WO1995029205A1 - Composition thermodurcissable, materiau de moulage, structure moulee et procede de decomposition de ceux-ci - Google Patents

Composition thermodurcissable, materiau de moulage, structure moulee et procede de decomposition de ceux-ci Download PDF

Info

Publication number
WO1995029205A1
WO1995029205A1 PCT/JP1995/000816 JP9500816W WO9529205A1 WO 1995029205 A1 WO1995029205 A1 WO 1995029205A1 JP 9500816 W JP9500816 W JP 9500816W WO 9529205 A1 WO9529205 A1 WO 9529205A1
Authority
WO
WIPO (PCT)
Prior art keywords
molded
thermosetting composition
aliphatic polyester
decomposition solution
mold
Prior art date
Application number
PCT/JP1995/000816
Other languages
English (en)
French (fr)
Inventor
Takahiko Terada
Hiroshi Onishi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP19950917460 priority Critical patent/EP0707043B1/en
Priority to US08/578,572 priority patent/US5814412A/en
Priority to DE1995633326 priority patent/DE69533326T2/de
Priority to KR1019950705989A priority patent/KR100203224B1/ko
Publication of WO1995029205A1 publication Critical patent/WO1995029205A1/ja
Priority to KR1019980710155A priority patent/KR100205154B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0006Disassembling, repairing or modifying dynamo-electric machines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/06Unsaturated polyesters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/02Casings or enclosures characterised by the material thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49751Scrap recovering or utilizing
    • Y10T29/49755Separating one material from another
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31681Next to polyester, polyamide or polyimide [e.g., alkyd, glue, or nylon, etc.]

Definitions

  • the present invention provides a thermosetting composition excellent in strength and heat resistance and easily decomposed at the time of disposal, a molding material containing the composition, a molding structure using the molding material, and It relates to these decomposition methods. Background surgery
  • thermosetting resins have been widely used for industrial materials. Thermosetting resin production will increase at a rate of several percentage points per year from 1985, and in 1990 about 200,000 tonnes of thermosetting resin will be produced annually. ing.
  • the thermosetting resin include epoxy resin, phenol resin, polyurethane resin, unsaturated polyester resin, urea resin, melamine resin, and polyimide. Resins. Many of such thermosetting resins are used as composite materials containing fillers such as cut-reinforced plastics (FRP). For example, about 80% of the production fi of unsaturated polyester resin is used as FRP.
  • inorganic materials such as calcium carbonate, talc and silica, or Examples include organic materials such as pulp and wood.
  • thermosetting resins are easily used for reintegration using fillers and the like, and are widely used in industrial fields such as molding materials, scrapboard, adhesives, and paints, or in the consumer field. I have.
  • thermosetting resin forms a three-dimensional structure after curing, and generally becomes an insoluble and infusible solid, which makes it difficult to decompose. Therefore, thermosetting resins are considered to be difficult to recycle or reuse, and were conventionally discarded.
  • thermosetting resins For example, unreinforced unsaturated polyester resins are used extensively in the production of large products such as fishing boats, tanks, and housing equipment, so the decomposition and recycling of waste is a serious problem. . Therefore, it is necessary to develop technologies for discarding, reusing, and reusing g-sources of waste thermosetting resins.
  • the convenient properties of thermosetting resins such as hardness, strength, heat resistance, flame retardancy, and chemical resistance, make the decomposition process technically difficult.
  • thermosetting resins are often used as structural materials due to their excellent strength properties, such as when used in molding materials for motors.
  • thermosetting resin It often contains other materials such as metal. Such materials are valuable materials that are more expensive than thermosetting resins. Inexpensive resin waste hinders the possibility of reclaiming and reusing expensive metals This is a bigger problem. Thus, the waste problem of the thermosetting resin cannot be solved by the resin obtained by the conventional formulation or the conventional decomposition treatment method.
  • molded structures such as molded motors, molded transformers, and IC packages, which are integrally molded using a molding material made of thermosetting resin, have been used in consumer equipment, industrial equipment, office equipment, and the like. ing.
  • a description will be given of a molded motor as an example.Since such a molded motor is excellent in quietness, vibration damping, insulation, and maintenance, and is compact and easy to automate in manufacturing.
  • the demand is expanding rapidly.
  • FIG. 7 is a perspective view showing an appearance of a conventional molded motor having a molded stator 201
  • FIG. 8 is a perspective view showing a configuration of a stay portion before being molded.
  • the mold moder has a motor part 220 and a mold stator 201 formed by integrally molding the stay part shown in FIG. Having.
  • FIG. 7 is a perspective view showing an appearance of a conventional molded motor having a molded stator 201
  • FIG. 8 is a perspective view showing a configuration of a stay portion before being molded.
  • the mold moder has a motor part 220 and a mold stator 201 formed by integrally molding the stay part shown in FIG. Having.
  • FIG. 7 is a perspective view showing an appearance of a conventional molded motor having a molded stator 201
  • FIG. 8 is a perspective view showing a configuration of a stay portion before being molded.
  • the stator portion has a core 204 on which a winding 203 is wound via a cylindrical insulator 200.
  • a printed circuit board 211 having a wiring pattern 210 on a part of one circumferential portion is provided. ing.
  • a terminal portion of the winding is connected to a lead wire 212 on the printed board 211, and an external signal is input.
  • This molding material is used as a binder material in thermoplastic resins such as poly (ethylene terephthalate), poly (ethylene), poly (propylene), and nylon, or in unsaturated polyester resin, vinyl resin. It contains thermosetting resins such as stell resin and phenol resin, and further contains calcium carbonate, talc, carbon black, etc. as additives.
  • thermosetting resins used as molding materials Despite its high value, it has been landfilled without being recycled. Furthermore, conventional decomposition treatment methods such as the above-mentioned volume decomposition due to thermal decomposition cannot be applied to thermosetting resins used as molding materials. Therefore, conventional molding motors can be used for both crushing and disassembly of molding material. It is not possible to reuse valuable resources such as iron cores and windings at the time of disposal. Other mold structures, such as mold trans, also have the same problems as described above. As described above, from the viewpoints of decomposition treatment of large-sized resin waste and recycling of valuable materials in molded structures, etc., thermosetting properties that can be easily decomposed while maintaining the conventional excellent properties Resins or thermosetting compositions are desired.
  • the first thermosetting composition of the present invention contains a thermosetting resin and an aliphatic polyester, and after curing, the aliphatic polyester is formed by a decomposition solution containing at least a base. Decomposition promotes decomposition.
  • the second thermosetting composition of the present invention contains an unsaturated polyester, an addition polymerizable monomer, a low-shrinkage agent other than an aliphatic polyester, and an aliphatic polyester, and after curing, a base and a base.
  • the third thermosetting composition of the present invention contains an unsaturated polyester, an addition polymerizable monomer, and a polyprolactone, and after curing, a base, water, methanol and ethanol. At least one selected from the group consisting of The decomposition solution containing the solvent can be easily decomposed at a temperature lower than the boiling point of the decomposition solution.
  • addition-polymerizable monomer is an aliphatic polyester having an addition-polymerizable terminal.
  • the fourth thermosetting composition of the present invention comprises an aliphatic polyester and a phenolic or epoxy resin, and after curing, a base and water, methanol, ethanol, and The decomposition solution containing at least one solvent selected from the group consisting of ethylene glycol can be easily decomposed at a temperature lower than the boiling point of the decomposition solution.
  • the aliphatic polyester contained in the first, second, and fourth thermosetting compositions is polyprolactone, polypropiolactone, polyaliphatone.
  • Such a thermosetting composition further contains such an aliphatic polyester other than the polyprolactone.
  • the first molding material of the present invention comprises a thermosetting composition containing a thermosetting resin and an aliphatic polyester, and a binder material.
  • the thermosetting composition promotes the decomposition of the thermosetting composition after curing by the decomposition of the aliphatic polyester by a decomposition solution containing at least a base group.
  • the second molding material of the present invention is a thermosetting composition containing an unsaturated polyester, an addition polymerizable monomer, a low shrinkage agent other than an aliphatic polyester, and an aliphatic polyester.
  • the thermosetting composition is selected from the group consisting of a base, water, methanol, ethanol, and ethylene glycol.
  • the decomposition solution containing at least one solvent can be easily decomposed at a temperature lower than the boiling point of the decomposition solution.
  • the third molding material of the present invention contains, as a binder material, a thermosetting composition containing an unsaturated polyester, an addition-polymerizable monomer, and a polyprolactone. After curing, the thermosetting composition is converted into a decomposition solution containing a base and at least one solvent selected from the group consisting of water, methanol, ethanol, and ethylene glycol. Thus, it can be easily decomposed at a temperature lower than the boiling point of the decomposition solution.
  • the fourth molding material of the present invention contains, as a binder material, a thermosetting composition containing an aliphatic polyester and a phenol resin or an epoxy resin, and the thermosetting composition is After curing, a decomposition solution containing a base and at least one solvent selected from the group consisting of water, methanol, ethanol, and ethylene glycol, is used to determine the boiling point of the decomposition solution. Low Can be easily decomposed at low temperatures.
  • the addition-polymerizable monomer contained in the thermosetting composition of the second and third molding materials is styrene.
  • the aliphatic polyester contained in the thermosetting composition of the first, second and fourth molding materials is polyprolatatatone, polyprobiolac. Tone, polyglycolic acid, polylactic acid, polyethylene adipate, polybutylene adipate, polytetramethylene adipate, polyethylene succinate, polystyrene succinate, polyforce At least one aliphatic polyester selected from the group consisting of prolacton diol, polyprolacton triol, and poly (3-hydroxyalkanoate).
  • such a thermosetting composition of the third mold material further contains such an aliphatic polyester other than polycaprolactone.
  • the first molded structure of the present invention has a molded part formed of a molded material integrally containing at least a metal, and at least a part of the molded material is heated.
  • a thermosetting composition containing a curable resin and an aliphatic polyester is contained as a binder material, and after curing, the thermosetting composition is obtained by a decomposition solution containing at least a base. The decomposition of the aliphatic polyester promotes the decomposition, and the gold JRs and the molding material can be easily separated.
  • the second molded Di structure of the present invention contains at least a metal.
  • the molding has a molding part made of a molding material that is integrally molded with the resin, and at least a part of the molding material has low shrinkage other than unsaturated polyester, addition-polymerizable monomer, and aliphatic polyester.
  • a thermosetting composition containing a binder and an aliphatic polyester as a binder material. After curing, the thermosetting composition contains a base, water, methanol and ethanol. And a decomposition solution containing at least one solvent selected from the group consisting of ethanol and ethylene glycol, and is easily decomposed at a temperature lower than the boiling point of the decomposition solution. The metal and the molding material can be easily separated from each other.
  • the third molding structure of the present invention has a molding portion made of a molding material integrally formed with at least metal. At least some of the molding material is not A thermosetting composition containing a Japanese polyester, an addition-polymerizable monomer, and a polybutadiene rattan is contained as a binder material, and the thermosetting composition is cured after curing. , A base, and at least one solvent selected from the group consisting of water, methanol, ethanol, and ethylene d'alcol, the boiling point of the decomposition solution. The metal is easily decomposed at a lower temperature, and the metal and the molding material can be easily separated.
  • a fourth molded structure of the present invention has a molded part formed of a molded material integrally containing at least a metal, and at least a part of the molded material is formed of a fat.
  • Group polyesters and phenols thermosetting containing c-nor resin or epoxy resin
  • a thermosetting composition comprising a base, water, methanol, ethanol, and ethylene glycol after curing. Is easily decomposed at a temperature lower than the surging point of the decomposition solution by the decomposition solution containing at least one solvent selected from the group consisting of: Can be divided into
  • the aliphatic polyester contained in the thermosetting composition of the first, second, and fourth molded rubber bodies is a polyprolactone, a polyprolactone.
  • Violactone, polyglycolic acid, polylactic acid, polyethylene adipate, polybutylene adipate, polytetramethylene adipate, polyethylene succinate, polybutylene succinate At least one aliphatic polyol selected from the group consisting of: polyprolactone diol, polyproprotonatotriol, and poly (3-hydroxyalkanoate) It is an ester, and the thermosetting composition of the third molded structure further contains such an aliphatic polyester other than the polyprolactone.
  • At least a part of the aliphatic polyester is dispersed as a filler in the mold part in a fibrous, needle-like or powdery form.
  • a fifth molded structure of the present invention has a molded part formed of a molded material integrally containing at least a metal, and the molded part is an internal molded body that includes the metal. And the inside An outer mold part is provided outside the mold part, and the outermost part has an outer mold part that defines the outermost part of the mold structure, and the inner mold part is mainly composed of an aliphatic polyester. .
  • the outer mold part contains the above-described thermosetting composition as a main component.
  • the metal is a winding, and the above-mentioned molded structure is used as a motor.
  • the molded body is a molded structure having a molded part formed of a molded material integrally including the winding, the insulator, and the iron core.
  • a part of the insulator penetrates the molded part and is exposed on a surface of the molded part.
  • the insulator is made of an aliphatic polyester.
  • a sixth molded structure of the present invention has a molded part formed of a molded material integrally containing at least a metal, and at least a part of the molded material is not formed.
  • a thermosetting composition containing a saturated polyester, styrene, polyprolactone, and an aliphatic polyester is contained as a binder material, and the aliphatic polyester is used as a binder.
  • thermosetting composition after curing, contains a base, water, methanol, and ethanol. , And at least one solvent selected from the group consisting of ethylene glycol, is easily decomposed at a temperature lower than the boiling point of the decomposition solution, and And the molding material can be easily separated.
  • thermosetting composition is selected from the group consisting of salt S, water, methanol, ethanol, and ethylene glycol after curing.
  • the molding material is formed by mixing a base with at least one solvent selected from the group consisting of water, methanol, ethanol, ′, and ethylene daryl.
  • the thermosetting composition contains at least an aliphatic polyester and a thermosetting resin.
  • the molded structure is selected from the group consisting of a base, water, methanol, ethanol, and ethylene glycol. Dipping into a decomposition solution containing at least one kind of solvent to be molded, and the molded structure is formed integrally with at least metal.
  • Thermosetting composition having a molding portion made of a molding material, wherein at least a part of the molding material contains at least an aliphatic polyester and a thermosetting resin. As a binder material.
  • a second method for disassembling a molded structure according to the present invention is a method for disassembling a molded structure having a mold portion made of a molded material integrally formed with at least gold.
  • the inner mold part is mainly composed of an aliphatic polyester and includes the following steps: at least a part of the inner mold part by cutting or opening.
  • the mold structure is selected from the group consisting of a good solvent for the aliphatic polyester or a base and water, methanol, ethanol, and ethylene glycol. With at least one solvent Immersing in a decomposition solution containing
  • the decomposition solution is aceton, 2-butanone, dimethylformamide, dimethylsulfoxide, dioxane, tetrahydrofuran, getyl ether, diethyl glycol, At least one solvent selected from the group consisting of diethylene glycol monoester, diethylene glycol diester, dicarboxylic acid diester, methyl dimethyate, ethyl dimethyate, benzene, toluene, and phenol; So Contained in
  • the method for decomposing the thermosetting composition, the mold material, and the mold structure of the present invention includes the thermosetting composition, the mold material, or the mold structure.
  • the body is exposed to the decomposition solution at a temperature lower than the boiling point of the decomposition solution.
  • a method for recycling a molded structure according to the present invention is a method for recycling a molded structure having a molded portion formed of a molded material integrally containing at least metal.
  • thermosetting composition containing at least a portion of an aliphatic polyester and a thermosetting resin as a binder material, at least in part of the base material includes the following steps: Performing: immersing the molded structure in a decomposition solution containing a base and at least one solvent selected from the group consisting of water, methanol, ethanol, and ethylene glycol. And a step of chemically decomposing the mold part to such an extent that the form cannot be maintained, and a step of separating the metal and the decomposed mold part to collect the metal.
  • the mold structure is immersed at a temperature lower than the boiling point of the decomposition solution.
  • the metals are windings
  • the Di-shaped structure is a motor.
  • FIG. 1 is a schematic view showing a molding structure according to an embodiment of the present invention. It is sectional drawing which shows one embodiment of the evening.
  • FIG. 2 is an enlarged partial cross-sectional view showing another embodiment of the molding module, which is an example of the molding structure of the present invention.
  • FIG. 3 is an enlarged partial cross-sectional view showing another embodiment of the mold motor of FIG.
  • FIG. 4 is an enlarged partial cross-sectional view showing still another embodiment of Moldo Tomo, which is an example of the molding of the present invention.
  • FIG. 5 is a partial cross-sectional view showing another embodiment of the mold motor of FIG.
  • FIG. 6 is an enlarged partial cross-sectional view showing still another embodiment of a molding machine as an example of the molding structure of the present invention.
  • FIG. 7 is a perspective view showing the appearance of a conventional mold motor.
  • FIG. 8 is a perspective view showing the appearance of a stay portion of a conventional mold motor. Best form to apply
  • thermosetting composition contains an aliphatic polyester
  • the thermosetting composition is composed of one component
  • thermosetting composition contains a polymer having an aliphatic polyester moiety.
  • addition-polymerizable monomer includes an aliphatic polyester having an addition-polymerizable terminal.
  • the first thermosetting composition of the present invention comprises a thermosetting resin and a resin.
  • the decomposition is promoted by the decomposition of the aliphatic polyester by a decomposition solution containing an aliphatic polyester and, after curing, at least containing a base.
  • the second thermosetting composition of the present invention contains an unsaturated polyester, an addition polymerizable monomer, a low-shrinkage agent other than an aliphatic polyester, and an aliphatic polyester, and after curing, a base and a base.
  • the third thermosetting composition of the present invention contains an unsaturated polyester, an addition polymerizable monomer, and a polylactone, and after curing, a base, water, methanol, ethanol, and the like.
  • the decomposition solution can be easily decomposed at a temperature lower than the boiling point of the decomposition solution by using a decomposition solution containing at least one solvent selected from the group consisting of ethanol and ethylene glycol.
  • the fourth thermosetting composition of the present invention contains an aliphatic polyester, and a X-nor resin or an epoxy resin, and after curing, a base, water, methanol and ethanol. And a decomposition solution containing at least one solvent selected from the group consisting of ethylene glycol and ethylene glycol, and can be easily decomposed at a temperature lower than the boiling point of the decomposition solution.
  • thermosetting resin contained in the first thermosetting composition of the present invention examples include unsaturated polyester, epoxy resin, and phenol. Fingers, polyurethane resins, melamine resins, urea resins, polyimide resins, and the like. Unsaturated polyesters, epoxy resins, and phenolic resins can be suitably used in other thermosetting compositions of the present invention described below.
  • thermosetting resins have a condensable bond in their molecular skeleton.
  • the condensable bond means a portion formed by condensation in a thermosetting resin molecule, for example, an ester bond portion in an unsaturated polyester, and a phenol resin in a phenol resin. Is a methylene group moiety.
  • the unsaturated polyester contained in the second and third thermosetting compositions of the present invention and also contained in the first thermosetting composition is an unsaturated polybasic acid and a saturated polybasic acid and It can be obtained by polycondensation with coals by a known method.
  • the unsaturated polybasic acids include maleic anhydride, fumaric acid, itaconic acid ', and citraconic acid.
  • the saturated polybasic acids include phthalic anhydride, isophthalic acid, terephthalic acid, adipic acid, sebacic acid, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, and endomethylentephthalic anhydride.
  • Glycols include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, neopentyl glycol, 13-butanediol, 16-hexanediol, and hydrogenated bisphenol A. , Bisph X-Nol A propylene oxide compound, dibromoneopentyl glycol, etc. No.
  • Suitable unsaturated polyesters include copolymers of isophthalic acid and fumaric acid with neopentyl glycol as represented by formula (I), and those represented by formula ( ⁇ ) Phthalic anhydride or a copolymer of fumaric anhydride with propylene glycol, formula ⁇
  • the molar ratio between the unsaturated polybasic acid and the saturated polybasic acid is preferably from 30/70 to 70/30, and more preferably from 40/60 to 60/40.
  • the unsaturated polyester is practically provided as a solution product dissolved in a polymerizable monomer, and is referred to as an unsaturated polyester resin.
  • addition-polymerizable monomer used in the present invention examples include styrene, vinylinoletoluene, a-methylstyrene, methyl methacrylate, vinyl acetate, diaryl phthalate, and diphenyl phthalate. Ali lutesophthalate, gary olelate labrom phthalate, phenolic oleate acrylate, 2 — hydroxicetyl ate laterate, 16-hexanediol diaterate, etc. Is mentioned. Further, an aliphatic polyester having an addition-polymerizable terminal may be used. Considering curability, simplicity of viscosity control, cost, etc., styrene is preferred.
  • the addition polymerizable monomer is preferably 25 to 150 parts by weight, more preferably 30 to L: 100, based on 100 parts by weight of the unsaturated polyester.
  • 0-fold S-part most preferably 40 to: contained in the thermosetting composition in the range of L00-fold S-part. Content 2 If the amount is less than 5 parts by weight, the curability is insufficient, and the mechanical strength of the cured product decreases. Beyond 1 5 0 parts by weight, since decomposition solvent solution is not sufficiently permeate the cured product, the c of al degradability is insufficient, thermosetting group formed in a range above addition polymerizable mono- mer is the By being contained in the material, the shrinkage rate during curing can be further reduced.
  • an aliphatic polyester having an addition-polymerizable terminal may be used as the addition-polymerizable monomer.
  • the aliphatic polymer portion of this addition-polymerizable monomer is the same as the aliphatic polyester described below, the compatibility is very good, and the liquid of the thermosetting composition when it is not cured is very good. Excellent state stability.
  • the content, the curing conditions of the thermosetting composition, and the like are determined according to the molecular weight of the aliphatic polymer. May vary.
  • thermoplastic resin other than the aliphatic polyester is used.
  • polyethylene, polypropylene, polystyrene, polyvinyl benzoate, polyethylene methacrylate, poly (ethylene vinyl alcohol), acrylic copolymer, Thermoplastic resins such as methacrylic copolymers, styrene-butadiene block copolymers, and acrylonitrile-butadiene-styrene copolymers are exemplified.
  • the low-shrinkage agent is preferably used in an amount of 1 to 100 parts by weight, more preferably 1 to 100 parts by weight, based on 100 parts by weight of the unsaturated polyester. It is contained in the thermosetting composition in an amount of from 50 to 50 parts by weight, and preferably from 1 to 20 parts by weight. If the content is less than the single fi part, the low shrinkage property, that is, the moldability is reduced. If it exceeds 100 parts by weight, the mechanical strength decreases.
  • the aliphatic polyester used in the present invention is a thermoplastic saturated polyester. Such a polyester has extremely excellent degradability with respect to a decomposition solution described below. Aliphatic polyesters are obtained by catalyzed polymerization of lactones such as polylactolactone and polylactone biolactone represented by the formula (IV).
  • Polymer a polymer of hydroxy acid such as polylactic acid represented by the formula (V) or polyglycolic acid represented by the formula (VI); polyethylene adipate, polybutylene adipate Copolymers of glycols represented by the formula (VII) and aliphatic dicarboxylic acids, such as poly (tramethylenadipate), poly (ethylene succinate), and poly (propylene succinate);
  • a polymer having a functional group at a terminal such as a polyprolactone diol represented by the formula (VIII) or a polycaprolactone triol represented by the formula (IX); a polymer represented by the formula (X) Terminally modified polycaprolactone B;
  • thermosetting composition obtained by fermentation of microorganisms, such as (3-hydroxyactanoate).
  • thermosetting composition When the thermosetting composition is in a liquid state, it has excellent stability, and when decomposed after curing, has excellent decomposability, and Polycaprolactone, polycaprolactonediol, polyproprolactone toriol and polylactic acid are preferred because of their good dispersibility.
  • n * ⁇ n '°, e 1 ⁇ 1 ⁇ , and! !!! 1 ⁇ m 3 are each independently 1 0-2, a 000, R 1 and R 2 are each independently a hydrocarbon group having 1 to 2 0 carbon atoms.
  • the aliphatic polyester is preferably used in an amount of 1 to 100 parts by weight of the thermosetting resin. It is contained in the thermosetting composition in an amount of up to 100 parts by weight, more preferably 2 to 50 parts by weight, most preferably 3 to 20 parts by weight. If the contained fi is less than the single fi part, the decomposability by the decomposition solution is insufficient. If it exceeds 100 parts i, the mechanical strength after curing is insufficient. In the case of a thermosetting composition containing the unsaturated polyester and the aliphatic polyester, the aliphatic polyester is preferably 1 to 100 parts of the unsaturated polyester.
  • thermosetting composition It is contained in the thermosetting composition in an amount of from 100 to 100 parts by weight, more preferably from 2 to 50 parts by weight, most preferably from 3 to 20 parts by weight. If the content is not less than 1 part by weight, the decomposability by the decomposition solution is insufficient. If it exceeds 100 parts by weight, the mechanical strength after curing is insufficient. ' Further, as described later, when a molding material is prepared by adding a filler to the thermosetting composition, the aliphatic polyester is slightly more soluble than when no filler is added. It is preferable that it be contained in many S. This is because the aliphatic polyester is sufficiently dispersed even in the space increase due to the filler.
  • thermosetting composition prepared by adding 100 parts by weight of a mixture of an unsaturated poly- ester and an addition-polymerizable monomer to five fi parts of an aliphatic poly- ester is described.
  • a molding material is prepared by further adding 150 parts by weight of calcium carbonate to this thermosetting composition, the aliphatic polyester is mixed with the above mixture 1 for the following reason.
  • Add 7.7 parts by weight instead of 5 fi parts per 100 parts by weight. Since the specific gravity of calcium carbonate is 2.7, the body of the monolide is added about 55.6 parts by volume ( 1550 / 2.7) by calcium carbonate. Therefore, it is necessary to add 2.7 parts by weight (5 x 5.5 / 100) in order for the aliphatic polyester to disperse as before the volume increase.
  • the phenol resin used in the present invention is obtained by polymerizing phenol X and formaldehyde by a known method.
  • Phenolic resins are broadly classified into novolak resins obtained under acidic catalysts and resole resins obtained under alkaline catalysts. Nopolak resin is cured by heating with a curing agent, and resole resin is cured only by heating. In the present invention, novolak resins are preferred. Further, in the present invention, a phenol resin having an aliphatic polyester moiety in a side chain is also preferable.
  • thermosetting composition containing the above-mentioned X-phenol resin and the above-mentioned aliphatic polyester
  • the aliphatic poly-ester is added to 100 parts by weight of this phenol resin. It is preferably contained in the thermosetting composition in the range of 1 to 100 parts by weight, more preferably 1 to 50 parts by weight, and most preferably 1 to 20 parts by weight. You. When the ft content is less than 1 part by weight, the decomposability by the decomposition solution is insufficient. If it exceeds 100 parts S, the mechanical strength after curing is insufficient.
  • the epoxy resin used in the present invention includes a glycidyl ether type resin, a glycidyl ester type resin, a glycidylamine type resin, an epoxy novolak resin, an alicyclic epoxy resin, a brominated epoxy resin, and an aliphatic resin.
  • Epoxy resins and the like can be mentioned.
  • Bisph Dalicidyl ether-type resin obtained from L-norl A and epichlorohydrin is preferred.
  • an epoxy resin having an aliphatic polyester moiety in a side chain as represented by the formula (XI) is also preferably used.
  • thermosetting compositions containing the epoxy resin and the aliphatic polyester
  • the aliphatic polyester is preferably used in an amount of 100 to 100 parts by weight of the epoxy resin. It is contained in the thermosetting composition in the range of 1 to 50 parts by weight, preferably 1 to 50 parts by weight, most preferably 1 to 20 parts by weight. If the contained S is less than 1 part by weight, the decomposability by the decomposing solution is insufficient. Beyond 1 0 0 part by weight, the mechanical strength after curing is insufficient £ thermosetting composition of the present invention is rather to preferred, may contain a curing agent.
  • curing agent for the unsaturated polyester examples include benzoyl peroxide, t-butyl perbenzoate, t-butyl peroxybenzene, t-butyl peroxylaurate, and t-butyl veroxy-2. —Ethylhexanoate, t-butyl partate, etc.
  • the curing agent is preferably used in an amount of 0.1 to 5 parts by weight, more preferably 0.1 to 5 parts by weight, based on a total of 100 parts by weight of the unsaturated polyester and the addition polymerizable monomer. It is contained in the thermosetting composition in the range of three to four fi parts, most preferably 0.5 to three S parts. When the content is less than 0.1 part: if less than a part, curing is insufficient.
  • X-knol resin and epoxy resin examples include benzylmethylamine, hexamethylenetetramine, methaf: I: dilendiamine, diaminodiphenyl methane, diaminodiphenyl: c-nylsulfone, and the like.
  • the preferred content of the above curing agent is as follows:
  • the novolak resin is used as the above-mentioned phenolic resin, it is preferably 5 to 10 parts by weight based on 100 parts by weight of the novolak resin.
  • 0 layer S section more preferably 5 to 40 layers! : Part, most preferably in the range of 7 to 20 layers S part in the thermosetting composition. The same applies to the case where the above epoxy resin is used.
  • thermosetting composition of the present invention is accelerated by the decomposition of the aliphatic polyester by a decomposition solution containing at least a base after curing.
  • the thermoset composition of the present invention after curing, comprises at least one base selected from the group consisting of water, methanol, ethanol, and ethylene glycol. It has a decomposability such that it can be easily decomposed by a decomposition solution containing a solvent at a temperature lower than the boiling point of the decomposition solution.
  • the decomposition of the thermosetting composition by the decomposition solution is performed by hydrolyzing the ester bond of the aliphatic polyester in the thermosetting composition by using a hydroxyl ion generated by a base in the solution as a catalyst. It is performed by decomposing the condensable bond of the thermosetting resin.
  • Bases contained in the decomposition solution include metal hydroxides such as sodium hydroxide and potassium hydroxide, metal oxides such as sodium oxide and calcium oxide, and sodium hydroxide.
  • metal hydroxides such as sodium hydroxide and potassium hydroxide
  • metal oxides such as sodium oxide and calcium oxide
  • sodium hydroxide sodium hydroxide.
  • Toxide force Metal alkoxides such as lithium t-butoxide and the like can be mentioned. These can be used alone or in combination of two or more.
  • the main solvent contained in the decomposition solution may be selected from the group consisting of water, methanol, ethanol, and ethylene glycol. These can be used alone or as a mixture of two or more.
  • Decomposition solutions include acetone, 2-butanone, dimethylformamide, dimethylsulfoxide, dioxane, tetrahydrofuran, getyl ether, diethylene glycol, methylen glycol monoester, At least one co-solvent selected from the group consisting of diethylene glycol diester, dicarboxylic acid diester, methyl acetate, ethyl acetate, benzene, toluene and phenol may further be contained.
  • the base is contained in the solution in an amount of preferably 0.1 to 50% by weight, more preferably 1 to 30% by weight, most preferably 2 to 20% by weight. . If the content S is less than 0.1% by weight, the catalytic effect at the time of hydrolysis is reduced. If it exceeds 50% by weight, it is difficult to prepare a decomposition solution. Furthermore, since the viscosity of the decomposition solution increases, the permeability of S to the cured product decreases, and the decomposition ability decreases.
  • the main solvent is preferably in the solvent in a range of 5 to 100 wt%, more preferably in a range of 30 to 90 wt%, and most preferably in a range of 50 to 80 wt S%. It is contained in.
  • the main solvent and co-solvent in the above range, room temperature or below the boiling point of the decomposition solution Therefore, the compatibility of the decomposition solution with the aliphatic polyester, that is, the permeability of the decomposition solution with the cured product, and the ability of the decomposition solution to generate hydroxyl ions, that is, the ability of the aliphatic polyester to decompose the ester bond And both will be excellent. Therefore, the decomposition ability of the decomposition solution is extremely excellent.
  • thermosetting composition of the present invention can be in any of a cured and uncured form. That is, it includes not only the form of cured products obtained by injection molding and transfer molding, but also various forms such as eyebrows, paints, putties, and adhesives. Can be degraded by digestion solution.
  • thermosetting composition of the present invention can be used even under high humidity conditions.
  • water alone does not easily destroy the three-dimensional network structure of the cured composition, so that excellent properties (eg, mechanical strength) after curing are maintained even under high humidity conditions.
  • the molding material of the present invention contains the thermosetting composition of the present invention at least as a binder material.
  • the molding material may contain a filler, a thickener, a molding agent, a wax, a coloring agent, and the like, if necessary.
  • fillers include carbonates such as calcium carbonate and magnesium carbonate, (sub) sulfates such as calcium sulfate, barium sulfate, calcium sulfite, cres, my power, and glass balun. , Montmorillonite, gay acid, kaolin, gay salts such as talc, silica, siliceous earth, iron oxide, pumice balun, oxidation Inorganic fillers such as oxides such as titanium and alumina, hydroxides such as aluminum hydroxide and magnesium hydroxide, graphite, glass male, carbon fiber and asbestos fiber: In addition, organic fillers such as wood flour, rice hulls, cotton, paper chips, nylon fibers, polyethylene fibers, wood, pulp, cellulose and the like can be mentioned.
  • polyethylene male fiber is preferred. Molded materials containing polyethylene as a filler are superior to other FRPs in specific strength and specific elastic modulus considering lightness.
  • the above-mentioned filler is preferably 5 to 600 parts by weight S part, more preferably 20 to 500 parts by weight S part, and most preferably 100 parts by weight of the thermosetting composition. Or in the range of 40 to 450 parts by weight.
  • the filler in such a range, the mechanical strength of the molding material is improved.
  • the aliphatic polyester is sufficiently dispersed in the cured product, the permeability of the decomposition solution is improved, and the decomposability of the molding material is improved.
  • thickener examples include perylene oxide, magnesium oxide, magnesium hydroxide, calcium oxide, calcium hydroxide, zinc oxide, benzoic acid, phthalic anhydride, tetrahydrophthalic anhydride, and maleic anhydride. Acid and the like.
  • cross-linking agent examples include stearic acid, zinc stearate, calcium stearate and the like.
  • Waxes include hex wax, carnauba wax, Paraffin and the like.
  • coloring agent examples include titanium white, chromium oxide, and carbon black.
  • the molding material may take the form of a bulk molding compound (BMC), a sheet molding compound (SMC), a pellet type molding compound (PMC), or the like.
  • BMC bulk molding compound
  • SMC sheet molding compound
  • PMC pellet type molding compound
  • This molding material can be formed by injection molding, transfer molding, compression molding, or the like.
  • Known molding conditions can be applied.
  • the conditions of a mold temperature of 150, an injection pressure of 150 kg / cm 2 , and a curing time of 5 minutes are suitably used.
  • the final molded products obtained from this molding material are: construction materials such as bathtubs, toilets, cisterns, wash basins; household goods such as chairs, desks, furniture; tiles, artificial marble, pipes.
  • Construction materials such as bathtubs, toilets, cisterns, wash basins; household goods such as chairs, desks, furniture; tiles, artificial marble, pipes.
  • Civil engineering S materials Body and parts of transport equipment such as ships, automobiles, railways, and aircraft: Housing equipment: Veneer boards; Used in various fields such as ornaments.
  • the molded structure of the present invention has a molded part made of the molded material of the present invention formed integrally with at least a metal.
  • a preferred embodiment of a mold motor as an example of a mold structure of the present invention will be described with reference to the drawings.
  • FIG. 1 shows one embodiment of a molded motor which is an example of the molded structure of the present invention. It is sectional drawing which shows an aspect.
  • the molded motor includes a motor section 101 and a molded stay 1.
  • the mold stator 1 includes an iron core 4, at least a part of the iron core 4, a winding 3 wound around an insulator 7, a core 4 and an insulator 7, and an iron core 4. It is made of a molding material integrally formed with the core 4, the insulator 7, and the winding 3, and the outermost portion has a molding portion 2 that defines the outermost portion of the molding stator 1.
  • the motor section 101 is attached to the opening of the molding section 2 and has at least a rotor shaft 102 and a rotor 103 attached to the rotor shaft. , Supported by bracket 104.
  • the rotor 103 is supported by a bearing 105 attached to the upper wall of the opening and a bearing 106 attached to the bracket.
  • the end portion of the winding 3 extends to a portion positioned above the molded stator shaft, where it is connected to a lead wire so that external input is possible.
  • the molded stator 1 may include a flange portion 5 having a number of mounting holes 6.
  • the molding material constituting the molding part 2 contains at least the above-mentioned thermosetting composition as a binder material.
  • the thickness of the maximum thickness portion of the molded portion can vary depending on the application, but in the present invention, it is preferably 0.1 to 20 mm, more preferably 0.2 to 10 mm. mm, most preferably 0.2-5 mm.
  • the insulator 7 examples include an aliphatic polyester and a polyether.
  • Thermoplastics such as polyethylene terephthalate and polyethylene may be used.
  • the insulator 7, the shape preserving effect of the winding 3 during molding de is required, so as not to soften at Mall de, softening or melting point, the temperature at the time of molding de, for example, about 1 0 0 e C
  • the above are preferred.
  • FIG. 2 is an enlarged partial cross-sectional view of the mold motor according to the present embodiment.
  • the ones digit is the same as the corresponding component in FIG. 1, and the tenth digit is the same as the number in the drawing.
  • the molded part 22 has an internal molded part 22a and an external molded part 22b.
  • the molded stator 21 includes an iron core 24, an insulator 27 covering at least a part of the iron core 24, an iron core 24, and an insulator 27.
  • a molding part 22 made of a molding material integrally formed with the core 24, the insulator 27, and the winding 23.
  • the molding part 22 is located outside the inner molding part 22 a and the inner molding part 22 a, which forms at least a part of the iron core 24, and the outermost part is the molding stator 2. 1 and an outer mold part 2 2 b that defines the outermost part.
  • the inner mold part 22a mainly contains an aliphatic polyester.
  • the main component has the largest S content in the mold material and its content! : Means 30% S% or more of the entire molding material.
  • the inner molded part 22a may be composed of only the above-mentioned aliphatic polyester or the molded material of the present invention having a high aliphatic polyester content.
  • the thickness of the maximum thickness portion of the outer mold portion can vary depending on the application, in the present invention, it is preferably from 0.1 to 20 mm, and more preferably from 0.2 to I: 0 mm, most preferably 0.2-5 mm.
  • the thickness of the inner mold portion can also vary depending on the application, like the outer mold portion. However, in the present invention, it is preferably 0.5 to: L 0 mm, and more preferably L 0 mm. 1 to 7 mm, most preferably 2 to 5 mm.
  • the mold stator of this embodiment having such a configuration is Compared to the mold stator as shown in Fig. 1, it has better ft due to environmental stability. For example, by using a molding material having a low content of aliphatic polyester or a conventional molding material containing no aliphatic polyester in the outer molding part 22 b, the aliphatic poly is obtained. A mold stay that can be used even in a high-temperature and high-humidity state where the ester is easily decomposed can be created.
  • the inner molding part 22 a is made of only aliphatic polyester. It is possible to configure. In this case, the inner molding portion 22a does not remain during disassembly, and the recycling of the iron core and the windings becomes easier. That is, the aliphatic polyester has a very high solubility in the decomposing solution used in the present invention and is not crosslinked. Therefore, at the end of the decomposition (that is, the outer mold portion 22b is separated). When possible, the inner mold part 22a is almost dissolved in the decomposition solution. Therefore, at the end of disassembly, the washing of the iron core wound wire has been substantially completed.
  • FIG. 3 is an enlarged partial cross-sectional view of the mold motor according to the present embodiment.
  • the molded portion 32 has an internal molded portion 32a and an external molded portion 32b, and a cutout portion 38 is provided on a side surface of the external molded portion 32b. This is the case when it is formed.
  • the molded stator 31 has an iron core 34 and an iron core 34. At least a part of the core 34 is an insulator 37, an iron core 34 and a winding 33 wound around the insulator 37, and an iron core 34 and an insulator 37 , And a molding part 32 made of a molding material integrally formed with the winding 33.
  • the molding part 32 is located outside the inner molding part 32a and at least part of the iron core 34, and the outermost part is the molding stator 3 1 and an outer mold part 3 2 b that defines the outermost part.
  • a cutout 38 is formed on the side surface of the outer mold 32b.
  • the inner mold part 32a is preferably made of a mold material that is easier to disassemble than the outer mold part 32b.
  • the notch 38 can be formed by scratching with a saw or a chisel, or by opening with a drill.
  • the notch 38 may be formed on the top surface or the bottom surface of the external molding.
  • the mold stator of the present embodiment having such a configuration increases the surface area of the molding material that comes into contact with the decomposition solution by the effect of the notch 38, and easily forms the internal molding 32a. Exposure promotes decomposition.
  • FIG. 4 is an enlarged partial cross-sectional view of the mold motor according to the present embodiment.
  • the mold stator 41 is wound around a core 44, at least a part of the iron core 44, an insulator 47, an iron core 44, and an insulator 47. It also has a winding 43, and an iron core 44, an insulator 47, and a molding part 42 made of a molding material integrally formed with the winding 43.
  • the molding part 42 is located outside the inner molding part 42a and the inner molding part 42a, at least a part of the iron core 44, and the outermost part is the molding stator 4a. 1 and an outer mold part 4 2 b that defines the outermost part. ⁇
  • a part of the rim 47 is exposed in the outer mold part 42b and exposed on the surface of the outer mold part 42b.
  • an aliphatic polyester is preferable.
  • the separation solution directly contacts the exposed part 47 a, and the exposed part 47 a It is easily disassembled sequentially from 47 a to the inside of the insulator and further to the mold part 42. Therefore, the separation of the winding 43 and the iron core 44 is extremely easy.
  • the present embodiment is not limited to a mold stay consisting of a mold section having an inner mold section and an outer mold section as shown in FIG. 4, but also a single mold as shown in FIG.
  • the present invention can also be applied to a molded stator composed of parts.
  • FIG. 4 shows the expansion of the mold motor in this example. It is a partial sectional view.
  • This embodiment is a case where a part of the inner mold part 52a is exposed on the outer surface of the outer mold part 52b.
  • the molded stator 51 is wound around an iron core 54, an insulator 57 that forms at least a part of the iron core 54, the iron core 54, and the insulator 57. It has a winding 53, an iron core 54, an insulator 57, and a molding part 52 made of a molding material integrally formed with the winding 53.
  • the molding part 52 covers at least a part of the core 54 and an inner molding part 52 a that covers at least a part of the core 54, and the outermost part of the molding part 52 a covers at least a part of the inner molding part 52 a.
  • It has an external molding part 52b that defines the outermost part of 5.1 overnight. Part of the inner mold part 52a penetrates the outer mold part 52b and is exposed on the surface of the outer mold part 52b.
  • the inner mold part 52a is preferably made of a mold material that is easier to disassemble than the outer mold part 52b.
  • the aliphatic material-containing ft of the molding material forming the outer molding part 52 a is more than the aliphatic polyester-containing: B of the molding material constituting the inner molding part 52 b
  • B the molding material constituting the inner molding part 52 b
  • the inner mold part 52 a may be composed of only the above-mentioned aliphatic polyester or the mold material of the present invention having a large amount of aliphatic polyester containing S, and the outer mold part 52 b may be The molding material of the present invention having a low aliphatic polyester content or a conventional molding material containing no aliphatic polyester can be used. Similar to the case shown in FIG.
  • the mold stator of the present embodiment having such a configuration has the internal mold portion 52 a that is easily disassembled, which is exposed on the outer surface of the mold portion 52. It comes into direct contact with the decomposition solution, and is easily decomposed sequentially from the exposed part of the inner mold part 52a to the part ⁇ . Therefore, the winding 53 and the iron core 54 are very easily separated.
  • FIG. 6 is an enlarged partial cross-sectional view of the molded motor according to the present embodiment.
  • the present embodiment is a case where the molding material forming the molding portion 62 contains an aliphatic polyester as the filler 69.
  • the molded stator 61 is formed by winding at least a part of the iron core 64 and the iron core 64 on an insulator 67, an iron core 64 and an insulator 67.
  • the filler As the aliphatic polyester as a filler, one having low solubility for each component in the molding material is preferable.
  • the filler may be needle-like, fibrous, or granular.
  • the filler portion made of the aliphatic polyester in the mold portion 62 is preferentially decomposed at the time of disassembly, and a large number of voids are formed in the mold portion. It is formed. For this reason, the mechanical strength of the molded part is sufficiently reduced, and cracks are easily generated from the gap. Therefore, it is extremely easy to separate the winding 63 and the iron core 64 by hitting.
  • the mold motor as an example of the mold structure of the present invention can be applied to a brushless DC motor, an AC motor, a linear motor, and the like.
  • the molded building which is an example of the molded building structure of the present invention, can be more easily disassembled by appropriately combining the connections of the preferred embodiments described above.
  • a similar effect can be obtained for a mold structure other than the mold motor by appropriately combining the configuration of the preferred embodiment with respect to the above-described mold motor.
  • the method for decomposing a thermosetting composition, a molding material, and a molded structure according to the present invention includes a base, and water, methanol, ethanol, and ethylene glycol. Immersing in a decomposition solution containing at least one selected solvent.
  • the time can vary depending on the temperature. For example, when eroding in a 60 e c decomposition solution, the time required for the decomposition process is reduced to about one-sixth that in immersion in a room temperature decomposition solution *. However, in order to avoid volatilization of the above-mentioned solvent, it is desirable that the temperature of the decomposition solution is lower than the surprising point of the solvent.
  • Another disassembly method of the mold structure of the present invention is a method for cutting or A step of exposing at least a part of the internal mold portion by opening, and forming the mold structure with a good solvent for an aliphatic polyester or a base, water, And S * to a decomposition solution containing at least one solvent selected from the group consisting of tanol, ethanol, and ethylene glycol.
  • the immersion time when the above good solvent is used can vary depending on the temperature and the type of the decomposition solution. For example, when boiling in toluene at room temperature, aliphatic polyesters are almost completely decomposed in 24 hours.o
  • Aliphatic polyesters are generally biodegradable. Therefore, when the aliphatic polyester is exposed, the fatty acid can be obtained by immersing it in an aqueous solution containing lipase, an enzyme that decomposes the aliphatic polyester, or in soil or seawater. Decomposition of the group polyester moiety is also possible. However, decomposition takes a very long time.
  • the first thermosetting composition of the present invention contains a thermosetting resin and an aliphatic polyester. This thermosetting After the composition has been cured, the aliphatic polyester
  • the ester bond of an aliphatic polyester is much more easily decomposed by a base group than the condensable bond of a thermosetting resin.
  • the decomposition solution easily penetrates the entire three-dimensional network structure of the cured product, and the aliphatic polyester is decomposed by the permeated decomposition solution.
  • the penetration of the decomposition solution is further promoted.
  • the reaction opportunity between the condensable bond of the thermosetting resin and the decomposition solution increases, and the decomposition of the thermosetting composition is accelerated.
  • the second thermosetting composition of the present invention contains an unsaturated polyester, an addition-polymerizable monomer, a low-shrinkage agent other than the aliphatic polyester, and an aliphatic polyester. After the thermosetting composition has been cured, the aliphatic polyester is distributed in the three-dimensional network structure of the cured product. Therefore, the cured thermosetting composition of the present invention after curing is at least one selected from the group consisting of a base and water, methanol, ethanol, and ethylene glycol for the following reasons. It has degradability such that it can be easily decomposed by a decomposition solution containing a solvent.
  • the aliphatic polyester has excellent solubility in the decomposition solution. Therefore, an attractive interaction occurs between the decomposition raft and the aliphatic polyester in the three-dimensional network structure.
  • the decomposition solution easily penetrates throughout the three-dimensional network structure of the cured product.
  • the decomposition solution passed through a Decomposes ester bonds of aliphatic polyesters and unsaturated polyesters by the action of bases. In this way, the three-dimensional network of the cured product is rapidly decomposed at a temperature lower than the boiling point of the decomposition solution so that the form as the cured product cannot be maintained.
  • thermosetting composition has the same moldability and mechanical strength after curing as the conventional thermosetting composition.
  • thermosetting composition when the addition-polymerizable monomer is an aliphatic polyester having an addition-polymerizable terminal, the aliphatic polymer portion of the addition-polymerizable monomer is a three-dimensional cured product. It forms part of a mesh building, and the aliphatic polyesters are uniformly distributed in a three-dimensional mesh structure. Therefore, the decomposition of the above-mentioned mechanism is further promoted by the effect of both of these aliphatic polyesters, so that the decomposition of the cured product is more easily performed. Furthermore, since the compatibility between the addition-polymerizable monomer and the aliphatic polyester is more excellent, the liquid stability of the thermosetting composition also becomes more excellent.
  • diethyl glycol monoester diethyl glycol diester
  • dicarboxylate diester dimethyl acetate, ethyl acetate, benzene, toluene, and phenol.
  • the third thermosetting composition of the present invention contains an unsaturated polyester, an addition-polymerizable monomer, a boronic lactone, and preferably an aliphatic polyester.
  • the polyprolactone also functions as a low shrinkage agent.
  • polycaprolactone is an aliphatic polyester, it has very good compatibility with aliphatic polyesters other than polyprolactone. Therefore, the preparation of the thermosetting composition is easier, and the thermosetting composition is more excellent in liquid stability.
  • thermosetting composition is more excellent in decomposability with a decomposition solution because polyprolactone is one kind of aliphatic polyester.
  • polyprolactone is one kind of aliphatic polyester.
  • the thermosetting composition maintains excellent moldability and excellent mechanical strength after curing.
  • the fourth thermosetting composition of the present invention contains an aliphatic polyester and a phenolic or epoxy resin. Also in this thermosetting composition, due to the effect of the aliphatic polyester, the three-dimensional network structure of the cured phenol resin or epoxy resin is easily decomposed by the same mechanism as described above. You.
  • the molding material of the present invention contains the thermosetting composition as a binder material. Due to the effect of the aliphatic polyester contained in the binder material, the binder has the same mechanism as described above. -The three-dimensional network structure of the material is easily decomposed.
  • the molding material of the present invention is based on a decomposition solution containing a base and at least one solvent selected from the group consisting of water, methanol, ethanol, and ethylene glycol. Easily disassembled. Since the mold structure of the present invention has a mold part made of the above-mentioned mold material, the same structure as described above is obtained by the effect of the aliphatic polyester contained in the binder material of the mold material. With cannism, the three-dimensional network structure of the binder material is easily broken down. Therefore, the molded structure of the present invention can be easily prepared by a decomposition solution containing a base and at least one solvent selected from the group consisting of water, methanol, ethanol, and ethylene glycol. Since it is decomposed, it is easy to separate metals, which is extremely effective from the viewpoint of recycling valuable resources.
  • the mold structure of the present invention includes a mold part having an outer mold part and an inner mold part, and the inner mold part is made of a mold material that is more easily disassembled.
  • the inner mold portion is decomposed in a short time, so that the inside of the mold structure becomes hollow. Therefore, the separation of metals becomes easier.
  • thermosetting composition of the present invention a molding material containing the composition, and a molding structure using the molding material include an aliphatic polyester contained therein, and a base; It has excellent decomposability with respect to a decomposition solution containing at least one solvent selected from the group consisting of water, methanol, ethanol, and ethylene glycol. Easy (Ie, rapidly below the boiling point of the decomposition solution). Furthermore, the aliphatic polyester does not hinder the formation of a three-dimensional network structure due to the hardening of the composition, so that the same excellent moldability and mechanical strength as before can be maintained.
  • a decomposition solution containing at least one solvent selected from the group consisting of water, methanol, ethanol, and ethylene glycol. Easy (Ie, rapidly below the boiling point of the decomposition solution).
  • the aliphatic polyester does not hinder the formation of a three-dimensional network structure due to the hardening of the composition, so that the same excellent moldability and mechanical strength as before can be maintained.
  • a copolymer of maleic acid / phthalic acid / propylene glycol containing 30% fi% of styrene and having a molar ratio of 11/2 manufactured by Nippon Shokubai ⁇ : 56 part i
  • styrene 38 part S as an addition-polymerizable monomer
  • polystyrene as a low shrinkage agent
  • polyprolactone Molecular 40,000, Daicel Chemical Co., Ltd., Braxel
  • thermosetting composition As a curing agent, t, butyl peroxybenzoate (Nippon Oil & Fats Co., Ltd., Perbutyl Z) was added at a ratio of 1 part by weight to 100 parts by weight of this mixture to give a thermosetting composition. obtained c then poured the composition in a box-like form having a thickness of l mm, Ri by the the 3 0 min heating child in 1 2 0 hand, the composition was cured. the cured composition A 10 x 20 xl mm plate was cut out and used as a sample for the decomposition treatment test.
  • Example 1 A sample was prepared in the same manner as in Example 1 except that it did not contain a polyprolaton, and the same test as in Example 1 was performed. The results are shown in Table 1.
  • thermosetting composition of Comparative Example 1 which did not contain polyprolactone weighed only 1% even after 500 hours of immersion.
  • the sample obtained from the thermosetting composition of Example 1 containing polyprolactone showed a 17% decrease in fi fi in 50 hours from 3 ⁇ 4 did.
  • This decrease i is much larger than the content of the polyprolactone (about 5.7% by weight) in the thermosetting composition of Example 1, and This indicates that the components are also decomposed into poly-S.
  • NMR measurement of the decomposition solution after the decomposition treatment test the presence of phthalic acid in the unsaturated polyester was confirmed, and the ester bond of the polycaprolactone was confirmed.
  • thermosetting composition is remarkably improved by containing the polyprolactone which is one kind of the aliphatic polyester.
  • thermosetting composition of Example 1 Furthermore, the curability (gelation time and curing time), injection moldability and transfer molding property (spiral flow length) of the thermosetting composition of Example 1 are not problematic in practice. Was. Further, the appearance and mechanical strength of the composition after curing were practically no problem at all.
  • thermosetting composition of Example 1 was easily prepared at room temperature by the decomposition solution containing the base and ethanol while maintaining the excellent properties of the conventional thermosetting composition. Decomposed.
  • Unsaturated polyester (Nippon Shokubai Co., Ltd., Epolac) 56 parts i, polystyrene as an addition polymerizable monomer 38 parts ft, polystyrene as a low shrinkage agent 6 parts
  • the fi part and the polyprolactone diol (molecular weight: 2000, manufactured by Daicel Chemical Co., Ltd., Braxel 200) as the aliphatic polyester are mixed with 6 parts: t part.
  • t-butyl peroxybenzoate (Perbutyl Z, manufactured by NOF CORPORATION) was added at a ratio of 1 part by weight to 100 parts by weight of this mixture to give a thermosetting composition. Obtained.
  • This composition was poured into a box-shaped mold having a thickness of l mm, and the composition was cured by heating at 120 ° C. for 30 minutes.
  • the composition after curing was cut out into a 10 x 20 xl mm plate shape and used as a sample for a decomposition treatment test.
  • Example 2 A sample was prepared in the same manner as in Example 2 except that polylactic acid hexalayer: S part was used instead of polylactic acid diol, and the same test as in Example 2 was performed. Table 2 shows the results.
  • Example 2 was repeated except that polycaprolactone triol (molecular weight: 300, manufactured by Daicel Chemical Co., Ltd., Braxel 300) was used instead of polyprolactone diol.
  • a sample was prepared in exactly the same manner, and the same test as in Example 2 was performed. Table 2 shows the results.
  • Example 6 A sample was prepared in the same manner as in Example 2. Except that a decomposition solution without methanol (prepared by mixing sodium lg of sodium hydroxide and 30 g of water) was used, and the temperature of the decomposition solution was set to 80. The same test as in Example 2 was performed. Table 2 shows the results. (Example 6)
  • Example 2 A sample was prepared in the same manner as in Example 2. Instead of water, use a decomposition solution containing ethylene glycol (a mixture of 1 g of sodium hydroxide, 15 g of methanol, and 15 g of ethylene glycol made by Wei). The same test as in Example 2 was performed except for the above. Table 2 shows the results.
  • ethylene glycol a mixture of 1 g of sodium hydroxide, 15 g of methanol, and 15 g of ethylene glycol made by Wei.
  • Example 5 the decomposition solution that does not contain 8 0 e C to the METHANOL Example In Section 6, a normal-temperature digestion solution containing methanol and ethylene glycol was used.
  • Table 2 in Examples 2 to 6, the samples treated with the decomposition solution containing the base and water, methanol, or ethylene glycol took from * to 200 hours. However, the weight was reduced by a minimum of 179, indicating degradability by erosion. Comparing Example 2 with Example 5, it was found that the decomposition solution consisting of sodium hydroxide and water was heated up to 80% to obtain sodium hydroxide and methanol.
  • Example 2 Comparing Example 2 with Example 6, the decomposition solution using methanol and water as the solvent is better than the decomposition solution using methanol and polyethylene glycol as the solvent. It also had excellent resolution.
  • thermosetting compositions of Examples 2 to 6 contain a base and water, methanol, or ethylene glycol while maintaining the excellent properties of the conventional thermosetting composition. Depending on the decomposition solution, it is easily decomposed at room temperature or at a temperature below the boiling point of the decomposition solution.
  • Unsaturated polyester (Nippon Shokubai Co., Ltd., Evolac) 56 fi parts, 38 parts by weight of styrene as an addition polymerizable monomer, 6 parts of polystyrene as a low shrinkage agent, And polyprolactone (molecular weight 40,000, manufactured by Daicel Chemical Co., Ltd., Braxel) 6 parts by weight was mixed.
  • T-butyl peroxylaurate as a curing agent
  • thermosetting composition (Nippon Yushi Co., Ltd., Perbutyl Z) was added at a ratio of single fi part to 100 parts by weight of this mixture to obtain a thermosetting composition.
  • the composition was poured into a box-shaped mold having a thickness of 1 mm, and heated at 120 ° C. for 30 minutes to cure the composition.
  • the composition after curing was cut out into a 10 x 20 x lmm plate shape and used as a sample for a decomposition treatment test.
  • Example 7 A sample was prepared in the same manner as in Example 7 except that polystyrene, which is a low-shrinkage agent, was not used, and the same test as in Example 7 was performed. Table 3 shows the results.
  • Example 7 Example 6 was repeated except that a polyprolactone was used instead of polyprolactone (polymolecular 2000, Daicel Chemical Co., Ltd., Placcel 2000). A sample was prepared in the same manner as described above, and the same test as in Example 7 was performed. Table 3 shows the results. (Example 10)
  • Polyprolactone diol (molecular weight 2000, manufactured by Daicel Chemical Co., Ltd., Braxel 2000) Additional use of 6-fold i-part and use of polystyrene, a low-shrinkage agent Did not Other than that, a sample was prepared in the same manner as in Example 7, and the same test as in Example 7 was performed. Table 3 shows the results.
  • Example 7 A sample was prepared in the same manner as in Example 7 except that polyprolactone was not included. Table 3 shows the results of a test performed in the same manner as in Example 7. Three
  • thermosetting composition of Comparative Example 5 showed only one sample even after 500 hours from g % Only heavy fi is little, but an example? Samples obtained from ⁇ 10 thermosetting compositions lost at least 24% by weight at least 500 hours after immersion. The samples obtained from the thermosetting compositions of Examples 8 and 10, which did not contain the low-shrinkage agent, showed a smaller weight loss than the samples obtained from the thermosetting compositions of Examples 7 and 9. It was big. This is presumably because polystyrene, which is a low-shrinkage agent, is not hydrophilic, and the permeability of the decomposition solution to the cured product is slightly reduced.
  • the shrinkage rate during curing was 0.1% or less in Examples 7 to 10 and Comparative Example 2.
  • the sample obtained from the thermosetting composition of Example 10 containing no low-shrinkage agent exhibited a slight decrease in shrinkage.
  • the thermosetting composition containing polyprolactone exhibits the same shrinkage property as the thermosetting composition of Comparative Example 2 containing a low-shrinking agent, the polyprolactone shrinks. It can be seen that this is an aliphatic polyester that can also function as an agent.
  • the shape of the samples of Examples 7 to 10 500 hours after the immersion was visually observed, and it was found to be a soft rubber-like shape that could easily be subjected to processing such as pulverization and deformation.
  • thermosetting compositions of Examples 7 to 10 were also There was no problem in practical use. Further, the appearance and mechanical strength of the composition after curing did not pose any practical problems.
  • thermosetting composition of the present example uses a decomposition solution containing a base, medanol, and water while maintaining the excellent properties of the conventional thermosetting composition. Decomposed easily at room temperature. (Example 11)
  • Unsaturated polyester (Nippon Shokubai Co., Ltd., Evolac) 35 parts by weight, 15 parts by weight of styrene, and ratatone-modified hydroxy having side chains containing polyprolactone 50 parts by weight of Shechiacrylate Monomer (manufactured by Daicel Chemical Co., Ltd.) were mixed.
  • thermosetting composition 1 part by weight of this mixture, 5 parts by weight of poly (methyl methacrylate) as a low shrinkage agent, 6 parts of poly (polyclolactone) as an aliphatic polyester, and hardening of 1 part by weight of the mixture
  • a single fi part of t-butyl baroxybenzoate (Nippon Oil & Fat Co., Ltd., Perbutyl Z) was added as an agent to prepare a thermosetting composition.
  • this composition was poured into a box-shaped mold having a thickness of l mm, and the composition was cured by heating it with 12 fins for 30 minutes.
  • the composition after curing was cut out into a plate of 10 ⁇ 2 O ⁇ l mm, and used as a sample for a decomposition treatment test.
  • Example 11 A sample was prepared in the same manner as in Example 11. The same test as in Example 11 was performed except that a separation solution prepared by mixing 1 g of sodium hydroxide, 27 g of ethanol, and 3 g of water was used. Table 4 shows the results.
  • Example 3 A sample was prepared in the same manner as in Example 11. The same test as in Example 11 was performed except that a decomposition solution containing no base (prepared by mixing 27 g of ethanol and 3 g of water) was used. Table 4 shows the results.
  • Example 14 A sample was prepared in the same manner as in Example 13. The same test as in Example 13 was performed except that a decomposition solution prepared by mixing 18 g of sodium hydroxide lg, 27 g of ethanol, and 3 g of water into 18 was used. Table 4 shows the results. (Comparative Example 4)
  • Example 13 A sample was prepared in the same manner as in Example 13. The same test as in Example 13 was performed, except that a decomposition solution containing no base (prepared by mixing 27. g of ethanol and 3 g of water) was used. Table 4 shows the results. _1
  • Examples 11 and 13 a decomposition solution containing sodium hydroxide and methanol was used.
  • Examples 12 and 14 a decomposition solution containing sodium hydroxide, ethanol and water was used.
  • Comparative Examples 3 and 4 a decomposition solution containing no sodium hydroxide was used, respectively.
  • Table 4 in Examples 11 to 14 and Comparative Examples 3 and 4, Comparative Examples 3 and 4 treated with a decomposition solution containing no sodium hydroxide or ethanol were used.
  • the samples of Examples 1 to 14 were treated with a decomposition solution containing sodium hydroxide and ethanol, while the weight of the sample did not decrease even after elapse of 500 hours from g *.
  • the sample at 550 h at was reduced by 21% at minimum in weight.
  • thermosetting compositions of Examples 11 to 14 maintain the excellent properties of the conventional thermosetting composition while maintaining the base and water, ethanol, or metal. It is easily decomposed at room temperature by a decomposition solution containing phenol and phenol. (Example 15)
  • a lactone-modified epoxy resin (Daicel, Inc.) obtained by modifying a secondary hydroxyl group of bisphenol-chlorohydrin resin with lactone is used.
  • Braxel G Braxel G
  • 1 part by weight of benzyldimethylamine as a hardening agent was mixed with 10 parts by weight of this resin to obtain a thermosetting composition.
  • the cured composition was cut into a plate of 10 ⁇ 20 ⁇ 1 mm and used as a sample for a decomposition treatment test.
  • the mechanical strength of the cured composition was practically no problem.
  • 1 g of sodium hydroxide, 24 g of methanol, and 6 g of water were mixed to prepare a decomposition solution.
  • the sample was exposed to S at room temperature, and the decrease in heavy S after 150 hours was measured. As a result, the heavy S was reduced by about 22%. When the state of the sample at this point was visually observed, it was decomposed into several pieces and did not maintain its shape as a cured product.
  • thermosetting composition of the present example uses the decomposition solution containing the base, methanol and water while maintaining the excellent properties of the conventional thermosetting composition, Decomposed easily at room temperature.
  • Phenol resin (Hitachi Kasei Kogyo Co., Ltd., Stand Light CP, or Hood Co., Ltd., Fudo Light)
  • o Lactone (Molecule i 40,000, manufactured by Daicel Chemical Co., Ltd., Braxel)
  • Double S part calcium carbonate with a particle size of about 5 ⁇ 50 fifty fi part, diameter about 0.5 mm, length 2 10 parts by weight of a 0 mm glass fiber was mixed.
  • Hexamethylenthramine as a curing agent was added at a ratio of 10% by weight to the resin weight i of this mixture to obtain a thermosetting composition.
  • the composition was poured into a box-shaped mold having a thickness of 1 mm, and heated at 140 ° C. for about 30 minutes to cure the composition.
  • the cured composition was cut into a 10 x 2 O xlmm plate and used as a sample for a decomposition treatment test.
  • Eboxy resin (Hitachi Kasei Kogyo Co., Ltd., stand dry CEL or Dainippon Inki Chemical Co., Ltd., Epiclone) 3 8 fi units, Polycabrolactone (40,000 molecular weight, Daicel Chemical Co., Ltd.) Duplex, plascel) Double fi part, 50 parts by weight of calcium carbonate having a particle size of about 5 // m, diameter of about 0.5 mm, and 10 parts of glass fiber with a length of 20 mm were mixed. Hexamethylenetetramin as a curing agent was added at a ratio of 10 ft% to the resin weight of this mixture to obtain a thermosetting composition.
  • the composition was poured into a box-shaped mold having a thickness of lmm, and heated at 100 ° C. for about 30 minutes to cure the composition.
  • the cured composition is 10 X 20 It was cut into a 1 mm x 1 mm plate and used as a sample for a decomposition treatment test.
  • 1 g of sodium hydroxide, 24 g of methanol, and 6 g of water were mixed to prepare a decomposition solution.
  • the sample was immersed in this digestion solution at room temperature, and the weight loss with time was observed. The results are shown in Table 5. _Five
  • i reduction of nearly 10% When the state of the sample was visually observed, it was found to be in a very fragile state so that processing such as crushing and deformation could be performed easily.
  • thermosetting compositions of Examples 16 and 17 did not pose any practical problems. Further, the appearance and mechanical strength of the composition after curing did not pose any practical problems.
  • thermosetting compositions of Examples 16 and 17 maintain the excellent properties of the conventional thermosetting composition, while decomposing the base, methanol and water. Easy at room temperature due to solution Decomposed.
  • thermosetting composition 30% by weight styrene solution of unsaturated polyester (Nippon Shokubai Co., Ltd., Epolac) 24 parts by weight, polyprolactone (molecular weight 40,000, Daicel Chemical Co., Ltd., Placcel) 6 parts by weight, polystyrene quadruple as low shrinkage agent: ft part, and t-butyl peroxybenzoate (Nippon Oil & Fats Co., Ltd., Perbutyl Z) 0.5 part S part as curing agent
  • a thermosetting composition was obtained. This composition was used as a binder material.
  • This molding material was subjected to transfer molding at a mold temperature of 150 and an injection pressure of 150 kg / en 2 to obtain a plate-like molded body.
  • the molding material of the present example can easily maintain the excellent properties of the conventional FRP, and at room temperature easily by the decomposition solution containing the base, ethanol and methanol. C to be separated (Example 19)
  • Unsaturated polyester (Rigorak, manufactured by Showa Polymer Co., Ltd.) 12 Double S part, styrene seven-fold S part, Polyprolactone (Molecule: 40,000, manufactured by Daicel Chemical Industries, Inc. 1 part by weight), 1 part by weight of polyvinyl acetate as a low-shrinking agent, and 0.4 part by weight of t-butyl benzoic benzoate (Perbutyl Z, manufactured by NOF Corporation) as a curing agent.
  • a thermosetting composition was obtained. This composition was used as a binder material.
  • Calcium carbonate with particle size of 4-6 / m 57 times as filler! 1.2 parts by weight of zinc stearate as a molding agent and 1 part by weight of calcium hydroxide as a thickener were dry-mixed using a kneader. To the mixture, 30 parts by weight of the above binder material was gradually added while kneading to obtain a uniform paste. Next, 10 parts by weight of polyethylene male fiber was added to the paste as short as possible while kneading to uniformly disperse it. When the glass fibers were uniformly dispersed, kneading was completed, and BMC was obtained, which was used as a mold material.
  • This molding material was pressed into the hopper of a combination injection molding machine with a blender / screw.
  • the mold temperature was 150
  • the screw rotation speed was 50 rpm
  • the injection pressure was 140 kg / cm. 2.
  • Injection molding was performed under the conditions of an injection time of 5 seconds and a dwell time of 30 seconds to obtain a cylindrical molded body having a diameter of 20 mm and a height of 15 mm.
  • This compact was lightweight and excellent in processability.
  • a decomposition solution was prepared by mixing 2 g of sodium hydroxide, 20 g of ethanol, and 10 g of water. The molded body was exposed to this decomposition solution at room temperature, and the state after 200 hours was visually observed. It was found to be in a very fragile state in which processing such as pulverization and deformation could be easily performed. Was. The mechanical strength of the compact decreased to about 1/8 before the erosion.
  • the strength of the molding material of the present example is easily deteriorated at room temperature by the decomposition solution containing the base, ethanol and water.
  • Unsaturated polyester (Epolac, manufactured by Nippon Shokubai Co., Ltd.) 28 parts by weight, 2.5 parts by weight of polyprolactone diol, 20 parts by weight of styrene fi, and polystyrene as a low shrinkage agent 2 parts by weight of len and 0.4 parts by weight of t-butylperoxy-1-ethylhexanoate (manufactured by NOF CORPORATION, Perptyl 0) as a curing agent were mixed to obtain a thermosetting composition. This composition was used as a binder material.
  • a chip strand obtained by cutting the glass fiber with a cutter was spread over a polyethylene film on one side, and impregnated with the above paste. This was rolled up to the required length and aged to achieve the required viscosity to obtain SMC, which was used as the molding material.
  • This mold material is used at a mold temperature of 65. C, and compression molded at a pressure 1 0 0 kg / cra l, to obtain a molded body.
  • a decomposition solution was prepared by mixing 1 g of sodium hydroxide, 25 g of methanol, and 5 g of water.
  • the weight was reduced and the strength was reduced.
  • the molding material of this example is easily decomposed at room temperature by the decomposition solution containing the base, methanol and water.
  • Unsaturated polyester (Nippon Shokubai Co., Ltd., Epolac) 52 S parts by weight, styrene 28 octane S part, polyprolatetatone (Molecular weight: 40,000, manufactured by Daicel Chemical Co., ) 6 parts by weight / styrene 14 parts by weight of the solution were mixed, 6 parts by weight of vinyl acetate as a low-shrinking agent, and t-butylperoxybenzoate as a curing agent (Perbutyl Z, manufactured by NOF CORPORATION) ) 1 part by weight was mixed to obtain a thermosetting composition. This composition was used as a molding material.
  • This molding material was integrally formed with a core on which a winding was wound via an insulator, and a molding motor as shown in Fig. 1 was prepared.
  • the product was prepared by mixing 1.25 g of ethanol, 24 g of ethanol and 6 g of water) and then immersed in S for 24 hours to remove the molding material. It was able to remove and separate the winding and the core.
  • Unsaturated Polyester (Nippon Shokubai Co., Ltd., Epolac) 5 Styrene 288 double fi parts, Polycaprolactonediol (Molecular i 200, Daicel Chemical Co., Ltd., Bracel) 200) 6-fold: ft part / styrene 14-fold S part solution is mixed, 6 parts by weight of polystyrene is used as a low shrinkage agent, and tert-butyl vinyl benzoate is used as a hardener. One part by weight of Perbutyl Z) manufactured by Yushi Co., Ltd. was mixed to obtain a thermosetting composition. This composition was used as a molding material.
  • a molding motor as shown in FIG. 1 was prepared in the same manner as in Example 21.
  • This mall stay
  • the data decomposition solution (hydroxide Na Application Benefits U beam 1 ⁇ 2 5 g, ethanol 6 g, and dimethyl sulfoxide 2 4 g of those prepared by mixing) mall was 2 4 hours Hita ⁇ to de When attempting to remove the material, the molding material was removed with bare hands, and the winding and the iron core could be separated.
  • Unsaturated polyester (Epolac, manufactured by Nippon Shokubai Co., Ltd.) 5 double parts of styrene; 6 parts by weight of particulate polylactic acid (manufactured by Shimadzu Corporation) having a particle size of 250 to 500 / m2, and polystyrene 6-fold S as a low-shrinkage agent And 1 part by weight of t-butyl peroxybenzoate (manufactured by NOF CORPORATION, P-butyl Z) as a curing agent, to obtain a thermosetting composition. This composition was used as a molding material.
  • a molding motor as shown in FIG. 1 was prepared in the same manner as in Example 21.
  • This mold motor was immersed in a decomposition solution (prepared by mixing 1.25 g of sodium hydroxide, 24 g of ethanol, and 6 g of water) for 24 hours, and then the molding material was removed. During the removal attempt, the mold material was removed with bare hands, and the winding and iron core could be separated.
  • Polylactic acid is not in the form of particles, but in the form of needles or fibers. There may be.
  • Unsaturated polyester (Nippon Shokubai Co., Ltd., Epolac) 5 Double S-part, Styrene 42 wt. Parts, Polypylene Skenetate (Showa Polymer Co., Ltd., Pionole) 6 wt. Parts , 6 parts by weight of polystyrene as a low-shrinking agent and 1 part by weight of t-butyl peroxybenzoate (Perbutyl Z, manufactured by NOF Corporation) as a curing agent-thermosetting composition I got something. Use this composition as molding material.
  • a molding motor as shown in FIG. 1 was prepared in the same manner as in Example 21.
  • This mold motor was immersed in a decomposition solution (prepared by mixing 1.25 g of sodium hydroxide, 24 g of ethanol, and 6 g of water) for 24 hours.
  • a decomposition solution prepared by mixing 1.25 g of sodium hydroxide, 24 g of ethanol, and 6 g of water.
  • Unsaturated polyester (Nippon Shokubai Co., Ltd., Epolac) 5 Double S part, 28 parts by weight of styrene, polycaprolactone (Molecular ft 40,000, Daicel Chemical Co., Braxcel) 7 parts by weight / styrene, 1/3 parts, 5 parts by weight solution, 6 parts by weight of polystyrene as a low-shrinking agent, and t-butylperoxybenzoate as a curing agent (Nippon Oil & Fats Co., Ltd.) Made of perbutyl Z) A curable composition was obtained. This composition was used as a binder material.
  • a molding motor as shown in FIG. 1 was prepared in the same manner as in Example 21.
  • This mold motor was immersed in a decomposition solution (prepared by mixing 1.25 g of sodium hydroxide, 24 g of ethanol, and 6 g of water) for 24 hours * and then molded Attempts were made to remove the mold material by simply tapping it with a hammer, and it was possible to easily collapse the molding material and separate the winding and the iron core.
  • a decomposition solution prepared by mixing 1.25 g of sodium hydroxide, 24 g of ethanol, and 6 g of water
  • thermosetting property a mixture of 8 parts by weight of styrene, 8 parts by volume of polyprolactone (molecular fi 40,000, Daicel Chemical Co., Braxel), 8 parts i / styrene, 1 part double fi part styrene, was added. 6 parts by weight of polystyrene as a low-shrinking agent and 1 part of i-butyl peroxybenzoate (Nippon Oil & Fats Co., Ltd., Perbutyl Z) as a curing agent are mixed together to obtain a thermosetting property. A composition was obtained. This composition was used as a binder material.
  • a molding motor as shown in FIG. 1 was prepared in the same manner as in Example 21.
  • the mold motor was immersed in a decomposition solution (prepared by mixing 1.25 g of sodium hydroxide, 24 g of ethanol and 6 g of water) for 24 hours, and then the molding material was removed. During the removal attempt, the mold material collapsed easily with a light hammer, and the windings and iron core could be separated.
  • Unsaturated polyester (Nippon Shokubai Co., Ltd., Epolac) 5 Double S part, styrene 4 double fi part, 6 parts by weight of polystyrene as low shrinkage agent, and t-butyl as curing agent
  • One part by weight of peroxybenzoate (manufactured by NOF CORPORATION, Perbutyl Z) was mixed at a time to obtain a thermosetting composition.
  • a molding model as shown in FIG. 1 was prepared in the same manner as in Example 21.
  • This mold motor was immersed in a decomposition solution (prepared by mixing 1.25 g of sodium hydroxide, 24 g of ethanol, and 6 g of water) for 24 hours, and then the molding material was mixed. Tried to remove it, but it could not be removed easily. '
  • Example 26 A molded motor as shown in Fig. 2 having an internal molded part and an external molded part was formed integrally with the molded material of Example 6. The thickness of the outer molding was about 6 mm.
  • the mold motor was exposed to a decomposition solution (prepared by mixing 1.25 g of sodium hydroxide, 24 g of ethanol, and 6 g of water) for 24 hours and then molded.
  • a decomposition solution prepared by mixing 1.25 g of sodium hydroxide, 24 g of ethanol, and 6 g of water
  • the outer molding was removed by tapping it several times with a hammer, exposing the inner molding.
  • the internal mold and the insulator were completely removed by subjecting the same decomposition solution to S for 24 hours.
  • the outer mold part Before immersing in the decomposition solution, the outer mold part was scratched with a chisel, and the inner mold part was partially exposed, except that the inner mold part was exposed. After exposure to the decomposition solution for 24 hours, the inner mold and the insulator were completely dissolved in the decomposition solution, and the mold stay was hollow. This mode By hitting the stator with a hammer several times, the external molding material was easily removed, and the windings and the iron core could be separated. The expression facilitated the disassembly.
  • Example 27 Same as Example 27 except that a polyethylene terephthalate having a heat distortion temperature of 24 O e C was used as the insulator, and the thickness of the external molding was about 8 mm. Then, a mold motor as shown in FIG. 2 was prepared, and was immersed in the decomposition solution of Example 27 for 24 hours. After the immersion, the inner mold was completely dissolved in the decomposition solution and the inside of the mold stator was hollow. By hitting the mold stator with a hammer several times, the external mold material was easily removed, and the winding and the iron core could be separated while placed on the insulator. .
  • Example 29 was carried out in the same manner as in Example 29 except that the outer mold part was scratched with a chisel and the inner mold part was partially exposed before immersion in the decomposition solution. For 24 hours. Disassembly was further promoted by exposing a part of the internal molding.
  • the present invention (1) conventional eroded properties such as hardness, strength, heat resistance, flame retardancy, and chemical resistance are not impaired, and decomposition treatment at the time of disposal is easy. ⁇ Curable composition; (2) Hardness, strength, heat resistance, flame retardancy, chemical resistance, etc. Mold material using composition; (3) Mold structure having mold material using thermosetting composition, easy to disassemble at disposal: (4) Thermosetting composition
  • the present invention provides a method for easily disassembling an object and a molding material, and a molding structure using the same, and (5) a method for recycling the molding structure.

Description

明細害
熱硬化性組成物、 モール ド材、 およびモール ド構造体、 なら びにこれらの分解処理方法
技術分野
本発明は、 強度および酎熱性に優れ、 かつ、 廃棄時の分解 処理が容易な熱硬化性組成物、 該組成物を含むモール ド材ぉ よび該モール ド材を用いたモール ド構造体、 ならびにこれら の分解処理方法に関する。 背景玟術
熱硬化性樹脂は、 従来よ り工業材料に広く 利用されている。 熱硬化性樹脂の生産量は、 1 9 8 5年から年間数パーセ ン ト の割合で増大し、 1 9 9 0年には年間約 2 0 0万 ト ンの熱硬 化性樹脂が生産されている。 熱硬化性樹脂と しては、 ェポキ シ樹脂、 フ X ノ ール樹脂、 ポ リ ウ レタ ン樹脂、 不飽和ポ リ エ ステル樹脂、 尿素榭脂、 メ ラ ミ ン樹脂、 ボ リ イ ミ ド樹脂など が挙げられる。 このような熱硬化性樹脂の多 く は、 截锥強化 ブラスチッ ク ( F R P ) のよ うな充填材を含有する複合材料 と して用いられる。 例えば、 不飽和ポ リエステル樹脂では、 その生産 fiの約 8 0 %が F R P と して使用されている。 充填 材と しては、 上記 F R Pに含有されるガラス繊維の他に、 炭 酸カルシウム、 タルク、 シ リ カのよ う な無機材料、 あるいは パルプ、 木材のよう な有機材料などが挙げられる。 このよう に、 熱硬化性樹脂は、 充填材などを用いる復合化による強化 が容易であるため、 成形材料、 積屑板、 接着剤、 塗料などの 工業分野、 あるいは民生分野に広範囲に利用されている。
熱硬化性樹脂は、 硬化後に 3次元架樣構造を形成し、 一般 的には不溶不融の固体となるため、 分解処理が困難である。 従って、 熱硬化性樹脂は、 再生処理あるいは再利用には適合 し難いものであると考えられ、 従来は廃棄されていた。
しか し、 近年、 廃棄物問題が注目 されるにつれて、 糜棄樹 脂の分解および再生が重要な問題となっている。 この問題は、 熱硬化性樹脂に関しても同様に重要である。 例えば、 維維強 化された不飽和ボ リ エステル樹脂は、 漁船、 タ ンクあるいは 住宅機材など大型製品の製造に多用されているため、 廃棄物 の分解および再生処理が深刻な問題となっている。 そこで、 廃棄熱硬化性樹脂の滅容化、 再利用および再 g源化技術の開 発が必要とされ、 熱分解による原料化などが検討され始めた。 しかし、 硬度、 強度、 耐熱性、 難燃性、 耐薬品性のような熱 硬化性樹脂の便れた特性が、 分解処理を技術的な面から困難 に している。 さ らに、 熱硬化性樹脂は、 その優れた強度特性 によ り構造材と して使用されるこ とが多 く、 例えばモータの モール ド材に使用される場合のよ う に、 廃棄物中に金属のよ う な他の素材を包含している場合が多い。 このよう な素材は、 熱硬化性樹脂よ り も高価な有価物である。 安価な樹脂廃棄物 が高価な金属などの再生および再利用の可能性を阻んでいる という こ とが、 よ り大きな問題となっている。 このよう に、 熱硬化性樹脂に関する廃棄物問題は、 従来の処方で得られる 樹脂や従来の分解処理方法では解决できない。
一方、 近年、 熱硬化性樹脂からなるモール ド材を用いて一 体成形したモール ド構造体、 例えばモール ドモータ、 モール ド トラ ンス、 I Cパッケージが、 民生機器、 産業機器、 事務 機器などに利用されている。 以下、 モール ドモータを一例と して説明すると、 このよう なモール ドモータは、 静音性、 制 振性、 絶縁性、 メ ンテナンス性に優れ、 かつ、 コ ンパク トで 製造時の自動化も容易であるので、 その需要が急速に拡大し ている。
従来、 交流モータ、 ブラ シ レス直流モータなどと して使用 されるモール ドモータのモール ドステータは、 一般的には、 例えば、 特開昭 6 1 — 2 1 4 7 4 0号公報に開示される楕成 を有する。 その構成について図 7 および図 8 を用いて説明す る。 図 7 は従来のモール ドステータ 2 0 1 を有するモール ド モータの外観を示す斜視図であり、 図 8 はモール ドされる前 のステ一夕部の構成を示す斜視図である。 図 7 に示すよう に、 モール ドモーダは、 モータ部と 2 2 0 と、 図 8のステ一夕部 をモール ド材 2 0 2で δう よ う に一体成形されたモール ドス テータ 2 0 1 とを有する。 ステータ部は、 図 8 に示すよう に、 円筒状の絶縁体 2 0 7 を介して巻線 2 0 3が卷装された铁芯 2 0 4 を有し、 該絶縁体 2 0 7 は、 その一方の円周部分の一 部に配線パターン 2 1 0 を有するプリ ン ト基板 2 1 1 を有し ている。 このプリ ン ト基板 2 1 1 上で上記卷線の端末部と リ ー ド線 2 1 2 とが接铙され、 外部からの信号が入力される。 このモール ド材は、 バイ ンダー材と して、 ポ リ エチレンテレ フタ レー ト、 ボ リ エチ レン、 ポ リ プロ ピレン、 ナイ ロ ンなど の熱可塑性榭脂、 または不飽和ポ リ エステル樹脂、 ビニルェ ステル樹脂、 フ iノール樹脂などの熱硬化性樹脂を、 さ らに 添加材と して、 炭酸カルシウム、 タルク、 カーボンブラ ッ ク などを含有する。
モール ドモータの廃棄時には、 モール ド材を除去して有価 物である鉄芯ゃ卷線の金厲類を リ サイ クルするこ とが望ま し い。 従来の一般的な廃棄物処理では、 最初にシュ レ ッダーに よ りモール ド材を破砕し、 次いで破砕物から鉄芯や巻線など の有価物を選別するこ とによ り、 有価物を リ サイ クルしてい る。 しかし、 上記のよ うな樣成のモール ドモータでは、 鉄芯 や巻線によ り シュ レッダーの歯が痛み易いため、 破砕処理が 敬遠され、 有価物の リ サイ クルが行われずに廃棄され、 他の 廃棄物とともに埋め立てられる。 上記のよ う なモール ド材は、 埋立によ り 自然に分解するものではないので、 鉄芯や巻線に 使用されるゲイ素鋼板や銅線などが、 モータ と しての使用後 も材質と しての価値が高いにもかかわらず、 リ サイ クルされ ずにそのまま埋立放 Sされている。 さ らに、 モール ド材と し て使用される熱硬化性樹脂に対しては、 上記の熱分解による 滅容化のよう な従来の分解処理方法は適用できない。 従って、 従来のモール ドモータでは、 破砕もモール ド材の分解も適用 できず、 廃棄時に鉄芯や巻線などの有価物が再利用 し難いと いう 問題点を有している。 モール ド ト ラ ン スのよ う な他のモ 一ル ド構造体においても、 上記と同様の問題点を有している。 以上のよう に、 大型樹脂廃棄物の分解処理、 およびモール ド構造体などにおける有価物の リ サイ クルといった観点から、 従来の優れた特性を維持しつつ、 かつ、 容易に分解され得る 熱硬化性樹脂あるいは熱硬化性組成物が望まれている。
発明の開示
本発明の第一の熱硬化性組成物は、 熱硬化性樹脂および脂 肪族ポ リ エステルを含有し、 硬化後に、 少なく と も塩基を含 有する分解溶液によ り該脂肪族ポ リ エステルが分解されるこ とによって、 分解が促進される。
本発明の第二の熱硬化性組成物は、 不飽和ボ リ エステル、 付加重合性モノ マー、 脂肪族ポ リ エステル以外の低収縮剤、 および脂肪族ポ リエステルを含有し、 硬化後に、 塩基と、 水、 メ タ ノ ール、 エタ ノ ール、 およびエチ レ ン グ リ コールでなる 群から選択される少な く とも 1 種の溶剤とを含有する分解溶 液によ り、 該分解溶液の湃点よ り低い温度で容易に分解され 得る。
本発明の第三の熱硬化性組成物は、 不飽和ボ リ エステル、 付加重合性モノ マー、 およびボ リ 力プロラ ク ト ンを含有し、 硬化後に、 塩基と、 水、 メ タ ノール、 エタ ノール、 およびェ チレングリ コールでなる群から選択される少な く と も 1 種の 溶剤とを含有する分解溶液によ り、 該分解溶液の沸点よ り低 い温度で容易に分解され得る。
好適な実施態様においては、 上記付加重合性モノ マーの少 な く と も一部は、 付加重合性末端を有する脂肪族ポ リエステ ノレである。
本究明の第四の熱硬化性組成物は、 脂肪族ポ リ エステル、 ならびにフ i ノ ール樹脂またはエポキシ樹脂を含有し、 硬化 後に、 塩基と、 水、 メ タノ ール、 エタ ノール、 およびェチレ ングリ コールでなる群から選択される少な く とも 1 種の溶剤 とを含有する分解溶液によ り、 該分解溶液の沸点よ り低い温 度で容易に分解され得る。
好適な実施怒様においては、 上記第一、 第二および第四の 熱硬化性組成物に含有される脂肪族ボ リエステルは、 ポ リ 力 プロラ ク ト ン、 ポ リ プロピオラク ト ン、 ポ リ ダリ コール酸、 ポ リ乳酸、 ポ リ エチ レンアジペー ト、 ポ リ ブチレンアジべ一 ト、 ポ リ テ トラメチレンアジペー ト、 ポ リ エチ レンスク シネ ー ト、 ポ リ ブチレンスク シネー ト、 ポ リ 力プロラ ク ト ンジォ ール、 ポ リ 力プロラ ク ト ン ト リオール、 およびポ リ ( 3 — ヒ ドロキシアルカノエー ト) でなる群から選択される少な く と も 1 種の脂肪族ボ リエステルであ り、 第三の熱硬化性組成物 においてもポ リ 力プロラク ト ン以外のこのよう な脂肪族ポ リ エステルがさ らに含有される。
本発明の第一のモール ド材は、 熱硬化性樹脂および脂肪族 ポ リ エステルを含有する熱硬化性組成物を、 バイ ンダー材と して含有し、 該熱硬化性組成物は、 硬化後に、 少な く とも塩 基を含有する分解溶液によ り該脂肪族ポ リ エステルが分解さ れるこ とによって、 分解が促進される。
本発明の第二のモール ド材は、 不飽和ボ リ エステル、 付加 重合性モノ マー、 脂肪族ポ リ エステル以外の低収縮剤、 およ び脂肪族ボ リ エステルを含有する熱硬化性組成物を、 バイ ン ダー材と して含有し、 該熱硬化性組成物は、 硬化後に、 塩基 と、 水、 メ タ ノ ール、 エタ ノ ール、 およびエチレングリ コ一 ルでなる群から選択される少なく と も 1 種の溶剤とを含有す る分解溶液によ り、 該分解溶液の沸点よ り低い温度で容易に 分解され得る。
本発明の第三のモール ド材は、 不飽和ポ リエステル、 付加 重合性モノマー、 およびポ リ 力プロラ ク ト ンを含有する熱硬 化性組成物を、 バイ ンダー材と して含有し、 該熱硬化性組成 物は、 硬化後に、 塩基と、 水、 メ タ ノール、 エタ ノ ール、 お よびエチ レングリ コールでなる群から選択される少な く とも 1 種の溶剤とを含有する分解溶液によ り、 該分解溶液の沸点 よ り低い温度で容易に分解され得る。
本発明の第四のモール ド材は、 脂肪族ポ リエステル、 なら びにフ ノール樹脂またはエポキシ樹脂を含有する熱硬化性 組成物を、 バイ ンダー材と して含有し、 該熱硬化性組成物は、 硬化後に、 塩基と、 水、 メ タ ノール、 エタ ノール、 およびェ チレングリ コールでなる群から選択される少な く とも 1 種の 溶剤とを含有する分解溶液によ り、 該分解溶液の沸点よ り低 い温度で容易に分解され得る。
好適な実施態様においては、 上記第二および第三のモール ド材の熱硬化性組成物に含有される付加重合性モノ マーはス チ レンである。
好適な実施態様においては、 上記第一、 第二および第四の モール ド材の熱硬化性組成物に含有される脂肪族ボ リエステ ルは、 ポ リ 力プロラ タ ト ン、 ポ リ プロ ビオラ ク ト ン、 ボ リ グ リ コール酸、 ポ リ乳酸、 ポ リ エチ レンアジペー ト、 ポ リ プチ レンアジペー ト、 ポ リ テ トラメチ レンアジペー ト、 ボ リ ェチ レンスク シネー ト、 ポ リブチ レンスク シネー ト、 ポ リ 力プロ ラ ク ト ン ジオール、 ポ リ 力プロラ ク ト ン ト リオール、 および ボ リ ( 3 —ヒ ドロキシアルカ ノエー ト) でなる群から選択さ れる少な く と も 1 種の脂肪族ポ リ エステルであ り、 第三のモ 一ル ド材の熱硬化性組成物においてもポ リ カブロラ ク ト ン以 外のこのよう な脂肪族ポ リエステルがさ らに含有される。
本発明の第一のモール ド構造体は、 少な く と も金属類を含 んで一体成形されたモール ド材からなるモール ド部を有し、 該モール ド材の少な く とも一部が、 熱硬化性樹脂および脂肪 族ポ リ エステルを含有する熱硬化性組成物を、 バイ ンダー材 と して含有し、 該熱硬化性組成物は、 硬化後に、 少なく とも 塩基を含有する分解溶液によ り該脂肪族ポ リエステルが分解 されるこ とによって、 分解が促進され、 該金 JR類と該モール ド材とが容易に分離され得る。
本発明の第二のモール ド棣造体は、 少な く と も金属類を含 んで一体成形されたモール ド材からなるモール ド部を有し、 該モール ド材の少な く とも一部が、 不飽和ボ リ エステル、 付 加重合性モノ マー、 脂肪族ポ リエステル以外の低収縮剤、 お よび脂肪族ポ リ エステルを含有する熱硬化性組成物を、 バイ ンダー材と して含有し、 該熱硬化性組成物は、 硬化後に、 塩 基と、 水、 メ タ ノール、 エタ ノール、 およびエチ レ ングリ コ ールでなる群から選択される少な く と も 1 種の溶剤とを含有 する分解溶液によ り、 該分解溶液の沸点よ り低い温度で容易 に分解され、 該金属類と該モール ド材とが容易に分離され得 本発明の第三のモール ド構造体は、 少な く と も金属類を含 んで一体成形されたモール ド材からなるモール ド部を有し、 該モール ド材の少な く とも一部が、 不飽和ポ リ エステル、 付 加重合性モノ マー、 およびボ リ カブ口ラタ ト ンを含有する熱 硬化性組成物を、 バイ ンダー材と して含有し、 該熱硬化性組 成物は、 硬化後に、 塩基と、 水、 メタ ノ ール、 エタ ノ ール、 およびエチレンダリ コールでなる群から選択される少な く と も 1種の溶剤とを含有する分解溶液によ り、 該分解溶液の沸 点よ り低い温度で容易に分解され、 該金属類と該モール ド材 とが容易に分雜され得る。
本発明の第四のモール ド構造体は、 少な く と も金属類を含 んで一体成形されたモール ド材からなるモール ド部を有し、 該モール ド材の少な く とも一部が、 脂肪族ポ リ エステル、 な らびにフ : cノ ール樹脂またはエポキシ樹脂を含有する熱硬化 性組成物を、 バイ ンダー材と して含有し、 該熱硬化性組成物 は、 硬化後に、 塩基と、 水、 メ タ ノ ール、 エタ ノ ール、 およ びエチ レングリ コールでなる群から選択される少な く と も 1 種の溶剤とを含有する分解溶液によ り、 該分解溶液の湃点よ り低い温度で容易に分解され、 該金 ¾類と該モール ド材とが 容易に分雜され得る。
好適な実施態様においては、 上記第一、 第二および第四の モール ド橡造体の熱硬化性組成物に含有される脂肪族ポ リエ ステルは、 ボ リ 力プロラ ク ト ン、 ポ リ プロ ビオラ ク ト ン、 ボ リ グリ コール酸、 ポ リ 乳酸、 ボ リ エチ レンアジペー ト、 ポ リ ブチレンアジペー ト、 ポ リ テ トラ メチレンアジペー ト、 ポ リ エチレンスク シネー ト、 ポ リ プチ レンスク シネー ト、 ポ リ 力 プロラ ク ト ンジオール、 ポ リ 力プロラ タ ト ン ト リ オール、 お よびポ リ ( 3 — ヒ ドロキシアルカ ノエー ト) でなる群から選 択される少な く とも 1 種の脂肪族ボ リ エステルであり、 第三 のモール ド構造体の熱硬化性組成物においてもポ リ 力プロラ ク ト ン以外のこのよう な脂肪族ポ リ エステルがさ らに含有さ れる。
好適な実施想様においては、 上記脂肪族ポ リ エステルの少 な く と も一部は、 維維状、 針状または粉状で上記モール ド部 に充填材と して分散されている。
本発明の第五のモール ド構造体は、 少な く と も金属類を含 んで一体成形されたモール ド材からなるモール ド部を有し、 該モール ド部が、 該金属類を う 内部モール ド部と、 該内部 モール ド部の外側に存在し、 その最外部が該モール ド構造体 の最外部を規定する外部モール ド部とを有し、 該内部モール ド部が、 脂肪族ポ リ エステルを主成分とする。
好適な実施態様においては、 上記外部モール ド部は、 上述 の各熱硬化性組成物を主成分とする。
好適な実施態様においては、 上記金属類が卷線であり、 上 記モール ド構造体はモータ と して使用される。
好適な実施態様においては、 上記モール ド棣造体は、 上記 卷線、 絶縁体、 および鉄芯を含んで一体成形されたモール ド 材からなるモール ド部を有する、 モール ド構造体であって、 該絶縁体の一部が、 該モール ド部を洞筻し、 該モール ド部の 表面に表出 している。
好適な実施態様においては、 上記絶縁体は、 脂肪族ボ リエ ステルでなる。
本発明の第六のモール ド構造体は、 少な く と も金属類を含 んで一体成形されたモール ド材からなるモール ド部を有し、 該モール ド材の少な く とも一部が、 不飽和ポ リ エステル、 ス チレン、 ボ リ 力プロラ ク ト ン、 および脂肪族ポ リ エステルを 含有する熱硬化性組成物を、 バイ ンダー材と して含有し、 該 脂肪族ポ リエステルが、 ポ リ プロ ビオラク ト ン、 ポ リ グリ コ ール酸、 ポ リ乳酸、 ポ リエチレンアジペー ト、 ポ リ プチレン アジペー ト、 ポ リテ トラメチレンアジペー ト、 ポ リエチレン スク シネー ト、 ポ リ プチレンスク シネー ト、 ボ リ 力プロラ ク ト ンジオール、 ボ リ 力プロラ ク ト ン ト リ オール、 およびポ リ ( 3 — ヒ ドロキシアルカノエー ト) でなる群から選択される 少な く と も 1 種であ り、 該熱硬化性組成物は、 硬化後に、 塩 基と、 水、 メ タ ノール、 エタ ノール、 およびエチレングリ コ ールでなる群から適択される少な く とも 1 種の溶剤とを含有 する分解溶液によ り、 該分解溶液の沸点よ り低い温度で容易 に分解され、 該金属類と該モール ド材とが容易に分離され得 る。
本発明の熱硬化性組成物の分解処理方法は、 該熱硬化性組 成物を、 硬化後に、 塩 Sと、 水、 メ タ ノール、 エタ ノール、 およびエチ レ ングリ コールでなる群から選択される少な く と も 1 種の溶剤とを含有する分解溶液に浸 »する工程を包含し、 該熱硬化性組成物が、 少な く とも脂肪族ボ リエステルと熱硬 化性樹脂とを含有する。
本発明のモール ド材の分解処理方法は、 該モール ド材を、 塩基と、 水、 メ タノール、 エタノ ール、 'およびエチレンダリ コールでなる群から選択される少な く とも 1種の溶剤とを含 有する分解溶液に s a (する工程を包含し、 該熱硬化性組成物 が、 少な く と も脂肪族ボ リ エステルと熱硬化性樹脂とを含有 する。
本発明の第一のモール ド構造体の分解処理方法は、 該モー ル ド構造体を、 塩基と、 水、 メ タ ノール、 エタ ノ ール、 およ びエチ レ ンダリ コールでなる群から 択される少な く とも 1 種の溶剤とを含有する分解溶液に浸 aする工程を包含し、 該 モール ド構造体が、 少なく と も金 ¾類を含んで一体成形され たモール ド材からなるモール ド部を有し、 該モール ド材の少 な く と も一部が、 少な く と も脂肪族ポ リ エステルと熱硬化性 樹脂とを含有する熱硬化性組成物を、 バイ ンダー材と して含 有する。
本発明の第二のモール ド構造体の分解処理方法は、 少なく とも金展類を含んで一体成形されたモール ド材からなるモー ノレ ド部を有するモール ド構造体の分解処理方法であって、 該 モール ド部が、 該金厲類を aう 内部モール ド部と、 該内部モ 一ル ド部の外側に存在し、 その最外部が該モール ド構造体の 最外部を規定する外部モール ド部とを有し、 該内部モール ド 部が、 脂肪族ボ リ エステルを主成分と し、 以下の工程を包含 する : 切削または開孔によ り該内部モール ド部の少な く とも 一部を表出させる工程、 および、 該モール ド構造体を、 該脂 肪族ボ リ エステルに対する良溶剤、 または、 塩基と、 水、 メ タ ノール、 エタ ノール、 およびエチレングリ コールでなる群 から選択される少な く とも 1 種の溶剤とを含有する分解溶液 に浸渡する工程。
好適な実施態様においては、 上記分解溶液は、 アセ ト ン、 2 —ブタ ノ ン、 ジメ チルホルムア ミ ド、 ジメ チルスルホキシ ド、 ジォキサ ン、 テ ト ラ ヒ ドロフ ラ ン、 ジェチルエーテル、 ジエチ レングリ コール、 ジエチレングリ コールモノエステル、 ジエチレングリ コールジエステル、 ジカルボン酸ジエステル、 齚酸メ チル、 齚酸ェチル、 ベ ンゼン、 トルエン、 およびフ エ ノ ールでなる群から選択される少な く とも 1 種の溶剤をさ ら に含有する。
好適な実施怒様においては、 本発明の熱硬化性組成物、 モ 一ル ド材およびモール ド構造体の分解処理方法は、 上記熱硬 化性組成物、 上記モール ド材または上記モール ド構造体が、 上記分解溶液に該分解溶液の沸点よ り低い温度で S ¾される。 本発明のモール ド構造体の リ サイ クル方法は、 少なく とも 金属類を含んで一体成形されたモール ド材からなるモール ド 部を有するモール ド構造体の リサイ クル方法であって、 該モ 一ル ド材の少なく とも一部が、 少な く とも脂肪族ボ リ エステ ルと熱硬化性樹脂とを含有する熱硬化性組成物を、 バイ ンダ ー材と して含有し、 以下の工程を包含する : 該モール ド構造 体を、 塩基と、 水、 メ タ ノ ール、 エタ ノール、 およびェチレ ングリ コールでなる群から選択される少な く とも 1 種の溶剤 とを含有する分解溶液に浸 «し、 該モール ド部を形態が維持 できない程度まで化学的に分解させる工程、 および該金属類 と該分解されたモール ド部とを分雜し、 該金属類を回収する 工程。
好適な実施態様においては、 上記モール ド構造体は、 上記 分解溶液の沸点よ り低い温度で浸 ¾される。
好適な実施態様におい.ては、 上記金属類は卷線であり、 上 記棣造体はモータである。 の ffi な
図 1 は、 本発明のモール ド構造体の一例であるモール ドモ 一夕の一実施態様を示す断面図である。
図 2 は、 本発明のモール ド構造体の一例であるモール ドモ 一夕の別の実施態様を示す拡大部分断面図である。
図 3 は、 図 2のモール ドモータの他の態様を示す拡大部分 断面図である。
図 4 は、 本究明のモール ド櫞造体の一例であるモール ドモ 一夕のさ らに別の実施態様を示す拡大部分断面図である。
図 5 は、 図 4 のモール ドモータの他の態様を示す部分断面 図である。
図 6 は、 本発明のモール ド構造体の一例であるモール ドモ 一夕のさ らに別の実施態様を示す拡大部分断面図である。
図 7 は、 従来のモール ドモータの外観を示す斜視図である。 図 8 は、 従来のモール ドモータのステ一夕部の外観を示す 斜視図である。 施するための最良の形態
本明細書において、 「熱硬化性組成物が脂肪族ボ リ エステ ルを含有する」 とは、 以下の形態で含有するこ とを包含する : ( 1 ) 熱硬化性組成物が、 一成分と して脂肪族ボ リ エステル を含有する ; および ( 2 ) 熱硬化性組成物が、 脂肪族ポ リェ ステル部分を有するポ リ マーを含有する。 さ らに、 付加重合 性モノ マーは、 付加重合性末端を有する脂肪族ポ リ エステル を包含する。
本発明の第一の熱硬化性組成物は、 熱硬化性樹脂および脂 肪族ポ リ エステルを含有し、 硬化後に、 少な く と も塩基を含 有する分解溶液によ り該脂肪族ポ リ エステルが分解されるこ とによって、 分解が促進される。
本発明の第二の熱硬化性組成物は、 不飽和ポ リ エステル、 付加重合性モノ マー、 脂肪族ボ リ エステル以外の低収縮剤、 および脂肪族ポ リエステルを含有し、 硬化後に、 塩基と、 水、 メ タ ノール、 エタ ノ ール、 およびエチ レングリ コールでなる 群から選択される少な く とも 1 種の溶剤とを含有する分解溶 液によ り、 該分解溶液の沸点よ り低い温度で容易に分解され ί る。
本発明の第三の熱硬化性組成物は、 不飽和ボ リ エステル、 付加重合性モノ マー、 およびポ リ 力プロラ ク ト ンを含有し、 硬化後に、 塩基と、 水、 メ タ ノール、 エタ ノール、 およびェ チ レングリ コールでなる群から選択される少な く とも 1 種の 溶剤とを含有する分解溶液によ り、 該分解溶液の沸点よ り低 い温度で容易に分解され得る。
本発明の第四の熱硬化性組成物は、 脂肪族ポ リ エステル、 な らびにフ X ノ ール樹脂またはエポキシ樹脂を含有し、 硬化 後に、 塩基と、 水、 メ タノ ール、 エタ ノ ール、 およびェチレ ングリ コールでなる群から選択される少な く と も 1 種の溶剤 とを含有する分解溶液によ り、 該分解溶液の沸点よ り低い温 度で容易に分解され得る。
本発明の第一の熱硬化性組成物に含有される熱硬化性樹脂 と しては、 不飽和ポ リ エステル、 エポキシ樹脂、 フ エ ノ ール 指、 ポ リ ウ レタ ン榭脂、 メ ラ ミ ン樹脂、 尿素樹脂、 ボ リ イ ミ ド樹脂などが挙げられる。 不飽和ポ リ エステル、 エポキシ 樹脂、 およびフ ノ ール樹脂については、 後述する本発明の 他の熱硬化性組成物にも好適に使用され得る。
これらの熱硬化性樹脂は、 その分子骨格中に縮合性結合を 有する。 ここで、 縮合性結合とは、 熱硬化性樹脂分子鎮にお ける縮合によ り形成される部分を意味し、 例えば、 不飽和ボ リ エステルではエステル結合部分であ り、 フ ヱ ノール樹脂で はメチ レン基部分である。
本発明の第二および第三の熱硬化性組成物に含有され、 第 一の熱硬化性組成物にも含有される不飽和ポ リ エステルは、 不飽和多塩基酸および飽和多塩基酸とグリ コール類とを公知 の方法で重縮合するこ とによ り得られる。 不飽和多塩基酸と しては、 無水マ レイ ン酸、 フ マ ^酸、 ィ タ コ ン酸'、 シ ト ラ コ ン酸などが举げられる。 飽和多塩基酸と しては、 無水フタル 酸、 イ ソフタル酸、 テレフタル酸、 アジピン酸、 セバシン酸、 テ トラ ヒ ドロ無水フタル酸、 メチルテ トラ ヒ ドロ無水フタル 酸、 エン ドメ チレンテ トラ ヒ ドロ無水フタル酸、 へッ ト酸、 テ トラブロム無水フタル酸などが举げられる。 グリ コール類 と しては、 エチレングリ コール、 プロ ピレングリ コール、 ジ エチレングリ コール、 ジプロ ピレ ングリ コール、 ネオペンチ ルグリ コール、 1一 3 ブタ ンジオール、 1一 6へキサンジォ ール、 水素化ビスフ エ ノール A、 ビスフ X ノール Aプロ ピレ ンォキシ ド化合物、 ジブロムネオペンチルグリ コールなどが 挙げられる。
好適な不飽和ボ リ エステルと しては、 式 ( I ) で表される よ う なイ ソフタル酸およびフマル酸とネオペンチルグリ コー ルとの共重合体、 式(Π )で表されるよ う な無水フタル酸およ び無水フマル酸とプロ ピレングリ コールとの共重合体、 式 π
I I )で表されるよう なイ ソフタル酸および無水マレイ ン酸とプ ロ ピレングリ コールとの共重合体などが挙げられる。
Figure imgf000020_0001
Figure imgf000020_0002
Figure imgf000020_0003
!! 1〜!! ,は、 各々独立して 1 〜 3 0 である , 不飽和多塩基酸と飽和多塩基酸とのモル比は、 3 0 / 7 0 〜 7 0 / 3 0が好ま し く、 4 0 / 6 0〜 6 0 / 4 0がさ らに 好ま しい。 この範囲で不飽和多塩基酸と飽和多塩基酸とを含 有するこ とによ り、 硬化物の機械的強度および分解性が共に 優れたものとなる。 なぜなら、 分解溶液によって容易に分解 される飽和多塩基酸のエステル結合と、 機械的強度に寄与す る不飽和結合 (架橋点) とが、 好ま しい割合で形成されるか らである。
上記不飽和ボ リエステルは、 実用上、 重合性モノ マーに溶 解した溶液状製品と して提供され、 不飽和ポ リ エステル榭脂 と呼ばれる。
本発明に用いられる付加重合性モノ マーと しては、 スチレ ン、 ビニノレ ト ルエン、 a—メ チルスチ レ ン、 メ タ ク リ ル酸メ チル、 酢酸ビニル、 ジァ リ ルフ タ レー ト、 ジァ リ ルイ ソ フタ レー ト、 ジァ リ ノレテ ト ラブロムフ タ レー ト、 フ ヱ ノ キシェチ ノレァク リ レー ト、 2 — ヒ ドロキシェチルアタ リ レー ト、 1一 6へキサンジオールジアタ リ レー トなどが挙げられる。 さ ら に、 付加重合性末端を有する脂肪族ポ リ エステルも使用され 得る。 硬化性、 粘度制御の簡便性、 コス トなどを考慮すると、 スチ レ ンが好ま しい。
上記付加重合性モノ マーは、 上記不飽和ポ リ エステル 1 0 0 重 ft部に対して好ま し く は 2 5〜 1 5 0重量部、 さ らに好 ま し く は 3 0 〜 : L 2 0重 S部、 最も好ま し く は 4 0 〜 : L 0 0 重 S部の範囲で熱硬化性組成物中に含有される。 含有量が 2 5重量部未満では、 硬化性が不十分であるため、 硬化物の機 械的強度などが低下する。 1 5 0重量部を超えると、 分解溶 液が硬化物に十分に浸透しないので、 分解性が不十分である c さ らに、 上記付加重合性モノ マーが上記の範囲で熱硬化性組 成物中に含有されるこ とによ り、 硬化時の収縮率をよ り小さ く するこ とが可能である。
さ らに、 本発明の好適な実施態様においては、 付加重合性 モノ マーと して、 付加重合性末端を有する脂肪族ポ リ エステ ルが使用され得る。 こ の付加重合性モノ マーの脂肪族ポ リエ ステル部分が、 後述の脂肪族ポ リ エステルと同種の場合には、 相溶性が非常に良好であり、 未硬化時の熱硬化性組成物の液 状安定性に優れる。 付加重合性モノ マーと して、 付加重合性 末端を有する脂肪族ボ リ エステルを使用する場合には、 その 含有量、 熱硬化性組成物の硬化条件などは、 脂肪族ボ リ エス テルの分子量に依存して変化し得る。
本発明に用いられる低収縮剤と しては、 脂肪族ポ リエステ ル以外の熱可塑性樹脂が用いられる。 例えば、 ポ リ エチレン、 ポ リプロ ピレン、 ボ リ スチ レン、 ポ リ 醉酸ビ二ル、 ボ リ メチ ノレメ タ タ リ レー ト、 ボ リ (エチ レンビニルアルコール) 、 ァ ク リル系共重合体、 メ タク リ ル系共重合体、 スチ レ ンーブタ ジェンブロ ッ ク共重合体、 アク リ ロニ ト リル一ブタ ジエン一 スチレン共重合体などの熱可塑性樹脂が挙げられる。
上記低収縮剤は、 上記不飽和ポ リ エステル 1 0 0重量部に 対して好ま し く は 1〜 1 0 0重¾部、 さ らに好ま しく は 1 〜 5 0 重量部、 屐も好ま し く は 1 〜 2 0重量部の範囲で熱硬 化性組成物中に含有される。 含有量が 1 重 fi部未満では、 低 収縮性、 すなわち成形性が低下する。 1 0 0重量部を超える と、 機械的強度が低下する。
本発明に用いられる脂肪族ボ リ エステルは、 熱可塑性飽和 ポ リ エステルである。 このよ うなポ リ エステルは、 後述の分 解溶液に対して非常に優れた分解性を有する。 脂肪族ボ リエ ステル.と しては、 式(I V)で表されるポ リ 力プロラ ク ト ン、 ポ リ ブ口 ビオラ ク ト ンのよう なラ ク ト ンの開現重合により得ら れる重合体 ; 式(V)で表されるポ リ乳酸、 式(V I )で表されるポ リ グリ コール酸のようなヒ ドロキシ酸の重合体 ; ポ リエチ レ ンアジペー ト、 ポ リ ブチレンアジペー ト、 ポ リ テ トラメチレ ンアジペー ト、 ポ リ エチレンスク シネー ト、 ポ リ プチレンス ク シネー トのよ う な式(V I I )で表されるグリ コールと脂肪族ジ カルボン酸とからなる共重合体 ; 式(V I I I )で表されるボ リ 力 プロラ ク ト ンジオール、 式(I X)で表されるポ リ カブロラ ク ト ン ト リ オールのよう な末端に官能基を有する重合体 ; 式(X)で 表されるよう な末端ァク リ ル変性ポ リ カプロラク ト ン ; ボ リ
( 3 — ヒ ドロキシプロ ピオナー 卜) 、 ボ リ ( 3 — ヒ ドロキシ プチレー ト) 、 ポ リ ( 3 - ヒ ドロキシバリ レー ト) 、 ポ リ
( 3 - ヒ ドロキシォクタノエー ト) のよ う な、 微生物の発酵 によ り得られるポ リ ( 3 — ヒ ドロキシアルカノエー ト) なと が挙げられる。 熱硬化性組成物が液状である場合にはその安 定性、 な らびに硬化後に分解する ときに分解性に優れ、 かつ 分散性がよいという理由で、 ポ リ カブロラ ク ト ン、 ボ リ カブ ロラ ク ト ンジオール、 ポ リ 力プロラ ク ト ン ト リ オール、 ポ リ 乳酸が好ま しい。
(以下余白)
Figure imgf000025_0001
0 -(CH2)7"0-C - (CH2)7"C.
n7 11 、 7na 11 n'
0 0
)
Figure imgf000025_0002
Figure imgf000026_0001
こ こで、 n *〜 n '°、 え 1〜 1、 および!!! 1〜 m 3は、 各々独立 して 1 0 〜2, 000であり、 R 1および R 2は、 各々独立して炭素 数 1 〜 2 0の炭化水素基である。
上記熱硬化性樹脂と上記脂肪族ポ リ エステルを含む熱硬化 性組成物の場合には、 該脂肪族ポ リ エステルは、 該熱硬化性 樹脂 1 0 0重量部に対して好ま し く は 1 〜 1 0 0重量部、 さ らに好ま し く は 2〜 5 0重量部、 最も好ま し く は 3〜 2 0 重量部の範囲で熱硬化性組成物中に含有される。 含有 fiが 1 重 fi部未満では、 分解溶液による分解性が不十分である。 1 0 0重 i部を超えると、 硬化後の機械的強度が不十分である。 上記不飽和ボ リエステルと上記脂肪族ポ リエステルを含む 熱硬化性組成物の場合には、 該脂肪族ポ リ エステルは、 該不 飽和ポ リエステル 1 0 0重 fi部に対して好ま し く は 1 〜 1 0 0重量部、 さ らに好ま しく は 2 〜 5 0重 S部、 最も好ま し く は 3 〜 2 0重量部の範囲で熱硬化性組成物中に含有される。 含有量が 1 重量部未滴では、 分解溶液による分解性が不十分 である。 1 0 0重量部を超えると、 硬化後の機械的強度が不 十分である。 ' さ らに、 後述のよ う に、 熱硬化性組成物に充填材を添加し てモール ド材を調製する場合には、 上記脂肪族ボ リ エステル は、 充填材を添加しない場合よ り も若干多 Sに含有されるこ とが好ま しい。 なぜなら、 充填材による空間の増加分にも、 脂肪族ポ リエステルを十分に分散させるためである。 例えば, 不飽和ボ リエステルと付加重合性モノ マーとの混合物 1 0 0 重量部に脂肪族ボ リ エステル 5重 fi部を添加して調製した熱 硬化性組成物について説明する。 この熱硬化性組成物に、 さ らに炭酸カルシウム 1 5 0重 S部を添加してモール ド材を調 製する場合には、 以下の理由によ り、 脂肪族ポ リエステルは、 上記混合物 1 0 0重量部に対して 5重 fi部ではな く 7. 7重 量部添加される。 炭酸カルシウムの比重は 2. 7なのでモー ノレ ド材の体穣は炭酸カルシウムによ り約 5 5. 6体積部 ( = 1 5 0 / 2. 7 ) 增加する。 従って、 脂肪族ポ リ エステルが、 体積増加前と同様に分散するためには、 2. 7重量部 ( 5 x 5 5. 6 / 1 0 0 ) を追加する必要がある。
本発明に用いられるフ i ノ ール榭脂は、 フ X ノ ール類とホ ルムアルデヒ ドとから公知の方法によ り重合して得られる。 フ エ ノ ール樹脂は、 酸性触媒下で得られるノボラ ッ ク榭脂と アルカ リ触媒下で得られる レゾール樹脂とに大別される。 ノ ポラ ッ ク樹脂は硬化剤と共に加熱するこ とによ り硬化し、 レ ゾール樹脂は加熱のみによ り硬化する。 本発明においては、 ノ ボラ ッ ク樹脂が好ま しい。 さ らに、 本発明においては、 側 鎖に脂肪族ボ リ エステル部分を有するフ X ノール樹脂も好適 に用いられる。 上記フ X ノ ール樹脂と上記脂肪族ポ リ エステルを含む熱硬 化性組成物の場合には、 該脂肪族ボ リ エステルは、 このフ エ ノ ール樹脂 1 0 0重量部に対して好ま し く は 1〜 1 0 0重 量部、 さ らに好ま し く は 1〜 5 0 重 S部、 最も好ま しく は 1 〜 2 0重量部の範囲で熱硬化性組成物中に含有される。 含有 ftが 1 重量部未満では、 分解溶液による分解性が不十分であ る。 1 0 0重 S部を超えると、 硬化後の機械的強度が不十分 である。
本発明に用いられるエポキシ樹脂と しては、 グリ シジルェ 一テル型樹脂、 グリ シジルエステル型樹脂、 グリ シジルア ミ ン型樹脂、 エポキシノボラ ッ ク樹脂、 脂環式エポキシ樹脂、 臭素化エポキシ樹脂、 脂肪族ェポキシ樹脂などが挙げられる。 ビスフ : L ノール Aとェピク ロロ ヒ ド リ ンとから得られるダリ シジルエーテル型樹脂が好ま しい。 さ らに、 本発明において は、 式(X I )で表されるよう な側鎖に脂肪族ボ リエステル部分 を有するエポキシ樹脂も好適に用いられる。
0 入 CH3 η
CH2善 CH2 + Q普 C普 0 - CH2 - 0H - CH2
η 12
• CH3
Figure imgf000028_0001
ここで、 η Η〜 η ΐ2は、 各々独立して 1〜 3 0である。 上記エポキシ樹脂と上記脂肪族ポ リエステルを含む熱硬化 性組成物の場合には、 該脂肪族ポ リ エステルは、 このェポキ シ樹脂 1 0 0重量部に対して好ま し く は 1〜 1 0 0重量部、 ざらに好ま し く は 1〜 5 0重量部、 最も好ま し く は 1〜 2 0 重量部の範囲で熱硬化性組成物中に含有される。 含有 Sが 1 重量部未満では、 分解溶液による分解性が不十分である。 1 0 0重量部を超えると、 硬化後の機械的強度が不十分である £ 本発明の熱硬化性組成物は、 好ま し く は、 硬化剤を含有し 得る。
上記不飽和ポ リエステルの硬化剤と しては、 過酸化べンゾ ィル、 tブチルパーべンゾエー ト、 tブチルパーォキシベン ゾェー ト、 tブチルパーォキシラウ レー ト、 tブチルバーオ キシ— 2 —ェチルへキサノエ一ト、 tブチルパーォク トエー トなどが挙げられる。
上記硬化剤は、 上記不飽和ポ リ エステルおよび上記付加重 合性モノ マーの合計 1 0 0重量部に対して好ま し く は 0. 1 〜 5重量部、 さ らに好ま し く は 0. 3〜 4重 fi部、 最も好ま し く は 0. 5 ~ 3重 S部の範囲で熱硬化性組成物中に含有さ れる。 含有量が 0. 1重: a部未満では、 硬化が不十分である。
5重 i部を超えると、 硬化後の 3次元網目 中に存在する硬化 剤の Sが多 く なりすぎるため、 硬化後の機械的強度が不十分 となる。
上記フ Xノ ール樹脂および上記エポキシ樹脂の硬化剤と し ては、 ベンジルメチルァ ミ ン、 へキサメチレンテ トラ ミ ン、 メ タフ : I:二レンジァ ミ ン、 ジア ミ ノ ジフ エニルメ タ ン、 ジァ ミ ノ ジフ : cニルスルフ ォ ンなどが挙げ られる。
上記硬化剤の好ま しい含有量は、 上記フ : C ノール樹脂と し てノボラ ッ ク樹脂を使用する場合には、 ノ ボラ ッ ク樹脂 1 0 0 重量部に対して好ま しく は 5 〜 1 0 0重 S部、 さ らに好ま し く は 5 〜 4 0重!:部、 最も好ま し く は 7 ~ 2 0重 S部の範 囲で熱硬化性組成物中に含有される。 上記エポキシ樹脂を使 用する場合においてもほぼ同様である。
本発明の熱硬化性組成物は、 硬化後に、 少な く とも塩基を 含有する分解溶液によ り該脂肪族ポ リ エステルが分解される こ とによって、 分解が促進される。
好ま し く は、 本発明の熱硬化性組成物は、 硬化後に、 塩基 と、 水、 メ タ ノール、 エタ ノ ール、 およびエチレングリ コ一 ルでなる群から選択される少なく とも 1種の溶剤とを含有す る分解溶液によ り、 該分解溶液の沸点よ り低い温度で容易に 分解され得るような分解性を有する。 この分解溶液による熱 硬化性組成物の分解は、 溶液中の塩基によ り発生する水酸ィ オンが触媒となり熱硬化性組成物中の上記脂肪族ボ リ エステ ルのエステル結合を加水分解し、 かつ、 上記熱硬化性樹脂の 縮合性結合を分解するこ とにより行われる。
分解溶液に含まれる塩基と しては、 水酸化ナ ト リ ウム、 水 酸化カ リ ウムのような金属水酸化物、 酸化ナ ト リ ウム、 酸化 カルシウムのよ うな金属酸化物、 ナ ト リ ウムエ トキシ ド、 力 リ ウム t 一ブ トキシ ドのよう な金属アルコキシ ドなどが挙げ られる。 これらは単独で、 あるいは 2種以上を混合して使用 され得る。
分解溶液に含まれる主溶剤は、 水、 メ タ ノール、 エタノー ル、 およびエチレングリ コールでなる群から選択され得る。 これらは単独で、 あるいは 2種以上を混合して使用され得る。 分解溶液には、 アセ ト ン、 2 -ブタ ノ ン、 ジメ チルホルム ア ミ ド、 ジメチルスルホキシ ド、 ジォキサン、 テ トラ ヒ ドロ フ ラ ン、 ジェチルエーテル、 ジエチレングリ コール、 ジェチ レングリ コールモノ エステル、 ジエチレングリ コールジエス テル、 ジカルボン酸ジエステル、 酢酸メチル、 酢酸ェチル、 ベンゼン、 トルエン、 フ X ノールでなる群から選択される少 な く と も 1種の補助溶剤が、 さ らに含有されてもよい。
塩基は、 溶液中 好ま し く は 0. 1〜 5 0重量%、 さ らに 好ま し く は 1〜 3 0重 i%、 最も好ま し く は 2〜 2 0重量% の範囲で含有される。 含有 Sが 0. 1重量%未満では、 加水 分解時の触媒効果が低下する。 5 0重量%を超えると、 分解 溶液の調製が困難である。 さ らに、 分解溶液の粘度が高く な るため、 硬化物に対する S透性が低下し、 従って分解能力が 低下する。
主溶剤は、 溶剤中に好ま し く は 5 ~ 1 0 0重 fi%、 さ らに 好ま し く は 3 0〜 9 0重量%、 最も好ま し く は 5 0 ~ 8 0重 S%の範囲で含有される。 上記範囲で主溶剤と補助溶剤とを 含有するこ とにより、 室温または分解溶液の沸点以下の温度 で、 分解溶液の脂肪族ボ リ エステルに対する相溶性、 すなわ ち分解溶液の硬化物に対する浸透性と、 分解溶液の水酸ィォ ン発生能力、 すなわち脂肪族ポ リ エステルのエステル結合分 解能力とが、 共に優れたものとなる。 従って、 分解溶液の分 解能力が非常に優れたものとなる。
本発明の熱硬化性組成物は、 硬化および未硬化のいずれの 形態でもあり得る。 つま り、 射出成形、 ト ラ ンスフ ァー成形 などを行って得られる成形硬化物の形態だけでな く、 積眉品、 塗料、 パテ、 接着剤のよう な種々の形態を含み、 これらが分 解溶液によ り分解され得る。
さ らに、 本発明の熱硬化性組成物を用いた成形体は、 高湿 条件下でも使用され得る。 すなわち、 水だけでは硬化後の組 成物の 3次元網目構造が容易に破壊されないので、 高湿条件 下でも、 硬化後の優れた特性 (例えば、 機械的強度) が維持 される。
本発明のモール ド材は、 本発明の熱硬化性組成物を少な く ともバイ ンダー材と して含有する。 このモール ド材は、 必要 に応じて、 充填材、 增粘剤、 雜型剤、 ワ ッ クス、 着色剤など を添加 し得る。
充填材と しては、 炭酸カルシウム、 炭酸マグネシウムのよ う な炭酸塩、 硫酸カルシウム、 硫酸バリ ウム、 亜硫酸カルシ ゥムのよ う な (亜) 硫酸塩、 ク レー、 マイ力、 ガラ スバル一 ン、 モンモ リ ロナイ ト、 ゲイ酸、 カオ リ ン、 タルクのよう な ゲイ酸塩類、 シ リ カ、 珪燥土、 酸化鉄、 軽石バルー ン、 酸化 チタ ン、 アルミ ナのよ う な酸化物、 水酸化アル ミ ニウム、 水 酸化マグネシウムのような水酸化物、 グラフ アイ ト、 ガラス 雄維、 炭素維锥、 アスベス ト維維などの無機充填材 : な らび に、 木粉、 もみ殻、 木綿、 紙細片、 ナイ ロ ン繡維、 ポ リ ェチ レン繊維、 木材、 パルプ、 セルロースなどの有機充填材など が挙げられる。
操作性が要求される軽 Sの成形体が所望の場合には、 ボ リ エチレン雄維が好ま しい。 ポ リ エチレン纔維を充填材と して 含有するモール ド材は、 軽量性を考慮した比強度および比弾 性率において、 他の F R Pよ り も優れている。
上記充填材は、 熱硬化性組成物 1 0 0重量部に対して好ま し く は 5 〜 6 0 0重 S部、 さ らに好ま し く は 2 0 〜 5 0 0重 S部、 最も好ま し く は 4 0 〜 4 5 0重量部の範囲で添加され る。 このよう な範囲で充填材を添加するこ とによ り、 モール ド材の機械的強度が向上する。 さ らに、 上記脂肪族ポ リエス テルが硬化物中で十分に分散するので、 分解溶液の浸透性が 向上し、 モール ド材の分解性が向上する。
増粘剤と しては、 酸化べ リ リ ゥム、 酸化マグネシゥム、 水 酸化マグネシウム、 酸化カルシウム、 水酸化カルシウム、 酸 化亜鉛、 安息香酸、 無水フタル酸、 テ トラ ヒ ドロ無水フタル 酸、 無水マレイ ン酸などが挙げられる。
雜型剤と しては、 ステア リ ン酸、 ステア リ ン酸亜鉛、 .ステ ア リ ン酸カルシウムなどが挙げられる。
ワ ッ クスと しては、 へキス ト ワ ッ クス、 カルナバワ ッ クス、 パラフ ィ ンなどが挙げられる。
着色剤と しては、 チタ ンホワイ ト、 酸化ク ロム、 カーボン ブラ ッ クなどが挙げられる。
上記モール ド材は、 バルクモールディ ングコ ンパゥン ド ( B M C ) 、 シー トモールディ ングコ ンパウ ン ド ( S M C ) , ペレツ トタイプモールディ ングコ ンパウ ン ド ( P M C ) など の形態をと り得る。 このモール ド材は、 射出成形、 ト ラ ンス フ ァー成形、 圧縮成形などによ り成形され得る。
成形条件は、 公知の条件が適用され得る。 例えば、 射出成 形の場合には、 金型温度 1 5 0て、 射出圧力 1 5 0 kg/cm 2 , 硬化時間 5分の条件が好適に用いられる。
このモール ド材から得られる最終成形品は、 浴槽、 便槽、 貯水槽、 洗面台のよう な建設資材 ; 椅子、 机、 家具のよ う な 家庭用品 ; タ イル、 人工大理石、 パイブのよう な土木 S材 ; 船舶、 自動車、 鉄道、 航空機のような輪送機器のボディ や部 品 : 住宅機器 : 化粧板 ; 装飾品などの様々な分野で使用され る。
本発明のモール ド構造体は、 少な く とも金属類を含んで一 体成形された本発明のモール ド材からなるモール ド部を有す る。 以下、 本発明のモール ド構造体の一例と してのモール ド モータについて、 図面を参照して好適な実施態様を説明する。
図 1 を用いて、 本発明のモール ド構造体の一例であるモー ノレ ドモータの第一の好適な実施態様を説明する。 図 1 は、 本 発明のモール ド構造体の一例であるモール ドモータの一実施 態様を示す断面図である。 モール ドモータは、 モータ部 1 0 1 と、 モール ドステ一夕 1 とから構成される。 モール ドステ ータ 1 は、 鉄芯 4、 鉄芯 4 の少な く と も一部を 3 [う絶縁体 7、 铁芯 4 および絶緣体 7 に巻装された卷線 3、 な らびに、 鉄芯 4、 絶緣体 7、 および巻線 3 と一体成形されたモール ド材か らなり、 その最外部がモール ドステータ 1 の最外部を規定す るモール ド部 2 を有する。 モータ部 1 0 1 は、 モール ド部 2 の開口都に取り付けられ、 回転子シャフ ト 1 0 2 と回転子シ ャフ ト に取り付けられた回転子 1 0 3 とを少な く と も備えて おり、 ブラケッ ト 1 0 4 によ り支持されている。 回転子 1 0 3 は、 開口部の上壁に取り付けられたベア リ ング 1 0 5 とブ ラケッ ト に取り付け られたベア リ ング 1 0 6 とによ り軸支さ れている。 図示していないが、 巻線 3 の端末部は、 モール ド ステータのシャフ トの上に位筐する部分まで延び、 そこでリ ー ド線と接統され、 外部からの入力が可能となっている。 さ らに、 モール ドステータ 1 は、 a数の取付孔 6 を有するフラ ンジ部 5 を備えていてもよい。
モール ド部 2 を構成するモール ド材は、 上述の熱硬化性組 成物を少な く と もバイ ンダー材と して含有する。
モール ド部の最大厚み部分の厚みは、 用途に応じて変化し 得るが、 本発明においては、 好ま し く は 0 . 1 ~ 2 0 m m、 さ らに好ま し く は 0 . 2 ~ 1 0 m m、 最も好ま し く は 0 . 2 〜 5 m mである。
絶縁体 7 と しては、 例えば、 脂肪族ボ リエステル、 ポ リエ チ レンテレフ 夕 レー ト、 ボ リ エチレンのよ う な熱可塑性樹脂 が使用され得る。 絶縁体 7 には、 モール ド時の巻線 3の形状 保存効果が要求されるので、 モール ド時に軟化しないよう に、 軟化点または融点が、 モール ド時の温度、 例えば約 1 0 0 eC 以上のものが好ま しい。 絶緣体 7 に脂肪族ボ リ エステルを用 いると、 分解時に、 卷線 3 と鉄芯 4 との分雜が可能となるた め、 特に好ま しい。 敏点が 1 0 0 eCを超える脂肪族ボ リエス テルと しては、 例えば、 式(V I I )に示す共重合樹脂が挙げられ る。
一- 0 -(CH2) " 0 - C - (CH
Figure imgf000036_0001
II 2)T
、 V n8 it IT
0 0
図 2 を用いて、 本発明のモール ド構造体の一例であるモー ル ドモータの第二の好適な実施態様を説明する。 図 2 は、 本 実施態様におけるモール ドモータの拡大部分断面図である。 以下、 図面の符号は、 1の位の数字が図 1 の対応する構成部 分と同一で、 1 0の位の数字が図の番号と同一である。
本実施態様は、 モール ド部 2 2が、 内部モール ド部 2 2 a と外部モール ド部 2 2 b とを有する.場合である。 図 2 に示す よ う に、 モール ドステータ 2 1 は、 鉄芯 2 4、 鉄芯 2 4 の少 な く とも一部を覆う絶縁体 2 7、 鉄芯 2 4 および絶縁体 2 7 に卷装された卷線 2 3、 ならびに、 铁芯 2 4、 絶縁体 2 7、 および卷線 2 3 と一体成形されたモール ド材からなるモール ド部 2 2 を有する。 モール ド部 2 2 は、 鉄芯 2 4の少な く と も一部を 5う 内部モール ド部 2 2 a と、 内部モール ド部 2 2 aの外側に存在し、 その最外部がモール ドステータ 2 1 の最 外部を規定する外部モール ド部 2 2 b とを有する。
内部モール ド部 2 2 a は、 脂肪族ポ リ エステルを主成分と する。 こ こで、 主成分とは、 モール ド材中での含有 Sが最大 であり、 かつ、 その含有!:がモール ド材全体に対して 3 0重 S%以上のものを意味する。 例えば、 内部モール ド部 2 2 a は、 上述の脂肪族ボ リ エステルのみで、 あるいは脂肪族ポ リ エステル含有量が多い本発明のモール ド材で構成され得、 外 部モール ド部 2 2 b は、 脂肪族ポ リ エステル含有量が少ない 本発明のモール ド材または脂肪族ボ リ エステルを含まない従 来のモール ド材で構成され得る。
外部モール ド部の最大厚み部分の厚みは、 用途に応じて変 化し得るが、 本発明においては、 好ま し く は 0. l 〜 2 0 m m、 さ らに好ま しく は 0. 2 〜 : I 0 m m、 最も好ま しく は 0. 2 ~ 5 m mでめる。
内部モール ド部の厚みも、 外部モール ド部と同様に、 用途 に応じて変化し得るが、 本発明においては、 好ま し く は 0. 5 〜 : L 0 m m、 さ らに好ま し く は 1 〜 7 m m、 最も好ま し く は 2〜 5 m mである。
このよ うな構成を有する本実施態様のモール ドステータは、 図 1 に示すようなモール ドステータに比べて、 環境安定性に よ り ftれている。 例えば、 外部モール ド部 2 2 b に脂肪族ポ リ エステルの含有量が少ないモール ド材または脂肪族ポ リェ ステルを含まない従来のモール ド材を用いるこ とによ り、 脂 肪族ボ リ エステルが分解しやすい高温多湿状態でも使用可能 なモール ドステ一夕が作成され得る。
さ らに、 例えば、 外部モール ド部 2 2 b に脂肪族ボ リ エス テルの含有量が少ないモール ド材を使用する場合には、 内部 モール ド部 2 2 aを脂肪族ポ リ エステルのみで構成するこ と が可能である。 この場合には、 分解時に内部モール ド部 2 2 aが残留せず、 鉄芯や巻線の リサイ クルがよ り容易になる。 すなわち、 脂肪族ボ リ エステルは、 本発明に用いられる分解 溶液に対する溶解性が非常に高く、 かつ、 架樣していないの で、 分解終了時 (つま り外部モール ド部 2 2 bが分雜可能な 時点) には、 内部モール ド部 2 2 a は分解溶液にほとんど溶 解している。 従って、 分解終了時には、 鉄芯ゃ卷線の洗浄が 実質的に終了 している。
図 3 を用いて、 図 2 に示す実施態様のさ らに好ま しい場合 を説明する。 図 3は、 本実施態様におけるモール ドモータの 拡大部分断面図である。
この態様は、 モール ド部 3 2が、 内部モール ド部 3 2 a と 外部モール ド部 3 2 b とを有し、 かつ、 外部モール ド部 3 2 bの側面部に切り欠き部 3 8が形成されている場合である。 図 3 に示すよう に、 モール ドステータ 3 1 は、 鉄芯 3 4、 鉄 芯 3 4 の少な く とも一部を Sう絶縁体 3 7、 鉄芯 3 4および 絶縁体 3 7 に巻装された巻線 3 3、 な らびに、 鉄芯 3 4、 絶 緣体 3 7、 および巻線 3 3 と一体成形されたモール ド材から なるモール ド部 3 2 を有する。 モール ド部 3 2 は、 鉄芯 3 4 の少な く とも一部を う内部モール ド部 3 2 a と、 内部モー ル ド部 3 2 a の外側に存在し、 その最外部がモール ドステー タ 3 1 の最外部を規定する外部モール ド部 3 2 b とを有する。 外部モール ド部 3 2 bの側面部表面には、 切り欠き部 3 8が 形成されている。
内部モール ド部 3 2 a は、 図 2 に示す実施態様と同様に、 外部モール ド部 3 2 b よ り も分解し易いモール ド材で構成す るこ とが好ま しい。
切り欠き部 3 8 は、 ノ コギリ、 ノ ミ などによるキズつけ、 あるいは、 ド リ ルによる開口などによ り形成され得る。
切り欠き部 3 8 は、 外部モール ド部の頂部表面または底部 表面に形成してもよい。
このような構成を有する本実施態様のモール ドステータは、 切り欠き部 3 8の効果によ り、 分解溶液と接触するモール ド 材表面積を増大させ、 かつ、 内部モール ド部 3 2 a を容易に 表出するため、 分解が促進される。
図 4 を用いて、 本発明のモール ド構造体の一例であるモー ノレ ドモ一夕の第三の好適な実施態様を説明する。 図 4 は、 本 実施態様におけるモール ドモータの拡大部分断面図である。
本実施態様は、 絶緣体 4 7の一部が、 外部モール ド部 4 2 b表面に表出 している場合である。 図 4 に示すよう に、 モー ル ドステータ 4 1 は、 铁芯 4 4、 鉄芯 4 4の少な く とも一部 を Sう絶緣体 4 7、 鉄芯 4 4 および絶縁体 4 7 に巻装された 巻線 4 3、 な らびに、 鉄芯 4 4、 絶緣体 4 7、 および巻線 4 3 と一体成形されたモール ド材からなるモール ド部 4 2 を有 する。 モール ド部 4 2 は、 鉄芯 4 4の少な く とも一部を Stう 内部モール ド部 4 2 a と、 内部モール ド部 4 2 aの外側に存 在し、 その最外部がモール ドステータ 4 1 の最外部を規定す る外部モール ド部 4 2 b とを有する。 铯縁体 4 7の一部は、 外部モール ド部 4 2 bを洞莨し、 外部モール ド部 4 2 b表面 に表出 している。
本実施態様においては、 絶緣体 4 7 と しては、 脂肪族ポ リ エステルが好ま しい。
このような構成を有する本実施態様のモール ドステータは、 絶緣体 4 7 に表出部 4 7 aが存在するため、 この表出部 4 7 a に分辉溶液が直接接触し、 該表出部 4 7 aから絶緣体の内 部、 さ らにモール ド部 4 2 まで順次容易に分解する。 従って、 巻線 4 3 や鉄芯 4 4の分離が極めて容易である。
本実施態様は、 図 4 に示すよう な内部モール ド部および外 部モール ド部を有するモール ド部で構成されるモール ドステ 一夕だけでな く、 図 1 に示すよう な単一のモール ド部で構成 されるモール ドステータにも適用され得る。
図 5を用いて、 図 4 に示す実施態様のさ らに別の場合を説 明する。 図 5 は、 本実施怒様におけるモール ドモータの拡大 部分断面図である。
本実施態様は、 内部モール ド部 5 2 a の一部が、 外部モー ル ド部 5 2 bの外部表面に表出 している場合である。 図 5 に 示すよう に、 モール ドステータ 5 1 は、 鉄芯 5 4、 鉄芯 5 4 の少な く とも一部を δう絶縁体 5 7、 鉄芯 5 4 および絶縁体 5 7 に卷装された巻線 5 3、 ならびに、 鉄芯 5 4、 絶縁体 5 7、 および卷線 5 3 と一体成形されたモール ド材からなるモ 一ル ド部 5 2を有する。 モール ド部 5 2 は、 铁芯 5 4の少な く とも一部を覆う内部モール ド部 5 2 a と、 内部モール ド部 5 2 aの少な く とも一部を覆い、 その最外部がモール ドステ 一夕 5 .1 の最外部を規定する外部モール ド部 5 2 b とを有す る。 内部モール ド部 5 2 a の一部は、 外部モール ド部 5 2 b を洞貫し、 外部モール ド部 5 2 b表面に表出 している。
内部モール ド部 5 2 a は、 外部モール ド部 5 2 b よ り も分 解し易いモール ド材で構成するこ とが好ま しい。 すなわち、 外部モール ド部 5 2 a を構成するモール ド材の脂肪族ポ リエ ステル含有 ftが、 内部モール ド部 5 2 bを構成するモール ド 材の脂肪族ポ リエステル含有: Bよ り も多いこ とが好ま しい。 例えば、 内部モール ド部 5 2 a は、 上述の脂肪族ポ リエステ ルのみで、 あるいは脂肪族ポ リエステル含有 Sが多い本発明 のモール ド材で構成され得、 外部モール ド部 5 2 b は、 脂肪 族ポ リ エステル含有量が少ない本発明のモール ド材または脂 肪族ポ リ エステルを含まない従来のモール ド材で構成され得 る。 図 4 に示した場合と同様に、 このよ うな構成を有する本実 施想様のモール ドステータは、 分解し易い内部モール ド部 5 2 aがモール ド部 5 2 の外部表面に表出するため、 分解溶液 と直接接触し、 内部モール ド部 5 2 a の表出部分から內部ま で順次容易に分解する。 従って、 巻線 5 3 や鉄芯 5 4の分雜 が極めて容易である。
図 6 を用いて、 本発明のモール ド構造体の一例であるモー ノレ ドモータの第四の好適な実施想様を説明する。 図 6 は、 本 実施態様におけるモール ドモータの拡大部分断面図である。 本実施態様は、 モール ド部 6 2 を形成するモール ド材に、 充填材 6 9 と して脂肪族ボ リエステルが含有されている場合 である。 図 6 に示すよう に、 モール ドステータ 6 1 は、 鉄芯 6 4、 铁芯 6 4の少な く とも一部を 5 [う絶縁体 6 7、 鉄芯 6 4 および絶緣体 6 7 に卷装された巻線 6 3、 な らびに、 鉄芯 6 4、 絶縁体 6 7、 および巻線 6 3 と一体成形されたモール ド材からなり、 その最外部がモール ドステータ 6 1 の最外部 を規定するモール ド部 6 2 を有する。 モール ド部 6 2 には、 充填材 6 9が分散している。
充填材と しての脂肪族ポ リエステルは、 モール ド材中の各 成分に対して溶解性の低いものが好ま しい。 この充填材は、 針状、 維維状、 あるいは粒状であってもよい。
このような構成を有する本実施態様のモールドステータは、 モール ド部 6 2 中の脂肪族ポ リエステルからなる充填材部分 が、 分解時に優先的に分解され、 モール ド部に多数の空隙が 形成される。 そのため、 モール ド部の機械的強度が十分に低 下し、 かつ、 空隙部分からク ラ ッ クが発生しやすく なる。 従 つて、 打 »などによ り、 卷線 6 3 や鉄芯 6 4の分離が極めて 容易である。
本発明のモール ド構造体の一例であるモール ドモータは、 ブラ シレス直流モータ、 交流モータ、 リニアモータなどに適 用され得る。
本発明のモール ド棟造体の一例であるモール ドモー夕は、 上述の好適な実施態様の楝成を適宜組み合わせるこ とによ り、 よ り容易に分解され得る。
モール ドモータ以外のモール ド構造体についても、 上述の モール ドモータに対する好適な実施態様の構成を適宜組み合 わせるこ とによ り、 同様の効果が得られる。
本発明の熱硬化性組成物、 モール ド材、 およびモール ド構 造体の分解処理方法は、 上述の、 塩基と、 水、 メ タ ノール、 エタノ ール、 およびエチレングリ コールでなる群か ら選択さ れる少な く とも 1種の溶剤とを含有する分解溶液に浸 ¾する 工程を包含する。
a ¾時間は、 温度に依存して変化し得る。 例えば、 6 0 ec の分解溶液に浸浪する場合には、 分解処理に要する時間は、 室温の分解溶液に浸 *する場合の約 6分の 1 まで短縮される。 ただし、 上記溶剤の揮発を避けるため、 分解溶液の温度は上 記溶剤の湃点未満であるこ とが望ま しい。
本発明のモール ド構造体の他の分解処理方法は、 切削また は開孔によ り該内部モール ド部の少な く とも一部を表出させ る工程、 および、 該モール ド構造体を、 脂肪族ボ リ エステル に対する良溶剤、 または、 塩基と、 水、 メ タノ ール、 ェタ ノ ール、 およびエチレングリ コールでなる群から選択される少 な く とも 1 種の溶剤とを含有する分解溶液に S *する工程を 包含する。
上記内部モール ド部の表出は、 ノ コギリ、 ノ ミ などによる キズつけ、 あるいは、 ドリ ルによる開口などによ り行われる e 良溶剤と しては、 トルエン、 キシレンのよう な芳香族炭化 水素 ; メ チルェチルケ ト ン、 アセ ト ンのようなケ ト ン類 ; 酢 酸ェチル、 齚酸ブチルのよう なエステル類 ; ト リ ク レンなど が挙げられる。
上記良溶剤を用いる場合の浸 ¾時間は、 温度および分解溶 液の種類に依存して変化し得る。 例えば、 室温で トルエンに 浸滾する場合には、 2 4 時間で脂肪族ボ リ エステルがほぼ分 解される o
脂肪族ボ リエステルは、 一般に、 生分解性を有する。 従つ て、 脂肪族ポ リ エステルを表出させた場合には、 脂肪族ポ リ エステルの分解酵素である リパーゼを含有する水溶液、 ある いは土または海水に浸 ¾するこ とによ り脂肪族ポ リ エステル 部分の分解も可能である。 ただし、 分解には非常に長時間を 要する。
本発明の第一の熱硬化性組成物は、 上記のよ う に、 熱硬化 性樹脂および脂肪族ボ リ エステルを含有する。 この熱硬化性 組成物の硬化後においては、 脂肪族ポ リエステルが硬化物の
3次元網目構造中に分散している。 脂肪族ボ リ エステルのェ ステル結合は、 熱硬化性樹脂の縮合性結合よ り もはるかに塩 基によ り分解されやすい。 すなわち、 脂肪族ボ リ エステルの 存在によ り、 分解溶液が硬化物の 3次元網目構造全体に容易 に浸透し、 浸透した分解溶液によ って脂肪族ボ リ エステルが 分解されるこ とによ り、 分解溶液の浸透がさ らに促進される。 その結果、 熱硬化性樹脂の縮合性結合と分解溶液との反応機 会が増大し、 熱硬化性組成物の分解が促進される。
本発明の第二の熱硬化性組成物は、 不飽和ポ リ エステル、 付加重合性モノマー、 脂肪族ポ リ エステル以外の低収縮剤、 および脂肪族ボ リエステルを含有する。 この熱硬化性組成物 の硬化後においては、 脂肪族ボ リ エステルが硬化物の 3次元 網目構造中に分钕している。 従って、 硬化後の本発明の熱硬 化性組成物は、 以下の理由で、 塩基と、 水、 メ タ ノール、 ェ タ ノール、 およびエチレングリ コールでなる群から選択され る少な く とも 1 種の溶剤とを含有する分解溶液によ り容易に 分解されるよ うな分解性を有する。
上記脂肪族ポ リエステルは、 上記分解溶液に対する溶解性 に優れている。 従って、 この分解溶筏と、 上記 3次元網目構 造中の脂肪族ポ リエステルとの間に、 引き合う相互作用が生 じる。 上述のよう に、 脂肪族ポ リ エステルは 3次元網目桷造 中に分散しているので、 分解溶液は、 硬化物の 3次元網目構 造全体に容易に浸透する。 このよ う に a透した分解溶液は、 塩基の作用によ り、 脂肪族ポ リ エステルおよび不飽和ポ リエ ステルのエステル結合を分解する。 このよ う にして、 硬化物 の 3次元網目棣造は、 分解溶液の沸点以下の温度で、 迅速に. 硬化物と しての形態を維持できないほどに分解される。
さ らに、 この熱硬化性組成物は、 従来の熱硬化性組成物と 同等の成形性および硬化後の機械的強度を有している。
上記熱硬化性組成物において、 付加重合性モノ マーが付加 重合性末端を有する脂肪族ボ リ エステルである場合には、 付 加重合性モノ マーの脂肪族ポ リエステル部分が、 硬化物の 3 次元網目棟造の一部を形成し、 かつ、 上記脂肪族ポ リエステ ルが、 3次元網目構造中に均一に分散している。 従って、 こ れら両方の脂肪族ボ リ エステルの効果によ り、 上記メカニズ ムの分解がよ り促進されるため、 硬化物の分解が、 より容易 に行われる。 さ らに、 付加重合性モノ マーと脂肪族ポ リ エス テルとの相溶性がよ り優れているので、 熱硬化性組成物の液 状安定性もよ り優れたものとなる。
さ らに、 分解溶液中に、 アセ ト ン、 2 —ブタ ノ ン、 ジメチ ルホルムア ミ ド、 ジメ チルスルホキシ ド、 ジォキサ ン、 テ ト ラ ヒ ドロ フ ラ ン、 ジェチルエーテル、 ジエチ レ ング リ コール、 ジエチ レ ング リ コールモノ エステル、 ジエチ レ ング リ コール ジエステル、 ジカルボク酸ジエステル、 酢酸メ チル、 酢酸ェ チル、 ベンゼン、 トルエン、 フ X ノ ールでなる群から選択さ れる少な く と も 1 種を補助溶剤と して含有させるこ とによ り、 分解溶液の硬化物に対する浸透性、 および硬化物の分鮮生成 物の分解溶液に対する溶解性が増加する。 その結果、 硬化物 の分解がよ り促進される。
本発明の第三の熱硬化性組成物は、 不飽和ポ リ エステル、 付加重合性モノマー、 ボ リ カブロラ ク ト ン、 そ して好ま し く は脂肪族ポ リ エステルを含有する。 この熱硬化性組成物にお いては、 ボ リ 力プロラ ク ト ンは低収縮剤と しても機能する。 さ らに、 ポ リ カブロラ ク ト ンは脂肪族ボ リ エステルであるの で、 ポ リ 力プロラ ク ト ン以外の脂肪族ポ リエステルとの相溶 性に非常に優れている。 従って、 熱硬化性組成物の調製がよ り容易であり、 熱硬化性組成物の液状安定性によ り優れてい る。
この熱硬化性組成物は、 ポ リ 力プロラ ク ト ンが脂肪族ポ リ エステルの 1 種であるため、 分解溶液による分解性がよ り優 れている。 さ らに、 ボ リ カブ口ラ タ ト ンを含有させるこ とに よ り、 熱硬化性組成物の優れた成形性および硬化後の優れた 機械的強度が維持される。
本発明の第四の熱硬化性組成物は、 脂肪族ポ リ エステル、 ならびにフ X ノール樹脂またはエポキシ樹脂を含有する。 こ の熱硬化性組成物においても、 脂肪族ポ リ エステルの効果に よ り、 上述と同様のメ カニズムで、 硬化後のフ ノ ール樹脂 またはエポキシ樹脂の 3次元網目構造が容易に分解される。 本発明のモール ド材は、 上記熱硬化性組成物をバイ ンダー 材と して含有する。 バイ ンダー材に含有される脂肪族ポ リエ ステルの効果によ り、 上述と同様のメ カニズムで、 バイ ンダ ー材の 3 次元網目構造が容易に分解される。 従って、 本発明 のモール ド材は、 塩基と、 水、 メ タ ノール、 エタ ノ ール、 お よびエチ レングリ コールでなる群から選択される少なく とも 1 種の溶剤とを含有する分解溶液によ り容易に分解される。 本発明のモール ド構造体は、 上記モール ド材からなるモー ノレ ド部を有するので、 モール ド材のバイ ンダー材に含有され る脂肪族ポ リ エステルの効果によ り、 上述と同様のメ カニズ ムで、 バイ ンダー材の 3次元網目構造が容易に分解される。 従って、 本発明のモール ド構造体は、 塩基と、 水、 メタ ノー ル、 エタ ノール、 およびエチレングリ コールでなる群から選 択される少なく とも 1 種の溶剤とを含有する分解溶液により 容易に分解されるので、 金属類の分雜が容易であり、 有価物 の リサイ クルの観点から極めて有効である。
さ らに、 本発明のモール ド構造体が、 外部モール ド部と内 部モール ド部とを有するモール ド部を備え、 かつ、 内部モー ノレ ド部がよ り分解しやすいモール ド材からなる場合には、 内 部モール ド部が短時間で分解するため、 モール ド構造体内部 が空洞状態となる。 従って、 金属類の分雜がよ り容易になる。
以上のよう に、 本発明の熱硬化性組成物、 該組成物を含む モール ド材および該モール ド材を用いたモール ド構造体は、 これらに含有される脂肪族ポ リエステルが、 塩基と、 水、 メ タ ノール、 エタ ノール、 およびエチレングリ コールでなる群 から選択される少な く とも 1 種の溶剤とを含有する分解溶液 に対して優れた分解性を有するので、 該分解溶液によ り容易 に (すなわち、 分解溶液の沸点以下の温度で、 迅速に) 分解 される。 さ らに、 上記脂肪族ボ リ エステルは、 該組成物の硬 化による 3次元網目構造の形成を妨害しないので、 従来と同 様の優れた成形性および機械的強度が維持される。 実施例
(実施例 1 )
不飽和ポ リ エステルと して、 3 0重 fi%のスチ レ ンを含有 するマ レイ ン酸/フタル酸/プロ ピレングリ コールのモル比 1 1 / 2の共重合体 (日本触媒^:製、 ェポラ ッ ク ) 5 6重 i部、 付加重合性モノ マーと してスチ レン 3 8重 S部、 低収 縮剤と してボ リ スチ レ ン 5重量部、 およびボ リ 力プロラ ク ト ン (分子 i4万、 ダイセル化学社製、 ブラ クセル) 6重量部 を混合した。 硬化剤と して t ,ブチルパーォキシベンゾエイ ト (日本油脂社製、 パーブチル Z〉 を、 この混合物 1 0 0重 i部に対して 1重量部の割合で加え、 熱硬化性組成物を得た c 次いで、 この組成物を厚さ l mmの箱状型に流し込み、 1 2 0てで 3 0分間加熱するこ とによ り、 この組成物を硬化させ た。 硬化後の組成物を 1 0 x 2 0 x l mmの板状に切り 出 し, 分解処理試験用試料と した。
次いで、 水酸化ナ ト リ ウム 1 gとエタ ノ ール 3 0 gとを混 合し、 分解溶液を調製した。 上記試料をこ の分解溶液に室温 で浸 «し、 時間変化に伴う 重量減少を観察した。 結果を表 1 に示す。
(比較例 1 )
ボ リ 力プロラ タ ト ンを含まなかったこ と以外は実施例 1 同様に して試料を作成し、 実施例 1 と同様の試験を行った, 結果を表 1 に示す。
Figure imgf000050_0001
表 1 から明らかなよ う に、 ポ リ 力プロラ ク ト ンを含まない 比較例 1 の熱硬化性組成物から得られた試料は、 浸漬から 5 0 0時間経過してもわずか 1 % しか重!:が滅少しないのに対 して、 ポ リ 力プロラ ク ト ンを含む実施例 1 の熱硬化性組成物 から得られた試料は、 ¾ ¾から 5 0時間で重 fiが 1 7 %減少 した。 この減少 iは、 実施例 1 の熱硬化性組成物中のボ リ 力 プロラ ク ト ン含有量 (約 5 . 7重量% ) を大き く上回る もの であり、 ボ リ 力プロラ タ ト ン以外の成分も多 Sに分解されて いるこ とを示している。 分解処理試験後の分解溶液の N M R 測定によれば、 不飽和ポ リ エステルに含有されるフタル酸の 存在が確認されており、 ポ リ カブロラ ク ト ンのエステル結合 だけでな く、 不飽和ポ リエステルのエステル結合の 5 0 %以 上が分解されているこ とがわかる。 このよ う に、 脂肪族ボ リ エステルの 1 種であるポ リ 力プロラ ク ト ンを含有するこ とに よ り、 熱硬化性組成物の分解性が顕著に向上する。
S ¾から 5 0時間後の実施例 1 の試料の状態を目視で観察 したところ、 いくつもの断片に分解され、 硬化物と しての形 状を維持していなかつた。
さ らに、 実施例 1 の熱硬化性組成物の硬化性 (ゲル化時間 および硬化時間) ならびに射出成形性および ト ラ ンスフ ァー 成形性 (スパイ ラルフ ロー長さ) は、 実用上全く 問題なかつ た。 さ らに、 硬化後の組成物の外観および機械的強度も、 実 用上全く 問題なかった。
以上のよう に、 実施例 1 の熱硬化性組成物は、 従来の熱硬 化性組成物の優れた特性を維持しつつ、 塩基とエタ ノールと を含む分解溶液によ り、 室温で容易に分解処理される。
(実施例 2 )
不飽和ポ リ エステル (日本触媒社製、 ェポラ ッ ク) 5 6重 i部、 付加重合性モノ マーと してスチ レン 3 8 重 ft部、 低収 縮剤と してポ リ スチ レン 6重 fi部、 および脂肪族ポ リ エステ ノレと してポ リ 力プロラ ク ト ンジオール (分子量 2 0 0 0、 ダ ィセル化学社製、 ブラ クセル 2 0 0 ) 6重: t部を混合した。 硬化剤と して t 一プチルパーォキシベンゾエイ ト ( 日本油脂 社製、 パーブチル Z ) を、 この混合物 1 0 0重 ft部に対して 1 重量部の割合で加え、 熱硬化性組成物を得た。 次いで、 こ の組成物を厚さ l mmの箱状型に流し込み、 1 2 0てで 3 0 分間加熱するこ とによ り、 この組成物を硬化させた。 硬化後 の組成物を 1 0 x 2 0 x l mmの板状に切り出 し、 分解処理 試験用試料と した。
次いで、 水酸化ナ ト リ ウム 1 g、 メ タ ノール 1 5 g、 およ び水 1 5 gを混合し、 分解溶液を調製した。 上記試料をこの 分解溶液に室温で浸浪し、 時間変化に伴う 重量減少を観察し た。 結果を表 2に示す。
(実施例 3 )
ポ リ 力プロラ ク ト ンジオールの代わり にポ リ乳酸 6重: S部 を使用 したこ と以外は実施例 2と同様にして試料を作成し、 実施例 2 と同様の試験を行った。 結果を表 2に示す。
(実施例 4 )
ポ リ 力プロラク ト ンジオールの代わり にポ リ カブロラク ト ン ト リ オール (分子量 3 0 0 0、 ダイセル化学社製、 ブラク セル 3 0 0 ) 6重 fi部を使用 したこ と以外は実施例 2と全く 同様に して試料を作成し、 実施例 2と同様の試験を行った。 結果を表 2に示す。
(実施例 5 )
実施例 2と同様に して試料を作成した。 メ タ ノールを含ま ない分解溶液 (水酸化ナ ト リ ウム l gと水 3 0 gとを混合し て調製したもの) を使用 したこ と、 および分解溶液の温度を 8 0 と したこ と以外は実施例 2 と同様の試験を行った。 結 果を表 2に示す。 (実施例 6 )
実施例 2 と同様に して試料を作成した。 水の代わりにェチ レ ングリ コールを含む分解溶液 (水酸化ナ ト リ ゥ厶 1 g、 メ タ ノール 1 5 g、 およびエチ レングリ コール 1 5 g とを混合 して魏製したもの) を使用 したこ と以外は実施例 2 と同様の 試験を行った。 結果を表 2 に示す。
¾ 2
Figure imgf000053_0001
注 : 実施例 2 〜 4では、 メ タ ノ ールおよび水を含む常 温の分解溶液を、 実施例 5 では、 メ タ ノ ールを含 まない 8 0 eCの分解溶液を、 実施例 6 では、 メタ ノ ールおよびエチ レングリ コールを含む常温の分 解溶液をそれぞれ使用 した。 表 2から明 らかなょぅ に、 実施例 2〜 6 において、 塩基と、 水、 メ タ ノール、 またはエチ レングリ コールとを含む分解 ¾ 液で処理された試料は、 *から 2 0 0時間で、 重量が最小 でも 1 7 9 減少し、 侵れた分解性を示 した。 実施例 2 と実施 例 5 とを比較すると、 水酸化ナ ト リ ウムおよび水からなる分 解溶液は、 8 0てまで加熱するこ とによ り、 水酸化ナ ト リ ウ ム、 メ タ ノールおよび水からなる分解溶液と同等の分解性を 有した。 実施例 2 と実施例 6 とを比較する と、 溶剤と してメ タ ノールと水とを用いた分解溶液の方が、 溶剤と してメ タノ 一ルとヱチレングリ コールとを用いた分解溶液よ り も分解能 力に優れていた。
さ らに、 漫«から 2 0 0時間後の試料の状態を目視で観察 したとこ ろ、 粉砕、 変形などの処理が容易に行えるような柔 らかいゴム状であった。
以上のよう に、 実施例 2 ~ 6の熱硬化性組成物は、 従来の 熱硬化性組成物の優れた特性を維持しつつ、 塩基と、 水、 メ タ ノール、 またはエチレングリ コールとを含む分解溶液によ り、 室温で、 または分解溶液の沸点以下の温度で容易に分解 処理される。
(実施例 7 )
不飽和ポ リ エステル (日本触媒社製、 エボラ ッ ク) 5 6重 fi部、 付加重合性モノ マーと してスチ レン 3 8重量部、 低収 縮剤と してポ リ スチ レン 6 部、 およびボ リ 力プロラク ト ン (分子量 4万、 ダイセル化学社製、 ブラ クセル) 6重量部 を混合した。 硬化剤と して t一ブチルパーォキシラ ウ レー ト
( 日本油脂社製、 パーブチル Z ) を、 この混合物 1 0 0重量 部に対して 1 重 fi部の割合で加え、 熱硬化性組成物を得た。 次いで、 この組成物を厚さ 1 m mの箱状型に流し込み、 1 2 0てで 3 0分間加熱するこ とによ り、 この組成物を硬化させ た。 硬化後の組成物を 1 0 x 2 0 x l m mの板状に切り 出し、 分解処理試験用試料と した。
次いで、 水酸化ナ ト リ ウム 1 g、 メ タノ ール 2 7 g、 およ び水 3 gを混合し、 分解溶液を翻製した。 上記試料をこの分 解溶液に室温で浸 »し、 時間変化に伴う重 i滅少を観察した。 結果を表 3 に示す。
(実施例 8 〉
低収縮剤であるポ リ スチ レン使用 しなかったこ と以外は実 施例 7 と同様に して試料を作成し、 実施例 7 と同様の試験を 行った。 結果を表 3 に示す。
(実施例 9 )
ボ リ 力プロラ ク ト ンの代わり にポ リ 力プロラク ト ンジォー ル (分子 fi 2 0 0 0、 ダイセル化学社製、 プラ クセル 2 0 0 ) 6重 S部を使用 したこ と以外は実施例 7 と同様に して試料を 作成し、 実施例 7 と同様の試験を行った。 結果を表 3に示す。 (実施例 1 0 )
ポ リ 力プロラ ク ト ンジオール (分子量 2 0 0 0、 ダイセル 化学社製、 ブラ クセル 2 0 0 ) 6 重 i部をさ らに追加使用 し たこ と、 および低収縮剤であるポ リ スチレ ン使用 しなかった こ と以外は実施例 7 と同様に して試料を作成し、 実施例 7 同様の試験を行った。 結果を表 3 に示す。
(比較例 2 )
ポ リ 力プロラ ク ト ンを含まなかったこ と以外は実施例 7 同様にして試料を作成し、 実施例 7 と同様の試験を行った 結果を表 3 に示す。 3
Figure imgf000056_0001
表 3から明らかなよ う に、 実施例 7 ~ 1 0および比較例 2 において、 比較例 5の熱硬化性組成物から得られた試料は、 g ¾から 5 0 0時間経過してもわずか 1 % しか重 fiが滅少し ないのに対して、 実施例?〜 1 0の熱硬化性組成物から得ら れた試料は、 浸 ¾から 5 0 0 時間で、 重量が最小でも 2 4 % 滅少した。 低収縮剤を含まない実施例 8および 1 0の熱硬化性組成物 から得られた試料は、 実施例 7および 9の熱硬化性組成物か ら得られた試料よ り も、 重量減少が若干大きかった。 これは- 低収縮剤であるポ リ スチレンが親水性ではないため、 分解溶 液の硬化物への浸透性が若干低下するためと考えられる。
硬化時の収縮率については、 実施例 7 〜 1 0 および比較例 2 において 0 . 1 %以下であった。 このよ う に、 低収縮剤を 含まない実施例 1 0の熱硬化性組成物から得られた試料では, 収縮性が若干低下した。 ボ リ 力プロラ タ ト ンを含む熱硬化性 組成物が、 低収縮剤を含む比較例 2の熱硬化性組成物と同様 の収縮性を示すこ とから、 ポ リ 力プロラ ク ト ンが収縮剤と し ても機能し得る脂肪族ポ リ エステルであるこ とがわかる。
浸 ¾から 5 0 0時間後の実施例 7 〜 1 0 の試料の状 を目 視で観察したところ、 粉砕、 変形などの処理が容易に行える よ うな柔らかいゴム状であった。
さ らに、 実施例 7 ~ 1 0の熱硬化性組成物の硬化性 (ゲル 化時間および硬化時間) な らびに射出成形性および ト ラ ンス フ ァー成形性 (スパイ ラルフ ロー長さ) は、 実用上全く 問題 なかった。 さ らに、 硬化後の組成物の外観および機械的強度 も、 実用上全く 問題なかった。
以上のよう に、 本実施例の熱硬化性組成物は、 従来の熱硬 化性組成物の優れた特性を維持しつつ、 塩基と、 メ ダノ ール および水とを含む分解溶液によ り、 室温で容易に分解処理さ れる。 (実施例 1 1 )
不飽和ポ リ エステル (日本触媒社製、 エボラ ッ ク) 3 5重 量部、 スチ レ ン 1 5重量部、 およびポ リ 力プロラ ク ト ンを含 む側鎖を有するラタ ト ン変性ヒ ドロキシェチルァク リ レー ト モノ マー (ダイ セル化学社製) 5 0重量部を混合した。 この 混合物 l o o重 1:部に対して、 低収縮剤と してポ リ メチルメ タク リ レー ト 5重量部、 脂肪族ポ リ エステルと してポ リ カブ ロラ ク ト ン 6重 S部、 および硬化剤と して t一ブチルバーオ キシベンゾエイ ト (日本油脂社製、 パーブチル Z ) 1重 fi部 を加え、 熱硬化性組成物を ¾製した。 次いで、 この組成物を 厚さ l mmの箱状型に流し込み、 1 2 ひてで 3 0分間加熱す るこ とにより、 この組成物を硬化させた。 硬化後の組成物を 1 0 X 2 O x l mmの板状に切り 出 し、 分解処理試験用試料 と した。
次いで、 水酸化ナ ト リ ウム l g、 およびメ タ ノール 30 g を混合し、 分解溶液を調製した。 上記試料をこ の分解溶液に 室温で浸 «し、 時間変化に伴う重 fi滅少を観察した。 結果を 表 4に示す。
(実施例 12 )
実施例 1 1 と同様にして試料を作成した。 水酸化ナ ト リ ウ 厶 1 g、 エタ ノール 2 7 g、 および水 3 gを混合して ¾製し た分辉溶液を使用 したこ と以外は実施例 1 1 と同様の試験を 行った。 結果を表 4に示す。
(比較例 3 ) 実施例 1 1 と同様に して試料を作成した。 塩基を含まない 分解溶液 (エタ ノール 2 7 g と水 3 g とを混合して調製した もの) を使用 したこ と以外は実施例 1 1 と同様の試験を行つ た。 結果を表 4 に示す。
(実施例 1 3 )
不飽和ボ リ エステル (日本触媒社製、 エボラ ッ ク ) 6 5重 i部、 スチ レ ン 3 5 S量部、 およびアク リ ル酸ェチル 1 5重 S部を混合した。 この混合物 5 7 . 5重量部に対して、 低収 綰剤と してボ リ メチルメ タ ク リ レー ト 5重 S部、 ボ リ カブ口 ラ ク ト ン 6重量部、 および硬化剤と して t一ブチルパーォキ シベンゾエイ 卜 (日本油脂社製、 パーブチル Z ) 1 重量部を 加え、 熱硬化性組成物を得た。 次いで、 この組成物を厚さ 1 m mの箱状型に流し込み、 1 2 0 eCで 3 0分間加熱するこ と によ り、 この組成物を硬化させた。 硬化後の組成物を 1 0 X 2 0 1 m mの板状に切り 出 し、 分解処理試 ¾用試料と した c 次いで、 水酸化ナ ト リ ウム 1 g、 およびメ タ ノ ール 3 0 g を混合し、 分解溶 ¾を¾製した。 上記試料をこの分解 ¾液に 室温で S演し、 時間変化に伴う重量滅少を観察した。 結果を 表 4 に示す。
(実施例 1 4 )
実施例 1 3 と同様に して試料を作成した。 水酸化ナ ト リ ウ ム l g、 エタノ ール 2 7 g、 および水 3 gを混合して 18製し た分解溶液を使用 したこ と以外は実施例 1 3 と同様の試験を 行.つた。 結果を表 4 に示す。 (比較例 4 )
実施例 1 3 と同様に して試料を作成した。 塩基を含まない 分解溶液 (エタノール 2 7 . g と水 3 g とを混合して ¾製 した もの) を使用 したこ と以外は実施例 1 3 と同様の試験を行つ た。 結果を表 4 に示す。 _1
Figure imgf000060_0001
注 : 実施例 11および 13では、 水酸化ナ ト リ ウムおよび メ タ ノールを含む分解溶液を、 実施例 12および 14 では、 水酸化ナ ト リ ウム、 エタ ノール、 および水 を含む分解溶液を、 比較例 3および 4 では、 水酸 化ナ ト リ ウムを含まない分解溶液をそれぞれ使用 した。 表 4 から明らかなよ う に、 実施例 1 1 ~ 1 4 な らびに比較 例 3および 4 において、 水酸化ナ ト リ ゥムまたはエタ ノール を含まない分解溶液で処理された比較例 3 および 4 の試料は、 g *から 5 0 0時間経過しても重量が滅少 しないのに対して、 水酸化ナ ト リ ウムおよびエタ ノールを含む分解溶液で処理さ れた実施例 1 1 ~ 1 4 の試料は、 から 5 0 0 時 Hで、 重 量が最小でも 2 1 %滅少した。 実施例 1 1 と 1 2 とを、 そ し て実施例 1 3 と 1 4 とを比較する と明らかなよ う に、 通 Sの 水を含む分解溶液を用いる場合の方が、 硬化物の分解性に ft れる。 実施例 1 1 と 1 3 とを、 そ して実施例 1 2 と 1 4 とを 比較する と明らかなよう に、 付加重合性モノ マ一と して付加 重合性末端を有する脂肪族ボ リ エステルを用いる熱硬化性組 成物の方が、 分解性に優れる。
分解処理試狭後の分解溶液の N M R測定によれば、 不飽和 ボ リ エステルに含有されるフタル酸の存在が確認されており、 脂肪族ポ リエステルのエステル結合だけでなく、 不飽和ボ リ エステルのエステル結合も分解されている。
浸 »から 5 0 0時間後の実施例 1 1 〜 1 4の試料の状態を 目視で観察したとこ ろ、 粉碎、 変形などの処理が容易に行え るよ う な柔らかいゴム状であった。
以上のよう に、 実施例 1 1 〜 1 4 のの熱硬化性組成物は、 従来の熱硬化性組成物の優れた特性を維持しつつ、 塩基と、 水、 エタ ノ ール、 またはメ タ ノールとを含む分解溶液によ り、 室温で容易に分解処理される。 (実施例 1 5 )
脂肪族ボ リ エステルを含む側鎖を有するポ リ マーと して、 ビスフ ヱ ノ ールーェピク ロ ロ ヒ ド リ ン樹脂の第 2級水酸基を ラ ク ト ン変性したラ ク ト ン変性エポキシ樹脂 (ダイセル化学 社製、 ブラ クセル G ) を用いた。 この樹脂 1 0重 S部に、 硬 化剤と してべンジルジメチルァ ミ ンを 1 重量部を混合し、 熱 化性組成物を得た。 次いで、 この組成物を厚さ 1 m mの箱 状型に流し込み、 1 0 0 eCで 3 0分間加熱するこ とによ り、 この組成物を硬化させた。 硬化後の組成物を 1 0 X 2 0 X 1 m mの板状に切り 出 し、 分解処理試驗用試料と した。
硬化後の組成物の機械的強度は、 実用上全 問題なかった。 次いで、 水酸化ナ ト リ ウム 1 g、 メ タ ノ ール 2 4 g、 およ び水 6 gを混合し、 分解溶液を調製した。 上記試料をこの分 解溶液に室温で S « し、 1 5 0時間後の重 S減少を測定した 結果、 重 Sが約 2 2 %減少した。 この時点での試料の状態を 目視で観察したとこ ろ、 いく つもの断片に分解され、 硬化物 と しての形状を維持していなかった。
以上のよう に、 本実施例の熱硬化性組成物は、 従来の熱硬 化性組成物の優れた特性を維持しつつ、 塩基と、 メ タ ノール および水とを含む分解溶液によ り、 室温で容易に分解処理さ れる。
(実施例 1 6 )
フ エ ノ ール樹脂 ( 日立化成工業社製、 スタ ン ドライ ト C P または、 フ ド一社製、 フ ドウライ ト) 3 8重 fi部、 ボ リ カブ oラ ク ト ン (分子 i 4万、 ダイセル化学社製、 ブラ クセル) 2重 S部、 粒径約 5 ^ mの炭酸カルシウ ム 5 0重 fi部、 直径 約 0. 5 mm、 長さ 2 0 m mのガラ ス維維 1 0重量部を混合 した。 硬化剤と してへキサメ チレンテ トラ ミ ンを、 この混合 物の樹脂重 iに対して 1 0重量%の割合で加え、 熱硬化性組 成物を得た。 次いで、 この組成物を厚さ 1 mmの箱状型に流 し込み、 1 4 0てで約 3 0分間加熱するこ とによ り、 この組 成物を硬化させた。 硬化後の組成物を 1 0 x 2 O x l m mの 板状に切り出 し、 分解処理試験用試料と した。
次いで、 水酸化ナ ト リ ウム l g、 メ タノ ール 2 4 g、 およ び水 6 gを混合し、 分解溶液を ¾製した。 上記試料をこの分 解溶液に室温で浸 ¾し、 時間変化に伴う重 S減少を観察した。 結果を表 5に示す。
(実施例 1 7 )
ェボキシ榭脂 (日立化成工業社製、 スタ ン ドライ ド C E L または、 大日本イ ンキ化学工業社製、 ェピク ロ ン) 3 8重 fi 部、 ポ リ カブロラ ク ト ン (分子量 4万、 ダイセル化学社製、 プラ クセル) 2重 fi部、 粒径約 5 // mの炭酸カルシウム 5 0 重量部、 直径約 0. 5 mm. 長さ 2 0 mmのガラス維維 1 0 重 i部を混合した。 硬化剤と してへキサメチレンテ トラ ミ ン を、 この混合物の樹脂重量に対して 1 0重 ft%の割合で加え、 熱硬化性組成物を得た。 次いで、 この組成物を厚さ l m mの 箱状型に流し込み、 1 0 0てで約 3 0分間加熱するこ とによ り、 この組成物を硬化させた。 硬化後の組成物を 1 0 X 2 0 x 1 m mの板状に切り 出 し、 分解処理試験用試料とした。 次いで、 水酸化ナ ト リ ウム 1 g、 メ タ ノ ール 2 4 g、 およ び水 6 gを混合し、 分解溶液を調製 した。 上記試料をこの分 解溶液に室温で浸 »し、 時間変化に伴う重量滅少を観察した, 結果を表 5 に示す。 _5
Figure imgf000064_0001
表 5から明らかなよう に、 浸滇から 5 0 0時間後の実施例
1 6および 1 7の試料は、 共に重: iが 1 0 %近く 減少した。 試料の状態を目視で観察したところ、 粉砕、 変形などの処 理が容易に行えるよう な非常にもろい状態であった。
実施例 1 6 および 1 7の熱硬化性組成物の硬化性および成 形性は、 実用上全く 問題なかった。 さ らに、 硬化後の組成物 の外観および機械的強度も、 実用上全く 問題なかった。
以上のよう に、 実施例 1 6 および 1 7の熱硬化性組成物は, 従来の熱硬化性組成物の優れた特性を維持しつつ、 塩基と、 メ タ ノ ールおよび水とを含む分解溶液によ り、 室温で容易に 分解処理される。
(実施例 1 8 )
不飽和ボ リ エステル (日本触媒社製、 ェポラ ッ ク) 2 4重 量部、 ボ リ 力プロラ ク ト ン (分子量 4万、 ダイセル化学社製、 プラ クセル) の 3 0重量%スチ レ ン溶液 6重量部、 低収縮剤 と してポ リ スチレン 4 重: ft部、 および硬化剤と して t -プチ ルパーォキシベンゾエイ ト (日本油脂社製、 パーブチル Z ) 0 . 5 重 S部を混合し、 熱硬化性組成物を得た。 こ の組成物 をバイ ンダー材と した。
フ ィ ラーと して炭酸カルシウム 5 7重量部、 雜型剤と して ステア リ ン酸亜鉛 2重 S部、 および增粘剤と して酸化マグネ シゥム 1 重量部を、 ニーダを用いて約 5分間乾式混合した。 こ の混合物に、 上記バイ ンダー材 3 0重!:部を混練しながら 徐々 に加え、 均一なペース トを得た。 次いで、 このペース ト に、 ガラス維維 1 0重量部を均一に分散させるよ う混練しな がら極力短時間で加えた。 ガラス維維が均一に分散した時点 で混練を終了 し B M Cを得、 これをモール ド材と した。
このモール ド材を、 金型温度 1 5 0 て、 注入圧力 1 5 0 k g /en 2で ト ラ ンスフ ァ ー成形し、 板状の成形体を得た。
このモール ド材の硬化性 (ゲル化時間および硬化時間) お よびスパイラルフ ロー長さは、 実用上全く 問題なかった。 さ らに、 成形体の寸法安定性は、 従来の F R Pよ り も優れてお り、 外観および機械的強度も、 実用上全く 問題なかった。
水酸化ナ ト リ ウム 2 g、 エタ ノ ール 1 0 g、 およびメ タ ノ ール 2 0 gを混合し、 分解溶液を調製 した。 上記成形体をこ の分解溶液に室温で浸演し、 2 0 0時間後の状態を目視で観 察したところ、 いく つもの断片に分解され、 成形体と しての 形状を維持していなかつた。
以上のよう に、 本実施例のモール ド材は、 従来の F R Pの 優れた特性を維持しつつ、 塩基と、 エタ ノールおよびメ タ ノ 一ルとを含む分解溶液によ り、 室温で容易に分裤処理される c (実施例 1 9 )
不飽和ポ リ エステル (昭和高分子社製、 リ ゴラ ッ ク) 1 2 重 S部、 スチ レ ン 7重 S部、 ポ リ 力プロラ ク ト ン (分子置 4 万、 ダイセル化学社製、 ブラ クセル) 1 重量部、 低収縮剤と してポ リ 酢酸ビニル 1 重量部、 および硬化剤と して t一プチ ルバ一ォキシベンゾエイ ト ( 日本油脂社製、 パーブチル Z ) 0 . 4 重量部を混合し、 熱硬化性組成物を得た。 この組成物 をバイ ンダー材と した。
フ ィ ラーと して粒径 4〜 6 / mの炭酸カルシウム 5 7重!: 部、 雜型剤と してステア リ ン酸亜鉛 1 . 2重量部、 および增 粘剤と して水酸化カルシウム 1 重量部を、 ニーダを用いて乾 式混合した。 この混合物に、 上記バイ ンダー材 3 0重量部を 混練しながら徐々に加え、 均一なペース トを得た。 次いで、 このペース トに、 ポ リ エチ レン雄維 1 0重 ϋ部を均一に分散 させるよ う混練しながら極力短時間で加えた。 ガラ ス維維が 均一に分散した時点で混練を終了 し、 B M Cを得、 これをモ 一ル ド材と した。 このモール ド材を、 ブラ ンジャー /スク リ ュー併用式射出 成型機のホッパー部に圧入し、 金型温度 1 5 0て、 スク リ ュ 一回転数 5 0 r p m、 射出圧力 1 4 0 kg/cm2、 射出時間 5秒、 および保圧時間 3 0秒の条件で射出成形し、 直径 2 0 m m、 高さ 1 5 m mの円柱状成形体を得た。
この成形体は、 軽量で、 かつ、 加工性に便れていた。
水酸化ナ ト リ ウム 2 g、 エタ ノ ール 2 0 g、 および水 1 0 gを混合し、 分解溶液を調製した。 上記成形体をこの分解溶 液に室温で S¾し、 2 0 0時間後の状態を目視で観察したと こ ろ、 粉砕、 変形などの処理が容易に行えるよう な非常にも ろい状態であった。 成形体の機械的強度は、 浸浪前の約 1 / 8 まで低下した。
以上のよう に、 本実施例のモール ド材は、 塩基と、 ェタノ ールおよび水とを含む分解溶液によ り、 室温で容易に強度が 劣化する。
(実施例 2 0 )
不飽和ポ リ エステル (日本触媒社製、 ェポラ ッ ク) 2 8重 量部、 ポ リ 力プロラ ク ト ンジオール 2. 5重量部、 スチレン 2 0重 fi部、 低収縮剤と してポ リ スチ レン 2重量部、 および 硬化剤と して t 一ブチルパーォキシ一 2 —ェチルへキサノエ ー ト (日本油脂社製、 パープチル 0 ) 0. 4重量部を混合し、 熱硬化性組成物を得た。 この組成物をバイ ンダー材と した。
フ ィ ラーと して炭酸カルシウム 5 8 重量部、 雜型剤と して ステア リ ン酸亜鉛 1. 5重 S部、 および增粘剤と して酸化マ グネシゥム 0 . 5重量部を、 二一ダを用いて乾式混合した。 この混合物に、 上記バイ ンダー材 4 0 重量部を混練 しながら 徐々に加え、 均一なペース トを得た。
次いで、 ガラス雄維をカ ッ ターで切断したチ s ップス トラ ン ドを、 ボ リ エチレンフ ィ ルム上に一面に钕布し、 上記ぺー ス トを含浸させた。 これを必要な長さだけ巻取り、 熟成させ るこ とによ り必要な粘度まで增粘させるこ とによ って S M C を得、 これをモール ド材と した。
このモール ド材を、 金型温度 6 5 。C、 圧力 1 0 0 kg/ cra lで 圧縮成形 し、 成形体を得た。
このモール ド材の硬化性および成形性は、 実用上全く 間題 なかった。 さ らに、 成形体の外観および機械的強度も、 実用 上全く 問題なかった。
水酸化ナ ト リ ウム 1 g、 メ タノ ール 2 5 g、 および水 5 g を混合し、 分解溶液を ¾製した。 上記成形体をこの分解溶液 に室温で S »し、 時間変化に伴う状想変化を観察したとこ ろ、 重量は減少し、 強度は低下した。
以上のよ う に、 本実施例のモール ド材は、 塩基と、 メ タノ ールおよび水とを含む分解溶液によ り、 室温で容易に分解処 理される。
(実施例 2 1 )
不飽和ポ リ エステル (日本触媒社製、 ェポラ ッ ク〉 5 2 S 量部に、 スチ レ ン 2 8重 S部、 ポ リ 力プロラタ ト ン (分子量 4万、 ダイセル化学社製、 ブラ ク セル) 6重量部/スチ レン 1 4重量部溶液を混合し、 さ らに低収縮剤と してポ リ酢酸ビ ニル 6重量部、 硬化剤と して t 一ブチルパーォキシベンゾェ ィ ト ( 日本油脂社製、 パーブチル Z ) 1 重量部を混合し、 熱 硬化性組成物を得た。 この組成物をモール ド材と した。
このモール ド材を、 絶縁体を介して卷線が巻装された铁芯 と一体成形し、 図 1 に示すよ うなモール ドモータを作成した《 このモール ドモータを、 分解溶液 (水酸化ナ ト リ ウム 1 . 2 5 g、 エタノール 2 4 g、 および水 6 gを混合して現製した もの) に 2 4 時間 S漬 した後モール ド材の除去を試みたとこ ろ、 素手でモール ド材を除去し、 巻線および铁芯を分離する こ とができた。
さ らに、 2 0 時間浸 »するこ とによ り、 巻線に一部残留 し ていたモール ド材を、 完全に除去するこ とができた。
(実施例 2 2 )
不飽和ポ リ エステル ( 日本触媒社製、 ェポラ ッ ク) 5 2重 量部に、 スチレン 2 8 重 fi部、 ポ リ 力プロラク ト ンジオール (分子 i 2 0 0 0、 ダイセル化学社製、 ブラ クセル 2 0 0 ) 6重: ft部/スチ レン 1 4重 S部溶液を混合し、 さ らに低収縮 剤と してポ リ スチレン 6重量部、 硬化剤と して t ーブチルバ 一ォキシベンゾエイ ト (日本油脂社製、 パーブチル Z ) 1重 量部を混合し、 熱硬化性組成物を得た。 この組成物をモール ド材と した。
このモール ド材を用いて、 実施例 2 1 と同様に して図 1 に 示すよ う なモール ドモータを作成した。 このモール ドステー タを、 分解溶液 (水酸化ナ ト リ ウ ム 1 · 2 5 g、 エタノール 6 g、 およびジメチルスルホキシ ド 2 4 gを混合して調製し たもの) に 2 4 時間浸潸した後モール ド材の除去を試みたと こ ろ、 素手でモール ド材を除去し、 卷線および鉄芯を分雜す るこ とができた。
さ らに、 2 0時間浸潦するこ とによ り、 巻線に一部残留し ていたモール ド材を、 完全に除去するこ とができた。
(実施例 2 3 )
不飽和ボ リ エステル (日本触媒社製、 ェポラ ッ ク ) 5 2重 量部に、 スチレン 4 2重;!部、 2 5 0〜 5 0 0 / mの粒径を 有する粒子状のポ リ乳酸 (島津製作所社製) 6重量部を混合 し、 さ らに低収縮剤と してポ リ スチレン 6重 S部、 硬化剤と して t 一ブチルパーォキシベンゾエイ ト (日本油脂社製、 パ 一ブチル Z ) 1 重量部を混合し、 熱硬化性組成物を得た。 こ の組成物をモール ド材と した。
このモール ド材を用いて、 実施例 2 1 と同様に して図 1 に 示すよ う なモール ドモータを作成した。 このモール ドモータ を、 分解溶液 (水酸化ナ ト リ ウム 1 . 2 5 g、 エタ ノール 2 4 g、 および水 6 gを混合して調製したもの) に 2 4時間浸 漬 した後モール ド材の除去を試みたとこ ろ、 素手でモールド 材を除去し、 巻線および鉄芯を分雜するこ とができた。
さ らに、 2 0 時間浸»するこ とによ り、 卷線に一部残留し ていたモール ド材を、 完全に除去するこ とができた。
なお、 ポ リ 乳酸は、 粒子状ではな く、 針状または維維状で あってもよい。
(実施例 2 4 )
不飽和ボ リ エステル ( 日本触媒社製、 ェポラ ッ ク) 5 2重 S部、 スチ レ ン 4 2重量部、 ポ リ プチ レ ンスク シネー ト (昭 和高分子社製、 ピオノー レ) 6重量部、 低収縮剤と してポ リ スチ レ ン 6重量部、 および硬化剤と して t 一ブチルパーォキ シベンゾエイ ト (日本油脂社製、 パーブチル Z ) 1 重量部を —括で混合し、 熱硬化性組成物を得た。 この組成物をモール ド材と しに。
このモール ド材を用いて、 実施例 2 1 と同様に して図 1 に 示すよう なモール ドモータを作成した。 このモール ドモータ を、 分解溶液 (水酸化ナ ト リ ウム 1 . 2 5 g、 エタ ノール 2 4 g、 および水 6 gを混合して調製したもの) に 2 4時間浸 »した後そ一ル ド材の除去を試みたところ、 素手でモール ド 材を除去し、 巻線および鉄芯を分雜するこ とができた。
さ らに、 2 0時間浸 *するこ とによ り、 卷線に一部残留し ていたモール ド材を、 完全に除去するこ とができた。
(実施例 2 5 )
不飽和ポ リ エステル (日本触媒社製、 ェポラ ッ ク) 5 2重 S部に、 スチ レン 2 8重量部、 ポ リ 力プロラク ト ン (分子 ft 4万、 ダイセル化学社製、 ブラ ク セル) 7重量部/スチレン 1 3重 5部溶液を混合し、 さ らに低収縮剤と してポ リ スチレ ン 6重量部、 硬化剤と して t 一ブチルパーォキシベンゾエイ ト (日本油脂社製、 パーブチル Z ) 1 重 i部を混合し、 熱硬 化性組成物を得た。 この組成物をバイ ンダー材と した。
このバイ ンダー材に、 平均粒径 2 0 mの重質炭酸カルシ ゥム (丸尾カルシウム社製) を 1 0 0 重量部加え、 モール ド 材 ¾■得ァ: 0
このモール ド材を用いて、 実施例 2 1 と同様に して図 1 に 示すよう なモール ドモータを作成した。 こ のモール ドモータ を、 分解溶液 (水酸化ナ ト リ ウム 1 . 2 5 g、 エタ ノール 2 4 g、 および水 6 gを混合して調製したもの) に 2 4時間浸 *した後モール ド材の除去を試みたところ、 金槌で軽く 叩く だけでモール ド材が容易に崩壊し、 巻線および鉄芯を分雜す るこ とができた。
さ らに、 2 0 時間浸 ¾するこ とによ り、 巻線に一部残留 し ていたモール ド材を、 完全に除去するこ とができた。
(実施例 2 6 )
不飽和ボ リ エステル (日本触媒社製、 エボラ ッ ク) 5 2重
S部に、 スチ レ ン 2 8重量部、 ボ リ 力プロラク ト ン (分子 fi 4万、 ダイセル化学社製、 ブラ クセル) 8重 i部/スチレン 1 2重 fi部溶液を混合し、 さ らに低収縮剤と してポ リ スチレ ン 6重量部、 硬化剤と して t 一ブチルパーォキシベンゾエイ ト (日本油脂社製、 パーブチル Z ) 1 重 i部を混合し、 熱硬 化性組成物を得た。 この組成物をバイ ンダー材と した。
このバイ ンダー材に、 平均粒径 2 0 mの重質炭酸カルシ ゥ厶 (丸尾カルシゥ,ム社製) 1 0 0重¾部、 および長さ 2 0 m mのガラ ス雄維を加え、 モール ド材を得た。 このモール ド材を用いて、 実施例 2 1 と同様に して図 1 に 示すよ う なモール ドモータを作成した。 このモール ドモータ を、 分解溶液 (水酸化ナ ト リ ウム 1 . 2 5 g、 エタ ノール 2 4 g、 および水 6 gを混合して調製したもの) に 2 4時間浸 ¾した後モール ド材の除去を試みたとこ ろ、 金槌で軽く 叩く だけでモール ド材が容易に崩壊し、 巻線および鉄芯を分雜す るこ とができた。
さ らに、 2 0時間浸 ¾するこ とによ り、 巻線に一部残留し ていたモール ド材を、 完全に除去するこ とができた。
(比較例 5 〉
不飽和ボ リ エステル (日本触媒社製、 ェポラ ッ ク) 5 2重 S部、 スチレン 4 2重 fi部、 低収縮剤と してポ リ スチレン 6 重量部、 および硬化剤と して t 一ブチルパーォキシベンゾェ ィ ト ( 日本油脂社製、 パーブチル Z ) 1 重量部を一括で混合 し、 熱硬化性組成物を得た。 こ の組成物をバイ ンダ一材と し このモール ド材を用いて、 実施例 2 1 と同様に して図 1 に 示すようなモール ドモ一夕を作成した。 このモール ドモータ を、 分解溶液 (水酸化ナ ト リ ウム 1 . 2 5 g、 エタ ノール 2 4 g、 および水 6 gを混合して ¾製したもの) に 2 4時間浸 攬 した後モール ド材の除去を試みたが、 容易に除去するこ と はできなかつた。 '
(実施例 2 7 )
式(V I I )で表され、 融点が 1 1 4 。Cの脂肪族ボ リ エステルで ある共重合樹脂 (昭和高分子社製、 ビオノ 一 レ) を介して卷 線が巻装された铁芯に、 卷線を Sう よ う にこのポ リ エステル をモール ドし、 さ らに実施例 2 6 のモール ド材と一体成形し, 内部モール ド部と外部モール ド部とを有する、 図 2 に示すよ う なモール ドモータを作成した。 外部モール ド部の厚みは、 約 6 m mであった。
Figure imgf000074_0001
このモール ドモータを、 分解溶液 (水酸化ナ ト リ ウム 1 . 2 5 g、 エタ ノ ール 2 4 g、 および水 6 gを混合して ¾製し たもの) に 2 4 時間 ¾した後モール ド材の除去を試みたと こ ろ、 金槌で数回叩く こ とによ り外部モール ド部が除去され, 内部モール ド部が表出 した。 さ らに、 同一の分解溶液に 2 4 時間 S するこ とによ り、 内部モール ド部および絶縁体を完 全に除去できた。
(実施例 2 8 )
分解溶液に浸 «する前に、 外部モール ド部をノ ミ でキズっ けて、 内部モール ド部を一部表出させたこ と以外は実施例 2 7 と同様に して、 実施例 2 7の分解溶液に 2 4 時間 S ¾した < ¾ ¾後、 内部モール ド部および絶綠体は、 完全に分解溶液に 溶解しモール ドステ一夕內都は空洞状怒であった。 このモー ノレ ドステータを金槌で数回叩 く こ とによ り、 外部モール ド材 が容易に除去され、 巻線および鉄芯を分雜するこ とができた c このよ う に、 内部モール ド部を表出させるこ とによ り、 分 解がよ り促進された。
(実施例 2 9 )
絶縁体と して熱変形温度 2 4 O eCのボ リ エチ レンテレフ夕 レー トを使用 したこ と、 および外部モール ド部の厚みを約 8 m mと したこ と以外は実施例 2 7 と同様に して、 図 2 に示す よう なモール ドモータを作成し、 実施例 2 7の分解溶液に 2 4 時間浸浪した。 浸潦後、 内部モール ド部は、 完全に分解溶 液に溶解しモール ドステータ内部は空洞状怒であった。 この モール ドステータを金槌で数回叩く こ とによ り、 外部モール ド材が容易に除去され、 絶縁体に配 Sされた状態で卷線およ び鉄芯を分雜するこ とができた。
(実施例 3 0 )
分解溶液に浸浪する前に、 外部モール ド部をノ ミ でキズっ けて、 内部モール ド部を一部表出させたこ と以外は実施例 2 9 と同様に して、 実施例 2 9 の分解溶液に 2 4 時間浸 ¾した。 内部モール ド部を一部表出させるこ とによ り、 分解がよ り 促進された。
(実施例 3 1 )
分解溶液に浸 »する前に、 外部モール ド部をノ ミ でキズっ けて、 内部モール ド部を一部表出させたこ と、 および、 分解 溶液と して トルエンを使用 したこ と以外は実施例 2 7 と同様 に して、 分解溶液に 2 4時間 ¾ ¾ した。 S *後、 內部モール ド部の多 く の部分が分解溶液に溶解し、 モール ドステータ内 部は空洞状態であった。 このモール ドステ一夕を金槌で数回 叩 く こ とによ り、 外部モール ド材が除去され、 巻線および鉄 芯を分雜するこ とができた。 虔業上の利用可能性
以上のよう に、 本発明によれば、 ( 1 ) 硬度、 強度、 耐熱 性、 難燃性、 耐薬品性などの従来の侵れた特性を損なわず、 かつ、 廃棄時の分解処理が容易な煞硬化性組成物 ; ( 2 ) 硬 度、 強度、 耐熱性、 難燃性、 耐薬品性 どの従来の βれた特 性を ¾なわず、 かつ、 廃棄時の分解処理が容易な熱硬化性組 成物を用いたモール ド材 ; ( 3 ) 熱硬化性組成物を用いたモ 一ル ド材を有し、 廃棄時の分解処理が容易なモール ド構造体 : ( 4 ) 熱硬化性組成物およびモール ド材、 さ らにそれを用い たモール ド構造体の簡便容易な分解処理方法 : および ( 5 ) このモール ド構造体の リサイ クル方法、 が提供される。

Claims

锖求の範囲
1 . 熱硬化性樹脂および脂肪族ボ リ エステルを含有する熱 硬化性組成物であって、
硬化後に、 少なく と も塩基を含有する分解溶液によ り該脂 肪族ポ リ エステルが分解されるこ とによって、 分解が促進さ れる、 熱硬化性組成物。
2 . 不飽和ポ リ エステル、 付加重合性モノ マー、 脂肪族ポ リ エステル以外の低収縮剤、 および脂肪族ポ リ エステルを含 有する熱硬化性組成物であって、
硬化後に、 塩基と、 水、 メ タ ノ ール、 エタ ノール、 および エチレングリ コールでなる群から選択される少な く とも 1 種 の溶剤とを含有する分解溶液によ り、 該分解溶液の沸点よ り 低い温度で容易に分解され得る、 熱硬化性組成物。
3 . 前記脂肪族ボ リエステルが、 ボ リ 力プロラ ク ト ン、 ポ リ プロ ピオラ ク ト ン、 ボ リ グリ コール酸、 ボ リ乳酸、 ボ リ ェ チ レ ンア ジペー ト、 ポ リ ブチ レ ンア ジペー ト、 ボ リ テ ト ラ メ チ レ ンアジペー ト、 ポ リ エチ レ ン スク シネー ト、 ポ リ ブチ レ ンスク シネー ト、 ボ リ 力プロラク ト ンジオール、 ポ リ カブ口 ラ ク ト ン ト リ オール、 およびポ リ ( 3 — ヒ ドロキシアルカノ エー ト) でなる群から選択される少な く と も 1 種である、 請 求項 2 に記載の熱硬化性組成物。
4 . 前記付加重合性モノ マーの少な く と も一部が、 付加重 合性末端を有する脂肪族ボ リ エステルである、 請求項 2 に記 載の熱硬化性組成物。
5 . 不飽和ポ リエステル、 付加重合性モノ マー、 およびポ リ カプロラ ク ト ンを含有する熱硬化性組成物であって、 硬化後に、 塩基と、 水、 メ タノ ール、 エタ ノ ール、 および エチレ ングリ コールでなる群から選択される少な く とも 1 種 の溶剤とを含有する分解溶液によ り、 該分解溶液の沸点よ り 低い温度で容易に分解され得る、 熱硬化性組成物。
6 . 前記付加重合性モノ マーの少な く と も一部が、 付加重 合性末端を有する脂肪族ボ リ エステルである、 請求項 5 に記 載の熱硬化性組成物。
7 . ポ リプロ ビオラタ ト ン、 ポ リ グリ コール酸、 ボ リ乳酸 ポ リエチ レンアジペー ト、 ポ リ ブチ レンアジペー ト、 ポ リ テ トラメ チ レンアジペー ト、 ポ リ エチ レンスク シネー ト、 ポ リ ブチレンスク シネー ト、 ポ リ カブロラ ク ト ンジオール、 ポ リ 力プロラ ク ト ン ト リ オール、 およびボ リ ( 3 — ヒ ドロキシァ ルカノ エ— ト) でなる群から選択される少な く と も 1 種の脂 肪族ボ リ エステルをさ らに含有する、 請求項 5 に記載の熱硬 化性組成物。
8 . 脂肪族ポ リエステル、 ならびにフ エ ノ ール樹脂または エポキシ樹脂を含有する熱硬化性組成物であって、
硬化後に、 塩基と、 水、 メ タノ ール、 エタ ノ ール、 および エチレングリ コールでなる群から選択される少な く とも 1種 の溶剤とを含有する分解溶液によ り、 該分解溶液の沸点よ り 低い温度で容易に分解され得る、 熱硬化性組成物。
9 . 前記脂肪族ボ リ エステルが、 ボ リ 力プロラ ク ト ン、 ポ リ プロ ピオラ ク ト ン、 ポ リ グリ コール酸、 ボ リ 乳酸、 ボ リ エ チレ ンアジペー ト、 ボ リ ブチ レンアジペー ト、 ポ リ テ ト ラメ チ レンアジペー ト、 ポ リ エチ レンスク シネー ト、 ボ リ ブチレ ンスク シネー ト、 ボ リ 力プロラ ク ト ン ジオール、 ボ リ カブ口 ラ ク ト ン ト リ オール、 およびボ リ ( 3 — ヒ ドロキシアルカノ ェ一 ト〉 でなる群から選択される少な く と も 1 種である、 猜 求項 8 に記載の熱硬化性組成物。
1 0 . 熱硬化性樹脂および脂肪族ボ リ エステルを含有する 熱硬化性組成物を、 バイ ンダー材と して含有する、 モール ド 材であって、
該熱硬化性組成物は、 硬化後に、 少なく とも塩基を含有す る分解溶液によ り該脂肪族ポ リ エステルが分解されるこ とに よって、 分解が促進される、 モール ド材。
1 1 . 不飽和ボ リ エステル、 付加重合性モノ マー、 脂肪族 ポ リ エステル以外の低収縮剤、 および脂肪族ボ リ エステルを 含有する熱硬化性組成物を、 バイ ンダー材と して含有する、 モール ド材であって、
該熱硬化性組成物は、 硬化後に、 塩基と、 水、 メ タ ノ ール、 エタ ノ ール、 およびエチ レングリ コールでなる群から選択さ れる少な く と も 1種の溶剤とを含有する分解溶液によ り、 該 分解溶液の沸点より低い温度で容易に分解され得る、 モール ド材。
1 2 . 前記脂肪族ボ リ エステルが、 ポ リ 力プロラ ク ト ン、 ポ リ プロ ピオラ ク ト ン、 ポ リ グリ コール酸、 ポ リ 乳酸、 ポ リ エチレンアジペー ト、 ボ リ ブチ レンアジペー ト、 ポ リ テ トラ メ チ レンアジペー ト、 ポ リ エチ レンスク シネー ト、 ポ リ プチ レンスク シネー ト、 ボ リ 力プロラ ク ト ン ジオール、 ポ リ カブ ロラ ク ト ン ト リ オール、 およびボ リ ( 3 — ヒ ドロキシアル力 ノ エー ト) でなる群から選択される少な く とも 1 種である、 耪求項 1 1 に記截のモール ド材。
1 3 . 不飽和ポ リ エステル、 付加重合性モノ マー、 および ポ リ カブロラ ク ト ンを含有する熱硬化性組成物を、 バイ ンダ ー材と して含有する、 モール ド材であって、
該熱硬化性組成物は、 硬化後に、 塩基と、 水、 メ タノ ール、 エタソ ール、 およびエチレングリ コールでなる群から選択さ れる少な く と も 1 種の溶剤とを含有する分解溶液によ り、 該 分解溶液の沸点よ り低い温度で容¾に分解され得る、 モール ド材。
1 4 . ポ リ プロ ピオラク ト ン、 ポ リ グリ コール酸、 ボ リ乳 酸、 ボ リ エチ レンアジペー ト、 ポ リ ブチレンアジペー ト、 ボ リ テ トラ メチ レンアジペー ト、 ボ リ エチレンスク シネー ト、 ポ リ プチ レンスク シネー ト、 ポ リ カブロラ ク ト ンジオール、 ボ リ 力プロラ ク ト ン ト リオール、 およびポ リ ( 3 - ヒ ドロキ シアルカ ノエー ト) でなる群から選択される少な く とも 1種 の脂肪族ポ リエステルをさ らに含有する、 諳求項 1 3 に記截 のモール ド材。
1 5 . 前記付加重合性モノ マーがスチレ ンである、 請求項 1 3 に記載のモール ド材。
1 6 . 脂肪族ポ リ エステル、 な らびにフ エ ノ ール樹脂また はエポキシ樹脂を含有する熱硬化性組成物を、 バイ ンダー材 と して含有する、 モール ド材であって、
該熱硬化性組成物は、 硬化後に、 塩基と、 水、 メ タ ノ ール. エタノ ール、 およびエチレ ングリ コールでなる群から選択さ れる少な く と も 1種の溶剤とを含有する分解溶液によ り、 該 分解溶液の沸点よ り低い温度で容易に分解され得る、 モール ド材。
1 7 . 前記脂肪族ボ リ エステルが、 ボ リ 力プロラ ク ト ン、 ポ リ プロ ピオラ ク ト ン、 ポ リ グリ コール酸、 ポ リ乳酸、 ポ リ エチレンアジペー ト、 ポ リ ブチレンアジペー ト、 ポ リテ トラ メ チレンアジペー ト、 ボ リ エチ レンスク シネー ト、 ボ リ プチ レンスク シネー ト、 ボ リ カブ Οラ ク ト ンジオール、 ボ リ カブ ロラ ク ト ン ト リオール、 およびボ リ ( 3 — ヒ ドロキシアル力 ノ エー ト) でなる群から選択される少な く とも 1 種である、 請求項 1 6 に記載のモール ド材。
1 8 . 少な く とも金属類を含んで一体成形されたモール ド 材からなるモール ド部を有する、 モール ド構造体であって、 該モール ド材の少な く と も一部が、 熱硬化性樹脂および脂 肪族ボ リエステルを含有する熱硬化性組成物を、 バイ ンダー 材と して含有し、
該熱硬化性組成物は、 硬化後に、 少な く とも塩基を含有す る分解溶液によ り該脂肪族ポ リ エステルが分解されるこ とに よ って、 分解が促進され、 該金属類と該モール ド材とが容易に分離され得る、 モール ド桷造体。
1 9 . 少な く とも金属類を含んで一体成形されたモール ド 材からなるモール ド部を有する、 モール ド構造体であって、 該モール ド材の少な く と も一部が、 不飽和ポ リ エステル、 付加重合性モノ マー、 脂肪族ボ リ エステル以外の低収縮剤、 および脂肪族ポ リ エステルを含有する熱硬化性組成物を、 バ ィ ンダー材と して含有し、
該熱硬化性組成物は、 硬化後に、 塩基と、 水、 メ タノール、 エタノ ール、 およびエチ レングリ コールでなる群から選択さ れる少な く と も 1種の溶剤とを含有する分解溶液によ り、 該 分解溶液の沸点より低い温度で容易に分解され、
該金属類と該モール ド材とが容易に分離され得る、 モール ド構造体。
2 0 . 前記脂肪族ボ リ エステルが、 ポ リ カブロラ ク ト ン、 ポ リ プロ ビオラ ク ト ン、 ポ リ グリ コール酸、 ポ リ乳酸、 ポ リ エチ レ ンアジペー ト、 ポ リ プチ レ ンアジペー ト、 ポ リ テ ト ラ メ チレンアジペー ト、 ポ リ エチレンスク シネー ト、 ボ リ プチ レンスク シネー ト、 ポ リ 力プロラ ク ト ンジオール、 ポ リ カブ ロラク ト ン ト リ オール、 およびポ リ ( 3 — ヒ ドロキシアル力 ノエ一 ト)'でなる群から選択される少なく とも 1 種である、 請求項 1 9 に記載のモール ド楝造体。
2 1 . 前記脂肪族ポ リエステルの少なく とも一部が、 維維 状、 針状または粉状で前記モール ド部に充填材と して分散さ れている、 請求項 1 9 に記載のモール ド構造体。
2 2 . 少な く とも金属類を含んで一体成形されたモール ド 材からなるモール ド部を有する、 モール ド構造体であって、 該乇ール ド材の少な く と も一部が、 不飽和ボ リ エステル、 付加重合性モノ マー、 およびポ リ 力プロラ ク ト ンを含有する 熱硬化性組成物を、 バイ ンダー材と して含有し、
該熱硬化性組成物は、 硬化後に、 塩基と、 水、 メ タ ノ ール. エタ ノ ール、 およびエチレングリ コールでなる群から選択さ れる少な く とも 1 種の溶剤とを含有する分解溶液によ り、 該 分解溶液の沸点よ り低い温度で容易に分辉され、
該金 JS類と該モール ド材とが容易に分雜され得る、 モール ド構造体。
2 3 . ポ リ プロピオラク ト ン、 ポ リ グリ コール ¾、 ポ リ乳 酸、 ボ リ エチ レンアジペー ト、 ポ リ ブチレンアジペー ト、 ボ リ テ トラ メチレンアジペー ト、 ボ リ エチレンスク シネー ト、 ポ リ ブチレンスク シネー ト、 ポ リ 力プロラ ク ト ンジオール、 ボ リ 力プロラタ ト ン ト リオール、 およびボ リ ( 3 - ヒ ドロキ シァルカ ノエ一 ト) でなる群から選択される少な く とも 1種 の脂肪族ボ リ エステルをさ らに含有する、 請求項 2 2 に記載 のモール ド構造体。
2 4 . 前記脂肪族ポ リエステルの少な く とも一部が、 艤維 状、 針状または粉状で前記モール ド部に充墳材と して分散さ れている、 請求項 2 3 に記載のモール ド構造体。
2 5 . 少な く と 金 JS類を含んで一体成形されたモール ド 材からなるモール ド部を有する、 モール ド構造体であって、 該モール ド材の少な く と も一部が、 脂肪族ボ リ エステル、 な らびにフ ノ 一ル樹脂またはェポキシ樹脂を含有する熱硬 化性組成物を、 バイ ンダー材と して含有し、
5 該熱硬化性組成物は、 硬化後に, 塩基と、 水、 メ タ ノ ール、 エタ ノ ール、 およびエチレングリ コールでなる群から選択さ れる少な く と も 1種の溶剤とを含有する分解溶液によ り、 該 分解溶液の沸点よ り低い温度で容易に分解され、
該金厲類と該モール ド材とが容易に分離され得る、 モール 10 ド棣造体。
2 6 . 前記脂肪族ポ リエステルが、 ボ リ カブロラク ト ン、 ポ リ プロ ビオラ ク ト ン、 ボ リ グリ コール酸、 ポ リ 乳酸、 ボ リ エチ レンアジペー ト、 ポ リ プチレ ンアジペー ト、 ポ リテ トラ メ チ レ ンアジペー ト、 ボ リ エチ レ ンスク シネー ト、 ポ リ プチ !5 レ ンスク シネー ト、 ポ リ カブロラ ク ト ンジオール、 ポ リ カブ ロラ ク ト ン ト リオ一ル、 およびポ リ ( 3 — ヒ ド σキシアル力 ノ エ一ト ) でなる群から選択される少な く とも 1 種である、 請求項 2 5 に記截のモール ド樣造体。
2 7 . 前記脂肪族ポ リ エステルの少な く とも一部が、 繊維 0 状、 針状または粉状で前記モール ド部に充填材と して分敉さ れている、 請求項 2 5 に記載のモール ド構造体。
2 8 . 少な く とも金属頮を含んで一体成形されたモール ド 材からなるモール ド部を有する、 モール ド構造体であって、 該モール ド部が、 該金属類を δぅ 內部モール ド部と、 該內 部モール ド部の外側に存在し、 その最外部が該モール ド構造 体の最外部を規定する外部モール ド部とを有し、 該內部モー ル ド部が、 脂肪族ポ リ エステルを主成分とする、 モール ド構 造体。
2 9 . 前記外部モール ド部が、 請求項 1、 2、 5、 または 8 に記載の熱硬化性組成物を主成分とする、 請求項 2 8 に記 載のモール ド榱造体。
3 0 . 前記金属類が巻線であり、 モー夕 と して使用される、 請求項 1 8から請求項 2 9 のいずれかに記載のモール ド構造 体。
3 1 . 前記巻線、 絶縁体、 および鉄芯を含んで一体成形さ れたモール ド材からなるモール ド部を有する、 モール ド構造 体であって、
該絶縁体の一部が、 該モール ド部を洞: Sし、 該モール ド部 の表面に表出 している、 請求項 3 0 に記載のモール ド榱造体。
3 2 . 前記絶縁体が、 脂肪族ボ リエステルでなる、 諳求項 3 1 に記載のモール ド構造体。
3 3 . 少な く とも金属類を含んで一体成形されたモール ド 材からなるモール ド部を有する、 モール ド株造体であって、 該モール ド材の少な く と も一部が、 不飽和ボ リ エステル、 スチレン、 ボ リ 力プロラク ト ン、 および脂肪族ボ リ エステル を含有する熱硬化性組成物を、 バイ ンダー材と して含有し、 該脂肪族ボ リ エステルが、 ボ リ プロ ビオラ ク ト ン、 ポ リ グ リ コール酸、 ボ リ乳酸、 ポ リ エチ レンアジペー ト、 ポ リ プチ レンアジぺ: - ト、 ポ リ テ ト ラメチ レンアジペー ト、 ボ リェチ レンスク シネー ト、 ボ リ ブチレンスク シネー ト、 ポ リ 力プロ ラ ク ト ンジオール、 ポ リ カブロラ ク ト ン ト リ オール、 および ボ リ ( 3 — ヒ ドロキシアルカノエー ト) でなる群から選択さ れる少な く と も 1 種であり、
該熱硬化性組成物は、 硬化後に、 塩基と、 水、 メ タノール、 エタノ ール、 およびエチ レ ングリ コールでなる群から選択さ れる少な く と も 1種の溶剤とを含有する分解溶液によ り、 該 分解溶液の涕点よ り低い温度で容易に分解され、
該金 JR類と該モール ド材とが容易に分離され得る、 モール ド構造体。
3 4 . 熱硬化性組成物の分解処理方法であって、
該熱硬化性組成物を、 硬化後に、 塩基と、 水、 メ タノール、 エタ ノ ール、 およびエチ レ ングリ コ ^ "ルでなる群から選択さ れる少な く と も 1 種の溶剤とを含有する分解溶液に漫»する 工程を包含し、
該熱硬化性組成物が、 少なく と も脂肪族ボ リ エステルと熱 硬化性樹脂とを含有する、
熱硬化性組成物の分解処理方法。
3 5 . 前記熱硬化性組成物が、 前記分解溶液に該分解溶液 の沸点よ り低い温度で S «される、 請求項 3 4 に記載の熱硬 化性組成物の分解処理方法。
3 6 . 前記分解溶液が、 アセ ト ン、 2 —ブタ ノ ン、 ジメチ ルホルムア ミ ド、 ジメ チルスルホキシ ド、 ジォキサン、 テ ト ラ ヒ ドロフ.ラ ン、 ジェチルエーテル、 ジエチレングリ コール. ジエチレングリ コールモノ エステル、 ジエチレングリ コール ジエステル、 ジカルボン酸ジエステル、 酢酸メ チル、 I 酸ェ チル、 ベンゼン、 トルエン、 およびフ iノ ールでなる群から 選択される少なく と も 1種の溶剤をさ らに含有する、 請求項 3 4 に記載の熱硬化性組成物の分解処理方法。
3 7 . 熱硬化性組成物をバイ ンダー材と して含有する、 モ 一ル ド材の分解処理方法であって、
該モール ド材を、 塩基と、 水、 メ タ ノール、 エタ ノール、 およびエチレングリ コールでなる群から選択される少な く と も 1 種の溶剤とを含有する分解溶液に浸 »する工程を包含し、 該熱硬化性組成物が、 少な く と も脂肪族ボ リ エステルと熱 硬化性樹脂とを含有する、
モール ド材の分解処理方法。
3 8 . 前記モール ド材が、 前記分解溶液に該分解溶液の涕 点よ り低い温度で S «される、 請求項 3 7 に記載のモール ド 材の分解処理方法。
3 9 . 前記分解溶液が、 アセ ト ン、 2 —ブタ ノ ン、 ジメチ ルホルムア ミ ド、 ジメ チルスルホキシ ド、 ジォキサン、 テ ト ラ ヒ ドロフラ ン、 ジェチルエーテル、 ジエチレングリ コール、 ジエチレングリ コールモノエステル、 ジエチレングリ コール ジエステル、 ジカルボン酸ジエステル、 酢酸メ チル、 酢酸ェ チル、 ベンゼン、 トルエン、 およびフ エ ノ ールでなる群から 選択される少な く と も 1 種の溶奔. 'をさ らに含有する、 請求項 3 7 に記載.の熱硬化性組成物の分解処理方法。
4 0 . モール ド構造体の分解処理方法であって、
該モール ド構造体を、 塩基と、 水、 メ タ ノール、 エタ ノー ル、 およびエチ レングリ コールでなる群から選択される少な く と も 1 種の溶剤とを含有する分解溶液に浸 *する工程を包 含し、
該モール ド構造体が、 少な く と も金属類を含んで一体成形 されたモール ド材からなるモール ド部を有し、
該モール ド材の少な く と も一部が、 少な く と も脂肪族ポ リ エステルと熱硬化性樹脂とを含有する熱硬化性組成物を、 バ イ ンダー材と して含有する、
モール ド構造体の分解処理方法。
4 1 . 前記モール ド構造体が、 前記分解溶液に該分糅溶液 の沸点よ り低い温度で浸 »される、 請求項 4 0 に記載のモー ル ド構造体の分解処理方法。
4 2 . 少なく とも金属類を含んで一体成形されたモール ド 材からなるモール ド部を有するモール ド構造体の分解処理方 法であって、
該モール ド部が、 該金厲類を覆う 内部モール ド部と、 該内 部モール ド部の外側に存在し、 その最外部が該モール ド構造 体の最外^を規定する外部モール ド部とを有し、 該内部モー ル ド部が、 脂肪族ポ リ エステルを主成分と し、
以下の工程を包含する、 モール ド構造体の分解処理方法 : 切削または開孔によ り該内部モール ド部の少な く とも一部 を表出させ.る工程、 および、 該モール ド構造体を、 該脂肪族 ポ リ エステルに対する良溶剤、 または、 塩基と、 水、 メ タノ ール、 エタ ノ ール、 およびエチ レングリ コールでなる群から 選択される少な く とも 1種の溶剤とを含有する分解溶液に浸 演する工程。
4 3 . 前記モール ド構造体が、 前記分解溶液に該分解溶液 の沸点よ り低い温度で S ¾される、 請求項 4 2 に記載のモー ル ド構造体の分解処理方法。
4 4 . 前記分解溶液が、 アセ ト ン、 2 —ブタ ノ ン、 ジメチ ルホルムア ミ ド、 ジメ チルスルホキシ ド、 ジォキサン、 テト ラ ヒ ドロフラ ン、 ジェチルエーテル、 ジエチレングリ コール、 ジエチ レングリ コールモノエステル、 ジエチレングリ コール ジエステル、 ジカルボン酸ジエステル、 ft酸メチル、 ϋ酸ェ チル、 ベンゼン、 トルエン、 およびフ Xノールでなる群から 選択される少な く とも 1種の溶剤をさ らに含有する、 請求項 4 0 または 4 2 に記載の熱硬化性組成物の分解処理方法。
4 5 . 少な く とも金属類を含んで一体成形されたモール ド 材からなるモール ド部を有するモール ド構造体の リ サイ クル 方法であって、
該モール ド材の少な く と も一部が、 少な く とも脂肪族ボ リ エステル 熱硬化性榭脂とを含有する熱硬化性組成物を、 バ イ ンダー材と して含有し、
以下の工程を包含する、 リ サイ クル方法 :
該モール ド構造体を、 塩基と、 水、 メ タ ノール、 エタ ノ ー ル、 および チレングリ コールでなる群から選択される少な く とも 1 種の溶剤とを含有する分解溶液に浸 ¾し、 該モール ド部を形態が維持できない程度まで化学的に分解させる工程, および
該金厲類と該分解されたモール ド部とを分離し、 該金属類 を回収する工程。
4 6 . 前記モール ド構造体が、 前記分解溶液に該分解溶液 の沸点よ り低い温度で浸 ¾される、 請求項 4 5 に記載のモー ル ド構造体の リ サイ クル方法。
4 7 . 前記金属類が巻線であり、 前記構造体がモータであ る、 請求項 4 5 に記載のモール ド構造体の リサイ クル方法。
PCT/JP1995/000816 1994-04-27 1995-04-26 Composition thermodurcissable, materiau de moulage, structure moulee et procede de decomposition de ceux-ci WO1995029205A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19950917460 EP0707043B1 (en) 1994-04-27 1995-04-26 Use of a thermosetting composition, of a molding material, of a molded structure, and method of decomposing them
US08/578,572 US5814412A (en) 1994-04-27 1995-04-26 Base and solvent-decomposed thermosetting molding with aliphatic polyester
DE1995633326 DE69533326T2 (de) 1994-04-27 1995-04-26 Verwendung einer wärmehärtenden zusammensetzung, einer formmasse, einer geformte struktur und verfahren zu deren abbau
KR1019950705989A KR100203224B1 (ko) 1994-04-27 1995-04-26 열경화성 조성물, 몰드재 및 몰드 구조체와, 이들의 분해 처리 방법
KR1019980710155A KR100205154B1 (en) 1994-04-27 1998-12-11 Thermosetting composition molding material molded structure and method of decomposition of them

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP6/89599 1994-04-27
JP8959994 1994-04-27
JP6/91752 1994-04-28
JP9175294 1994-04-28

Publications (1)

Publication Number Publication Date
WO1995029205A1 true WO1995029205A1 (fr) 1995-11-02

Family

ID=26431017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000816 WO1995029205A1 (fr) 1994-04-27 1995-04-26 Composition thermodurcissable, materiau de moulage, structure moulee et procede de decomposition de ceux-ci

Country Status (6)

Country Link
US (2) US5814412A (ja)
EP (1) EP0707043B1 (ja)
KR (1) KR100203224B1 (ja)
CN (1) CN1073133C (ja)
DE (1) DE69533326T2 (ja)
WO (1) WO1995029205A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997030113A1 (fr) * 1996-02-19 1997-08-21 Wakayama Prefecture Recyclage de dechets en resine de polyester non sature reticule
US5969009A (en) * 1995-11-30 1999-10-19 Matsushita Electric Industrial Co, Ltd. Molding material and molded motor
EP0790278A4 (en) * 1995-08-02 2001-05-23 Matsushita Electric Ind Co Ltd STRUCTURAL MATERIAL, MOLDING MADE THEREOF, AND DEGRADATION METHOD THEREOF
WO2009038081A1 (ja) * 2007-09-21 2009-03-26 Showa Highpolymer Co., Ltd. 不飽和ポリエステル樹脂組成物及びそれを用いた電気・電子部品成形品
WO2016009573A1 (ja) * 2014-07-15 2016-01-21 株式会社ジェイエスピー 複合成形体、及び積層体

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5975234A (en) * 1997-12-03 1999-11-02 Trw Inc. Electric steering system with plastic motor tube
US6245822B1 (en) * 1998-04-27 2001-06-12 Matsushita Electric Industrial Co. Ltd. Method and apparatus for decomposition treating article having cured thermosetting resin
DE19838660A1 (de) * 1998-08-25 2000-03-02 Mannesmann Vdo Ag Antriebseinrichtung
US6362554B1 (en) 1999-07-29 2002-03-26 Encap Motor Corporation Stator assembly
US6300695B1 (en) 1999-07-29 2001-10-09 Encap Motor Corporation High speed spindle motor with hydrodynamic bearings
US6753628B1 (en) * 1999-07-29 2004-06-22 Encap Motor Corporation High speed spindle motor for disc drive
US6501616B1 (en) 1999-07-29 2002-12-31 Encap Motor Corporation Hard disc drive with base incorporating a spindle motor stator
US6617721B1 (en) * 1999-07-29 2003-09-09 Encap Motor Corporation High speed spindle motor
US6437464B1 (en) * 1999-07-29 2002-08-20 Encap Motor Corporation Motor and disc assembly for computer hard drive
JP2001050161A (ja) * 1999-08-05 2001-02-23 Ebara Corp 気体移送機
JP3730461B2 (ja) * 1999-10-28 2006-01-05 山洋電気株式会社 防水型ブラシレスファンモータ
ATE270690T1 (de) 1999-11-18 2004-07-15 Fraunhofer Ges Forschung Verfahren zur wiedergewinnung von polyestern oder polyestergemischen
AU2580301A (en) * 1999-12-17 2001-06-25 Encap Motor Corporation Spindle motor with encapsulated stator and method of making same
US7096566B2 (en) * 2001-01-09 2006-08-29 Black & Decker Inc. Method for making an encapsulated coil structure
US7814641B2 (en) 2001-01-09 2010-10-19 Black & Decker Inc. Method of forming a power tool
US6892439B1 (en) 2001-02-01 2005-05-17 Encap Motor Corporation Motor with stator made from linear core preform
US7036207B2 (en) * 2001-03-02 2006-05-02 Encap Motor Corporation Stator assembly made from a plurality of toroidal core segments and motor using same
US6963151B2 (en) * 2002-02-04 2005-11-08 Electric Boat Corporation Composite lamina arrangement for canning of motors
JP3685169B2 (ja) * 2002-09-27 2005-08-17 株式会社日立製作所 回転機及びその製造法
CN1296455C (zh) * 2003-06-07 2007-01-24 庄载荣 高温防静电复合材料
EP2568573A3 (en) 2005-03-07 2014-06-04 Black & Decker Inc. Power Tools with Motor Having a Multi-Piece Stator
PL1753113T3 (pl) 2005-08-11 2013-03-29 Josef Ott Zalewanie stojana masą zalewową
JP5067167B2 (ja) * 2006-06-09 2012-11-07 日本電産株式会社 ブラシレスモータ及びファンユニット
JP4336994B2 (ja) * 2006-07-31 2009-09-30 三菱自動車工業株式会社 フィルム付き合成板
JP5272655B2 (ja) * 2008-10-31 2013-08-28 パナソニック株式会社 モールドモータ
US8743561B2 (en) 2009-08-26 2014-06-03 Taiwan Semiconductor Manufacturing Company, Ltd. Wafer-level molded structure for package assembly
EP2535378A4 (en) * 2010-02-10 2015-09-02 Hitachi Chemical Co Ltd RESIN COMPOSITION, FORM BODY AND COMPOSITE BODY
CN104016828A (zh) * 2013-03-01 2014-09-03 杨晓林 一种阴离子交换树脂的回收方法
CN105754312A (zh) * 2016-03-18 2016-07-13 广东溢达纺织有限公司 环保不饱和聚酯树脂纽扣及其制备方法
DE102017221836A1 (de) * 2017-12-04 2019-06-06 Mahle International Gmbh Elektrische Maschine, insbesondere für ein Fahrzeug
TWI675529B (zh) 2018-02-08 2019-10-21 建準電機工業股份有限公司 防水馬達定子的製造方法及防水馬達定子
CN114289479A (zh) * 2021-12-31 2022-04-08 广西康利岗石有限公司 一种用四氢呋喃去除人造岗石废渣中不饱和树脂的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52137601A (en) * 1976-05-12 1977-11-17 Hitachi Ltd Resin mold stator
JPS53108193A (en) * 1977-03-04 1978-09-20 Hitachi Ltd Undaturated polyester resin molding compound and mold motor using the same
JPS61123657A (ja) * 1984-11-20 1986-06-11 Daicel Chem Ind Ltd 低収縮化剤および低収縮性熱硬化樹脂組成物
JPS6343947A (ja) * 1986-08-11 1988-02-25 Hitachi Chem Co Ltd 低収縮性不飽和ポリエステル樹脂の製造方法
JPH03192153A (ja) * 1989-12-21 1991-08-22 Matsushita Electric Works Ltd 不飽和ポリエステル樹脂成形材料
JPH03192108A (ja) * 1989-12-21 1991-08-22 Matsushita Electric Works Ltd 不飽和ポリエステル樹脂成形材料

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4039568A (en) * 1974-09-14 1977-08-02 Dai-Ichi Kogyo Seiyaku Co., Ltd. Process for decomposition of polyurethane foam
JPS6029728B2 (ja) * 1977-03-03 1985-07-12 日本カイノ−ル株式会社 硬化ノボラック繊維強化エポキシ樹脂複合体の製造法
JPS5689887A (en) * 1979-12-20 1981-07-21 Mitsubishi Heavy Ind Ltd Method of treating high molecular waste
JPH0676480B2 (ja) * 1984-11-12 1994-09-28 ダイセル化学工業株式会社 熱硬化性樹脂用低収縮化剤
US4663429A (en) * 1984-07-31 1987-05-05 Daicel Chemical Industries, Ltd. Process for producing lactone polymer and an anti-shrinking thermosetting resin composition having formulated therein said lactone polymer as an anti-shrinking agent
JPH0797894B2 (ja) * 1985-03-18 1995-10-18 松下電器産業株式会社 モールドモータ
JPH078945B2 (ja) * 1986-05-15 1995-02-01 ダイセル化学工業株式会社 不飽和ポリエステル樹脂用低収縮化剤
JPH01229882A (ja) * 1988-03-07 1989-09-13 Kuraray Co Ltd 人工皮革用基体の製造法
US5127958A (en) * 1990-07-11 1992-07-07 Morris Resources, Inc. Removal of metallic coatings from polymeric substrates
JPH0543781A (ja) * 1991-08-09 1993-02-23 Toray Ind Inc ポリエステルブロツク共重合体組成物
JP2909577B2 (ja) * 1993-10-29 1999-06-23 トヨタ自動車株式会社 樹脂廃材の再生方法及び装置
US5468780A (en) * 1994-06-21 1995-11-21 Miyaso Chemical Co. Method of recycling unsaturated polyester resin waste
JPH0959393A (ja) * 1995-08-18 1997-03-04 Matsushita Electric Ind Co Ltd モールド成形体、モールドモータ、その分解処理方法および分解処理装置
JP2000073273A (ja) * 1996-07-30 2000-03-07 Miyamoto Kk 刺繍用ミシン
JP3192108B2 (ja) * 1997-06-10 2001-07-23 不二精機株式会社 にぎり寿司のしゃり成形機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52137601A (en) * 1976-05-12 1977-11-17 Hitachi Ltd Resin mold stator
JPS53108193A (en) * 1977-03-04 1978-09-20 Hitachi Ltd Undaturated polyester resin molding compound and mold motor using the same
JPS61123657A (ja) * 1984-11-20 1986-06-11 Daicel Chem Ind Ltd 低収縮化剤および低収縮性熱硬化樹脂組成物
JPS6343947A (ja) * 1986-08-11 1988-02-25 Hitachi Chem Co Ltd 低収縮性不飽和ポリエステル樹脂の製造方法
JPH03192153A (ja) * 1989-12-21 1991-08-22 Matsushita Electric Works Ltd 不飽和ポリエステル樹脂成形材料
JPH03192108A (ja) * 1989-12-21 1991-08-22 Matsushita Electric Works Ltd 不飽和ポリエステル樹脂成形材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0707043A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0790278A4 (en) * 1995-08-02 2001-05-23 Matsushita Electric Ind Co Ltd STRUCTURAL MATERIAL, MOLDING MADE THEREOF, AND DEGRADATION METHOD THEREOF
US6673463B1 (en) 1995-08-02 2004-01-06 Matsushita Electric Industrial Co., Ltd. Structure material and molded product using the same and decomposing method thereof
US5969009A (en) * 1995-11-30 1999-10-19 Matsushita Electric Industrial Co, Ltd. Molding material and molded motor
WO1997030113A1 (fr) * 1996-02-19 1997-08-21 Wakayama Prefecture Recyclage de dechets en resine de polyester non sature reticule
US5776989A (en) * 1996-02-19 1998-07-07 Wakayama Prefecture Method of recycling cured unsaturated polyester resin waste
WO2009038081A1 (ja) * 2007-09-21 2009-03-26 Showa Highpolymer Co., Ltd. 不飽和ポリエステル樹脂組成物及びそれを用いた電気・電子部品成形品
JP2009073975A (ja) * 2007-09-21 2009-04-09 Showa Highpolymer Co Ltd 不飽和ポリエステル樹脂組成物及びそれを用いた電気・電子部品成形品
WO2016009573A1 (ja) * 2014-07-15 2016-01-21 株式会社ジェイエスピー 複合成形体、及び積層体

Also Published As

Publication number Publication date
DE69533326D1 (de) 2004-09-09
CN1073133C (zh) 2001-10-17
DE69533326T2 (de) 2004-12-30
KR960703418A (ko) 1996-08-17
EP0707043B1 (en) 2004-08-04
EP0707043A1 (en) 1996-04-17
US5990247A (en) 1999-11-23
EP0707043A4 (en) 1998-10-07
US5814412A (en) 1998-09-29
KR100203224B1 (ko) 1999-06-15
CN1128039A (zh) 1996-07-31

Similar Documents

Publication Publication Date Title
WO1995029205A1 (fr) Composition thermodurcissable, materiau de moulage, structure moulee et procede de decomposition de ceux-ci
WO1997005199A1 (fr) Materiau structurel, moulage fait dans ce materiau et procede de degradation correspondant
CN1094804C (zh) 树脂模塑旋转电机的资源回收方法及该电机的模塑用树脂
KR100244441B1 (ko) 몰드재 및 몰드모터
JPH10147621A (ja) 熱硬化性組成物およびモールド材
US6822009B2 (en) Method for reclaiming waste cured resin
JP3697672B2 (ja) モールド材、モールドモータおよびモールド材の分解処理方法
JP2837760B2 (ja) 熱硬化性組成物,モールド材,およびモールド構造体,ならびにこれらの分解処理方法
JPH1095904A (ja) モールド材、およびモールドモータ
JP3143367B2 (ja) 構造材、成形材
JP3518931B2 (ja) 熱硬化性組成物、モールド材、およびモールド材成形体の分解処理方法
JPH08113619A (ja) 熱硬化性ポリエステル樹脂、モールドモータ、樹脂封止半導体素子および熱硬化性ポリエステル樹脂の分解処理方法
JPH09194614A (ja) プラスチック成形体、およびプラスチック成形体の処理方法
CN1075825C (zh) 以不对称二醇和芳香二酸为基的用于聚酯树脂系统的低光滑度添加剂
JP5414153B2 (ja) 不飽和ポリエステル樹脂およびモールド成形体
JPS612747A (ja) 電気絶縁材料の製造方法
JPH10158481A (ja) 不飽和ポリエステル樹脂および低収縮化剤
JP2003292648A (ja) シートモールディングコンパウンド
Kandelbauer et al. Handbook of thermoset plastics: 6. Unsaturated polyesters and vinyl esters
JPH10110060A (ja) プラスチック成形体の処理方法
JP2002226569A (ja) 架橋剤及びその製造方法
JPH1121375A (ja) 充填材の製造方法
JPH099549A (ja) モールドモータおよびモールドモータ再生方法
JPH10128919A (ja) プラスチック成形体およびその処理方法
JPH05202155A (ja) 常温低収縮性不飽和ポリエステル樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95190355.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB IT

WWE Wipo information: entry into national phase

Ref document number: 08578572

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019950705989

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1995917460

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1995917460

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019980710155

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1995917460

Country of ref document: EP