WO1995024639A1 - Method of evaluating siloxane used for forming insulation coating, coating fluid used for forming insulation coating, process for producing the fluid, process for forming insulation coating for semiconductor device, and process for producing semiconductor device by applying the above process - Google Patents

Method of evaluating siloxane used for forming insulation coating, coating fluid used for forming insulation coating, process for producing the fluid, process for forming insulation coating for semiconductor device, and process for producing semiconductor device by applying the above process Download PDF

Info

Publication number
WO1995024639A1
WO1995024639A1 PCT/JP1994/001910 JP9401910W WO9524639A1 WO 1995024639 A1 WO1995024639 A1 WO 1995024639A1 JP 9401910 W JP9401910 W JP 9401910W WO 9524639 A1 WO9524639 A1 WO 9524639A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
forming
organic
coating liquid
siloxane
Prior art date
Application number
PCT/JP1994/001910
Other languages
English (en)
French (fr)
Inventor
Tadashi Nakano
Makoto Shimura
Tomohiro Ohta
Original Assignee
Kawasaki Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12605055&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1995024639(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kawasaki Steel Corporation filed Critical Kawasaki Steel Corporation
Priority to EP95900290A priority Critical patent/EP0701121A4/en
Priority to KR1019950705032A priority patent/KR960702610A/ko
Priority to US08/545,736 priority patent/US5840821A/en
Priority to JP07523350A priority patent/JP3078326B2/ja
Publication of WO1995024639A1 publication Critical patent/WO1995024639A1/ja
Priority to US09/042,668 priority patent/US5998522A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1212Zeolites, glasses
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/122Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/312Organic layers, e.g. photoresist
    • H01L21/3121Layers comprising organo-silicon compounds
    • H01L21/3122Layers comprising organo-silicon compounds layers comprising polysiloxane compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76819Smoothing of the dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a method for evaluating siloxanes for forming an insulating film, a coating liquid for forming an insulating film, a method for producing the same, a method for forming an insulating film for a semiconductor device, and a method for manufacturing a semiconductor device to which the same is applied.
  • the present invention relates to an insulating film for flattening and electrically insulating a substrate surface having irregularities formed on a base, particularly an interlayer for flattening a wiring structure of an electronic device, for example, an LSI multilayer wiring structure and forming an insulating layer.
  • the abundance ratio of the unit structure of the siloxanes particularly including an organic substituent directly bonded to a Si atom as a part of the structure.
  • the present invention relates to a method for forming an insulating film for use and a method for manufacturing a semiconductor device to which the method is applied.
  • a method of embedding and reducing the level difference of the base there is known a method of embedding and reducing the level difference of the base.
  • ⁇ 3 -TEOS APCVD has good step coverage, but is characterized in that excellence in embedding can be obtained, for formation of the film occurs in conformer Le wiring, flat over a wide range on the substrate Is impossible.
  • ⁇ 3- TEOS APCVD also has the disadvantage of different deposition rates on densely spaced interconnects with large flats and narrow spacings, so that the density of interconnects on patterns that vary Flattening is also difficult.
  • CMP prior to CMP, trenches between the interconnects must be separately filled. In other words, it is necessary to combine other methods such as CVD to fill the groove.
  • CMP itself has a number of major challenges, including reduced throughput, particle generation, metal-alkali contamination, instability in detecting the end point of polishing, and increased equipment costs. Has not been reached.
  • high-density plasma CVD biassed HDP CVD
  • a bias applied to the substrate has recently attracted attention.
  • S. atsuo and ⁇ ⁇ Kiuchi Jpn. J. Appl. Phys., 22, L210 (1983), or K. Machida and H. Oikawa, J. Vac. Sci. Techno 1., B4818 (1986)
  • an oxide film is deposited while anisotropically etching the substrate surface using argon, and the plasma source used here is ECR or ICP with a high plasma ion density. used.
  • the spin-on-one-glass method (SPIN ON GLASS: SOG method) introduced in Applied Physics Vol. 57, No. 12 (1989), etc.
  • the method of forming an insulating film with a cloth and alleviating unevenness of a base is widely and generally used in semiconductor device manufacturing.
  • the LS I multilayer wiring interlayer insulating film cured film of S I_ ⁇ 2 quality by SO G method is generally used.
  • S_ ⁇ G is Origoshirano Ichiru or solution was applied by a spin Isseki a on a substrate comprising Origoshiriketo such a technique to form a cured film of S i 0 2 quality by thermal curing or insulating film formed by the method, Alternatively, it refers to a coating solution for forming an insulating film. Since the SOG coating solution has the property of flowing into the narrow grooves between the wirings, the formed film is well embedded in the grooves between the wirings, and at the same time, flows into the wide flat recesses. It also has the feature that it can flatten wide and high steps. Since the SOG process is performed at a low temperature of about 400 ° C, it is used as an interlayer insulating film after A1 wiring, which is easily damaged by heat.
  • inorganic S ⁇ G represented by the general formula Si (OR) beaut(OH) 4 -n, which does not contain any organic substituent bonded to Si
  • Si (OR) beaut(OH) 4 -n which does not contain any organic substituent bonded to Si
  • Inorganic SOG undergoes volume shrinkage of about 20% during heat curing, so it has poor crack resistance, and can be applied only at most about 200 to 30 Onm in a single application.
  • SOG thickly at least as high as the wiring height.
  • S ⁇ G could not be used for flattening steps or turns with large cross-sectional aspect ratios.
  • Inorganic substituents directly bonded to Si to eliminate the above-mentioned disadvantages of inorganic S ⁇ G and improve film shrinkage, flatness, etching rate, adhesion, and crack resistance
  • organic S ⁇ G represented by the general formula R m S i (OR) n (OH) 4 - compassion- m having organic S i in the chemical structure was studied and developed.
  • Other types of organic substituents, such as the phenyl group are mainly used because of their relationship with thermal stability, degassing properties, plasma resistance, film yield value and film flexibility. is also.
  • the area on the substrate where the flattening effect is exhibited by the flow of the coating solution is said to be local at most on the order of 10 m.
  • the film thickness on the convex portion on the wide wiring becomes almost the same. In other words, when viewed from a field of view of the order of 10 / m or more, the step between the concave portion and the convex portion is not reduced at all.
  • the organic SOG since the formed film thickness has a dependency on the density of the wiring pattern, the organic SOG is ineffective for flattening a wide area at the chip Z level.
  • Organic S ⁇ G also undergoes volume shrinkage of at least about 7% during heat curing, and cracks may occur due to shrinkage stress, similar to inorganic SOG, when a coating with a thickness of 500 nm or more is formed.
  • Organic SOG has poor film quality and easily contains or absorbs water, so problems are likely to occur due to degassing from SOG in later processes. Water also has various difficult problems, such as an increase in the apparent dielectric constant, and hence an increase in the delay due to the line capacitance, which is disadvantageous as an insulating film for high-speed wiring.
  • one methyl group (or phenyl group) is bonded to each Si, and a regular ladder-like structure is formed.
  • Ladder siloxane has a high degree of regularity in its structure, and thus has the characteristic of melting and flowing like a crystal due to heating.However, thick coating is not possible due to its large shrinkage and very poor crack resistance. In addition, it has a fatal drawback in that it is poor in structurally active hydroxyl groups (Si-OH), has poor adhesion to the underlayer, and is prone to peeling.
  • Si-OH structurally active hydroxyl groups
  • inorganic SOG using hydrogen siloxane oligomer or perhydrosilazane oligomer as a raw material is also known. These new SOGs are characterized by having no organic groups directly bonded to Si in the structure, but instead having hydrogens directly bonded to Si.
  • siloxanes are extracted as they are or in an appropriate organic solvent, and infrared spectroscopy, nuclear magnetic resonance (NMR), plasma-induced coupled emission
  • NMR nuclear magnetic resonance
  • plasma-induced coupled emission There is known a method of performing analysis by a spectroscopic analysis method (see Japanese Patent Application Laid-Open No. 414/347).
  • a method of detecting and quantifying a decomposition product generated by chemically decomposing siloxanes see Japanese Patent Publication No. 62-81646).
  • all of these methods aim at measuring the total Si content in the material.
  • a coating liquid for forming an insulating film, a method for manufacturing the same, and a method for forming an insulating film for a semiconductor device which can sufficiently improve the film properties of an insulating film of a semiconductor device, particularly an interlayer insulating film for LSI multilayer wiring, have been desired.
  • Disclosure of the invention is a coating liquid for forming an insulating film, a method for manufacturing the same, and a method for forming an insulating film for a semiconductor device, which can sufficiently improve the film properties of an insulating film of a semiconductor device, particularly an interlayer insulating film for LSI multilayer wiring, have been desired.
  • the present invention has been made in view of the above-mentioned problems of the related art, and has been made in order to form an insulating film having excellent film characteristics, particularly, an interlayer insulating film.
  • an insulating film having excellent film characteristics, particularly, an interlayer insulating film.
  • an insulating film that does not contain water and has a low dielectric constant and is advantageous for high-speed wiring that is, an insulating film having excellent film characteristics, in particular, an interlayer insulating film for semiconductor devices, which can be used for forming an insulating film using siloxanes. It is an object of the present invention to provide a coating solution for use and a method for manufacturing the same, particularly a method for forming a semiconductor device and a method for manufacturing a semiconductor device to which the method is applied.
  • the present inventors have studied the characteristics of siloxanes and interlayer insulating films for LSI multilayer wiring using the same.
  • the content ratio of organic substituents in siloxanes or the abundance ratio of Si atoms with different numbers of bound organic substituents that is, the abundance ratio of unit structures of siloxanes.
  • La a result of intensive studies, it is possible to evaluate the organic nature S_ ⁇ _G from the signal integral value of 29 S i one NMR scan Bae spectrum, according to the evaluation,
  • the inventors have found that an insulating film having excellent film characteristics can be formed by using the obtained organic SOG coating solution, and have led to the present invention.
  • the first embodiment of the present invention is directed to evaluating siloxanes containing Si atoms bonded to at least one kind of organic substituent contained in a coating liquid for forming an insulating film.
  • the presence ratio of at least one of three Si atoms having one to three organic substituents bonded to two Si atoms and at least one Si atom not bonded to the organic substituent is analyzed.
  • the present invention provides a method for evaluating siloxanes for insulating film formation, for example, siloxanes for forming insulating film, characterized by determining the content ratio of organic substituents based on the abundance ratio and evaluating the organicity thereof. is there.
  • the presence ratio of the number of different S i atom of an organic substituent the binding, 2 9 S i arbitrariness is the is favored determined using the integral value of the signal one NMR scan Bae spectrum.
  • the siloxanes containing Si atoms bonded to at least one kind of organic substituent are siloxanes for forming an interlayer insulating film for LSI multilayer wiring represented by the following formula [1].
  • k, 1, m, n: 0R Indicates an integer of RSII to 1000.
  • R at least one organic substituent selected from a saturated hydrocarbon group, an unsaturated hydrocarbon group, and a phenyl group, which may be the same or different, and the phenyl group has a substituent Or a phenyl group.
  • the oxygen atom binds to any of Si, R, and H.
  • R represents at least one organic substituent selected from a saturated hydrocarbon group, an unsaturated hydrocarbon group, and a phenyl group.
  • the phenyl group may be a phenyl group having a substituent.
  • the siloxanes containing a Si atom bonded to at least one kind of organic substituent are preferably siloxane oligomers. Number of repetitions of the unit structure of the siloxane oligomer [k + l + m + n] Is preferably 2 to 500.
  • a second aspect of the present invention is a coating liquid for forming an insulating film used for manufacturing a semiconductor device, wherein the coating liquid contains a Si atom bonded to at least one kind of organic substituent represented by the following formula [1]:
  • the content ratio X represented by the following formula [2] obtained from the integrated value of the signal of the 29 Si-NMR spectrum of the siloxane that satisfies the following formula [2]
  • An object of the present invention is to provide a coating liquid for forming an insulating film, characterized by containing siloxanes.
  • k, l, m, n represent an integer of 0 to 1,000.
  • R represents at least one organic substituent selected from a saturated hydrocarbon group, an unsaturated hydrocarbon group, and a fuunyl group, which may be the same or different, and having a substituent as the phenyl group. It may be a phenyl group.
  • the oxygen atom binds to any of Si, R, and H.
  • Ao 29 obtained from S i-NMR spectrum, no S i-C bond The area of the Si signal attributable to Si,
  • a 2 Area of Si signal assigned to Si having two Si—C bonds, determined from 29 Si—NMR spectrum
  • a 3 The area of the Si signal assigned to Si having three Si—C bonds, which is determined from the 29 Si—NMR spectrum.
  • the Si having no Si-C bond is represented by the following structural units (c), (a), (b), and (d).
  • R represents at least one organic substituent selected from a saturated hydrocarbon group, an unsaturated hydrocarbon group, and a phenyl group; And the phenyl group may be a phenyl group having a substituent.
  • the siloxanes are preferably siloxane oligomers.
  • the degree of polymerization represented by the number [k + l + m + n] of repeating the unit structure of the siloxane oligomer is preferably from 2 to 500.
  • the present invention provides the coating liquid for forming an insulating film, wherein the siloxane is dissolved in a solvent having a boiling point of not less than 120 ° C. and not less than 200 ° C. and containing the following organic compound as a main component.
  • An object of the present invention is to provide a coating liquid for forming an insulating film.
  • a third aspect of the present invention is a coating liquid for forming an insulating film used for manufacturing a semiconductor device, wherein a composition formula (CH 3 ) y S i 0 2 .2 / y (where y is 0.8 to 1.3) and a methylsiloxane oligomer having an irregular structure having a weight average molecular weight of from 1500 to 600 and a boiling point of from 120 to 200 ° C. It is intended to provide a coating liquid for forming an insulating film, wherein the coating liquid is dissolved in a solvent containing an organic compound at a temperature of not more than ° C as a main component.
  • the solvent preferably has a viscosity of not more than 2.0 cP at 25 ° C., ethylene glycol monoethyl ether, ethylene glycol monoisopropyl ether, propylene glycol monomethyl ether, ethylene glycol Glycol monoethyl ether acetate, methylene glycol dimethyl ether, di-n-butyl ether, diisobutyl ether, di-n-amyl ether, methyl n-amyl ketone, methyl isoamyl ketone, n-amyl acetate, isoamyl acetate and n-acetic acid It is preferably at least one member selected from the group consisting of hexyl.
  • a compound selected from the group consisting of tetraalkoxysilane, methyltrialkoxysilane and dimethyldialkoxysilane or a mixture of two or more thereof is used as a raw material.
  • molar concentration of CH 3 is formulated so that the following 1 3 0% 80% or more of the molar concentration of S i of raw whole, to the 2 to 4-fold molar amount of water was added, the organic carboxylic acid catalyst Above 30 ° C and below 80
  • the solvent is diluted by heating to a concentration of 1.20 ° C., and a solvent containing an organic compound having a boiling point of at least 120 ° C. and at most 200 ° C.
  • An object of the present invention is to provide a method for producing a coating liquid for forming an insulating film, which comprises distilling off water and alcohol as a by-product of a polymerization reaction by distillation under reduced pressure.
  • the tetraalkoxysilane is tetramethoxysilane and Z or tetraethoxysilane
  • the methyltrialkoxysilane is methyltrimethoxysilane and / or methyltriethoxysilane
  • the dimethyldialkoxysilane is It is preferable that the organic carboxylic acid is at least one selected from the group consisting of formic acid, acetic acid, and succinic acid, and the concentration of the organic carboxylic acid is determined by the concentration of the starting material. Preferably, it is 0 mol.
  • an alcohol-based solvent having a molar ratio of 0.2 to 3 times the amount of the raw material prior to the polymerization reaction. It is preferably at least one selected from the group consisting of methanol, ethanol, and dioxane.
  • the solvent preferably has a viscosity of 2.5 OcP or less at 25 ° C, and the solvent is ethylene glycol monoethyl ether, ethylene glycol monoisopropyl ether, propylene glycol monomethyl ether.
  • a method in which, after applying the coating solution for forming an interlayer insulating film on a wiring pattern having a stepped uneven surface on a silicon substrate, the coating solution is dried and then dried. Temperature is kept at a temperature of at least 300 ° C and at most 300 ° C for at least 30 seconds to fluidize, and further cured at 350 ° C to 450 ° C in nitrogen to form an insulating film.
  • An object of the present invention is to provide a method for forming an insulating film for a semiconductor device, characterized by being formed.
  • the present invention provides a method for manufacturing a semiconductor device to which the method for forming an insulating film for a semiconductor device is applied.
  • Figure 1 is a 2 3 S i-NMR spectrum of sample A used in Example 1 (see Table 1).
  • FIG. 2 is a graph showing the relationship between X defined by the equation [2] in Example 2 and the contraction rate, relative dielectric constant, and water absorption of the insulating film.
  • FIGS. 3 (1), (2) and (3) are parts respectively showing a wiring layer pattern forming step, a CVD oxide film forming step and an insulating film forming step in the manufacture of an insulating film for a semiconductor device according to the present invention. It is a cross section schematic diagram.
  • FIG. 4 is a schematic cross-sectional view of a step portion of an insulating film showing a method for obtaining D 0 P, which is a measure of flatness measured in Example 3.
  • a method for forming an insulating film for a semiconductor device for example, an insulating film forming coating solution used for forming an interlayer insulating film for an LSI multilayer wiring or the like.
  • the siloxanes containing i atoms are analyzed for the abundance of at least one Si atom having a different number of organic substituents bonded thereto, and thereby, or based on this, e.g.
  • This is a method in which the content ratio of an organic substituent is determined, and thereby the siloxanes, for example, their organic properties are evaluated.
  • the presence ratio and the content ratio is a method of evaluating organic.
  • the solution containing siloxanes used in the present invention is a precursor for forming an insulating film for a semiconductor device (hereinafter simply referred to as an insulating film).
  • a coating liquid is a precursor for forming an insulating film for a semiconductor device (hereinafter simply referred to as an insulating film).
  • Any solution may be used as long as it is a solution of siloxanes containing a Si atom bonded to at least one kind of organic substituent or a solution of such siloxanes in an organic solvent.
  • a 30% solution for forming a 30% film, or an organic SOG solution can be cited.
  • the organic substituent may be a saturated hydrocarbon group, an unsaturated hydrocarbon group, and / or a phenyl group, or may contain two or more kinds. Further, the number of organic substituents bonded to one Si atom may be any of 1 to 3.
  • siloxanes used in the present invention can be represented by the following formula [1], but the manner of bonding these unit structures is not particularly limited, and either a linear type or a branched type may be used. But it is good. Further, these may be used as a mixture.
  • k, l, m, and n represent integers of 0 to 1,000.
  • R represents at least one organic substituent selected from a saturated hydrocarbon group, an unsaturated hydrocarbon group, and a phenyl group, and may be the same or different, and the phenyl group has a substituent It may be a phenyl group.
  • the oxygen atom is bonded to any of Si, R, and H.
  • siloxanes examples include silo used for the purpose 1 of forming an insulating film.
  • the repeating number [k + 1 + m + n] of the following unit structures (a) to (d) of the siloxane oligomer represented by the above formula [1] is more preferably in the range of 2 to 500.
  • the degree of polymerization (number of repetitions) exceeds 500, the viscosity of the coating solution (SOG solution) composed of siloxane and a solvent becomes too high, and if it is less than 2, siloxane is easily evaporated in the insulating film forming step. In either case, it is difficult to form an insulating film.
  • R represents at least one organic substituent selected from a saturated hydrocarbon group, an unsaturated hydrocarbon group, and a phenyl group, and may be the same or different.
  • the phenyl group may be a phenyl group having a substituent.
  • the content ratio of the organic substituents of the siloxanes is analyzed, or Si atoms having different numbers of organic substituents bonded (Si-C bonds).
  • An Si atom having a number of 0 to 4 that is, at least one of the unit structures (a) to (d) is analyzed, and the abundance ratio is measured.
  • the method of analyzing the content ratio of the organic substituents of the siloxanes used in the present invention or the method of measuring the abundance ratio of the above unit structures (a) to (d) are not limited, but a nuclear magnetic resonance (NMR) method is used. Is preferred. More preferably, such proportions are that determined from the integral value of the signal of 2 9 S i-NMR scan Bae spectrum preferred.
  • NMR nuclear magnetic resonance
  • a siloxane solution as a sample for example, a SOG solution is dissolved in a deuterium solvent.
  • the deuterium solvent used here is not particularly limited as long as the components in the SOG solution are not separated from the solution by adding the deuterium solvent, and examples thereof include heavy-mouthed form, heavy acetone, and heavy methanol. Can be used. If the concentration of the sample is too low, sufficient detection sensitivity cannot be obtained, and if it is too high, the ratio of the deuterium solvent decreases, and the frequency stability of the NMR apparatus becomes poor, so that 10 to 90% is preferable.
  • Sample tube used in the 2 9 S i-NMR measurement is preferably made of Teflon. This is usually a glass NMR sample tube in order to avoid that a signal 2 3 S i resulting from gay acid breaking glass current.
  • a relaxation agent such as tris (acetylacetonato) chromium (III) or tris (acetylacetonato) iron (III) for shortening the measurement time.
  • the respective signals of the 29 Si NMR spectrum obtained by the measurement were assigned, and the abundance ratio of the unit structures (a), (b), (c) and (d) or the organic Determine the ratio of Si atoms bonded to the substituent.
  • A is the area of the Si signal assigned to Si having no Si-C bond.
  • the area of the Si signal attributed to Si having one Si-C bond is A
  • the area of the Si signal attributed to Si having two Si-C bonds is A 2
  • organic measure represented by X
  • Formula [3] is a formula representing the ratio of the number of organic substituents to the number of Si atoms in the siloxane
  • Formula [4] is a formula representing the ratio of the number of organic Si atoms to the number of Si atoms in the siloxane. is there.
  • the form of the formula for evaluating organicity can be defined without being limited to the above formulas [3] and [4], depending on the purpose of the analysis.
  • the second to fifth aspects of the present invention are for forming an insulating film for a semiconductor device using siloxanes, for example, an interlayer insulating film for LSI multilayer wiring (hereinafter simply referred to as an insulating film) based on the above evaluation method. And a method for forming an insulating film using the same.
  • a coating liquid according to a second embodiment of the present invention and a method for forming an insulating film using the coating liquid will be described.
  • the present inventors have found that there is a close relationship between the chemical structure of siloxanes and the characteristics of the SOG film.
  • siloxanes preferably siloxane oligomers, in which the following abundance X obtained from the integrated value of the 29 Si-NMR spectrum signal of the siloxane represented by the above formula [1] satisfies the following formula [2]: It has been found that when a coating solution containing is used, the characteristics of the formed insulating film are excellent.
  • Ai Area of Si signal assigned to Si with one Si—C bond, determined from 29 Si—NMR spectrum
  • a 2 29 Si—area of Si signal assigned to Si with two Si—C bonds, determined from NMR spectrum
  • a 3 Area of Si signal assigned to Si with three Si—C bonds, determined from 29 Si—NMR spectrum
  • the reason why the properties of the insulating film are excellent when a coating solution containing siloxanes whose content ratio represented by the above formula [2] is 80% or more is used is as follows: (1) The water absorbing property is reduced. As a result, the outgassing amount and dielectric constant can be kept low, (2) the crack resistance is improved, so that pressure coating is possible, and (3) the dry etching rate is reduced, so that the etch back margin can be widened. That, and the like. Next, the coating liquid for forming an insulating film according to the third embodiment of the present invention will be described.
  • the coating liquid of the present embodiment is one in which the above-described evaluation of the organic measure is performed by the above formula [3].
  • a third aspect of the present invention formula (CH 3) y S i 0 2. 2 / y weight average molecular weight (the y in equation 0.8 or 1.3 or less) is represented by 1500 to 6000
  • An object of the present invention is to provide a coating liquid characterized by dissolving a methylsiloxane oligomer having the following irregular structure in a solvent containing an organic compound having a boiling point of not less than 120 ° C and not more than 200 ° C as a main component.
  • this coating liquid is characterized in that the value of y in the composition formula is 0.8 or more and 1.3 or less, It is characterized by having an irregular structure with respect to a ladder siloxane having an ordered structure.
  • the shrinkage of the methylsiloxane oligomer during thermal polymerization and curing is almost eliminated. Can be eliminated. Therefore, thick coating can be performed, and it works for flatness.
  • the water absorption of the methylsiloxane oligomer can be reduced to almost zero, and the dielectric constant can be reduced to 3.5 or less.
  • a characteristic of forming a SOG film that is advantageous to When the value of y is less than 0.8, characteristics similar to those of ordinary organic S ⁇ G are exhibited, and the shrinkage, water absorption, flattening performance, and dielectric constant are only those within the range of the prior art. I can't get it. If y exceeds 1.3, thermal polymerization becomes difficult, and a film is not formed, resulting in a rubber-like material. Therefore, the upper limit of y was set to 1.3.
  • the problem of reduced adhesion due to an increase in y is solved by making the siloxane skeleton an irregular structure, defining the molecular weight, and defining the solvent.
  • the irregular structure With the introduction of the irregular structure, a large amount of Si 10 H terminus contributing to adhesion is incorporated into the oligomer structure, and the S i-0-S i network structure becomes sparse, so the film is made soft. It is thought that increasing the ability to absorb stress contributes to improving the adhesion.
  • an appropriate parameter for defining an irregular structure has not yet been found, it is estimated that conventional organic SOG tends to have a regular structure even if y is increased, and has poor adhesion. You.
  • Molecular weight is also less than 1500
  • the volume shrinkage during polymerization is remarkable, so that internal stress is likely to be generated, which causes cracking and cracking.
  • unevenness in drying speed causes in-plane unevenness, resulting in uneven coating, resulting in excessive force and stress due to drying. Has a negative effect.
  • the reason for limiting the weight average molecular weight of the methylsiloxane oligomer to 1500 to 600 is that, besides solving the problem of adhesion, a continuous coating film of less than 1500 is not formed, On the other hand, if it exceeds 600, the viscosity of the coating solution becomes too high, and radial coating unevenness called striation occurs. Most preferably, the weight average molecular weight is from 150 to 350.
  • a solvent for dissolving the methylsiloxane oligomer a solvent containing an organic compound having a boiling point of at least 120 ° C and at most 20 (TC or less is used. If the boiling point is less than 120 ° C, the Since most of the solvent is volatilized by the rotation, flattening cannot be achieved due to sufficient flow of the coating solution, and the reduction in adhesion due to the stress generated by drying becomes a problem as described above. If the temperature exceeds 200 ° C., the drying is remarkably slowed down, the throughput is reduced, and defects are generated during the transfer of the substrate, and foaming and carbon residue are generated during the heating step, so that it cannot be used. Suitable solvents have a boiling point range between 130 and 160 ° C.
  • the viscosity of the solvent has a significant effect on the embedding performance of fine grooves and the uniformity of the coating film.
  • a solvent having a viscosity of not more than 2.0 cP at 25 ° C. is used.
  • the viscosity of the solvent is greater than 2.0 cP, the groove of 0.2 m or less will be incompletely embedded, and the coating will have a radial shape from the center of the substrate to the periphery, which is called striation. Frequent occurrence of uneven thickness caused by stripes Go up.
  • Solvents satisfying the requirements of the present invention include ethylene glycol monoethyl ether, ethylene glycol monoisopropyl ether, propylene glycol monomethyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol dimethyl ether, di-n-butyl ether, Dibutyl ether, di-n-amyl ether, methyl n-amyl ketone, methyl isoamyl ketone, n-amyl acetate, isoamyl acetate, n-hexyl acetate and the like can be used. These solvents can be used alone or in combination of two or more.
  • the proportion of the solvent having a boiling point other than 120 ° C. or more and not more than 200 ° C. is preferably not more than 50% of the total volume of the solvent. It is needless to say that the solvent described above may be used for dissolving the siloxanes in the coating liquid of the second embodiment of the present invention.
  • the organic SOG coating liquid having such characteristics can be prepared by the method for producing a coating liquid according to the fourth aspect of the present invention. That is, a compound such as alkoxysilane or alkylalkoxysilane, in particular, one compound selected from the group consisting of tetraalkoxysilane, methyltrialkoxysilane and dimethyldialkoxysilane, or a mixture of two or more compounds is used as a raw material. i- CH 3 is mixed so that the molar concentration of CH 3 is 80% or more and 130% or less of the molar concentration of Si in the whole raw material, and 2 to 4 times the molar amount of water is used to catalyze the organic carboxylic acid.
  • a compound such as alkoxysilane or alkylalkoxysilane in particular, one compound selected from the group consisting of tetraalkoxysilane, methyltrialkoxysilane and dimethyldialkoxysilane, or a mixture of two or
  • the polymerization product is heated to a temperature of 40 ° C or higher and 80 ° C or lower to polymerize, and the polymerization product is diluted by adding a solvent containing an organic compound having a boiling point of 120 ° C or higher and 200 ° C or lower as a main component, followed by dilution.
  • the liquid is distilled under normal pressure or reduced pressure to distill off water and alcohol as by-products of the polymerization reaction.
  • Tetramethoxysilane (Si (OCH 3 ) 4 ) and tetraethoxysilane (Si (OC 2 H 5 ) 4) are generally used as tetraalkoxysilane.
  • methyltrialkoxysilane methyltrimethoxysilane (CH 3 S i (OCH 3) 3) or methyltriethoxy silane (CH 3 S i (OC 2 H 5 ) 3) is generally used.
  • dimethyldialkoxysilane dimethyldimethoxysilane ((CH 3 ) 2 S i (0 CH 3 ) 2) and dimethyl ethoxy silane ((CH 3 ) 2 S i (OC 2 H 5 ) 2) are used.
  • This value in the coating liquid of the third aspect of the present invention, equal to the value of y when representing the formula of methylsiloxane oligomer (CH 3) y S i 0 2. 2 / y. That is, y in the equation needs to be 0.8 or more and 1.3 or less.
  • the methylsiloxane oligomer to be formed has a formula: (CH 3 ) y Si 0 Since y when expressed as 2.2 / y is less than 0.8, desired characteristics cannot be exhibited for the reasons described above.
  • the molar concentration of Si—CH 3 contained in the compounded or single raw material exceeds 130%, the y of the similarly generated methyl siloxane oligomer exceeds 1.3, and a cured film is formed for the reason described above. Not done.
  • the concentration of the organic acid as a catalyst is not particularly limited since it does not significantly affect the structure or state of the product, but if the concentration is too high, the solution tends to be acidic and the stability of the coating solution is affected, so it is possible.
  • the concentration should be as low as possible, preferably about 1 to 1000 moles, or about 1 to 100 moles, of the raw material.
  • Inorganic acids other than organic acids, such as hydrochloric acid and phosphoric acid, are not used because they affect metals on the coated substrate.
  • the mixture After the addition of water, the mixture is generally incompatible, so it is necessary to continue mixing vigorously using a stirrer or the like. Within several minutes to several hours, alcohol, which is a byproduct of the hydrolysis reaction, is formed, and the hydrophilicity of the polymer is increased, so that the polymers become compatible.
  • a solvent such as an alcohol can be added to dilute the solution in advance.
  • a solvent to be added for this purpose methanol, ethanol, dioxane or the like is used in an amount of about 0.2 to 3 moles of the raw material.
  • the mixture is heated to a temperature of 30 ° C or more and 80 ° C or less.
  • Formulation through alone raw material S i one CH 3 molar concentration is relatively small molar concentration y of S i of the entire raw les included, at a low temperature when, also y is relatively large les, time and a high temperature It is preferable to carry out polymerization.
  • the heating temperature is lower than 30 ° C., the polymerization rate is extremely reduced, and a polymer having a desired molecular weight cannot be obtained. If the heating temperature exceeds 80 ° C, it is difficult to control because the by-product alcohol boiling power s' occurs and polymerization occurs very rapidly. In general, it is preferable that the reaction be carried out at a temperature of about 50 ° C, sealed and stored in a thermostat.
  • the time required for the reaction is not particularly limited as a force depending on the temperature, and an appropriate time may be selected from about 4 to 120 hours while measuring the molecular weight.
  • an appropriate time may be selected from about 4 to 120 hours while measuring the molecular weight.
  • alcohol as a by-product
  • solvent for dilution when added, coexist with the solvent. It is necessary to remove this, but if it is distilled or dried as it is, the concentration of methylsiloxy sigo ligomer will increase rapidly, and the polymerization reaction rate will increase at an accelerated rate, resulting in a gel with a molecular weight of several hundred thousand or more.
  • the main solvent used for dilution that is, a solvent mainly composed of an organic compound having a boiling point of 120 ° C or higher and 200 ° C or lower is added in advance and diluted, and the diluent is used as it is. It is necessary to perform distillation under normal pressure or reduced pressure. As a distillation condition, it is important to select a temperature and pressure at which water, alcohol and solvent are distilled off but the main solvent is not distilled.
  • the same solvent as that used in the coating solution of the third embodiment of the present invention is used. It goes without saying that it can be used.
  • the solution of the methylsiloxane oligomer from which the water alcohol and the solvent have been removed in this way is used as it is, or after adding an appropriate solvent and, if necessary, performing operations such as filtration and aging, to obtain a coating solution. be able to.
  • the semiconductor device according to the fifth aspect of the present invention using the coating liquid according to the third aspect of the present invention and / or the coating liquid according to the second aspect of the present invention prepared by the manufacturing method according to the fourth aspect of the present invention.
  • the method of forming the insulating film for use is such that the coating liquid of the second and / or third aspect of the present invention is applied to a wiring pattern formed on a silicon substrate and having a stepped uneven surface, followed by drying. , At a temperature of 150 ° C or more and 300 ° C or less, fluidized by holding for 30 seconds or more, and further cured in nitrogen at a temperature of 350 ° C or more and 450 ° C or less. To form an insulating film.
  • a semiconductor device having an insulating film having excellent film characteristics, particularly an interlayer insulating film in the present invention can be manufactured.
  • the self-fluidization temperature of the SOG of the present invention is at a temperature of 150 ° C. or more and 300 ° C. or less.
  • the most significant feature is that the self-flow flattening is completed at a temperature of 150 ° C or more and 300 ° C or less for 30 seconds or more. That is, the coated and dried film is fluidized again in this temperature range, and high flatness over a wide area can be obtained.
  • the subsequent process is nothing but the usual process called SOG cure.
  • FIG. 1 One example of the obtained 29 Si-NMR spectrum is shown in FIG. From the area of each signal shown in FIG. , A,, ⁇ 2 , and A 3 were determined.
  • the peak area in FIG. 1 is proportional to the number of Si atoms in the corresponding unit structure.
  • the sum of a plurality of peak areas shown in the figure is used.
  • the results of calculating the organic substituent content ratio defined by the formula [3] are shown in Table 1. It is shown in
  • R is a methyl group.
  • 29 Si-NMR is measured, so that it is not possible with the conventional method.
  • the possible abundance ratio of each unit structure can be determined. For example, the abundance ratio of the unit structures (a), (b), (c) and (d) in organic S ⁇ G and the content of organic substituents The ratio can be easily determined.
  • methyltrimethoxysilane and tetramethoxysilane were dissolved in methanol in the proportions shown in Table 2, and 0.02 mol of water and formic acid in the proportions shown in Table 1 were added thereto.
  • the polymerization reaction was performed at 24 ° C. for 24 hours.
  • a 1: 1 mixture of benzene and ethylene glycol monoethyl ether (650 ml) was added to the product, and the mixture was distilled under reduced pressure to remove excess methanol and water, thereby preparing a coating solution having a solid content of about 20% by weight. .
  • the weight-average molecular weight of the siloxane oligomer contained in this coating solution was measured by gel permeation chromatography and was found to be about 3,000, which corresponded to a degree of polymerization of 40 to 50. .
  • This coating solution was spin-coated on a 6 inch diameter silicon wafer at a rotation speed of 3, 000 rpm, and 60 seconds at 150 ° C, 200 ° C, and 250 ° C, respectively.
  • the coating was heated and then heated at 400 ° C. for 30 minutes in a nitrogen stream to prepare a coating solution.
  • Table 2 and FIG. 2 show the measurement results of the shrinkage, the dielectric constant, and the water absorption of this film together with the value of X in the equation [2].
  • an A1 electrode of about 3 mm square was deposited using a metal mask, and the edge of the film was etched with dilute hydrofluoric acid to remove the entire lower part.
  • the capacitance between the surface A1 and the vapor-deposited A1 film was measured and determined from the electrode area and the film thickness.
  • the water absorption was determined by leaving the cured film in a clean room for 24 hours and measuring the water contained in the film using an electrolytic cell moisture analyzer (MEA (Moisture Evaluation Analyzer, DuPont)). It was measured by measuring the amount of generated water up to 0 ° C.
  • MEA Electrolytic cell moisture analyzer
  • a coating liquid for forming SOG of the present invention was manufactured by the following procedure.
  • the mixing ratios of the raw materials, synthesis conditions, typical physical properties of the film, and the like are also listed in Tables 3 and 4 for their deviations.
  • Table 3 shows the combinations of the three types of raw materials, and Table 4 shows the data when the various synthesis conditions were changed.
  • Tables 3 and 4 also show the measured data. The detailed description of the measurement method is described below.
  • the measured film properties are the same in Tables 3 and 4.
  • those outside the scope of the present invention were marked with * in front of the number, and used as comparative examples for comparison.
  • This coating solution is spin-coated on a 6-inch diameter silicon wafer at a rotation speed of 300 rpm, baked at 150 ° C, 200 ° C, and 250 ° C for 60 seconds each, and then in a nitrogen stream. Heating was performed at 400 ° C for 30 minutes to form a coating film.
  • Table 3 shows the measurement results of the shrinkage, the dielectric constant and the water absorption of this film together with the value of y in the following composition formula 1.
  • FIG. 3 is a partial cross-sectional view showing a manufacturing process of the insulating film according to the present invention.
  • a wiring layer having a thickness of 1.2 ⁇ m is formed on the semiconductor substrate 1 on which the desired processing has been performed, and then the wiring layer is patterned to form a wiring layer having a wiring width of 1 ⁇ m.
  • the distance between the wiring patterns 2 and 3 was 3 m.
  • a plasma CVD method based on tetraethoxysilane (TEOS) is applied to the entire surface of the semiconductor substrate 1 and the wiring patterns 2 and 3 obtained in the step shown in FIG. 3 (1).
  • TEOS tetraethoxysilane
  • the SiO 2 layer 4 was formed with a thickness of 300 nm.
  • This CVD oxide film 4 could not bury trenches between wirings because the step coverage was good and the film was formed along the shape of the base (step).
  • 0 is the slope of the step of the insulating film 8 caused by the wiring 7 as shown in FIG. 2, d. Is the height difference of the insulating film 8, and d m is the thickness of the wiring 7.
  • the evaluation method of the present invention in the analysis of the content ratio of the organic substitution group of the organosiloxane, the abundance ratio for each unit structure, which was impossible with the conventional method, can be obtained.
  • the content ratio of the organic substituent in the organic siloxane can be easily determined.
  • the present invention can be used, for example, for evaluating the organicity of siloxanes in a solution containing an organic siloxane used for forming an insulating film of a semiconductor device, particularly, an interlayer insulating film for LSI multilayer wiring.
  • film properties such as chemical resistance and water resistance of the insulating film can be predicted in advance.
  • a coating solution containing the siloxanes of the present invention particularly a methylsiloxane oligomer, it becomes possible to form an insulating film for a semiconductor device having excellent film properties, for example, an interlayer insulating film for an LSI multilayer wiring.
  • an insulating film having excellent film characteristics that is, uniform flatness of the entire underlying pattern can be achieved, and fine grooves are completely filled.
  • Insulation film, especially for semiconductors, which has excellent crack resistance, can be applied thick enough to flatten the underlying steps, and does not contain water, has a low dielectric constant, and is advantageous for high-speed wiring
  • An interlayer insulating film for a device can be formed.
  • a coating liquid exhibiting the above-mentioned effects can be produced reliably and stably. Further, according to the method of manufacturing a semiconductor device of the present invention, it is possible to reliably and stably obtain a semiconductor device having the above-described interlayer insulating film having excellent film characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Formation Of Insulating Films (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Paints Or Removers (AREA)
  • Silicon Polymers (AREA)

Description

明 細 書 発明の名称
絶縁膜形成用シロキサン類の評価方法、 絶縁膜形成用塗布液およびその製造方 法ならびに半導体装置用絶縁膜の形成方法およびこれを適用する半導体装置の製 造方法 技術分野
本発明は、 下地に凹凸が形成されている基板表面を平坦化し、 かつ電気絶縁す る絶縁膜、 特に電子デバイスの配線構造体、 例えば L S I多層配線構造体を平坦 化しかつ絶縁層を形成する層間絶縁膜の前駆体として用いられるシロキサン類を 含む溶液、 すなわち絶縁膜形成用塗布液において、 特に S i原子と直接結合した 有機置換基をその構造の一部に含むシロキサン類の単位構造の存在比率を求め、 この値を用いて、 前記絶縁膜形成用シロキサン類を評価する方法、 半導体装置の 製造に用し、られるシロキサン類を用レ、た絶縁膜形成用塗布液およびその製造方法 ならびに半導体装置用絶縁膜の形成方法およびこれを適用する半導体装置の製造 方法に関するものである。 背景技術
従来から、 半導体装置の高集積化に伴い、 素子の配線の微細化および多層化が 進むにつれて、 配線間に形成される段差がますます大きくなつてきている。 この ため、 配線間に形成する絶縁材料の埋込性や、 膜を形成したあとでの表面の平坦 性が大きな問題となっている。 平坦性の許容範囲は、 フォト工程での解像度を追 従させるために、 レジストの焦点深度が小さくなり、 例えば 0. 7 mのライン アンドスペースのパターンでは表面の凹凸を 200 nm以下に抑える必要がある という報告もある。 この凹凸の抑制はチップあるいはゥェ一ハ全域に亙って要求 されるため、 文字通り広域の完全平坦化が必要である。
これらの課題に対し、 現在例えば特開昭 61 - 77695号に示されたような オゾンとテトラエトキシシランを原料とした化学気相成長法 (03 -TEOS AP-CVD) により絶縁膜を形成することで、 下地の段差を埋込み、 緩和する 方法が知られている。
しかしながら、 〇3 -TEOS APCVDはステップカバレッジが良く、 優 れた埋込性が得られるという特徴があるものの、 膜の形成が配線にコンフォーマ ルに生じるために、 基板上の広い範囲にわたっての平坦化は不可能である。 〇3 -TEOS APCVDには、 広い平坦部と狭い間隔で密集した配線 パ夕一ン上での堆積速度が異なるという欠点もあるため、 配線の密度が場所 によつて異なるようなパターンの上の平坦化も困難である。
また例えば L.B. Vines and S.K. Gupta, 1986 IEEE VLSI Multilevel Interconnect Conference, p.506, Santa Clara, CAC1986) あるいは R. Chebi and S.Mittal, 1991 IEEE VLSI Multilevel Interconnect Conference, p.61, Santa, Clara, CA 1991)あるいは B. M. Somero, R. P. Chebi, E. U. Travis, H. B. Haver, and W.K.Morrow, 1992 IEEE VLSI Multilevel Interconnection Conf., p.72, Santa Clara, CA(1992)などに示されたような、 化学的機械的研磨法 (CMP) によって 厚く堆積した絶縁膜を表面から研磨して平坦化する方法も知られている。 C M P によれば、 条件さえ適切に設定すれば、 ほぼ理想に近い広域の平坦性の形状が得 られるとされている。
しかしながら、 CMPを行うに先立って、 配線間の溝の埋込みは別途行わなけ ればならない。 すなわち溝の埋込みのために、 他の CVDなどの方法を組み合わ せる必要がある。 CMPそのものにも多数の大きな課題があり、 例えば、 スループットの低下、 パーティクルの発生、 金属 アルカリ汚染、 研磨終点の検 出の不安定性、 装置コストの増大、 などが指摘されており、 まだ広く使用される には至っていない。
配線間の溝の埋込み技術だけに注目すれば、 基板にバイアスを加えた高密 度プラズマ C VD法 (バイアスド HDP CVD) が近年注目されている。 S. atsuo and Μ· Kiuchi, Jpn. J. Appl. Phys., 22, L210(1983),あるいは K.Machida and H. Oikawa, J. Vac. Sci. Techno 1. , B4818(1986) これは通常の CVD法とは異 なり、 ァルゴンィォンで基板表面を異方的にスパッ夕エツチングしながら酸化膜 を堆積する方法であり、 このときのプラズマ源としては、 プラズマイオン密度の 高い ECRや I CPなどが使用される。
HDPによる層間絶縁膜の形成によれば、 溝埋込み技術としてはほぼ満足され るが、 スパッ夕エッチング残りによる突起がパターン全面に発生するため、 平坦 化は CMPなど別途の方法によらなければならない。 また、 パーティクルの発生 や、 堆積速度が小さいため、 スループットの低下などの問題も未だ解決されてい ない。
一方、 応用物理第 5 7巻第 1 2号 ( 1 9 8 8 ) 等に紹介されている スピン一オン一グラス法 (SP IN ON GLASS : SOG法) によって塗 布によって絶縁膜を形成し、 下地の凹凸を緩和する方法は、 半導体装置製造に広 く一般的に用いられているものである。 例えば、 LS I多層配線用層間絶縁膜に は SO G法による S i〇2 質の硬化膜が一般的に用いられている。
S〇 Gはォリゴシラノ一ルあるいはォリゴシリケート類を含む溶液を基板上に スピンコ一夕によって塗布し、 熱硬化によって S i 02 質の硬化膜を形成させる 技術、 またはその方法によって形成された絶縁膜、 あるいは絶縁膜形成のための 塗布液を指す。 SOG塗布液は狭い配線間の溝の中にも流れ込む特性がある ため、 形成される膜も配線間の溝の中に良好に埋め込まれると同時に広い平 坦凹部にも流れるため、 比較的幅の広く高い段差を平坦化できるという特長 を併せ持つている。 SOGのプロセスは 400 °C程度の低温で行われるため、 熱 ダメージを受けやすい A 1配線後の層間絶縁膜として賞用される。
従来、 SOGの材料としては S iと結合した有機置換基を一切含まない、 一般式 S i ( OR )„ ( OH ) 4- n で表される無機 S〇Gと呼ばれるオリゴ シリケ一トが用いられてきた。 無機 SOGは加熱硬化の際に約 20%の体積 収縮が起こるため、 クラック耐性に乏しく、 1回の塗布でたかだか 200ないし 30 Onm程度しか塗布できない。 配線断面ァスぺクト比が 1程度より大きい配 線による段差の緩和には、 少なくとも配線高さ程度の SO Gの厚塗りが必要であ る力 \ 無機 SOGは割れが入るため、 このような厚塗りができない。 すなわち、 無機 S〇 Gは大きな断面アスペクト比を持つ段差 、'ターンの平坦化には使用する ことができなかった。
無機 S〇Gのもつ上記欠点を解消し、 膜の収縮性、 平坦性、 エッチング速度、 密着性、 および耐クラック性を向上させるため、 S iと直接結合する有機置換基 を有する、 すなわち化学構造の中に有機 S iを含む、 一般式 Rm S i ( OR )n ( OH )4-„-m で表される有機 S〇Gと呼ばれるオリゴシロキサンが検討され、 開発されている。 有機置換基としては、 熱安定性、 脱ガス特性、 耐プラズマ性、 膜の降伏値や膜の柔軟性の関係からメチル基が主に用いられている力 フエニル 基など他の種類の置換基が用いられることもある。 有機 SOGは無機 SOGに比 ベ、 加熱硬化の際の膜の収縮率が小さく、 したがって耐クラック性が高いことが 特長となっている。 また、 CHF3 を含むエッチングガスに対するエッチング速 度が C V D膜程度に低レ、ため、 パ夕—ン上の C V D酸化膜上に有機 S 0 Gを厚く 塗布し、 これを硬化した上で、 CHF3 を含むエッチングガスによって CVD膜 と同時にエッチングする (等速全面エッチバック法) による平坦化のプロセスが 容易に構成できることも特長となっている。
しかしながら、 従来の有機 SO Gにおいても、 加熱による硬化は 100°C程度 から始まり、 それに伴って体積収縮力起こるため、 塗布によっていつたんは平坦 になった表面も、 下地形状に追従した凹凸が現われてしまうため、 平坦性はさほ ど良くはならないという問題があった。
また、 塗布液の流動による平坦化の効果が発揮される基板上の面積範囲は、 た かだか 10 mオーダーの局所的なものであるといわれ、 10 /m以上に広い配 線間の凹部と広い配線上の凸部の上での膜厚がほぼ同じになってしまう。 すなわ ち 10 /m以上のオーダ一の視野から見れば、 凹部と凸部の段差は何ら緩和され ていないことになる。 このように、 形成される膜厚には、 配線パターンの疎密に 対する依存性があるため、 チップ Zゥヱ一ハレベルでの広域の平坦化には有 機 SOGは無力である。 また、 有機 S〇Gにおいても加熱硬化時に少なくとも 7 %程度の体積収縮があ り、 500 nm厚以上の塗布形成によって、 無機 SOGと同様、 収縮応力による クラックが発生するおそれがある。
有機 SOGは、 膜質が悪く、 水を含有あるいは吸収しやすいため、 後工程 で SOGからの脱ガスによるトラブルが発生しやすい。 また水によって見掛け上 の誘電率が上昇し、 従って線間容量による遅延が大きくなり、 高速な配線用の絶 縁膜としては不利である、 というようなさまざまな困難な問題を有している。
S〇 Gにおいても有機 S 0 Gの上記欠点に対策したものが数種類報告されてレ、 る。 ひとつはラダ一シロキサンオリゴマーである。 これは、 構造式で現すと、 rls C H3 し n: H 3 H3 H3
I I I
OR— Si—〇一 Si—〇一 Si—一 一〇一Si—〇一 Si— 0— Si— OR
〇 〇 0 0 0 0
〇R— Si—〇一 Si— 0— Si—一 -0-Si-O-Si-O-Si-OR
1 I I
H 3 C H3 し JQ 3 H3 GHs H3
のようになり、 各 S iに対し 1つのメチル基 (あるいはフヱニル基) が結合し、 さらに梯子状に規則正しい構造をとったものである。
ラダーシロキサンは、 構造の規則性が高レ、ため加熱により結晶のように溶融流 動するという特徴があるものの、 収縮率が大きく、 クラック耐性が非常に悪いた め、 厚塗りが不可能であること、 および構造上活性な水酸基 (S i -OH) に乏しく、 下地との密着が悪く、 剝がれを生じやすい、 という致命的な欠点があ 。 また、 別の対策として、 ハイドロジェンシロキサンオリゴマーやペルヒドロシ ラザンオリゴマ一を原料とした無機 S O Gも知られている。 これらの新しい S O Gは、 構造内に S iと直接結合する有機基を持たず、 代わりに S iと直接結 合する水素を持っているのが特徴となっている。 いずれも塗布乾燥後、 加熱硬化 中に炉内雰囲気に含まれる酸素を吸収して体積膨張を起こすため、 見掛け上の収 縮率が小さく、 厚塗りできるのが長所である。 しかし、 塗布から乾燥までのあい だの収縮で下地の凹凸形状がトレースされるという有機 S O Gと同様の欠点があ るため、 広域の平坦性は望むべくもない。 さらに、 加熱硬化後もフリーの水酸基 を膜中に残すため、 脱ガスの発生や高い誘電率を示す原因ともなつている。 以上列記した問題に対し、 これまで材料面からの解決法は未だ確立してい ない。
一方、 半導体装置の絶縁膜、 特に、 L S I多層配線用層間絶縁膜の膜特性の向 上には、 絶縁膜を形成するシロキサン類の分析が必要である。
一般に種々の材料中に含まれているシロキサン類の分析には、 試料をそのまま あるいは適当な有機溶媒にシロキサン類を抽出し、 赤外分光光度法、 核磁気共鳴 (NMR) 法、 プラズマ誘導結合発光分光分析法 (特開平 4一 4 0 3 4 7号公報 参照) 等により分析する方法が知られている。 また、 シロキサン類を化学的に分 解して生じる分解生成物を検出し、 定量する方法 (特公昭 6 2 - 8 1 4 6号公報 参照) も知られている。 しかし、 これらの方法は、 いずれも材料中の全 S i量を 測定することを目的とするものである。
ところで、 上述したようにシロキサン類の分析方法はいくつか知られてい るが、 有機 S O G中の有機置換基の含有比率を分析する工業的に有用な方法は未 だ確立されておらず、 特に、 有機 S O G、 すなわち絶縁膜形成用シロキサン類を 半導体装置の絶縁膜、 特に L S I多層配線用層間絶縁膜の膜特性と結びつけて、 正確かつ簡単に分析し、 評価する工業的に有用な方法は未だ確立されていないと いう問題があった。 また、 半導体装置の絶縁膜、 特に L S I多層配線用層間絶縁 膜の膜特性を十分に向上させることができる絶縁膜形成用塗布液およびその製造 方法ならびに半導体装置用絶縁膜の形成方法が切望されていた。 発明の開示
本発明は、 上記従来技術の問題点に鑑みてなされたものであって、 膜特性に優 れた絶縁膜、 特に層間絶縁膜を形成するために、 有機 S O G中の有機置換基の含 有比率や有機 S O G、 半導体装置用絶縁膜用シロキサン類中の、 結合した有機置 換基の数の異なる S i原子、 すなわちその単位構造の存在比率を分析し、 その分 析結果に基づき絶縁膜形成用シロキサン類を評価する方法を提供することを目的 とするものである。
また、 本発明は、 微細な溝も完全に埋め込むことが可能で、 かつ下地段差を平 坦化するのに十分な厚塗りができ、 下地パターン全体の均一な (グローバル) な 平坦性を達成でき、 さらに水を含まず誘電率の低い、 高速配線に有利な絶縁膜、 すなわち膜特性に優れた絶縁膜、 特に半導体装置用層間絶縁膜を形成することの できる、 シロキサン類を用いる、 絶縁膜形成用塗布液およびその製造方法ならぴ に半導体装置用の形成方法およびこれを適用する半導体装置の製造方法を提供す ることを目的とするものである。
本発明者等は、 シロキサン類とそれを用いた L S I多層配線用層間絶縁膜の特 性について、 鋭意研究を進めた結果、 シロキサン類における有機置換基の含有比 率、 もしくは結合した有機置換基の数の異なる S i原子の存在比率、 すなわちシ ロキサン類の単位構造の存在比率が膜の特性に大きく影響することを知見し、 さ らに、 鋭意検討の結果、 29 S i 一 NMRスぺクトルのシグナル積分値から S〇G の有機性を評価することができ、 その評価に従って、 得られた有機 S O G塗布液 を用いることにより、 優れた膜特性を持つ絶縁膜を形成することができることを 知見し、 本発明に至ったものである。
すなわち、 本発明の第 1の態様は、 絶縁膜形成用塗布液に含まれる、 少なくと も一種類の有機置換基と結合した S i原子を含むシ口キサン類を評価するに 際し、 1つの S i原子に結合した前記有機置換基の数が 1から 3である 3種 の S i原子および前記有機置換基と結合しない S i原子の内の少なくとも 1種の 存在比率を分析し、 その存在比率に基づいて、 例えば有機置換基の含有比率を求 め、 絶縁膜形成用シロキサン類、 例えばその有機性を評価することを特徴とする 絶縁膜形成用シロキサン類の評価方法を提供するものである。
ここで、 前記結合した有機置換基の数の異なる S i原子の存在比率は、 2 9 S i 一 NMRスぺクトルのシグナルの積分値を用いて求められるのが好ま しい。
また、 前記少なくとも一種類の有機置換基と結合した S i原子を含むシロ キサン類が、 下記式 〔1〕 で表される L S I多層配線用層間絶縁膜形成用シロキ サン類であり、 このシロキサン類の下記単位構造 (a ) 、 (b ) 、 (c ) 、 ( d ) の少なくとも 1つの存在比率が2 9 S i 一 NMRスぺクトルのシグナルの積 分値から求められるのが好ましい。 o i— 0— 〔1〕
ROSII
Figure imgf000012_0001
1 ■
o 上記式 U〕 において、
o
k、 1、 m、 n: 0R RSII〜1000の整数を示す。
o
R :飽和炭化水素基、 不飽和炭化水素基、 フエニル基から選ば れる少なくとも 1種の有機置換基を示し、 同一であっても 異なっていてもよく、 フ ニル基としては、 置換基を有す るフエニル基でもよい。 酸素原子は、 S i、 R、 Hのいずれかと結合する。 R
R RSII
1 •
0 o
■0-S i一 0 -、
0
(a) (b) (c) 上記単位構造 (a)〜(d) において、 Rは飽和炭化水素基、 不飽和炭化水素 基、 フエニル基から選ばれる少なくとも 1種の有機置換基を示し、 同一であって も異なっていてもよく、 フヱニル基としては、 置換基を有するフヱニル基でもよ い。 また、 前記少なくとも一種類の有機置換基と結合した S i原子を含むシロ キサン類が、 シロキサンオリゴマーであるのが好ましい。 前記シロキサン オリゴマーの前記単位構造の繰り返しの数 〔k+l +m+n〕 で表される重合度 が、 2〜500であるのが好ましい。
また、 本発明の第 2の態様は、 半導体装置の製造に用いられる絶縁膜形成用塗 布液であって、 少なくとも一種類の有機置換基と結合した S i原子を含む下記式 〔1〕 で表されるシロキサン類を含み、 かつ、 前記シロキサン類の29 S i— NMRスペクトルのシグナルの積分値から求められる下記式 〔2〕 で示される含 有比率 Xが、 下記式 〔2〕 を満足するシロキサン類を含むことを特徴とする絶縁 膜形成用塗布液を提供するものである。
〔1〕
Figure imgf000013_0001
Figure imgf000013_0002
上記式 〔 1〕 において、 k、 l、 m、 n : 0〜1000の整数を示す。 R :飽和炭化水素基、 不飽和炭化水素基、 フユニル基から選ば れる少なくとも 1種の有機置換基を示し、 同一であっても 異なっていてもよく、 フエニル基としては、 置換基を有す るフエニル基でもよい。
酸素原子は、 S i、 R、 Hのいずれかと結合する。
A:
100≥ 80 % 〔2〕
Αο +Αι +A2 +A3 上記式 〔2〕 において、
Ao : 29S i— NMRスペクトルから求められる、 S i— C結合をもたない S iに帰属される S iシグナルの面積、
Ai : 29S i— NMRスペクトルから求められる、 S i— C結合を 1本有す る S iに帰属される S iシグナルの面積、
A229S i— NMRスペクトルから求められる、 S i— C結合を 2本有す る S iに帰属される S iシグナルの面積、
A329S i—NMRスペクトルから求められる、 S i— C結合を 3本有す る S iに帰属される S iシグナルの面積を示す。
また、 前記 S i一 C結合をもたない S i、 前記 S i一 C結合を 1本有する S i、 前記 S i—C結合を 2本有する S iおよび前記 S i一 C結合を 3本有する S i力、 下記構造単位 ( c ) , (a) , (b), ( d) で表される S iであるの が好ましい。
0-
Figure imgf000014_0001
(a) (C) (d) 上記構造単位 (a)〜 (d) において、 Rは飽和炭化水素基、 不飽和炭化水素 基、 フエニル基から選ばれる少なくとも 1種の有機置換基を示し、 同一であって も異なっていてもよく、 フヱニル基としては、 置換基を有するフヱニル基でもよ い
また、 前記シロキサン類が、 シロキサンオリゴマーであるのが好ましい。 前記 シロキサンオリゴマーの前記単位構造の繰り返しの数 〔k+l +m + n〕 で表さ れる重合度が、 2〜500であるのが好ましい。 また、 本発明は、 上記絶縁膜形成用塗布液であって、 前記シロキサン類を、 沸 点が 1 2 0 °C以上 2 0 0で以下の有機化合物を主成分とする溶媒に溶解したこと を特徴とする絶縁膜形成用塗布液を提供するものである。
また、 本発明の第 3の態様は、 半導体装置の製造に用いられる絶縁膜形成用塗 布液であって、 組成式 (C H 3) y S i 02. 2 / y (式中の yは 0 . 8以上 1 . 3以 下) で表される重量平均分子量が 1 5 0 0以上 6 0 0 0以下の不規則構造をもつ メチルシロキサンオリゴマーを、 沸点が 1 2 0 °C以上 2 0 0 °C以下の有機化合物 を主成分とする溶媒に溶解したことを特徴とする絶縁膜形成用塗布液を提供する ものである。
ここで、 前記溶媒は、 その粘性率が 2 5 °Cで 2 . 0 c P以下であるのが好まし く、 エチレングリコールモノェチルエーテル、 エチレングリコールモノイソプロ ピルエーテル、 プロピレングリコールモノメチルエーテル、 エチレングリコール モノェチルエーテルァセテ一ト、 ジェチレングリコールジメチルエーテル、 ジ n—ブチルエーテル、 ジイソブチルエーテル、 ジ n—アミルェ一テル、 メチル n—アミルケトン、 メチルイソアミルケトン、 酢酸 n—ァミル、 酢酸イソアミル および酢酸 n—へキシルよりなる群から選ばれる少なくとも 1種であるのが好ま しい。
また、 本発明の第 4の態様は、 テトラアルコキシシラン、 メチルトリアルコキ シシランおよびジメチルジアルコキシシランよりなる群から選ばれた 1種の化合 物もしくは 2種以上の混合物を原料とし、 その S i— C H 3 のモル濃度が原料全 体の S iのモル濃度の 8 0 %以上 1 3 0 %以下になるように配合し、 その 2ない し 4倍モル量の水を加え、 有機カルボン酸を触媒として、 3 0 °C以上 8 0で以下 の濃度に加熱して重合させ、 該重合生成物に沸点 1 2 0 °C以上 2 0 0 °C以下の有 機化合物を主成分とする溶媒を加えて希釈し、 該希釈液を常圧あるいは減圧下で 蒸留して重合反応の副生成物の水とアルコールを留去することを特徴を有する絶 縁膜形成用塗布液の製造方法を提供するものである。
ここで、 前記テトラアルコキシシランは、 テトラメトキシシランおよび Zまた はテトラエトキシシランであり、 前記メチルトリアルコキシシランは、 メチルト リメトキシシランおよび/またはメチルトリエトキシシランであり、 前記ジメチ ルジアルコキシシランは、 ジメチルメ トキシシランおよび Zまたはジメチル エトキシシランであるのが好ましく、 前記有機カルボン酸は、 蟻酸、 酢酸、 コハク酸よりなる群から選ばれる少なくとも 1種であり、 その濃度は、 前記原料 の Ι Ζ Ι Ο Ο Ο Ι Ζ Ι Ο 0モルであるのが好ましい。
また、 上記絶縁膜形成用塗布液の製造方法においては、 前記重合反応に 先立って、 前記原料の 0 . 2〜3倍モルのアルコール系溶剤を加えるのが好まし く、 前記アルコール系溶剤は、 メタノール、 エタノール、 ジォキサンよりなる群 力、ら選ばれる少なくとも 1種であるのが好ましい。
また、 前記溶媒は、 その粘性率が 2 5 °Cで 2 . O c P以下であるのが好ま しく、 前記溶媒は、 エチレングリコールモノェチルエーテル、 エチレングリ コールモノイソプロピルエーテル、 プロピレングリコールモノメチルエーテル、 エチレングリコールモノェチルエーテルァセテ一ト、 ジエチレングリコールジメ チルエーテル、 ジ n —ブチルエーテル、 ジイソブチルエーテル、 ジ n—アミ ルエーテル、 メチル n—アミルケトン、 メチルイソアミルケトン、 酢酸 n —アミ ル、 酢酸イソァミルおよび酢酸 n—へキシルよりなる群から選ば る少なくとも 1種であるのが好ましい。
さらに、 本発明の第 5の態様は、 シリコン基板の上に形成された、 表面に段差 凹凸面を有する配線パターン上に、 上記層間絶縁膜形成用塗布液を塗布後乾 燥し、 1 5 0 °C以上 3 0 0 °C以下の温度に 3 0秒以上保持して流動化させ、 さら に 3 5 0 °C以上 4 5 0 °C以下の温度にて窒素中で硬化させて絶縁膜を形成するこ とを特徴とする半導体装置用絶縁膜の形成方法を提供するものである。
さらにまた、 本発明は、 上記半導体装置用絶縁膜の形成方法を適用する半導体 装置の製造方法を提供するものである。 図面の簡単な説明
図 1は, 実施例 1において用いた試料 A (表 1参照) の2 3 S i— NMRスぺク トルである。
図 2は、 実施例 2において式 〔2〕 で定義される Xと絶縁膜の収縮率、 比誘電 率および吸水率との関係を示すグラフである。
図 3 ( 1 ) 、 (2 ) および(3 ) は、 それぞれ本発明に係る半導体装置用絶縁 膜の製造における配線層パターン形成工程、 C V D酸化膜形成工程および絶縁膜 形成工程の各工程を示す部分断面模式図である。
図 4は、 実施例 3におレ、て測定した平坦性の尺度である D 0 Pを求める方法を 示す絶縁膜の段差部分の断面模式図である。 発明を実施するための最良の形態
以下に、 本発明をさらに詳細に説明する。 本発明の第 1の態様は、 半導体装置用絶縁膜、 例えば L S I多層配線用層間絶 縁膜形成などに用いられる絶縁膜形成用塗布液に含まれる、 少なくとも一種類の 有機置換基と結合した S i原子を含むシロキサン類の、 結合した有機置換基の数 の異なる S i原子の少なくとも 1種の存在比率を分析し、 これによつて、 ま たは、 これに基づいて、 例えばシロキサン類中の有機置換基の含有比率を求 め、 これによつて、 シロキサン類、 例えば、 その有機性を評価する方法である。 特に、 2 9 S i 一 NMRにおいて有機シリコンによるシグナルの面積から前記存在 比率および含有比率を求め、 有機性を評価する方法である。
本発明において用いられるシロキサン類を含む溶液、 すなわち、 絶縁膜形成用 塗布液 (以下、 単に塗布液という) としては、 半導体装置用絶縁膜 (以下、 単に 絶縁膜という) を形成するための前駆体として用いられ、 少なくとも一種類の有 機置換基と結合した S i原子を含むシロキサン類の溶液あるいはこのようなシロ キサン類を有機溶媒に溶解した溶液であれば、 どのようなものでもよいが、 例え ば、 通常、 3 0〇膜形成のための3 0〇溶液、 もしくは有機 S O G溶液などを挙 げることができる。 ここで、 有機置換基は、 飽和炭化水素基、 不飽和炭化水素基 およびフエニル基のレ、ずれかであつてもよいし、 あるいは 2種以上を含んでレ、て もよい。 さらに、 1つの S i原子に結合した有機置換基の数は 1ないし 3のいず れであってもよい。
ここで、 本発明に用いられるシロキサン類としては、 下記式 〔1〕 で表わすこ とができるが、 これらの単位構造の結合の仕方は特に制限的ではなく、 直鎖型で も分岐型でもいずれでも良い。 また、 これらを混合して用いてもよい。 R o- 〔1〕
ROSII
Figure imgf000019_0001
1 •
上記式 〔1〕 において、 k、 l、 m、 n : 0〜1 000の整数を示す。
R :飽和炭化水素基、 不飽和炭化水素基、 フエニル基から選ば れる少なくとも 1種の有機置換基を示し、 同一であっても 異なっていてもよく、 フヱニル基としては、 置換基を有す るフヱニル基でもよい。 酸素原子は、 S i、 R、 Hのいずれかと結合す Rる。
^ 〇R RSII
このようなシロキサン類としては、 絶縁膜の形成を目的 1として用いられるシロ o
キサンオリゴマーであるのが好ましく、 より好ましくは、 重合度が 2〜500の シロキサンオリゴマーであるのが良い。 すなわち、 上記式 〔1〕 で表されるシロ キサンオリゴマーの下記単位構造 (a)〜(d) の繰り返し数 〔k+ 1 +m + n〕 は、 2〜500の範囲内であるのがより好ましい。 ここで、 重合度 (繰り 返し数) が 500を超えるとシロキサンと溶媒から成る塗布溶液 (SOG溶液) の粘度が高くなりすぎ、 また 2未満であるとシロキサンが絶縁膜形成工程で蒸発 し易くなり、 いずれの場合も、 絶縁膜の形成が困難となる。
R 0
一 0一、 0— Si— 0—、 一 0 - S i - 0 -、
I
R 0
(a) (b) (c) 上記単位構造 (a ) 〜 (d ) において、 Rは飽和炭化水素基、 不飽和炭化水素 基、 フヱニル基から選ばれる少なくとも 1種の有機置換基を示し、 同一であって も異なっていてもよく、 フ ニル基としては、 置換基を有するフ ニル基でもよ い。
本発明においては、 絶縁膜形成用シロキサン類を評価する際に、 シロキサン類 の有機置換基の含有比率を分析する、 もしくは結合した有機置換基の数の異なる S i原子 (S i - C結合の数が 0〜4である S i原子) 、 すなわち、 上記単位構 造 (a ) 〜 (d ) の少なくとも 1種を分析し、 その存在比率を測定する。 本発明 に用いられるシロキサン類の有機置換基の含有比率の分析方法もしくは上記単位 構造 (a ) 〜 (d ) の存在比率の測定方法は、 限定されないが、 核磁気共鳴 (NMR) 法を用いるのが好ましい。 より好ましくは、 このような存在比率は、 2 9 S i—NMRスぺクトルのシグナルの積分値から求めるのが好ましい。
核磁気共鳴 (NMR) 法を行うに際し、 まず、 試料であるシロキサン類、 例え ば、 S O G溶液を重水素溶媒に溶解する。 ここで用いる重水素溶媒は、 重水素溶 媒を加えることによって S O G溶液中の構成成分が溶液から分離しないものであ れば特に制限はなく、 たとえば重クロ口ホルム、 重アセトン、 重メタノール等を 用いることができる。 試料の濃度は低すぎると十分な検出感度が得られず、 また、 高すぎると重水素溶媒の比率が下がり、 NMR装置の周波数安定性が良好 でなくなるので 1 0— 9 0 %が好ましい。
29 S i— NMR測定に用いる試料管はテフロン製のものが好ましい。 これは、 通常のガラス製 NMR試料管ではゲイ酸ガラスに起因する2 3 S iのシグナルが現 われることを避けるためである。 本発明の目的で行なう29 S i一 NMRの測定においては水素核のデカツプリン グはしないこと力望ましい。 これは、 29S i— NMRの核 Ov e r h a u s e r 効果因子の符号が負であるため、 試料によっては29 S i—NMRシグナルの強度 が減衰することがあるためであり、 また、 シグナルの積分強度の定量性を確保す るためである。 また、 トリス (ァセチルァセトナト) クロム(III), トリス (ァセチルァセト ナト) 鉄(III)等の緩和試薬を加えることも測定時間短縮のために好ましい。 測定によって得られた29 S i一 NMRスぺクトルの各シグナルを帰属し、 各々 のシグナル面積から前記単位構造 (a)、 (b)、 (c) 、 (d) の存在比率、 またはさらに有機置換基と結合した S i原子の存在比率を求める。 有機置換基の 含有比率につレ、ては目的によっていくつかの異なつた定義が可能であり、 目的も しくは必要に応じて使い分ければよい。 例えば、 S i一 C結合をもたない S iに 帰属される S iシグナルの面積を A。 、 S i一 C結合を一本有する S iに帰属さ れる S iシグナルの面積を A, 、 S i一 C結合を二本有する S iに帰属され る S iシグナルの面積を A2 および S i—C結合を三本有する S iに帰属される S iシグナルの面積を A3 で表すとき、 有機性の尺度 (Xで表わす) として、 例 えば下記式 〔3〕 あるいは式 〔4〕 のような定義ができる。
Figure imgf000021_0001
X: x 1 00 ··'··· 〔3〕
Ao +A> +A2 +A:
A, +A2 +A:
X = x 1 00 …… 〔4〕
Figure imgf000021_0002
式 〔3〕 はシロキサン中の S i原子数に対する有機置換基の数の比を表わす式 であり、 式 〔4〕 はシロキサン中の S i原子数に対する有機 S i原子数の比 を表わす式である。 有機性を評価する式の形は分析の目的によつて上記式 〔3〕 、 〔4〕 に限ることなく定義できる。
また、 本発明第 2〜 5の態様は上記評価方法に基づいた、 シロキサン類を用い る半導体装置用絶縁膜、 例えば LS I多層配線用層間絶縁膜 (以下、 単に絶縁膜 という) を形成するための新規な塗布液およびこれを用いる絶縁膜の形成方法で ある。 以下に、 まず本発明の第 2の態様の塗布液およびこれを用いる絶縁膜の形 成方法について説明する。
ここで、 本発明者等は、 シロキサン類の前記化学構造と SO G膜の特性に密接 な関係があることを見出した。
すなわち、 前記式 〔1〕 で表わされるシロキサン類の29 S i—NMRスぺクト ルのシグナルの積分値から求められる下記存在比率 Xが下記式 〔2〕 を満足する シロキサン類、 好ましくはシロキサンオリゴマーを含む塗布液を用いた場合、 形 成される絶縁膜の特性が優れていることを見出した。
X= x i 00≥ 80 % …… 〔2〕
Αο +Αι +A2 +A3 上記式 〔2〕 において、
Ao : 29S i — NMRスペクトルから求められる、 S i —C結合をもたない
S iに帰属される S iシグナルの面積
Ai : 29S i — NMRスペクトルから求められる、 S i— C結合を一本有す る S iに帰属される S iシグナルの面積 A2 : 29S i— NMRスペクトルから求められる、 S i— C結合を二本有す る S iに帰属される S iシグナルの面積
A329S i— NMRスペクトルから求められる、 S i— C結合を三本有す る S iに帰属される S iシグナルの面積
ここで、 上記式 〔2〕 で示される含有比率 が、 80%以上であるシロキサン 類を含む塗布液を用いた場合に、 絶縁膜の特性が優れている理由は、 ( 1 ) 吸水 性が減るため、 脱ガス量や誘電率が低く抑えられること、 (2)耐クラック性が 向上するので圧塗りが可能であること、 および (3) ドライエッチングレートが 低くなるので、 エッチバックマージンが広くとれること、 などが挙げられる。 次に、 本発明の第 3の態様の絶縁膜形成用塗布液について説明する。
本態様の塗布液は、 上述した有機性の尺度の評価を上記式 〔3〕 によって行う ものであるということができる。
本発明の第 3の態様は、 組成式 (CH3 ) y S i 02.2/y (式中の yは 0. 8 以上 1. 3以下) で表される重量平均分子量が 1500以上 6000以下の不規 則構造をもつメチルシロキサンオリゴマーを、 沸点が 120°C以上 200 °C以下 の有機化合物を主成分とする溶媒に溶解したことを特徴とする塗布液を提供 するものである。 この塗布液は、 従来の有機 SOG (yの範囲は 0. 3ない し 0. 6) とは異なり、 組成式中の yの値が 0. 8以上 1. 3以下であることを 特徴とし、 また規則構造を有するラダ一シロキサンに対し、 不規則構造を有する ことを特徴とするものである。
メチルシロキサンオリゴマーの組成式におレ、て yの値を 0. 8以上に限定する ことにより、 メチルシロキサンオリゴマーの加熱重合硬化の際の収縮をほとんど 無くすことができる。 したがって、 厚塗りができ、 平坦性に有利に働く。 また、 この限定により、 メチルシロキサンオリゴマーの吸水率をほとんど 0にすること ができ、 さらに誘電率を 3. 5以下に低下することが可能になるため、 水を含ま ず誘電率の低い、 高速配線に有利な S O G膜を形成する、 という特徴を付与する ことができる。 yの値が 0 . 8に満たない場合は、 通常の有機 S〇Gと類似の特 性を示すようになり、 収縮率、 吸水率、 平坦化性能、 誘電率は従来技術の範囲の ものしか得られない。 また、 yが 1 . 3を超えると、 加熱重合が困難となり、 ま た膜を形成せずゴム状物となってしまうため、 yの上限を 1 . 3とした。
従来の技術では、 yの値が高くなるほど下地との密着性が低下するとされ、 実 用に供することは不可能であった。 ラダーメチルシロキサンも、 本発明と同一の 組成式で表され、 また本発明の yの範囲にある (ラダー構造が形成されるために は y = 1である必要がある) 、 同様に密着性に乏しくかつ収縮が大きいという 問題があるため、 利用するのは困難であることは、 従来の技術の中で記述したと おりである。
本発明では、 シ oキサン骨格を不規則構造とし、 分子量を規定し、 かつ溶媒を 規定することにより、 yが大きくなることによる密着低下の課題を解決して いる。 不規則構造の導入によって、 密着に貢献する多量の S i 一〇H終端 がオリゴマーの構造中にとりこまれ、 かつ S i - 0 - S i網目構造が疎になるた め、 膜をソフトにして応力を吸収する能力を高めることが、 密着力向上に寄与し ているものと考えられる。 不規則構造を規定する適切なパラメ一夕は未だ見い出 されていないが、 従来の有機 S O Gは、 たとえ yを増加させても規則構造をとり やすく、 密着性に劣るものであると推定される。 分子量も、 1 5 0 0未満である と重合時の体積収縮が著しいため、 内部応力が発生しやすく、 割れゃ剝がれの原 因となる。 さらに、 溶媒についても 1 2 0 °C未満の沸点の溶媒を使うと、 乾燥速 度の面内差異によつて塗布ムラが発生しゃすくなるばかり力、、 乾燥による応力の 発生が著しく、 密着に悪影響を与える。
上記メチルシロキサンオリゴマーの重量平均分子量を 1 5 0 0〜6 0 0 0まで に制限する理由は、 前記密着の問題の解決の他、 1 5 0 0未満である連続な塗布 膜が形成されず、 また 6 0 0 0を超えると塗布液の粘度が高くなり過ぎるため、 ストライエーシヨンと呼ばれる放射状の塗布ムラの発生が起こるためである。 重 量平均分子量としては 1 5 0 0〜3 5 0 0が最も好適である。
上記メチルシロキサンオリゴマーを溶解する溶媒としては、 沸点 1 2 0 °C以上 2 0 (TC以下の有機化合物を主成分とする溶媒を用いる。 沸点が 1 2 0 °C未満で あると、 塗布中の回転により溶媒の大部分が揮発してしまうため、 塗布液の十分 な流れ込みによる平坦化が達成できない。 さらに、 前記したように乾燥で発生す る応力による密着の低下が問題となる。 一方、 沸点が 2 0 0 °Cを超えると、 乾燥 が著しく遅くなり、 スループットが低下する他、 基板搬送中の欠陥の発生や、 加 熱工程中の発泡や炭素の残留などが生じるため、 使用できない。 より好適な溶媒 の沸点の範囲は 1 3 0〜1 6 0 °Cの間である。
なお、 溶媒の粘性率は微細な溝の埋込性能と塗布膜の均一性に大きな影響を及 ぼす。 好ましくは溶媒の粘性率が 2 5 °Cで 2 . 0 c P以下のものを使用する。 す なわち、 溶媒の粘性率が 2 . O c Pより大きいと、 0 . 2 m以下の溝の埋込み が不完全になり、 かつ塗布時に、 ストライエーシヨンと呼ばれる、 基板中心から 周囲にかけて放射状の縞模様となつて発生する膜厚ムラが発生する頻度が著しく 上がる。
本発明の要件を満たす溶媒としては、 エチレングリコールモノェチルェ一 テル、 エチレングリコールモノイソプロピルエーテル、 プロピレングリコールモ ノメチルエーテル、 エチレングリコールモノェチルエーテルアセテート、 ジェチ レングリコールジメチルエーテル、 ジ n —ブチルエーテル、 ジイッブチルエーテ ル、 ジ n—ァミルエーテル、 メチル n —アミルケトン、 メチルイソアミルケ トン、 酢酸 n—ァミル、 酢酸イソァミル、 酢酸 n—へキシル等が使用できる。 これらの溶媒は単独でも使用できるが、 2種以上のものを組み合わせて使用し ても良い。 また、 メタノール、 エタノール、 イソプロピルアルコール、 ァセ トン、 メチルェチルケトン、 水、 酢酸ブチルなど、 他の低沸点溶媒を加えて粘性 率を下げたり、 塗布性能を向上させたりするなどの手段をとることもできる。 た だし、 沸点が 1 2 0 °C以上 2 0 0 °C以下以外の溶媒を加える割合は、 その体積割 合が溶媒全体の 5 0 %を超えないことが好ましい。 なお、 本発明の第 2の態様の 塗布液においても、 シロキサン類を溶解するために、 上述した溶媒を用いてもよ いことはいうまでもない。
上記のような要件を満たした塗布液を用いると、 詳しい理由は定かではな いが、 いったん乾燥固化した膜が、 加熱時に軟化し、 再流動してさらに一層平坦 化するという、 非常に特徴的な自己流動化と呼べる現象が生じる。 自己流動化に よる平坦化は、 メチルシロキサンオリゴマ一の縮合硬化が起こるより低温の 1 5 0〜2 0 0 °Cの範囲で起こる。 この現象により、 従来の S O Gに比べはるか に広域の平坦化が達成できる。
上記のような理由から、 本発明の第 2および第 3の態様のいずれか一方または 両方の塗布液を用いることにより、 下地パターン全体の均一な平坦性を達成 でき、 また微細な溝も完全に埋め込むことが可能で、 かつ下地段差を平坦化する のに十分な厚塗りができ、 さらに水を含まず誘電率の低い、 絶縁性に優れ、 高速 配線に有利な絶縁膜を形成することができる。
このような特徴を有する有機 SOG塗布液は、 本発明の第 4の態様の塗布液の 製造方法で作製することができる。 すなわち、 アルコキシシランやアルキルアル コキシシランなどの化合物、 特にテトラアルコキシシラン、 メチルトリアルコキ シンランおよびジメチルジアルコキシシランよりなる群から選ばれた 1種の化合 物もしくは 2種以上の混合物を原料とし、 その S i— CH3 のモル濃度が原料全 体の S iのモル濃度の 80%以上 1 30%以下になるように配合し、 その 2ない し 4倍モル量の水とを、 有機カルボン酸を触媒として、 40°C以上 80°C以下の 温度に加熱して重合させ、 該重合生成物に沸点 120°C以上 200°C以下の有機 化合物を主成分とする溶媒を加えて希釈し、 該希釈液を常圧あるいは減圧下で蒸 留して重合反応の副生成物の水とアルコールを留去する。
テ トラアルコキシシラ ンと しては、 テ トラ メ トキシシラ ン (S i (OCH3 ) 4 ) 、 テトラエトキシシラン (S i (OC2 H5 ) 4 ) が一般的に 用いられる。 また、 メチルトリアルコキシシランとしては、 メチルトリメ トキシ シラン (CH3 S i (OCH3 ) 3 ) あるいはメチルトリエトキシシラン (CH3 S i (OC2 H5 ) 3 ) が一般的に用いられる。 また、 ジメチルジアル コキシシランとしては、 ジメチルジメ トキシシラン ( ( C H 3 ) 2 S i (0 CH3 ) 2 ) 、 ジメチルジェ トキシシラ ン ( (CH3 ) 2 S i (OC2 H5 ) 2 ) が用いられる。 これらの原料を、 単独あるいは混合 して、 S i— CH3 のモル濃度が原料全体の S iのモル濃度の 80 %以 上 1 30 %以下になるようにあらかじめ配合しておく。 この値は、 本発明 の第 3の態様の塗布液において、 メチルシロキサンオリゴマーの組成式を (CH3 ) y S i 02.2/y と表したときの yの値に等しい。 すなわち、 式中の y は 0. 8以上 1. 3以下とする必要がある。
たとえば、 メチルトリメトキシシランを使う場合は、 単独で原料に用いる場合 S i - CH3 Z全 S i = l 00%で y= lに相当するので、 そのまま使用 できる。 また、 テトラメ トキシシランとメチルトリメ トキシシランを混合 する場合は、 その混合比 rを r = [S i (OCH3 ) 4 ] / [CH3 S i (OCH3 ) 3 ] とすれば、 0 < r≤ 0. 25とすれば 0. 8≤y< 1. 0とす ることができる。 テトラメトキシシランとジメチルジメ トキシシランを混合する 場合は、 その混合比 rを r= [S i (OCH3 ) 4 ] Z [ (CH3 ) 2 S i (OCH3 ) 2 ] とおけば、 7Z13≤ r≤ 1. 5とすれば 0. 8≤y≤ 1. 3 とすることができる。 このように原料は 2種あるいは 3種を組み合わせて使用す ることができる。
配合ないしは単独原料に含まれる S i— CH3 のモル濃度が原料全体の S iの モル濃度の 80%未満であると、 生成するメチルシロキサンオリゴマーを組 成式: (CH3 ) y S i 02.2/y で表したときの yが 0. 8未満となるため、 前 述した理由により、 所望の特性が発揮できない。 また、 配合ないしは単独原料に 含まれる S i— CH3 のモル濃度が 130%を超えると、 同様に生成するメチル シロキサンオリゴマーの yが 1. 3を超えるため、 前述した理由により、 硬化膜 が形成されない。 この原料に、 その 2ないし 4倍モル量の水を加え、 ギ酸、 酢酸、 コハク酸など の有機カルボン酸を加えると、 ただちに縮合反応が始まり、 重合体の形成が行わ れる。 水の量が原料の 2倍量モル未満であると、 反応速度が著しく低下するばか りか、 重合体中のアルコキシル基の残存率が高くなるため、 形成した膜中の炭素 が残留しやすくなる。 また、 水の量が原料の 4倍量モルを超えると、 生成反応が 急速に起こり過ぎるため、 制御が困難になるばかりか、 メチルシロキサンオリゴ マ一中の自由水酸基 (S i一 O H) の割合が高くなり過ぎるため、 保存安定性に 欠ける。
触媒としての有機酸の濃度は、 あまり生成物の構造や状態に影響を与えないの で特に限定されないが、 高濃度すぎると液が酸性に傾き、 塗布液の安定性に影響 があるため、 可能な限りの低濃度、 好ましくは原料の 1 Z 1 0 0 0モルない し 1 Z 1 0 0モル程度とする。 有機酸以外の、 塩酸、 燐酸などの無機酸は、 塗布 基板上の金属等に影響を与えるため、 使用しない。
水の添加の後は、 混合液は一般には相溶しないので、 スターラーなどを使って 激しく混合を続ける必要がある。 数分ないし数時間以内に、 加水分解反応の複生 成物であるアルコールが生成し、 また重合体の親水性が増すため、 相溶するよう になる。
この重合反応に先立つて、 アルコール類などの溶剤を加えてあらかじめ希釈す ることもできる。 たとえば原料の 0 . 5倍モルのメタノールの添加により、 反応 初期の発熱を軽減し、 相溶性を増して反応の安定性を向上させ、 かつ重合反応を 遅延させることができる。 このために加える溶剤としては、 原料の 0 . 2〜3倍 モル程度のメタノール、 エタノール、 ジォキサンなどが使用される。 メチルシロキサンオリゴマーを重量平均分子量 1 5 0 0〜6 0 0 0まで重合さ せるためには、 前記混合物を 3 0 °C以上 8 0 °C以下の温度に加熱する。 配合ない しは単独原料に含まれる S i一 C H3 のモル濃度が原料全体の S iのモル濃度 y が比較的小さレ、ときは低温で、 また yが比較的大きレ、ときは高温にして重合させ るのが好ましい。 加熱温度が 3 0 °C未満では、 重合速度が極端に低下して所望の 分子量のものが得られない。 また加熱温度が 8 0 °Cを超えると、 副生成物の アルコールの沸騰力 s'起こったり、 重合が極めて急速に起こるため、 制御が困難で ある。 一般的には 5 0 °C前後の温度で、 密栓して恒温器中に保管して反応を行わ せるのが好ましい。 反応に要する時間は温度に依存する力 特に限定されず、 分 子量を測定しつつ、 4〜1 2 0時間程度の間で適当な時間を選択すれば良い。 このようにして得られる重合生成物には、 はじめに原料として加えた水の他、 副生成物のアルコール、 希釈のために溶剤を加えた場合は、 その溶剤などが共存 する。 これを除く必要があるが、 そのまま蒸留ないし乾燥すると、 メチルシロキ サンォリゴマーの濃度が急激に上昇するため、 重合反応速度が加速的に上昇し、 分子量数十万以上のゲル体になってしまうため、 水やアルコール、 溶剤の除去に 際しては、 メチルシロキサンオリゴマ一の濃度を上昇させない工夫が必要と なる。 このためには、 希釈に使用する主溶媒、 すなわち沸点 1 2 0 °C以上 2 0 0 °C以下の有機化合物を主成分とする溶媒を、 あらかじめ加えて希釈してお き、 そのまま希釈液を常圧あるいは減圧下で蒸留することが必要である。 蒸留条 件として、 水やアルコール、 溶剤は留去されるが、 主溶媒は蒸留されない温度と 圧力を選択することが重要である。
主溶媒としては、 前記の本発明の第 3の態様の塗布液に用いるものと同一のも のが使用できるのはいうまでもない。
このように水ゃァルコ一ル、 溶剤を除去したメチルシロキサンオリゴマ一の溶 液はそのまま、 あるいは適当な溶媒を加え、 必要に応じて濾過、 熟成などの操作 を加えたうえで、 塗布液とすることができる。
本発明の第 4の態様の製造方法で作成された本発明の第 3の態様の塗布液 および/または本発明の第 2の態様の塗布液を用いた本発明の第 5の態様の 半導体装置用絶縁膜の形成方法は、 シリコン基板の上に形成された、 表面に段差 凹凸面を有する配線パターン上に、 本発明の第 2および/または第 3の態様の塗 布液を塗布後乾燥し、 1 5 0 °C以上 3 0 0 °C以下の温度に 3 0秒以上保持して流 動化させ、 さらに 3 5 0 °C以上 4 5 0 °C以下の温度にて窒素中で硬化させて、 絶 縁膜を形成する。 こうして、 本発明において膜特性に優れた絶縁膜、 特に層間絶 縁膜を持つ半導体装置を製造することができる。
これは従来の有機 S 0 Gの膜の塗布形成方法と大筋は同一であるが、 本発明の S O Gの自己流動化温度が、 1 5 0 °C以上 3 0 0 °C以下の温度にあることに注目 し、 1 5 0 °C以上 3 0 0 °C以下の温度において 3 0秒以上保持して、 自己流動平 坦化を完結させることに最大の特徴がある。 すなわち、 塗布乾燥された膜が、 こ の温度範囲において、 再度流動化し、 高い広域の平坦性が得られるようになるか らである。 後に続く工程は通常の S O Gのキュアと呼ばれる工程にほかなら ない。 実施例
以下に、 本発明を実施例により具体的に説明する。
(実施例 1 )
市販有機 S OGに含まれるシロキサンオリゴマ一中の前記単位構造 (a) 、 (b)、 (c)、 (d) の存在比率および有機置換基の含有比率を分析 した。 ここでは、 試料 A (住友化学製 SF 1 014) および試料 B (東京応化製 Ty p e 12000 T) の 2種類の有機 S〇 Gを分析した。
有機 S〇G (試料 Aおよび試料 Bの各々) 1. 5mlおよびトリス (ァセチル ァセトナト) クロム(III)約 4 Omgを重アセトン 1. 5mlに加えて溶解し、 均一な溶液とした。 この溶液を内径 10mmのテフロン製 NMR試料管に入れ、 フーリエ変換型 NMR分光計(日本電子製 GX 270)で29 S i一 NMRを測定 した。 観測中心周波数 53. 67MHz、 観測周波数範囲 1 6kHz、 データポ イント 1 6 kまたは 32k、 積算回数 1 0000— 45000、 化学シフトの内 部標準にはテトラメチルシランを用いた。
得られた29 S i一 NMRスぺクトルの一例を図 1に示す。 図中に示した各 シグナルの面積から前記 A。 , A, , Α2 , A3 の相対比を求めた。 なお、 図 1のピーク面積は、 対応する単位構造中の S iの原子数に比例する。 ここで、 単位構造 (a) および(c) の場合、 図示される複数のピーク面積の合計値とな また、 前記式 〔3〕 で定義される有機置換基含有比率を算出した結果を表 1に 示す。
なお、 この実施例において Rはメチル基である。 上記のとおり、 本発明の第 1の態様の評価方法を用いれば、 有機シロキサン類 の有機置換基の含有比率の分析において、 29S i一 NMRの測定をすることによ り、 従来法では不可能であった単位構造ごとの存在比率を求めることができ、 た とえば有機 S〇G中の単位構造 (a)、 (b)、 (c) および (d) の存在比率 および有機置換基含有比率を容易に決定できる。
表 1 単位構造の存在比率および有機置換基含有率
Figure imgf000034_0001
(実施例 2 )
原料として、 メチルトリメトキシシランとテトラメトキシシランを表 2の割合 でメタノールに溶解し、 これに表 1に示す割合の水およびギ酸 0 . 0 0 2モルを 加え、 攪拌して 3 0〜6 0 °Cで 2 4時間重合反応を行った。 生成物にベンゼンと エチレングリコールモノェチルエーテルの 1 : 1混合物 6 5 0 m 1を加え、 減圧 蒸留して過剰のメタノールと水を除き、 固形分濃度約 2 0重量%の塗布液を作製 した。 この塗布液中に含まれるシロキサンォリゴマーの重量平均分子量をゲル浸 透クロマトグラフィーで測定したところ、 約 3, 0 0 0であり、 これは重合 度 4 0〜5 0に相当するものであった。
この塗布液を、 6インチ径のシリコンゥエーハ上に、 回転数 3 , 0 0 0 r p m でスピンコートし、 1 5 0 °C、 2 0 0 °C、 2 5 0 °Cで各々 6 0秒べ一クし、 次い で窒素気流中 4 0 0 °Cで 3 0分加熱し、 塗布液を作製した。
この膜について、 収縮率、 誘電率および吸水率を測定した結果を式 〔2〕 にお ける Xの値と共に表 2および図 2に併せて示した。
ここで、 収縮率の評価方法は、 洗浄後の半導体基板に回転数を制御することに よって膜厚の異なる塗布膜を形成し、 以下に示す式 〔5〕 から収縮率を求めた。 収縮率 (:%) = { ( t b - t β ) / 1 b } X 1 0 0 〔 5〕 ただし、 t a は硬化処理後の膜厚、 t b はプリべーク処理後の膜厚である。 誘電率は、 洗浄後の半導体基板上全面に A 1の膜をスパッタリング法により形 成し、 この上に前記の方法で回転数を制御することによって厚さ約 3 0 0 n mの 塗布膜を形成し、 プリべ一ク、 キュア処理を行った後、 メタルマスクを用いて約 3 mm角の A 1電極を蒸着し、 膜の端の部分を希フッ酸でェッチングして下部全 面 A 1と蒸着 A 1膜の間での静電容量を計測し、 電極面積と膜厚から求めた。 また、 吸水率は、 硬化処理の終わった膜をクリーンルーム中で 2 4時間放 置し、 膜中に含まれる水を電解セル式水分計 (M E A (Moisture Evaluat ion Analyzer)デュポン社製) で 4 0 0 °Cまでの発生水分量を測定することで計測し た。
表 2および図 2から明らかなように、 Xと膜特性の間には明確な相関があり、 また X≥8 0 %のときに、 収縮率、 誘電率および吸水量がいずれも小で、 優れた 膜特性が得られることがわかった。
表 2 メチル卜リメトキシ テ卜ラメトキシ 水 反応温度 式 〔 2 〕 で 収縮率 吸水量 備考 号 シ ラ ン シ ラ ン (モル) CO 定義される X (%) (一) (重量%)
(モル) (モル)
1 0.0 1.0 0.5 30 0 10.0 14.0 6.6
2 0.1 0.9 0.5 30 10 9.0 12.0 5.0 比
3 0.2 0.8 1.0 30 20 8.0 9.5 3.9
4 0.3 0.7 1.0 30 30 7.2 6.2 2.9 較
5 0.4 0.6 1.5 50 40 6.0 5.3 1.6
6 0.5 0.5 2.0 50 50 5.8 4.4 0.2 例
CO
7 0.6 0.4 2.0 50 60 4.3 4.1 0.1
8 0.7 0.3 2.0 50 70 3.2 3.8 0.0
9 0.8 0.2 2.0 80 80 0.8 3.5 0.0 本
10 0.9 0.1 2.0 80 90 0.0 3.2 0.0
11 1.0 0.0 2.0 80 100 0.0 3.0 0.0 明 例
(実施例 3 )
まず、 はじめに本発明の第 4の態様の製造方法に基づいて以下に示す手順で本 発明の S O G形成用の塗布液を製造した。 なお、 原料の配合比率、 合成条件、 代 表的な膜物性等はレ、ずれも表 3および 4に列記した。 表 3は 3種類の原料の組み 合わせを変化させたものであり、 表 4は各種合成条件を変化させた場合のデータ を掲げた。 表 3, 4には測定したデータについても記載した。 測定方法の詳細な 説明は、 以下に記載した。 測定した膜物性は表 3 , 4とも同一のものである。 な お、 本発明の範囲以外のものは、 番号の前に *印を付け、 対照用の比較例と した。
(塗布液の合成)
原料として、 いずれも純度 9 9 %以上のテトラメトキシシラン、 メチルトリメ トキシシラン、 ジメチルジメトキシシランを表 3および 4に示す割合で混合し、 これに表 3および 4に示す割合の水を加え、 さらに 1 Nのギ酸水溶液をギ酸とし て 0 . 0 0 2モルを加え、 撹拌して均一な溶液とした後、 密栓して表 3およ び 4に示した温度の恒温水槽に浸潰し、 表 3および 4に示す時間保持し、 重合反応を行った。 かかる重合生成物に溶媒としてメチル n —アミルケトン
( 2 —ヘプタノン、 沸点 1 5 1 °C) を加え、 5 0 °Cで 5 0 T 0 r rの減圧下 で口—タリ—エバポレー夕を用いて蒸留し、 過剰のメタノールと水を除いた。 そ の後さらにメチル n—アミルケトン (2—ヘプ夕ノン) を用いて希釈し、 固形分 濃度 2 0重量%の塗布液を作製した。 表 4には、 この塗布液中に含まれるシロキ サンォリゴマーの重量平均分子量をゲル浸透クロマトグラフィ一で測定した結果 を掲げた。 表 4の実施例において合成された塗布液は、 いずれも本発明の第 3の 態様の塗布液の条件を満たしていることがわかる。 ただし、 S i—0— S i ネットワークの不規則性については測定できる方法がないので除外されるが、 後 述する収縮率が非常に小さいことから予測して、 ラダ一構造などの規則構造 をとつていないことが自ずから知られる。
この塗布液を 6インチ径のシリコンゥヱーハ上に、 回転数 3 0 0 0 r pm でスピンコートし、 1 50°C, 200 °C, 250 °Cで各 60秒べークし、 次いで 窒素気流中 400°Cで 30分加熱し、 塗布膜を作製した。
この膜について、 収縮率、 誘電率および吸水率を測定した結果を、 下組成式 1 における yの値と共に表 3に併せて示した。
(CH3)y S i〇2.2/y (組成式 1 )
ここで収縮率、 誘電率および吸水率は、 実施例 2と同様にして測定し、 評価し た。
表 3および表 4から明らかなように、 yと膜特性の間には明確な相関があり、 また 8≤y≤ l. 3のときに収縮率が小さく、 誘電率の小さレ、、 水分の少な いという優れた膜特性が得られることがわかつた。
次に、 本発明の第 5の態様による絶縁膜の形成方法について図面を参照して説 明する。
図 3は、 本発明にかかわる絶縁膜の製造工程を示す部分断面図である。 図 3 ( 1 ) に示す工程では、 所望の処理を施した半導体基板 1上に、 厚さ 1. 2〃mの配線層を形成した後、 これをパターニングし、 配線幅 = 1〃mの配 線 2 a, 2 bおよび 2 c (配線 2 aと 2 bの間隔 =配線 2 bと配線 2 cとの 間隔 = 1 m) からなるラインアンドスペース配線パターン 2、 および配線幅 = 0. 5〃mの配線 3 a, 3 bおよび 3 c (配線 3 aと 3 bの間隔 =配線 3 bと配 線 3 cとの間隔 =0. 5 zm) からなるラインアンドスペース配線パターン 3を 形成した。 配線パターン 2と配線パターン 3との間隔は 3〃mとした。 この工程 により、 半導体基板 1と配線パターン 2および 3との間に段差が発生した。 次に、 図 3 (2) に示す工程では、 図 3 (1) に示す工程で得た半導体基板 1 および配線パターン 2および 3の全面に、 テトラエトキシシラン (TEOS) を ベースとしたプラズマ CVD法により、 S i 02 層 4を 300 nmの厚さで形成 した。 この CVD酸化膜 4は、 ステップカバレッジが良好である力、 膜の形成が 下地の形状 (段差) に沿って行われるため、 配線間の溝を埋め込むことはできな かった。
次いで、 図 3 (3) に示す工程では、 絶縁膜の原料として、 前記の方法に よって合成した表 3および 4に掲げた各種の塗布液を使用し、 スピンコーティン グ法により、 0. 7〜1. 1 ;tzmの厚さで絶縁膜 5を塗布し、 窒素雰囲気中 で 80 °C, 1 50 °C, 230 °Cでそれぞれ 60秒間ずつ加熱するプリべーク処理 を行った。 その後、 400 °Cで 30分間の窒素中キュア (硬化) 処理を施し、 絶 縁膜 5を形成した。 こうして、 本発明の半導体装置 6を製造した。 得られた半導 体装置 6の絶縁膜 5の断面を観察した。 平坦性の評価は、 図 4に示す平坦性の尺 度 (DOP) を用いて具体的にその傾向を調べた。 なお、 平坦性の尺度であ る DOP (% は下記式で求めた。
DOP (%) = { ! - (0/90) (d。 Zdm ) } X 1 00
ここで、 0は、 図 2に示すように配線 7によって生じた絶縁膜 8の段差の 傾き、 d。 は絶縁膜 8の高低差、 dm は配線 7の厚さである。 平坦性の測定の結果は表 3および 4に記載した。
いずれも、 本発明による SOGを使用することにより、 優れた平坦性を達成で きたことがわかる。
表 3 番号 テトラメトキシ メチル卜リメ卜 ジ チルジメ卜キシ 水 反応餅 繊ェ 1 収縮率 平坦性 吸水率 注 記 シ ラ ン キ シ シ ラ ン シ ラ 中の V J DOP
(mol) (mol) (mol) (mol) (%) (%) (重 *¾)
* 1 1. 0 0. 0 0. 0 3 50°C 24h o. o 25 5. 4 0.50 6. 6 クラック発生
2 0. 3 0. 7 0. 0 3 50°C 24h o. 7 6 4. 2 0.65 1. 8
3 0. 2 0. 8 0. o 3 50°C 24h o. 8 3 3. 5 0.90 0. 2
4 0. 1 0. 9 0. o 3 50°C 24 o. 9 1 3. 3 0.90 < 0.
5 0. 0 1. 0 0. 0 3 50°C 24 0 0 3. 0 >0.90 < 0.
6 0. 1 0. 8 0. 1 3 50°C 24h 1: 0 0 3. 0 >0.90 < 0.
O 7 0. 5 0. 0 0. 5 3 50°C 24h 0 0 3. 0 >0.90 < 0.
8 0. 0 0. 9 0. 1 3 50°C 24h 1 0 2. 9 >0.90 < 0.
9 0. 1 0. 7 0. 2 3 50°C 24h 1 0 2. 9 >0.90 < 0.
10 0. 0 0. 8 0. 2 3 50°C 24h 2 0 2. 9 〉0.90 < 0.
11 0. 0 0. 74 0. 28 3 50°C 24h 3 0 2. 8 >0.90 < 0.
12 0. 2 0. 3 0. 5 3 50°C 24h 3 0 2. 7 >0.90 < 0.
*13 0. 0 0. 6 0. 4 3 50°C 24h 4 膜を形成せず
*14 0. 3 0. 0 0. 7 3 50°C 24h 4 膜を形成せず
表 4 テトラメトキシ メチルトリ 卜 ジメチルジメ卜キシ 水 反応条件 ォ リ ゴ 収縮率 誘 平坦性 吸水率 注 記 シ ラ ン キ シ シ ラ ン シ ラ ン マ一の平 DOP
(mol) (mol) (mol) (mol) 均好量 (96) (%) ( m)
*15 0. 0 1. 0 0. 0 1 50°C 24 1 200 7 3. 3 0.70 < 0. 1 膜厚ムラあり
16 0. 0 1. 0 0. 0 2 50°C 24h 1 900 1 3. 1 〉0.90 < 0. 1
17 0. 0 1. 0 0. 0 3 50°C 24h 2500 0 2. 9 〉0.90 < 0. 1
18 0. 0 1. 0 0. 0 4 50°C 24h 2800 0 2. 9 〉0.90 < 0. 1
*19 0. 0 1. 0 0. 0 5 50°C 24h 9000 0 2. 9 >0.90 < 0. 1 膜厚ムラあり
*20 0. 0 1. 0 0. 0 3 30°C 24h 700 1 0 3. 6 0.70 < 0. 1 膜厚ムラあり
21 0. 0 1. 0 0. 0 3 40。C 24h 1 600 0 3. 0 >0.90 < 0. 1
22 0. 0 1. 0 0. 0 3 60°C 24h 2800 0 3. 0 >0.90 < 0. 1
23 0. 0 1. 0 0. 0 3 70°C 24h 5200 0 3. 0 >0.90 < 0. 1
24 0. 0 1. 0 0. 0 3 60°C 24h 4000 0 3. 0 >0.90 < 0. 1
産業上の利用可能性
以上詳述したように、 本発明の評価方法によれば、 有機シロキサン類の有機置 換基の含有比率の分析において、 従来法では不可能であつた単位構造ごとの存在 比率を求めることができ、 有機シロキサン中の有機置換基含有比率を容易に決定 できる。
したがって、 本発明は、 たとえば半導体装置の絶縁膜、 特に L S I多層配線用 層間絶縁膜形成用に用いられる有機シロキサン類を含む溶液中のシ口キサン類の 有機性評価に用いることができ、 本発明の評価方法により、 この絶縁膜の耐薬品 性、 耐水性等の膜特性があらかじめ予測可能となる。 また本発明によれば、 絶縁膜に用いられる S O G製造時の品質管理が適確に行われるという効果も 有する。
また、 本発明のシロキサン類、 特にメチルシロキサンオリゴマーを含む塗布液 を用いれば、 膜特性に優れた半導体装置用絶縁膜、 例えば L S I多層配線用層間 絶縁膜の形成が可能となる。
すなわち、 本発明の塗布液およびこれを用いる絶縁膜の形成方法によれば、 膜 特性に優れた絶縁膜、 すなわち下地パターン全体の均一な平坦性を達成でき、 ま た微細な溝も完全に埋め込むことが可能で、 かつ優れたクラック耐性を有し、 下 地段差を平坦化するのに十分な厚塗りができ、 さらに水を含まず誘電率の低い、 高速配線に有利な絶縁膜、 特に半導体装置用層間絶縁膜を形成することが できる。
また、 本発明塗布液の製造方法によれば、 上記効果を発揮する塗布液を確実に 安定して製造することができる。 また、 本発明の半導体装置の製造方法によれば、 上述した膜特性に優れた層間 絶縁膜を有する半導体装置を確実に安定して得ることができる。

Claims

請求の範囲
( 1 )絶縁膜形成用塗布液に含まれる、 少なくとも一種類の有機置換基と結合し た S i原子を含むシロキサン類を評価するに際し、 1つの S i原子に結合した前 記有機置換基の数が 1から 3である 3種の S i原子および前記有機置換基と結合 しない S i原子の内の少なくとも 1種の存在比率を分析し、 その存在比率に基づ レ、て絶縁膜形成用シロキサン類を評価することを特徴とする絶縁膜形成用シロキ サン類の評価方法。
(2)前記結合した有機置換基の数の異なる S i原子の存在比率は、 9S i一 NMRスぺクトルのシグナルの積分値を用いて求められる請求項 1に記 載の絶縁膜形成用シロキサン類の評価方法。
(3)前記少なくとも一種類の有機置換基と結合した S i原子を含むシロキサン 類が、 下記式 〔1〕 で表される LS I多層配線用層間絶縁膜形成用シロキサン類 であり、 このシロキサン類の下記単位構造 (a)、 (b)、 (c)、 (d) の少 なくとも 1つの存在比率が29 S i一 NMRスぺクトルのシグナルの積分値から求 められる請求項 1または 2に記載の絶縁膜形成用シロキサン類の評価方法。
〔1〕
Figure imgf000046_0001
上記式 〔 1〕 において、
k、 l、 m、 n : 0〜1000の整数を示す c R :飽和炭化水素基、 不飽和炭化水素基、 フ ニル基から選ば れる少なくとも 1種の有機置換基を示し、 同一であっても 異なっていてもよく、 フヱニル基としては、 置換基を有す るフヱニル基でもよい。
酸素原子は、 S i、 R、 Hのいずれかと結合する。
R R 0 R
-0-S i -0-, - 0 - Si -〇 -、 -0 - Si-O -、 R-S i -0-
0 R 0 R
1 I
(a) (b) (c) (d) 上記単位構造 (a)〜 (d) において、 Rは飽和炭化水素基、 不飽和炭化水 素基、 フ ニル基から選ばれる少なくとも 1種の有機置換基を示し、 同一で あっても異なっていてもよく、 フヱニル基としては、 置換基を有するフヱニル基 でもよい。
(4)前記少なくとも一種類の有機置換基と結合した S i原子を含むシロキサン 類が、 シロキサンォリゴマ一である請求項 1ないし 3のいずれかに記載の絶縁膜 形成用シ口キサン類の評価方法。
(5)前記シロキサンオリゴマーの前記単位構造の繰り返しの数 〔k+l +m + n〕 で表される重合度が、 2〜500である請求項 4に記載の絶縁膜形成用シロ キサン類の評価方法。
(6)半導体装置の製造に用いられる絶縁膜形成用塗布液であって、 少なくとも 一種類の有機置換基と結合した S i原子を含む下記式 〔1〕 で表されるシロ キサン類を含み、 かつ、 前記シロキサン類の29 S i一 NMRスぺクトルのシグナ ルの積分値から求められる下記式 〔2〕 で示される含有比率 Xが、 下記式 〔2〕 を満足するシロキサン類を含むことを特徴とする絶縁膜形成用塗布液。
〔1〕
Figure imgf000048_0002
上記式 〔 1〕 において、
k、 l、 m、 n : 0〜1000の整数を示す。
R :飽和炭化水素基、 不飽和炭化水素基、 フエニル基から選ば れる少なくとも 1種の有機置換基を示し、 同一であっても 異なっていてもよく、 フ ニル基としては、 置換基を有す るフヱニル基でもよい。
酸素原子は、 S i、 R、 Hのいずれかと結合する。
X = 100≥ 80 % 〔2〕
Figure imgf000048_0001
上記式 〔2〕 において、
A。 : 29S i—NMRスペクトルから求められる、 S i— C結合をもたない
S iに帰属される S iシグナルの面積、
A, : 29S i—NMRスペクトルから求められる、 ≤ 1ー(:結合を1本有す る S iに帰属される S iシグナルの面積、
A229S i— NMRスペクトルから求められる、 S i— C結合を 2本有す る S iに帰属される S iシグナルの面積、
A32SS i—NMRスペクトルから求められる、 S i— C結合を 3本有す る S iに帰属される S iシグナルの面積を示す。
(7)前記 S i一 C結合をもたない S i、 前記 S i一 C結合を 1本有する S i、 前記 S i—C結合を 2本有する S iおよび前記 S i—C結合を 3本有する
S i力、 下記構造単位(c) , (a) , (b) , (d)で表される S iである請 求項 6に記載の絶縁膜形成用塗布液。
R R 0
一 0 - Si - 0 -、 - 0 - Si - 0 -、 - 0 - Si-〇 -、 R - Si - 0 - 0 R 0 R
(a) (b) (c) (d) 上記構造単位(a)〜 (d) において、 Rは飽和炭化水素基、 不飽和炭化水 素基、 フエニル基から選ばれる少なくとも 1種の有機置換基を示し、 同一で あっても異なっていてもよく、 フヱニル基としては、 置換基を有するフエニル基 でもよい。
(8)前記シロキサン類が、 シロキサンオリゴマーである請求項 6または 7に記 載の絶縁膜形成用塗布液。
(9)前記シロキサンオリゴマーの前記単位構造の繰り返しの数 〔k+l +m + n〕 で表される重合度が、 2〜500である請求項 8に記載の絶縁膜形成用塗布 液。
(10)請求項 6〜 9のいずれかに記載の絶縁膜形成用塗布液であって、 前記シ ロキサン類を、 沸点が 120°C以上 200 °C以下の有機化合物を主成分とする溶 媒に溶解したことを特徴とする絶縁膜形成用塗布液。
(1 1) 半導体装置の製造に用いられる絶縁膜形成用塗布液であって、 組成 式 (CH3)y S i 02.2/y (式中の yは 0. 8以上 1. 3以下) で表される重量 平均分子量が 1 500以上 6000以下の不規則構造をもつメチルシロキサンォ リゴマ一を、 沸点が 1 20 °C以上 200 °C以下の有機化合物を主成分とする溶媒 に溶解したことを特徴とする絶縁膜形成用塗布液。
( 1 2) 前記溶媒は、 その粘性率が 25°Cで 2. 0 c P以下である請求項 1 1に 記載の絶縁膜形成用塗布液。
(1 3) 前記溶媒は、 エチレングリ コールモノェチルェ一 'テル、 エチレン グリコールモノイソプロピルエーテル、 プロピレングリコールモノメチルェ一テ ル、 エチレングリコールモノェチルエーテルアセテート、 ジエチレングリコール ジメチルェ一テル、 ジ n—ブチルエーテル、 ジイソブチルエーテル、 ジ n—アミ ルエーテル、 メチル n—アミルケトン、 メチルイソアミルケトン、 酢酸 n—アミ ル、 酢酸イソァミルおよび酢酸 n—へキシルよりなる群から選ばれる少なくとも 1種である請求項 1 1または 1 2に記載の絶縁膜形成用塗布液。
(1 4) テトラアルコキシシラン、 メチルトリアルコキシシランおよびジメチル ジアルコキシシランよりなる群から選ばれた 1種の化合物もしくは 2種以上の混 合物を原料とし、 その S i— CH3 のモル濃度が原料全体の S iのモル濃度 の 80%以上 1 30%以下になるように配合し、 その 2ないし 4倍モル量の水を 加え、 有機カルボン酸を触媒として、 30°C以上 80°C以下の濃度に加熱して重 合させ、 該重合生成物に沸点 1 20°C以上 200で以下の有機化合物を主成分と する溶媒を加えて希釈し、 該希釈液を常圧あるレ、は減圧下で蒸留して重合反応の 副生成物の水とアルコールを留去することを特徴を有する絶縁膜形成用塗布液の 製造方法。
( 1 5) 前記テトラアルコキシシランは、 テトラメトキシシランおよび Zまたは テトラエトキンシランであり、 前記メチルトリアルコキシシランは、 メチルトリ メトキシシランおよびノまたはメチルトリエトキシシランであり、 前記ジメチル ジアルコキシシランは、 ジメチルメトキシシランおよび/またはジメチルェトキ シシランである請求項 1 4に記載の絶縁膜形成用塗布液の製造方法。
( 1 6) 前記有機カルボン酸は、 蟻酸、 酢酸、 コハク酸よりなる群から選ばれる 少なくとも 1種であり、 その濃度は、 前記原料の 1ノ 1 0 0 0〜 1 Z 1 0 0モル である請求項 1 4または 1 5に記載の縁膜形成用塗布液の製造方法。
( 1 7) 前記重合反応に先立って、 前記原料の 0. 2〜3倍モルのアルコール系 溶剤を加えることを特徴とする請求項 1 4〜1 6のいずれかに記載の絶縁膜形成 用塗布液の製造方法。
( 1 8) 前記アルコール系溶剤は、 メタノール、 エタノール、 ジォキサンよりな る群から選ばれる少なくとも 1種である請求項 1 7に記載の絶縁膜形成用塗布液 の製造方法。
( 1 9) 前記溶媒は、 その粘性率が 2 5 °Cで 2. O c P以下である請求項 1 4〜1 8のいずれかに記載の絶縁膜形成用塗布液の製造方法。
(20) 前記溶媒は、 エチレングリコールモノェチルエーテル、 エチレン グリコールモノイソプロピルエーテル、 プロピレングリコールモノメチルエーテ ル、 エチレングリコールモノェチルエーテルアセテート、 ジエチレングリコール ジメチルエーテル、 ジ n—ブチルエーテル、 ジイソブチルエーテル、 ジ n—アミ ルエーテル、 メチル n—アミルケトン、 メチルイソアミルケトン、 酢酸 n—アミ ル、 酢酸ィツァミルおよび酢酸 n —へキシルよりなる群から選ばれる少なくとも 1種である請求項 1 4〜 1 9のいずれかに記載の絶縁膜形成用塗布液の製造 方法。
( 2 1 ) 請求項 6〜 1 3のいずれかに記載の絶縁膜形成用塗布液を用いることを 特徴とする半導体装置用絶縁膜の形成方法。
( 2 2 ) シリ コン基板の上に形成された、 表面に段差凹凸面を有する配線 パターン上に、 請求項 6〜1 3のいずれかに記載の層間絶縁膜形成用塗布液を塗 布後乾燥し、 1 5 0 °C以上 3 0 0 °C以下の温度に 3 0秒以上保持して流動化 させ、 さらに 3 5 0で以上 4 5 0 °C以下の温度にて窒素中で硬化させて絶縁膜を 形成することを特徴とする半導体装置用絶縁膜の形成方法。
( 2 3 ) 請求項 2 1または 2 2に記載の半導体装置用絶縁膜の形成方法を適用す る半導体装置の製造方法。
PCT/JP1994/001910 1994-03-11 1994-11-11 Method of evaluating siloxane used for forming insulation coating, coating fluid used for forming insulation coating, process for producing the fluid, process for forming insulation coating for semiconductor device, and process for producing semiconductor device by applying the above process WO1995024639A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP95900290A EP0701121A4 (en) 1994-03-11 1994-11-11 ASSESSMENT PROCESS FOR PRODUCING INSULATION COATING USED Siloxanes COATING LIQUID USED FOR THE PRODUCTION OF INSULATION COATING, PROCESS FOR PRODUCING THE LIQUID, METHOD FOR PRODUCING THE ISOLATION COATING FOR SEMICONDUCTOR ELEMENTS AND METHOD FOR PRODUCING SEMICONDUCTOR DEVICES BY THE APPLICATION OF THE ABOVE PROCEDURES
KR1019950705032A KR960702610A (ko) 1994-03-11 1994-11-11 절연막 형성용 실록산류의 평가방법, 절연막 형성용 도포액 및 그 제조방법 및 반도체장치용 절연막의 형성방법 및 이것을 적용하는 반도체 장치의 제조방법.(method of evaluating siloxane used for forming insulation coating, coating fluid used for forming-insulation coating, process for producing the fluid, process for forming insulation coating for semiconductor device, and process for producing semiconductor device by applying the above process)
US08/545,736 US5840821A (en) 1994-03-11 1994-11-11 Coating solution and method for preparing the coating solution, method for forming insulating films for semiconductor devices, and method for evaluating the coating solution
JP07523350A JP3078326B2 (ja) 1994-03-11 1994-11-11 絶縁膜形成用塗布液およびその製造方法ならびに半導体装置用絶縁膜の形成方法およびこれを適用する半導体装置の製造方法
US09/042,668 US5998522A (en) 1994-03-11 1998-03-17 Coating solution and method for preparing the coating solution, method for forming insulating films for semiconductor devices, and method for evaluating the coating solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4131494 1994-03-11
JP6/41314 1994-03-11

Publications (1)

Publication Number Publication Date
WO1995024639A1 true WO1995024639A1 (en) 1995-09-14

Family

ID=12605055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/001910 WO1995024639A1 (en) 1994-03-11 1994-11-11 Method of evaluating siloxane used for forming insulation coating, coating fluid used for forming insulation coating, process for producing the fluid, process for forming insulation coating for semiconductor device, and process for producing semiconductor device by applying the above process

Country Status (6)

Country Link
US (2) US5840821A (ja)
EP (1) EP0701121A4 (ja)
JP (2) JP3078326B2 (ja)
KR (1) KR960702610A (ja)
CN (1) CN1125481A (ja)
WO (1) WO1995024639A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7060361B2 (en) 2002-07-12 2006-06-13 Tokyo Ohka Kogyo Co., Ltd. Silica-based organic film and method of manufacturing the same, and base material comprising organic film
WO2006104742A2 (en) * 2005-03-28 2006-10-05 Honeywell International Inc. Methane and methyl chloride as selective reducing agent in the transformation of hydrochlorofluorocarbons or chlorofluorcarbons to hydrochlorofluorocarbons
US7235500B2 (en) 2003-12-10 2007-06-26 Tokyo Ohka Kogyo Co., Ltd. Material for forming silica based film
JP2009065169A (ja) * 2007-09-07 2009-03-26 Interuniv Micro Electronica Centrum Vzw 材料の疎水性および親水性の定量化
JP2010186938A (ja) * 2009-02-13 2010-08-26 Asahi Kasei E-Materials Corp ポリシロキサン系トレンチ埋め込み用縮合反応物及びトレンチ埋め込み膜の製造方法
JP2011181563A (ja) * 2010-02-26 2011-09-15 Fujifilm Corp トレンチ埋め込み用組成物
WO2012176824A1 (ja) * 2011-06-21 2012-12-27 住友化学株式会社 積層フィルムの検査方法及び積層フィルムの製造方法

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840821A (en) * 1994-03-11 1998-11-24 Kawasaki Steel Corporation Coating solution and method for preparing the coating solution, method for forming insulating films for semiconductor devices, and method for evaluating the coating solution
JP3812104B2 (ja) * 1997-12-02 2006-08-23 Jsr株式会社 膜形成用組成物
US6177199B1 (en) 1999-01-07 2001-01-23 Alliedsignal Inc. Dielectric films from organohydridosiloxane resins with low organic content
KR100314806B1 (ko) 1998-10-29 2002-02-19 박종섭 스핀온글래스막형성방법
US6317642B1 (en) 1998-11-12 2001-11-13 Advanced Micro Devices, Inc. Apparatus and methods for uniform scan dispensing of spin-on materials
US6200913B1 (en) 1998-11-12 2001-03-13 Advanced Micro Devices, Inc. Cure process for manufacture of low dielectric constant interlevel dielectric layers
US6225240B1 (en) 1998-11-12 2001-05-01 Advanced Micro Devices, Inc. Rapid acceleration methods for global planarization of spin-on films
US6407009B1 (en) 1998-11-12 2002-06-18 Advanced Micro Devices, Inc. Methods of manufacture of uniform spin-on films
US6387825B2 (en) 1998-11-12 2002-05-14 Advanced Micro Devices, Inc. Solution flow-in for uniform deposition of spin-on films
US6530340B2 (en) 1998-11-12 2003-03-11 Advanced Micro Devices, Inc. Apparatus for manufacturing planar spin-on films
JP2002534804A (ja) * 1999-01-07 2002-10-15 アライドシグナル・インコーポレイテツド 有機ヒドリドシロキサン樹脂による誘電フィルム
DE60022746T2 (de) * 1999-04-14 2006-06-29 Alliedsignal Inc. Durch polymerabbau erhältliches nano-poröses material mit niedriger dielektrizitätskonstante
US6204202B1 (en) * 1999-04-14 2001-03-20 Alliedsignal, Inc. Low dielectric constant porous films
DE60021476T2 (de) * 1999-06-04 2006-05-24 Jsr Corp. Beschichtungszusammensetzung für die Filmherstellung und Material für isolierenden Schichten
US6509259B1 (en) * 1999-06-09 2003-01-21 Alliedsignal Inc. Process of using siloxane dielectric films in the integration of organic dielectric films in electronic devices
US6287477B1 (en) 1999-10-18 2001-09-11 Honeywell International Inc. Solvents for processing silsesquioxane and siloxane resins
EP1123991A3 (en) * 2000-02-08 2002-11-13 Asm Japan K.K. Low dielectric constant materials and processes
EP1160848B1 (en) * 2000-05-22 2011-10-05 JSR Corporation Composition for silica-based film formation
TWI238908B (en) * 2000-08-21 2005-09-01 Jsr Corp Layer insulation film for liquid crystal display element and liquid display element using the same
US6905981B1 (en) 2000-11-24 2005-06-14 Asm Japan K.K. Low-k dielectric materials and processes
JP3454259B2 (ja) * 2001-09-07 2003-10-06 セイコーエプソン株式会社 マスクデータの生成方法、マスクおよび記録媒体、ならびに半導体装置の製造方法
US20030096090A1 (en) * 2001-10-22 2003-05-22 Boisvert Ronald Paul Etch-stop resins
JP2003165957A (ja) * 2001-11-30 2003-06-10 Sumitomo Chem Co Ltd 低誘電率絶縁膜形成用塗布液
KR101227664B1 (ko) * 2002-01-31 2013-01-29 도소 가부시키가이샤 유기실란화합물을 포함하여 구성되는 절연막용 재료, 그 제조방법 및 반도체장치
CN100335488C (zh) * 2002-01-31 2007-09-05 东粟株式会社 含有机硅烷化合物的绝缘膜用材料及其制法及半导体装置
JP3859540B2 (ja) * 2002-05-14 2006-12-20 松下電器産業株式会社 低誘電率絶縁膜形成用材料
US20040109950A1 (en) * 2002-09-13 2004-06-10 Shipley Company, L.L.C. Dielectric materials
KR100499348B1 (ko) * 2002-11-05 2005-07-04 주식회사 엔비켐 금속 모노리스형 촉매 모듈 제조를 위한 금속구조체 표면상에 금속-금속산화물 층상입자층의 피복방법 및 촉매부착방법
US7144648B2 (en) * 2002-11-22 2006-12-05 The Research Foundation Of State University Of New York Bipolar plate
JP4265409B2 (ja) * 2003-02-13 2009-05-20 三菱マテリアル株式会社 Si−Si結合を有する有機Si含有化合物を用いたSi含有薄膜の形成方法
US20050089642A1 (en) * 2003-10-28 2005-04-28 Rohm And Haas Electronic Materials, L.L.C. Dielectric materials preparation
JP2005133060A (ja) * 2003-10-29 2005-05-26 Rohm & Haas Electronic Materials Llc 多孔性材料
US8053159B2 (en) 2003-11-18 2011-11-08 Honeywell International Inc. Antireflective coatings for via fill and photolithography applications and methods of preparation thereof
JP2005314616A (ja) * 2004-04-30 2005-11-10 Shin Etsu Chem Co Ltd シリコーンコーティング組成物及び被覆物品
WO2005122228A1 (en) * 2004-06-07 2005-12-22 Dow Global Technologies Inc. Method for preparing a gap-filling dielectric film
JP2006120919A (ja) * 2004-10-22 2006-05-11 Tokyo Ohka Kogyo Co Ltd シリカ系被膜形成用塗布液
JP4442569B2 (ja) * 2005-04-11 2010-03-31 セイコーエプソン株式会社 電気光学装置及び電子機器
JP2007324350A (ja) * 2006-05-31 2007-12-13 Tokyo Electron Ltd 熱処理方法および熱処理装置、ならびに基板処理装置
JP2008034736A (ja) * 2006-07-31 2008-02-14 Tokyo Electron Ltd 熱処理方法および熱処理装置
US8642246B2 (en) 2007-02-26 2014-02-04 Honeywell International Inc. Compositions, coatings and films for tri-layer patterning applications and methods of preparation thereof
US20080206997A1 (en) * 2007-02-26 2008-08-28 Semiconductor Energy Laboratory Co., Ltd. Method for Manufacturing Insulating Film and Method for Manufacturing Semiconductor Device
KR100910542B1 (ko) * 2007-05-04 2009-08-05 제일모직주식회사 반도체 미세 갭 필용 화합물 및 이를 이용한 반도체 미세갭 필용 조성물
WO2008136567A1 (en) * 2007-05-04 2008-11-13 Cheil Industries Inc. Compound for gap-filling of semiconductor device and coating composition using the same
KR100894417B1 (ko) 2007-09-06 2009-04-24 제일모직주식회사 갭 필 능력이 개선된 반도체 미세 갭 필용 유기실란계중합체 및 이를 이용한 반도체 미세 갭 필용 조성물
KR101233385B1 (ko) * 2008-09-02 2013-02-15 제일모직주식회사 반도체 디바이스의 미세 갭 필용 화합물, 이를 포함하는 조성물 및 반도체 캐패시터의 제조방법
US8557877B2 (en) 2009-06-10 2013-10-15 Honeywell International Inc. Anti-reflective coatings for optically transparent substrates
US8864898B2 (en) 2011-05-31 2014-10-21 Honeywell International Inc. Coating formulations for optical elements
EP2865703A4 (en) 2012-05-31 2015-11-18 Konica Minolta Inc SEALANT FOR LIGHT-EMITTING DEVICE, LIGHT-EMITTING DEVICE THEREWITH AND LIGHT-EMITTING DEVICE MANUFACTURING METHOD
JP6016558B2 (ja) * 2012-09-27 2016-10-26 旭化成株式会社 シリカ系被膜の製造方法
WO2016167892A1 (en) 2015-04-13 2016-10-20 Honeywell International Inc. Polysiloxane formulations and coatings for optoelectronic applications
CN105301031B (zh) * 2015-12-01 2017-06-27 中山大学 一维核磁共振氢谱法测定三硅氧烷表面活性剂中含氢硅油残留量的方法
US11015082B2 (en) * 2017-12-19 2021-05-25 Honeywell International Inc. Crack-resistant polysiloxane dielectric planarizing compositions, methods and films

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628146B2 (ja) * 1980-02-21 1987-02-20 Sumitomo Metal Mining Co
JPS6232357U (ja) * 1985-08-09 1987-02-26
JPH04233732A (ja) * 1990-08-16 1992-08-21 Motorola Inc 半導体の製造工程で使用するスピン・オン誘電体
JPH04263429A (ja) * 1991-02-18 1992-09-18 Sharp Corp 半導体装置の製造方法
JPH04320337A (ja) * 1991-04-19 1992-11-11 Fujitsu Ltd 絶縁膜形成用塗布液
JPH0570119A (ja) * 1991-09-12 1993-03-23 Kawasaki Steel Corp 半導体装置の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4349609A (en) * 1979-06-21 1982-09-14 Fujitsu Limited Electronic device having multilayer wiring structure
EP0021818B1 (en) * 1979-06-21 1983-10-05 Fujitsu Limited Improved electronic device having multilayer wiring structure
US4605446A (en) * 1983-12-01 1986-08-12 Kansai Paint Company, Limited Process for preparing organosilicon high condensation products
US4670299A (en) * 1984-11-01 1987-06-02 Fujitsu Limited Preparation of lower alkyl polysilsesquioxane and formation of insulating layer of silylated polymer on electronic circuit board
US4723978A (en) * 1985-10-31 1988-02-09 International Business Machines Corporation Method for a plasma-treated polysiloxane coating
JPH0791509B2 (ja) * 1985-12-17 1995-10-04 住友化学工業株式会社 半導体用絶縁膜形成塗布液
JPH083074B2 (ja) * 1986-11-18 1996-01-17 東京応化工業株式会社 シリカ系被膜形成用塗布液
US4798629A (en) * 1987-10-22 1989-01-17 Motorola Inc. Spin-on glass for use in semiconductor processing
US5286572A (en) * 1988-11-28 1994-02-15 International Business Machines Corporation Planarizing ladder-type silsequioxane polymer insulation layer
JPH0386725A (ja) * 1989-08-31 1991-04-11 Fujitsu Ltd 絶縁物の製造方法及び半導体装置の製造方法
US5043789A (en) * 1990-03-15 1991-08-27 International Business Machines Corporation Planarizing silsesquioxane copolymer coating
JPH0440347A (ja) * 1990-06-06 1992-02-10 Fujitsu Ltd 有機硅素化合物の分析方法
US5152834A (en) * 1990-09-14 1992-10-06 Ncr Corporation Spin-on glass composition
JP2726363B2 (ja) * 1992-06-03 1998-03-11 沖電気工業株式会社 シリコーン樹脂及びこれを用いた組成物
DE4243895A1 (de) * 1992-12-23 1994-06-30 Wacker Chemie Gmbh Verfahren zur Herstellung von Organopolysiloxanharz
US5840821A (en) * 1994-03-11 1998-11-24 Kawasaki Steel Corporation Coating solution and method for preparing the coating solution, method for forming insulating films for semiconductor devices, and method for evaluating the coating solution

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628146B2 (ja) * 1980-02-21 1987-02-20 Sumitomo Metal Mining Co
JPS6232357U (ja) * 1985-08-09 1987-02-26
JPH04233732A (ja) * 1990-08-16 1992-08-21 Motorola Inc 半導体の製造工程で使用するスピン・オン誘電体
JPH04263429A (ja) * 1991-02-18 1992-09-18 Sharp Corp 半導体装置の製造方法
JPH04320337A (ja) * 1991-04-19 1992-11-11 Fujitsu Ltd 絶縁膜形成用塗布液
JPH0570119A (ja) * 1991-09-12 1993-03-23 Kawasaki Steel Corp 半導体装置の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0701121A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7060361B2 (en) 2002-07-12 2006-06-13 Tokyo Ohka Kogyo Co., Ltd. Silica-based organic film and method of manufacturing the same, and base material comprising organic film
US7235500B2 (en) 2003-12-10 2007-06-26 Tokyo Ohka Kogyo Co., Ltd. Material for forming silica based film
WO2006104742A2 (en) * 2005-03-28 2006-10-05 Honeywell International Inc. Methane and methyl chloride as selective reducing agent in the transformation of hydrochlorofluorocarbons or chlorofluorcarbons to hydrochlorofluorocarbons
WO2006104742A3 (en) * 2005-03-28 2006-11-30 Honeywell Int Inc Methane and methyl chloride as selective reducing agent in the transformation of hydrochlorofluorocarbons or chlorofluorcarbons to hydrochlorofluorocarbons
JP2009065169A (ja) * 2007-09-07 2009-03-26 Interuniv Micro Electronica Centrum Vzw 材料の疎水性および親水性の定量化
JP2010186938A (ja) * 2009-02-13 2010-08-26 Asahi Kasei E-Materials Corp ポリシロキサン系トレンチ埋め込み用縮合反応物及びトレンチ埋め込み膜の製造方法
JP2011181563A (ja) * 2010-02-26 2011-09-15 Fujifilm Corp トレンチ埋め込み用組成物
WO2012176824A1 (ja) * 2011-06-21 2012-12-27 住友化学株式会社 積層フィルムの検査方法及び積層フィルムの製造方法

Also Published As

Publication number Publication date
EP0701121A1 (en) 1996-03-13
JP2000328002A (ja) 2000-11-28
EP0701121A4 (en) 1997-09-03
JP3078326B2 (ja) 2000-08-21
CN1125481A (zh) 1996-06-26
KR960702610A (ko) 1996-04-27
US5840821A (en) 1998-11-24
US5998522A (en) 1999-12-07

Similar Documents

Publication Publication Date Title
WO1995024639A1 (en) Method of evaluating siloxane used for forming insulation coating, coating fluid used for forming insulation coating, process for producing the fluid, process for forming insulation coating for semiconductor device, and process for producing semiconductor device by applying the above process
US6423651B1 (en) Insulating film of semiconductor device and coating solution for forming insulating film and method of manufacturing insulating film
US7858294B2 (en) Method to restore hydrophobicity in dielectric films and materials
WO2001082357A1 (en) Method for sealing fine groove with siliceous material and substrate having siliceous coating formed thereon
US6962727B2 (en) Organosiloxanes
US20050173803A1 (en) Interlayer adhesion promoter for low k materials
US20020086169A1 (en) Method of forming insulating film and process for producing semiconductor device
EP4010441B1 (en) Low dielectric constant siliceous film manufacturing composition and methods for producing cured film and electronic device using the same
JP2006074048A (ja) 二重有機シロキサン前駆体を用いた絶縁膜の製造方法
JP2006229221A (ja) 絶縁膜形成用塗布液および半導体装置用絶縁膜の形成方法
JP2002534804A (ja) 有機ヒドリドシロキサン樹脂による誘電フィルム
JP3229419B2 (ja) 酸化ケイ素膜の形成方法
JP2006503165A (ja) オルガノシロキサン
JP3784344B2 (ja) 絶縁膜形成用塗布液および半導体装置用絶縁膜の形成方法
JP2002201416A (ja) 半導体用シリカ系被膜形成用塗布液、半導体用シリカ系被膜及び半導体装置
JPH06326202A (ja) 半導体及びその絶縁膜または平坦化膜の形成方法
US20010051228A1 (en) Method of forming interlayer insulating film
JP2008085063A (ja) エッチングストッパー膜形成用組成物、該組成物を用いた膜及び電子デバイス
WO2024180017A1 (en) Method for manufacturing siliceous film
JP4183656B2 (ja) シリカ系エッチングストッパー膜形成用塗布液、シリカ系エッチングストッパー膜および半導体多層配線形成方法
WO1995018190A9 (ja)
Yang et al. Study of SiH4-based PECVD Low-k Carbon-doped Silicon Oxide

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 94192429.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BE DE FR GB

WWE Wipo information: entry into national phase

Ref document number: 1995900290

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08545736

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1995900290

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1995900290

Country of ref document: EP