WO1994027630A1 - Preparation de gel a base de gelatine reticulee contenant un facteur de croissance de fibroblaste de base - Google Patents

Preparation de gel a base de gelatine reticulee contenant un facteur de croissance de fibroblaste de base Download PDF

Info

Publication number
WO1994027630A1
WO1994027630A1 PCT/JP1994/000876 JP9400876W WO9427630A1 WO 1994027630 A1 WO1994027630 A1 WO 1994027630A1 JP 9400876 W JP9400876 W JP 9400876W WO 9427630 A1 WO9427630 A1 WO 9427630A1
Authority
WO
WIPO (PCT)
Prior art keywords
gelatin gel
lys
gly
leu
ala
Prior art date
Application number
PCT/JP1994/000876
Other languages
English (en)
French (fr)
Inventor
Yoshito Ikada
Yasuhiko Tabata
Shigeki Hijikata
Makoto Tamura
Original Assignee
Kaken Pharmaceutical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaken Pharmaceutical Co., Ltd. filed Critical Kaken Pharmaceutical Co., Ltd.
Priority to DE69427908T priority Critical patent/DE69427908T2/de
Priority to AT94916430T priority patent/ATE203913T1/de
Priority to EP94916430A priority patent/EP0702959B1/en
Priority to JP50048195A priority patent/JP3639593B2/ja
Publication of WO1994027630A1 publication Critical patent/WO1994027630A1/ja
Priority to US08/567,355 priority patent/US6831058B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • A61K38/1825Fibroblast growth factor [FGF]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1658Proteins, e.g. albumin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/2063Proteins, e.g. gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease

Definitions

  • Akeito HI restriction i Cross-linked gelatin gel preparation containing basic fibroblast growth factor TECHNICAL FIELD
  • the present invention contains basic fibroblast growth factor (hereinafter abbreviated as bFGF)
  • the present invention relates to a crosslinked gelatin gel preparation characterized in that:
  • bFGF Prior art bFGF was discovered by Gospodarowicz in 1974 as a protein that strongly stimulates the growth of fibroblasts from the pituitary gland (Nature; 24, 124, 1974). Subsequently, the gene encoding bFGF was cloned, allowing mass production using genetic recombination technology, and research on bFGF became vigorous. As a result, it has become clear that it stimulates cell proliferation not only for fibroblasts but also for various types of cells such as vascular endothelial cells, vascular smooth muscle cells, corneal endothelial cells, osteoblasts, and chondrocytes.
  • bFGF like other polypeptides and proteins, has a short half-life in vivo, and does not have the expected effect when administered as an aqueous solution. Therefore, it is desirable to provide a sustained-release preparation that can maintain bFGF stably and can be gradually released for a certain period of time. Therefore, the present inventors have been developing a sustained release carrier of bFGF for the purpose of preparing a sustained release formulation of bFGF.
  • sustained-release preparations of bioactive peptides and proteins have been widely studied.
  • biodegradable synthetic polymers such as polyglycolic acid 'lactic acid and polyacid anhydride, polysaccharides, and proteins Biodegradable and absorbable polymers of natural polymers such as quality.
  • Biodegradable and absorbable natural polymers are preferable as sustained-release carriers because of their excellent biocompatibility and low irritation to the living body, but most of them are water-soluble and water-soluble. It is not suitable as a sustained-release insoluble carrier for the physiologically active peptide bFGF.
  • the present inventors have been conducting studies with the aim of obtaining a biodegradable and absorbable natural polymer which can be used as a sustained-release insoluble carrier for bFGF by insoluble in water by any method.
  • a biodegradable and absorbable natural polymer which can be used as a sustained-release insoluble carrier for bFGF by insoluble in water by any method.
  • the gist of the present invention is a crosslinked gelatin gel preparation characterized by containing a basic fibroblast growth factor.
  • the present invention provides a sustained-release preparation of bFGF, which has good biocompatibility, is less irritating to the living body, and uses a cross-linked gelatin gel having excellent properties as a sustained-release carrier, and can appropriately obtain a desired sustained-release rate. It is characterized by providing.
  • the sustained release rate can be changed depending on the degree of gelatin cross-linking, the water content of the cross-linked gelatin gel, and the properties (eg, isoelectric point) of the gelatin used.
  • FIG. 1 is a diagram showing the time-dependent changes in the amount of hemoglobin in the surrounding tissue when a bFGF aqueous solution (bFGF 100 zg) is subcutaneously administered to mice.
  • Figure 2 shows the temporal changes in the amount of hemoglobin in the surrounding tissue when a crosslinked gelatin gel (water content 95.9%) formulation (bFGF 100 jug) was implanted subcutaneously in mice. Embedded crosslinked gelatin gel (water content 95.2%) formulation (bFG It is a figure which shows the time-dependent change of the remaining seal amount of F10Ojjig).
  • FIG. 4 is a graph showing the relationship between the dose of bFGF and the amount of hemoglobin in tissues around the site of administration.
  • FIG. 5 is a graph showing the relationship between the amount of hemoglobin in the tissue surrounding the site of implantation and the water content of the crosslinked gelatin gel on day 7 after implantation of a mouse subcutaneously implanted crosslinked gelatin gel preparation (bFGF10O ⁇ g).
  • FIG. 6 is a graph showing the relationship between the amount of hemoglobin in the tissue surrounding the site of implantation and the water content of the crosslinked gelatin gel on day 14 of implantation of a mouse subcutaneously implanted crosslinked gelatin gel preparation (bFGF 100 g).
  • FIG. 7 is a graph showing the temporal change in the residual weight after subcutaneous mouse implantation of crosslinked gelatin gel preparations (bFGFlOO / zg) having different water contents.
  • FIG. 8 is a graph showing the relationship between granulation tissue formation and gel water content on day 7 of subcutaneous implantation of a crosslinked gelatin gel preparation (bFGFlOOzg) in mice.
  • BEST MODE FOR CARRYING OUT THE INVENTION hereinafter, the present invention will be described in detail.
  • the crosslinked gelatin gel preparation of the present invention comprises a sustained-release carrier crosslinked gelatin gel containing an active ingredient bFGF.
  • the gelatin used as a raw material of the crosslinked gelatin gel used in the present invention is not particularly limited, and any commonly available gelatin may be used. Examples of such gelatin include an isoelectric point of 4.9 alkali-treated gelatin (manufactured by Nitta Gelatin Co., Ltd.) and an isoelectric point of 9.0 acid-treated gelatin (manufactured by Nitta Gelatin Co., Ltd.). Gelatin may be used not only in one kind but also in a mixture of different properties such as solubility, molecular weight, isoelectric point and raw material.
  • any crosslinking agent which is not toxic to living organisms may be used.
  • glutaraldehyde, 1-ethyl 3- (3-dimethylaminopropyl) carbodiimid Hydrochloride, 1-cyclohexyl-l 3- (2-morpholinoethyl) carbodiimid dome-p-p-toluenesulfonate and other water-soluble carpoimides, bisepoxy compounds, formalin, etc. are preferred.
  • Particularly preferred are glutaraldehyde and 1-ethyl-3_ (3-dimethylaminopropyl) carbodiimide hydrochloride.
  • Gelatin can also be cross-linked by heat treatment or ultraviolet irradiation.
  • the shape of the crosslinked gelatin gel as the sustained-release carrier used in the present invention is not particularly limited, and examples thereof include a columnar shape, a prismatic shape, a sheet shape, a disk shape, a spherical shape, and a particle shape. Cylindrical, prismatic, sheet, and disk-shaped ones are usually used as implants, and spherical and particulate ones can be injected.
  • Columnar, prismatic, sheet, and disk-shaped crosslinked gelatin gels are prepared by adding an aqueous solution of a crosslinking agent to an aqueous solution of gelatin, or adding gelatin to an aqueous solution of a crosslinking agent, and pouring the mixture into a desired shape. It can be prepared by reacting. Further, an aqueous solution of a crosslinking agent may be added to the molded gelatin gel as it is or after drying. To stop the crosslinking reaction, contact with a low molecular weight substance having an amino group such as ethanolamine or glycine, or add an aqueous solution having a pH of 2.5 or less. The obtained crosslinked gelatin gel is washed with distilled water, ethanol, 2-propanol (hereinafter, referred to as IPA), acetone, etc., and used for preparation of a pharmaceutical preparation.
  • IPA 2-propanol
  • the water content of the obtained crosslinked gelatin gel is 50 to 99 w / w% (hereinafter simply expressed as%).
  • the water content of the gel indicates the ratio of the weight of water in the gel to the total weight of the gel when wet.
  • Spherical and particulate cross-linked gelatin gels can be obtained, for example, by using a stirring motor (eg, Shinto Kagaku Co., Ltd., Siriwan Motor, EYELA mini DC Stirrer, etc.) fixed to a three-necked round bottom flask and a Teflon stirring propeller.
  • a stirring motor eg, Shinto Kagaku Co., Ltd., Siriwan Motor, EYELA mini DC Stirrer, etc.
  • An aqueous gelatin solution was placed in a device attached and fixed together with the flask, and oil such as olive oil was added thereto and stirred at a speed of about 200 to 600 rpm to form a W / 0 emulsion.
  • a cross-linking agent aqueous solution to Olive oil, or pre-emulsify an aqueous gelatin solution in Olive oil (for example, vortex mixer Advantec TME-21, homogenizer polytron PT10-35, etc.) and drop it into olive oil to obtain fine particles.
  • a crosslinked gelatin gel was collected by centrifugation, and washed with acetone, ethyl acetate, etc. It can be prepared by immersing in IPA, ethanol or the like to stop the crosslinking reaction.
  • Crosslinked gelatin gel obtained The particles are washed successively with IPA, distilled water containing Tween 80, distilled water, and the like, and are used in preparation of the formulation.
  • ultrasonic irradiation preferably within about 1 minute under cooling
  • a particulate crosslinked gelatin gel having a particle size of 20 / m or less can be obtained.
  • the average particle size of the obtained crosslinked gelatin gel particles is 1 to 1000 ⁇ m, and particles having a necessary size are appropriately sieved and used according to the purpose. For example, when administered locally for treatment of human fractures, osteoporosis, etc., it is preferable to use particles of 10 to 150 m.
  • the water content of the obtained crosslinked gelatin gel particles is about 50 to 93%, and a suitable water content can be appropriately prepared.
  • a spherical or particulate crosslinked gelatin gel As another method for preparing a spherical or particulate crosslinked gelatin gel, the following method is also available. Pour oil into a device similar to the above method, stir at a speed of about 200-600 rpm, and add a gelatin solution dropwise to prepare a W / 0 emulsion, cool it, and cool it with acetone, ethyl acetate, etc. The mixture is stirred, and the gelatin particles are collected by centrifugation. The recovered gelatin particles further acetone, acetic Echiru like, then washed with I ⁇ ⁇ ethanol, and dried.
  • the dried gelatin particles are suspended in an aqueous solution of a cross-linking agent containing 0.1% Tween 80, and subjected to a cross-linking reaction with gentle stirring.
  • Aqueous solution of 100 mM glycine containing 0.1% Tween 80 is used depending on the cross-linking agent used.
  • crosslinked gelatin gel particles can be obtained by washing with 0.004 NHC1 containing 0.1% Tween 80 and terminating the crosslinking reaction.
  • the average particle size and water content of the crosslinked gelatin gel particles obtained by this alternative method are the same as those obtained by the above method.
  • Crosslinking reaction conditions should be appropriately selected, but the reaction temperature is preferably 0 to 40 ° and the reaction time is preferably 1 to 48 hours.
  • the crosslinked gelatin gel obtained as described above can be dried under reduced pressure or freeze-dried.
  • lyophilization for example, put a cross-linked gelatin gel in distilled water, freeze it in liquid nitrogen for 30 minutes or more, or at 180 C for 1 hour or more, and dry it for 1 to 3 days with a freeze dryer. It is done by doing.
  • the concentration of the gelatin and the cross-linking agent in preparing the cross-linked gelatin gel should be appropriately selected depending on the desired water content, but the gelatin concentration is 1 to 100 w / v% (hereinafter simply referred to as%). 0.01: L 00w / v% (hereinafter simply indicated by%) (corresponding to 1 to 540 OmM) is preferred.
  • the crosslinked gelatin gel can have a desired water content by changing the concentrations of the raw material gelatin and the crosslinker. To increase the water content, both the gelatin concentration and the cross-linking agent concentration should be lowered. Conversely, to lower the water content, both the gelatin concentration and the cross-linking agent concentration should be increased.
  • an aqueous bFGF solution is added dropwise to the crosslinked gelatin gel and impregnated, or the crosslinked gelatin gel is suspended and reswelled in an aqueous bFGF solution.
  • the amount of bFGF that can be contained in the cross-linked gelatin gel depends on the water content of the cross-linked gelatin gel and the like, but can be 0.1 to 500 g per mg of the cross-linked gelatin gel.
  • the sustained release period, the amount of bFGF released, etc. are based on various conditions such as the amount of bFGF contained in the drug product, the water content of the cross-linked gelatin gel, the physical properties such as the isoelectric point of the gelatin used, and the site to be administered. Depends on
  • crosslinked gelatin gel preparation containing bFGF obtained as described above (hereinafter referred to as a crosslinked gelatin gel preparation) can also be freeze-dried.
  • freeze-drying for example, after freeze-drying in liquid nitrogen for 30 minutes or more or at -80 ° C for 1 hour or more, the freeze-drying is performed for 1 to 3 days.
  • BFGF which is an active ingredient of the crosslinked gelatin gel preparation of the present invention, is extracted from organs such as the pituitary gland, the moon, the retina, the corpus luteum, the adrenal gland, the kidney, the placenta, the prostate, the thymus, and the recombinant DNA technology. Included are those produced by genetic engineering techniques, and those modified products that can act as fibroblast growth factors. Examples of the modified form of bFGF include, for example, those obtained by adding amino acids to the amino acid sequence of bFGF obtained by the above extraction or obtained by genetic engineering techniques, those in which a part of the amino acids is substituted with another amino acid, Or some amino acids are missing I can do it. In the present invention, these bFGFs or modified forms thereof may be used alone or as a mixture thereof.
  • the bFGF is preferably, for example, W087 / 01728 (Japanese Patent Application Laid-Open No. 63-500843), WO 89/04832 (Japanese Patent Application Laid-Open No. 2-504468), WO 86/07595 (Japanese Patent Application Laid-Open No. 63-500036). JP, WO 87/03885 (JP-T 63-501953), European Patent Application Publication No. 237 966 (JP-A 63-226287), European Patent Application Publication No. 28,822 (Japanese Patent Application Laid-Open No. 2-193), European Patent Application Publication No. 326907 (Japanese Patent Application Laid-Open No.
  • bFGFs a polypeptide having the 154 amino acid sequence of SEQ ID NO: 1 and a polypeptide having the 153 amino acid sequence of SEQ ID NO: 2 produced by the genetic engineering technique described in W087 / 01728 Peptides are particularly preferred because of their stability and the ease with which they can always supply the required amount of material.
  • the bFGF having the amino acid sequence of SEQ ID NO: 1 is a human st10 cDNA library prepared from human kidney mRNA as described in Examples of JP-A-63-500843. It is obtained by preparing a cDNA clone of human bFGF using a 1.4 kb basic subfragment of Escherichia coli, constructing an expression vector and expressing the clone.
  • Organism name Homo sapiens sequence
  • Ala Ala Gly Ser lie Thr Thr Leu Pro Ala Leu Pro Glu Asp Gly Gly 1 5 10 15
  • Organism name Homo sapiens sequence
  • the mixture was treated in 0.004N HC1 at 37 ° C for 1 hour to stop the crosslinking reaction, and the obtained crosslinked gelatin gel was washed with distilled water at 37 ° C for 12 hours.
  • the water content of the gel was determined to be 95.9% based on a change in the weight of the crosslinked gelatin gel before and after swelling in water at 37 ° C for 24 hours.
  • the obtained columnar gel was cut into a disk having a thickness of 2 mm and dried.
  • a bFGF-containing crosslinked gelatin gel preparation was prepared in the same manner as in Example 1 except that isoelectric point 9.0 acid-treated gelatin (manufactured by Nitta Gelatin Co., Ltd.) (5.6%) was used. The water content of the crosslinked gelatin gel was 95.2%.
  • a bFGF-containing crosslinked gelatin gel preparation was prepared under the same conditions as in Example 1 except that the WSC concentration was 8.0% (equivalent to 428 mM). The water content of the crosslinked gelatin gel was 95.2%. (Example 4)
  • a bFGF-containing crosslinked gelatin gel preparation was prepared in the same manner as in Example 1, except that the gelatin concentration was 11.1% and the WSC concentration was 16.4% (corresponding to 856 mM). The water content of the crosslinked gelatin gel was 92.1%.
  • the water content of the gel was measured from the change in the weight of the cross-linked gelatin gel before and after swelling in water at 37 ° C. for 24 hours. The percentages are shown in Table 1.
  • Each of the obtained columnar crosslinked gelatin gels was cut into a disk having a thickness of 2 mm and dried, and the dried gel was added to a 5 OmM phosphate buffer solution containing 10 bFGF. pH 6.0) Drop 30 zl and leave it at 4 ° C for 24 hours to bring bFGF 100 / g into the crosslinked gelatin gel. Impregnated to prepare a b F G F-containing crosslinked gelatin gel preparation.
  • the columnar cross-linked gelatin gel having a water content of 80.0% obtained in Example 5 above was immersed in an aqueous WSC solution (9.6%, 500 mM phase, "1") for 24 hours to obtain a water content of 63.
  • a 1% crosslinked gelatin gel was prepared, and the obtained columnar crosslinked gelatin gel having a water content of 63.1% was cut out into a disk having a thickness of 2 mm and dried, and the dried gel was mixed with 100 / g bFGF.
  • a gelatin solution having the same concentration as shown in Table 1 was added to the aqueous gelatin solution having the concentration shown in Table 1 below.
  • a cross-linking reaction was carried out in the same manner as in Example 5 except that an aqueous solution was added to obtain a cross-linked gelatin gel.
  • Table 1 shows the water content of the obtained crosslinked gelatin gel.
  • Each of the obtained columnar crosslinked gelatin gels was cut into a disk having a thickness of 2 mm and dried. 30 ⁇ l of 50 mM phosphate buffer solution (pH 6.0) containing 100 ⁇ g of bFGF was dropped onto the dried cross-linked gelatin gel, and the whole was left overnight at 4 ° C. to impregnate 00 g of bFGFl into the gelatin gel.
  • the columnar crosslinked gelatin gel having a water content of 78.5% obtained in Example 7 above was immersed in an aqueous WSC solution (9.6%, corresponding to 50 OmM) for 24 hours to give a water content of 68.9%.
  • a crosslinked gelatin gel was prepared.
  • the obtained columnar crosslinked gelatin gel having a water content of 68.9% was cut out into a disk having a thickness of 2 mm and dried.
  • 30/1 of 50 mM phosphate buffer solution (pH 6.0) containing 100 g of bFGF was added dropwise, and the mixture was allowed to stand at 4 ° C for 24 hours. Impregnated to prepare a crosslinked gelatin gel preparation containing b FGF.
  • Isoelectric point 4.9 Alkaline-treated gelatin (manufactured by Nitta Gelatin Co., Ltd.) Aqueous solution (5.6%) 0.9 ml was added to 250 ml of Olive Shant. A type emulsion was prepared. To this was added 0.1 ml of an aqueous solution of WSC (16.4%, corresponding to 856 mM), and stirring was continued for 24 hours to crosslink the gelatin to obtain crosslinked gelatin gel particles. The average particle size of the obtained crosslinked gelatin gel particles was 3 O ⁇ m, and the water content of the crosslinked gelatin gel particles was 96.0%.
  • This pre-emulsified emulsion was added to the previously stirred olive oil.
  • 0.1 ml of a WSC aqueous solution (27.0%, corresponding to 1424 mM) was added, and stirring was continued for about 15 hours to crosslink the gelatin.
  • 50 ml of acetone was added thereto, and the mixture was stirred for 1 hour, and then the crosslinked gelatin gel particles were recovered by centrifugation. The collected crosslinked gelatin gel particles are washed with acetone (centrifugation at 3,000 rpm, 5 times five times).
  • the crosslinked particles are then placed in 2-propanol (hereinafter referred to as IPA) containing 0.004N HC1 at 37 ° C for 1 minute. By immersing for a time, the crosslinking reaction by the remaining WSC was stopped. After the termination of the reaction, these crosslinked particles were washed with IPA (centrifugation 300 rpm, 5 minutes, 5 times). After washing once with distilled water containing 0.1% Tween 80 (2,000 rpm, 5 minutes) and twice with distilled water (centrifugation, 2000 rpm, 5 minutes), the crosslinked gelatin gel particles (average) are freeze-dried. A dry powder having a particle size of 4 zm and a water content of 91.0%) was obtained.
  • IPA 2-propanol
  • BFGF-containing crosslinked gelatin gel particle preparation 20 mg of lmg / m 1 bFGF aqueous solution was added to 1 Omg of the dried cross-linked gelatin gel particles obtained in Example 10 above, suspended, and allowed to stand at room temperature for 1 hour to adsorb the bFGF aqueous solution into the particles. , BFGF-containing crosslinked gelatin gel particle preparation was prepared. The bFGF-containing crosslinked gelatin gel particle preparation was freeze-dried to prepare a bFGF-containing dry crosslinked gelatin gel particle preparation.
  • bFGF-containing crosslinked gelatin gel particle preparation 3.3 mg bFGF / lml 1/15 M phosphate buffer (pH 6) 30 ⁇ 1 was added dropwise to 1 Omg of the obtained dried crosslinked gelatin gel particles, and the bFGF aqueous solution was placed inside the particles by leaving at 4 ° C for 24 hours.
  • bFGF-containing crosslinked gelatin gel particle preparation The bFGF-containing crosslinked gelatin gel particle preparation was freeze-dried to prepare a bFGF-containing dry crosslinked gelatin gel particle preparation.
  • a bFGF-containing crosslinked gelatin gel particle preparation was prepared by impregnating the bFGF aqueous solution into the particles. The resulting bFGF-containing crosslinked gelatin gel particle preparation was freeze-dried to prepare a bFGF-containing dry crosslinked gelatin gel particle preparation.
  • Example 16 200 mg of lmg / m1 bFGF aqueous solution was added to 1 Omg of the dried crosslinked gelatin gel particles obtained in Example 13 above, suspended, and allowed to stand at room temperature for 1 hour to allow the bFGF aqueous solution to be adsorbed in the particles.
  • a cross-linked gelatin gel particle preparation containing bFGF was prepared.
  • the obtained bFGF-containing crosslinked gelatin gel particle preparation was dried with frozen thread 1; i-kichi to prepare a bFGF-containing crosslinked gelatin gel particle preparation.
  • Isoelectric point 4.9 Alkaline-treated gelatin (manufactured by Nitta Gelatin Co.) Aqueous solution (10.0%) 2 Oml was poured into a 10 cm diameter petri dish and dried, and then the dried gelatin sheet was washed with a WSC aqueous solution ( ⁇ . 04%, 2. Equivalent to OmM) Immerse, 2 at 4 ° C The cross-linking reaction was carried out for 4 hours. After completion of the reaction, the mixture was treated in 004N HC1 at 37 ° C for 1 hour to stop the crosslinking reaction, and further washed with distilled water at 37 ° C for 12 hours to obtain a crosslinked gelatin gel. The gel was cut into a disk having a size of 4 ⁇ 3 ⁇ 2 mm and dried under reduced pressure. The water content of the obtained gel was 87.0%.
  • Table 1 shows the formulations of the bFGF-containing crosslinked gelatin gel preparation and the bFGF-containing crosslinked gelatin gel particle preparations prepared in Examples 1 to 16 and the water content of the obtained crosslinked gelatin gel.
  • the cross-linking agents WSC and GA represent, respectively, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride and glutaraldehyde. Further, the concentration% of gelatin and the cross-linking agent in the table each represents "w / v%", and the% of water content represents "w / w%”.
  • the crosslinked gelatin gel preparation containing bFGF prepared in Example 1 was implanted subcutaneously in the back of the mouse.
  • bFGF-free cross-linked gelatin gel impregnated with 301 of a 5 OmM phosphate buffer solution containing no bFGF was subcutaneously implanted.
  • 10 Ozl of a phosphate buffer solution containing 100 g of bFGF was subcutaneously administered.
  • the skin of the mouse was peeled off, and the site of embedding the preparation and the site of administration of the phosphate buffer solution were observed.
  • the condition of the tissue around the administration site was the same as in the untreated group, and no gross change was observed.
  • the tissue around the site where the preparation was implanted was also visually red, confirming the angiogenic effect, which is clearly one of the effects of bFGF.
  • no neovascularization image was observed around the implantation site in the bFGF-free cross-linked gelatin gel-administered group.
  • the fGF-containing crosslinked gelatin gel preparation prepared in Example 1 was implanted subcutaneously in mice, and the amount of hemoglobin was changed by the degree of angiogenesis around the implanted site 1, 3, 7 and 14 after administration. was evaluated as an index.
  • a control group a group in which a crosslinked gelatin gel containing no bFGF was implanted subcutaneously in a mouse (a group to which bFGF (-) crosslinked gelatin gel was administered), and a phosphate buffer solution of 100 / g bFGF was injected subcutaneously in the mouse.
  • the degree of angiogenesis was similarly evaluated for the group (bFGF (+) aqueous solution administration group) and the group to which bFGF-free phosphate buffer was administered by injection (bFGF (-) aqueous solution administration group).
  • the evaluation of the amount of new blood vessels was performed as follows. Remove the tissue behind the skin at the site where the drug is implanted or at the site of injection administration and the muscle on the back of the skin. Was cut with a scalpel on each side of the injection administration site. These tissues were immersed in a 17 mM Tris-HC1 buffer solution (pH 7.6) containing 0.75% ammonium chloride to extract hemoglobin.
  • Hemoglobin was quantified by the cyan methemoglobin method (manufactured by Wako Pure Chemical Industries, Ltd., hemoglobin-test-ko-ichi). The number of mice is 5 per group. The temporal changes in the amount of hemoglobin in each group are shown in FIGS. The dotted line in the figure indicates the amount of hemoglobin in the untreated group. When only 100% of 0 was administered in the form of a solution, the amount of hemoglobin around the tissue did not change, and was at the same level as when bFGF-free phosphate buffer solution was administered. This hemoglobin level was the same as the hemoglobin amount in the untreated group.
  • the amount of hemoglobin around the implantation site was 3 days after implantation compared to the group that received 10 bFGF in solution. It increased significantly from the eyes. In addition, the condition continued until day 7 and then decreased to hemoglobin levels in the untreated group on day 14. On the other hand, in the group to which the bFGF (—) cross-linked gelatin gel was administered, the amount of hemoglobin was the same level as the untreated group.
  • the bFGF-containing crosslinked gelatin gel preparation (water content: 95.2%) prepared in Example 3 was subcutaneously implanted in the back of the mouse, and the remaining crosslinked gelatin gel weight was measured 1, 7, and 14 days after administration.
  • the degradability of the gel in vivo was evaluated.
  • the cross-linked gelatin gel degraded over time, and was completely degraded and absorbed by the tissue on day 14 after administration.
  • the degradability of the cross-linked gelatin gel containing no bFGF was equivalent to that of the cross-linked gelatin gel containing bFGF, and the effect of containing bFGF on the degradability of the cross-linked gelatin gel was not observed.
  • Figure 3 shows the results.
  • the reason that the residual weight increased several days after the administration and exceeded 100% from that at the time of administration is considered to be that the subcutaneous tissue of the mouse adhered to the crosslinked gelatin gel when the crosslinked gelatin gel was collected from the subcutaneous mouse.
  • Test Example 4 the bFGF-containing crosslinked gelatin gel preparation (having a water content of 95.9%), which exhibited an angiogenic effect, also exhibited the same decomposition behavior. (Test Example 4)
  • Example 4 After the crosslinked gelatin gel prepared in Example 4 was dried, each was impregnated with a phosphate buffer solution (pH 6.0) containing 0, 2, 10, 30, 50, 100, and 290 zg of bFGF. A crosslinked gelatin gel preparation containing and containing each concentration of bFGF was prepared. These preparations were implanted subcutaneously in the back of mice, and 7 days after administration, the amount of hemoglobin around the site where the preparation was implanted was evaluated. Fig. 4 shows the results. The dotted line in the figure is the hemoglobin level of the untreated group. As a control group, 0, 2, 10, 30, 50, 100 and 290 zg of a phosphate buffer solution containing bFGF 100/1 was subcutaneously administered to mice.
  • a phosphate buffer solution pH 6.0
  • the bFGF-containing crosslinked gelatin gel preparation composed of crosslinked gelatin gels having various water contents prepared in Examples 5 and 6 was implanted subcutaneously in the back of the mouse, and the crosslinked gelatin gel had a water content of bFGF in vivo.
  • the effect of was on angiogenesis was examined.
  • the results on the 7th and 14th days after the implantation of the drug product are shown in Figs. 5 and 6, respectively.
  • a subcutaneous administration of 100 1 of a phosphate buffer solution (pH 7.4) containing 100 ⁇ g of bFGF was performed.
  • the dotted line in the figure is the hemoglobin amount in the untreated group. As can be seen from FIGS.
  • the hemoglobin content of the gels with any moisture content was significantly higher 7 days after implantation of the preparation compared to the administration of the aqueous solution of bFGF.
  • the amount of hemoglobin depended on the water content of the crosslinked gelatin gel, and the amount of hemoglobin increased as the water content of the gel decreased.
  • 14 days after implantation of the drug a high hemoglobin content was observed only in the preparation consisting of a crosslinked gelatin gel having a water content of 90% or less, but in the preparation consisting of a crosslinked gelatin gel having a water content of more than 90%, Hemoglobin level already reduced to the level of the untreated group Was. It is considered that when the water content is low, the decomposition of the cross-linked gelatin gel is slow, and even on the 14th day, bFGF is gradually released from within the gel, and the effect is considered to be exerted.
  • the cross-linked gelatin gel preparation containing each bFGF prepared in Examples 7 and 8 was implanted subcutaneously in the back of the mouse, and the effect of the water content of the cross-linked gelatin gel on the in vivo granulation (encapsulation) effect of bFGF Examined.
  • the granulation activity of bFGF was examined as follows. Seven days after the drug was implanted, the back of the skin at the site where the drug was implanted and the muscles on the back muscles were scraped off with a scalpel in the vertical, horizontal, and right and left directions at the site where the drug was implanted. The wet weight of these tissues was measured to evaluate the granulation effect.
  • Figure 8 shows the results.
  • the dotted line in the figure indicates the level of the untreated group.
  • the bFGF-containing crosslinked gelatin gel particle preparation prepared in Example 9 was It was injected below. One week after the administration, the mouse skin was peeled off, and the degree of angiogenesis at the site where the particle preparation was administered was observed. As a result, the area around the site where the particle preparation was administered was red, and it was confirmed that blood vessels were newly formed.
  • the present invention provides the present invention, irrespective of the shape of the crosslinked gelatin gel which is a carrier for incorporating bFGF, that is, a spherical or particulate crosslinked gelatin gel having an injectable size. It can be seen that the effect of the invention can be obtained.
  • the crosslinked gelatin gel particles prepared in Example 13 was impregnated with bFGF 100 / g at 4 ° C for 24 hours, then suspended in saline, and suspended in rat iliac bone. Injected. Two weeks later, the iliac bone was removed and the change in bone mineral content was measured.
  • the amount of bone mineral is an index for measuring the degree of increase and decrease of bone, and specifically, it was measured by a bone mineral amount measuring device (DCA-600, manufactured by AROKA). Further, a group to which an aqueous solution containing 100 ⁇ g of bFGF was injected was used as a control group, and the change in bone mineral content was measured in the same manner.
  • the amount of bone mineral increased by 15.7 mg in the group to which the crosslinked gelatin gel particle preparation was administered, whereas it increased by 7 lmg in the control group to which the aqueous solution containing bFGF was administered.
  • the group to which the bFGF-containing crosslinked gelatin gel particles of the present invention were administered showed a marked increase in the amount of bone mineral. Showed a forming effect.
  • the lower leg of the rat was incised to expose the bone, and the fibula was cut with bone scissors.
  • the crosslinked gelatin gel preparation containing bFGF prepared in Example 16 was embedded in the cut site and sewn.
  • the rat was examined for increased bone mineral density and bone density in the cut fibula.
  • rats were administered an aqueous solution containing the same amount of bFGF as the above formulation. Table 2 shows the results.
  • Table 2 bFGF dose Bone mineral (mg)
  • the bFGF cross-linked gelatin gel preparation of the present invention promotes a higher increase in bone mineral density than the bFGF aqueous solution administration group.
  • the sustained release of bFGF from the crosslinked gelatin gel as a carrier promotes an increase in the amount of bone mineral and is useful for fracture and bone regeneration treatment It was recognized that. Effect of the Invention According to the present invention, it is possible to prepare a cross-linked gelatin gel preparation containing bFGF having a different water content, that is, a different absorbability in vivo by changing the preparation conditions of the cross-linked gelatin gel as a sustained-release carrier. Was completed.
  • BFGF sustainedly released from the crosslinked gelatin gel preparation of the present invention retained bioactivity. Furthermore, by changing the water content of the cross-linked gelatin gel, which is a sustained-release carrier, the degradation rate of the cross-linked gelatin gel can be changed, and the sustained release time of bFGF can be changed. The duration of bFGF activity expression could be controlled. Furthermore, the above-mentioned effects of the present invention were recognized irrespective of the type of gelatin and the shape of the preparation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Zoology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Rheumatology (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Description

明糸 HI禳 i: 塩基性線維芽細胞増殖因子含有架橋ゼラチンゲル製剤 産業上の利用分野 本発明は、 塩基性線維芽細胞増殖因子 (Basic Fibroblast Growth Factor, 以 下 bFGFと略称する) を含有することを特徴とする架橋ゼラチンゲル製剤に関 するものである。
従来の技術 bFGFは、 1974年に Gospodarowiczによって、 ゥシ脳下垂体から線維芽細 胞の増殖を強く刺激するタンパク質として見出された (Nature; 24巻、 124頁、 1974年) 。 その後 bFGFをコードする遺伝子がクローニングされ、 遺伝子 組み換え技術を用いた大量生産が可能になり、 bFGFの研究は精力的に行われ るようになった。 その結果、 線維芽細胞ばかりでなく、 血管内皮細胞、 血管平滑 筋細胞、 角膜内皮細胞、 骨芽細胞、 軟骨細胞などの多種類の細胞に対する細胞増 殖を刺激することが明らかになつてきた。
しかし、 bFGFは、 他のポリペプチドおよびタンパク質と同様に生体内半減 期が短く、 水溶液として投与したのでは期待する効果が得られない。 そのため、 b F G Fを安定に保ち、 ある一定の期間徐々に放出することのできる徐放化製剤 とすることが望ましい。 そこで、 本発明者らは bFGFの徐放製剤化を目的とし て b F G Fの徐放化担体の開発を進めてきた。
近年、 生理活性ペプチドおよびタンパク質の徐放化製剤が広く研究されており、 その徐放化担体として、 ポリグリコール酸 '乳酸、 ポリ酸無水物などの生体分解 性合成高分子、 多糖類あるいは夕ンパク質などの天然高分子の生体内分解吸収性 高分子が挙げられる。 発明が解決しょうとする課題 生体内分解吸収性天然高分子は、 生体適合性に優れ、 生体に対する刺激が少な いため徐放性担体として好ましいが、 これらの多くは水溶性であり、 水溶性の生 理活性べプチドである bFGFの徐放化不溶性担体としては適していない。
そこで、 本発明者らは、 生体内分解吸収性天然高分子を何等かの方法で水不溶 ィ匕し、 bFGFの徐放化不溶性担体として使用できるものを得ることを目的とし て検討を進めてきた。
その結果、 生体内分解吸収性天然高分子であるゼラチンを架橋処理することに より水不溶性とした架橋ゼラチンゲルが、 bFGFの徐放化担体として適してい ることを見出し本発明を完成させた。 発明の開示 すなわち、 本発明は、 塩基性線維芽細胞増殖因子を含有することを特徴とする 架橋ゼラチンゲル製剤を要旨とする。
本発明は、 生体適合性が良く、 生体に対する刺激が少ない、 徐放性担体として 優れた性質を有する架橋ゼラチンゲルを用い、 適宜所望の徐放速度とすることが できる bFGFの徐放性製剤を提供することに特徴を有する。 徐放速度は、 ゼラ チンの架橋の程度、 架橋ゼラチンゲルの含水率、 用いるゼラチンの性質 (等電点 など) により変化させることが可能である。 図面の簡単な説明 図 1は、 bFGF水溶液 (bFGF 1 00 zg) マウス皮下投与における周辺 組織のヘモグロビン量の経時的変化を示す図である。
図 2は、 架橋ゼラチンゲル (含水率 9 5. 9%) 製剤 (bFGF 10 0 jug) マウス皮下埋入における周辺組織のヘモグロビン量の絰時的変化を示す図である c 図 3は、 マウス皮下埋入架橋ゼラチンゲル (含水率 95. 2%) 製剤 (bFG F 10 O jjig) の残存璽量の経時的変化を示す図である。
図 4は、 b F G Fの投与量と投与部位周辺組織のへモグロビン量の関係を示す 図である。
図 5は、 マウス皮下埋入架橋ゼラチンゲル製剤 (bFGF 10 O^g) 埋入 7 日目における埋入部位周辺組織のへモグロビン量と架橋ゼラチンゲルの含水率の 関係を示す図である。
図 6は、 マウス皮下埋入架橋ゼラチンゲル製剤 (bFGF 1 00 g) 埋入 1 4日目における埋入部位周辺組織のへモグロビン量と架橋ゼラチンゲルの含水率 の関係を示す図である。
図 7は、 含水率の異なる架橋ゼラチンゲル製剤 (bFGF l O O/zg) のマウ ス皮下埋入後の残存重量の絰時的変化示す図である。
図 8は、 架橋ゼラチンゲル製剤 (bFGF l O O zg) のマウス皮下埋入 7日 目における肉芽組織形成とゲル含水率の関係を示す図である。 発明を実施するための最良の形態 以下、 本発明を詳細に説明する。
本発明の架橋ゼラチンゲル製剤は、 徐放性担体架橋ゼラチンゲルに有効成分 b F G Fを含有してなるものである。 本発明で用いる架橋ゼラチンゲルの原料とな るゼラチンには、 特に制限はなく、 通常入手できるものでよい。 このようなゼラ チンとしては、 例えば、 等電点 4. 9アルカリ処理ゼラチン (新田ゼラチン社製) 等電点 9. 0酸処理ゼラチン (新田ゼラチン社製) 等が挙げられる。 また、 ゼラ チンは、 一種のみでなく、 溶解性、 分子量、 等電点および原料等の物性の異なる ものを混合して用いてもよい。
本発明で用いることのできるゼラチンを架橋するための架橋剤としては、 生体 に対して毒性のないものであればよいが、 例えばグルタルアルデヒド、 1ーェチ ルー 3— (3—ジメチルァミノプロピル) カルポジイミ ド塩酸塩、 1—シクロへ キシルー 3— (2—モルホリノエチル) カルボジイミ ドーメ ト一 p—トルエンス ルホナ一ト等の水溶性カルポジイミ ド、 ビスエポキシ化合物、 ホルマリン等が好 ましく、 グルタルアルデヒ ドおよび 1—ェチルー 3 _ ( 3—ジメチルァミノプロ ピル) カルボジィ ミ ド塩酸塩が特に好ましい。
また、 ゼラチンは、 熱処理又は紫外線照射によっても架橋化できる。
本発明で用いる徐放性担体である架橋ゼラチンゲルの形状は特に制限はないが、 例えば円柱状、 角柱状、 シート状、 ディスク状、 球状、 粒子状などがある。 円柱 状、 角柱状、 シート状、 ディスク状のものについては、 通常インプラントとして 用いられることが多く、 また球状、 粒子状のものは注射投与も可能である。
円柱状、 角柱状、 シート状、 ディスク状の架橋ゼラチンゲルは、 ゼラチン水溶 液に架橋剤水溶液を添加するか、 あるいは架橋剤水溶液にゼラチンを添加し、 所 望の形状の鎵型に流し込み、 架橋反応させて調製することができる。 また、 成形 したゼラチンゲルをそのまま、 あるいは乾燥後に架橋剤水溶液を添加してもよい。 架橋反応を停止させるには、 エタノールァミン、 グリシン等のアミノ基を持つ低 分子物質に接触させるか、 又は p H 2 . 5以下の水溶液を添加する。 得られた架 橋ゼラチンゲルは、 蒸留水、 エタノール、 2—プロパノール (以下、 I P Aとい う) 、 アセトン等により洗浄し、 製剤調製に供される。
得られる架橋ゼラチンゲルの含水率は、 5 0〜9 9 w/w% (以下、 単に%で 表示する) である。 ここで、 ゲルの含水率とは、 湿潤時のゲル全重量に対するゲ ル中の水分重量の割合を示す。
球状、 粒子状の架橋ゼラチンゲルは、 例えば、 三つ口丸底フラスコに固定した 攪拌用モーター (例えば新東科学社製、 スリ一ワンモーター、 EYELA mini D.C. Stirrer等) とテフロン製攪拌用プロペラを取り付け、 フラスコと一緒に固定した 装置に、 ゼラチン水溶液を入れ、 ここにオリブ油等の油を加えて 2 0 0〜6 0 0 r p m程度の速度で攪袢し、 W/0型ェマルジヨンとし、 これに架橋剤水溶液を 添加するか、 ゼラチン水溶液をあらかじめオリブ油中にて前乳化 (例えば vortex mixer Advantec TME- 21、 ホモジナイザー polytron PT10-35等) しておいたもの をォリブ油中に滴下し、 微粒子化した W/0型ェマルジヨンを調製し、 これに架 橋剤水溶液を添加し、 架橋反応させ、 遠心分離により架橋ゼラチンゲルを回収し、 アセトン、 酢酸ェチル等で洗浄し、 さらに I P A、 エタノール等に浸潰して架橋 反応を停止させることにより調製することができる。 得られた架橋ゼラチンゲル 粒子は、 IPA、 Twe en 80を含む蒸留水、 蒸留水等で順次洗浄し、 製剤調 製に共される。
架橋ゼラチンゲル粒子が凝集する場合には、 例えば、 超音波照射 (冷却下、 1 分以内程度が好ましい) 等を行ってもよい。
なお、 前乳化することによって、 粒子サイズ 20 /m以下の微粒子状の架橋ゼ ラチンゲルが得られる。
得られる架橋ゼラチンゲル粒子の平均粒径は、 1~1000〃mであり、 目的 に応じて適宜必要なサイズの粒子をふるい分けして使用する。 例えば、 ヒトの骨 折、 骨粗鬆症などの治療のために局所投与する場合は 10〜150 mの粒子を 用いるのが好ましい。 また、 得られる架橋ゼラチンゲル粒子の含水率は 50〜9 3%程度であり、 適宜好ましい含水率のものを調製できる。
球状、 粒子状の架橋ゼラチンゲルを調製する別法として次のような方法もある。 上記の方法と同様の装置にォリブ油を入れ、 200~600r pm程度の速度で 攪拌し、 ここにゼラチン水溶液を滴下し、 W/0型ェマルジヨンを調製し、 これ を冷却後アセトン、 酢酸ェチル等を加えて攪袢し、 遠心分離によりゼラチン粒子 を回収する。 回収したゼラチン粒子をさらにアセトン、 酢酸ェチル等、 次いで I ΡΑΝ エタノール等で洗浄後、 乾燥させる。 乾燥ゼラチン粒子を 0. l%Twe en 80を含む架橋剤水溶液に懸濁させ、 緩やかに攪拌しながら架橋反応させ、 使用した架橋剤に応じて 0. l%Tween 80を含む 100 mMグリシン水溶 液または 0. l%Tween 80を含む 0. 004 N H C 1などにて洗浄して 架橋反応を停止することにより架橋ゼラチンゲル粒子を得ることができる。
本別法で得られる架橋ゼラチンゲル粒子の平均粒径および含水率は、 上記の方 法で得られるものと同様である。
架橋反応条件は、 適宜選択すべきであるが、 反応温度は 0〜40° 反応時間 は 1〜48時間が好ましい。
上記のようにして得られた架橋ゼラチンゲルは減圧乾燥または凍結乾燥させる こともできる。
凍結乾燥は、 例えば架橋ゼラチンゲルを蒸留水に入れ、 液体窒素中で 30分以上 または一 80 Cで 1時間以上凍結させた後に凍結乾燥機で 1〜 3日問乾燥させる ことにより行う。
架橋ゼラチンゲルを調製する際のゼラチンと架橋剤の濃度は、 所望の含水率に より適宜選択すべきであるが、 ゼラチン濃度 1〜100w/v% (以下、 単に% で示す) 、 架橋剤濃度 0. 01〜: L 00w/v% (以下、 単に%で示す) (1〜 540 OmMに相当) が好ましい。
架橋ゼラチンゲルは、 原料であるゼラチンと架橋剤の濃度を変化させることに より所望の含水率とすることができる。 含水率を高くするには、 ゼラチン濃度、 架橋剤濃度共に低くし、 逆に含水率を低くするにはゼラチン濃度、 架橋剤濃度共 に高くすればよい。
上記のようにして調製した架橋ゼラチンゲルに bFGFを含有させるには、 b FGF水溶液を架橋ゼラチンゲルに滴下して含浸させるか、 架橋ゼラチンゲルを b F G F水溶液中に懸濁して再膨潤させる。
架橋ゼラチンゲルに含有させることができる bFGFの量は、 架橋ゼラチンゲ ルの含水率等により異なるが、 架橋ゼラチンゲル lmg当たり 0. 1〜500 gが可能である。
なお、 徐放期間、 bFGFの放出量等は、 製剤に含有される bFGFの量、 架 橋ゼラチンゲルの含水率、 用いたゼラチンの等電点等の物性、 投与される部位な どの種々の条件により異なる。
上記のようにして得られた bFGF含有架橋ゼラチンゲル製剤 (以下、 架橋ゼ ラチンゲル製剤という) は、 凍結乾燥することもできる。 凍結乾燥する場合には、 例えば、 液体窒素中で 30分以上または— 80°Cで 1時間以上凍結させた後に、 凍結乾燥機で 1〜 3日間乾燥させることにより行う。
本発明の架橋ゼラチンゲル製剤の有効成分である bFGFは、 脳下垂体、 月 i¾、 網膜、 黄体、 副腎、 腎、 胎盤、 前立腺、 胸腺などの臓器より抽出されるもの、 組 換え D N A技術などの遺伝子工学的手法で製造されるもの、 さらにこれらの修飾 体であって線維芽細胞増殖因子として作用し得るものを含む。 bFGFの修飾体 としては、 例えば上記の抽出により得られたまたは遺伝子工学的手法で得られた bFGFのアミノ酸配列においてアミノ酸が付加されたもの、 アミノ酸の一部が 他のアミノ酸で置換されたもの、 またはァミノ酸の一部が欠損したものなどが挙 げられる。 本発明においては、 これらの bFGFまたはその修飾体は単独で用い てもよいし、 これらの混合物として用いてもよい。
上記 bFGFとしては、 好ましくは、 例えば W087/01728 (特表昭 6 3- 500843号公報) 、 WO 89/04832 (特表平 2— 504468号 公報) 、 WO 86/07595 (特表昭 63— 500036号公報) 、 WO 87 /03885 (特表昭 63 - 501953号公報) 、 欧州特許出願公開第 237 966号明細書 (特開昭 63 - 226287号公報) 、 欧州特許出願公開第 28 1822号明細書 (特開平 2— 193号公報) 、 欧州特許出願公開第 32690 7号明細書 (特開平 2— 209894号公報) 、 欧州特許出願公開第 39495 1号明細書 (特開平 3— 61494号公報) 、 欧州特許出願公開第 493737 号明細書 (特開平 5— 124975号公報) などに記載のものが挙げられる。 これらの bFGFのうち、 W087/01728に記載の遺伝子工学的手法で 製造した下記の配列番号 1の 154個のアミノ酸配列を有するポリべプチドおよ び配列番号 2の 153個のアミノ酸配列を有するポリペプチドが、 安定性および 材料として必要な量を常時供給することが容易であるという点から特に好ましい。 配列番号 1のアミノ酸配列を有する bFGFは、 具体的には特表昭 63- 500 843号公報の実施例に記載されているように、 ヒトの腎臓の mRNAから調製 された人 st 10 cDNAライブラリ一からゥシの 1. 4 kb塩基性副断片を用い てヒトの bFGFの cDNAクローンを調製し、 発現ベクターを構築して前記ク ローンを発現することによって得られる。
配列番号 1 :
配列の性質:
配列の長さ : 1 5 4アミノ酸
配列の型: ァミノ酸
起源
生物名 : ホモ サヒエンス ( Homo sapiens ) 配列
Ala Ala Gly Ser l ie Thr Thr Leu Pro Ala Leu Pro Glu Asp Gly Gly 1 5 10 15
Ser Gly Ala Phe Pro Pro Gly His Phe Lys Asp Pro Lys Arg Leu Tyr
20 25 30
Cys Lys Asn Gly Gly Phe Phe Leu Arg l ie His Pro Asp Gly Arg Val
35 40 45
Asp Gly Val Arg Glu Lys Ser Asp Pro His l ie Lys Leu Gin Leu Gin 50 55 60
Ala Glu Glu Arg Gly Val Val Ser l ie Lys Gly Val Cys Ala Asn Arg 65 70 75 80
Tyr Leu Ala Met Lys Glu Asp Gly Arg Leu Leu Ala Ser Lys Cys Val
85 90 95
Thr Asp Glu Cys Phe Phe Phe Glu Arg Leu Glu Ser Asn Asn Tyr Asn
100 105 110
Thr Tyr Arg Ser Arg Lys Tyr Thr Ser Trp Tyr Val Ala Leu Lys Arg
115 120 125
Thr Gly Gin Tyr Lys Leu Gly Ser Lys Thr Gly Pro Gly Gin Lys Ala 130 135 140 l ie Leu Phe Leu Pro Met Ser Ala Lys Ser
145 150 配列番号 2 :
配列の性質:
配列の長さ : 1 5 3アミノ酸
配列の型: アミノ酸
起源 .
生物名 : ホモ サピエンス (Homo sapiens ) 配列
Ala Gly Ser l ie Thr Thr Leu Pro Ala Leu Pro Glu Asp Glv Gly Ser 1 5 10 15
Gly Ala Phe Pro Pro Gly His Phe Lys Asp Pro Lys Arg Leu Tyr Cys
20 25 30
Lys Asn Gly Gly Phe Phe Leu Arg lie His Pro Asp Gly Arg Val Asp
35 40 45
Gly Val Arg Glu Lys Ser Asp Pro His l ie Lys Leu Gin Leu Gin Ala 50 55 60
Glu Glu Arg Gly Yal Val Ser l ie Lys Gly Val Cys Ala Asn Arg Tyr 65 70 75 80
Leu Ala Met Lys Glu Asp Gly Arg Leu Leu Ala Ser Lys Cys Val Thr
85 90 95
Asp Glu Cys Phe Phe Phe Glu Arg Leu Glu Ser Asn Asn Tyr Asn Thr
100 105 110
Tyr Arg Ser Arg Lys Tyr Thr Ser Trp Tyr Val Ala Leu Lys Arg Thr
115 120 125
Gly Gin Tyr Lys Leu Gly Ser Lys Thr Gly Pro Gly Gin Lys Ala He 130 135 140
Leu Phe Leu Pro Met Ser Ala Lys Ser
145 150 実施例 以下、 実施例および試験例を挙げて本発明について詳細に説明するが、 本発明 は以下の実施例および試験例に限定されるものではない。
(実施例 1 )
等電点 4. 9アルカリ処理ゼラチン (新田ゼラチン社製) 水溶液 (5. 6%) 450 zlに、 1一ェチル一3— (3—ジメチルァミノプロピル) カルポジイミ ド塩酸塩 (同人化学社製) (以下、 WSCと略す) 水溶液 (2. 0%、 107m Mに相当) を加えた後、 直径 8 mmの円筒状鍊型に流し込み、 4°〇にて24時間 保って、 架橋反応を行った。 反応終了後、 0. 004N HC1中、 37°Cで 1時 間処理し、 架橋反応を停止し、 得られた架橋ゼラチンゲルを蒸留水で 37°C、 1 2時間洗浄した。 37°Cで 24時間にわたる水中での膨潤処理前後での架橋ゼラ チンゲル重量の変化からゲルの含水率を測定したところ、 95. 9%であった。 得られた円柱状のゲルを厚み 2 mmのディスク状に切り出した後、 乾燥させた。 この乾燥ゲルに 100 /gの bFGFを含む 5 OmMリン酸緩衝溶液 (pH 6. 0) 30 zlを滴下し、 4°Cで一昼夜放置することにより、 bFGFl OO zg を架橋ゼラチンゲル内に含浸させ b F G F含有架橋ゼラチンゲル製剤を調製した。
(実施例 2)
等電点 9. 0酸処理ゼラチン (新田ゼラチン社製) (5. 6%) を用いた以外 は、 実施例 1と同様の方法で bFGF含有架橋ゼラチンゲル製剤を調製した。 架 橋ゼラチンゲルの含水率は 95. 2%であった。
(実施例 3)
WSCの濃度を 8. 0% (428mMに相当) とした以外は、 実施例 1と同様 の条件で bFGF含有架橋ゼラチンゲル製剤を調製した。 架橋ゼラチンゲルの含 水率は 95. 2%であった。 (実施例 4)
ゼラチンの濃度を 1 1. 1 %、 WS Cの濃度を 16. 4% ( 856mMに相当) とした以外は、 実施例 1と同様の方法で bFGF含有架橋ゼラチンゲル製剤を調 製した。 架橋ゼラチンゲルの含水率は 92. 1%であった。
(実施例 5)
後記する表 1に示す各濃度の等電点 4. 9アルカリ処理ゼラチン (新田ゼラチ ン社製) 水溶液に、 同じく表 1に示す濃度の WSC水溶液を加えた後、 直径 8m mの円筒状錶型に流し込み、 4°( にて24時間、 架橋反応を行った。 反応終了後、 0. 004N HC 1中、 37°Cで 1時間処理し、 架橋反応を停止し、 架橋ゼラチ ンゲルを蒸留水で 37°C、 12時間洗浄した。 37 °Cで 24時間、 水中での膨潤 処理前後での架橋ゼラチンゲル重量の変化から、 ゲルの含水率を測定した。 得ら れた架橋ゼラチンゲルの含水率を表 1に示した。 得られた円柱状の各架橋ゼラチ ンゲルを厚み 2 mmのディスク状に切り出して、 乾燥させた。 この乾燥ゲルに 1 0 の bFGFを含む 5 OmMリン酸緩衝溶液 (pH6. 0) 30 zlを滴 下し、 4°Cで一昼夜放置することにより、 bFGF 100 /gを架橋ゼラチンゲ ル内に含浸させて b F G F含有架橋ゼラチンゲル製剤を調製した。
(実施例 6 )
上記実施例 5で得られた含水率 80. 0%の円柱状の架橋ゼラチンゲルを WS C水溶液 ( 9. 6 %、 500 mM相、 "1) に 24時間浸漬することにより、 含水率 63. 1%の架橋ゼラチンゲルを調製した。 得られた含水率 63. 1%の円柱状 の架橋ゼラチンゲルを厚み 2 mmのディスク状に切り出して、 乾燥させた。 この 乾燥ゲルに 100 /gの bFGFを含む 5 OmMリン酸緩衝溶液 (pH 6. 0) 30 /1を滴下し、 4°Cで一昼夜放置することにより、 bFGF l O O zgを架 橋ゼラチンゲル内に含浸させて bFGF含有架橋ゼラチンゲル製剤を調製した。
(実施例 7)
後記する表 1に示す濃度のゼラチン水溶液に、 同じく表 1に示す濃度の WS C 水溶液を加えた以外は実施例 5と同様の方法で架橋反応を行い、 架橋ゼラチンゲ ルを得た。 得られた架橋ゼラチンゲルの含水率を表 1に示した。 得られた円柱状 の各架橋ゼラチンゲルを厚み 2 mmのディスク状に切り出して乾燥させた。 この 乾燥架橋ゼラチンゲルに 100〃gの bFGFを含む 50mMリン酸緩衝溶液 ( pH6. 0) 30〃1を滴下し、 4°Cで一昼夜放置することにより、 bFGFl 00 gをゼラチンゲル内に含浸させ、 b F G F含有架橋ゼラチンゲル製剤を調 製した。
(実施例 8)
上記実施例 7で得られた含水率 78. 5%の円柱状の架橋ゼラチンゲルを WS C水溶液 (9. 6%、 50 OmMに相当) に 24時間浸漬することにより、 含水 率 68. 9%の架橋ゼラチンゲルを調製した。 得られた含水率 68. 9%の円柱 状の架橋ゼラチンゲルを厚み 2mmのディスク状に切り出して乾燥させた。 この 乾燥架橋ゼラチンゲルに 100〃 gの b F G Fを含む 50 mMリン酸緩衝溶液 ( pH6. 0) 30 /1を滴下し、 4°Cで一昼夜放置することにより、 bFGFl 00 gをゼラチンゲル内に含浸させ、 b F G F含有架橋ゼラチンゲル製剤を調 製した。
(実施例 9)
等電点 4. 9アルカリ処理ゼラチン (新田ゼラチン社製) 水溶液 (5. 6%) 0. 9mlを 250mlのオリブ汕に加え、 ' :温下、 450 r p mにて攒抨し、 W/0型ェマルジヨンを調製した。 これに WS C水溶液 ( 16. 4%、 856m Mに相当) 0. 1mlを加え、 一昼夜攪拌を続けてゼラチンを架橋し、 架橋ゼラ チンゲル粒子を得た。 得られた架橋ゼラチンゲル粒子の平均粒径は 3 O^mであ り、 その架橋ゼラチンゲル粒子の含水率は 96. 0%であった。 この粒子を乾燥 した後、 乾燥粒子 1 Omgを 10 O zgの bFGFを含む 5 OmMリン酸緩衝溶 液 (pH6. 0) 30 1に浸潰し、 4 °Cで一昼夜放置することにより、 bFG Fを架橋ゼラチンゲル粒子内に含浸させ、 b F G F含有架橋ゼラチンゲル粒子製 剤を調製した。 (実施例 10)
500ml容三つ口フラスコにオリブ油 250mlを加え、 固定した攪拌用モ —夕一 (新東科学社製、 スリーワンモー夕一) にテフロン製攪拌用プロペラを取 り付け、 フラスコと一緒に固定した。 別にオリブ油 5mlを採り 45°Cに加温し た後、 等鼋点 4. 9のアルカリ処理ゼラチン (新田ゼラチン社製) 水溶液 (11 . 1%) 0. 9mlを加え、 ホモジナイザー (Polytron PT-35) を用いて 30秒 間の前乳化を行った。 この前乳化したェマルジヨンを、 予め攪拌しておいたオリ ブ油中に加えた。 このようにして得られた W/0型ェマルジヨンに、 WSC水溶 液 (27. 0%、 1424mMに相当) 0. 1 m 1を加え、 約 15時間攪拌を続 けてゼラチンを架橋した。 架橋反応終了後、 ここに 50mlのアセトンを加え、 1時間攪拌した後、 遠心分離により架橋ゼラチンゲル粒子を回収した。 回収した 架橋ゼラチンゲル粒子をアセトンにて洗浄し (遠心 3000 rpm、 5分を 5回) さらに 0. 004N HC 1を含む 2—プロパノール (以下、 IPAという) 中に 架橋粒子を 37°C、 1時間浸漬することにより、 残存する WSCによる架橋反応 を停止させた。 反応停止後、 これらの架橋粒子を IP Aにて洗浄した (遠心 30 00rpm、 5分を 5回) 。 さらに 0. l%Tween 80を含む蒸留水で 1回 (遠心 2000rpm、 5分) 、 蒸留水で 2回 (遠心 2000 r p m、 5分) 洗 浄し、 凍結乾燥させることにより架橋ゼラチンゲル粒子 (平均粒径 4 zm、 含水 率 91. 0%) の乾燥粉末を得た。
得られた乾燥架橋ゼラチンゲル粒子 1 Omgに 3. 3mg bFGF/lml 1/15M リン酸緩衝液 (pH6) の 30〃1を滴下し、 4 °C、 一昼夜放置する ことにより bFG F水溶液を粒子内に含浸させることにより、 bFG F含有架橋 ゼラチンゲル粒子製剤を調製した。 得られた b F G F含有架橋ゼラチンゲル粒子 製剤を凍結乾燥させることにより、 bFG F含有乾燥架橋ゼラチンゲル粒子製剤 を調製した。
(実施例 11 )
上記実施例 10で得られた乾燥架橋ゼラチンゲル粒子 2mgに、 8mg bFG F/lml 2 OmM クェン酸緩衝液 (pH5) の 10〃1を滴下し、 4°C、 一 昼夜放置することにより bFGF水溶液を粒子内に含浸させることにより、 bF GF含有架橋ゼラチンゲル粒子製剤を調製した。 得られた bFGF含有架橋ゼラ チンゲル粒子製剤を凍結乾燥させることにより、 bFGF含有乾燥架橋ゼラチン ゲル粒子製剤を調製した。
(実施例 12)
上記実施例 10で得られた乾燥架橋ゼラチンゲル粒子 1 Omgに、 lmg/m 1 bFGF水溶液 20 O lを加えて懸濁し、 室温、 1時間放置することにより bFGF水溶液を粒子内に吸着させることにより、 bFGF含有架橋ゼラチンゲ ル粒子製剤を調製した。 得られた bFGF含有架橋ゼラチンゲル粒子製剤を凍結 乾燥させることにより、 bFGF含有乾燥架橋ゼラチンゲル粒子製剤を調製した。
(実施例 13)
100 Oml容三つ口丸底フラスコにオリブ油 375mlを加え、 固定した攪 拌用モーター (新東科学社製、 スリ一ワンモーター) にテフロン製攪拌用プロべ ラを取り付け、 フラスコと一緒に固定した。 オリブ油を 30°C、 420 rpmに て攪拌しながら等電点 4. 9アルカリ処理ゼラチン水溶液 (10. 0%) 10m 1を滴下し、 W/0型ェマルジヨンを調製した。 10分間攪拌後、 フラスコを 1 0〜20°Cに冷却し、 30分攪拌した。 冷却後、 ここに 10 Omlのアセトンを 加え 1時間攪拌した後、 遠心分離によりゼラチン粒子を回収した。 回収したゼラ チン粒子をァセトンにて洗浄し、 さらに I P Aにて洗浄することにより未架橋ゼ ラチン粒子を得た。 この未架橋ゼラチン粒子を乾燥させ、 4°Cで保存した。
乾燥した未架橋ゼラチン粒子 50 Omgを 0. l%Tween 80を含むグル タルアルデヒド (以下、 GAという) (0. 05%、 5. OmMに相当) 100 mlに懸濁させ、 4°C、 15時間ゆるやかに攪拌することにより架橋反応を行つ た。 反応終了後、 架橋粒子を遠心分離により回収し、 0. l%Tween 80を 含む 10 OmMグリシン水溶液にて 37°C、 1時間洗浄することにより架橋反応 を停止した。 反応停止後、 架橋粒子を順に 0. l%Tween 80水 き液、 IP A、 0. l Tween 80水溶液で洗浄し、 蒸留水で 2回洗浄した後に凍結乾 燥を行い、 乾燥架橋ゼラチンゲル粒子 (平均粒径 40〃m、 含水率 87. 0%) を得た。
得られた乾燥架橋ゼラチンゲル粒子 1 Omgに 3. 3mg bFGF/lml 1/15M リン酸緩衝液 (pH6) の 30〃1を滴下し、 4 °C、 一昼夜放置する ことにより bFG F水溶液を粒子内に含浸させることにより、 bFG F含有架橋 ゼラチンゲル粒子製剤を調製した。 得られた bFGF含有架橋ゼラチンゲル粒子 製剤を凍結乾燥させることにより、 bFGF含有乾燥架橋ゼラチンゲル粒子製剤 を調製した。
(実施例 14)
上記実施例 13で得られた乾燥架橋ゼラチンゲル粒子 2mgに、 8mg bFG F/lml 2 OmM クェン酸緩衝液 ( p H 5 ) の 10〃 1を滴下し、 4°C、 一 昼夜放置することにより b F G F水溶液を粒子内に含浸させることにより、 bF G F含有架橋ゼラチンゲル粒子製剤を調製した。 得られた bFGF含有架橋ゼラ チンゲル粒子製剤を凍結乾燥させることにより、 bFGF含有乾燥架橋ゼラチン ゲル粒子製剤を調製した。
(実施例 15)
上記実施例 13で得られた乾燥架橋ゼラチンゲル粒子 1 Omgに、 lmg/m 1 bFGF水溶液 200 lを加えて懸濁し、 室温、 1時間放置することにより bFGF水溶液を粒子内に吸着させることにより、 bFGF含有架橋ゼラチンゲ ル粒子製剤を調製した。 得られた b F G F含有架橋ゼラチンゲル粒子製剤を凍糸 1; i吉 乾燥させることにより、 bFG F含有乾燥架橋ゼラチンゲル粒子製剤を調製した。 (実施例 16)
等電点 4. 9アルカリ処理ゼラチン (新田ゼラチン社製) 水溶液 (10. 0%) 2 Omlを直径 10 cmのシャーレに流し込み、 乾燥させた後、 この乾燥ゼラチ ンシートを WS C水溶液 (◦ . 04%、 2. OmMに相当) 浸漬し、 4°Cにて 2 4時間保って架橋反応を行った。 反応終了後、 ◦. 004N HC1中、 37°Cで 1時間処理し、 架橋反応を停止し、 さらに蒸留水で 37° 12時間洗浄するこ とにより架橋ゼラチンゲルを得た。 このゲルを 4 X 3 X 2 mmの大きさのデイス ク状に切り出し、 減圧乾燥を行った。 得られたゲルの含水率は 87. 0%であつ た。
この乾燥架橋ゼラチンゲルに、 それぞれ 200〃 /1111ぉょび1111 /1111 の bFGF水溶液 10 1ずつを滴下し、 4°C、 15時間含浸させて 2種類の b FGF含有架橋ゼラチンゲル製剤を調製した。 上記実施例 1〜16で調製した bFG F含有架橋ゼラチンゲル製剤および b F GF含有架橋ゼラチンゲル粒子製剤の処方および得られた架橋ゼラチンゲルの含 水率を表 1として示す。
表 1中、 架橋剤 WSCおよび G Aはそれぞれ 1一ェチル—3— (3—ジメチル ァミノプロビル) カルポジイミ ド塩酸塩およびグルタルアルデヒドを表す。 また、 表中のゼラチンおよび架橋剤の濃度%は、 それそれ 「w/v%」 を表し、 含水率 の%は、 「w/w%」 を表す。
表 1 実施例 No. ゼラチン 架橋剤 含水率 (¾) 最終形状 bFGF含有量 等電点 4.9ァ Mリ処理セ"ラチン WS C
1 2. 0 % 95.9% ディスク状 100
5. 6% (107ηιΜ) /製剤 等電点 9.0酸処理セ"ラチン WS C
2 2. 0 % 95.2% // ノノ
5. 6% (107IDM)
等電点 4.9アルカリ処理セ"ラチン WS C
3 8. 0% 95.2% // //
5. 6% (428mM) 等電点 4.97ルが j処理セ"ラチン WS C
4 16. 4% 92.1% // 〃
1 1. 1% (856mM) 等電点 4.9アル;!)リ処理セ"ラチン WS C
2. 0% 95.9% // II 5. 6% (107IDM)
等電点 4.9アルカリ処理セ"ラチン WS C
1 6. 4% 92.1% ノ / II 1 1. 1% (856mM) 等電点 4.9アルが J処理セ"ラチン WS C
5 27. 0 % 87.6% // II
1 1. 1% (1424mM) 等電点 4.9アルが J処理セ"ラチン WS C
80. 0% 80.0% 〃 II 33. 3% (4278mM) 等電点 4.9アルカリ処理セ"ラチン WS C
85. 0% 77.5% 〃 II 33. 3% (4568mM) (その 2 ) 実施例 No. ゼラチン 架橋剤 含水率 ) 最終形状 bFGF含有量 実施例 5で得られた含水 WS C
6 率 80.0°/。の架橋セ、 'ラチンケ、 'ル 9. 6% 63.1% ディスク状 100 g
(500mM) /製剤 等電点 4.9アルカリ処理セ"ラチン WS C
2. 0% 96.8。/。 // // 5. 6% (107mM) 等電点 4.9アルカリ処理セ"ラチン WS C
7 16. 4% 91.5¾ ノ / 〃
1 1. 1 % (856mM) 等電点 4.9アルカリ処理セ"ラチン WS C
85. 0% 78.5% 〃 ノ / 33. 3% (4568mM) 実施例 7で得られた含水 WS C
8 率 78.5%の架橋セ、、ラチンケ、'ル 9. 6% 68.9¾ ノ / //
(500mM) 等電点 4.97ルカリ処理セ"ラチン WS C 粒子状 100 g
9 16. 4% 96.0% (平均粒径 /乾燥粒子
5. 6% (856mM) 30 m) lOmg 等電点 4.9アルが j処理セ"ラチン WS C 乾燥粒子状 100 z
10 27. 0% 91.0% (平均粒径 /乾燥粒子
1 1. 1% (1424mM) 4 m) lOmg
80 g
11 〃 // 〃 // /乾燥粒子
2mg
12 ノ / // ノ / // ノ乾燥粒子 lOmg 表 1 (その 3) 実施例 No. ゼラチン 架橋剤 含水率 (%) 最終形状 bFGF含有量 等電点 4.9アル;!)リ処理セ "ラチン GA 乾燥粒子状 lOOytig
13 0. 05% 87.0% (平均粒径 /乾燥粒子
1 0. 0% (5.0 ) 40 m) lOmg
80/zg
14 ノ / // // 〃 /乾燥粒子
2mg
200>Lig
15 〃 // 〃 〃 /乾燥粒子 lOmg 等電点 4.9ァ リ処理セ"ラチン WS C ① 2 g
16 0. 04% 87.0% ディスク状 /製剤
1 0. 0% (2.0IBM) ② 10 zg
/製剤
(試験例 1 )
実施例 1にて調製した b F G F含有架橋ゼラチンゲル製剤をマウス背部皮下に 埋入した。 別に対照群として、 bFGFを含まない 5 OmMリン酸緩衝溶液 30 1を含浸させた bFGF非含有架橋ゼラチンゲルの皮下埋入を行った。 さらに 別の対照群として、 100 gの bFGFを含むリン酸緩衝溶液 10 O zlを皮 下投与した。 投与から 1週間後、 マウスの皮膚を剥離し、 製剤埋入およびリン酸 緩衝溶液投与部位をそれぞれ観察した。 b F G F含有リン酸緩衝溶液投与群では、 投与部位周辺の組織の状態は未処置群と同じであり、 肉眼的変化は認められなか つた。 しかしながら、 bFGF含有架橋ゼラチンゲル製剤を埋入した場合には、 製剤埋入部位周辺の組織は肉眼的にも赤く、 明らかに b F G Fの作用の一つであ る血管新生効果が確認された。 bFGF非含有架橋ゼラチンゲル投与群の埋入部 位周辺も未処置群と同様、 全く血管新生像は認められなかった。
上記の結果から、 bFGF含有リン酸緩衝溶液投与群では、 bFGFの薬効は 全く得られない、 すなわち b F G F水溶液での投与では bFGFは生体組織中で 速やかに分解され薬効を失う。 これに対し、 本発明の bFGF含有架橋ゼラチン ゲル製剤を用いれば、 bFGFは生体組織中で分解されることなく担体である架 橋ゼラチンゲルから徐放されその薬効を発揮 ·持続できることがわかる。 また、 架橋ゼラチンゲルは、 生体適合性に優れていることがわかる。
(試験例 2)
実施例 1にて調製した b F G F含有架橋ゼラチンゲル製剤をマウス皮下に埋入 し、 投与から 1、 3、 7および 14曰後における埋入部位周辺での血管新生の程 度をヘモグロビン量の変化を指標に評価した。 別に、 対照群として bFGFを含 有しない架橋ゼラチンゲルをマウス皮下に埋入した群 (bFGF (—) 架橋ゼラ チンゲル投与群) 、 100 /gの bFGFのリン酸緩衝溶液をマウス皮下に注射 投与した群 (bFGF ( + )水溶液投与群) 、 bFGFを含有しないリン酸緩衝 液を注射投与した群 (bFGF (—) 水溶液投与群) についても同様に血管新生 の程度を評価した。 なお、 新生血管量の評価は以下のように行った。 製剤埋入部 位または注射投与部位の皮膚の裏側ならびに背部筋側組織を、 製剤 入部位また は注射投与部位を中心に上下左右 2 cm四方をメスにて削り取った。 これらの組 織を 0. 75%の塩化アンモニゥムを含有した 17mM Tri s— HC1緩衝溶 液 (pH7. 6) 中に浸漬し、 ヘモグロビンを抽出した。 ヘモグロビンはシアン メ トヘモグロビン法 (和光純薬工業株式会社製、 ヘモグロビン一テストヮコ一) にて定量した。 なお、 マウスの匹数は 1グループ当り 5匹である。 各群のへモグ ロビン量の絰時的変化を図 1および図 2に示す。 図中の点線は、 未処置群のへモ グロビン量を示している。 100〃 の 0 を溶液状態で投与するだけでは、 その組織周辺のヘモグロビン量は変化せず、 bFGF非含有リン酸緩衝溶液を投 与した場合と同一レベルであった。 このヘモグロビンレベルは、 未処置群のへモ グロビン量と同じであった。 しかしながら、 同量の 10 の bFGFを含む 架橋ゼラチンゲル製剤を埋入した場合には、 埋入部位周辺のへモグロビン量は、 10 の bFGFを溶液状態で投与した群に比べて、 埋入 3日目より有意に 増加した。 さらに、 その状態は 7日まで継続し、 その後、 14日目には未処置群 のヘモグロビンレベルにまで減少していた。 一方、 bFGF (—) 架橋ゼラチン ゲル投与群では、 そのへモグ口ビン量は未処置群と同じレベルであった。
(試験例 3 )
実施例 3にて調製した bFGF含有架橋ゼラチンゲル製剤 (含水率 95. 2%) をマウス背部皮下に埋入し、 投与から 1、 7および 14日後における残存架橋ゼ ラチンゲル重量を測定することにより、 ゲルの i n v i v oでの分解性を評価 した。 架橋ゼラチンゲルは時間とともに分解され、 投与から 14日目には完全に 分解され組織に吸収されていた。 また、 bFGFを含まない架橋ゼラチンゲルの 分解性は、 b F G F含有架橋ゼラチンゲルと同等であり、 b F G Fの含有が架橋 ゼラチンゲルの分解性に与える影響は見られなかった。 その結果を図 3に示す。 投与後数日間の残存重量が投与時よりも増加して 100%を超えるのは、 マウス 皮下より架橋ゼラチンゲルを回収した時に、 マウスの皮下組織が架橋ゼラチンゲ ルに付着していたためと考えられる。
なお、 試験例 1にて、 血管新生効果が見られた bFGF含有架橋ゼラチンゲル 製剤 (含水率 95. 9%) も、 同様の分解挙動を示した。 (試験例 4)
実施例 4にて調製した架橋ゼラチンゲルを乾燥した後、 それそれ 0、 2、 10、 30、 50、 100および 290 zgの bFGFを含むリン酸緩衝溶液 (pH6 . 0) を含浸させ、 bFGF非含有および各濃度の bFGF含有架橋ゼラチンゲ ル製剤を調製した。 これらの製剤をマウス背部皮下に埋入し、 投与から 7曰後、 製剤埋入部位周辺のヘモグロビン量を評価した。 その結果を図 4に示す。 図中の 点線は、 未処置群のヘモグロビンレベルである。 対照群として、 0、 2、 10、 30、 50、 100および 290 zgの bFGF含有リン酸緩衝溶液 100 /1 をマウス皮下に投与した。 bFGF溶液投与の場合には、 その投与量に関係なく、 いずれの投与量においても、 ヘモグロビン量の増加は見られなかった。 これに対 し、 bFGFを架橋ゼラチンゲルに包含した本発明製剤によれば、 有意なへモグ ロビン量の増加が見られ、 その効果は、 bFGF投与量が 10 g/マウスから 認められた。
(試験例 5 )
実施例 5および 6にて調製した種々の含水率を有する架橋ゼラチンゲルからな る b F G F含有架橋ゼラチンゲル製剤をマウス背部皮下に埋入し、 架橋ゼラチン ゲルの含水率が b FGFの in v i v oでの血管新生作用に及ぼす影響につい て調べた。 製剤埋入後 7日目および 14日目の結果をそれぞれ図 5および図 6に 示す。 別に対照として、 100〃gの bFGFを含むリン酸緩衝溶液 (pH7. 4) 100 1の皮下投与を行った。 なお、 図中の点線は未処置群のへモグロビ ン量である。 図 5および 6からわかるように、 製剤埋入 7日後ではいずれの含水 率をもつゲルにおいても、 そのヘモグロビン量は、 b FGFの水溶液投与に比較 して、 有意に高い値であった。 また、 ヘモグロビン量は架橋ゼラチンゲルの含水 率に依存し、 ゲルの含水率の低下とともにヘモグロビン量は上昇した。 一方、 製 剤埋入 14日後では、 含水率 90%以下の架橋ゼラチンゲルからなる製剤におい てのみ、 高いヘモグロビン量が見られたが、 それ以上の含水率をもつ架橋ゼラチ ンゲルからなる製剤では、 ヘモグロビン量はすでに未処置群のレベルにまで低下 していた。 これは、 含水率が低い場合には、 架橋ゼラチンゲルの分解が遅く、 1 4日目においても、 bFGFがゲル内から徐放され、 その効果が発揮されている と考えられる。
(試験例 6 )
実施例 5で調製した含水率 95. 9および 77. 5%の各架橋ゼラチンゲルか らなる bFGF含有架橋ゼラチンゲル製剤のマウス皮下での分解性を調べた。 そ の結果を図 7に示す。 分解性の評価は試験例 3と同様の方法で行った。 いずれの 含水率のゲルも、 時間とともに分解が進行している。 しかし、 その分解性はゲル の含水率に依存しており、 含水率の低下に伴い、 分解しにくくなつている。 (試験例 7 )
実施例 7および 8にて調製した各 bFGF含有架橋ゼラチンゲル製剤をマウス 背部皮下に埋入し、 架橋ゼラチンゲルの含水率が bFGFの in vivoでの 肉芽形成 (ェンカプシユレ一シヨン) 作用に及ぼす影響について調べた。 bFG Fの肉芽形成作用は以下のようにして調べた。 製剤埋入 7日後に製剤埋入部位の 皮膚の裏側ならびに背部筋側組織を、 製剤埋入部位を中心に上下左右 2 cm四方 をメスにて削り取った。 これらの組織の湿潤状態での重量を測定し、 肉芽形成効 果を評価した。 その結果を図 8に示す。 図中の点線は未処置群のレベルを示す。 その結果、 bFGFを架橋ゼラチンゲルに包含して投与することにより、 bFG Fの肉芽形成促進効果が見られ、 製剤埋入部位の周辺はカプセル層で覆われてい た。 また、 カプセル層の厚みは、 架橋ゼラチンゲルの含水率の減少とともに増加 した。 これに対して、 100 /gの bFGFを水溶液状態で投与した対照群では、 投与部位周辺での肉芽形成は認められなかった。 このように、 bFGFの作用を 肉芽形成作用から評価した場合にも、 bFGFを架橋ゼラチンゲル内に包含させ、 徐放化することにより、 その活性を増強することができることが確認された。
(試験例 8)
実施例 9にて調製した b F G F含有架橋ゼラチンゲル粒子製剤をマウス背部皮 下に注射投与した。 投与から 1週間後、 マウス皮膚を剥離し、 粒子製剤を投与し た部位での血管新生の程度を観察した。 その結果、 粒子製剤を投与した部位周辺 が赤く、 血管が新生されていることが認められた。 以上のように、 本発明は、 b FGFを包含させるための担体である架橋ゼラチンゲルの形状に関係なく、 すな わち注射可能な大きさの球状または粒子状の架橋ゼラチンゲルによっても、 本発 明の効果が得られることがわかる。
(試験例 9 )
実施例 13で作製した架橋ゼラチンゲル粒子 (含水率 87%) 3. 7mgに対 し、 bFGF 100 /gを 4°C、 一昼夜含浸させた後、 生理食塩水に懸濁させ、 ラット腸骨に注入した。 2週間後に腸骨を取り出し、 骨塩量の変動を測定した。 ここで、 骨塩量とは、 骨の増減の程度を測るための指標であり、 具体的には、 骨 塩量測定装置 (ァロカ社製、 DCS— 600型) によって測定した。 また、 bF GF 100〃g含有水溶液を注入投与した群を対照群とし、 同様に骨塩量の変動 を測定した。 その結果、 架橋ゼラチンゲル粒子製剤投与群では、 骨塩量が 15. 7mg増加したのに対し、 bFGF含有水溶液を投与した対照群では 7. lmg の増加であった。 対照群と比較して、 本発明の bFGF含有架橋ゼラチンゲル粒 子を投与した群では著しい骨塩量の増加が認められ、 架橋ゼラチンゲルで徐放化 することにより水溶液製剤に比べ、 有意な骨形成作用を示した。
(試験例 10)
ラットの下腿部を切開し、 骨を露出させ、 腓骨を骨バサミにて切断した。 切断 部位に実施例 16にて調製した bFGF含有架橋ゼラチンゲル製剤を埋入し、 縫 合した。 3週間後にラッ卜の切断した腓骨の骨塩量および骨密度の増加を調べた。 対照として、 上記製剤と同量の bFGFを含有する水溶液をラットに投与した。 結果を表 2に示す。 表 2 bFGF投与量 骨 塩 量 (mg)
(〃g /製剤又は水溶液) 架橋ゼラチンゲル製剤 水溶液
0 9. 5± 1. Ί 9. 4± 1. 7
2 14. 4±2. 3±3. 2
0 17. 6±3. 2 12. 0±3. 1
上記表 2の結果から、 本発明の bFGF架橋ゼラチンゲル製剤は、 bFGF水 溶液投与群に比べ、 高い骨塩量の増加を促すことがわかる。 このことから、 本発 明の架橋ゼラチンゲル製剤によれば、 担体である架橋ゼラチンゲルから b F G F が徐放されることにより、 骨塩量の増加を促し、 骨折、 骨再生治療に有用である ことが認められた。 発明の効果 本発明によれば、 徐放性担体である架橋ゼラチンゲルの調製条件を変えること によって、 異なる含水率つまり生体内での分解吸収性の異なる b F G F含有架橋 ゼラチンゲル製剤を調製することができた。 本発明の架橋ゼラチンゲル製剤から 徐放された b F G Fは生理活性を保持していた。 さらに、 徐放性担体である架橋 ゼラチンゲルの含水率を変化させることにより架橋ゼラチンゲルの分解速度が変 化し、 bFGFの徐放時間を変化させることが可能であり、 その結果、 生体内で の bFGFの活性発現の持続性をコントロールできた。 さらに、 上記の本発明の 効果はゼラチンの種類、 製剤の形状に関係なく認められた。

Claims

言青求の範囲
1 . 塩基性線維芽細胞増殖因子を含有することを特徴とする架橋ゼラチンゲル製 剤。
2 . 塩基性線維芽細胞増殖因子が、 下記の配列番号 1および/または 2で示され るァミノ酸配列を有するものである請求項 1に記載の架橋ゼラチンゲル製剤。
配列番号 1 :
配列の性質:
配列の長さ : 1 5 4アミノ酸
配列の型: アミノ酸 生物名 : ホモ サピエンス (Homo sapiens ) 配列
Ala Ala Gly Ser l ie Thr Thr Leu Pro Ala Leu Pro Glu Asn Glv Gly 1 5 10 15
Ser Gly Ala Phe Pro Pro Gly His Phe Lys Asp Pro Lys Arg Leu Tyr
20 25 30
Cys Lys Asn Gly Gly Phe Phe Leu Arg l ie His Pro Asp Gly Arg Val
35 40 45
Asp Gly Val Arg Glu Lys Ser Asp Pro His l ie Lys Leu Gin Leu Gin 50 55 60
Ala Glu Glu Arg Gly Val Val Ser l ie Lys Gly Val Cys Ala Asn Arg 65 70 75 80
Tyr Leu Ala Met Lys Glu Asp Gly Arg Leu Leu Ala Ser Lys Cys Val
85 90 95
Thr Asp Glu Cys Phe Phe Phe Glu Arg Leu Glu Ser Asn Asn Tyr Asn
100 105 110
Thr Tyr Arg Ser Arg Lys Tyr Thr Ser Trp Tyr Val Ala Leu Lys Arg
115 120 125
Thr Gly Gin Tyr Lys Leu Gly Ser Lys Thr Gly Pro Gly Gin Lys Ala 130 135 140 lie Leu Phe Leu Pro Met Ser Ala Lys Ser
145 150 配列番号 2 :
配列の性質:
配列の長さ : ノ酸
配列の型: ァ
起源
生物名 : ホモ サヒエンス ( Homo sapiens )
ノ 5
配列 酸 3
Ala Gly Ser l ie Thr Thr Leu Pro Ala Leu Pro Glu Asp Gly Gly Ser 1 .5 10 15 ly Ala Phe Pro Pro Gly His Phe Lys Asp Pro Lys Arg Leu Tyr Cys
20 25 30
Lys Asn Gly Gly Phe Phe Leu Arg l ie His Pro Asp Gly Arg Val Asp
35 40 45
Gly Val Arg Glu Lys Ser Asp Pro His l ie Lys Leu Gin Leu Gin Ala 50 55 60
Glu Glu Arg Gly Val Val Ser l ie Lys Gly Val Cys Ala Asn Arg Tyr 65 70 75 80
Leu Ala Met Lys Glu Asp Gly Arg Leu Leu Ala Ser Lys Cys Val Thr
85 90 95
Asp Glu Cys Phe Phe Phe Glu Arg Leu Glu Ser Asn Asn Tyr Asn Thr
100 105 110
Tyr Arg Ser Arg Lys Tyr Thr Ser Trp Tyr Val Ala Leu Lys Arg Thr
115 120 125
Gly Gin Tyr Lys Leu Gly Ser Lys Thr Gly Pro Gly Gin Lys Ala He 130 135 140
Leu Phe Leu Pro Met Ser Ala Lys Ser
145 150
3 . ゼラチンの架橋剤が、 グルタルアルデヒドまたは水溶性カルポジイミ ドであ る請求項 1に記載の架橋ゼラチンゲル製剤。
4 . 水溶性カルポジイミ ドが、 1ーェチルー 3— ( 3—ジメチルァミノプロビル) カルポジイミ ド塩酸塩、 1ーシクロへキシル—3— ( 2—モルホリノエチル) 力 ルポジィミ ドーメ ト— p—トルエンスルホナートからなる群より選ばれる請求項 3に記載の架橋ゼラチンゲル製剤。
5 . ゼラチンの架橋剤がグルタルアルデヒドまたは 1 —ェチルー 3— ( 3—ジメ チルァミノプロビル) カルポジイミ ド塩酸塩である請求項 3に記載の架橋ゼラチ ンゲル製剤。
6 . 架橋ゼラチンゲルが、 ゼラチンの濃度 1〜 1 0 0 w/v%および架橋剤濃度 0 . 0 1〜 1 0 0 w/v%からなる請求項 1に記載の架橋ゼラチンゲル製剤。
7 . 架橋ゼラチンゲルの含水率が、 5 0 ~ 9 9 %である請求項 1に記載の架橋ゼ ラチンゲル製剤。
8 . 架橋ゼラチンゲルの形状が、 円柱状、 角柱状、 シート状、 ディスク状、 球状 または粒子状である請求項 1に記載の架橋ゼラチンゲル製剤。
9 . 塩基性線維芽細胞増殖因子の水溶液を架橋ゼラチンゲルに接触させ含浸させ るか、 または塩基性線維芽細胞増殖因子の水溶液中に架橋ゼラチンゲルを懸濁さ せることにより塩基性線維芽細胞増殖因子を架橋ゼラチンゲルに含有させること を特徴とする請求項 1に記載の架橋ゼラチンゲル製剤。
1 0 . 請求項 1に記載の塩基性線維芽細胞増殖因子含有架橋ゼラチンゲル製剤を 乾燥させたことを特徴とする乾燥架橋ゼラチンゲル製剤。 請求項 0に記載の架橋ゼラ 製剤からなる骨疾患治療剤
PCT/JP1994/000876 1993-05-31 1994-05-31 Preparation de gel a base de gelatine reticulee contenant un facteur de croissance de fibroblaste de base WO1994027630A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE69427908T DE69427908T2 (de) 1993-05-31 1994-05-31 Eine gelpräparation aus vernetzter gelatine, die einen basischen wachstumsfaktor für fibroblasten enthält
AT94916430T ATE203913T1 (de) 1993-05-31 1994-05-31 Eine gelpräparation aus vernetzter gelatine, die einen basischen wachstumsfaktor für fibroblasten enthält
EP94916430A EP0702959B1 (en) 1993-05-31 1994-05-31 Cross-linked gelatin gel preparation containing basic fibroblast growth factor
JP50048195A JP3639593B2 (ja) 1993-05-31 1994-05-31 塩基性線維芽細胞増殖因子含有架橋ゼラチンゲル製剤
US08/567,355 US6831058B1 (en) 1993-05-31 1995-11-30 Crosslinked gelatin gel preparation containing basic fibroblast growth factor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5/152749 1993-05-31
JP15274993 1993-05-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US08/567,355 Continuation-In-Part US6831058B1 (en) 1993-05-31 1995-11-30 Crosslinked gelatin gel preparation containing basic fibroblast growth factor

Publications (1)

Publication Number Publication Date
WO1994027630A1 true WO1994027630A1 (fr) 1994-12-08

Family

ID=15547330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/000876 WO1994027630A1 (fr) 1993-05-31 1994-05-31 Preparation de gel a base de gelatine reticulee contenant un facteur de croissance de fibroblaste de base

Country Status (6)

Country Link
US (1) US6831058B1 (ja)
EP (1) EP0702959B1 (ja)
JP (1) JP3639593B2 (ja)
AT (1) ATE203913T1 (ja)
DE (1) DE69427908T2 (ja)
WO (1) WO1994027630A1 (ja)

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510289A (ja) * 1999-09-30 2003-03-18 正始 米田 胸骨切開術後の胸骨の回復を向上させる方法
JP2003238439A (ja) * 2002-02-13 2003-08-27 Yasuhiko Tabata 虚血治療剤
WO2004028556A1 (ja) * 2002-09-25 2004-04-08 Medgel Corporation 冠状動脈狭窄または閉塞治療用徐放性製剤
JP2004123576A (ja) * 2002-09-30 2004-04-22 Medgel Corp 多血小板血漿を含有する徐放性製剤
JP2004359624A (ja) * 2003-06-06 2004-12-24 Hiroshi Shimizu 局所医薬組成物
JP2005104910A (ja) * 2003-09-30 2005-04-21 Yasuhiko Tabata 血管新生剤
JP2005218780A (ja) * 2004-02-09 2005-08-18 Menicon Co Ltd 薬物放出速度を制御し得る薬物徐放可能なヒドロゲル材料の製造方法
WO2005087257A1 (ja) * 2004-03-16 2005-09-22 Kaken Pharmaceutical Co., Ltd. 架橋ゼラチンゲルを担体とする軟骨組織修復治療剤
JP2005325075A (ja) * 2004-05-14 2005-11-24 Yasuhiko Tabata 架橋ゼラチンゲルを担体とする半月板損傷治療剤
JP2007509643A (ja) * 2003-10-10 2007-04-19 ゲ・ミン・ルイ 角膜内皮および関連細胞のバイオポリマー上での増殖のための方法および組成物ならびに人工角膜移植片の作成
WO2007046540A1 (ja) * 2005-10-19 2007-04-26 Osaka University 象牙質-歯髄複合体再生治療剤
JPWO2005097166A1 (ja) * 2004-04-09 2008-02-28 二郎 中村 ゼラチンゲルを担体とする糖尿病性神経障害治療剤
WO2008047904A1 (fr) * 2006-10-20 2008-04-24 National University Corporation Nagoya University Agent thérapeutique pour vasculopathie périphérique oblitérante et utilisation
WO2008072379A1 (ja) * 2006-12-13 2008-06-19 Fujifilm Corporation 修飾された生体高分子の製造方法及び生体高分子の架橋方法
JP2008150306A (ja) * 2006-12-15 2008-07-03 Air Water Inc ゼラチン成形物およびその製造方法
WO2009060608A1 (ja) 2007-11-07 2009-05-14 Ono Pharmaceutical Co., Ltd. Sdf-1を含有してなる徐放性組成物
JP2009256391A (ja) * 1996-08-27 2009-11-05 Fusion Medical Technologies Inc 癒着防止用の断片化重合体ヒドロゲルおよびそれらの調製
WO2010089873A1 (ja) * 2009-02-05 2010-08-12 ニチバン株式会社 照射架橋水溶性高分子粒子及び照射架橋ゼラチン粒子並びにこれらの製造方法
WO2011010399A1 (ja) * 2009-07-24 2011-01-27 千寿製薬株式会社 角膜内皮細胞増殖促進剤
JP2011046749A (ja) * 1996-08-27 2011-03-10 Baxter Internatl Inc 癒着防止用の断片化重合体ヒドロゲルおよびそれらの調製
WO2011052089A1 (ja) * 2009-11-02 2011-05-05 ニチバン株式会社 電離性放射線で架橋したヒドロゲルから成る生体内薬剤徐放用担体材料及びその製造方法
US8092820B2 (en) 2001-07-17 2012-01-10 Baxter International Inc. Dry hemostatic compositions and methods for their preparation
JP4856339B2 (ja) * 1999-10-26 2012-01-18 泰彦 田畑 ヒドロゲルからなる血管塞栓材及びそれを使用した治療方法
US8303981B2 (en) 1996-08-27 2012-11-06 Baxter International Inc. Fragmented polymeric compositions and methods for their use
US8357378B2 (en) 1996-08-27 2013-01-22 Baxter International Inc. Fragmented polymeric compositions and methods for their use
US8603511B2 (en) 1996-08-27 2013-12-10 Baxter International, Inc. Fragmented polymeric compositions and methods for their use
US8703170B2 (en) 2010-04-07 2014-04-22 Baxter International Inc. Hemostatic sponge
US8703122B2 (en) 2006-05-31 2014-04-22 Baxter International Inc. Method for directed cell in-growth and controlled tissue regeneration in spinal surgery
US8771258B2 (en) 2009-12-16 2014-07-08 Baxter International Inc. Hemostatic sponge
US8790698B2 (en) 2007-10-30 2014-07-29 Baxter International Inc. Use of a regenerative biofunctional collagen biomatrix for treating visceral or parietal defects
US8834864B2 (en) 2003-06-05 2014-09-16 Baxter International Inc. Methods for repairing and regenerating human dura mater
US8940335B2 (en) 2010-06-01 2015-01-27 Baxter International Inc. Process for making dry and stable hemostatic compositions
US8962025B2 (en) 2006-08-02 2015-02-24 Baxter International Inc. Rapidly acting dry sealant and methods for use and manufacture
US9005609B2 (en) 2003-08-07 2015-04-14 Ethicon, Inc. Hemostatic compositions containing sterile thrombin
US9039783B2 (en) 2009-05-18 2015-05-26 Baxter International, Inc. Method for the improvement of mesh implant biocompatibility
US9084728B2 (en) 2010-06-01 2015-07-21 Baxter International Inc. Process for making dry and stable hemostatic compositions
US9162006B2 (en) 2009-06-16 2015-10-20 Baxter International Inc. Hemostatic sponge
US9265858B2 (en) 2012-06-12 2016-02-23 Ferrosan Medical Devices A/S Dry haemostatic composition
US9408945B2 (en) 2010-06-01 2016-08-09 Baxter International Inc. Process for making dry and stable hemostatic compositions
US9533069B2 (en) 2008-02-29 2017-01-03 Ferrosan Medical Devices A/S Device for promotion of hemostasis and/or wound healing
WO2017131003A1 (ja) * 2016-01-25 2017-08-03 サントリーホールディングス株式会社 機能性物質を含有するカプセル及びその製造方法
US9724078B2 (en) 2013-06-21 2017-08-08 Ferrosan Medical Devices A/S Vacuum expanded dry composition and syringe for retaining same
US9821025B2 (en) 2011-10-11 2017-11-21 Baxter International Inc. Hemostatic compositions
US9833541B2 (en) 2011-10-27 2017-12-05 Baxter International Inc. Hemostatic compositions
US10111980B2 (en) 2013-12-11 2018-10-30 Ferrosan Medical Devices A/S Dry composition comprising an extrusion enhancer
US10322170B2 (en) 2011-10-11 2019-06-18 Baxter International Inc. Hemostatic compositions
US10653837B2 (en) 2014-12-24 2020-05-19 Ferrosan Medical Devices A/S Syringe for retaining and mixing first and second substances
US10918796B2 (en) 2015-07-03 2021-02-16 Ferrosan Medical Devices A/S Syringe for mixing two components and for retaining a vacuum in a storage condition
US11046818B2 (en) 2014-10-13 2021-06-29 Ferrosan Medical Devices A/S Dry composition for use in haemostasis and wound healing
WO2021132543A1 (ja) * 2019-12-27 2021-07-01 Eaファーマ株式会社 瘻孔治療用材料
US11109849B2 (en) 2012-03-06 2021-09-07 Ferrosan Medical Devices A/S Pressurized container containing haemostatic paste
US11801324B2 (en) 2018-05-09 2023-10-31 Ferrosan Medical Devices A/S Method for preparing a haemostatic composition

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69830166T2 (de) 1997-06-03 2006-01-26 Innogenetics N.V. Neue arzneimittel auf der basis von polymeren aus mit methacrylamid modifizierter gelatine
US20030175656A1 (en) * 2000-09-05 2003-09-18 Erella Livne Hydrogel incorporated with bone growth promoting agents for dental and oral surgery
CA2481214A1 (en) * 2002-04-01 2003-10-09 Kaken Pharmaceutical Co., Ltd. Viscous preparation for dental use containing basic fibroblast growth factor
DE602004025698D1 (de) * 2003-06-20 2010-04-08 Novartis Vaccines & Diagnostic PYRIDINOi1,2-A PYRIMIDIN-4-ONVERBINDUNGEN ALS MITTEL GEGEN KREBS
JP4685090B2 (ja) * 2005-02-14 2011-05-18 株式会社メドジェル 医療用ハイドロゲル
US20070154546A1 (en) * 2005-12-30 2007-07-05 Zhang Jack Y Sustained release pharmaceutical compositions
JPWO2008016163A1 (ja) * 2006-08-01 2009-12-24 ニチバン株式会社 架橋ゼラチンゲル多層構造体、生理活性因子用担体、生理活性因子放出用製剤、及びこれらの製造方法
EP1961411A1 (en) * 2007-02-21 2008-08-27 FUJIFILM Manufacturing Europe B.V. A controlled release composition
EP1961414A1 (en) * 2007-02-21 2008-08-27 FUJIFILM Manufacturing Europe B.V. A controlled release composition comprising a recombinant gelatin
JP5349336B2 (ja) * 2007-02-21 2013-11-20 フジフィルム・マニュファクチュアリング・ヨーロッパ・ベスローテン・フエンノートシャップ Rgdを含有する組換えゼラチン
DE102007051059B4 (de) * 2007-10-18 2014-04-03 NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen Bioverbundmaterial für die kontrollierte Freisetzung von Wirkstoffen
WO2010128672A1 (ja) * 2009-05-07 2010-11-11 富士フイルム株式会社 遺伝子組み換えゼラチンを含む血管新生誘導剤
EP2500425A4 (en) * 2009-11-13 2013-05-01 Hitachi High Tech Corp CELL AGGREGATE CONTAINING PARTICLES
US9347037B2 (en) * 2013-02-11 2016-05-24 Evan Masataka Masutani Methods and apparatus for building complex 3D scaffolds and biomimetic scaffolds built therefrom
US20150366905A1 (en) * 2013-02-15 2015-12-24 Kochi University Radiation/chemotherapy sensitizer to be used for intratumoral local injection and for controlled release of hydrogen peroxide with hydrogel as carrier
WO2017170487A1 (ja) * 2016-03-28 2017-10-05 富士フイルム株式会社 製剤、製剤用部材およびそれらの製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62228028A (ja) * 1985-12-27 1987-10-06 Sumitomo Pharmaceut Co Ltd 徐放性製剤の製造法
JPS62289530A (ja) * 1986-06-10 1987-12-16 Eisai Co Ltd 溶解遅延性のゼラチン製剤組成物
JPH0249734A (ja) * 1988-08-12 1990-02-20 Wakunaga Pharmaceut Co Ltd 新規組成物
JPH04128239A (ja) * 1989-07-07 1992-04-28 Takeda Chem Ind Ltd 安定化されたfgf蛋白質組成物およびその製造法
JPH04279530A (ja) * 1990-07-05 1992-10-05 Farmitalia Carlo Erba Spa 成長因子を投与するためのドラッグデリバリーシステム
JPH04330017A (ja) * 1990-05-15 1992-11-18 Childrens Medical Center Corp:The 安定化fgf組成物
JPH05124975A (ja) * 1990-12-19 1993-05-21 Kaken Pharmaceut Co Ltd 骨疾患治療剤
JPH05132426A (ja) * 1991-02-15 1993-05-28 Takeda Chem Ind Ltd 骨組織の形成促進剤

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3923969A (en) * 1973-06-12 1975-12-02 Battelle Institut E V Carrier system for a drug with sustained release
US4785079A (en) * 1984-11-09 1988-11-15 The Salk Institute For Biological Studies Isolation of fibroblast growth factor
MX163953B (es) * 1984-03-27 1992-07-03 Univ New Jersey Med Procedimiento para preparar una matriz biodegradable a base de colageno
NZ226171A (en) * 1987-09-18 1990-06-26 Ethicon Inc Gel formulation containing polypeptide growth factor
US5164410A (en) * 1988-01-09 1992-11-17 Takeda Chemical Industries, Ltd. Fumagillol derivatives and pharmaceutical compositions thereof
JPH01282394A (ja) 1988-05-10 1989-11-14 Toshiba Corp 電動機の張力制御装置
US4950483A (en) * 1988-06-30 1990-08-21 Collagen Corporation Collagen wound healing matrices and process for their production
US5298243A (en) * 1988-10-20 1994-03-29 Denki Kagaku Kogyo Kabushiki Kaisha Colony stimulating factor-gelatin conjugate
US5162430A (en) * 1988-11-21 1992-11-10 Collagen Corporation Collagen-polymer conjugates
US5270300A (en) * 1991-09-06 1993-12-14 Robert Francis Shaw Methods and compositions for the treatment and repair of defects or lesions in cartilage or bone
US5656598A (en) * 1994-03-08 1997-08-12 Rhone-Poulenc Rorer Pharmaceuticals Inc. Use of fibroblast growth factors to stimulate bone growth
WO1995024211A1 (en) * 1994-03-08 1995-09-14 Osteosa, Inc. Use of fibroblast growth factors to stimulate bone growth

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62228028A (ja) * 1985-12-27 1987-10-06 Sumitomo Pharmaceut Co Ltd 徐放性製剤の製造法
JPS62289530A (ja) * 1986-06-10 1987-12-16 Eisai Co Ltd 溶解遅延性のゼラチン製剤組成物
JPH0249734A (ja) * 1988-08-12 1990-02-20 Wakunaga Pharmaceut Co Ltd 新規組成物
JPH04128239A (ja) * 1989-07-07 1992-04-28 Takeda Chem Ind Ltd 安定化されたfgf蛋白質組成物およびその製造法
JPH04330017A (ja) * 1990-05-15 1992-11-18 Childrens Medical Center Corp:The 安定化fgf組成物
JPH04279530A (ja) * 1990-07-05 1992-10-05 Farmitalia Carlo Erba Spa 成長因子を投与するためのドラッグデリバリーシステム
JPH05124975A (ja) * 1990-12-19 1993-05-21 Kaken Pharmaceut Co Ltd 骨疾患治療剤
JPH05132426A (ja) * 1991-02-15 1993-05-28 Takeda Chem Ind Ltd 骨組織の形成促進剤

Cited By (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8603511B2 (en) 1996-08-27 2013-12-10 Baxter International, Inc. Fragmented polymeric compositions and methods for their use
US8303981B2 (en) 1996-08-27 2012-11-06 Baxter International Inc. Fragmented polymeric compositions and methods for their use
US8357378B2 (en) 1996-08-27 2013-01-22 Baxter International Inc. Fragmented polymeric compositions and methods for their use
US8512729B2 (en) 1996-08-27 2013-08-20 Baxter International Inc. Fragmented polymeric compositions and methods for their use
JP2009256391A (ja) * 1996-08-27 2009-11-05 Fusion Medical Technologies Inc 癒着防止用の断片化重合体ヒドロゲルおよびそれらの調製
JP2011046749A (ja) * 1996-08-27 2011-03-10 Baxter Internatl Inc 癒着防止用の断片化重合体ヒドロゲルおよびそれらの調製
JP4657549B2 (ja) * 1999-09-30 2011-03-23 正始 米田 胸骨切開術後の胸骨の回復を向上させる方法
JP2003510289A (ja) * 1999-09-30 2003-03-18 正始 米田 胸骨切開術後の胸骨の回復を向上させる方法
JP4856339B2 (ja) * 1999-10-26 2012-01-18 泰彦 田畑 ヒドロゲルからなる血管塞栓材及びそれを使用した治療方法
US8092820B2 (en) 2001-07-17 2012-01-10 Baxter International Inc. Dry hemostatic compositions and methods for their preparation
US8383141B2 (en) 2001-07-17 2013-02-26 Baxter International Inc. Dry hemostatic compositions and methods for their preparation
JP2003238439A (ja) * 2002-02-13 2003-08-27 Yasuhiko Tabata 虚血治療剤
WO2004028556A1 (ja) * 2002-09-25 2004-04-08 Medgel Corporation 冠状動脈狭窄または閉塞治療用徐放性製剤
JP2004123576A (ja) * 2002-09-30 2004-04-22 Medgel Corp 多血小板血漿を含有する徐放性製剤
US8834864B2 (en) 2003-06-05 2014-09-16 Baxter International Inc. Methods for repairing and regenerating human dura mater
JP4578067B2 (ja) * 2003-06-06 2010-11-10 宏 清水 局所医薬組成物
JP2004359624A (ja) * 2003-06-06 2004-12-24 Hiroshi Shimizu 局所医薬組成物
US9005609B2 (en) 2003-08-07 2015-04-14 Ethicon, Inc. Hemostatic compositions containing sterile thrombin
JP2005104910A (ja) * 2003-09-30 2005-04-21 Yasuhiko Tabata 血管新生剤
JP4532092B2 (ja) * 2003-09-30 2010-08-25 泰彦 田畑 血管新生剤
JP2007509643A (ja) * 2003-10-10 2007-04-19 ゲ・ミン・ルイ 角膜内皮および関連細胞のバイオポリマー上での増殖のための方法および組成物ならびに人工角膜移植片の作成
JP2005218780A (ja) * 2004-02-09 2005-08-18 Menicon Co Ltd 薬物放出速度を制御し得る薬物徐放可能なヒドロゲル材料の製造方法
WO2005087257A1 (ja) * 2004-03-16 2005-09-22 Kaken Pharmaceutical Co., Ltd. 架橋ゼラチンゲルを担体とする軟骨組織修復治療剤
JPWO2005097166A1 (ja) * 2004-04-09 2008-02-28 二郎 中村 ゼラチンゲルを担体とする糖尿病性神経障害治療剤
JP2005325075A (ja) * 2004-05-14 2005-11-24 Yasuhiko Tabata 架橋ゼラチンゲルを担体とする半月板損傷治療剤
JP5099832B2 (ja) * 2005-10-19 2012-12-19 国立大学法人大阪大学 象牙質−歯髄複合体再生治療剤
US7807628B2 (en) 2005-10-19 2010-10-05 Osaka University Therapeutic agent for dentin-pulp complex regeneration
WO2007046540A1 (ja) * 2005-10-19 2007-04-26 Osaka University 象牙質-歯髄複合体再生治療剤
US8703122B2 (en) 2006-05-31 2014-04-22 Baxter International Inc. Method for directed cell in-growth and controlled tissue regeneration in spinal surgery
US9114172B2 (en) 2006-08-02 2015-08-25 Baxter International Inc. Rapidly acting dry sealant and methods for use and manufacture
US8962025B2 (en) 2006-08-02 2015-02-24 Baxter International Inc. Rapidly acting dry sealant and methods for use and manufacture
WO2008047904A1 (fr) * 2006-10-20 2008-04-24 National University Corporation Nagoya University Agent thérapeutique pour vasculopathie périphérique oblitérante et utilisation
JPWO2008047904A1 (ja) * 2006-10-20 2010-02-25 国立大学法人名古屋大学 閉塞性末梢血管疾患治療剤、およびその利用
WO2008072379A1 (ja) * 2006-12-13 2008-06-19 Fujifilm Corporation 修飾された生体高分子の製造方法及び生体高分子の架橋方法
JPWO2008072379A1 (ja) * 2006-12-13 2010-03-25 富士フイルム株式会社 修飾された生体高分子の製造方法及び生体高分子の架橋方法
US8268968B2 (en) 2006-12-13 2012-09-18 Fujifilm Corporation Method for producing modified biopolymer and method for crosslinking biopolymer
JP2013136786A (ja) * 2006-12-13 2013-07-11 Fujifilm Corp 修飾された生体高分子の製造方法及び生体高分子の架橋方法
JP2008150306A (ja) * 2006-12-15 2008-07-03 Air Water Inc ゼラチン成形物およびその製造方法
US8790698B2 (en) 2007-10-30 2014-07-29 Baxter International Inc. Use of a regenerative biofunctional collagen biomatrix for treating visceral or parietal defects
US8435953B2 (en) 2007-11-07 2013-05-07 Yasuhiko Tabata Sustained release composition containing SDF-1
WO2009060608A1 (ja) 2007-11-07 2009-05-14 Ono Pharmaceutical Co., Ltd. Sdf-1を含有してなる徐放性組成物
US9107953B2 (en) 2007-11-07 2015-08-18 Ono Pharmaceutical Co., Ltd. Sustained release composition containing SDF-1
US9533069B2 (en) 2008-02-29 2017-01-03 Ferrosan Medical Devices A/S Device for promotion of hemostasis and/or wound healing
JP5351183B2 (ja) * 2009-02-05 2013-11-27 ニチバン株式会社 照射架橋水溶性高分子粒子及び照射架橋ゼラチン粒子の製造方法
WO2010089873A1 (ja) * 2009-02-05 2010-08-12 ニチバン株式会社 照射架橋水溶性高分子粒子及び照射架橋ゼラチン粒子並びにこれらの製造方法
US9993298B2 (en) 2009-05-18 2018-06-12 Baxter International Inc. Method for the improvement of mesh implant biocompatibility
US9039783B2 (en) 2009-05-18 2015-05-26 Baxter International, Inc. Method for the improvement of mesh implant biocompatibility
US9162006B2 (en) 2009-06-16 2015-10-20 Baxter International Inc. Hemostatic sponge
JP5553832B2 (ja) * 2009-07-24 2014-07-16 泰彦 田畑 角膜内皮細胞増殖促進剤
US8895508B2 (en) 2009-07-24 2014-11-25 Yasuhiki Tabata Methods for corneal endothelial proliferation using bFGF sustained-release gelatin hydrogel particles
WO2011010399A1 (ja) * 2009-07-24 2011-01-27 千寿製薬株式会社 角膜内皮細胞増殖促進剤
WO2011052089A1 (ja) * 2009-11-02 2011-05-05 ニチバン株式会社 電離性放射線で架橋したヒドロゲルから成る生体内薬剤徐放用担体材料及びその製造方法
US8771258B2 (en) 2009-12-16 2014-07-08 Baxter International Inc. Hemostatic sponge
US9872934B2 (en) 2009-12-16 2018-01-23 Baxter International Inc. Hemostatic sponge
US11071804B2 (en) 2009-12-16 2021-07-27 Baxter International Inc. Hemostatic sponge
US9517287B2 (en) 2009-12-16 2016-12-13 Baxter International, Inc. Hemostatic sponge
US11478566B2 (en) 2010-04-07 2022-10-25 Baxter International Inc. Hemostatic sponge
US9375505B2 (en) 2010-04-07 2016-06-28 Baxter International Inc. Hemostatic sponge
US10441674B2 (en) 2010-04-07 2019-10-15 Baxter International Inc. Hemostatic sponge
US8703170B2 (en) 2010-04-07 2014-04-22 Baxter International Inc. Hemostatic sponge
US10994045B2 (en) 2010-06-01 2021-05-04 Baxter International Inc. Process for making dry and stable hemostatic compositions
US9084728B2 (en) 2010-06-01 2015-07-21 Baxter International Inc. Process for making dry and stable hemostatic compositions
US9408945B2 (en) 2010-06-01 2016-08-09 Baxter International Inc. Process for making dry and stable hemostatic compositions
US8940335B2 (en) 2010-06-01 2015-01-27 Baxter International Inc. Process for making dry and stable hemostatic compositions
US10245348B2 (en) 2010-06-01 2019-04-02 Baxter International Inc. Process for making dry and stable hemostatic compositions
US10322170B2 (en) 2011-10-11 2019-06-18 Baxter International Inc. Hemostatic compositions
US9821025B2 (en) 2011-10-11 2017-11-21 Baxter International Inc. Hemostatic compositions
US9833541B2 (en) 2011-10-27 2017-12-05 Baxter International Inc. Hemostatic compositions
US11109849B2 (en) 2012-03-06 2021-09-07 Ferrosan Medical Devices A/S Pressurized container containing haemostatic paste
US9999703B2 (en) 2012-06-12 2018-06-19 Ferrosan Medical Devices A/S Dry haemostatic composition
US10799611B2 (en) 2012-06-12 2020-10-13 Ferrosan Medical Devices A/S Dry haemostatic composition
US9265858B2 (en) 2012-06-12 2016-02-23 Ferrosan Medical Devices A/S Dry haemostatic composition
US10595837B2 (en) 2013-06-21 2020-03-24 Ferrosan Medical Devices A/S Vacuum expanded dry composition and syringe for retaining same
US9724078B2 (en) 2013-06-21 2017-08-08 Ferrosan Medical Devices A/S Vacuum expanded dry composition and syringe for retaining same
US10111980B2 (en) 2013-12-11 2018-10-30 Ferrosan Medical Devices A/S Dry composition comprising an extrusion enhancer
US11103616B2 (en) 2013-12-11 2021-08-31 Ferrosan Medical Devices A/S Dry composition comprising an extrusion enhancer
US11046818B2 (en) 2014-10-13 2021-06-29 Ferrosan Medical Devices A/S Dry composition for use in haemostasis and wound healing
US10653837B2 (en) 2014-12-24 2020-05-19 Ferrosan Medical Devices A/S Syringe for retaining and mixing first and second substances
US10918796B2 (en) 2015-07-03 2021-02-16 Ferrosan Medical Devices A/S Syringe for mixing two components and for retaining a vacuum in a storage condition
US11207258B2 (en) 2016-01-25 2021-12-28 Suntory Holdings Limited Capsule containing functional substance and method for manufacturing said capsule
WO2017131003A1 (ja) * 2016-01-25 2017-08-03 サントリーホールディングス株式会社 機能性物質を含有するカプセル及びその製造方法
US11801324B2 (en) 2018-05-09 2023-10-31 Ferrosan Medical Devices A/S Method for preparing a haemostatic composition
WO2021132543A1 (ja) * 2019-12-27 2021-07-01 Eaファーマ株式会社 瘻孔治療用材料

Also Published As

Publication number Publication date
EP0702959A1 (en) 1996-03-27
EP0702959A4 (en) 1996-11-27
DE69427908D1 (de) 2001-09-13
JP3639593B2 (ja) 2005-04-20
ATE203913T1 (de) 2001-08-15
US6831058B1 (en) 2004-12-14
EP0702959B1 (en) 2001-08-08
DE69427908T2 (de) 2001-11-22

Similar Documents

Publication Publication Date Title
WO1994027630A1 (fr) Preparation de gel a base de gelatine reticulee contenant un facteur de croissance de fibroblaste de base
JP3351525B2 (ja) 骨形成性蛋白医薬処方物
RU2098121C1 (ru) Микрокапсула для длительного высвобождения физиологически активного пептида
JP3618736B2 (ja) トロンビン由来ペプチドを使用した治療法
EP0608313A1 (en) Formulations of blood clot-polymer matrix for delivery of osteogenic proteins
ES2205481T3 (es) Microparticulas biodegradables para la liberacion sostenida de farmacos terapeuticos.
JP4878730B2 (ja) Hgfヒドロゲル徐放性製剤
JP7132465B2 (ja) 血管新生促進剤、及び治療方法
US20060148691A1 (en) Sustained release preparation for therapy of coronary stenosis or obstruction
JPH08325160A (ja) 塩基性繊維芽細胞増殖因子含有ポリアニオン付加架橋ゼラチンゲル製剤
JP2004155668A (ja) Nk4をコードするdnaを含有する徐放性製剤
WO2007046540A1 (ja) 象牙質-歯髄複合体再生治療剤
EP1467749B1 (en) Thrombin derived peptides for promoting cardiac tissue repair
US20080318863A1 (en) Ischemia therapeutic agent
AU757968B2 (en) Methods for increasing vascularization and promoting wound healing
JP2004203829A (ja) Bmpを含有する徐放性製剤
JPS60126217A (ja) 長期徐放性製剤
JP2004123650A (ja) Nk4を含有する徐放性製剤
JP2003238439A (ja) 虚血治療剤
BR112020000506A2 (pt) formulações farmacêuticas hipercomprimidas
JP2004091450A (ja) 肺高血圧症治療用徐放性製剤
WO2005040195A2 (en) Formulation of exendins
WO2004089400A1 (ja) 心筋症治療剤
JP2003246752A (ja) 心筋症治療剤
WO2005087257A1 (ja) 架橋ゼラチンゲルを担体とする軟骨組織修復治療剤

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1994916430

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08567355

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1994916430

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994916430

Country of ref document: EP