WO1998050393A1 - Metal complex photosensitizer and photovoltaic cell - Google Patents

Metal complex photosensitizer and photovoltaic cell Download PDF

Info

Publication number
WO1998050393A1
WO1998050393A1 PCT/IB1998/000680 IB9800680W WO9850393A1 WO 1998050393 A1 WO1998050393 A1 WO 1998050393A1 IB 9800680 W IB9800680 W IB 9800680W WO 9850393 A1 WO9850393 A1 WO 9850393A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
complex
ruthenium
phenyl
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/IB1998/000680
Other languages
English (en)
French (fr)
Inventor
Michael GRÄTZEL
Mohammad Khaja Nazeeruddin
Péter Péchy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ecole Polytechnique Federale de Lausanne EPFL
Original Assignee
Ecole Polytechnique Federale de Lausanne EPFL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecole Polytechnique Federale de Lausanne EPFL filed Critical Ecole Polytechnique Federale de Lausanne EPFL
Priority to AU70704/98A priority Critical patent/AU743120B2/en
Priority to EP98917480A priority patent/EP0983282B1/en
Priority to DE69819712T priority patent/DE69819712T2/de
Priority to JP54787198A priority patent/JP4298799B2/ja
Priority to US09/423,162 priority patent/US6245988B1/en
Publication of WO1998050393A1 publication Critical patent/WO1998050393A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/002Osmium compounds
    • C07F15/0026Osmium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • C07F15/0053Ruthenium compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/576Six-membered rings
    • C07F9/58Pyridine rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention relates to a transition metal complex photosensitizer and to its use in a photovoltaic cell comprising a nanocrystalline titanium dioxide layer.
  • Transition metal complexes commonly designated as “dyestuffs", useful as charge transfer photosensitizer for semiconductive titanium dioxide photoanode layers, in a photovoltaic cell, are already known.
  • Such complexes consist of a light absorber and an anchoring group.
  • the anchoring group allows the immobilization of the transition metal complex at the titanium dioxide layers and provides an electronic coupling between the light absorber and the titanium dioxide layers.
  • the light absorber absorbs an incoming photon via a metal to ligand charge transfer, and injects an electron into the conduction band of titanium dioxide through the anchoring group.
  • the oxidized complex is then regenerated by a redox mediator.
  • PCT Publication No. WO 94/04497 describes ruthenium complexes in which ruthenium is surrounded by at least one dicarboxy bipyridine ligand, the carboxy groups playing the role of anchoring groups.
  • the best performing charge transfer photosensitizer employed for this application is cis-dithiocyanatobis(4,4'-dicarboxy- 2,2'-bipyridine) ruthenium(ll) complex.
  • Using this complex in a nanocrystalline titanium dioxide photovoltaic cell has permitted to obtain a solar to electric power conversion efficiency of 10 % under standard spectral distribution of solar light emission AM 1.5, where the photosensitizer absorbs in the wavelength region from 400 to 650 nm.
  • PCT Publication No. WO 94/04497 describes other potent ruthenium complexes, being able to be immobilized at the titanium dioxide layers via at least one phosphonated group carried by polypyridine ligands. This particular anchoring group appeared to have a higher stability than the carboxy group on a wider pH range of 0 to 9, avoiding partial desorbtion of the complex. Unfortunately, the absorption spectrum upper limits of such complexes showed to be less than 600 nm.
  • the present invention aims at further improving the efficiency of solar to electric power conversion by providing a photosensitizer having an enhanced spectral response in the red and near infrared regions.
  • M is a transition metal selected from ruthenium, osmium, iron, rhenium and technetium; each X is a co-ligand independently selected from NCS-, C , Br, I-, CN _ , NCO-,
  • Y is a co-ligand selected from o-phenanthroline, 2,2'-bipyridine, unsubstituted or substituted by at least one C ⁇
  • Lt is a tridentate ligand having a formula selected from the general formulae (I la) and (lib):
  • R-l is selected from H, COOH, PO(OH)2, PO(OR3)(OH), PO(OR 3 ) 2 , CO(NHOH), pyrocatechol group, phenyl substituted by at least one of the groups selected from
  • R 3 being selected from C-
  • R2 is selected from H, C ⁇ _3 ⁇ alkyl and phenyl
  • a and B are same or different groups independently selected from the groups of formulae (Ilia), (lllb), (lllc), (Hid), (Hie) and (lllf):
  • R4 has the same meaning as R ⁇
  • the photosensitizer complex corresponds to formula (la):
  • M is ruthenium or osmium; each X is independently selected from NCS ⁇ and CN ⁇ ; and
  • Ri is selected from H, COOH, PO(OH)2, PO(OR 3 )(OH), PO(OR 3 ) 2 , CO(NHOH), pyrocatechol group, phenyl substituted by at least one of the groups selected from
  • R 3 being selected from C ⁇ _3o alkyl and phenyl;
  • a and B are same or different and have the formula (Ilia):
  • R4 has the same meaning as R-j; with the proviso that at least one of the substituents R-j and R4 is different of H. More preferably, when the photosensitizer complex corresponds to formula (la):
  • M is ruthenium or osmium; each X is independently selected from NCS" and CN-; and
  • Lt has the formula (Ha):
  • R-j is a phenyl substituted by at least one of the groups selected from COOH,
  • R3 being selected from C1.30 alkyl and phenyl
  • a and B are both 2-pyridyl.
  • M is ruthenium or osmium; each X is independently selected from NCS " and CN “ ; and
  • Lt has the formula (Ha):
  • Rl is COOH
  • a and B are both 4-carboxy-2-pyridyl.
  • M is ruthenium or osmium
  • X is NCS " or CN " ;
  • Y is selected from o-phenanthroline, 2,2'-bipyridine, unsubstituted or substituted by at least one C- ⁇ .30 alkyl;
  • R-I is selected from H, pyrocatechol group, phenyl substituted by at least one of the groups selected from COOH, PO(OH)2, PO(OR3)(OH), PO(OR3)2 and CO(NHOH);
  • R3 being selected from CI_3Q alkyl and phenyl
  • a and B are same or different and have the formula (Ilia):
  • R4 is selected from H, COOH, PO(OH)2, PO(OR 3 )(OH), PO(OR 3 ) 2 , CO(NHOH), pyrocatechol group, phenyl substituted by at least one of the groups selected from
  • R 3 being selected from H, C ⁇
  • M is ruthenium or osmium
  • X is NCS" or CN"
  • Y is 4,4 , -dimethyl-2,2 , -bipyridine
  • Lt has the formula (Ha):
  • R-I is a phenyl substituted by at least one of the groups selected from COOH,
  • a and B are both 2-pyridyl.
  • the invention results from extensive research which have shown that the transition metal complex of formulae (la) and (lb) has the unexpected property of exhibiting a substantially enhanced spectral response in the red and near infrared regions, in comparison with the prior art transition metal complexes.
  • This property allows the use of the complex of formulae (la) or (lb) as charge transfer photosensitizer for semiconductive titanium dioxide photoanode layers, in a photovoltaic cell with a very efficient panchromatic sensitization over the whole visible radiation spectrum, extending into the near infrared region up to 920 nm.
  • the potent tridentate ligands Lt offering furthermore to the photosensitizer complex at least one anchoring group selected from carboxylate group [COOH], phosphonate group [PO(OH)2, PO(OR 3 )(OH) or PO(OR3)2], hydroxamate group [CO(NHOH)] or chelating groups such as salicylate group [o-carboxyhydroxy- phenyl] or pyrocatechol group [o-dihydroxy-phenyl], the compounds having the following formulae contribute for the best to the increase of spectral properties of the photosensitizer:
  • a photovoltaic cell comprising an electrically conductive layer deposited on a support to which at least one titanium dioxide layer has been applied, characterized in that it comprises, as a photosensitizer applied to the titanium dioxide layer, a photosensitizer complex of formulae (la) or (lb) as specified above.
  • FIG. 1 is a schematic illustration of the layout and function of a photovoltaic cell comprising a photoanode provided with a nanostructured semiconductive titanium dioxide film having a transition metal complex of formulae (la) or (lb) applied thereto as a charge transfer sensitizer,
  • FIG. 2 is a graph showing the photocurrent action spectrum of such a cell where the incident photon to current conversion efficiency (IPCE) is plotted as a function of wavelength, and
  • FIG. 3 is a graph, similar to the graph of FIG. 2, showing the respective photocurrent action spectra of a photovoltaic cell using the transition metal complex of formulae (la) or (lb), in comparison with a similar cell using the cis-dithiocyanato- bis(4,4'-dicarboxy-2,2'-bipyridine) ruthenium(ll) complex, of the prior art, as well as with two other similar cells using respectively two other prior art ruthenium complexes as a charge transfer photosensitizer for a semiconductive titanium dioxide photoanode layer, and with still another similar photovoltaic cell using no photosensitizer.
  • Example 1 Preparation of the complex trithiocyanato (4,4 , ,4"-tricarboxy-2,2':6',2"- terpyridyl) ruthenium(ll), i.e. the complex of formula Ru(NCS) 3 Lt, wherein L is 4,4 ⁇ 4"-tricarboxy-2,2':6 , ,2"-terpyridine
  • the bipyridine and terpyridine components of the mother liquor were separated by careful multiple fractional sublimations at 0.02 mmHg, at bath temperatures 80 - 100°C (depending on the geometry of the apparatus). Under these conditions, the 4,4',4"-trimethyl-2,2 , :6 , ,2"-terpyridine accumulates in the residue.
  • the combined pure terpyridine fractions were sublimed twice at 0.02 mmHg at 120-140°C yielding 15g of off-white 4,4 , ,4"-trimethyl- 2,2':6',2"-terpyridine. (For some fractions column chromatography on silicagel with dichloromethane as eluent was used to get the highly pure 4,4',4"-trimethyl- 2,2':6 , ,2"-terpyridine.)
  • RuCl3.xH20 60 mg, 0.23 mmol
  • 4,4 , ,4"-tricarboxy-2,2':6 , ,2"-terpyridine 70 mg, 0.19 mmol
  • the mixture was protected from light by wrapping aluminium foil around the flask and then heated at 120°C for two hours.
  • the brown-green solution was cooled slightly, 110°C, and excess KSCN (0.9 g, 9 mmol) dissolved in 5 mL of a 4:1 mixture of DMF/water added and heating continued for a further 70 hours at the same temperature under exclusion of light.
  • the colour of the mixture changed for brown-green to green after this time.
  • Base in the form of solid hydrated tetrabutylammonium hydroxide (TBAOH, 0.48 g) was then added and the mixture heated at 110°C for a further 24 hours.
  • the reaction mixture was reduced to almost dryness on a rotary evaporator and a further 0.6 g of TBAOH added followed by ca. 100 mL of deionised water (the pH of the solution was ca. 11.7).
  • the resulting purple solution was filtered to remove a small amount of insoluble material and the pH adjusted to 4 with dilute hydrochloric acid. A dark green precipitate formed immediately but the suspension was nevertheless refrigerated overnight prior to filtration to collect the product.
  • the UV - VIS absorption spectrum of the complex in ethanol shows an intense metal-to-ligand charge transfer band at 620 nm.
  • H NMR Spectrum CD3OD, ppm: 1.03 (t, 24H, CH3), 1.55 (q, 16H, CH2CH3), 1.70 (m, 16H, NCH2CH2), 3.28 (t, 16H, NCH2), 8.23 (dd, 2H, H-5, H-5'), 8.95 (d, 2H, H-3, H-3 ⁇ s, 2H, H-3"), 9.17 (d, 2H, H-6, H-6').
  • Example 2 Preparation of the complex trithiocyanato (4'-(4-phenylphosphonate)- 2,2':6',2"-terpyridyl) ruthenium(ll), i.e. the complex of formula Ru(NCS)3L , wherein L is 4 , -(4-phenylphosphonate)-2,2':6 , ,2"-terpyridine
  • This complex was prepared by an analogous procedure to that described in Example 1.
  • the UV - VIS absorbtion spectrum of this complex in ethanol shows an intense metal-to-ligand charge transfer band at 580 nm.
  • Example 3 Preparation of the complex trithiocyanato (4'-(4-carboxyphenyl)- 2,2':6',2"-terpyridyl) ruthenium(ll), i.e. the complex of formula Ru(NCS)3Lt, wherein Lt is 4 , -(4-carboxyphenyl)-2,2':6 , ,2"-terpyridine a) Preparation of 4'-(4-carboxyphenyl)-2,2':6 , ,2"-terpyridine:
  • This ligand was prepared by oxydation of the known 4'-(4-methylphenyl)-2,2':6',2"- terpyridine by an analogous procedure to that described in Example 1b.
  • UV - VIS absorbtion spectrum of this complex in ethanol shows an intense metal-to-ligand charge transfer band at 600 nm.
  • Example 4 Preparation of the complex tricyano (4,4',4"-tricarboxy-2,2 , :6',2"- terpyridyl) ruthenium(ll), i.e. the complex of formula Ru(NC)3Lt, wherein Lt is 4,4',4"-tricarboxy-2,2 , :6 , ,2"-terpyridine
  • the tetrabutylammonium salt of this complexe was prepared by an analogous procedure to that described in Example 1.
  • UV - VIS absorbtion spectrum of this complex in ethanol shows an intense metal-to-ligand charge transfer band at 540 nm.
  • Example 5 Preparation of the complex tricyano (4'-(4-phenylphosphonate)- 2,2':6',2"-terpyridyl) ruthenium(ll), i.e. the complex of formula Ru(NC)3L , wherein L is 4'-(4-phenylphosphonate)-2,2 , :6',2"-terpyridine
  • the tetrabutylammonium salt of this complexe was prepared by an analogous procedure to that described in Example 1.
  • UV - VIS absorbtion spectrum of this complex in ethanol shows an intense metal-to-ligand charge transfer band at 520 nm.
  • Example 6 Preparation of the complex tricyano (4'-(4-carboxyphenyl)-2,2':6',2"- terpyridyl) ruthenium(ll), i.e. the complex of formula Ru(NC)3Lt, wherein Lt is 4'-(4- carboxyphenyl)-2,2':6 , ,2"-terpyridine
  • the tetrabutylammonium salt of this complexe was prepared by an analogous procedure to that described in Example 1.
  • UV - VIS absorbtion spectrum of this complex in ethanol shows an intense metal-to-ligand charge transfer band at 530 nm.
  • Example 7 Preparation of the complex thiocyanato (4'-(4-phenylphosphonate)- 2,2':6 , ,2"-terpyridyl)(4,4'-dimethyl-2,2 , -bipyridyl) ruthenium(ll), i.e. the complex of formula Ru(NCS)YLt, wherein Lt is 4'-(4-phenylphosphonate)-2,2 , :6 ⁇ 2"-terpyridine and Y is 4,4 , -dimethyl-2,2'-bipyridine
  • the reaction mixture was cooled to 110°C, and excess KSCN (0.9 g, 9 mmol) dissolved in 5 mL of a 4:1 mixture of DMF/water added and heating continued for a further 5 hours at the same temperature under exclusion of light. The colour of the mixture changed after this time.
  • Base in the form of solid hydrated tetrabutylammonium hydroxide (TBAOH, 0.48 g) was then added and the mixture heated at 110°C for a further 4 hours.
  • TBAOH solid hydrated tetrabutylammonium hydroxide
  • Example 8 Preparation of the complex thiocyanato (4'-(4-carboxyphenyl)-2,2':6 , ,2"- terpyridyl)(4,4'-dimethyl-2,2 , -bipyridyl) ruthenium(ll), i.e. the complex of formula Ru(NCS)YLt, wherein Lt is 4 , -(4-carboxyphenyl)-2,2':6 , ,2"-terpyridine and Y is 4,4'- dimethyl-2,2'-bipyridine
  • the tetrabutylammonium salt of this complexe was prepared by an analogous procedure to that described in Example 7.
  • UV - VIS absorbtion spectrum of this complex in ethanol shows an intense metal-to-ligand charge transfer band at 510 nm.
  • Example 9 Preparation of the complex thiocyanato (4,4 , ,4"-tricarboxy-2,2':6',2"-ter- pyridyl)(4,4 , -dimethyl-2,2'-bipyridyl) ruthenium(ll), i.e. the complex of formula Ru(NCS)YL t , wherein L t is 4,4 , ,4"-tricarboxy-2,2':6 , ,2 ,, -terpyridine and Y is 4,4'-di- methyl-2,2'-bipyridine
  • the tetrabutylammonium salt of this complexe was prepared by an analogous procedure to that described in Example 7.
  • UV - VIS absorbtion spectrum of this complex in ethanol shows an intense metal-to-ligand charge transfer band at 520 nm.
  • Example 10 Preparation of the complex cyano (4'-(4-phenylphosphonate)- 2,2 , :6 , ,2"-terpyridyl)(4,4'-dimethyl-2,2'-bipyridyl) ruthenium(ll), i.e. the complex of formula Ru(NC)YLt, wherein Lt is 4'-(4-phenylphosphonate)-2,2 , :6',2"-terpyridine and Y is 4,4'-dimethyl-2,2'-bipyridine
  • the tetrabutylammonium salt of this complexe was prepared by an analogous procedure to that described in Example 7.
  • UV - VIS absorbtion spectrum of this complex in ethanol shows an intense metal-to-ligand charge transfer band at 500 nm.
  • Example 11 Preparation of the complex cyano (4'-(4-carboxyphenyl)-2,2':6 , ,2"- terpyridyl)(4,4'-dimethyl-2,2 , -bipyridyl) ruthenium(ll), i.e. the complex of formula Ru(NC)YLt, wherein Lt is 4'-(4-carboxyphenyl)-2,2 , :6',2"-terpyridine and Y is 4,4'-di- methyl-2,2'-bipyridine
  • the tetrabutylammonium salt of this complexe was prepared by an analogous procedure to that described in Example 7.
  • Example 12 Preparation of the complex cyano (4,4 , ,4"-tricarboxy-2,2':6 , ,2"-ter- pyridyl)(4,4 , -dimethyl-2,2'-bipyridyl) ruthenium(ll), i.e. the complex of formula Ru(NC)YLt, wherein Lt is 4,4 , ,4"-tricarboxy-2,2 , :6 , ,2"-terpyridine and Y is 4,4'-di- methyl-2,2'-bipyridine
  • the tetrabutylammonium salt of this complexe was prepared by an analogous procedure to that described in Example 7.
  • UV - VIS absorbtion spectrum of this complex in ethanol shows an intense metal-to-ligand charge transfer band at 520 nm.
  • Example 13 Preparation of the complex cyano (4 , -(4-carboxyphenyl)-2,2':6',2"- terpyridyl)(4,4 , -dimethyl-2,2'-bipyridyl) osmium(ll), i.e. the complex of formula Os(NC)YLt, wherein Lt is 4 , -(4-carboxyphenyl)-2,2 , :6 , ,2"-terpyridine and Y is 4,4'-di- methyl-2,2'-bipyridine
  • the tetrabutylammonium salt of this complexe was prepared by an analogous procedure to that described in Example 7 using NH4OSCI6 and ethyleneglycol as solvent.
  • the UV - VIS absorbtion spectrum of this complex in ethanol shows an intense metal-to-ligand charge transfer band at 510 nm, 650 nm and 700 nm.
  • Example 14 Preparation of the complex cyano (4,4',4"-tricarboxy-2,2':6 , ,2"-ter- pyridyl)(4,4'-dimethyl-2,2'-bipyridyl) osmium(ll), i.e. the complex of formula Os(NC)YLt, wherein Lt is 4,4 , ,4"-tricarboxy-2,2 , :6 , ,2"-terpyridine and Y is 4,4'-di- methyl-2,2'-bipyridine
  • the tetrabutylammonium salt of this complexe was prepared by an analogous procedure to that described in Example 13.
  • the UV - VIS absorbtion spectrum of this complex in ethanol shows an intense metal-to-ligand charge transfer band at 510 nm, 650 nm and 700nm.
  • Example 15 Preparation of the complex cyano (4'-(4-phenylphosphonate)- 2,2 , :6 , ,2"-terpyridyl)(4,4'-dimethyl-2,2'-bipyridyl) osmium(ll), i.e. the complex of formula Os(NC)YLt, wherein Lt is 4'-(4-phenylphosphonate)-2,2':6 , ,2"-terpyridine and Y is 4,4'-dimethyl-2,2'-bipyridine
  • the tetrabutylammonium salt of this complexe was prepared by an analogous procedure to that described in Example 13.
  • the tetrabutylammonium salt of this complexe was prepared by an analogous procedure to that described in Example 13.
  • the UV - VIS absorbtion spectrum of this complex in ethanol shows an intense metal-to-ligand charge transfer band at 510 nm, 650 nm and 700nm.
  • a photovoltaic device shown in Figure 1 and based on the sensitization of a titanium dioxide film supported on conducting glass is fabricated as follows:
  • Nanocrystalline Ti ⁇ 2 films were prepared by spreading a viscous dispersion of colloidal Ti ⁇ 2 particles on a conducting glass support (Asahi TCO glass, fluorine- doped Sn ⁇ 2 overlayer, transmission > 85% in the visible sheet resistance 7-8 ⁇ /square) with heating under air for 30 min at 450 °C.
  • Two methods of preparation of colloidal Ti ⁇ 2 dispersions were employed. Method A followed the procedure described earlier [O'Regan, B.; Gratzel, M. Nature (London) 1991, 353, 737], except that autoclaving was performed at 230 or 240 °C instead of 200 °C.
  • a cross section of such a Ti ⁇ 2 film obtained by scanning electron microscopy at two different magnifications confirms the presence of a three-layer structure, the lowest being the glass support followed by the 0,7- ⁇ m-thick fluorine-doped Sn ⁇ 2 and the 10- ⁇ m-thick colloidal Ti ⁇ 2 film.
  • High resolution reveals the Ti ⁇ 2 film to be composed of a three-dimensional network of interconnected particles having an average size of approximately 15 nm.
  • the second method for preparation of nanocrystalline films employed commercial Ti ⁇ 2 (P25, Degussa AG, Germany, a mixture of ca. 30% rutile and 70% anatase, BET surface area 55 rr ⁇ 2/g). This is produced by flame hydrolysis of TiCl4 and consists of aggregated particles. Electron microscopy shows the mean size of primary particles to be about 25 nm. In order to break the aggregates into separate particles, the powder (12 g) was ground in a porcelain mortar with a small amount of water (4 mL) containing acetylacetone (0,4 mL) to prevent reaggregation of the particles. Other stabilizers such as acids, bases, or Ti ⁇ 2 chelating agents were found to be suitable as well.
  • the powder After the powder had been dispersed by the high shear forces in the viscous paste, it was diluted by slow addition of water (16 mL) under continued grinding. Finally, a detergent (0,2 mL Triton X-100, Aldrich) was added to facilitate the spreading of the colloid on the substrate.
  • the conducting TCO glass was covered on two parallel edges with adhesive tape ( «40- ⁇ m-thick) to control the thickness of the Ti ⁇ 2 film and to provide noncoated areas for electrical contact.
  • the colloid (5 ⁇ lJcm 2 ) was applied to one of the free edges of the conducting glass and distributed with a glass rod sliding over the tape-covered edges. After air drying, the electrode was fired for 30 min at 450-550 °C in air. The resulting film thickness was 12 ⁇ m but can be varied by changing the colloid concentration or the adhesive tape thickness.
  • the performance of the film as a sensitized photoanode was improved by further deposition of Ti ⁇ 2 from aqueous TiCl4 solution.
  • a 2 M TiCl4 stock solution was prepared [Kavan, L.; O'Regan, B.; Kay, A.; Gratzel, M. J. Electroanal. Chem. 1993, 346, 291] at 0 °C to prevent precipitation of Ti ⁇ 2 due to the highly exothermic hydrolysis reaction.
  • This stock solution was freshly diluted with water to 0,2 M T1CI4 and applied onto the electrode (50 ⁇ lJcm 2 ). After being left overnight at room temperature in a closed chamber, the electrode was washed with distilled water.
  • the P25 powder contains up to 100 ppm of F ⁇ 2 ⁇ 3, which is known to interfere with electron injection from the excited dye.
  • the ⁇ CI4 treatment covers this rather impure core with a thin layer of highly pure Ti ⁇ 2, improving the injection efficiency and the blocking character of the semiconductor- electrolyte junction [Kavan, L.; O'Regan, B.; Kay, A.; Gratzel, M. J. Electroanal. Chem. 1993, 346, 291].
  • the above described treatment produces anatase films with a surface roughness factor of about 200 to 1000.
  • the glass sheet After cooling under a continuous argon flow, the glass sheet is immediately transferred to a 2X10 " 4M solution in ethanol of the tetrabutylammonium salt of the ruthenium complex of Example 1 , this solution further containing 40 mM of tauro- deoxycholic acid as a co-adsorbent. Prolonged exposure of the film to the open air prior to dye adsorption is avoided in order to prevent hydroxylation of the Ti0 2 surface as the presence of hydroxyl groups at the electrode surface interferes with dye uptake. The adsorption of photosensitizer from the ethanolic solution is allowed to continue for 10 hours after which time the glass sheet is withdrawn and washed briefly with absolute ethanol. The Ti0 2 layer on the sheet assumed a black colour owing to the photosensitizer coating.
  • Figure 2 shows the photocurrent action spectrum of such a cell where the incident photon to current conversion efficiency (IPCE) is plotted as a function of the excitation wavelength. This was derived from the equation:
  • OCV is the open circuit voltage
  • FF is the fill factor of the photovoltaic cell
  • a photovoltaic cell is constructed, using the ruthenium complex of Example 1 (4) by way of photosensitizer loaded Ti0 2 (5) film supported on a conducting glass (the working electrode) comprising a transparent conductive tin dioxide layer (6) and a glass substrate (7) as a photoanode.
  • the cell has a sandwich-like configuration, the working electrode (4-7) being separated from the counter electrode (1 ,2) by a thin layer of electrolyte (3) having a thickness of ca. 20 microns.
  • the counter-electrode comprises the conductive tin dioxide layer (2) deposited on a glass substrate (1) made also of Asahi conducting glass and is placed directly on top of the working electrode.
  • a monomolecular transparent layer of platinum is deposited on to the conducting glass of the counter electrode (1 ,2) by electroplating from an aqueous hexachloroplatinate solution.
  • the role of the platinum is to enhance the electrochemical reduction of iodine at the counter electrode.
  • the transparent nature of the counterelectrode is an advantage for photovoltaic applications since it allows the harvesting of light from both the forward and the backward direction. Experiments are carried out with a high pressure Xenon lamp equipped with appropriate filters to simulate AM1 ,5 solar radiation. The intensity of the light is varied between 50 and 600 Watts per square meter and the open circuit voltage is 660 and 800mV, respectively.
  • the fill factor defined as the maximum electric power output of the cell divided by the product of open circuit voltage and short circuit current is between 0.7 and 0.75V.
  • the broad feature covering the entire visible spectrum and extending into the near IR region up to 920 nm is obtained, the IPCE value in the plateau region being about 80%. Taking the light losses in the conducting glass into account the efficiency of electric current generation is practically 100% over a broad wavelength range extending form 400 to 700 nm.
  • the overlap integral of this curve with the standard global AM 1.5 solar emission spectrum yields a photocurrent density of 20m A/cm 2 .
  • Curve 2 the photocurrent action spectrum of a similar photovoltaic cell using the prior art photosensitizer cis-dithiocyanatobis(4,4'-dicarboxy-2,2'-bipyridine) ruthenium(ll) complex;
  • bpy means bipyridyl, and L is 4,4'-dicarboxy-2,2'- bipyridine;
  • - Curve 4 the photocurrent action spectrum of still another similar photovoltaic cell using a prior art photosensitizer having the formula RUL3, where L has the above-indicated meaning;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Pyridine Compounds (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
PCT/IB1998/000680 1997-05-07 1998-05-07 Metal complex photosensitizer and photovoltaic cell Ceased WO1998050393A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU70704/98A AU743120B2 (en) 1997-05-07 1998-05-07 Metal complex photosensitizer and photovoltaic cell
EP98917480A EP0983282B1 (en) 1997-05-07 1998-05-07 Metal complex photosensitizer and photovoltaic cell
DE69819712T DE69819712T2 (de) 1997-05-07 1998-05-07 Fotoempfindlicher metallkomplex und fotovoltaische zelle
JP54787198A JP4298799B2 (ja) 1997-05-07 1998-05-07 金属複合体光増感剤および光起電力セル
US09/423,162 US6245988B1 (en) 1997-05-07 1998-05-07 Metal complex photosensitizer and photovoltaic cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AUPCT/IB97/00518 1997-05-07
IB9700518 1997-05-07

Publications (1)

Publication Number Publication Date
WO1998050393A1 true WO1998050393A1 (en) 1998-11-12

Family

ID=11004561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB1998/000680 Ceased WO1998050393A1 (en) 1997-05-07 1998-05-07 Metal complex photosensitizer and photovoltaic cell

Country Status (7)

Country Link
US (1) US6245988B1 (enExample)
EP (1) EP0983282B1 (enExample)
JP (1) JP4298799B2 (enExample)
AU (1) AU743120B2 (enExample)
DE (1) DE69819712T2 (enExample)
ES (1) ES2212286T3 (enExample)
WO (1) WO1998050393A1 (enExample)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1049117A2 (en) 1999-04-26 2000-11-02 Fuji Photo Film Co., Ltd. Metal complex dye for a photoelectrochemical cell
WO2001021727A1 (en) * 1999-09-23 2001-03-29 California Institute Of Technology Photoinduced molecular switches
US6274806B1 (en) * 2000-03-08 2001-08-14 Agency Of Industrial Science And Technology Platinum complex for use as sensitizer for semiconductor electrode of solar cell
US6278056B1 (en) * 1998-07-15 2001-08-21 Director-General Of Agency Of Industrial Science And Technology Metal complex useful as sensitizer, dye-sensitized oxide semiconductor electrode and solar cell using same
EP1176618A1 (en) * 2000-07-25 2002-01-30 Fuji Photo Film Co., Ltd. Metal complex dye, photoelectric conversion device and photoelectric cell
EP1178084A1 (en) * 2000-07-31 2002-02-06 Neomat S.A. Processes for the preparation of carboxylate and phosphonate ruthenium polypyridine dyes and intermediates
US6407330B1 (en) 2000-07-21 2002-06-18 North Carolina State University Solar cells incorporating light harvesting arrays
US6420648B1 (en) 2000-07-21 2002-07-16 North Carolina State University Light harvesting arrays
EP1178042A4 (en) * 2000-03-13 2002-10-16 Agency Ind Science Techn BETA DIKETONATO METAL COMPLEXES AND METHOD FOR THE PRODUCTION THEREOF, DEVICE FOR PHOTOELECTRIC CONVERSION AND PHOTOELECTROCHEMICAL CELLS
US6635818B2 (en) * 2000-08-25 2003-10-21 National Institute Of Advanced Industrial Science And Technology Wireless power supply method
EP1375428A1 (en) 2002-06-17 2004-01-02 Fuji Photo Film Co., Ltd. Methods for producing titanium oxide sol and fine titanium oxide particles, and photoelectric conversion device
EP1231619A3 (en) * 2001-02-13 2004-01-21 Fuji Photo Film Co., Ltd. Metal complex dye for a photoelectrochemical cell
US6765092B2 (en) 2000-07-21 2004-07-20 North Carolina State University Regioisomerically pure oxochlorins and methods of synthesis
EP1341197A3 (en) * 2002-02-28 2004-12-15 Fuji Photo Film Co., Ltd. Film of fine semiconductor particles for a photoelectrochemical cell
EP1052661A3 (en) * 1999-05-14 2005-01-05 Fuji Photo Film Co., Ltd. Metal complex dye for a photoelectrochemical cell
US6849730B2 (en) 2001-09-25 2005-02-01 North Carolina State University Methods of making porphyrins and related compounds with Lewis acids
JP2005519957A (ja) * 2002-03-11 2005-07-07 バイオストリーム インク テクネチウム−ジビリジン複合体、およびその使用法
US7141735B2 (en) * 2000-07-27 2006-11-28 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device
EP1801875A1 (en) 2000-09-27 2007-06-27 FUJIFILM Corporation Composite light-receiving device made of differential and stationary response-type device and image sensor
WO2007072018A3 (en) * 2005-12-21 2007-08-16 Oxford Biosensors Ltd Redox mediators
US7323561B2 (en) 2004-12-23 2008-01-29 North Carolina State University Metal complexation of 1-acyldipyrromethanes and porphyrins formed therefrom
EP2036955A1 (en) 2007-09-17 2009-03-18 JSR Corporation Dyestuff, dye-sensitized solar cell, and method for manufacturing same
US7615636B2 (en) 2006-11-14 2009-11-10 Industrial Technology Research Institute Ruthenium complexes with tridentate heterocyclic ligand and dye-sensitized solar cells using the same
WO2009139310A1 (ja) 2008-05-12 2009-11-19 コニカミノルタホールディングス株式会社 色素増感型太陽電池およびその製造方法
US7655860B2 (en) 2005-04-01 2010-02-02 North Carolina State University Nano-structured photovoltaic solar cell and related methods
US7824661B2 (en) 2002-03-11 2010-11-02 Molecular Insight Pharmaceuticals, Inc. Technetium- and rhenium-bis(heteroaryl) complexes, and methods of use thereof
EP2262050A1 (en) * 2001-07-06 2010-12-15 Nippon Kayaku Kabushiki Kaisha Photoelectric conversion element sensitized with methine dyes
US7884280B2 (en) 2003-05-27 2011-02-08 North Carolina State University Stepwise fabrication of molecular-based, cross linked, light harvesting arrays
EP1528579A3 (en) * 2003-10-31 2011-07-20 Korea Institute of Science and Technology Dye-sensitized solar cell based on electrospun ultra-fine titanium dioxide fibers and fabrication method thereof
DE102010046412A1 (de) 2010-09-23 2012-03-29 Merck Patent Gmbh Metall-Ligand Koordinationsverbindungen
DE102010054525A1 (de) 2010-12-15 2012-04-26 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
WO2012084115A1 (de) 2010-12-23 2012-06-28 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
EP1801909A4 (en) * 2004-10-15 2012-08-15 Bridgestone Corp DYE-SENSITIZED METAL SEMICONDUCTOR SEMICONDUCTOR ELECTRODE AND METHOD OF MANUFACTURING THE SAME, AND DYE-SENSITIZED SOLAR CELL
WO2012126566A1 (en) 2011-03-24 2012-09-27 Merck Patent Gmbh Organic ionic functional materials
WO2012152366A1 (en) 2011-05-12 2012-11-15 Merck Patent Gmbh Organic ionic compounds, compositions and electronic devices
DE10249246B4 (de) * 2002-10-23 2013-01-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Farbstoffsensibilisierte photovoltaische Zelle, ein Verfahren zur Herstellung dieser photovoltaischen Zellen sowie deren Verwendung
DE102012016192A1 (de) 2011-08-19 2013-02-21 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
US8685369B2 (en) 2004-02-12 2014-04-01 Molecular Insight Pharmaceuticals, Inc. Technetium- and rhenium-bis (heteroaryl) complexes, and methods of use thereof
WO2014079532A1 (de) 2012-11-20 2014-05-30 Merck Patent Gmbh Formulierung in hochreinem l?sungsmittel zur herstellung elektronischer vorrichtungen
CN104798156A (zh) * 2012-11-16 2015-07-22 富士胶片株式会社 光电转换元件、色素增感太阳电池、金属络合物色素、色素溶液、色素吸附电极及色素增感太阳电池的制造方法
EP2937399A1 (en) 2014-04-22 2015-10-28 Basf Se Hole-transport materials for organic solar cells or organic optical sensors
US9385326B2 (en) 2013-01-15 2016-07-05 Basf Se Triangulene oligomers and polymers and their use as hole conducting material
WO2019029789A1 (en) 2017-08-07 2019-02-14 Tozzi Green S.P.A. NEW FLUORINATED METAL COMPLEXES
US11329229B2 (en) 2016-09-19 2022-05-10 Kauno Technologies Universitetas Hole transporting organic molecules containing enamine groups for optoelectronic and photoelectrochemical devices

Families Citing this family (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6338790B1 (en) 1998-10-08 2002-01-15 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US8268143B2 (en) * 1999-11-15 2012-09-18 Abbott Diabetes Care Inc. Oxygen-effect free analyte sensor
US8444834B2 (en) 1999-11-15 2013-05-21 Abbott Diabetes Care Inc. Redox polymers for use in analyte monitoring
EP1230249B1 (en) * 1999-11-15 2004-06-02 Therasense, Inc. Transition metal complexes with bidentate ligand having an imidazole ring
US20030192584A1 (en) * 2002-01-25 2003-10-16 Konarka Technologies, Inc. Flexible photovoltaic cells and modules formed using foils
US6949400B2 (en) * 2002-01-25 2005-09-27 Konarka Technologies, Inc. Ultrasonic slitting of photovoltaic cells and modules
US7351907B2 (en) * 2002-01-25 2008-04-01 Konarka Technologies, Inc. Displays with integrated photovoltaic cells
US7186911B2 (en) 2002-01-25 2007-03-06 Konarka Technologies, Inc. Methods of scoring for fabricating interconnected photovoltaic cells
US7414188B2 (en) * 2002-01-25 2008-08-19 Konarka Technologies, Inc. Co-sensitizers for dye sensitized solar cells
US7205473B2 (en) * 2002-01-25 2007-04-17 Konarka Technologies, Inc. Photovoltaic powered multimedia greeting cards and smart cards
US20030192585A1 (en) * 2002-01-25 2003-10-16 Konarka Technologies, Inc. Photovoltaic cells incorporating rigid substrates
US6706963B2 (en) 2002-01-25 2004-03-16 Konarka Technologies, Inc. Photovoltaic cell interconnection
US6900382B2 (en) * 2002-01-25 2005-05-31 Konarka Technologies, Inc. Gel electrolytes for dye sensitized solar cells
US6913713B2 (en) 2002-01-25 2005-07-05 Konarka Technologies, Inc. Photovoltaic fibers
US20050284513A1 (en) * 2002-08-08 2005-12-29 Christoph Brabec Chip card comprising an integrated energy converter
US6919119B2 (en) * 2000-05-30 2005-07-19 The Penn State Research Foundation Electronic and opto-electronic devices fabricated from nanostructured high surface to volume ratio thin films
US6676816B2 (en) * 2001-05-11 2004-01-13 Therasense, Inc. Transition metal complexes with (pyridyl)imidazole ligands and sensors using said complexes
US8226814B2 (en) * 2001-05-11 2012-07-24 Abbott Diabetes Care Inc. Transition metal complexes with pyridyl-imidazole ligands
US8070934B2 (en) * 2001-05-11 2011-12-06 Abbott Diabetes Care Inc. Transition metal complexes with (pyridyl)imidazole ligands
WO2003065472A2 (en) * 2002-01-25 2003-08-07 Konarka Technologies, Inc. Structures and materials for dye sensitized solar cells
CA2474494A1 (en) * 2002-01-25 2003-08-07 Savvas E. Hadjikyriacou Photovoltaic cell components and materials
KR20030065957A (ko) * 2002-02-02 2003-08-09 한국전자통신연구원 폴리비닐리덴 플로라이드 함유 겔형 고분자 전해질을포함하는 염료감응 태양전지
US7572393B2 (en) 2002-09-05 2009-08-11 Nanosys Inc. Organic species that facilitate charge transfer to or from nanostructures
WO2004023527A2 (en) * 2002-09-05 2004-03-18 Nanosys, Inc. Nanostructure and nanocomposite based compositions and photovoltaic devices
US7068898B2 (en) * 2002-09-05 2006-06-27 Nanosys, Inc. Nanocomposites
US20050126628A1 (en) * 2002-09-05 2005-06-16 Nanosys, Inc. Nanostructure and nanocomposite based compositions and photovoltaic devices
CA2497451A1 (en) * 2002-09-05 2004-03-18 Nanosys, Inc. Organic species that facilitate charge transfer to or from nanostructures
WO2004025674A1 (en) * 2002-09-12 2004-03-25 Agfa-Gevaert N-type metal oxide semiconductor spectrally sensitized with a cationic spectral sensitizer
DE60212654D1 (de) * 2002-11-28 2006-08-03 Imra Europe Sa Metallkomplexe als Photosensibilatoren und photoelektrochemische Zelle
US7019209B2 (en) * 2002-12-11 2006-03-28 General Electric Company Structured dye sensitized solar cell
JP3842230B2 (ja) * 2003-02-28 2006-11-08 三菱電機株式会社 内燃機関の始動装置
US20040211458A1 (en) * 2003-04-28 2004-10-28 General Electric Company Tandem photovoltaic cell stacks
US7741559B2 (en) 2003-05-13 2010-06-22 Asahi Kasei Kabushiki Kaisha Photoelectric conversion element
KR100499051B1 (ko) * 2003-06-25 2005-07-04 한국전자통신연구원 이미다졸리움계 액체형 전해질을 포함하는 염료 감응 태양전지
AU2004265938B2 (en) * 2003-08-04 2009-07-02 Nanosys, Inc. System and process for producing nanowire composites and electronic substrates therefrom
KR101056440B1 (ko) * 2003-09-26 2011-08-11 삼성에스디아이 주식회사 염료감응 태양전지
US7812251B2 (en) * 2003-10-17 2010-10-12 Sharp Kabushiki Kaisha Photosensitizing transition metal complex and its use for photovoltaic cell
KR100578798B1 (ko) * 2003-12-12 2006-05-11 삼성에스디아이 주식회사 염료감응 태양전지 및 그 제조 방법
US8002960B2 (en) * 2003-12-18 2011-08-23 Dyesol Ltd. Method for electrolytic engineering of nano-particulate layers
KR100589322B1 (ko) * 2004-02-03 2006-06-14 삼성에스디아이 주식회사 고효율 염료감응 태양전지 및 그 제조 방법
KR100589323B1 (ko) * 2004-02-03 2006-06-14 삼성에스디아이 주식회사 광 흡수파장대가 확장된 염료감응 태양전지 및 그 제조방법
FR2873492B1 (fr) * 2004-07-21 2006-11-24 Commissariat Energie Atomique Nanocomposite photoactif et son procede de fabrication
US20060021647A1 (en) * 2004-07-28 2006-02-02 Gui John Y Molecular photovoltaics, method of manufacture and articles derived therefrom
US7718112B2 (en) * 2004-08-23 2010-05-18 University Of Massachusetts Nanometer scale structures
JP2006137676A (ja) * 2004-11-10 2006-06-01 Idemitsu Kosan Co Ltd 金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子
US20060112983A1 (en) * 2004-11-17 2006-06-01 Nanosys, Inc. Photoactive devices and components with enhanced efficiency
US20060124442A1 (en) * 2004-12-14 2006-06-15 Valpey Richard S Iii Device capable of removing contaminants from a fluid
US20060192177A1 (en) * 2005-02-25 2006-08-31 Leishan Chen Essentially thickness independent single layer photoelastic coating
US7372609B2 (en) * 2005-03-16 2008-05-13 Gentex Corporation Nanocrystalline metal oxide films and associated devices comprising the same
JP4947919B2 (ja) * 2005-04-25 2012-06-06 シャープ株式会社 ルテニウム錯体、それを用いた色素増感酸化物半導体電極および色素増感太陽電池
US20070000539A1 (en) * 2005-06-30 2007-01-04 General Electric Company Compositions and use thereof in dye sensitized solar cells
JP4509066B2 (ja) * 2005-07-08 2010-07-21 シャープ株式会社 光増感剤、半導体電極および光電変換素子
US20070017569A1 (en) * 2005-07-25 2007-01-25 General Electric Company Metal complex compositions and use thereof in dye sensitized solar cells
KR20080044233A (ko) * 2005-08-22 2008-05-20 코나르카 테크놀로지, 인코포레이티드 일체형 광전지를 갖는 디스플레이
US20070079867A1 (en) * 2005-10-12 2007-04-12 Kethinni Chittibabu Photovoltaic fibers
EP1842854A1 (en) * 2006-04-07 2007-10-10 SOLVAY (Société Anonyme) Light-emitting material
US20080048102A1 (en) * 2006-08-22 2008-02-28 Eastman Kodak Company Optically enhanced multi-spectral detector structure
KR100825731B1 (ko) * 2006-09-29 2008-04-29 한국전자통신연구원 염료감응 태양전지 및 그 제조 방법
US8319092B1 (en) 2006-11-03 2012-11-27 Solera Laboratories, Inc. Nano power cell and method of use
US9112447B2 (en) * 2006-11-03 2015-08-18 Solera Laboratories, Inc. Nano power cell and method of use
KR100842265B1 (ko) * 2006-11-21 2008-06-30 한국전자통신연구원 수직 적층형 염료감응 태양전지 모듈의 제조 방법
KR100867994B1 (ko) * 2007-10-18 2008-11-10 한국전자통신연구원 Ip기반양방향광고 송수신 방법 및 장치
US8143399B2 (en) * 2008-02-19 2012-03-27 National Central University Photosensitizer dye
US20100163102A1 (en) * 2008-12-30 2010-07-01 Taiwan Textile Research Institute Solar cell and the method of manufacturing thereof
JP5733593B2 (ja) * 2009-03-12 2015-06-10 国立大学法人東京工業大学 フェニルテルピリジン化合物、錯化合物または複合体及びそれらの製造方法並びにそれらを含む発光体及び有機化合物の検出材
KR101062325B1 (ko) * 2009-09-15 2011-09-05 삼성전기주식회사 염료 감응 태양전지 및 이를 포함하는 모바일 기기
KR101069411B1 (ko) * 2009-11-24 2011-10-04 삼성전기주식회사 휴대폰
WO2011083527A1 (ja) * 2010-01-07 2011-07-14 日本電気株式会社 光電変換用色素、半導体電極、光電変換素子、太陽電池、および、新規ピロリン系化合物
WO2011125024A1 (en) 2010-04-05 2011-10-13 Ecole Polytechnique Federale De Lausanne (Epfl) Improved electrode
EP2573862A4 (en) 2010-05-17 2015-03-04 Nippon Kayaku Kk PHOTOELECTRIC CONVERSION ELEMENT AND HEAT-HARDENING SEALANT FOR THE PHOTOELECTRIC CONVERSION ELEMENT
JP6092787B2 (ja) 2011-02-25 2017-03-08 エコール ポリテクニーク フェデラル ドゥ ローザンヌ(エーペーエフエル) 電気化学及び光電子装置用の改良された酸化還元対
EP2511924A1 (en) 2011-04-11 2012-10-17 Ecole Polytechnique Fédérale de Lausanne (EPFL) Transition metal complexes as redox couples for electrochemical and optoelectronic devices
WO2013084029A1 (en) 2011-12-08 2013-06-13 Ecole Polytechnique Federale De Lausanne (Epfl) Semiconductor electrode comprising a blocking layer
JP5881578B2 (ja) 2011-12-15 2016-03-09 富士フイルム株式会社 金属錯体色素、光電変換素子、色素増感太陽電池および色素溶液
JP5752588B2 (ja) * 2011-12-26 2015-07-22 株式会社フジクラ ルテニウム錯体の製造方法
JP5925541B2 (ja) 2012-03-16 2016-05-25 富士フイルム株式会社 光電変換素子用金属錯体色素、光電変換素子、色素増感太陽電池、色素増感太陽電池用色素吸着組成液、色素増感太陽電池用半導体電極および色素増感太陽電池の製造方法
JP6001387B2 (ja) * 2012-03-30 2016-10-05 株式会社フジクラ 光増感色素及びこれを有する色素増感太陽電池
US20130327386A1 (en) * 2012-06-11 2013-12-12 Tao Xu Three-dimensional photovoltaic device
JP2014082187A (ja) 2012-09-28 2014-05-08 Fujifilm Corp 光電変換素子および色素増感太陽電池
JP5913222B2 (ja) 2012-09-28 2016-04-27 富士フイルム株式会社 光電変換素子および色素増感太陽電池
JP5913223B2 (ja) 2012-09-28 2016-04-27 富士フイルム株式会社 金属錯体色素、光電変換素子、色素増感太陽電池、色素溶液および色素吸着電極
JP6063359B2 (ja) 2012-09-28 2017-01-18 富士フイルム株式会社 光電変換素子、色素増感太陽電池、金属錯体色素および金属錯体色素を溶解してなる色素溶液
ITMI20121672A1 (it) * 2012-10-05 2014-04-06 Eni Spa Colorante organico per una cella solare sensibilizzata da colorante
CN102863812B (zh) * 2012-10-15 2014-03-12 中国科学院长春应用化学研究所 一种有机染料以及一种染料敏化太阳能电池
CN102898859B (zh) * 2012-10-19 2013-11-27 中国科学院长春应用化学研究所 有机染料及在染料敏化太阳电池中的应用
JP5901496B2 (ja) * 2012-10-29 2016-04-13 株式会社フジクラ ルテニウム系光増感色素の製造方法
JP6026236B2 (ja) * 2012-11-16 2016-11-16 富士フイルム株式会社 金属錯体色素、光電変換素子、色素増感太陽電池、色素溶液、色素吸着電極及び色素増感太陽電池の製造方法
EP2928009A4 (en) 2012-11-30 2016-08-24 Nippon Kayaku Kk COLOR-SENSITIZED SOLAR CELL
JP5944372B2 (ja) 2012-12-17 2016-07-05 富士フイルム株式会社 光電変換素子、色素増感太陽電池、金属錯体色素、色素溶液、色素吸着電極および色素増感太陽電池の製造方法
JP5972811B2 (ja) 2013-02-22 2016-08-17 富士フイルム株式会社 光電変換素子、光電変換素子の製造方法および色素増感太陽電池
JP2014181301A (ja) * 2013-03-19 2014-09-29 Fujikura Ltd 光増感色素及びこれを有する色素増感太陽電池
JP6005678B2 (ja) * 2013-03-25 2016-10-12 富士フイルム株式会社 金属錯体色素、光電変換素子、色素増感太陽電池および金属錯体色素を含有する色素溶液
JP6047513B2 (ja) 2013-03-25 2016-12-21 富士フイルム株式会社 金属錯体色素、光電変換素子、色素増感太陽電池および金属錯体色素を含有する色素溶液
EP2822009A1 (en) 2013-07-01 2015-01-07 Ecole Polytechnique Fédérale de Lausanne (EPFL) Solar cell and process for producing the same
US9405164B2 (en) 2013-08-21 2016-08-02 Board Of Trustees Of Northern Illinois University Electrochromic device having three-dimensional electrode
EP2846371A1 (en) 2013-09-10 2015-03-11 Ecole Polytechnique Fédérale de Lausanne (EPFL) Inverted solar cell and process for producing the same
RU2545352C1 (ru) * 2013-12-17 2015-03-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тольяттинский государственный университет" Элемент фотопреобразователя
EP2896660A1 (en) 2014-01-16 2015-07-22 Ecole Polytechnique Federale De Lausanne (Epfl) Hole transporting and light absorbing material for solid state solar cells
EP2903047A1 (en) 2014-01-31 2015-08-05 Ecole Polytechnique Fédérale de Lausanne (EPFL) Hole transporting and light absorbing material for solid state solar cells
EP2966703A1 (en) 2014-07-11 2016-01-13 Ecole Polytechnique Fédérale de Lausanne (EPFL) Template enhanced organic inorganic perovskite heterojunction photovoltaic device
US20170301479A1 (en) 2014-09-10 2017-10-19 Ecole Polytechnique Federale De Lausanne (Epfl) Photodetector
EP3065190A1 (en) 2015-03-02 2016-09-07 Ecole Polytechnique Fédérale de Lausanne (EPFL) Small molecule hole transporting material for optoelectronic and photoelectrochemical devices
JP2016183331A (ja) * 2015-03-10 2016-10-20 国立大学法人九州大学 フォトンアップコンバージョン組成物

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994004497A1 (en) * 1992-08-21 1994-03-03 Ecole polytechnique fédérale de Lausanne (EPFL) Organic compounds
WO1995029924A1 (en) * 1994-05-02 1995-11-09 Ecole Polytechnique Federale De Lausanne (Epfl) Phosphonated polypyridyl compounds and their complexes

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0887817B1 (en) * 1997-06-23 2008-05-28 Sharp Kabushiki Kaisha Photoelectric material using organic photosensitising dyes and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994004497A1 (en) * 1992-08-21 1994-03-03 Ecole polytechnique fédérale de Lausanne (EPFL) Organic compounds
WO1995029924A1 (en) * 1994-05-02 1995-11-09 Ecole Polytechnique Federale De Lausanne (Epfl) Phosphonated polypyridyl compounds and their complexes

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
AIP CONF. PROC. (1997), 404(FUTURE GENERATION PHOTOVOLTAIC TECHNOLOGIES), 145-153 CODEN: APCPCS;ISSN: 0094-243X, 1997 *
CHEMICAL ABSTRACTS, vol. 128, no. 1, 5 January 1998, Columbus, Ohio, US; abstract no. 5683, ZAKEERUDDIN, S. M. ET AL: "Molecular Engineering of Photosensitizers for Nanocrystalline Solar Cells: Synthesis and Characterization of Ru Dyes Based on Phosphonated Terpyridines" XP002067002 *
CHEMICAL ABSTRACTS, vol. 128, no. 11, 16 March 1998, Columbus, Ohio, US; abstract no. 130226, YANG, RONG ET AL: "Photoelectric performance study of nanocrystalling TiO2 film sensitized by phenylphosphonated polypyridyl ruthenium complex" XP002067003 *
CHEMICAL ABSTRACTS, vol. 128, no. 2, 12 January 1998, Columbus, Ohio, US; abstract no. 14844, FRANK, A. J. ET AL: "Photochemical solar cells based on dye-sensitization of nanocrystalline TiO2" XP002067004 *
GANGUANG KEXUE YU GUANG HUAXUE (1997), 15(4), 293-296 CODEN: GKKHE9;ISSN: 1000-3231, 1997 *
INORG. CHEM. (1997), 36(25), 5937-5946 CODEN: INOCAJ;ISSN: 0020-1669, 1997 *
PECHY, PETER ET AL: "Preparation of phosphonated polypyridyl ligands to anchor transition-metal complexes on oxide surfaces: application for the conversion of light to electricity with nanocrystalline TiO2 films", J. CHEM. SOC., CHEM. COMMUN. (1995), (1), 65-6 CODEN: JCCCAT;ISSN: 0022-4936, 1995, XP002067001 *

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6278056B1 (en) * 1998-07-15 2001-08-21 Director-General Of Agency Of Industrial Science And Technology Metal complex useful as sensitizer, dye-sensitized oxide semiconductor electrode and solar cell using same
EP1049117A3 (en) * 1999-04-26 2005-03-23 Fuji Photo Film Co., Ltd. Metal complex dye for a photoelectrochemical cell
EP1049117A2 (en) 1999-04-26 2000-11-02 Fuji Photo Film Co., Ltd. Metal complex dye for a photoelectrochemical cell
EP1052661A3 (en) * 1999-05-14 2005-01-05 Fuji Photo Film Co., Ltd. Metal complex dye for a photoelectrochemical cell
US6433270B1 (en) 1999-09-23 2002-08-13 California Institute Of Technology Photoinduced molecular switches
WO2001021727A1 (en) * 1999-09-23 2001-03-29 California Institute Of Technology Photoinduced molecular switches
US6274806B1 (en) * 2000-03-08 2001-08-14 Agency Of Industrial Science And Technology Platinum complex for use as sensitizer for semiconductor electrode of solar cell
EP1178042A4 (en) * 2000-03-13 2002-10-16 Agency Ind Science Techn BETA DIKETONATO METAL COMPLEXES AND METHOD FOR THE PRODUCTION THEREOF, DEVICE FOR PHOTOELECTRIC CONVERSION AND PHOTOELECTROCHEMICAL CELLS
US7408058B2 (en) 2000-07-21 2008-08-05 North Carolina State University Regioisomerically pure oxochlorins and methods of synthesis
US6420648B1 (en) 2000-07-21 2002-07-16 North Carolina State University Light harvesting arrays
US6596935B2 (en) 2000-07-21 2003-07-22 North Carolina State University Solar cells incorporating light harvesting arrays
US6407330B1 (en) 2000-07-21 2002-06-18 North Carolina State University Solar cells incorporating light harvesting arrays
US6765092B2 (en) 2000-07-21 2004-07-20 North Carolina State University Regioisomerically pure oxochlorins and methods of synthesis
EP1176618A1 (en) * 2000-07-25 2002-01-30 Fuji Photo Film Co., Ltd. Metal complex dye, photoelectric conversion device and photoelectric cell
US7141735B2 (en) * 2000-07-27 2006-11-28 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device
EP1178084A1 (en) * 2000-07-31 2002-02-06 Neomat S.A. Processes for the preparation of carboxylate and phosphonate ruthenium polypyridine dyes and intermediates
WO2002010286A3 (en) * 2000-07-31 2007-10-18 Neomat S A Process for the preparation of carboxylate and phosphonate ruthenium polypyridine dyes and a process for the preparation of reaction intermediates used in such process
US6635818B2 (en) * 2000-08-25 2003-10-21 National Institute Of Advanced Industrial Science And Technology Wireless power supply method
EP1801875A1 (en) 2000-09-27 2007-06-27 FUJIFILM Corporation Composite light-receiving device made of differential and stationary response-type device and image sensor
EP1231619A3 (en) * 2001-02-13 2004-01-21 Fuji Photo Film Co., Ltd. Metal complex dye for a photoelectrochemical cell
US8338701B2 (en) 2001-07-06 2012-12-25 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device
EP2262050A1 (en) * 2001-07-06 2010-12-15 Nippon Kayaku Kabushiki Kaisha Photoelectric conversion element sensitized with methine dyes
US8338700B2 (en) 2001-07-06 2012-12-25 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device
US6849730B2 (en) 2001-09-25 2005-02-01 North Carolina State University Methods of making porphyrins and related compounds with Lewis acids
EP1341197A3 (en) * 2002-02-28 2004-12-15 Fuji Photo Film Co., Ltd. Film of fine semiconductor particles for a photoelectrochemical cell
JP2005519957A (ja) * 2002-03-11 2005-07-07 バイオストリーム インク テクネチウム−ジビリジン複合体、およびその使用法
US7875258B2 (en) 2002-03-11 2011-01-25 Molecular Insight Pharmaceuticals, Inc. Technetium-dipyridine complexes, and methods of use thereof
US7824661B2 (en) 2002-03-11 2010-11-02 Molecular Insight Pharmaceuticals, Inc. Technetium- and rhenium-bis(heteroaryl) complexes, and methods of use thereof
JP4846199B2 (ja) * 2002-03-11 2011-12-28 モレキュラ インサイト ファーマシューティカルズ インコーポレイテッド テクネチウム−ジビリジン複合体、およびその使用法
EP1375428A1 (en) 2002-06-17 2004-01-02 Fuji Photo Film Co., Ltd. Methods for producing titanium oxide sol and fine titanium oxide particles, and photoelectric conversion device
DE10249246B4 (de) * 2002-10-23 2013-01-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Farbstoffsensibilisierte photovoltaische Zelle, ein Verfahren zur Herstellung dieser photovoltaischen Zellen sowie deren Verwendung
US7884280B2 (en) 2003-05-27 2011-02-08 North Carolina State University Stepwise fabrication of molecular-based, cross linked, light harvesting arrays
US8691325B2 (en) 2003-10-31 2014-04-08 Korean Institute Of Science And Technology Dye-sensitized solar cell based on electrospun ultra-fine titanium dioxide fibers and fabrication method thereof
EP1528579A3 (en) * 2003-10-31 2011-07-20 Korea Institute of Science and Technology Dye-sensitized solar cell based on electrospun ultra-fine titanium dioxide fibers and fabrication method thereof
US8685369B2 (en) 2004-02-12 2014-04-01 Molecular Insight Pharmaceuticals, Inc. Technetium- and rhenium-bis (heteroaryl) complexes, and methods of use thereof
EP1801909A4 (en) * 2004-10-15 2012-08-15 Bridgestone Corp DYE-SENSITIZED METAL SEMICONDUCTOR SEMICONDUCTOR ELECTRODE AND METHOD OF MANUFACTURING THE SAME, AND DYE-SENSITIZED SOLAR CELL
US7323561B2 (en) 2004-12-23 2008-01-29 North Carolina State University Metal complexation of 1-acyldipyrromethanes and porphyrins formed therefrom
US7655860B2 (en) 2005-04-01 2010-02-02 North Carolina State University Nano-structured photovoltaic solar cell and related methods
US8592617B2 (en) 2005-12-21 2013-11-26 Roche Diagnostics Operations, Inc. Redox mediators
WO2007072018A3 (en) * 2005-12-21 2007-08-16 Oxford Biosensors Ltd Redox mediators
US7615636B2 (en) 2006-11-14 2009-11-10 Industrial Technology Research Institute Ruthenium complexes with tridentate heterocyclic ligand and dye-sensitized solar cells using the same
EP2036955A1 (en) 2007-09-17 2009-03-18 JSR Corporation Dyestuff, dye-sensitized solar cell, and method for manufacturing same
WO2009139310A1 (ja) 2008-05-12 2009-11-19 コニカミノルタホールディングス株式会社 色素増感型太陽電池およびその製造方法
DE102010046412A1 (de) 2010-09-23 2012-03-29 Merck Patent Gmbh Metall-Ligand Koordinationsverbindungen
DE102010054525A1 (de) 2010-12-15 2012-04-26 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
WO2012079673A1 (de) 2010-12-15 2012-06-21 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
WO2012084115A1 (de) 2010-12-23 2012-06-28 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
DE102010055902A1 (de) 2010-12-23 2012-06-28 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
WO2012126566A1 (en) 2011-03-24 2012-09-27 Merck Patent Gmbh Organic ionic functional materials
WO2012152366A1 (en) 2011-05-12 2012-11-15 Merck Patent Gmbh Organic ionic compounds, compositions and electronic devices
DE102012016192A1 (de) 2011-08-19 2013-02-21 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
CN104798156B (zh) * 2012-11-16 2017-11-14 富士胶片株式会社 光电转换元件、太阳电池及其制造方法、化合物、金属络合物色素、色素溶液、及电极
CN104798156A (zh) * 2012-11-16 2015-07-22 富士胶片株式会社 光电转换元件、色素增感太阳电池、金属络合物色素、色素溶液、色素吸附电极及色素增感太阳电池的制造方法
TWI586675B (zh) * 2012-11-16 2017-06-11 富士軟片股份有限公司 光電轉換元件、色素增感太陽電池、金屬錯合物色素、色素溶液、色素吸附電極、色素增感太陽電池的製造方法及化合物
US10460879B2 (en) 2012-11-16 2019-10-29 Fujifilm Corporation Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-adsorbed electrode, and method for producing dye-sensitized solar cell
WO2014079532A1 (de) 2012-11-20 2014-05-30 Merck Patent Gmbh Formulierung in hochreinem l?sungsmittel zur herstellung elektronischer vorrichtungen
US9385326B2 (en) 2013-01-15 2016-07-05 Basf Se Triangulene oligomers and polymers and their use as hole conducting material
EP2922137A4 (en) * 2013-03-25 2015-12-16 Fujifilm Corp PHOTOELECTRIC CONVERSION ELEMENT, DYE SENSITIVE SOLAR CELL, METAL COMPLEX DYE, DYE SOLUTION, DYE ADSORBED ELECTRODE, AND METHOD FOR MANUFACTURING DYE SENSITIVE SOLAR CELL
EP2937399A1 (en) 2014-04-22 2015-10-28 Basf Se Hole-transport materials for organic solar cells or organic optical sensors
WO2015161989A1 (en) 2014-04-22 2015-10-29 Basf Se Hole-transport materials for organic solar cells or organic optical sensors
US11329229B2 (en) 2016-09-19 2022-05-10 Kauno Technologies Universitetas Hole transporting organic molecules containing enamine groups for optoelectronic and photoelectrochemical devices
WO2019029789A1 (en) 2017-08-07 2019-02-14 Tozzi Green S.P.A. NEW FLUORINATED METAL COMPLEXES

Also Published As

Publication number Publication date
US6245988B1 (en) 2001-06-12
EP0983282A1 (en) 2000-03-08
DE69819712D1 (de) 2003-12-18
AU743120B2 (en) 2002-01-17
JP4298799B2 (ja) 2009-07-22
EP0983282B1 (en) 2003-11-12
DE69819712T2 (de) 2004-09-23
JP2002512729A (ja) 2002-04-23
ES2212286T3 (es) 2004-07-16
AU7070498A (en) 1998-11-27

Similar Documents

Publication Publication Date Title
EP0983282B1 (en) Metal complex photosensitizer and photovoltaic cell
JP5003871B2 (ja) 二核金属錯体、金属錯体色素、光電変換素子、及び光化学電池
EP2508570B1 (en) Organic metal dye, and photoelectric element and dye-sensitized solar cell using the organic metal dye
JP3783872B2 (ja) ホスホン酸化ポリピリジル化合物及びその錯体
JP4522090B2 (ja) 色素増感太陽電池
JP5620496B2 (ja) 金属錯体色素、光電変換素子及び光電気化学電池
Nasr-Esfahani et al. Fabrication and characterization of a new dye sensitized solar cell with a new Schiff base cobalt complex as a redox mediator
US8440905B2 (en) Copper complex dye sensitized solar cell
JP5293190B2 (ja) 二核金属錯体の製造方法
JP5428312B2 (ja) 光電変換素子、及び光化学電池
EP1424340B1 (en) Metal complex photosensitizers and photo-electrochemical cell
JP5003865B2 (ja) 二核金属錯体色素溶液およびこの溶液を用いた光電変換素子、及び光化学電池
EP2511924A1 (en) Transition metal complexes as redox couples for electrochemical and optoelectronic devices
JP4443906B2 (ja) 金属錯体およびそれを用いた色素増感太陽電池
JP5170357B2 (ja) 光電変換素子、及び光化学電池
JP5749883B2 (ja) 色素、これを用いた光電変換素子及び光電気化学電池
JP2014181305A (ja) 光増感剤およびこれを用いた光起電力素子
JP2009129652A (ja) 光電変換素子、及び光化学電池
KR20120114087A (ko) 염료감응 태양전지용 염료 및 이를 함유하는 염료감응 태양전지
KR101223728B1 (ko) 루테늄 착화합물 및 이를 채용한 염료감응 태양전지
JP5446207B2 (ja) 光電変換素子、及び光化学電池
JP5061626B2 (ja) 二核金属錯体の製造方法
JP2014096301A (ja) 光増感剤およびこれを用いた光起電力素子

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998917480

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09423162

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 70704/98

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1998917480

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 70704/98

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1998917480

Country of ref document: EP