WO1997001388A1 - Systeme de traitement des gaz de combustion - Google Patents

Systeme de traitement des gaz de combustion Download PDF

Info

Publication number
WO1997001388A1
WO1997001388A1 PCT/JP1996/001772 JP9601772W WO9701388A1 WO 1997001388 A1 WO1997001388 A1 WO 1997001388A1 JP 9601772 W JP9601772 W JP 9601772W WO 9701388 A1 WO9701388 A1 WO 9701388A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
heat
denitration
exhaust gas
desulfurization
Prior art date
Application number
PCT/JP1996/001772
Other languages
English (en)
French (fr)
Inventor
Isao Mochida
Akinori Yasutake
Toshihiko Setoguchi
Norihisa Kobayashi
Tukahiro Kasuh
Masaaki Yoshikawa
Original Assignee
Mitsubishi Jukogyo Kabushiki Kaisha
Osaka Gas Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP7268296A external-priority patent/JPH09108542A/ja
Priority claimed from JP7285666A external-priority patent/JPH09122485A/ja
Application filed by Mitsubishi Jukogyo Kabushiki Kaisha, Osaka Gas Company Limited filed Critical Mitsubishi Jukogyo Kabushiki Kaisha
Priority to DE69625887T priority Critical patent/DE69625887T2/de
Priority to EP96921096A priority patent/EP0779100B8/en
Priority to JP50431097A priority patent/JP3272366B2/ja
Priority to KR1019970701085A priority patent/KR100235854B1/ko
Priority to AT96921096T priority patent/ATE231412T1/de
Publication of WO1997001388A1 publication Critical patent/WO1997001388A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/508Sulfur oxides by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • B01D53/565Nitrogen oxides by treating the gases with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/60Simultaneously removing sulfur oxides and nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8637Simultaneously removing sulfur oxides and nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to an exhaust gas treatment system for removing nitrogen oxides (NO x ) and sulfur oxides (SO x ) from exhaust gas discharged from boilers, gas turbines, engines, combustion furnaces, and the like that burn various fuels.
  • NO x nitrogen oxides
  • SO x sulfur oxides
  • the present invention is suitably used for removing nitrogen oxides in a tunnel and removing nitrogen oxides in exhaust gas of a nitric acid production facility.
  • FIG. 1 illustrates an example of exhaust gas treatment by a conventional flue gas treatment system.
  • reference numeral 1 denotes a boiler
  • 2 denotes a denitration device
  • 3 denotes an air preheater
  • 4 denotes a dust collector
  • 5 denotes a gas / gas heater
  • 6 denotes a desulfurization device
  • 7 denotes a chimney.
  • a denitration device 2 using a catalyst is installed at the outlet of the boiler 1 and the like, and an air preheater 3 is installed at the outlet of the denitration device 2, and the temperature of the exhaust gas is reduced to about 130. I try to reduce it.
  • the exhaust gas that has passed through the air preheater 3 is collected by a dust collector 4, and then guided to a desulfurizer 6 via a gas / gas heater 5, where sulfur oxides (SO x ) are removed. After that, the chimney 7 discharges exhaust gas into the atmosphere.
  • SO x sulfur oxides
  • the concentration of sulfur oxides (SO x ) in boiler exhaust gas is between 400 and 800 ppm, and the lime-stone blue method is intended to reduce the concentration to 50 to 100 PPm at the outlet. ing.
  • the so-called lime-gypsum method is used, in which sulfur oxides (SO x ) in the wandering gas are absorbed using calcium carbonate as an absorbent and collected as descendants.
  • SO x sulfur oxides
  • One plaster method has a problem that a large amount of absorbent is required.
  • the adsorption method using activated carbon is the only practical method.
  • a large amount of water is required because desorption is performed by washing with water.
  • this method there are also problems in disposal of the generated diluted sulfuric acid and drying of the adsorbent.
  • Denitration equipment 2 is installed by selective catalytic reduction (SCR), which decomposes into water vapor, and treatment is performed.
  • SCR selective catalytic reduction
  • the reaction temperature is 300 to 40 O'C in terms of the performance of the catalyst
  • NH 3 is required as a reducing agent
  • the current NO x leak amount is Since this is a level of 5 to 40 ppm, it is necessary to inject NH 3 excessively to make this zero.
  • the present invention has been made in view of the above problems, and provides an exhaust gas treatment system capable of performing exhaust gas treatment at a low temperature without the need for a heating means and efficiently performing exhaust gas treatment without using a large amount of absorbent. With the goal.
  • the present inventor has conducted intensive studies in view of the above-mentioned problems of the prior art, and as a result, The inventors have found that activated carbon treated with PT / JP96 / 01772 functions as a good catalyst in desulfurization or denitration reactions, and completed the present invention.
  • the present invention relates to a heat-treated activated carbon for desulfurization or denitration reaction and a desulfurization or denitration method using the same.
  • desulfurization is described below.
  • the present invention provides a heat-treated activated carbon applied to desulfurization obtained by heat-treating activated carbon for a raw material in a non-oxidizing atmosphere.
  • This invention also provides a heat treatment activated carbon for the above desulfurization, S 0 2, or NO x, to provide a desulfurization method characterized by contacting the moisture and oxygen to ⁇ gas.
  • the type of activated carbon for the raw material is not particularly limited, and includes activated carbon fibers, granular activated carbon, and the like.
  • Examples of activated carbon fibers include pitch-based, polyacrylonitrile-based, phenol-based, and cellulose-based activated carbon. Can be used, and commercially available products can also be used. Among them, those having higher hydrophobicity on the surface of activated carbon are particularly desirable, and specific examples thereof include activated carbon fibers such as pitch-based and polyacrylonitrile-based.
  • the above-mentioned activated carbon for a raw material is heat-treated in a non-oxidizing atmosphere.
  • a non-oxidizing atmosphere refers to both an inert gas and a reducing atmosphere.
  • the atmosphere gas is not particularly limited as long as it does not oxidize the activated carbon for the raw material.
  • an inert gas such as a nitrogen gas, an argon gas, and a helium gas.
  • nitrogen gas it is particularly preferable to use nitrogen gas from the viewpoint of easy availability.
  • the treatment temperature may be any temperature at which the surface of the activated carbon for the raw material can be hydrophobized, and can be appropriately set according to the type of the activated carbon for the raw material to be used, but is usually from 600 to 1200. Within the range.
  • the processing time may be appropriately determined according to the processing temperature and the like.
  • a gas containing sulfur dioxide (so 2 ) is added to the heat-treated activated carbon.
  • the process of contacting the contact is established.
  • the gas must contain moisture and oxygen.
  • S 0 2 concentration may be appropriately adjusted, but can be desulfurized efficiently to result in particular 2 0 to 5 0 0 ppm about.
  • the relative temperature of the water in the gas is 100% or more, and the oxygen is 3% by volume or more (preferably 3 to 21%).
  • any components can be used as long as they do not extremely hinder the desulfurization reaction.
  • nitrogen, carbon dioxide, carbon monoxide and the like can be used.
  • the contact temperature, the type of heat treatment the activated carbon can be appropriately changed by SO z concentration and the like, typically may be set to 2 0 to 1 0 O 'about C.
  • desulfurization can be performed efficiently at normal temperature (about 20 to 50). Note that, even at a high temperature of 100 ° C. or more, the desulfurization reaction can be advanced by adjusting the moisture and the like.
  • Flow rate of the gas, so z concentration can be appropriately changed according to the device.
  • a known reaction apparatus can be used, and for example, various apparatuses such as a fixed bed flow type apparatus, a fluidized bed type apparatus, and a stirring type reactor can be used.
  • the generated nitric acid is, for example, (a) absorbed in water and recovered as concentrated sulfuric acid, (b) absorbed in a KOH aqueous solution and recovered as a neutralized solution, (c) C a (OH) 2 , M g (OH) z It can be recovered by various recovery methods such as a method of neutralizing with an aqueous solution such as z and recovering it as salt, (d) a method of absorbing it in ammonium water and recovering it as fertilizer (ammonium sulfate) .
  • the activated carbon for the raw material is heat-treated in a non-oxidizing atmosphere within a range of about 600 to about 100, to obtain a heat-treated activated carbon for denitration.
  • the other conditions, such as the type of the atmospheric gas, are the same as those described above.
  • the first method for removing nitrogen oxides using the heat treatment activated carbon for denitration according to the present invention is a method for denitration heat treatment of a raw material activated carbon in a temperature range of 600 to 100 ° C.
  • a nitrogen oxide oxidation tower filled with treated activated carbon is provided to oxidize and remove nitrogen oxides (NO x ) in exhaust gas.
  • the second method for removing nitrogen oxides using the heat-treated activated carbon for denitration according to the present invention is a method for denitration obtained by heat-treating activated carbon for a raw material in a temperature range of 600 ′ (: to 100 ° C.).
  • an adsorption tower that Takashi ⁇ heat treatment activated carbon in a plurality of stages parallel, before nitrogen dioxide adsorbed on the heat treatment the activated carbon in the adsorption tower (N 0 2) breaks through, is switched sequentially to the next adsorption column It is characterized by continuously oxidizing and adsorbing and removing nitrogen oxides (NO x ) in the exhaust gas, and in the deep-denitration method, downstream of the denitrification treatment by the selective catalytic reduction method (SCR).
  • SCR selective catalytic reduction method
  • Nitrogen oxides oxidized by the above-mentioned heat treatment activated carbon for denitration can be continuously absorbed as nitric acid or nitrate in an absorbing solution such as water or an aqueous solution of alkali metal.
  • the activated carbon raw material is not particularly limited as in the case of the heat-treated activated carbon for desulfurization, and specific examples thereof include activated carbon fibers such as polyacrylonitrile-based coal and pitch-based carbon.
  • the surface of the activated carbon as a raw material before calcination is a hydrophilic surface with a large distribution of oxygen functional groups.
  • S 0 2 of adsorption to oxidative active site of SO z is inhibited by surface water
  • sulfuric acid produced by oxidation and hydration is captured by surface water, raw materials Since it accumulates on the activated carbon surface, the sulfuric acid hinders the desulfurization reaction from proceeding.
  • the surface of activated carbon after heat treatment is hydrophilic, as shown in Fig. 2 (b). Since the oxygen functional groups co, it is removed as co 2, etc., and has a hydrophobic surface. Therefore, occurs readily snapping so 2 to oxidative active sites so 2, moreover result emissions also proceeds rapidly generated to sulfuric acid, without such being obstructed by the sulfuric acid, the activated carbon is high of the present invention It will show desulfurization reaction activity.
  • heat treatment activated carbon leads to anti ⁇ which is Takashi ⁇ , and sulfur oxides in said exhaust gas at the surface of the heat treated activated carbon (S Ox) oxidizes to sulfur trioxide (S 0 3).
  • the sulfur trioxide (S 0 3) is reacted with an aqueous solution such as water content or sodium hydroxide, the Rukoto be recovered as sulfuric acid or sulfate, sulfur oxides in the exhaust gas of the (SO x) removal I do.
  • Normal activated carbon has the ability to adsorb nitric oxide (NO) but has low oxidizability. Also, even if oxidizing, it has a sexual shaped like hardly denitration in the form of nitrogen dioxide (N0 2).
  • the activated carbon for the raw material when the activated carbon for the raw material is heat-treated in a non-oxidizing atmosphere, the groups on the surface of the activated carbon for the raw material are decomposed and desorbed, the active sites are adjusted, and the oxygen functional group, which is a hydrophilic group, is decomposed.
  • the elimination of the N 0 2 decreases the adsorption sites of the water ⁇ (H 2 0), it is possible to improve the NO oxidation activity.
  • Nitrogen oxides are collected and removed by absorption in an alkaline aqueous solution, and denitration becomes possible.
  • gas treatment can be performed at a low temperature of 15 (TC or less) by using heat-treated activated carbon from exhaust gas containing nitrogen oxides and sulfur oxides. Therefore, if it is necessary to use it as a substitute for the currently used denitration equipment and desulfurization equipment, or if it is necessary to improve the denitration performance or desulfurization performance from the current status, this system can be added to further increase the processing capacity. Is improved.
  • desulfurization can be performed with high efficiency without using a large amount of water, that is, in a dry manner.
  • the SO 2 removal rate can be 100% depending on the temperature conditions of the heat treatment.
  • S 0 2 adsorbed on the surface of the desulfurization reaction heat treatment the activated carbon of the present invention S 0 3 becomes oxidized by oxygen in the gas, further which moisture in the gas As a result, it becomes sulfuric acid and is washed off from the surface. That is, by using heat-treated activated carbon from exhaust gas containing sulfur oxides, it is possible to reduce the concentration of sulfur oxides (SO x) in the exhaust gas, which was difficult in the past, to 5 ppm or less. Can be recovered as sulfuric acid (especially concentrated sulfuric acid).
  • nitrogen oxides oxidized on the heat-treated activated carbon can be continuously treated by converting them into nitric acid or nitrate in an absorption tower. Also, the traditional v 2
  • Such heat-treated activated carbon for desulfurization reaction and desulfurization method of the present invention, and heat-treated activated carbon for denitrification reaction and denitrification method are particularly used for combustion equipment (such as boilers and thermal power plants) for heavy oil, coal, etc. It can be suitably used for removing sulfur oxides and nitrogen oxides generated in metal processing plants and facilities, paper mills, and tunnels.
  • FIG. 1 is a schematic diagram of a conventional flue gas treatment system.
  • FIG. 2 is a schematic diagram showing the surface states of the activated carbon before the high-temperature treatment and the activated carbon of the present invention.
  • FIG. 3 is a graph showing the relationship between the heat treatment temperature of the pitch-based activated carbon fiber and the granular activated carbon and the desulfurization rate.
  • FIG. 4 is a diagram showing the relationship between the heat treatment temperature of polyacrylonitrile (PAN) -based carbon fiber and the desulfurization rate.
  • PAN polyacrylonitrile
  • FIG. 5 is a schematic diagram of a system of a deep desulfurization method according to an embodiment of the present invention.
  • ⁇ FIG. 6 is a diagram showing a relationship between a reaction time of a nitrogen oxide and an activated carbon fiber.
  • FIG. 7 is a diagram showing the relationship between the heat treatment temperature of the pitch-based carbon fiber and the granular activated carbon and the denitration ratio.
  • FIG. 8 is a graph showing the relationship between the heat treatment temperature of polyacrylonitrile (PAN) -based carbon fiber and the denitration rate.
  • FIG. 9 is a system schematic diagram of a denitration method according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of an absorption tower according to an embodiment of the present invention.
  • FIG. 11 is a system schematic diagram of a denitration method according to an embodiment of the present invention.
  • FIG. 12 is a system schematic diagram of a denitration method according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram illustrating a first embodiment of a flue gas treatment system according to the present invention.
  • FIG. 14 is a graph showing the oxidation performance of nitric oxide to nitrogen dioxide (N 0 2 ).
  • Figure 1 5 is Ru oxide characteristic diagram der to sulfur trioxide of sulfur dioxide (S 0 2) (S 0 3).
  • FIG. 16 is a schematic diagram illustrating a second embodiment of the flue gas treatment system according to the present invention.
  • FIG. 17 is a schematic diagram illustrating a third embodiment of a flue gas treatment system according to the present invention.
  • Figure 1 8 is a view showing a state in which S 0 2 are removed at the surface of the activated carbon of the present invention.
  • Pitch-based activated carbon fiber (“OG-20A”, manufactured by Osaka Gas Co., Ltd.) and granular activated carbon (HC-30, manufactured by Permicol) are used as the activated carbon for the raw material.
  • the heat-treated activated carbon of the present invention was obtained.
  • the obtained heat-treated activated carbon was used for a desulfurization reaction, and each desulfurization performance was examined.
  • FIG. 1 shows the results 15 hours after the start of the desulfurization reaction. As shown in Figure 3, their activities at the heat treatment temperature are different.
  • the oxidation catalyst of the sulfur dioxide (SO z) and sulfur trioxide (S 0 3) enhanced, and the other CO, can be processed without being influenced by the coexisting gases such as CO z.
  • Raw material for the active carbon fiber as polyacrylonitrile activated carbon fibers ( "FE- 3 00", Toho rayon, Ltd.) was used, and facilities to heat treatment in the same manner as in Example 1, carried out respectively desulfurization reaction, SO z The removal rate was calculated.
  • Fig. 4 shows the results. Also in this case, the activity greatly differs depending on the heat treatment temperature, and it is determined that the heat treatment temperature of 600 to 1200 is effective in the present invention. S 0 2 ) and sulfur trioxide (S 0 3 ) can be removed.
  • FIG. 5 shows an embodiment of the flue gas treatment system of the present invention.
  • reference numerals 11 are boilers, 12 is a denitrifier, 13 is an air preheater, 1 is a dust collector, 15 is a gas ⁇ gas heater, 16 is a desulfurizer, 17 is a chimney, and 18 is a chimney. High depth Each of the sulfurizing devices is illustrated.
  • the exhaust gas discharged from the boiler 11 is supplied to the denitration device 12 and the desulfurization device 16 in the same manner as in the past, using nitrogen oxides (NO x ) and sulfur oxides (SO x ) Is removed.
  • NO x nitrogen oxides
  • SO x sulfur oxides
  • sulfuric acid In the case of removing this sulfur oxide (SO x ), by reacting with an aqueous solution of sodium hydroxide or the like instead of water in the above-mentioned deep-depth sulfuric acid tower 18, the sulfuric acid is replaced with sulfuric acid. It can also be recovered as salts such as sodium sulfate.
  • the heat-treated activated carbon fibers to be filled in the deep sulfuric acid tower 18 are prepared by melt-spinning pitches generated as a residue of coal and petroleum chemistry, and reducing the pitch-based carbon fibers under reducing atmosphere conditions. It is made by firing.
  • a pitch-based activated carbon fiber “OG-20A” (trade name) manufactured by Osaka Gas Co., Ltd. is used as the pitch-based carbon fiber, and the pitch-based carbon fiber is reduced to about 1100 under a reducing atmosphere.
  • One that was fired for one hour, and one that was formed into a corrugated shape was used in the present embodiment.
  • heat-activated carbon fibers used are polyacrylonitrile (PAN) -based carbon fibers obtained by firing and carbonizing a polymer material, polyacrylonitrile fiber, the sulfur oxidation in the exhaust gas is the same as above.
  • the concentration of the substance (SO x ) could be reduced to 5 PPm or less.
  • Pitch-based activated carbon fiber (“OG-5A” (trade name) manufactured by Osaka Gas Co., Ltd.) obtained by melt-spinning a bitch produced as a residue of coal and petrochemicals as the raw material activated carbon fiber
  • Polyacrylonitrile (PAN) -based activated carbon fiber (“F, ⁇ -300” (trade name) manufactured by Toho Rayon Co., Ltd.) obtained by firing and carbonizing polyalichronitrile fiber of molecular material and granular activated carbon
  • An activated carbon catalyst was obtained by heat-treating for 1 hour at 400-1400 under a nitrogen atmosphere using "HC-30" (trade name) manufactured by Permicol.
  • N 0 gas to pitch-based activated carbon fibers initially concentration of NO x at the outlet by the adsorption capacity of that along with oxidation of N 0 is about several 1 0 P pm (see FIG. 6).
  • Fig. 7 and Fig. 8 show that the pitch-based carbon fiber and the granular activated carbon or the polyacrylonitrile (PAN) -based carbon fiber as the raw material for the activated carbon were in the steady state at each heat treatment temperature. 2 shows the relationship between the denitration rates of the samples.
  • PAN polyacrylonitrile
  • the activity differs at the heat treatment temperature.
  • a heat treatment temperature of 600 to 100000 was effective.
  • the pitch-based activated carbon fiber had a denitration rate of 18% without heat treatment (Comparative Example 2), and the PAN-based carbon fiber had a denitration rate of 4% without heat treatment (Comparative Example 3).
  • FIG. 9 shows an embodiment of a nitrogen oxide removing system according to the present invention.
  • reference numerals 21 a to 21 n are adsorption towers
  • 22 is an exhaust gas containing nitrogen oxides
  • 23 is an inert gas for regeneration
  • 24 is a nitrogen dioxide absorption tower
  • 25 is a switching valve.
  • Reference numeral 26 denotes an exhaust gas line and reference numeral 27 denotes a regeneration gas line.
  • the switching valve 25 switches to the first adsorption tower 21 a, and the nitrogen oxide exhaust gas 2. 2 was introduced and oxidized and adsorbed on the heat-treated activated carbon fibers filled in the adsorption tower 21a.
  • the heat-treated activated carbon fibers filled in the adsorption tower 21a are activated carbon fibers that have been heat-treated in a non-oxidizing atmosphere in a temperature range of 600 to 100000 and are introduced. It reacts with nitrogen oxides in the exhaust gas to promote the reaction shown in (c) below, and is adsorbed in the form of nitrogen dioxide (N 0 2 ).
  • the second adsorption tower 21 b-2 1 The process is sequentially switched to n, and nitrogen oxides are sequentially treated through the exhaust gas line 26.
  • the heat-treated activated carbon fibers filled in the above-mentioned adsorption tower are separated and regenerated through a regeneration gas line 27 by introducing a regeneration inert gas 23 separately.
  • any method may be used for stirring tower or the like.
  • FIG. 10 shows an embodiment in which a packed tower is used as an example of the absorption tower.
  • exhaust gas is introduced from the exhaust gas inlet 33 below the absorption tower 30.
  • the processing gas from which NO x has been removed is discharged from the processing gas outlet 34.
  • An absorbing liquid such as water is introduced through a liquid disperser 32 from an absorbing liquid inlet 35 provided at an upper portion of the filling section 31.
  • the heat-treated activated carbon fibers for denitration to be filled in the adsorption tower are obtained by sintering pitch-based carbon fibers obtained by melt-spinning pitches produced as coal and petroleum chemical residues under reducing atmosphere conditions. Things.
  • a pitch-based activated carbon fiber “OG-5A” (trade name) manufactured by Osaka Gas Co., Ltd. is used as the pitch-based carbon fiber, and the pitch-based carbon fiber is approximately 850 ° C. in a non-oxidizing atmosphere.
  • a material which was fired for 1 hour and which was formed into a corrugated shape was used.
  • an activated carbon fiber for raw materials it is obtained by firing and carbonizing a polyacrylonitrile fiber of a polymer material.
  • PAN polyacrylonitrile
  • FE-300 trade name
  • Fig. 11 shows a case where the treatment of nitrogen oxides was performed on a NO oxidation reactor filled with heat-treated activated carbon fibers.
  • reference numeral 42 denotes a NO oxidation reactor
  • 41 denotes a nitrogen oxide owned exhaust gas
  • 43 denotes a nitrogen dioxide absorption tower.
  • the NO oxidation reactor 42 is filled with the above-mentioned heat treatment activated carbon arrowhead having oxidizing activity, and oxidizes the introduced nitrogen oxide-containing exhaust gas 41 that is introduced. Later, it is guided to the absorption tower 43 to be treated continuously. In the above-mentioned treatment, it is more preferable to treat the nitrogen oxides in the gas at a low temperature of 150 or less.
  • the present invention is suitable for use in removing nitrogen oxides in a tunnel and removing nitrogen oxides in exhaust gas of a nitric acid production facility.
  • nitrogen by heat treatment activated carbon fiber Nitric oxide (NO x) and ammonia (NH 3) V 2 described above and the coexistence of a 0 5 catalyst as well as selective catalytic reduction (S CR method) (N 2) and water vapor It has the activity to decompose into (H 2 0), and can be denitrated by supplying an appropriate amount of NH 3 simultaneously with the exhaust gas to the heat-treated activated carbon fibers in the oxidation reactor.
  • FIG. 12 shows an embodiment of a flue gas treatment system according to the present invention.
  • Fig. 12 shows each of the high-density denitration equipment.
  • the exhaust gas discharged from the boiler 51 is supplied to the denitration device 52 and the desulfurization device 56 in the same manner as in the conventional case, using nitrogen oxides (N0 X ) and sulfur oxides (S 0 X ) is removed.
  • nitrogen oxides (N0 X) concentration of 4 0 0 PP m exhaust gases conventional N0 X concentration after treatment equally by denitration apparatus 5 2 and desulfurizer 5 6 is 4 0 PP m
  • the concentration was increased to 1 Ppm or less in the exhaust gas by leading the treatment to the high-depth denitration device 58 described above.
  • sodium nitrate is used instead of nitric acid by reacting with an aqueous solution of sodium hydroxide or the like instead of water in the above-mentioned deep-denitration device 58. And the like.
  • the heat-treated activated carbon fibers to be filled in the deep-depth denitration device 58 are obtained by melting and spinning a pitch-based carbon fiber obtained as a residue of coal-petrochemicals under a reducing atmosphere. It is made.
  • a pitch-based activated carbon fiber “OG-5A” (trade name) manufactured by Osaka Gas Co., Ltd. was used as the pitch-based carbon fiber, and the pitch-based carbon fiber was reduced to about 850-1 under a reducing atmosphere. What was fired for a time was used, and what was formed into a corrugated shape was used in the present embodiment.
  • the nitrogen oxides in the exhaust gas can be similarly treated as described above.
  • the concentration of the substance (NO x ) could be reduced to 1 pPm or less.
  • FIG. 13 shows a first embodiment of the smoke exhaust treatment system of the present invention.
  • reference numeral 61 denotes a boiler
  • 62 denotes a dust collector
  • 63 denotes a gas / gas heater
  • 64 denotes an oxidation tower
  • 65 denotes a nitric acid tower
  • 66 denotes a desulfurization tower.
  • a dust collector 62 is provided at the outlet of the boiler 61, etc.
  • the exhaust gas that has passed through the gas is reduced to about 90 by a gas heater 63 and the relative humidity of the exhaust gas is reduced to 80% or less, preferably 60% or less. Lead into four.
  • the oxidation tower 6 4 are Takashi ⁇ heat treatment activated carbon fibers with corrugated, nitrogen oxides in the exhaust gas (NO x) by oxidizing a nitrogen dioxide (N0 2), pentoxide dinitrogen (N 2 0 5) and then (the "c"), then nitrogen dioxide (N0 2) in nitric acid tower 6 within 5, and the exhaust gas ⁇ the dinitrogen pentoxide (N 2 0 5) is reacted with water, Nitric acid is generated ((d) above), and nitrogen oxides (NO x ) in the exhaust gas are removed.
  • nitric acid tower 65 by reacting with an aqueous solution of sodium hydroxide or the like instead of water, instead of treating as nitric acid, it can be recovered as salts such as sodium nitrate.
  • the exhaust gas from which the nitrogen oxides (NO x ) have been removed is humidified in the nitric acid tower 65, and the humidity in the gas is adjusted to 100% or more.
  • sent the fibers into the desulfurization tower 6 6 was Takashi ⁇ , wherein oxidizing the sulfur oxides (SOX) and sulfur trioxide (S 0 3) (the (a)), then reacted with water
  • sulfur oxides (S Ox) in the exhaust gas from which nitrogen oxides (NO x ) have been removed are removed.
  • the temperature of the exhaust gas is set to a low temperature of 100 or less, preferably 50 or less.
  • SO x sulfur oxides
  • NO x nitrogen oxides
  • a reaction with an aqueous solution of sodium hydroxide or the like is used instead of water. By doing so, it can be recovered as salts such as sodium sulfate instead of sulfuric acid.
  • the heat-treated activated carbon fibers to be filled in the nitric acid tower 65 and the desulfurization tower 66 are those obtained by firing pitch-based activated carbon fibers in a non-oxidizing atmosphere.
  • the one baked at about 85 O'C for 1 hour is used.
  • sulfur oxide (SO x ) treatment about 110 O'C is used.
  • the sinters that have been fired for one hour and are each formed into a corrugated shape are used.
  • the present invention is not limited to this.
  • FIG. 14 shows the oxidation performance of nitric oxide to nitrogen dioxide (N 0 2 ). As shown in Fig. 14, high performance of 80% or more is obtained stably.
  • FIG. 1. 5 shows the oxidation characteristic to sulfur trioxide of sulfur dioxide (S 0 2) (S 0 3). As shown in Fig. 15, high performance of more than 95% can be obtained stably.
  • FIG. 16 shows a second embodiment of the smoke exhaust treatment system of the present invention.
  • a denitration device 72 is provided at the outlet of the boiler 71 and the like.
  • An air preheater 73 is installed at the outlet of 72 to reduce the exhaust gas temperature to about 13 O'C.
  • the nitrogen oxide (NO) in the exhaust gas is further reduced by the denitration and desulfurization system using the heat-treated activated carbon fiber described in the eighth embodiment. x ) depth treatment and sulfur oxide removal.
  • the exhaust gas that has passed through the air preheater 73 is collected by the dust collector 74, and then subjected to the gas / gas heater.
  • the temperature is further reduced to about 90, and, similarly to the first embodiment, the exhaust gas is treated in an oxidation tower 76 filled with a heat-treated activated carbon fiber formed into a corrugated shape.
  • the denitration performance can be further improved by connecting to a conventionally used denitration apparatus, and the processing capacity is further improved.
  • desulfurization performance can be further improved by connecting this system to a system equipped with a conventional denitration device.
  • FIG. 17 shows a third embodiment of the smoke exhaust treatment system of the present invention.
  • the gas After the temperature is further reduced to about 90 by the heater 85, it is sent to the cooling tower 88 again, where it is humidified and cooled, the exhaust gas temperature is reduced to 50 or less, and the humidity is adjusted to 100% or more.
  • the low-temperature and high-humidity exhaust gas is sent into a desulfurization tower 89 filled with corrugated heat-treated activated carbon fibers, where sulfur oxides (SO x ) are recovered as sulfuric acid or sulfate. .
  • the sulfur oxide (SO x ) is oxidized in the desulfurization tower 89 to react with water to generate sulfuric acid and remove the sulfur oxide (SO x ). .
  • the exhaust gas from which the sulfur oxides (SO x ) have been removed is sent again to the gas tower 85, which is a cooling tower, where the temperature of the exhaust gas is raised to about 90 ° C and the heat-treated activated carbon fiber the in Takashi ⁇ the denitration tower 8 6, is oxidized nitrogen oxides in the exhaust gases (NO x) and nitrogen (N0 2) dioxide, so as to divided the nitrogen oxides as nitric acid nitrate tower 8 7 I have.
  • the power for controlling the relative humidity by cooling the gas temperature in the cooling tower 88 before introducing the exhaust gas into the desulfurization tower 89 eliminates the need for the cooling tower 88 to eliminate the gas cooling. It is also possible to control the relative humidity by adding steam or the like.

Description

明 細 書 排ガス処理システム
技術分野
本発明は、 各種燃料を燃焼させるボイラ、 ガスタービン、 エンジン及び燃焼炉 等から排出される排ガス中の窒素酸化物 (NOx ) 及び硫黄酸化物 ( S Ox ) を 除去する排ガスの処理システムに関する。
また、 本発明は、 トンネル内の窒素酸化物の除去、 並びに硝酸製造設備の排ガ ス中の窒素酸化物の除去に好適に用いられる。
背景技術
図 1に従来の排煙処理システムによる排ガス処理の一例を説明する。
図 1中、 符号 1はボイラ、 2は脱硝装置、 3は空気予熱器、 4は集塵器、 5は ガス ·ガスヒータ、 6は脱硫装置及び 7は煙突を各々図示する。
図 1に示すように、 ボイラ 1等の出口には、 触媒を用いた脱硝装置 2を設け、 該脱硝装置 2の出口に空気予熱器 3を設置し、 排ガス温度を 1 3 0て程度まで低 減するようにしている。
上記空気予熱器 3を通過した排ガスは、 集塵器 4で集塵された後、 ガス · ガス ヒータ 5を経由して、 脱硫装置 6に導かれ、 ここで硫黄酸化物 ( S Ox ) を除去 した後、 煙突 7から排ガスを大気中に排出するようにしている。
従来、 上記脱硫装置 6で排ガス中の硫黄酸化物 (S Ox ) を除去する方法とし て、 炭酸カルシウムを吸収剤として用いて上記硫黄酸化物 (S Ox ) を吸収し、 石裔として回収するいわゆる石灰一石膏方法が使用されている。 該方法において 、 ガス一液比、 滞留時間等を種々変化させて、 出口の硫黄酸化物 ( S Ox ) の濃 度の低下を図っている。
通常、 ボイラ排ガス中の硫黄酸化物 ( S Ox ) の濃度は 4 0 0〜8 0 0 p p m であり、 上記石灰一石青方法では、 5 0〜 1 0 0 P P mの出口濃度までの低減を 図っている。
しかしながら、 近年の環境規制から排ガス中の硫黄酸化物 ( S Ox ) の濃度は 一般に高深度脱硫と称する 5 P P m以下等に除まするよう求められている。 上記 従来の石灰—石育方法では、 条件等を変化させても、 50〜1 00 P p m以下に 除去するには、 装置の巨大化等除去コス トが肥大化するが、 環境問題から除去効 率の向上を図ることが望まれている。
また、 脱硫装置 6内では、 徘ガス中の硫黄酸化物 (SOx ) が炭酸カルシウム を吸収剤として吸収され、 石裔として回収される、 いわゆる石灰一石膏方法が使 用されており、 上記石灰一石膏方法では多量の吸収剤が必要であるという問題が ある。
乾式法では、 活性炭による吸着法が唯一実用化されている。 しかし、 上記吸着 法においても、 脱着を水洗によって行うため、 大量の水を必要とする。 しかも、 この方法においては、 生成した希硫酸の廃棄、 吸着材の乾燥処理等にも問題があ る。
上述したように、 現在実用化されているボイラ排ガス中の窒素酸化物の除去に おいては、 Vz 05 を T i 02 に担持した触媒を使用し、 NH3 を還元剤として 窒素と水蒸気とに分解する選択接触還元法 (S CR) による脱硝装置 2を設けて 処理しているが、 以下のような問題がある。 すなわち、 第一に触媒の性能上、 反 応温度が 30 0〜4 0 O 'Cであり、 第二に、 還元剤として NH 3 が必要であり、 第三に、 現状の NOx リーク量が 5〜 4 0 p p mのレベルであるので、 これを零 にするために NH3 を過剰に注入する必要がある。
また、 近年の環境規制から排ガス中の窒素酸化物 (NOx ) の濃度は一般に高 深度脱硝と称する 1 P P m以下等に除去するよう求められている。 上記従来の選 択接触還元法 (S CR) による脱硝処理では、 条件等を変化させても、 装置の巨 大化等除去コス トが肥大化する。 一方、 環境問題から除去効率の向上を図ること が望まれている。
本発明は、 上記問題に鑑み、 加熱手段を必要とせず低温で排ガス処理を可能と すると共に、 多量の吸収剤を使用することなく排ガス処理を効率良く行うことが できる排ガス処理システムを提供することを目的とする。
発明の開示
本発明者は、 上記従来技術の問題に鑑みて鋭意研究を重ねた結果、 特定の熱処 P T/JP96/01772 理をした活性炭は、 脱硫または脱硝反応において良好な触媒として機能すること を見出し、 本発明を完成するに至った。
即ち、 本発明は、 脱硫または脱硝反応用の熱処理活性炭及びそれを用いる脱硫 または脱硝方法に係るものである。 まず、 脱硫に関して下記に示す。
本発明は、 原料用活性炭を非酸化雰囲気中で熱処理することにより得た脱硫反 応用の熱処理活性炭を提供する。
本発明は、 また、 上記の脱硫反応用の熱処理活性炭に、 S 0 2 、 又は N O x、 水分及び酸素を舍有するガスを接触させることを特徴とする脱硫方法を提供する。 原料用活性炭の種類としては、 特に制限はなく、 活性炭素繊維、 粒状活性炭等 を含み、 活性炭素繊維としては、 ピッチ系、 ポリアク リ ロニ ト リル系、 フヱノー ル系、 セルロース系等の公知の活性炭を用いることができ、 市販品も用いること ができる。 これらの中でも、 特に活性炭表面の疎水性のより高いものが望ましく 、 具体的にはピッチ系及びポリアクリ ロ二トリル系等の活性炭素織維を挙げるこ とができる。
上記の原料用活性炭を非酸化雰囲気中で熱処理する。 非酸化雰囲気とは、 不活 性ガスと還元雰囲気の両者を舍む。 雰囲気ガスとしては、 原料用活性炭を酸化し ないものであれば特に制限されないが、 特に窒素ガス、 アルゴンガス、 ヘリ ウム ガス等の不活性ガス等を用いるのが好ましい。 この中でも、 入手が容易という点 から窒素ガスを用いるのが特に好ましい。
処理温度は、 原料用活性炭表面を疎水化できる温度であれば良く、 これは用い る原料用活性炭の種類等に応じて適宜設定することができるが、 通常は 6 0 0〜 1 2 0 0て程度の範囲内である。 処理時間は、 処理温度等に応じて適宜定めれば 良い。 この熱処理により、 本発明の脱硫反応用熱処理活性炭を得ることができる 。 本発明の脱硫反応用熱処理活性炭は、 熱処理により親水性である酸素官能基の 一部ないし全部が c o、 c 0 2 等として除去されているので、 処理前に比して疎 水性の高い表面となっている。 このため、 s o 2 の酸化活性点への s o 2 の吸着 が容易に起こり、 しかも生成する硫酸の排出も速やかに進行する結果、 脱硫反応 用の触媒的な機能が阻害されることなく発揮できる。
本発明の脱硫方法は、 上記の熱処理活性炭に、 二酸化硫黄 (s o 2 ) を舍むガ スを接触させる工程を舍む。 この場合、 上記ガスに水分及び酸素を含んでいる必 要がある。 S 02 濃度は適宜調節すれば良いが、 特に 2 0〜5 0 0 p p m程度と するとより効率的に脱硫することができる。
排ガスを本発明の熱処理活性炭を用いて 1段で脱硫することも可能である。 ま た、 高深度脱硫方法の構成として、 石灰一石膏法による脱硫装置の後流側におい て上記排ガス処理用熱処理活性炭を用いて硫黄酸化物を除去することも可能であ る。
また、 上記ガス中の水分は、 相対温度が 1 0 0%以上であり、 酸素は 3容量% 以上 (好ましくは 3〜2 1容量) とすることが望ましい。 上記以外のガス成分と しては、 脱硫反応を極端に妨げないものであれば、 いずれの成分も使用できる。 例えば窒素、 二酸化炭素、 一酸化炭素等を用いることができる。
接触温度は、 熱処理活性炭の種類、 S Oz 濃度等によって適宜変更することが でき、 通常は 2 0〜1 0 O 'C程度とすれば良い。 特に本発明の方法では、 常温 ( 約 2 0〜5 0て程度) で効率的に脱硫することができる。 なお、 1 0 O 'C以上の 高温であっても、 水分等を調整することにより、 脱硫反応を進行させることも可 能である。
上記ガスの流量は、 soz 濃度、 装置等に応じて適宜変更することができる。 通常は活性炭の重量当り 1 X 1 0一3〜 5 X 1 0 -3g . min/ml程度とすれば良い。 本発明方法では、 公知の反応装置を用いることができ、 例えば固定床流通式装 置、 流動床式装置、 攪拌式反応器等の各種装置を用いることができる。
生成した硝酸は、 例えば ( a ) 水に吸収させ、 濃硫酸として回収する方法、 ( b ) K OH水溶液に吸収させて中和溶液として回収する方法、 ( c ) C a (OH ) 2、 M g (OH) z 等の水溶液と中和させ、 塩として回収する方法、 ( d ) ァ ンモニァ水に吸収させ、 肥料 (硫安) として回収する方法等の各種の回収方法に よって回収することができる。
また、 上述の脱硫用の熱処理活性炭と同様に原料用活性炭を非酸化雰囲気中で 、 6 0 0て〜 1 0 0 0て程度の範囲内で熱処理することにより、 脱硝用の熱処理 活性炭を得ることができる。 なお、 雰囲気ガスの種類等、 その他の条件は上述の ものと同じである。 本発明の脱硝用の熱処理活性炭を用いた窒素酸化物の第 1の除去方法は、 原料 用活性炭を 6 0 0て〜 1 0 0 0 'Cの温度範囲にて熱処理を施してなる脱硝用熱処 理活性炭を充塡した窒素酸化物酸化塔を設け、 排ガス中の窒素酸化物 (N O x ) を酸化し、 除去することを特徴とする。
本発明の脱硝用の熱処理活性炭を用いた窒素酸化物の第 2の除去方法は、 原料 用活性炭を 6 0 0 ' (:〜 1 0 0 O 'Cの温度範囲にて熱処理してなる脱硝用熱処理活 性炭を充塡した吸着塔を複数段並列に設け、 吸着塔内の熱処理活性炭上に吸着し た二酸化窒素 (N 0 2 ) が破過する前に、 順次次の吸着塔に切替えて、 排ガス中 の窒素酸化物 (N O x ) を連続的に酸化及び吸着し、 除去することを特徴とする。 また、 高深度脱硝方法において、 選択接触還元法 (S C R ) による脱硝処理の 後流側に、 脱硝用熱処理活性炭を用いて窒素酸化物を除去することができる。 上記窒素酸化物の除去方法において、
上記吸着塔で連続的に酸化する際に、 1 5 0て以下の低温下で処理することが 好ましい。
上記窒素酸化物の除去方法において、
上記脱硝用熱処理活性炭により酸化された窒素酸化物を連続的に水かアル力リ 水溶液などの吸収液に硝酸あるいは硝酸塩として、 吸収することができる。
上記窒素酸化物の除去方法において、
上記活性炭原料は、 脱硫用熱処理活性炭と同様に特に制限はないが、 具体的に はポリアクリ ロ二トリル系炭またはピッチ系炭等の活性炭素繊維を挙げることが できる。
本発明において、 原料用活性炭を非酸化雰囲気中で高温処理すると、 脱硫性能 を向上させることができる。 図 2にその原理を示す。
焼成処理前の原料用活性炭の表面は、 図 2 ( a ) のように舍酸素官能基が多く 分布しており、 親水性の表面である。 この場合には、 表面の水により S O z の酸 化活性点への S 0 2 の吸着が阻害されるばかりでなく、 酸化と水和により生成し た硫酸が表面の水により捕捉され、 原料用活性炭表面に溜まるため、 硫酸に邪魔 されて脱硫反応が進行しにく くなる。
これに対し、 熱処理後の活性炭の表面は、 図 2 ( b ) のように、 親水性である 酸素官能基が co、 co2 等として除去されるので、 疎水性の表面となっている 。 このため、 so2 の酸化活性点への so2 の吸着が容易に起こり、 しかも生成 する硫酸の排出も速やかに進行する結果、 硫酸に邪魔されるようなことがなく、 本発明の活性炭が高い脱硫反応活性を示すこととなる。
上記のような熱処理活性炭を用いて排ガス中の硫黄酸化物 (sox ) を処理す る方法としては、 排ガスの温度を 1 0 O 'C以下、 好ましくは 5 0て以下とし、 し かも徘ガスの湿度を 1 0 0%以上にする。 その後、 熱処理活性炭が充塡された反 応器に導き、 該熱処理活性炭の表面にて上記排ガス中の硫黄酸化物 (S Ox ) を 酸化して三酸化硫黄 (S 03 ) とする。 次いで、 この三酸化硫黄 (S 03 ) を水 分又は水酸化ナ トリウム等の水溶液と反応させて、 硫酸又は硫酸塩として回収す ることにより、 排ガス中の硫黄酸化物 (S Ox ) を除去する。
通常の活性炭では、 一酸化窒素 (NO) の吸着性はあるものの、 酸化性が低い 。 また、 酸化性があっても、 二酸化窒素 (N02 ) の形態で脱硝しにくい等の性 状となっている。
これは、 原料用活性炭表面に残存するカルボニル基、 カルボキシル基等の舍酸 素基や N> S舍有基等が多量なためである。
そこで、 原料用活性炭を非酸化雰囲気下で熱処理すると、 原料用活性炭表面の 基が分解脱離し、 活性点が調整されるとともに親水性基である舍酸素官能基を分 解し、 NOの吸着、 N 02 の脱離を砠害する水 (H2 0) の吸着サイ トを減少さ せ、 NO酸化活性を向上させることができる。
このように熱処理した活性炭を用いると、 排ガス中の一酸化窒素 (NO) が吸 着し、 02 によって酸化されて、 二酸化窒素 (N02 ) となる。
該二酸化窒素 (N02 ) を活性炭素上にそのまま吸着した状態で除去するか、 あるいは、 二酸化窒素 (N02 ) で排出されたところで水に吸収させて硝酸水溶 液の形で除去するか、 もしくはアルカリ水溶液に吸収させることにより、 窒素酸 化物は回収除去され、 脱硝が可能となる。
以上述べたように、 本発明によれば、 窒素酸化物及び硫黄酸化物を舍有する排 ガスから熱処理活性炭を用いることにより、 1 5 (TC以下の低温条件でガス処理 することができる。 よって、 現在使用されている脱硝装置及び脱硫装置の代替として使用するか、 又は現状より脱硝性能又は脱硫性能を向上する必要がある場合には、 本システム を追加して設けることにより、 更に処理能力が向上する。
また、 本発明の脱硫反応用熱処理活性炭及び脱硫方法によれば、 大量の水を用 いることなく、 すなわち、 乾式で高効率で脱硫を行うことができる。 特に、 ビッ チ系の脱硫反応用熱処理活性炭素織維を用いた場合には、 熱処理の温度条件によ つては S O 2 除去率を 1 0 0 %にすることも可能である。
また、 図 1 8に示すように、 本発明の脱硫反応用熱処理活性炭の表面上に吸着 された S 0 2 は、 ガス中の酸素により酸化されて S 0 3 となり、 さらにこれがガ ス中の水分により硫酸となり、 その表面から洗い流されていく こととなる。 即ち 、 硫黄酸化物を舍有する排ガスから熱処理活性炭を用いることにより、 従来では 困難であった排ガス中の硫黄酸化物 ( S O x ) の濃度を 5 p p m以下に低減する ことができると同時に、 硫黄分を硫酸 (特に濃硫酸) として回収することができ る。
さらに、 本発明によれば、 熱処理活性炭上で酸化された窒素酸化物は吸収塔に おいて硝酸あるいは硝酸塩にすることで連続的に処理できる。 また、 従来の v 2
0 5 触媒を用いた選択接触還元による脱硝と組み合わせて、 熱処理活性炭により 深度脱硝させることで従来は困難であった排ガス中の窒素酸化物濃度を 1 P p m 以下に低減することができた。
このような本発明の脱硫反応用熱処理活性炭及び脱硫方法、 ならびに脱硝反応 用熱処理活性炭及び脱硝方法は、 特に重油、 石炭などの燃焼機器 (ボイラ、 火力 発電所など) 、 硫酸製造ブラント、 硝酸製造ブラント、 金属処理工場 ·施設、 製 紙工場、 トンネル内から発生する硫黄酸化物や窒素酸化物の除去に好適に利用す ることができる。
図面の簡単な説明
図 1は、 従来に係る排煙処理システムの概略図である。
図 2は、 高温処理前の活性炭と本発明の活性炭の表面状態を示す模式図である。 図 3は、 ピッチ系活性炭素繊維と粒状活性炭の熱処理温度と脱硫率との関係を 示す図である。 図 4は、 ポリアクリロニト リル ( P A N ) 系炭素繊維の熱処理温度と脱硫率と の関係を示す図である。
図 5は、 本発明に係る実施の形態例の高深度脱硫方法のシステム概略図である < 図 6は、 窒素酸化物と活性炭素織維との反応時間の関係を示す図である。
図 7は、 ピッチ系炭素繊維と粒状活性炭の熱処理温度と脱硝率との閔係を示す 図である。
図 8は、 ポリアクリロニトリル ( P A N ) 系炭素繊維の熱処理温度と脱硝率と の閔係を示す図である。
図 9は、 本発明に係る実施の形態例の脱硝方法のシステム概略図である。
図 1 0は、 本発明に係る実施の形態例の吸収塔の概略図である。
図 1 1は、 本発明に係る実施の形態例の脱硝方法のシステム概略図である。 図 1 2は、 本発明に係る実施の形態例の脱硝方法のシステム概略図である。 図 1 3は、 本発明に係る排煙処理システムの第 1の実施の形態例を表す概略図 である。
図 1 4は、 一酸化窒素の二酸化窒素 (N 0 2 ) への酸化性能図である。
図 1 5は、 二酸化硫黄 (S 0 2 ) の三酸化硫黄 (S 0 3 ) への酸化特性図であ る。
図 1 6は、 本発明に係る排煙処理システムの第 2の実施の形態例を表す概略図 である。
図 1 7は、 本発明に係る排煙処理システムの第 3の実施の形態例を表す概略図 である。
図 1 8は、 本発明の活性炭の表面で S 0 2 が除去される様子を示す図である。
発明を実施するための最良の形態
以下、 実施例及び比較例を示し、 本発明の特徴とするところを明確にする。 実施例 1
原料用活性炭としてピッチ系活性炭素繊維 ( 「O G— 2 0 A」 、 大阪瓦斯株式 会社製) 及び粒状活性炭 (H C— 3 0、 ㈱ッルミコール製) を用い、 これを窒素 雰囲気中 4 0 0〜 1 4 0 0 'Cの温度範囲で 1時間焼成することにより、 本発明の 熱処理活性炭をそれぞれ得た。 次いで、 得られた熱処理活性炭を脱硫反応に用い、 各々の脱硫性能を調べた。 脱硫反応は、 S02 1 000 p p m、 02 5 v o l %、 水分 l O v o l %及び残 部 N2 からなるガスを用いた。 また、 装置として固定床流通式装置を用い、 活性 炭重量当たり 1. 0 g · m i n/m 1 とし、 温度 30てで上記ガスを流通させた 。 装置出口ガス中の S 02 濃度を F PD検出器型ガスクロマトグラフにより測定 し、 S 02 除去率を算出した。 脱硫反応開始 1 5時間後の結果を図 3に示す。 図 3に示すように、 熱処理温度でのその活性が異なっている。
本発明で、 熱処理温度が 600〜 1 20 0 'Cが有効と判定し、 該温度において 加熱処理した活性炭を用い、 二酸化硫黄 (S Oz ) 及び三酸化硫黄 (S 03 ) の 酸化触媒性を高め、 他の CO, COz 等の共存ガスの影響を受けずに処理できる ようにした。
この結果、 低濃度の二酸化硫黄 (so2 ) 及び三酸化硫黄 (so3 ) の除去が 可能となるようにした。
比較例 1
上記ピッチ系活性炭素繊維を焼成処理しないで用いた以外は、 実施例 1と同様 の方法で脱硫反応に用い、 so2 除去率を算出した。 その結果、 so2 除去率は
20%と低い値を示し、 十分な S 02 除去ができなかった。
実施例 2
原料用活性炭素繊維としてポリアクリロニトリル系活性炭素繊維 ( 「 F E— 3 00」 、 東邦レーヨン株式会社製) を用い、 実施例 1と同様の方法で熱処理を施 し、 それぞれ脱硫反応を行い、 S Oz 除去率を算出した。 その結果を図 4に示す。 この場合にも熱処理温度でその活性は大きく異なり、 本発明において熱処理温 度 6 0 0〜 1 2 0 0てが有効であると判定し、 該温度において熱処理した活性炭 素繊維を用いて二酸化硫黄 (S 02 ) 、 三酸化硫黄 (S 03 ) を除去できるよう にした。
実施例 3
図 5に本発明の排煙処理システムの実施の形態例を示す。
図 5中、 符号 1 1はボイラ、 1 2は脱硝装置、 1 3は空気予熱器、 1 は集塵 器、 1 5はガス ♦ガスヒータ、 1 6は脱硫装置、 1 7は煙突及び 1 8は高深度脱 硫装置を各々図示する。
図 5に示すように、 ボイラ 1 1から排出された排ガスは、 脱硝装置 1 2及び脱 硫装置 1 6において従来と同様に排ガス中の、 窒素酸化物 (NOx ) 及び硫黄酸 化物 (S Ox ) を除去するようにしている。
その後、 高深度脱硫装置 1 8に導かれ、 該装置内に充塡された 6 0 0〜 1 2 0 O 'Cの温度範囲にて熱処理を施した活性炭素織維と接触して、 下記化学反応式 ( a ) 及び ( b) に示す反応が促進され、 排ガス中の硫黄酸化物 (S Ox ) の濃度 を 5 p p m以下に低減することができた。
( a ) S Oz + 1 /2 Oz → S 03
( b ) S 03 十 H2 0 → H2 S 04
下記に、 本実施の形態例の処理条件を示す。
ぐ処理条件 >
a ) ガス条件 温度 : 5 0て
湿度 : 1 0 0%R. H. (相対湿度)
S Ox の濃度: 1 2 0 P P m
流量 : 5 0 m 3 h
b ) 脱硫塔 活性炭素繊維 0 G - 2 0 A
触媒量 : 0. 5 k g
c ) 脱硫後ガス S Ox の濃度 : 5 p p m
なお、 この硫黄酸化物 (S Ox ) を除まの場合に、 上記高深度硫酸塔 1 8内に おいて、 水の代わりに水酸化ナトリウム等の水溶液で反応させることにより、 硫 酸の代わりに硫酸ナ トリゥム等の塩類として回収することもできる。
ここで、 上記高深度硫酸塔 1 8内に充塡する熱処理活性炭素繊維は、 石炭,石 油化学の残差として出るピッチを溶融紡糸して得たピッチ系炭素繊維を還元雰囲 気の条件で焼成してなるものである。
本実施の形態例では、 上記ピッチ系炭素繊維として、 大阪瓦斯株式会社製のピ ツチ系活性炭素繊維 「OG— 2 0 A」 (商品名) を用い、 還元雰囲気下で約 1 1 00てで 1時間焼成したものを用い、 コルゲート状に成形したものを本実施の形 態例では用いた。 また、 熱処理活性炭素繊維として、 高分子材料のポリアクリロニトリル織維を 焼成して炭化して得られるポリアクリロニトリル (PAN) 系炭素繊維のものを 使用した場合でも、 上記と同様に排ガス中の硫黄酸化物 (S Ox ) の濃度を 5 P P m以下に低減することができた。
実施例 4
原料用活性炭素繊維として、 石炭 ·石油化学の残差として出るビッチを溶融紡 糸して得たピッチ系活性炭素繊維 (大阪瓦斯株式会社製 「OG— 5 A」 (商品名 ) ) と、 高分子材料のポリアリクロニトリル繊維を焼成して炭化して得られるポ リアクリロニトリル (PAN) 系活性炭素繊維 (東邦レーヨン株式会社製の 「F ,Ε— 3 00」 (商品名) ) 及び粒状活性炭 (㈱ッルミコール製 「H C— 30」 ( 商品名) ) を用い、 窒素雰囲気下 4 0 0〜1 4 00てで 1時間熱処理することで 活性炭素触媒を得た。
次に、 上記得られた熱処理活性炭素繊維及び熱処理粒状活性炭を用いて NOの 酸化活性を試験した。
なお、 比較として熱処理していないピッチ系、 PAN系炭素繊維についても同 様 試験した。
固定床流通式反応器を用い、 反応温度 2 5てにおいて、 NO= 3 8 0 p p m、 Oz = 4. 0 v o 1 %、 H2 0 = 2. 5 v o 1 %、 N2 バランスからなるガスを W/F = 1. 0 X 1 0 -2 g · m i n/m 1で流通させた。
出口ガス中の NO, N 02 の分析は化学発光式 N Ox 計により測定し、 NOの N02 への転化率を評価した。
ピッチ系活性炭素繊維に N 0ガスを導入すると初期には N 0の酸化とともにそ の吸着能により出口における N Ox 濃度は数 1 0 P p m程度である (図 6参照) 。
N02 の破過により、 出口における N02 濃度が増加し、 3 5時間以降は完全 に破過する。
しかし、 NOの N02 への転化率はそれ以降も安定した値を示しており、 反応 開始後 40時間後には定常状態に達する。
図 7及び図 8に、 上記活性炭原料としてのピッチ系炭素繊維及び粒状活性炭ま たはポリアクリロニトリル (PAN) 系炭素繊維の各熱処理温度に対する定常時 の脱硝率の関係を示す。
これらの図面に示すように、 熱処理温度においてその活性が異なっている。 本発明で、 熱処理温度が 6 0 0〜 1 0 0 0てが有効と判定した。
比較例 2 , 3
ピッチ系活性炭素織維は熱処理なし (比較例 2 ) では脱硝率は 1 8 %で、 P A N系炭素繊維についても熱処理なし (比較例 3 ) では脱硝率は 4 %であった。
実施例 5
図 9に本発明を実施する窒素酸化物の除去システムの実施の形態例を示す。 図 9中、 符号 2 1 a〜 2 1 nは吸着塔、 2 2は舍有窒素酸化物舍有排ガス、 2 3は再生用不活性ガス、 2 4は二酸化窒素吸収塔、 2 5は切替え弁、 2 6は排ガ スライン及び 2 7は再生ガスラインを各々図示する。
図 9に示すように、 2基以上並列して設けられた吸着塔 2 1 a - 2 1 nにおい て、 先ず第 1の吸着塔 2 1 aに切替え弁 2 5により舍有窒素酸化物排ガス 2 2を 導入して、 上記吸着塔 2 1 a内に充塡した熱処理活性炭素繊維上に酸化 ·吸着さ せた。
上記吸着塔 2 1 a内に充塡した熱処理活性炭素繊維とは、 6 0 0〜 1 0 0 0て の温度範囲にて非酸化雰囲気下で熱処理を施した活性炭素繊維であり、 導入され る排ガス中の窒素酸化物と反応して、 下記 ( c ) に示す反応が促進され、 二酸化 窒素 (N 0 2 ) の形態で吸着している。
そして、 第 1の吸着塔 2 1 aの熱処理活性炭素繊維上に窒素酸化物を酸化 ·吸 着した二酸化窒素 (N O z ) が破過する前に、 第 2の吸着塔 2 1 b〜 2 1 nへと 順に切替えて、 排ガスライン 2 6を介して順次窒素酸化物を処理するようにして いる。
上記破過した吸着塔に充塡した熱処理活性炭素繊維は、 別途再生用不活性ガス 2 3を導入することにより、 再生ガスライ ン 2 7を介して脱離させ再生するよう にしている。
なお、 上記再生時にでてきた二酸化窒素 (N 0 2 ) を吸収するために、 後流側 に設けた水, アルカリ水溶液等の吸収剤を導入してなる吸収塔 2 4に導き、 下記 ( a ) に示す反応を促進させ、 連続的に処理するようにしている。 ( c ) NO + 1/2 Oz N02
4 NO + 302 2 N2 05
( d ) N 02 +HZ 0 HNOs
Nz 05 + H2 0 2 HN03
上記二酸化窒素 (N02 ) を吸収する手段としては、 例えば棚段塔、 充塡塔、 スプレー塔、 攪拌塔等のいずれの方法を用いてもよい。
図 1 0に上記吸収塔として充塡塔を例にした実施の形態例を示す。
図 1 0に示すように、 吸収塔 30の下部の排ガス入口 33から排ガスを導入し
、 NOx を除去された処理ガスは処理ガス出口 34から排出される。 水等の吸収 液は該充塡部 3 1の上部に設けた吸収液入口 3 5から液分散器 32を介して導入 する。
そして、 充塡部 3 1内部に充塡された耐蝕性の磁製充塡物に沿って導入された 吸収液は流れ、 二酸化窒素 (N02 ) と反応したのちに、 吸収塔 30の下部に設 けた吸収液出口 36より連続的に取り出されることとなる。
ここで、 上記吸着塔内に充塡する脱硝用熱処理活性炭素繊維は、 石炭 ·石油化 学の残渣として出るピッチを溶融紡糸して得たピッチ系炭素繊維を還元雰囲気の 条件で焼成してなるものである。
本実施の形態例では、 上記ピッチ系炭素繊維として、 大阪瓦斯株式会社製のピ ツチ系活性炭素繊維 「OG— 5 A」 (商品名) を用い、 非酸化雰囲気下で約 8 5 0 'Cで 1時間焼成したものを用い、 コルゲート状に成形したものを本実施の形態 例では用いた。
また、 原料用活性炭素織維として、 高分子材料のポリアクリロニトリル織維を 焼成して炭化して得られる、 例えば東邦レーヨン株式会社製のポリアクリロニト リル (PAN) 系 「F E— 300」 (商品名) 炭素繊維のものを使用した場合で も、 上記と同様に排ガス中の窒素酸化物 (NOx ) の濃度を低減することができ た。
実施例 6
図 1 1は窒素酸化物の処理を、 熱処理活性炭素繊維を充塡した NO酸化反応器 について行った場合を示す。 図 1 1中、 符号 4 2は NO酸化反応器、 4 1は舍有窒素酸化物舍有排ガス、 4 3は二酸化窒素吸収塔を各々図示する。
本実施の形態では、 NO酸化反応器 4 2は、 上述した酸化活性を有する熱処理 活性炭素鏃維を充塡したものであり、 導入される舍有窒素酸化物舍有排ガス 4 1 を酸化処理した後に、 吸収塔 4 3に導き連続して処理するようにしている。 上記処理において、 1 5 0て以下の低温においてガス中の窒素酸化物を連繞し て処理すると更に好適である。
上記窒素酸化物の除去システムを、 各種燃料を燃焼させるボイラ、 ガスタービ ン、 エンジン及び燃焼炉等から排出される排ガス中の窒素酸化物 (NOx ) の除 去に適用することで、 処理が容易となる。
また、 本発明は、 ト ンネル内の窒素酸化物の除去、 並びに硝酸製造設備の排ガ ス中の窒素酸化物の除去に用いて好適である。
また、 熱処理活性炭素繊維は酸化窒素 (NOx ) とアンモニア (NH3 ) とを 共存させると前述の V 2 05 触媒と同様に選択接触還元 (S CR法) により窒素 (N2 ) と水蒸気 (H2 0) に分解する活性を有しており、 酸化反応器中の熱処 理活性炭素繊維に排ガスと同時に NH 3 を適量供給することでも脱硝できる。
実施例 Ί
図 1 2に本発明の排煙処理システムの実施の形態例を示す。
図 1 2中、 符号 5 1はボイラ、 5 2は脱硝装置、 5 3は空気予熱器、 5 4は集 塵器、 5 5はガス ·ガスヒータ、 5 6は脱硫装置、 5 7は煙突及び 5 8は高深度 脱硝装置を各々図示する。
図 1 2に示すように、 ボイラ 5 1から排出された排ガスは、 脱硝装置 5 2及び 脱硫装置 5 6において従来と同様に、 排ガス中の窒素酸化物 (N0X ) 及び硫黄 酸化物 (S 0X ) を除去するようにしている。
その後、 高深度脱硝装置 5 8に導かれ、 該装置 5 8内に充塡された 6 0 0〜 1 0 0 O 'Cの温度範囲にて熱処理を施した活性炭素繊維と接触して、 前記 ( c ) 及 び ( d ) に示す反応が促進される。
よって、 窒素酸化物 (N0X ) 濃度が 4 0 0 P P mの排ガスを、 従来と同等に 脱硝装置 5 2及び脱硫装置 5 6によって処理した後の N0X 濃度が 4 0 P P mの 場合、 上記高深度脱硝装置 5 8に導いて処理することで、 排ガス中の窒素酸化物 (ΝΟχ ) の濃度を 1 P p m以下に低減することができた。
下記に、 本実施の形態例の処理条件を示す。
a ) ガス条件 温度 : 5 O 'C
湿度 : 6 0%R. H. (相対湿度)
ΝΟχ の濃度: 4 0 p p m
流量 : 50 m3 Zh
b ) 脱硝装置 活性炭素繊維 0 G— 5 A
触媒量 : 8 k g
c ) 脱硝後ガス N Ox の濃度 : 1 p p m
なお、 この窒素酸化物 (NOx ) を除去する場合に、 上記高深度脱硝装置 5 8 内において、 水の代わりに水酸化ナ トリゥム等の水溶液で反応させることにより 、 硝酸の代わりに硝酸ナ トリウム等の塩類として回収することもできる。
ここで、 上記高深度脱硝装置 5 8内に充塡する熱処理活性炭素繊維は、 石炭 - 石油化学の残渣として出るビッチを溶融紡糸して得たピッチ系炭素織維を還元雰 囲気の条件で焼成してなるものである。
本実施の形態例では、 上記ピッチ系炭素繊維として、 大阪瓦斯株式会社製のピ ツチ系活性炭素繊維 「OG— 5 A」 (商品名) を用い、 還元雰囲気下で約 8 5 0 てで 1時間焼成したものを用い、 コルゲート状に成形したものを本実施の形態例 では用いた。
また、 原料用活性炭素繊維として、 高分子材料のポリアクリロニトリル繊維を 焼成して炭化して得られるポリアクリロニ トリル ( PAN) 系炭素繊維のものを 使用した場合でも、 上記と同様に排ガス中の窒素酸化物 (NOx ) の濃度を 1 p P m以下に低減することができた。
実施例 8
図 1 3に本発明の排煙処理システムの実施の第 1の形態例を示す。
図 1 3中、 符号 6 1はボイラ、 6 2は集塵器、 6 3はガス ·ガスヒータ、 6 4 は酸化塔、 6 5は硝酸塔及び 6 6は脱硫塔を各々図示する。
図 1 3に示すように、 ボイラ 6 1等の出口に集塵器 6 2を設け、 該集塵器 6 2 を通過した排ガスは、 ガス 'ガスヒータ 6 3でガス温度を 9 0て程度まで低減し 、 しかも排ガスの相対湿度を 8 0%以下、 好ましくは 6 0%以下とし、 その排ガ スを酸化塔 6 4内に導く。
この酸化塔 6 4内には、 コルゲート状とした熱処理活性炭素繊維が充塡されて おり、 排ガス中の窒素酸化物 (NOx ) を酸化して二酸化窒素 (N02 ) 、 五酸 化二窒素 (N2 05 ) とし (上記 「 c」 ) 、 次いで、 硝酸塔 6 5内で二酸化窒素 (N02 ) 、 五酸化二窒素 (N2 05 ) を舍有する排ガスを水と反応させて、 硝 酸を生成し (上記 ( d ) ) 、 排ガス中の窒素酸化物 (NOx ) を除去するように している。
また、 一方上記硝酸塔 6 5内において、 水の代わりに水酸化ナ トリウム等の水 溶液で反応させることにより、 硝酸として処理する代わりに、 硝酸ナ トリウム等 の塩類として回収することもできる。
その後、 上記窒素酸化物 (NOx ) が除去された排ガスは、 当該硝酸塔 6 5内 で加湿され、 ガス中の湿度を 1 0 0%以上とした後、 更に、 コルゲート状とした 熱処理活性炭素繊維を充塡した脱硫塔 6 6内に送られ、 ここで硫黄酸化物 (S O X ) を酸化して三酸化硫黄 (S 03 ) とし (上記 ( a ) ) 、 次いで、 水と反応さ せて硫酸として (上記 ( b ) ) 、 窒素酸化物 (NOx ) が除去された排ガス中の 硫黄酸化物 (S Ox ) を除去するようにしている。
その後、 ガス ·ガスヒータ 6 3に導かれ、 加熱されて煙突から排出される。 なお、 排ガスの温度は 1 0 0て以下、 好ましくは 5 0て以下の低温としている。 この硫黄酸化物 (S Ox ) の除去の場合も、 上記窒素酸化物 (NOx ) の除去 と同様に、 上記脱硫塔 6 6内において、 水の代わりに水酸化ナ トリウム等の水溶 液で反応させることにより、 硫酸の代わりに硫酸ナ トリゥム等の塩類として回収 することもできる。
ここで、 上記硝酸塔 6 5及び脱硫塔 6 6内に充塡する熱処理活性炭素繊維とは 、 ピッチ系活性炭素繊維を非酸化雰囲気の条件で焼成してなるものであるが、 窒 素酸化物 (NOx ) 処理用の場合には、 約 8 5 O 'Cで一時間焼成したものを用い 、 一方の硫黄酸化物 (S Ox ) 処理用の場合には、 約 1 1 0 O 'Cで一時間焼成し たものを用い、 各々コルゲ一ト状に成形したものを本実施の形態例では用いてい るが、 本発明はこれに限定されるものではない。
図 1 4は、 一酸化窒素の二酸化窒素 (N 0 2 ) への酸化性能を示す。 図 1 4に 示すように、 安定して 8 0 %以上の高性能が得られる。
また、 図 1 5は二酸化硫黄 (S 0 2 ) の三酸化硫黄 (S 0 3 ) への酸化特性を 示す。 図 1 5に示すように、 安定して 9 5 %以上の高性能が得られる。 図 1 6には、 本発明の排煙処理システムの実施の第 2の形態例を示す。
図 1 6に示すように、 ボイラ 7 1等の出口には脱硝装置 7 2を設け該脱硝装置
7 2の出口に空気予熱器 7 3を設置し、 排ガス温度を 1 3 O 'C程度まで低減する ようにしている。
本実施の形態例では、 従来の脱硝装置 7 2によって脱硝処理を行った後、 更に 実施例 8で示した熱処理活性炭素織維による脱硝、 脱硫システムによって、 排ガ ス中の窒素酸化物 (N O x ) の深度処理および硫黄酸化物の除去を行うものであ る。
図 1 6に示すように、 高温処理による脱硝装置 7 2によって脱硝処理を行った 後、 上記空気予熱器 7 3を通過した排ガスは、 集塵器 7 4で集塵された後、 ガス • ガスヒータ Ί 5でさらに温度を 9 0て程度まで低減して、 第 1の実施の形態例 と同様に、 その排ガスをコルゲート状に成形した熱処理活性炭素繊維を充塡した 酸化塔 7 6で処理することにより、 排ガス中の残りの窒素酸化物 (N O x ) を酸 化し、 次いで、 硝酸塔 7 7で二酸化窒素 (N 0 2 ) 、 五酸化二窒素 (N 2 0 5 ) を舍有する排ガスを水と反応させて、 硝酸を生成し、 窒素酸化物 (N O x ) を除 去するようにしている。
これにより、 従来より使用されている脱硝装置に接続して、 脱硝性能を更に向 上させることができ、 更に処理能力が向上する。
なお、 同様にして従来の脱硝装置を備えたシステムに対しても本システムを接 続することにより、 脱硫性能を更に向上させることができる。
実施例 1 0
図 1 7に本発明の排煙処理システムの実施の第 3の形態例を示す。
図 1 7に示すように、 ボイラ排ガスが集塵器 8 4で集塵された後、 ガス ' ガス ヒータ 8 5でさらに温度を 9 0て程度まで低減した後、 再度、 冷却塔 88に送ら れ、 ここで加湿冷却され排ガス温度を 5 0て以下とすると共に、 湿度を 1 0 0% 以上とし、 その低温高湿の排ガスをコルゲート状に成形した熱処理活性炭素織維 を充旗した脱硫塔 8 9内に送り、 ここで硫黄酸化物 (S Ox ) を硫酸又は硫酸塩 として回収するようにしている。
本実施の形態例では、 脱硫塔 8 9で該硫黄酸化物 (S Ox ) を酸化し、 水と反 応させて、 硫酸を生成し、 硫黄酸化物 (S Ox ) を除去するようにしている。
この硫黄酸化物 (SOx ) を除去した排ガスは、 再び、 冷却塔であるガス ·ガ スヒータ 8 5に送られ、 ここで 9 0 'C程度まで排ガス温度を上昇して、 熱処理活 性炭素繊維を充塡した脱硝塔 8 6内において、 排ガス中の窒素酸化物 (NOx ) を酸化して二酸化窒素 (N02 ) とし、 硝酸塔 8 7で硝酸として窒素酸化物を除 去するようにしている。
本実施例において、 脱硫塔 8 9に排ガスを導入する前に冷却塔 8 8でガス温度 を冷却することで相対湿度を制御している力 冷却塔 8 8を省き、 ガスを冷却す ることなく水蒸気を添加するなどして相対湿度を制御することも可能である。

Claims

請求の範囲
1 . 原料用活性炭を非酸化雰囲気中で熱処理することにより得た排ガス処理用熱 処理活性炭。
2 . 上記原料用活性炭が活性炭素繊維であることを特徴とする請求項 1に記載の 排ガス処理用熱処理活性炭。
3 . 原料用活性炭を非酸化雰囲気中で 6 0 0〜1 2 0 O 'Cで熱処理することによ り得た脱硫用熱処理活性炭。
4 . 上記原料用活性炭が、 ポリアクリロニトリル系原料用活性炭素繊維又はピッ チ系原料用活性炭素繊維である請求項 3に記載の脱硫用熱処理活性炭。
5 . 上記非酸化雰囲気が窒素ガス雰囲気である請求項 3または請求項 4に記載の 脱硫用熱処理活性炭。
6 . 請求項 2乃至請求項 4のいずれかに記載の脱硫用熱処理活性炭に、 S 0 2 、 水分、 及び酸素を含有するガスを接触させることを特徴とする脱硫方法。
7 . 石灰一石膏法による脱硫装置の後流側で、 請求項 3または請求項 4に記載の 脱硫用熱処理活性炭を用いて硫黄酸化物を除去することを特徴とする高深度脱硫 方法。
8 . 原料用活性炭を非酸化雰囲気中で 6 0 0〜 1 0 0 O 'Cで熱処理することによ り得た脱硝用熱処理活性炭。
9 . 上記原料用活性炭が、 ポリアクリロニトリル系原料用活性炭素繊維又はビッ チ系原料用活性炭素繊維である請求項 8に記載の脱硝用熱処理活性炭。
10. 上記非酸化雰囲気が窒素ガス雰囲気である請求項 8または請求項 9に記載の 脱硝用熱処理活性炭。
11. 選択接触還元法 (S C R ) による脱硝処理の後流側で、 請求項 8乃至請求項 1 0のいずれかに記載の脱硝用熱処理活性炭を用いて窒素酸化物を除去すること を特徴とする高深度脱硝方法。
12. 請求項 8乃至請求項 1 0のいずれかに記載の脱硝用熱処理活性炭を充塡した 窒素酸化物酸化塔を設け、 排ガス中の窒素酸化物 (N O x ) を酸化し、 除去する ことを特徴とする脱硝用熱処理活性炭を用いた窒素酸化物の除去方法。
13. 請求項 8乃至請求項 1 0のいずれかに記載の脱硝用熱処理活性炭を充塡した 吸着塔を複数段に設け、 該吸着塔内の脱硝用熱処理活性炭上に吸着した二酸化窒 素 (N02 ) が破過する前に、 順次の吸着塔に切り替えて排ガス中の窒素酸化物 ( Ox ) を連続的に酸化 ·吸着し、 除去することを特徴とする脱硝用熱処理活 性炭を用いた窒素酸化物の除去方法。
14. 請求項 11乃至請求項 13のいずれかに記載の窒素酸化物の除去方法において、 上記吸着塔で連続的に酸化する際に、 1 5 O 'C以下の低温度下で処理することを 特徴とする窒素酸化物の除去方法。
15. 請求項 11乃至請求項 13のいずれかに記載の窒素酸化物の除去方法において、 上記脱硝用熱処理活性炭により酸化された窒素酸化物を連続的に吸収液に吸収す ることを特徴とする窒素酸化物の除去方法。
16. 窒素酸化物 (NOx ) および硫黄酸化物 (S Ox ) を舍有する排ガスから請 求項 1または請求項 2に記載の排ガス処理用熱処理活性炭を用いて、 上記窒素酸 化物 (NOx ) を硝酸又は硝酸塩として回収すると共に、 上記硫黄酸化物 (S O
X ) を硫酸又は硫酸塩として回収することを特徴とする排ガス処理システム。
17. 請求項 16に記載の排ガス処理システムにおいて、 排ガス温度が 1 0 O 'C以下 の低温であることを特徴とする排ガス処理システム。
18. 請求項 16または請求項 17記載の排ガス処理システムにおいて、 窒素酸化物 ( ΝΟχ ) を硝酸又は硝酸塩として回収する際に、 相対湿度が 8 0%以下であるこ とを特徴とする排ガス処理システム。
19. 請求項 16または請求項 17記載の排ガス処理システムにおいて、 硫黄酸化物 ( SOx ) を硫酸又は硫酸塩として回収する際に、 相対湿度が 1 0 0 %以上である ことを特徴とする排ガス処理システム。
PCT/JP1996/001772 1995-06-28 1996-06-27 Systeme de traitement des gaz de combustion WO1997001388A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE69625887T DE69625887T2 (de) 1995-06-28 1996-06-27 vERFAHREN ZUR ENTSTICKUNG UND ENTSCHWEFELUNG VON ABGAS
EP96921096A EP0779100B8 (en) 1995-06-28 1996-06-27 Flue-gas denitration und desulfurization processes
JP50431097A JP3272366B2 (ja) 1995-06-28 1996-06-27 排ガス処理システム
KR1019970701085A KR100235854B1 (ko) 1995-06-28 1996-06-27 열처리활성탄 및 이를 이용한 배기가스 처리방법
AT96921096T ATE231412T1 (de) 1995-06-28 1996-06-27 Verfahren zur entstickung und entschwefelung von abgas

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP7/162650 1995-06-28
JP16265095 1995-06-28
JP7/268296 1995-10-17
JP7268296A JPH09108542A (ja) 1995-10-17 1995-10-17 排ガス処理システム
JP7/272280 1995-10-20
JP27228095 1995-10-20
JP7285666A JPH09122485A (ja) 1995-11-02 1995-11-02 脱硝用活性炭素繊維及びそれを用いた高深度脱硝方法
JP7/285664 1995-11-02
JP28566495 1995-11-02
JP7/285666 1995-11-02

Publications (1)

Publication Number Publication Date
WO1997001388A1 true WO1997001388A1 (fr) 1997-01-16

Family

ID=27528298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001772 WO1997001388A1 (fr) 1995-06-28 1996-06-27 Systeme de traitement des gaz de combustion

Country Status (8)

Country Link
EP (1) EP0779100B8 (ja)
JP (1) JP3272366B2 (ja)
KR (1) KR100235854B1 (ja)
CN (1) CN1126594C (ja)
AT (1) ATE231412T1 (ja)
CA (1) CA2193638C (ja)
DE (1) DE69625887T2 (ja)
WO (1) WO1997001388A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1066499C (zh) * 1998-10-07 2001-05-30 中国科学院山西煤炭化学研究所 一种活性炭纤维表面改性的方法
CN1068913C (zh) * 1998-10-07 2001-07-25 中国科学院山西煤炭化学研究所 一种具有高脱硫率的活性炭纤维的制备方法
JP2002301335A (ja) * 2001-04-04 2002-10-15 Osaka Gas Co Ltd 脱硫装置及び脱硫方法
US6814948B1 (en) 1995-06-28 2004-11-09 Mitsubishi Jukogyo Kabushiki Kaisha Exhaust gas treating systems
CN103480270A (zh) * 2013-09-13 2014-01-01 北京矿迪科技有限公司 一种基于生物质脱硫脱硝剂的高温烟气处理系统
CN105879620A (zh) * 2016-05-12 2016-08-24 大唐环境产业集团股份有限公司 一种用于烟气净化的两级烟气三氧化硫脱除装置及方法
JP2016535232A (ja) * 2013-08-21 2016-11-10 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH 選択的触媒還元時の煙道ガス流のバイパスのための配置及び方法
CN107308813A (zh) * 2017-08-09 2017-11-03 成都中祥天宇环保科技有限公司 一种径向流通烟气的脱硫塔
CN107376639A (zh) * 2017-09-20 2017-11-24 山东大学 一种危险废物焚烧烟气净化方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2771309B1 (fr) * 1997-11-24 2000-02-11 Messier Bugatti Elaboration de support de catalyseur en fibres de carbone active
KR100320755B1 (ko) * 1998-11-27 2002-07-31 창 섭 신 유황화합물악취물질중메틸메르캅탄의제거를위한요오드화칼륨첨착활성탄소섬유의제조방법
WO2003037486A1 (fr) 2001-10-29 2003-05-08 Mitsubishi Heavy Industries, Ltd. Appareil de traitement de gaz de combustion et procede de desulfuration
US7267710B2 (en) 2003-03-28 2007-09-11 Mitsubishi Heavy Industries, Ltd. Method of and apparatus for regenerating adsorbent
KR100607862B1 (ko) * 2004-07-05 2006-08-03 권오준 저온활성탄 촉매를 이용한 엘시디용 기판유리 용해로의배출가스 정화장치 및 그 정화방법
DE102005003138A1 (de) * 2005-01-21 2006-07-27 Rwe Power Ag Nutzung von kohlenstoffhaltigen Reststoffen
CN101306296B (zh) * 2008-07-14 2011-06-22 新源动力股份有限公司 一种消除燃料电池氧化剂中二氧化硫的方法
LU91685B1 (de) * 2010-05-07 2011-11-08 Cppe Carbon Process & Plant Engineering S A Verfahren zur katalytischen Entfernung von Kohlendioxyd und Schwefeldioxid aus Abgasen
EP2457978A1 (en) * 2010-11-24 2012-05-30 Evonik Degussa GmbH Process for pyrolysis of lignin-rich biomass, carbon-rich solid obtained and use thereof as soil amendment or adsorbent
LU91900B1 (de) * 2011-11-14 2013-05-15 Carbon Process & Plant Engineering S A Verfahren zur katalytischen Entfernung von Kohlendioxyd NOx aus Abgasen
EP2724766A1 (en) 2012-10-26 2014-04-30 Alstom Technology Ltd A method of treating a carbon dioxide rich flue gas and a flue gas treatment system
CN103877988B (zh) * 2012-12-20 2016-04-27 大连凯特利催化工程技术有限公司 一种宽温高效氨选择性催化还原脱除NOx催化剂及其制备方法
CN105688523A (zh) * 2016-03-23 2016-06-22 中山大学 一种汽车4s店废气等离子体净化器
JP6416845B2 (ja) * 2016-10-19 2018-10-31 株式会社プランテック 排ガス処理装置
KR102158415B1 (ko) * 2018-12-14 2020-09-21 재단법인 한국탄소융합기술원 질소산화물 저감용 첨착활성탄소 및 이의 제조방법
CN110711488A (zh) * 2019-10-28 2020-01-21 庆泓技术(上海)有限公司 一种烟气脱硫、脱硝、脱汞一体化的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48101361A (ja) * 1972-04-04 1973-12-20
JPS5551438A (en) * 1978-10-13 1980-04-15 Agency Of Ind Science & Technol Regeneration method of sulfur oxide-removing active carbon catalyst
JPH0679176A (ja) * 1992-09-04 1994-03-22 Osaka Gas Co Ltd 一酸化窒素−アンモニア還元反応用活性炭素繊維触媒及び一酸化窒素含有ガスの一酸化窒素除去処理方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3639953A (en) * 1969-08-07 1972-02-08 Kanegafuchi Spinning Co Ltd Method of producing carbon fibers
GB1436245A (en) * 1972-09-08 1976-05-19 Kanebo Ltd Catalysts for the oxidation of carbon monoxide and their pro duction
GB1514171A (en) * 1974-01-11 1978-06-14 Atomic Energy Authority Uk Manufacture of porous carbon bodies
JPS5464091A (en) * 1977-11-01 1979-05-23 Toho Rayon Co Ltd Adsorbent for removal of nitrogen oxides
JPS5763117A (en) * 1980-10-01 1982-04-16 Babcock Hitachi Kk Stack gas desulfurization method
JPS58166922A (ja) * 1982-03-30 1983-10-03 Sumitomo Heavy Ind Ltd 脱硫・脱硝方法
DE3342508A1 (de) * 1983-11-24 1985-06-05 Heinrich Dr.rer.nat. 8032 Gräfelfing Frühbuss Verfahren zur herstellung von vanadinoxyd-katalysatoren
DE3620425C1 (de) * 1986-06-18 1987-06-19 Bergwerksverband Gmbh Verfahren zur Herstellung eines Aktivkohlekatalysators
JP2717232B2 (ja) * 1990-01-12 1998-02-18 群栄化学工業株式会社 活性炭繊維構造体及びその製造方法
JP3151580B2 (ja) * 1992-12-04 2001-04-03 日石三菱株式会社 炭素材料の製造法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48101361A (ja) * 1972-04-04 1973-12-20
JPS5551438A (en) * 1978-10-13 1980-04-15 Agency Of Ind Science & Technol Regeneration method of sulfur oxide-removing active carbon catalyst
JPH0679176A (ja) * 1992-09-04 1994-03-22 Osaka Gas Co Ltd 一酸化窒素−アンモニア還元反応用活性炭素繊維触媒及び一酸化窒素含有ガスの一酸化窒素除去処理方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6814948B1 (en) 1995-06-28 2004-11-09 Mitsubishi Jukogyo Kabushiki Kaisha Exhaust gas treating systems
CN1066499C (zh) * 1998-10-07 2001-05-30 中国科学院山西煤炭化学研究所 一种活性炭纤维表面改性的方法
CN1068913C (zh) * 1998-10-07 2001-07-25 中国科学院山西煤炭化学研究所 一种具有高脱硫率的活性炭纤维的制备方法
JP2002301335A (ja) * 2001-04-04 2002-10-15 Osaka Gas Co Ltd 脱硫装置及び脱硫方法
JP4616497B2 (ja) * 2001-04-04 2011-01-19 大阪瓦斯株式会社 脱硫装置及び脱硫方法
JP2016535232A (ja) * 2013-08-21 2016-11-10 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH 選択的触媒還元時の煙道ガス流のバイパスのための配置及び方法
CN103480270A (zh) * 2013-09-13 2014-01-01 北京矿迪科技有限公司 一种基于生物质脱硫脱硝剂的高温烟气处理系统
CN105879620A (zh) * 2016-05-12 2016-08-24 大唐环境产业集团股份有限公司 一种用于烟气净化的两级烟气三氧化硫脱除装置及方法
CN107308813A (zh) * 2017-08-09 2017-11-03 成都中祥天宇环保科技有限公司 一种径向流通烟气的脱硫塔
CN107376639A (zh) * 2017-09-20 2017-11-24 山东大学 一种危险废物焚烧烟气净化方法

Also Published As

Publication number Publication date
CN1126594C (zh) 2003-11-05
JP3272366B2 (ja) 2002-04-08
KR100235854B1 (ko) 1999-12-15
CA2193638C (en) 2000-01-25
DE69625887D1 (de) 2003-02-27
DE69625887T2 (de) 2003-09-11
ATE231412T1 (de) 2003-02-15
KR970705436A (ko) 1997-10-09
EP0779100A4 (en) 1999-02-24
CN1155852A (zh) 1997-07-30
EP0779100B8 (en) 2003-07-02
EP0779100B1 (en) 2003-01-22
CA2193638A1 (en) 1996-12-29
EP0779100A1 (en) 1997-06-18

Similar Documents

Publication Publication Date Title
WO1997001388A1 (fr) Systeme de traitement des gaz de combustion
KR100204257B1 (ko) 탈초용 열처리 활성탄, 그 제조방법, 그것을 사용한 탈초방법 및 그것을 사용한 탈초시스템
AU693966B2 (en) Regeneration of catalyst/absorber
EP1053390B1 (en) Regeneration of catalyst/absorber
CA2182331A1 (en) Method and apparatus for treating combustion exhaust gases
HUT74856A (en) Material for removing contaminants from gaseous stream
KR20010072662A (ko) 황 화합물 함유 유출물의 처리방법 및 이를 위한촉매/흡착제
JP2012245444A (ja) 焼結炉排ガスの脱硫・脱硝方法
JP2011230120A (ja) NOx排出を制御および低減するシステムおよび方法
US6106791A (en) Exhaust gas treating systems
CN103566728A (zh) 用于烟气脱硫脱氮的设备
CN101785966B (zh) 一种烟气中no的高级氧化方法及装置
US6814948B1 (en) Exhaust gas treating systems
KR20160075928A (ko) NOx 및 SOx 동시 제거용 Fe-Cr/C 복합 촉매 및 이의 제조방법
KR20080059958A (ko) 오존 및 활성 코크스에 의한 배가스 동시 탈황 탈질 방법
KR101137469B1 (ko) 배가스 내의 황산화물 및 질소 산화물의 동시 제거 방법 및촉매
JP2009149460A (ja) 炭素質材料の表面改質方法、炭素質材料又は活性炭素繊維
JP3486696B2 (ja) 亜硫酸ガスを含むガスを被処理ガスとする脱硫方法
CN112023693B (zh) 一种热风炉高效脱硝方法及热风炉装置
JPS5814933A (ja) 乾式排ガス脱硫、脱硝方法および装置
JPS5841893B2 (ja) ハイエンガスシヨリホウホウ
JP4266267B2 (ja) 排ガス処理方法および装置
CN112426861A (zh) 一种高效脱硫脱硝系统及方法
JPH0352624A (ja) 乾式同時脱硫脱硝方法
KR100283046B1 (ko) 질소산화물 제거방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96190570.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1996921096

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1019970701085

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996921096

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1997 776519

Country of ref document: US

Date of ref document: 19970718

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1019970701085

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019970701085

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996921096

Country of ref document: EP