミン系硬化剤、酸無水物系硬化剤、及び、メルカプタン系硬化剤から選択される少なくとも1種を含む、請求項1~5のいずれかに記載の封止用樹脂組成物。
  7.  硬化剤(B)は、エポキシ樹脂(A)100質量部に対し、30~70質量部の量で含まれる、請求項1~6のいずれか一項に記載の封止用樹脂組成物。
  8.  請求項1~7のいずれか一項に記載の封止用樹脂組成物を硬化することにより形成された封止樹脂を備える半導体装置。
  9.  基板上に半導体素子を搭載する工程と、
     請求項1~7のいずれか一項に記載の封止用樹脂組成物を用いて、前記半導体素子を封止する封止工程と、
    を備える半導体装置の製造方法。
  10.  前記封止工程の後に、リフロー工程を有する、請求項9に記載の半導体装置の製造方法。
  11.  前記リフロー工程におけるリフロー温度が200℃以上である請求項10に記載の半導体装置の製造方法。
PCT/JP2019/050401 2018-12-27 2019-12-23 封止用樹脂組成物、半導体装置、及び半導体装置の製造方法 WO2020137989A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217023279A KR20210108992A (ko) 2018-12-27 2019-12-23 봉지용 수지 조성물, 반도체 장치, 및 반도체 장치의 제조 방법
CN201980086337.XA CN113227192A (zh) 2018-12-27 2019-12-23 密封用树脂组合物、半导体装置和半导体装置的制造方法
US17/417,852 US20220073727A1 (en) 2018-12-27 2019-12-23 Resin composition for sealing, semiconductor device, and method for producing semiconductor device
JP2020563260A JP7343096B2 (ja) 2018-12-27 2019-12-23 封止用樹脂組成物、半導体装置、及び半導体装置の製造方法
EP19906119.3A EP3904417A4 (en) 2018-12-27 2019-12-23 RESIN COMPOSITION FOR SEALING, SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD OF SEMICONDUCTOR DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-244444 2018-12-27
JP2018244444 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020137989A1 true WO2020137989A1 (ja) 2020-07-02

Family

ID=71125935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050401 WO2020137989A1 (ja) 2018-12-27 2019-12-23 封止用樹脂組成物、半導体装置、及び半導体装置の製造方法

Country Status (7)

Country Link
US (1) US20220073727A1 (ja)
EP (1) EP3904417A4 (ja)
JP (2) JP7343096B2 (ja)
KR (1) KR20210108992A (ja)
CN (1) CN113227192A (ja)
TW (1) TW202039614A (ja)
WO (1) WO2020137989A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023286728A1 (ja) * 2021-07-16 2023-01-19 住友ベークライト株式会社 半導体封止用樹脂組成物および半導体装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023182485A1 (ja) * 2022-03-25 2023-09-28 住友ベークライト株式会社 封止用樹脂組成物および片面封止構造体の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307162A (ja) * 2005-03-18 2006-11-09 Dainippon Ink & Chem Inc エポキシ樹脂組成物、その硬化物、新規エポキシ樹脂、その製造方法、及び新規フェノール樹脂
JP2010084091A (ja) 2008-10-02 2010-04-15 Hitachi Chem Co Ltd 封止用エポキシ樹脂組成物及び電子部品装置
JP5157473B2 (ja) 2007-03-28 2013-03-06 住友ベークライト株式会社 半導体封止用エポキシ樹脂組成物及び半導体装置
JP2017043649A (ja) * 2015-08-24 2017-03-02 住友ベークライト株式会社 樹脂組成物、樹脂膜、回路基板および半導体装置
WO2018083885A1 (ja) * 2016-11-02 2018-05-11 住友ベークライト株式会社 エポキシ樹脂組成物および構造体
JP2019182891A (ja) * 2018-04-02 2019-10-24 味の素株式会社 樹脂組成物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279059A (ja) * 2000-03-29 2001-10-10 Toray Ind Inc エポキシ系樹脂組成物
US7718741B2 (en) * 2005-03-18 2010-05-18 Dainippon Ink And Chemicals, Inc. Epoxy resin composition and cured article thereof, novel epoxy resin and production method thereof, and novel phenol resin
JP4285491B2 (ja) * 2006-02-28 2009-06-24 Dic株式会社 エポキシ樹脂組成物、その硬化物、新規エポキシ樹脂、新規フェノール樹脂、及び半導体封止材料
JP5332094B2 (ja) * 2006-09-21 2013-11-06 住友ベークライト株式会社 半導体封止用樹脂組成物及び半導体装置
US20180208820A1 (en) * 2015-07-21 2018-07-26 Sumitomo Bakelite Co., Ltd. Thermal conductive resin composition, thermal conductive sheet, and semiconductor device
JP7086983B2 (ja) * 2017-10-27 2022-06-20 Eneos株式会社 硬化樹脂用組成物、該組成物の硬化物、該組成物および該硬化物の製造方法、ならびに半導体装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307162A (ja) * 2005-03-18 2006-11-09 Dainippon Ink & Chem Inc エポキシ樹脂組成物、その硬化物、新規エポキシ樹脂、その製造方法、及び新規フェノール樹脂
JP5157473B2 (ja) 2007-03-28 2013-03-06 住友ベークライト株式会社 半導体封止用エポキシ樹脂組成物及び半導体装置
JP2010084091A (ja) 2008-10-02 2010-04-15 Hitachi Chem Co Ltd 封止用エポキシ樹脂組成物及び電子部品装置
JP2017043649A (ja) * 2015-08-24 2017-03-02 住友ベークライト株式会社 樹脂組成物、樹脂膜、回路基板および半導体装置
WO2018083885A1 (ja) * 2016-11-02 2018-05-11 住友ベークライト株式会社 エポキシ樹脂組成物および構造体
JP2019182891A (ja) * 2018-04-02 2019-10-24 味の素株式会社 樹脂組成物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023286728A1 (ja) * 2021-07-16 2023-01-19 住友ベークライト株式会社 半導体封止用樹脂組成物および半導体装置
JPWO2023286728A1 (ja) * 2021-07-16 2023-01-19
JP7460025B2 (ja) 2021-07-16 2024-04-02 住友ベークライト株式会社 半導体封止用樹脂組成物および半導体装置

Also Published As

Publication number Publication date
KR20210108992A (ko) 2021-09-03
JPWO2020137989A1 (ja) 2021-03-25
US20220073727A1 (en) 2022-03-10
EP3904417A1 (en) 2021-11-03
CN113227192A (zh) 2021-08-06
EP3904417A4 (en) 2022-11-02
JP2022003130A (ja) 2022-01-11
TW202039614A (zh) 2020-11-01
JP7343096B2 (ja) 2023-09-12

Similar Documents

Publication Publication Date Title
EP3536745A1 (en) Epoxy resin composition and structure
JP6583278B2 (ja) 半導体封止用樹脂組成物、半導体装置および構造体
JP7255633B2 (ja) パワーデバイス封止用樹脂組成物およびパワーデバイス
JP2020158684A (ja) 封止用樹脂組成物および半導体装置
JP2022003130A (ja) 封止用樹脂組成物、半導体装置、及び半導体装置の製造方法
JP5507477B2 (ja) 半導体封止用エポキシ樹脂組成物および半導体装置
JP6267261B2 (ja) 熱硬化性樹脂組成物
JP2020152844A (ja) 封止用樹脂組成物および電子装置
JP2022008598A (ja) 封止用樹脂組成物および半導体装置
JP2015074658A (ja) 封止用樹脂組成物、半導体装置および半導体装置の製造方法
JP2010118649A (ja) 封止用液状樹脂組成物、及びこれを用いた電子部品装置
JP7155502B2 (ja) 半導体装置およびその製造方法ならびに封止用樹脂組成物
JP2019006972A (ja) 封止用樹脂組成物の製造方法及び電子装置の製造方法
JP2018150456A (ja) 封止用樹脂組成物および半導体装置
KR102264524B1 (ko) 봉지용 수지 조성물, 반도체 장치 및 반도체 장치의 제조 방법
JP2022098698A (ja) 樹脂組成物およびパワーモジュール
JP7176669B1 (ja) 封止用樹脂組成物およびこれを用いた電子装置
JP6750659B2 (ja) 封止用樹脂組成物、および半導体装置
JP2018154791A (ja) 封止用樹脂組成物、半導体装置および車載用電子制御ユニット
JP2021063146A (ja) 封止用樹脂組成物、半導体装置およびパワーデバイス
JP2021063145A (ja) 封止用樹脂組成物、半導体装置およびパワーデバイス
JP2024129417A (ja) 封止用樹脂組成物
TWI653252B (zh) 密封用樹脂組成物、半導體裝置及半導體裝置之製造方法
JP2020093467A (ja) フローマークの改善方法およびそれを用いた電子装置の製造方法
WO2015182371A1 (ja) 封止用樹脂組成物、および半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19906119

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563260

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217023279

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019906119

Country of ref document: EP

Effective date: 20210727