KR100589323B1 - 광 흡수파장대가 확장된 염료감응 태양전지 및 그 제조방법 - Google Patents

광 흡수파장대가 확장된 염료감응 태양전지 및 그 제조방법 Download PDF

Info

Publication number
KR100589323B1
KR100589323B1 KR1020040006930A KR20040006930A KR100589323B1 KR 100589323 B1 KR100589323 B1 KR 100589323B1 KR 1020040006930 A KR1020040006930 A KR 1020040006930A KR 20040006930 A KR20040006930 A KR 20040006930A KR 100589323 B1 KR100589323 B1 KR 100589323B1
Authority
KR
South Korea
Prior art keywords
dye
electrode
solar cell
sensitized solar
porous membrane
Prior art date
Application number
KR1020040006930A
Other languages
English (en)
Other versions
KR20050078857A (ko
Inventor
박정원
이지원
이화섭
안광순
최재만
신병철
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020040006930A priority Critical patent/KR100589323B1/ko
Priority to US11/046,511 priority patent/US20050166958A1/en
Priority to JP2005020817A priority patent/JP2005222942A/ja
Priority to AT05100627T priority patent/ATE520136T1/de
Priority to EP05100627A priority patent/EP1562206B1/en
Publication of KR20050078857A publication Critical patent/KR20050078857A/ko
Application granted granted Critical
Publication of KR100589323B1 publication Critical patent/KR100589323B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • H01G9/2063Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution comprising a mixture of two or more dyes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2013Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte the electrolyte comprising ionic liquids, e.g. alkyl imidazolium iodide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

염료감응 태양전지의 광전변환 효율을 향상시키기 위해 광 에너지의 유효 흡수 파장대를 확장하고자 한다. 이를 위해 본 발명에서는 투광성 물질로 이루어진 제1전극; 제1전극의 이면에 도포된 다공질막 다공질막에 흡착되고, 두 종류 이상의 염료물질을 포함하는 복합 염료; 제1전극의 이면과 마주보도록 배치된 제2전극; 및 제1전극과 제2전극 사이의 공간에 매립된 전해질을 포함하는 염료감응 태양전지를 제공한다.
복합염료, 흡수파장, 태양전지

Description

광 흡수파장대가 확장된 염료감응 태양전지 및 그 제조 방법 {Dye-sensitized solar cell having enlarged wavelength range of absorbed light and fabrication method thereof}
도 1은 본 발명에 따른 염료감응 태양전지의 구조를 도시한 단면도이고,
도 2는 본 발명의 실시예 및 종래기술에서 태양광의 파장에 대한 흡수 피크를 도시한 그래프이며,
도 3은 본 발명의 실시예 및 비교예에 따른 염료감응 태양전지의 광전변환 효율을 측정한 전압-전류 그래프이고,
도 4는 본 발명의 실시예 및 비교예에 따른 염료감응 태양전지에서 각 파장대별 광전변환 효율을 측정한 IPCE 그래프이다.
본 발명은 염료감응 태양전지 및 그 제조 방법에 관한 것으로, 더욱 상세하게는 흡수 파장영역이 서로 다른 염료를 혼합하여 가시광의 유효 흡수 파장대를 확장시킨 염료감응 태양전지 및 그 제조 방법에 관한 것이다.
종래의 염료감응 태양전지 중에서 대표적인 연구 개발로는 1991년도 스위스 국립 로잔 고등기술원(EPFL)의 마이클 그라첼(Michael gratzel)의 연구팀이 개발한 나노입자 산화티탄늄(아나타제)을 이용한 염료감응 태양전지가 있다. 이 염료감응 태양전지는 기존의 실리콘 태양전지에 비해 제조 단가가 저렴하고 투명한 전극으로 인해 건물 외벽 유리창이나 유리 온실 등에 응용이 가능하다는 이점이 있으나, 광전변환 효율이 낮아서 실제 적용에는 제한이 있는 상황이다.
태양전지의 광전변환효율은 태양빛의 흡수에 의해 생성된 전자의 양에 비례하므로, 효율을 증가시키기 위해서는 태양빛의 흡수를 증가시키거나 염료의 흡착량을 높여 전자의 생성량을 늘일 수도 있고, 또는 생성된 여기전자가 전자-홀 재결합에 의해 소멸되는 것을 막아줄 수도 있다.
단위면적당 염료의 흡착량을 늘이기 위해서는 산화물 반도체의 입자를 나노미터 수준의 크기로 제조하여야 하며 태양빛의 흡수를 높이기 위해 백금전극의 반사율을 높이거나, 수 마이크로 크기의 반도체 산화물 광산란자를 섞어서 제조하는 방법 등이 개발되어 있다. 그러나 이러한 종래 방법으로는 태양전지의 광전변환 효율 향상에 한계가 있으며, 따라서 효율 향상을 위한 새로운 기술 개발이 절실히 요청되고 있는 실정이다.
본 발명은 상기한 바와 같은 문제점을 해결하기 위한 것으로, 그 목적은 염료감응 태양전지의 광전변환 효율을 향상시키는 것이다.
본 발명의 다른 목적은 염료감응 태양전지의 광전변환 효율을 향상시키기 위해 광 에너지의 유효 흡수 파장대를 확장하는 것이다.
상기한 바와 같은 목적을 달성하기 위하여, 본 발명에서는 투광성 물질로 이루어진 제1전극; 제1전극의 이면에 도포된 다공질막 다공질막에 흡착되고, 두 종류 이상의 염료물질을 포함하는 복합 염료; 제1전극의 이면과 마주보도록 배치된 제2전극; 및 제1전극과 제2전극 사이의 공간에 매립된 전해질을 포함하는 염료감응 태양전지를 제공한다.
이 때 복합 염료는 Ru(2,2':6'-2"-테르피리딘(terpyridine)-4,4',4"-트리카르복실산(tricarboxylic acid))(NCS)3 을 포함할 수 있으며, 복합 염료의 총 몰수에 대해 Ru(2,2':6'-2"-테르피리딘(terpyridine)-4,4',4"-트리카르복실산(tricarboxylic acid))(NCS)3 의 몰수가 10-80%가 되도록 할 수 있다.
또 다른 일 예로서, 복합 염료는 Ru(2,2':6'-2"-테르피리딘(terpyridine)-4,4',4"-트리카르복실산(tricarboxylic acid))(NCS)3 와 Ru(4,4'-디카르복시(dicarboxy)-2,2'-바이피리딘(bipyridine)2(CN)2 을 포함할 수 있다.
다공질막은 평균입경이 100nm 이하인 나노입자를 포함하는 것이 바람직하며, 나노입자의 평균입경은 10-40nm인 것이 바람직하다.
다공질막에는 도전성 미립자가 첨가되거나, 다공질막과 동일한 물질이고 평균입경이 100nm 이상인 광산란자가 첨가되거나, 또는 도전성 미립자 및 광산란자 모두가 첨가될 수 있다.
한편, 제1전극은 PET, PEN, PC, PP, PI, TAC 중의 어느 하나를 포함하는 투명한 플라스틱 기판 또는 유리 기판 상에 ITO, FTO, ZnO-(Ga2O3 또는 Al2O 3), SnO2-Sb2O3 중의 어느 하나를 포함하는 전도성 필름이 코팅될 수 있다.
제2전극은 PET, PEN, PC, PP, PI, TAC 중의 어느 하나를 포함하는 투명한 플라스틱 기판 또는 유리 기판 상에 ITO, FTO, ZnO-(Ga2O3 또는 Al2O3 ), SnO2-Sb2O3 중의 어느 하나를 포함하는 제1전도성 필름이 코팅되어 있고, 제1전도성 필름 상에 Pt 또는 귀금속 물질을 포함한 제2전도성 필름이 코팅될 수 있다.
상술한 바와 같은 본 발명에 따른 염료감응 태양전지의 제조 방법은 투광성 물질로 이루어진 제1전극 및 제2전극을 준비하는 단계 제1전극의 한 면에 다공질막을 형성하는 단계 두 종류 이상의 염료물질을 첨가하여 복합 염료를 준비한 후, 준비된 복합 염료를 다공질막에 흡착시키는 단계 및 제1전극의 다공질막과 제2전극을 서로 마주보도록 배치시키고, 다공질막과 제2전극 사이에 전해질을 매립하여 밀봉하는 단계를 포함하여 이루어진다.
복합 염료를 준비할 때에는 Ru(2,2':6'-2"-테르피리딘(terpyridine)-4,4',4"-트리카르복실산(tricarboxylic acid))(NCS)3 을, 복합 염료의 총 몰수에 대해 10-80%가 되는 몰수로 첨가할 수 있다.
Ru(2,2':6'-2"-테르피리딘(terpyridine)-4,4',4"-트리카르복실산(tricarboxy lic acid))(NCS)3 을 알콜 내에 0.1~5 mM의 농도로 용해시킨 상태에서 다른 종류의 염료물질을 더 첨가할 수도 있다.
Ru(2,2':6'-2"-테르피리딘(terpyridine)-4,4',4"-트리카르복실산(tricarboxylic acid))(NCS)3 와 Ru(4,4'-디카르복시(dicarboxy)-2,2'-바이피리딘(bipyridine)2 (CN)2 을 첨가하여 복합염료를 준비할 수도 있다.
이하, 본 발명에 따른 염료감응 태양전지에 대해 상세히 설명한다.
염료감응 태양전지는 나노 입자의 다공질막, 태양광의 가시광을 흡수하여 전자를 여기하는 염료, 전해질, 투명전극 등으로 구성되어, 자연상태의 광합성 원리를 응용한 전지이다.
염료감응 태양전지 내로 태양광이 입사되면 광양자는 먼저 염료분자에 흡수되고 염료분자는 기저상태에서 여기상태로 전자 전이하여 전자-홀 쌍을 만들며, 여기상태의 전자는 염료와 다공질막의 계면을 거쳐 다공질막을 이루는 전이금속 산화물의 전도대로 주입된다. 주입된 전자는 다공질막과 반도체 전극의 계면을 거쳐 외부 회로로 흘러간 후 상대 전극으로 이동한다.
한편, 전자 전이의 결과로 산화된 염료는 전해질 내 산화-환원 커플(redox couple)의 요오드 이온(I-)에 의해 환원되고, 이 때 전해질의 산화된 요오드 이온(I3 - )은 전하중성을 이루기 위해 상대전극의 계면에 도달한 전자와 환원 반응을 한다.
이와 같이 염료감응 태양전지에서는 기존의 p-n 접합형 실리콘 태양전지와는 달리 계면 반응을 통해 작동하는 전기 화학적 원리를 가지고 있으며, 따라서 계면 특성을 개선하는 것이 매우 중요한 기술적 과제이다.
염료감응 태양전지 작동의 첫 단계는 염료분자가 광에너지로부터 광전하를 생성하는 과정이다. 따라서 염료감응 태양전지의 고효율화를 위해 해결되어야하는 과제로는 염료분자의 광에너지 유효흡수수를 증가시키거나 유효흡수 파장대를 확장시키는 것이 있다.
현재 주로 사용되고 있는 염료감응 태양전지는 200nm~600nm 사이의 광흡수만이 이루어지고 있다. 따라서 이 영역 이외의 태양광 에너지는 전력을 생산하는데 기여하지 못하고 있다고 볼 수 있으며, 600nm 이상의 파장영역까지 흡수하여 광전하를 발생시킬 수 있는 염료를 발견한다면 염료감응 태양전지의 광전변환 효율이 대폭 향상될 것으로 기대된다.
이에 본 발명에서는 단일 염료분자가 해결할 수 없는 없는 문제를 해결하고자, 흡수 파장 영역이 서로 다른 두 종류 이상의 염료를 포함하는 복합 염료를 사용함으로써 광 에너지의 유효 흡수 파장대를 확장시킨다.
도 1은 본 발명에 따른 염료감응 태양전지의 구조를 도시한 단면도이다.
염료감응 태양전지의 기본 구조는 도 1에 도시된 바와 같이, 두 개의 판상 투명전극(제1전극(10) 및 제2전극(20))이 서로 면 접합된 샌드위치 구조이고, 한 투명전극(제1전극(10))의 이면에는 나노입자로 이루어진 다공질막(30)이 도포되어 있으며, 다공질막의 나노입자 표면에는 가시광 흡수로 전자가 여기되는 광 감응 염 료(35)가 흡착되어져 있다. 이 두 투명전극 사이의 공간은 산화환원용 전해질(40)로 채워져 있다.
투명전극 중 다공질막(30)이 도포된 제1전극(working electrode, 반도체 전극)(10)으로는 PET, PEN, PC, PP, PI, TAC 중의 어느 하나를 포함하는 투명한 플라스틱 기판 또는 유리 기판(11) 상에 ITO. FTO, ZnO-(Ga2O3 또는 Al2O3 ), SnO2-Sb2O3 중의 어느 하나를 포함하는 전도성 필름(12)이 코팅된 것을 사용한다.
다공질막(30)은 일반적으로 페이스트를 제1전극(10)의 이면에 코팅한 후 열처리함으로써 형성한다. 코팅법에 따라 요구되는 페이스트의 물성도 조금씩 달라진다. 일반적으로 닥터 브레이드 또는 스크린 프린트 등의 방법으로 페이스트를 코팅하고, 투명막 형성을 위해서는 스핀 코팅 또는 스프레이 방법을 이용하기도 한다. 이 외에도 스퀴즈를 포함하여 일반적인 습식 코팅 방법을 적용할 수 있다.
열처리는 바인더를 첨가한 경우 400-600℃에서 30분 정도 수행하고, 바인더를 첨가하지 않은 경우 200℃ 이하로도 가능하다.
또한, 다공질막(30)의 다공성을 유지하기 위한 목적으로 다공질막(30)에 고분자를 첨가하여 열처리(400~600℃)하면 다공성이 높은 도포막이 얻어지는데, 이 때에는 열처리 후 유기물이 잔존하지 않는 고분자를 선택해야 한다.
적합한 고분자로는 폴리 에틸렌 글리콜(PEG), 폴리 에틸렌 옥사이드(PEO), 폴리 비닐 알콜(PVA), 폴리 비닐 피리돈(PVP) 등이 있다. 이 중에서 도포법을 포함한 도포 조건을 고려하여 적합한 분자량을 가지는 것으로 선택하여 첨가하면 된다. 이러한 고분자를 첨가하면 다공성 향상 이외에도 분산성 향상, 점도 증가로 성막성 및 기반과의 부착력도 향상시킬 수 있다.
다공질막(30)은 나노미터 규모의 입경을 가지는 나노 입자들이 균일하게 분포하며 다공성을 유지하면서 표면에 적당한 거칠기(roughness)를 가지도록 형성하는 것이 중요하다. 나노입자는 평균입경 100nm 이하를 가지고, 바람직하게는 10-40nm의 입경을 가진다.
다공질막(30)을 이루는 대표적인 물질로서 TiO2의 입경별 효율을 검토해 보면, TiO2의 입경이 10nm 이하로 작으면 성막 후 열처리 시 기반과의 밀착성이 떨어져 박리가 일어난다. 반면에, TiO2의 입경이 40nm 초과로 커지면 표면적의 감소로 염료 흡착 포인트가 감소하여 광전변환 효율이 떨어진다. 따라서, 공정성과 효율을 동시에 고려한 결과, 10~40nm 입경의 TiO2를 이용하여 다공질막을 형성하는 것이 바람직하다.
이러한 다공질막(30)에는 전자이동을 용이하게 하기 위하여 ITO와 같은 도전성 미립자를 첨가할 수도 있고, 또는 광로를 연장시켜 효율을 향상시키는 목적으로 광산란자를 첨가할 수도 있으며, 또는 도전성 미립자 및 광산란자 둘 모두를 첨가할 수도 있다. 광산란자는 다공질막을 이루는 물질과 동일한 것으로서 평균입경이 100nm 이상으로 큰 것이다.
다공질막(30)의 나노입자 표면에 흡착되어 있는 염료(35)는 Al, Pt, Pd, Eu, Pb, Ir 등의 금속 복합체 형태의 화합물, 또는 Ru 복합체를 포함하여 가시광을 흡 수할 수 있는 물질로 이루어진다. Ru은 백금족에 속하는 원소로서 많은 유기 금속 복합 화합물을 만들 수 있는 원소이다.
본 발명의 염료(35)는 두 종류 이상의 염료물질이 혼합된 복합염료이며, 도 1에는 일예로서 제1 염료물질(36) 및 제2 염료물질(37)이 혼합된 것이 도시되어 있다. 이 때 복합염료(35)는 흡수파장 영역이 동일하지 않고 서로 간에 차이가 나는 두 종류의 염료물질을 포함하는 것이 바람직하다.
특히, Ru(2,2':6'-2"-테르피리딘(terpyridine)-4,4',4"-트리카르복실산 (tricarboxylic acid))(NCS)3 은 가시광 영역에서 비교적 장파장 영역대의 흡수율이 높은 물질로서, 이 물질을 포함하고, 여기에 다른 물질을 혼합하여 염료로서 사용하는 것이 바람직하다.
Ru(2,2':6'-2"-테르피리딘(terpyridine)-4,4',4"-트리카르복실산(tricarboxylic acid))(NCS)3 을 사용하는 경우 염료의 총 몰수에 대해 Ru(2,2':6'-2"-테르피리딘(terpyridine)-4,4',4"-트리카르복실산(tricarboxylic acid))(NCS)3 의 몰수가 10-80%가 되도록 하는 것이 바람직하다.
도 2는 태양광의 파장에 대한 흡수 피크를 도시한 그래프로서, (a)는 염료로서 Ru(2,2':6'-2"-테르피리딘(terpyridine)-4,4',4"-트리카르복실산(tricarboxylic acid))(NCS)3 을 사용한 종래 경우이고, (b)는 Ru(4,4'-디카르복시(dicarboxy)-2,2'-바이피리딘(bipyridine))2(CN)2을 사용한 종래 경우이며, (c)는 본 발명에 따 라 이 두 염료물질을 혼합한 복합염료를 사용한 경우이다.
도 2를 보면 (a)의 경우 400nm 및 650nm에서 흡수 피크를 보였고, (b)의 경우 350nm 및 500nm에서 흡수 피크를 보였으나, 본 발명의 일 실시예에 따라 복합염료를 사용한 (c)의 경우 흡수되는 파장 영역이 확장되었음을 확인할 수 있었다.
한편, 전자 방출이 용이한 새로운 타입의 염료를 개발하고 있으며 염료의 반응기를 개선하여 전자와 정공의 재결합을 방지하여 효율을 향상시키는 방법에 대해서도 연구가 진행되고 있다.
또한, 다양한 칼라의 유기 색소는 저가이면서도 소재가 풍부하여 활용 가능성이 높은 소재로 효율 향상을 위한 검토가 활발하게 진행 중이다. 유기색소로는 큐마린(Cuemarine), 포피린(porphyrin)의 일종인 페오포바이드 에이(pheophorbide a) 등을 단독 또는 Ru 복합체와 혼합 사용하여 장파장의 가시광 흡수를 개선하여 효율을 향상시킬 수 있다.
이와 같은 염료(35)의 흡착은 염료를 용해시킨 알콜용액에 다공질막(30)을 도포한 제1전극(10)을 침지시킨후 12시간 정도 지나면 자연 흡착이 될 수 있다.
제2전극(counter electrode, 상대전극)(20)은 PET, PEN, PC, PP, PI, TAC 중의 어느 하나를 포함하는 투명한 플라스틱 기판 또는 유리 기판(21) 상에 주석 함유 산화인듐(ITO) 또는 불소 함유 산화주석(FTO) 등의 전도성 필름(22)이 코팅된 것을 사용할 수도 있고, 또는 전도성 필름(22) 위에 백금(Pt)층(23)을 형성한 것을 사용할 수도 있다.
백금층(23)은 전도성 필름(22) 위에 유기용제(MeOH, EtOH, IPA 등)에 용해된 H2PtCl6 용액의 습식코팅(스핀 코팅, 침지(dip)코팅, 플로우(flow)코팅 등) 후 400℃ 이상의 공기 중 또는 산소분위기에서의 고온열처리 등의 방법으로 형성될 수도 있고, 전해도금 또는 스퍼터링, 전자빔증착 등과 같은 물리기상증착(PVD) 방법으로 코팅될 수도 있다. 백금 이외에도 귀금속 물질을 사용할 수 있다.
제1전극(10) 및 제2전극(20)은 접착제(50)를 사용하여 서로 면 접합시킨 후, 제1전극(10) 및 제2전극(20)을 관통하는 미세 홀을 형성하고 이 홀을 통해 두 전극 사이의 공간에 전해질 용액을 주입한 다음, 다시 홀의 외부를 접착제로 밀봉한다.
접착제(50)로는 열가소성 고분자 필름을 사용할 수 있는데 일 예로는 상품명 surlyn이 있다. 이러한 열가소성 고분자 필름을 두 전극 사이에 위치시킨 후 가열 압착하여 밀폐시킨다.
접착제(50)의 또 다른 종류로는 에폭시 수지 또는 자외선(UV) 경화제를 사용할 수 있으며, 이 경우 열처리 또는 UV 처리 후에 경화시킬 수도 있다.
전해질(40)은 제1전극(10) 및 제2전극(20) 사이의 공간에서 다공질막(30) 내부로 균일하게 분산되어 있다.
전해질(40)은 아이오다이드(iodide)/트리오다이드(triodide) 쌍으로서 산화, 환원에 의해 상대전극으로부터 전자를 받아 염료에 전달하는 역할을 수행하며 개방회로 전압은 염료의 에너지 준위와 전해질의 산환, 환원 준위의 차이에 의해 결정된다.
상술한 바와 같은 본 발명의 염료감응 태양전지를 제조하기 위해서는 제1전 극의 한 면상에 다공질막을 형성하고, 두 종류 이상의 염류 물질을 혼합하여 복합 원료를 준비한 후, 준비된 복합 원료를 다공질막에 흡착시키고, 다공질막과 제2전극을 서로 마주보도록 배치시킨 다음, 다공질막과 제2전극 사이에 전해질을 매립하여 밀봉하며, 이로써 염료감응 태양전지의 제조를 완료한다.
복합염료를 준비할 때에는 Ru(2,2':6'-2"-테르피리딘(terpyridine)-4,4',4"-트리카르복실산(tricarboxylic acid))(NCS)3 을 알콜 내에 0.1~5 mM의 농도로 용해시킨 상태에서 다른 종류의 염료물질을 더 첨가하는 것이 바람직하다.
이하, 본 발명의 일 실시예에 따라 염료감응 태양전지를 제조하는 방법에 대해 상세히 설명한다.
실시예
인듐 도핑된 주석산화물 투명전도체 위에 입경 5-15 nm 정도 크기의 티타늄산화물 입자 분산액을 닥터블레이드법을 이용하여 1cm2 면적에 도포하고, 450℃, 30분 열처리 소성공정을 통해 3 ㎛ 두께의 다공성 티타늄산화물 후막을 제작하였다.
그 후 80℃에서 시편을 유지한 후 에탄올에 용해된 0.3 mM Ru(4,4'-디카르복시(dicarboxy)-2,2'-바이피리딘(bipyridine))2(CN)2과 0.45 mM Ru(2,2':6'-2"-테르피리딘(terpyridine)-4,4',4"-트리카르복실산(tricarboxylic acid))(NCS)3 염료색소액에 염료흡착처리를 12시간 이상 수행하였다. 그 후 염료 흡착된 다공성 티타늄산화물 후막을 에탄올을 이용하여 씻어내고 상온 건조하여 반도체 전극을 제조하였 다.
상대전극으로는 인듐 도핑된 주석산화물 투명전도체 위에 스퍼터를 이용하여 Pt막을 증착하였고, 전해액 주입을 위해 0.75 mm 직경의 드릴을 이용하여 미세 구멍을 만들어 상대전극을 제작하였다.
다음, 60 ㎛ 두께의 열가소성 고분자 필름을 반도체 전극과 상대전극 사이에 두고 100℃에서 9초 압착시킴으로서 두 전극을 접합시켰다. 상대전극에 형성된 미세구멍을 통하여 산화-환원 전해질을 주입시키고, 커버 글라스와 열가소성 고분자 필름을 이용하여 미세 구멍을 막음으로서 염료감응 태양전지를 제작하였다.
이때 이용된 산화-환원 전해질은 0.62M 의 1,2-디메틸-3-헥실이미다졸리움아이오다이드(1,2-dimethyl-3-hexylimidazolium iodide), 0.5M 의 2-아미노피리미딘 (2-aminopyrimidine), 0.1M 의 LiI 와 0.05M 의 I2를 아세토나이트릴(acetonitrile) 용매에 용해시킨 것을 이용하였다.
이와 같이 본 발명의 실시예에 따라 제조된 염료감응 태양전지의 효율, 개방전압, 단락전류, 충밀도 등은 100 mW/cm2 세기의 광원과 Si 표준셀을 이용해서 측정한 전류-전압 곡선으로부터 평가되었다.
도 3의 (c)는 실시예에 의해 제조된 염료감응 태양전지의 전류-전압 곡선을 보여주며, 효율 0.48 %, 개방전압 0.567 V, 단락전류 1.34 mA/cm2, 충밀도 0.63을 보였다.
비교예 1
인듐 도핑된 주석산화물 투명전도체 위에 입경 5-15 nm 정도 크기의 티타늄산화물 입자 분산액을 닥터블레이드법을 이용하여 1cm2 면적에 도포하고, 450℃, 30분 열처리 소성공정을 통해 3 ㎛ 두께의 다공성 티타늄산화물 후막을 제작하였다.
그 후 80℃에서 시편을 유지한 후 에탄올에 용해된 0.45 mM Ru(2,2':6'-2"-테르피리딘(terpyridine)-4,4',4"-트리카르복실산(tricarboxylic acid))(NCS)3 염료색소액에 염료 흡착처리를 12시간 이상 수행하였다. 그 후 염료흡착된 다공성 티타늄산화물 후막을 에탄올을 이용하여 씻어내고 상온 건조하여 반도체 전극을 제조하였다.
상대전극으로는 인듐 도핑된 주석산화물 투명전도체 위에 스퍼터를 이용하여 Pt 막을 증착하였고, 전해액 주입을 위해 0.75 mm 직경의 드릴을 이용하여 미세 구멍을 만들어 상대전극을 제작하였다.
60 ㎛ 두께의 열가소성 고분자 필름을 반도체 전극과 상대전극 사이에 두고 100℃에서 9초 압착시킴으로서 두 전극을 접합시켰다. 상대전극에 형성된 미세구멍을 통하여 산화-환원 전해질을 주입시키고, 커버 글라스와 열가소성 고분자 필름을 이용하여 미세 구멍을 막음으로서 염료감응 태양전지를 제작하였다.
이때 이용된 산화-환원 전해질은 0.62M 의 1,2-디메틸-3-헥실이미다졸리움아이오다이드(1,2-dimethyl-3-hexylimidazolium iodide), 0.5M 의 2-아미노피리미딘 (2-aminopyrimidine), 0.1M 의 LiI 와 0.05M 의 I2를 아세토나이트릴(acetonitrile) 용매에 용해시킨 것을 이용하였다.
이와 같이 비교예 1에 따라 제조된 염료감응 태양전지의 효율, 개방전압, 단락전류, 충밀도 등은 100 mW/cm2 세기의 광원과 Si 표준셀을 이용해서 측정한 전류-전압 곡선으로부터 평가되었다.
도 3의 (a)는 비교예 1에 의해 제작된 염료감응 태양전지의 전류-전압 곡선을 보여주며, 효율 0.0002 %, 개방전압 0.093 V, 단락전류 0.01 mA/cm2, 충밀도 0.30 을 보였다.
비교예 2
인듐 도핑된 주석산화물 투명전도체(3) 위에 입경 5-15 nm 정도 크기의 티타늄산화물(2) 입자 분산액을 닥터블레이드법을 이용하여 1cm2 면적에 도포하고, 450℃, 30분 열처리 소성공정을 통해 3 ㎛ 두께의 다공성 티타늄산화물 후막을 제작하였다.
그 후 80℃에서 시편을 유지한 후 에탄올에 용해된 0.3 mM Ru(4,4'-디카르복시(dicarboxy)-2,2'-바이피리딘(bipyridine))2(CN)2 염료색소액에 염료흡착처리를 12시간 이상 수행하였다. 그 후 염료 흡착된 다공성 티타늄산화물 후막을 에탄올을 이용하여 씻어내고 상온 건조하여 반도체 전극을 제조하였다.
상대전극으로는 인듐 도핑된 주석산화물 투명전도체 위에 스퍼터를 이용하여 Pt 막을 증착하였고, 전해액 주입을 위해 0.75 mm 직경의 드릴을 이용하여 미세 구멍을 만들어 상대전극을 제작하였다.
다음, 60 ㎛ 두께의 열가소성 고분자 필름을 반도체 전극과 상대전극 사이에 두고 100℃에서 9초 압착시킴으로서 두 전극을 접합시켰다. 상대전극에 형성된 미세구멍을 통하여 산화-환원 전해질을 주입시키고, 커버 글라스와 열가소성 고분자 필름을 이용하여 미세 구멍을 막음으로서 염료감응 태양전지를 제작하였다.
이때 이용된 산화-환원 전해질은 0.62M 의 1,2-디메틸-3-헥실이미다졸리움아이오다이드(1,2-dimethyl-3-hexylimidazolium iodide), 0.5M 의 2-아미노피리미딘 (2-aminopyrimidine), 0.1M 의 LiI 와 0.05M 의 I2를 아세토나이트릴(acetonitrile) 용매에 용해시킨 것을 이용하였다.
이와 같이 비교예 2에 따라 제조된 염료 감응 태양전지의 효율, 개방전압, 단락전류, 충밀도 등은 100 mW/cm2 세기의 광원과 Si 표준셀을 이용해서 측정한 전류-전압 곡선으로부터 평가되었다.
도 3의 (b)는 비교예 2에 의해 제작된 염료감응 태양전지의 전류-전압 곡선을 보여주며, 효율 0.16 %, 개방전압 0.505 V, 단락전류 0.49mA/cm2, 충밀도 0.65 를 보였다.
한편, 각 파장대별 광전변환효율을 측정한 IPCE(incident photon-to-current conversion efficiency) 결과를 도 4에 도시하였다. 도 4에서 (a)는 0.45 mM의 Ru(2,2':6'-2"-테르피리딘(terpyridine)-4,4',4"-트리카르복실산(tricarboxylic acid))(NCS)3 을 사용한 경우이고, (b)는 0.3 mM의 Ru(4,4'-디카르복시(dicarboxy)-2,2'-바이피리딘(bipyridine))2(CN)2을 사용한 경우이며, (c)는 이 둘 모두를 사용한 복합염료의 경우이다.
도 4에 도시된 바와 같이, 200-800nm 파장영역에서 단일 염료를 사용한 경우((a), (b))에 비해 본 발명에서와 같이 복합 염료를 사용하면((c)) IPCE 값이 증가함을 확인할 수 있었다.
상기한 바와 같이, 본 발명에서는 흡수 파장 영역이 서로 다른 두 종류 이상의 염료를 포함하는 복합 염료를 사용함으로써 광 에너지의 유효 흡수 파장대를 확장된 특성을 나타내는 고효율 염료감응 태양전지를 제공하는 효과가 있다.

Claims (13)

  1. 투광성 물질로 이루어진 제1전극;
    상기 제1전극의 이면에 도포된 다공질막;
    상기 다공질막에 흡착되고, 두 종류 이상의 염료물질을 포함하는 복합 염료;
    상기 제1전극의 이면과 마주보도록 배치된 제2전극; 및
    상기 제1전극과 상기 제2전극 사이의 공간에 매립된 전해질
    을 포함하고,
    상기 복합 염료는 Ru(2,2':6'-2"-테르피리딘(terpyridine)-4,4',4"-트리카르복실산(tricarboxylic acid))(NCS)3 와 Ru(4,4'-디카르복시(dicarboxy)-2,2'-바이피리딘(bipyridine)2(CN)2 을 포함하는 염료감응 태양전지.
  2. 삭제
  3. 제 1 항에 있어서,
    상기 복합 염료의 총 몰수에 대해 상기 Ru(2,2':6'-2"-테르피리딘 (terpyridine)-4,4',4"-트리카르복실산(tricarboxylic acid))(NCS)3 의 몰수가 10-80%인 염료감응 태양전지.
  4. 삭제
  5. 제 1 항에 있어서,
    상기 다공질막은 평균입경이 100nm 이하인 나노입자를 포함하는 염료감응 태양전지.
  6. 제 5 항에 있어서,
    상기 나노입자의 평균입경은 10-40nm인 염료감응 태양전지.
  7. 제 1 항에 있어서,
    상기 다공질은 도전성 미립자 및 광산란자 중 적어도 어느 하나를 포함하는 염료감응 태양전지.
  8. 제 1 항에 있어서,
    상기 제1전극은 PET, PEN, PC, PP, PI, TAC 중의 어느 하나를 포함하는 투명한 플라스틱 기판 또는 유리 기판 상에 ITO, FTO, ZnO-(Ga2O3 또는 Al2O 3), SnO2- Sb2O3 중의 어느 하나를 포함하는 전도성 필름이 코팅된 염료감응 태양전지.
  9. 제 1 항에 있어서,
    상기 제2전극은 PET, PEN, PC, PP, PI, TAC 중의 어느 하나를 포함하는 투명한 플라스틱 기판 또는 유리 기판 상에 ITO, FTO, ZnO-(Ga2O3 또는 Al2O 3), SnO2-Sb2O3 중의 어느 하나를 포함하는 제1전도성 필름이 코팅되어 있고, 상기 제1전도성 필름 상에 Pt 또는 귀금속 물질을 포함한 제2전도성 필름이 코팅된 염료감응 태양전지.
  10. 투광성 물질로 이루어진 제1전극 및 제2전극을 준비하는 단계;
    상기 제1전극의 한 면에 다공질막을 형성하는 단계;
    Ru(2,2':6'-2"-테르피리딘(terpyridine)-4,4',4"-트리카르복실산(tricarboxylic acid))(NCS)3 와 Ru(4,4'-디카르복시 (dicarboxy)-2,2'-바이피리딘(bipyridine)2(CN)2 을 첨가하여 복합 염료를 준비한 후, 상기 준비된 복합 염료를 상기 다공질막에 흡착시키는 단계; 및
    상기 제1전극의 다공질막과 상기 제2전극을 서로 마주보도록 배치시키고, 상기 다공질막과 상기 제2전극 사이에 전해질을 매립하여 밀봉하는 단계
    를 포함하는 염료감응 태양전지의 제조 방법.
  11. 제 10 항에 있어서,
    상기 복합 염료를 준비할 때에는 Ru(2,2':6'-2"-테르피리딘(terpyridine)- 4,4',4"-트리카르복실산(tricarboxylic acid))(NCS)3 을, 상기 복합 염료의 총 몰수에 대해 10-80%가 되는 몰수로 첨가하는 염료감응 태양전지의 제조 방법.
  12. 제 11 항에 있어서,
    상기 복합 염료를 준비할 때에는 Ru(2,2':6'-2"-테르피리딘(terpyridine)-4,4',4"-트리카르복실산(tricarboxylic acid))(NCS)3 을 알콜 내에 0.1~5 mM의 농도로 용해시킨 상태에서 다른 종류의 염료물질을 더 첨가하는 염료감응 태양전지의 제조 방법.
  13. 삭제
KR1020040006930A 2004-02-03 2004-02-03 광 흡수파장대가 확장된 염료감응 태양전지 및 그 제조방법 KR100589323B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020040006930A KR100589323B1 (ko) 2004-02-03 2004-02-03 광 흡수파장대가 확장된 염료감응 태양전지 및 그 제조방법
US11/046,511 US20050166958A1 (en) 2004-02-03 2005-01-28 Dye-sensitized solar cell having enlarged wavelength range for light absorption and method of fabricating same
JP2005020817A JP2005222942A (ja) 2004-02-03 2005-01-28 光吸収波長帯が拡張された染料感応太陽電池及びその製造方法
AT05100627T ATE520136T1 (de) 2004-02-03 2005-01-31 Farbstoffsensibilisierte solarzelle mit erweitertem wellenlängenbereich und hestellungsverfahren
EP05100627A EP1562206B1 (en) 2004-02-03 2005-01-31 Dye-sensitized solar cell having enlarged wavelength range for light absorption and method of fabricating same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040006930A KR100589323B1 (ko) 2004-02-03 2004-02-03 광 흡수파장대가 확장된 염료감응 태양전지 및 그 제조방법

Publications (2)

Publication Number Publication Date
KR20050078857A KR20050078857A (ko) 2005-08-08
KR100589323B1 true KR100589323B1 (ko) 2006-06-14

Family

ID=34675996

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040006930A KR100589323B1 (ko) 2004-02-03 2004-02-03 광 흡수파장대가 확장된 염료감응 태양전지 및 그 제조방법

Country Status (5)

Country Link
US (1) US20050166958A1 (ko)
EP (1) EP1562206B1 (ko)
JP (1) JP2005222942A (ko)
KR (1) KR100589323B1 (ko)
AT (1) ATE520136T1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102832051A (zh) * 2012-10-07 2012-12-19 复旦大学 一种染料敏化太阳能电池光阳极的制备方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100930922B1 (ko) * 2005-11-04 2009-12-10 고려대학교 산학협력단 염료감응태양전지 및 그 제조방법
GB2432718A (en) * 2005-11-25 2007-05-30 Seiko Epson Corp Multicolour metal oxide electrochemical cell
WO2007135171A2 (en) * 2006-05-24 2007-11-29 Agc Flat Glass Europe Sa Organic electroactive photonic device
KR101341299B1 (ko) 2006-07-05 2013-12-12 니폰 가야꾸 가부시끼가이샤 색소 증감 태양 전지
KR100833502B1 (ko) * 2006-11-28 2008-05-29 한국전자통신연구원 다중 염료층을 가지는 염료감응 태양전지 및 그 제조 방법
US7499211B2 (en) * 2006-12-26 2009-03-03 Fuji Xerox Co., Ltd. Display medium and display device
KR100947371B1 (ko) * 2008-02-26 2010-03-15 한국과학기술연구원 다파장 흡수 나노 구조 염료감응 태양전지 및 그 제조방법
KR100978401B1 (ko) * 2008-02-26 2010-08-26 한국과학기술연구원 다중 적층 염료 감응 태양전지 및 제조방법
EP2340565B1 (en) * 2008-05-25 2016-02-17 3GSolar Photovoltaics Ltd. Optical enhancement for solar devices
US20090308456A1 (en) * 2008-06-13 2009-12-17 Interuniversitair Microelektronica Centrum (Imec) Photovoltaic Structures and Method to Produce the Same
KR101101517B1 (ko) * 2008-10-02 2012-01-04 성균관대학교산학협력단 고분자 전해질막을 포함하는 전기화학 캐패시터와 염료감응형 태양전지
EP2376385A1 (en) * 2009-01-12 2011-10-19 Council of Scientific & Industrial Research High efficient dye-sensitized solar cells using tio2- multiwalled carbon nano tube (mwcnt) nanocomposite
TWI400811B (zh) * 2009-01-16 2013-07-01 Chipbond Technology Corp 染料敏化太陽能電池之製造方法
TWI475701B (zh) * 2009-05-05 2015-03-01 Eternal Materials Co Ltd 使用複合半導體材料之染敏太陽能電池
US20100307571A1 (en) * 2009-06-03 2010-12-09 Hardin Brian E Using energy relay dyes to increase light absorption in dye-sensitized solar cells
US20110203644A1 (en) * 2010-02-22 2011-08-25 Brite Hellas Ae Quasi-solid-state photoelectrochemical solar cell formed using inkjet printing and nanocomposite organic-inorganic material
GB2481035A (en) * 2010-06-09 2011-12-14 Univ Bangor Preparing dye sensitised solar cells (DSSC) with multiple dyes
US8404000B2 (en) 2010-10-14 2013-03-26 Industrial Technology Research Institute Organic dye, composite dye and dye-sensitized solar cells using the same
KR20120040443A (ko) * 2010-10-19 2012-04-27 한국철강 주식회사 광기전력 모듈 및 그 제조 방법
US20160225534A1 (en) * 2010-12-16 2016-08-04 National Yunlin University Of Science And Technology Composite dye-sensitized solar cell
US20130327401A1 (en) * 2010-12-16 2013-12-12 National Yunlin University Of Science And Technology Composite dye-sensitized solar cell
GB2512798B (en) * 2012-01-26 2016-04-06 Univ Bangor Method for re-dyeing dye sensitised solar cells
EP2671641A1 (en) * 2012-06-07 2013-12-11 Univerza V Ljubljani A method of deposition of Pt or Pd catalysts using gaseous reducing agents
WO2014092066A1 (ja) * 2012-12-14 2014-06-19 シャープ株式会社 光電変換素子
US20160172118A1 (en) * 2014-12-16 2016-06-16 Hyundai Motor Company Dye-sensitized solar cell module and method for manufacturing thereof
AT518340B1 (de) * 2016-02-26 2020-04-15 Sfl Tech Gmbh Glasmodul, Gebäude mit zumindest einem Glasmodul sowie Verfahren zur Herstellung eines Glasmoduls

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3935031A (en) * 1973-05-07 1976-01-27 New England Institute, Inc. Photovoltaic cell with enhanced power output
US4724011A (en) * 1983-05-16 1988-02-09 Atlantic Richfield Company Solar cell interconnection by discrete conductive regions
CH674596A5 (ko) * 1988-02-12 1990-06-15 Sulzer Ag
EP0525070B1 (en) * 1990-04-17 1995-12-20 Ecole Polytechnique Federale De Lausanne Photovoltaic cells
CH686206A5 (it) * 1992-03-26 1996-01-31 Asulab Sa Cellule photoelectrochimique regeneratrice transparente.
WO1994005025A1 (en) * 1992-08-17 1994-03-03 Sandoz Ltd. Use of optical brighteners and phthalocyanines as photosensitizers
GB9217811D0 (en) * 1992-08-21 1992-10-07 Graetzel Michael Organic compounds
JP3152328B2 (ja) * 1994-03-22 2001-04-03 キヤノン株式会社 多結晶シリコンデバイス
US5626687A (en) * 1995-03-29 1997-05-06 The United States Of America As Represented By The United States Department Of Energy Thermophotovoltaic in-situ mirror cell
ES2212286T3 (es) * 1997-05-07 2004-07-16 Ecole Polytechnique Federale De Lausanne Fotosensibilizador de complejo metalico y celula fotovoltaica.
US6236061B1 (en) * 1999-01-08 2001-05-22 Lakshaman Mahinda Walpita Semiconductor crystallization on composite polymer substrates
JP2000268892A (ja) * 1999-01-14 2000-09-29 Fuji Photo Film Co Ltd 光電変換素子および光電池
JP3966638B2 (ja) * 1999-03-19 2007-08-29 株式会社東芝 多色色素増感透明半導体電極部材とその製造方法、多色色素増感型太陽電池、及び表示素子
EP1119068B1 (en) * 1999-06-30 2012-11-28 JGC Catalysts and Chemicals Ltd. Photoelectric cell
ATE324662T1 (de) * 1999-08-04 2006-05-15 Fuji Photo Film Co Ltd Elektrolytzusammensetzung und photolektrochemische zelle
US6592842B2 (en) * 1999-10-01 2003-07-15 Battelle Memorial Institute Nanocrystalline heterojunction materials
JP4477729B2 (ja) * 2000-01-19 2010-06-09 シャープ株式会社 光電変換素子及びそれを用いた太陽電池
JP4438173B2 (ja) * 2000-04-04 2010-03-24 Tdk株式会社 酸化物半導体色素結合電極および色素増感型太陽電池
US7022910B2 (en) * 2002-03-29 2006-04-04 Konarka Technologies, Inc. Photovoltaic cells utilizing mesh electrodes
EP1311001B1 (en) * 2000-07-27 2009-12-09 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric transducer
DE60123714T2 (de) * 2000-08-15 2007-10-04 FUJI PHOTO FILM CO., LTD., Minamiashigara Photoelektrische Zelle und Herstellungsmethode
JP4278080B2 (ja) * 2000-09-27 2009-06-10 富士フイルム株式会社 高感度受光素子及びイメージセンサー
US6677516B2 (en) * 2001-01-29 2004-01-13 Sharp Kabushiki Kaisha Photovoltaic cell and process for producing the same
JP4772192B2 (ja) * 2001-02-13 2011-09-14 富士フイルム株式会社 光電変換素子、光電池及び錯体色素
JP4574897B2 (ja) * 2001-05-22 2010-11-04 シャープ株式会社 色素増感型太陽電池およびその作製方法
US7202412B2 (en) * 2002-01-18 2007-04-10 Sharp Kabushiki Kaisha Photovoltaic cell including porous semiconductor layer, method of manufacturing the same and solar cell
US6452229B1 (en) * 2002-02-21 2002-09-17 Advanced Micro Devices, Inc. Ultra-thin fully depleted SOI device with T-shaped gate and method of fabrication
JP4280020B2 (ja) * 2002-03-29 2009-06-17 Tdk株式会社 光電変換用酸化物半導体電極および色素増感型太陽電池
JP4384389B2 (ja) * 2002-04-18 2009-12-16 株式会社ブリヂストン 金属酸化物半導体膜の形成方法、有機色素増感型金属酸化物半導体電極及びこの半導体電極を有する太陽電池
US7825330B2 (en) * 2002-07-09 2010-11-02 Fujikura Ltd. Solar cell
US7427538B2 (en) * 2002-08-16 2008-09-23 Intel Corporation Semiconductor on insulator apparatus and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102832051A (zh) * 2012-10-07 2012-12-19 复旦大学 一种染料敏化太阳能电池光阳极的制备方法
CN102832051B (zh) * 2012-10-07 2015-10-28 复旦大学 一种染料敏化太阳能电池光阳极的制备方法

Also Published As

Publication number Publication date
EP1562206A2 (en) 2005-08-10
ATE520136T1 (de) 2011-08-15
EP1562206B1 (en) 2011-08-10
JP2005222942A (ja) 2005-08-18
EP1562206A3 (en) 2005-08-17
KR20050078857A (ko) 2005-08-08
US20050166958A1 (en) 2005-08-04

Similar Documents

Publication Publication Date Title
KR100589323B1 (ko) 광 흡수파장대가 확장된 염료감응 태양전지 및 그 제조방법
KR100589322B1 (ko) 고효율 염료감응 태양전지 및 그 제조 방법
KR100578798B1 (ko) 염료감응 태양전지 및 그 제조 방법
KR100839371B1 (ko) 염료감응 태양전지
KR100869802B1 (ko) 염료감응 태양전지용 전해질, 이를 포함하는 염료감응태양전지, 및 이의 제조방법
KR101042959B1 (ko) 태양전지 및 그 제조방법
KR101056440B1 (ko) 염료감응 태양전지
KR101223558B1 (ko) 염료 감응 태양 전지용 염료 및 이로부터 제조된 염료 감응태양 전지
KR101303450B1 (ko) 염료 감응 태양전지 및 그 제조방법
KR100696636B1 (ko) 염료감응 태양 전지용 염료 및 이로부터 제조된 염료감응태양 전지
KR101243915B1 (ko) 광전극 구조체의 제조방법
JP2008218394A (ja) 色素増感太陽電池及び色素増感太陽電池の製造方法
KR20120136578A (ko) 염료감응 태양전지 및 그 제조방법
KR20110026818A (ko) 염료 감응 태양전지 및 그 제조방법
KR101068436B1 (ko) 염료감응형 태양전지용 광변색성 염료 및 그를 이용한 염료감응형 태양전지
KR101030040B1 (ko) 다공질막을 포함하는 염료감응 태양전지 및 그 제조 방법
KR101623585B1 (ko) 염료 감응 태양전지 및 그 제조방법
KR101408888B1 (ko) 염료감응 태양전지 및 이의 제조방법
KR100578799B1 (ko) 염료감응 태양전지의 제조방법
KR20110040144A (ko) 염료 감응 태양전지 및 그 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130522

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140526

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee