US7442797B2 - Platinum complex and light emitting device - Google Patents

Platinum complex and light emitting device Download PDF

Info

Publication number
US7442797B2
US7442797B2 US10/578,237 US57823704A US7442797B2 US 7442797 B2 US7442797 B2 US 7442797B2 US 57823704 A US57823704 A US 57823704A US 7442797 B2 US7442797 B2 US 7442797B2
Authority
US
United States
Prior art keywords
group
ring
rings
represent
aryl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US10/578,237
Other languages
English (en)
Other versions
US20070103060A1 (en
Inventor
Hisanori Itoh
Yuji Nakayama
Takeshi Iwata
Yoshimasa Matsushima
Yoji Hori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago International Corp
Original Assignee
Takasago International Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago International Corp filed Critical Takasago International Corp
Assigned to TAKASAGO INTERNATIONAL CORPORATION reassignment TAKASAGO INTERNATIONAL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NAKAYAMA, YUJI, HORI, YOJI, ITOH, HISANORI, IWATA, TAKESHI, MATSUSHIMA, YOSHIMASA
Publication of US20070103060A1 publication Critical patent/US20070103060A1/en
Application granted granted Critical
Publication of US7442797B2 publication Critical patent/US7442797B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/74Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • C07F17/02Metallocenes of metals of Groups 8, 9 or 10 of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/28Radicals substituted by singly-bound oxygen or sulphur atoms
    • C07D213/30Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/44Radicals substituted by doubly-bound oxygen, sulfur, or nitrogen atoms, or by two such atoms singly-bound to the same carbon atom
    • C07D213/53Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/63One oxygen atom
    • C07D213/64One oxygen atom attached in position 2 or 6
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/22Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D277/28Radicals substituted by nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0086Platinum compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1096Heterocyclic compounds characterised by ligands containing other heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a platinum complex useful as a material for use in a light-emitting device capable of emitting light by conversion of electric energy to light.
  • the platinum complex of the invention is useful as a novel light-emitting material that may be used suitably in the fields, for example, of display devices, display units, back lights, electrophotography, illumination light sources, recording light sources, exposure light sources, light sources for reading, signboards, and interiors.
  • organic electroluminescence devices hereinafter simply referred to as “organic EL device”
  • organic EL device organic electroluminescence devices
  • the organic EL device Since the organic EL device has higher response speed compared with liquid crystals used so far and emits light by itself, it does not require a back light as in existent liquid crystals and may form a flat panel display of an extremely reduced thickness.
  • the organic EL device is a light-emitting device utilizing the electroluminescence phenomenon and, while it is identical with LED in view of the principle, it has a feature in that an organic compound is used as a light-emitting material.
  • organic EL devices using such an organic compound as a light-emitting material an organic EL device utilizing a multi-layered thin film by a vapor deposition method has been reported.
  • light emission characteristics are improved remarkably compared with existent mono-layered device by using tris(8-hydroxy quinolinate-O,N) aluminum (Alq 3 ) as an electron-transporting material and laminating it with a hole-transporting material (for example, aromatic amine compound).
  • the phosphorescence emission is an emission phenomenon from an excited triplet state caused from the excited singlet state by radiationless transition referred to as an inter-state crossing, and it is known to show higher quantum efficiency compared with the fluorescence emission as an emission phenomenon from the excited singlet state. It is expected that a high luminous efficiency may be attained by using the organic compound showing such a property as the light-emitting material.
  • the platinum complex is a red phosphorescent material of high color purity
  • the external quantum efficiency is about 4% and further improvement for the luminous efficiency is demanded.
  • an ortho-metalated platinum complex using a compound having an arylpyridine skeleton as a ligand and using platinum as the metal is useful as a phosphorescent material (Patent Document 2) and a platinum complex using a biaryl skeleton compound as a ligand has also be reported (Patent Document 3).
  • Patent Document 1 Specification of U.S. Pat. No. 6,303,238
  • Patent Document 2 JP-A No. 2001-181617
  • Patent Document 3 JP-A No. 2002-175884
  • the present invention has as an object to provide a novel platinum complex which is useful as a material for use in light-emitting devices of good light emission characteristics and luminous efficiency. Further, the present invention has as an object to provide a novel light-emitting material that may be utilized in various fields.
  • the present inventors have made earnest studies for attaining the foregoing purpose and, as a result, have found that a novel platinum complex of a specified structure shown below has excellent light emission characteristics and luminous efficiency and have accomplished the present invention.
  • the present invention relates to a platinum complex represented by the following general formula (1):
  • Q 1 , Q 2 , and Q 3 each represents independently a bivalent atom (group) or bond providing that Q 1 , Q 2 , and Q 3 do not represent bonds simultaneously.
  • Two of Z 1 , Z 2 , Z 3 , and Z 4 represent coordination bonds and the remaining two of them represent covalent bonds, oxygen atoms or sulfur atoms).
  • the present invention relates to a platinum complex represented by the following general formula (2):
  • R 6 , R 7 , R 8 , and R 9 each represent independently alkyl group, halogenated alkyl group, aralkyl group, alkenyl group, alkynyl group, aryl group, amino group, mono- or di-alkyl amino group, mono- or di-aralkyl amino group, mono- or di-aryl amino group, alkoxy group, alkenyloxy group, aralkyloxy group, aryloxy group, heteroaryloxy group, acyl group, alkoxycarbonyl group, aryloxycarbonyl group, acyloxy group, acylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, aralkyloxycarbonylamino group, sulfonylamino group, sulfamoyl group, carbamoyl group, alkylthio group, aralkylthio group, arylthio group, heteroarylthio group,
  • each of m 1 , m 2 , m 3 , and m 4 is an integer of 2 or greater
  • plural R 6 , R 7 , R 8 , and R 9 may be different from each other and further, a group of R 6 , a group of R 7 , a group of R 8 , and a group of R 9 may join to each other to form a condensed ring structure.
  • Q 1 , Q 2 , and Q 3 each represent independently —(CR 1 R 2 ) n1 —, —O(CR 1 R 2 ) n1 O—, —(O) n2 C( ⁇ O)(O) n3 —, oxygen atom, sulfur atom, —NR 3 —, —BR 3a —, —S( ⁇ O)—, —SO 2 —, —O(SO 2 )O—, —Si(R 4 R 5 )—, —OSi(R 4 R 5 )O—, —C( ⁇ CR a R b )—, or a bond providing that Q 1 , Q 2 , and Q 3 do not represent bonds simultaneously.
  • R 1 and R 2 in Q 1 , Q 2 , and Q 3 each represent independently hydrogen atom, alkyl group, aralkyl group, aryl group, or alkoxy group.
  • n1 represents an integer of 1 to 3 and n2 and n3 each represent independently an integer of 0 or 1.
  • R 3 represents hydrogen atom, alkyl group, aralkyl group, or aryl group, and R 3a represents alkyl group, aralkyl group or aryl group.
  • R 4 and R 5 each represent independently alkyl group, aralkyl group or aryl group.
  • R a and R b each represent independently hydrogen atom, alkyl group, aralkyl group, aryl group, or cyano group.
  • R 1 and R 2 , R 4 and R 5 , or R a and R b may join to each other to form a ring which may contain a hetero atom in the ring together with atoms substituted in each of them.
  • Two of X 1 , X 2 , X 3 , and X 4 represent nitrogen atoms coordination bonded to the platinum atom and the remaining two of them represent carbon atoms, and two of Z 1 , Z 2 , Z 3 , and Z 4 represent coordination bonds and the remaining two of them represent covalent bonds, oxygen atoms or sulfur atoms).
  • the present invention relates to a light-emitting device in which a light-emitting layer or a plurality of thin organic compound layers containing the light-emitting layer are formed between a pair of electrodes, wherein at least one layer is a layer containing at least one kind of platinum complex represented by the general formula (1) or the general formula (2).
  • the present invention relates to a compound represented by the following general formula (3):
  • Q 1 , Q 2 , and Q 3 each represent independently a bivalent atom (group) or a bond providing that Q 1 , Q 2 , and Q 3 do not represent bonds simultaneously.
  • X 1 , X 2 , X 3 , and X 4 are nitrogen atoms capable of coordination bond
  • Z 1 H, Z 2 H, Z 3 H, and Z 4 H bonding thereto are not present
  • X 1 , X 2 , X 3 , and X 4 are carbon atoms
  • Z 1 , Z 2 , Z 3 , and Z 4 bonding thereto represent covalant bonds, oxygen atoms or sulfur atoms
  • X 1 , X 2 , X 3 and X 4 are nitrogen atoms capable of covalent bond
  • Z 1 , Z 2 , Z 3 and Z 4 bonding thereto represent covalent bonds).
  • the present invention relates to the compound represented by the following general formula (4):
  • R 6 , R 7 , R 8 , and R 9 each represent independently alkyl group, halogenated alkyl group, aralkyl group, alkenyl group, alkynyl group, aryl group, amino group, mono- or di-alkyl amino group, mono- or di-aralkyl amino group, mono- or di-aryl amino group, alkoxy group, alkenyloxy group, aralkyloxy group, aryloxy group, heteroaryloxy group, acyl group, alkoxycarbonyl group, aryloxycarbonyl group, acyloxy group, acylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, aralkyloxycarbonylamino group, sulfonylamino group, sulfamoyl group, carbamoyl group, alkylthio group, aralkylthio group, arylthio group, heteroarylthio group,
  • m 1 , m 2 , m 3 , and m 4 each represent the number of R 6 , R 7 , R 8 , and R 9 and independently represent an integer of 0 to 3.
  • plural R 6 , R 7 , R 8 , and R 9 may be different from each other and further, a group of R 6 , a group of R 7 , a group of R 8 , and a group of R 9 may join to each other to form a condensed ring structure.
  • Q 1 , Q 2 , and Q 3 each represent independently —(CR 1 R 2 ) n1 —, —O(CR 1 R 2 ) n1 O—, —(O) n2 C( ⁇ O)(O) n3 —, oxygen atom, sulfur atom, —NR 3 —, —BR 3a —, —S( ⁇ O)—, —SO 2 —, —O(SO 2 )O—, —Si(R 4 R 5 )—, —OSi(R 4 R 5 )O—, —C( ⁇ CR a R b )—, or a bond providing that Q 1 , Q 2 , and Q 3 do not show bonds simultaneously.
  • R 1 and R 2 in Q 1 , Q 2 , and Q 3 each represent independently hydrogen atom, alkyl group, aralkyl group, aryl group, or alkoxy group.
  • n1 represents an integer of 1 to 3 and n2 and n3 each represent independently an integer of 0 or 1.
  • R 3 represents hydrogen atom, alkyl group, aralkyl group, or aryl group, and R 3a represents alkyl group, aralkyl group or aryl group.
  • R 4 and R 5 each represent independently an alkyl group, aralkyl group or aryl group.
  • R a and R b each represent independently hydrogen atom, alkyl group, aralkyl group, aryl group, or cyano group.
  • R 1 and R 2 , R 4 and R 5 , or R a and R b may join to each other to form a ring which may contain hetero atom in the ring together with atoms substituted in each of them.
  • Two of X 1 , X 2 , X 3 , and X 4 represent nitrogen atoms coordination bonded to the platinum atom and the remaining two of them represent carbon atoms, and two of Z 1 , Z 2 , Z 3 , and Z 4 represent coordination bonds and the remaining two of them represent covalent bonds, oxygen atoms or sulfur atoms.
  • H represents a hydrogen atom).
  • the platinum complex of the present invention is useful as a light-emitting material and, particularly, may prepare an organic EL device having high light emission characteristic, high luminous efficiency, and high durability as a material for use in the organic EL.
  • FIG. 1 is a view showing a constitutional example of an organic EL device using a platinum complex according to the present invention.
  • the platinum complex of the invention is to be described specifically.
  • the platinum complex represented by the general formula (1) of the invention is a platinum complex compound having a tetra-dentate ligand comprising the ring A, ring B, ring C and ring D.
  • the nitrogen-containing heterocyclic ring which may have substituent(s) in the ring A, the ring B, the ring C, and the ring D is a heterocyclic ring having at least one nitrogen atom as a hetero atom and further includes a 5 to 8-membered, preferably, 5- or 6-membered monocyclic, polycyclic or condensed heterocyclic ring which may contain from 1 to 3 hetero atoms comprising, for example, nitrogen atom, oxygen atom, or sulfur atom.
  • the nitrogen atom in the nitrogen-containing heterocyclic ring may be coordinated to the platinum atom.
  • Other rings forming the polycyclic group or condensed ring group include the heterocyclic ring, carbocyclic ring, etc. described above.
  • Preferred nitrogen-containing heterocyclic ring includes, for example, pyridine ring, diazine ring, triazine ring, diazole ring, triazole ring, thiazole ring, thiadiazole ring, oxazole ring, oxodiazole ring, benzopyridine ring, benzodiazine ring, naphthylidine ring, and 2H-pyrrole ring.
  • One or more hydrogen atoms on the nitrogen-containing heterocyclic ring in the ring A, ring B, ring C, and ring D of the platinum complex represented by the general formula (1) may be substituted with substituent(s). While the substituent is not particularly restricted so long as it is a group not giving undesired effects on the light emission characteristics, it may include preferably those groups described for R 6 , R 7 , R 8 , and R 9 in the platinum complex represented by the general formula (2) to be describe later.
  • the aryl ring in a case where the ring A, ring B, ring C, or ring D is an aryl group or hetero aryl group which may have substituent(s) includes monocyclic, polycyclic, condensed ring type carbocyclic group of 6 to 40 carbon atoms, preferably, 6 to 30 carbon atoms, and, more preferably, 6 to 20 carbon atoms.
  • the hetero aryl group includes 5- to 8-membered, preferably, 5- or 6-membered monocyclic, polycyclic or condensed ring type heterocyclic rings containing from 1 to 3 hetero atoms, for example, nitrogen atom, oxygen atom, or sulfur atom.
  • Other rings forming the polycyclic or condensed ring type of the heterocyclic ring include, for example, the heterocyclic ring groups or the carbocyclic groups described above.
  • Preferred aryl ring or hetero aryl ring includes, for example, benzene ring, pyridine ring, diazine ring, triazine ring, pyrrole ring, diazole ring, furan ring, thiophene ring, naphthalene ring, benzopyridine ring, benzodiazine ring, benzofuran ring, and benzothiophene ring.
  • One or more of hydrogen atoms on the aryl ring or the heteroaryl ring in the ring A, ring B, ring C, ring D of the platinum complex represented by the general formula (1) may be substituted with substituent(s).
  • the substituent is not particularly restricted so long as it gives no undesired effect on the light emission characteristic and includes preferably those groups to be described for R 6 , R 7 , R 8 , and R 9 in the platinum complex represented by the general formula (2) to be described later.
  • bivalent atom (group) represented by Q 1 , Q 2 , Q 3 in the general formula (1).
  • the bivalent atom (group) represented by the Q 1 , Q 2 , Q 3 in the invention exist as a spacer for connecting four ring groups and specific examples include, for example, —(CR 1 R 2 ) n1 —, —O(CR 1 R 2 ) n1 O—, —(O) n 2 C( ⁇ O)(O) n3 —, oxygen atom, sulfur atom, —NR 3 —, BR 3a , —S( ⁇ O)—, —SO 2 —, —O(SO 2 )O—, Si (R 4 R 5 )—, —OSi (R 4 R 5 )O—, and —C( ⁇ CR a R b )—.
  • R 1 and R 2 in —(CR 1 R 2 ) n1 — and —O(CR 1 R 2 )O— each include independently hydrogen atom, alkyl group, aralkyl group or aryl group
  • R 3 in —NR 3 — includes hydrogen atom, alkyl group, aralkyl group or aryl group
  • R 3a in BR 3a includes alkyl group, aralkyl group, and aryl group
  • R 4 and R 5 in —SiR 4 R 5 — and —O(SiR 4 R 5 )O— each include independently alkyl group, aralkyl group, or aryl group
  • R a and R b in —C( ⁇ CR a R b )— each include hydrogen atom, alkyl group, aralkyl group, aryl group, or cyano group, and specific examples of the alkyl group, aralkyl group, and aryl group represented by R 1 , R 2 ,
  • the ring formed by bonding of R 1 and R 2 , R 4 and R 5 , R a and R b to each other together with the atoms substituted in each of them includes 5- or 6-membered rings which may contain hetero atoms.
  • Specific rings include cyclopentane ring, cyclohexane ring, tetrahydrofuran ring, tetrahydropyrane ring, dioxolane ring, dioxane ring, furan ring, pyran ring, thiophene ring, benzene ring, tetrahydrosilole ring, and silole ring.
  • the rings may also include bivalent spiro ring from one atom, bivalent saturated rings and aromatic rings from different atoms, etc.
  • a preferred form of the platinum complex of the invention includes, for example, platinum complex represented by the general formula (2).
  • the alkyl group represented by R 6 , R 7 , R 8 , and R 9 includes, for example, linear, branched, or cyclic alkyl groups of 1 to 30 carbon atoms, preferably, 1 to 20 carbon atoms and, more preferably, 1 to 10 carbon atoms and specific examples include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, tert-butyl group, n-hexyl group, 2-ethylhexyl group, n-octyl group, n-decyl group, n-hexadecyl group, cyclopropyl group, cyclopentyl group, and cyclohexyl group.
  • the halogenated alkyl group includes, those groups in which one or more of hydrogen atoms in the alkyl group described above are substituted with halogen atom(s) such as a fluorine atom or chlorine atom and specifically includes, for example, perfluoroalkyl groups such as a trifluoro methyl group and pentafluoro ethyl group.
  • the aralkyl group includes those groups in which one or more hydrogen atoms in the alkyl groups described above are substituted with the aryl group described above (the aryl group may have a substituent such as the alkyl group described above, the alkoxyl group or halogen atom to be described later).
  • a preferred aralkyl group includes arylated alkyl groups of 7 to 30, preferably, 7 to 20 and, more preferably, 7 to 15 carbon atoms which may have substituent(s), and specific examples include, for example, benzyl group, 4-methylbenzyl group, 4-methoxybenzyl group, and 1-phenethyl group.
  • the alkenyl group includes those having one or more double bonds in a linear or branched carbon chain of 2 to 30 carbon atoms, preferably, 2 to 20 carbon atoms, and, more preferably, 2 to 10 carbon atoms, and specific examples include, for example, vinyl group, allyl group, 2-butenyl group and 3-pentenyl group.
  • the alkynyl group includes those having one or more triple bonds in a linear or branched carbon chain of 2 to 30 carbon atoms, preferably, 2 to 20 carbon atoms, and, more preferably, 2 to 10 carbon atoms and specific examples include, for example, ethynyl group, 1-propynyl group, and 2-propynyl group.
  • the aryl group includes aryl groups of 6 to 30 carbon atoms, preferably, 6 to 20 carbon atoms, and, more preferably, 6 to 12 carbon atoms and specific examples include, for example, phenyl group, tolyl group, naphthyl group, and anthrnyl group.
  • the aryl group may have substituent(s) such as the alkyl group described above and alkoxy group and halogen atom to be described later.
  • the mono- or di-alkyl amino group includes amino groups in which one or two hydrogen atoms are substituted by the alkyl group described above, and specific examples include, for example, methylamino group, dimethylamino group, and diethylamino group.
  • the mono- or di-aralkyl amino group includes amino groups in which one or two hydrogen atoms are substituted by the aralkyl group described above, and specific examples include, for example, benzylamino group, dibenzylamino group, and 1-phenylethylamino group.
  • the mono- or di-aryl amino group includes amino groups in which one or two hydrogen atoms are substituted by the aryl group described above, and specific examples include, for example, phenylamino group, diphenylamino group, ditolylamino group, and phenylnaphthylamino group.
  • the alkoxy group includes those groups in which an oxygen atom is bonded to the alkyl group described above, and specific examples include, for example, methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, tert-butoxy group, and 2-ethylhexyloxy group.
  • the alkenyloxy group includes those groups in which an oxygen atom is bonded to the alkenyl group described above, and specific examples include, for example, vinyloxy group and allyloxy group.
  • the aralkyloxy group includes those groups in which an oxygen atom is bonded to the aralkyl group described above, and specific examples include, for example, benzyloxy group and 1-phenetyloxy group.
  • the aryloxy group includes those groups in which an oxygen atom is bonded to the aryl group described above, and specific examples include, for example, phenoxy group, tolyloxy group, and naphthyloxy group.
  • the heteroaryloxy group includes those groups in which an oxygen atom is bonded to the heteroaryl group described above, and specific examples include, for example, 2-pyridyloxy group, 2-pyradinyloxy group, 2-pyrimidinyloxy group, and 2-quinolyloxy group.
  • the acyl group may be linear or branched and includes, for example, acyl groups of 1 to 18 carbon atoms derived from carboxylic acids such as aliphatic carboxylic acids and aromatic carboxylic acids and specific examples include, for example, formyl group, acetyl group, propionyl group, butyryl group, pivaloyl group, pentanoyl group, hexanoyl group, lauroyl group, stearoyl group, benzoyl group, and acryloyl group.
  • carboxylic acids such as aliphatic carboxylic acids and aromatic carboxylic acids and specific examples include, for example, formyl group, acetyl group, propionyl group, butyryl group, pivaloyl group, pentanoyl group, hexanoyl group, lauroyl group, stearoyl group, benzoyl group, and acryloyl group.
  • the alkoxycarbonyl group may be linear, branched or cyclic and includes, for example, alkoxycarbonyl groups of 2 to 19 carbon atoms and specific examples include, for example, methoxy carbonyl group, ethoxy carbonyl group, n-propoxy carbonyl group, 2-propoxy carbonyl group, n-butoxy carbonyl group, tert-butoxy carbonyl group, pentyloxy carbonyl group, hexyloxy carbonyl group, 2-ethylhexyloxy carbonyl group, lauryloxy carbonyl group, stearyloxy carbonyl group, and cyclohexyloxy carbonyl group.
  • the aryloxy carbonyl group includes, for example, aryloxy carbonyl groups of 7 to 20 carbon atoms and specific examples include, for example, phenoxy carbonyl group, and naphthyloxy carbonyl group.
  • the acyloxy group includes acyloxy groups derived from carboxylic acids, for example, of 2 to 18 carbon atoms and specific examples include, for example, acetoxy group, propionyloxy group, butyryloxy group, pivaloyloxy group, pentanoyloxy group, hexanoyloxy group, lauroyloxy group, stearoyloxy group, benzoyloxy group, and acryloyloxy group.
  • the acylamino group includes amino groups in which one hydrogen atom of the amino group is substituted with the acyl group described above, and specific examples include, for example, formylamino group, acetylamino group, propionylamino group, pivaloylamino group, pentanoylamino group, hexanoylamino group, and benzoylamino group.
  • the alkoxycarbonylamino group includes amino groups in which one hydrogen atom of the amino group is substituted with the alkoxycarbonyl group described above, and specific examples include, for example, methoxycarbonyl amino group, ethoxycarbonyl amino group, n-propoxycarbonyl amino group, n-butoxycarbonyl amino group, tert-butoxycarbonyl amino group, pentyloxycarbonyl amino group, and hexyloxycarbonyl amino group.
  • the aryloxycarbonylamino group includes amino groups in which one hydrogen atom of the amino group is substituted with the aryloxycarbonyl group described above, and specific examples include, for example, phenyloxycarbonyl amino group.
  • the aralkyloxycarbonylamino group includes amino groups in which one hydrogen atom of the amino group is substituted with the aralkyloxycarbonyl group described above, and specific examples include, for example, benzyloxycarbonyl amino group.
  • the sulfonylamino group includes a non-substituted sulfonyl amino group or amino groups in which one hydrogen atom of the amino group is substituted with the sulfonyl group bonded with the alkyl group, aryl group or aralkyl group described above, and specific examples include, for example, methanesulfonyl amino group and p-toluenesulfonyl amino group.
  • the sulfamoyl group includes a non-substituted sulfamoyl group or mono- or di-substituted sulfamoyl groups in which at least one hydrogen atom on the nitrogen atom is substituted with the alkyl group, aryl group, or aralkyl group described above, and specific examples include, for example, sulfamoyl group, methylsulfamoyl group, dimethylsulfamoyl group, and phenylsulfamoyl group.
  • the carbamoyl group includes a non-substituted carbamoyl group or mono- or di-substituted carbamoyl groups in which at least one hydrogen atom on the nitrogen atom is substituted with the alkyl group, aryl group, or aralkyl group described above, and includes, for example, a carbamoyl group, methylcarbamoyl group, diethylcarbamoyl group, and phenylcarbamoyl group.
  • the alkylthio group may be linear, branched or cyclic and includes, for example, alkylthio group of 1 to 6 carbon atoms and specific examples include, for example, methylthio group, ethylthio group, n-propylthio group, 2-propylthio group, n-butylthio group, 2-butylthio group, isobutylthio group, tert-butylthio group, pentylthio group, hexylthio group, and cyclohexylthio group.
  • the aralkylthio group includes those groups in which a sulfur atom is bonded to the aralkyl group described above, and specific examples include, for example, benzylthio group and 1-phenethylthio group.
  • the arylthio group includes those groups in which a sulfur atom is bonded to the aryl group described above and specific examples include, for example, phenylthio group and naphthylthio group.
  • the heteroarylthio group includes those groups in which a sulfur atom is bonded to the heteroaryl group described above, and specific examples include, for example, pyridylthio group, 2-benzoimidazolylthio group, 2-benzoxazolylthio group, and 2-benzothiazolylthio group.
  • the alkanesulfonyl group include, for example, linear or branched alkanesulfonyl groups of, for example, 1 to 6 carbon atoms and specific examples include, for example, methanesulfonyl group, and ethanesulfonyl group.
  • the arenesulfonyl group includes, for example, arenesulfonyl groups of 6 to 12 carbon atoms and specific examples include, for example, benzenesulfonyl group, and p-toluenesulfonyl group.
  • the alkanesulfinyl group include, for example, linear or branched alkanesulfinyl groups of, for example, 1 to 6 carbon atoms and specific examples include, for example, methanesulfinyl group, and ethanesulfinyl group.
  • the arenesulfinyl group includes, for example, arenesulfinyl groups of 6 to 12 carbon atoms and specific examples include, for example, benzenesulfinyl group, and p-toluenesulfinyl group.
  • the ureido group includes a non-substituted ureido group or ureido groups in which at least one hydrogen atom of the hydrogen atoms bonded to the two nitrogen atoms is substituted with the alkyl group, aryl group, or aralkyl group described above, and specific examples include, for example, ureido group, methylureido group, and phenylureido group.
  • the substituted phosphoramidate group includes those groups in which at least one hydrogen atom of the phosphoramidate group is substituted with the alkyl group, aryl group, or aralkyl group described above, and specific examples include, for example, diethyl phosphoramidate group and phenyl phosphoramidate group.
  • the halogen atom includes a fluorine atom, chlorine atom, bromine atom, and iodine atom.
  • the sulfo group is —SO 3 H group
  • the hydroxamic acid group is —CO—NH—OH group
  • the sufino group is —SO 2 H group
  • the hydrazino group is —NH—NH 2 group.
  • the heterocyclic group is the heteroaryl group as described above, and includes, for example, imidazolyl group, pyridyl group, quinolyl group, furyl group, thienyl group, piperidinyl group, morpholino group, benzoxazolyl group, benzimidazolyl group, and benzothiazolyl group.
  • the trialkylsilyl group includes silyl groups tri-substituted with the alkyl group described above, and specific examples include, for example, trimethylsilyl group and tert-butyldimethylsilyl group.
  • the triarylsilyl group includes silyl groups tri-substituted with the aryl group described above, and specific examples include, for example, triphenylsilyl group.
  • a group of R 6 , a group of R 7 , a group of R 8 , and a group of R 9 may respectively join to each other to form a condensed ring structure or, further, R 6 and R 7 , R 5 and R 8 or/and R 7 and R 9 may join to each other to form a condensed ring structure.
  • Specific examples of the condensed ring include, for example, phenanthrene ring, fluorene-9-on ring, 1,10-phenanthroline ring and 4,5-diazafluorene-9-on ring.
  • m 1 , m 2 , m 3 and each represent the number for R 6 , R 7 R 8 , and R 9 and each represent independently an integer of 0 to 3.
  • R 6 , R 7 , R 8 , and R 9 may be same or different with each other.
  • R 6 , R 7 , R 8 , R 9 , m 1 , m 2 , m 3 , m 4 , Q 1 , Q 2 , Q 3 , X 1 , X 2 , X 3 , X 4 , Z 1 , Z 2 , Z 3 , and Z 4 in the general formula (4) described above, are same as those in the general formula (2) above.
  • the platinum complex (1) ⁇ or platinum complex (2) ⁇ of the invention may be manufactured easily by reacting a complex precursor and a compound represented by the general formula (3) (hereinafter simply referred to as compound (3)) ⁇ or a compound represented by general formula (4) (hereinafter simply referred to as compound (4)) ⁇ under the presence of an appropriate solvent and, optionally, in an inert gas atmosphere as described in the following scheme 1.
  • the complex precursor in the scheme 1 may either be an inorganic platinum compound or an organic platinum complex.
  • Preferred inorganic platinum compound includes PtY 2 (Y represents a halogen atom here and hereinafter) and M 2 PtY 4 (M represents an alkali metal here and hereinafter).
  • the halogen atom represented by Y includes a fluorine atom, chlorine atom, bromine atom, iodine atom, etc.
  • the alkali metal represented by M includes lithium, sodium, potassium, etc.
  • the inorganic platinum compound include, for example, platinum (II) chloride, platinum (II) bromide, sodium chloro platinate (II), potassium chloro platinate (II), potassium bromo platinate (II), etc.
  • Preferred organic platinum complexes include, for example, organic platinum complexes represented, by the following general formula (5): Pt(J) n4 Y 2 (5) (in which J represents a neural ligand, n4 represents 1 or 2.).
  • one of the neutral ligands represented by J includes non-conjugated diene compounds
  • the diene compound may be cyclic or acyclic.
  • the non-conjugated diene compound is a cyclic non-conjugated diene compound, it may be monocyclic, polycyclic, condensed ring, or bicyclo ring.
  • n4 is 1.
  • the non-conjugated diene compound may also be a non-conjugated diene compound substituted with substituent(s), that is, a substituted non-conjugated diene compound.
  • the substituent is not particularly restricted so long as this is a substituent not giving undesired effects on the manufacturing method of the compound of the invention and includes, for example, those groups same as the substituent described specifically in the explanation for the platinum complex as the example of the substituent.
  • Preferred specific examples of the non-conjugated diene compound include, for example, 1,5-cyclooctanediene, bicyclo[2,2,1]hepta-2,5-diene, and 1,5-hexadiene.
  • neutral ligands than the non-conjugated diene compounds include monodentate neutral ligand and include, more specifically, nitrites such as acetonitrile or benzonitrile, sulfides such as diethyl sulfide, tertiary phosphines such as triphenyl phosphine, tertiary amines such as pyridine, and monoenes such as ethylene.
  • n4 is 2.
  • the halogen atom represented by Y includes fluorine atom, chlorine atom, bromine atom, iodine atom, etc. and, chlorine atom and bromine atom are particularly preferred.
  • platinum complex represented by the general formula (1) and the platinum complex represented by the general formula (2) include, for example, the compounds shown below but not restricted to them.
  • both of the compound (3) and the compound (4) are collectively referred to as a tetra-dentate ligand.
  • the amount of the tetra-dentate ligand is usually from 0.5 to 20 equivalents, preferably, from 0.8 to 10 equivalents and, more preferably, from 1.0 to 2.0 equivalents based on the complex precursor.
  • solvent includes, for example, amides such as N,N-dimethylformamide, formamide, and N,N-dimethylacetamide, cyano-containing organic compounds such as acetonitrile and benzonitrile, halogenated hydrocarbons such as dichloromethane, 1,2-dichloroethane, chloroform, carbon tetrachloride, and o-dichlorobenzene, aliphatic hydrocarbons such as pentane, hexane, heptane, octane, decane, and cyclohexane, aromatic hydrocarbons such as benzene, toluene, and xylene, ethers such as diethyl ether, diisopropyl ether, tert-butyl methyl ether, dimethoxy ethane, ethylene glycol diethyl ether, ethers such as diethyl ether, diisopropyl ether, tert
  • the solvent may be used each alone or two or more of them may be used being combined properly. More preferred solvent includes amides such as N,N-dimethylformamide and N,N-dimethylacetamide, cyano-containing organic compounds such as acetonitrile and benzonitrile, aromatic hydrocarbons such as benzene, toluene, and xylene, ethers such as ethylene glycol diethyl ether, tetrahyfrofuran, 1,4-dioxane, and 1,3-dioxane, ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, alcohols such as methanol, ethanol, 2-propanol, n-butanol, and 2-ethoxyethanol, polyols such as ethylene glycol, propylene glycol, 1,2-propanediol, and glycerine, esters such as methyl acetate, ethyl
  • the amount of the solvent to be used is not particularly restricted so long as it may proceed the reaction sufficiently and it is properly selected from a range usually from 1 to 200 times by volume and, preferably, from 1 to 50 times by volume based on the complex precursor.
  • the reaction temperature is properly selected within a range usually from 25 to 300° C., preferably, from 60 to 250° C., and, more preferably, from 80 to 200° C.
  • the reaction time is naturally different depending on the reaction conditions such as the reaction temperature, the solvent and the base, and it is properly selected within a range usually from 10 minutes to 72 hours, preferably, from 30 minutes to 48 hours and, more preferably, from 1 to 12 hours.
  • the platinum complex of the invention may be obtained by optionally carrying out post treatment, isolation and purification after the reaction.
  • the method of the post treatment includes, for example, extraction of reaction products, filtration of precipitates, crystallization by the addition of a solvent and removal of the solvent by distillation.
  • the post treatments may be conducted each alone or in combination.
  • the method of isolation and purification includes, for example, column chromatography, recrystallization and sublimation and they may be conducted each alone or in combination.
  • the compound (3) and the compound (4) are tetra-dentate ligand having two nitrogen atoms capable of coordination to the platinum metal and two sites capable of bonding to the platinum metal.
  • Ring A, ring B, ring C, ring D, X 1 , X, X 2 , X 3 , Z 1 , Z 2 , Z 3 , Z 4 , Q 1 , Q 2 , Q 3 , R 6 , R 7 , R 8 , R 9 , m 1 , m 2 , m 3 , and m 4 in the general formula (3) and the general formula (4) are same as those in the compound (1) and the compound (2) as described above.
  • Specific examples of the compound (3) and the compound (4) include those compounds in which the platinum metal is removed from the specific example of the platinum compound in the invention described above, and a hydrogen atom is added each by one to the atom in covalent bond with the platinum atom.
  • the tetra-dentate ligand of the invention may be synthesized by carrying out various coupling reactions and other known reactions to aromatic compounds which were known prior to the filing of the present application.
  • the coupling reaction used herein includes, for example, carbon-hetero atom bond forming reactions such as aryl amination and aryl etherfication of using a transition metal, and Ullmann reaction, carbon-carbon bond forming reaction such as Grignard coupling, Negishi coupling, Suzuki coupling, etc. Further, reactions, for example, condensation reaction such as esterification and silyl esterification and halogenation may also be used.
  • the platinum complex (1) and the platinum complex (2) of the invention are useful as a phosphorescent material in light-emitting devices, particularly, organic EL devices.
  • the system, the driving method and the mode of use are not particularly restricted for the light-emitting device so long as this is a device utilizing the platinum complex of the invention, those utilizing the light emission from the platinum complex or those utilizing the platinum complex as the charge transporting material are preferred.
  • Typical light-emitting device includes organic EL devices.
  • the light-emitting device containing the platinum complex of the invention contains at least one kind of platinum complex and, at least one kind of platinum complex is contained in at least one layer of a light-emitting device in which a light-emitting layer or plural organic compound layers containing the light-emitting layer are formed between a pair of electrodes. While at least one kind of the platinum complex may be contained two or more kinds of them may be contained being combined properly.
  • the method of forming the organic layer (organic compound layer) of the light-emitting device containing the platinum complex of the invention is not particularly restricted and includes methods such as a resistance-heating vapor deposition, an electron beam, a sputtering, a molecular lamination method, a coating method, and an ink jet method.
  • a resistance-heating vapor deposition an electron beam, a sputtering, a molecular lamination method, a coating method, and an ink jet method.
  • the resistance—heating vapor deposition and the coating method are preferred from viewpoints of properties and productivity of the layer.
  • the light-emitting device containing the platinum complex of the invention is a device in which a light-emitting layer or plural thin organic compound films containing the light-emitting layer are formed between a pair of electrodes of the anode and the cathode and it may also have a hole-injecting layer, a hole-transporting layer, an electron injecting layer, an electron-transporting layer, a protective layer, etc. in addition to the light-emitting layer.
  • Each of the layers may also have other functions respectively.
  • Various materials may be used respectively for the formation of each of the layers.
  • the anode supplies holes to the hole-injecting layer, the hole-transporting layer, the light-emitting layer, etc.
  • the anode is made of material such as metals, alloys, metal oxides, electrically conductive compounds or mixtures thereof.
  • ITO electrically conductive metal oxides
  • metals such as gold, silver, chromium and nickel, further, mixtures or laminates of the metals and electrically conductive metal oxides, inorganic conductive material such as copper iodide and copper sulfide, organic conductive materials such as polyaniline, polythiophene, polypyrrole, and laminate thereof with ITO.
  • Conductive metal oxides are preferred and, particularly, ITO is preferred with a view point of productivity, high conductivity, and transparency.
  • the film thickness of the anode may be properly selected depending on the material and it is usually selected within a range from 10 nm to 5 ⁇ m, more preferably, from 50 nm to 1 ⁇ m, and further preferably, from 100 nm to 500 nm.
  • soda lime glass, non-alkali glass, transparent resin substrate, etc. with a layer being formed thereon are usually used.
  • use of non-alkali glass is preferred in view of the material in order to decrease ions eluting from the glass.
  • barrier coating such as with silica.
  • the thickness of the substrate is not particularly restricted so long as it is sufficient to keep the mechanical strength, and is usually of 0.2 mm or more and, preferably, 0.7 mm or more when the glass is used.
  • the film is formed by a method such as an electron beam method, a sputtering method, a resistance-heating vapor deposition method, a chemical reaction method (sol-gel method, etc.), or a coating method of an ITO dispersion.
  • a method such as an electron beam method, a sputtering method, a resistance-heating vapor deposition method, a chemical reaction method (sol-gel method, etc.), or a coating method of an ITO dispersion.
  • a method such as an electron beam method, a sputtering method, a resistance-heating vapor deposition method, a chemical reaction method (sol-gel method, etc.), or a coating method of an ITO dispersion.
  • UV-ozone treatment, plasma treatment, etc. are effective.
  • the cathode supplies electrons to an electron injecting layer, an electron-transporting layer, a light-emitting layer, etc. and is selected, considering the adhesiveness to a layer adjacent with the negative electrode such as an electron injecting layer, an electron-transporting layer and a light-emitting layer, and ionization potential and stability.
  • metals, alloys, metal halides, metal oxides, electroconductive compounds or mixtures thereof may be used and specific examples include alkali metals such as lithium, sodium, and potassium, and fluorides thereof, alkaline earth metals such as magnesium, and calcium and fluorides thereof, metal, silver, lead, aluminum, sodium-potassium alloy or a mixture of the metals, magnesium-silver alloy or a mixture of the metals, and rare earth metals such as indium and ytterbium and, preferably, those materials with the work function of 4 eV or lower and, preferably, aluminum, lithium-aluminum alloy or a mixture of the metals, magnesium-silver alloy or a mixture of metals.
  • alkali metals such as lithium, sodium, and potassium, and fluorides thereof
  • alkaline earth metals such as magnesium, and calcium and fluorides thereof
  • the cathode may also be formed as a laminate structure containing the compound and mixture described above. While the film thickness of the cathode may be properly selected depending on the material, usually it is preferably within a range from 10 nm to 5 ⁇ m, more preferably, from 50 nm to 1 ⁇ m and, further preferably, from 100 nm to 1 ⁇ m.
  • a method such as an electron beam method, sputtering method, resistance-heating vapor deposition method, or a coating method is used and the metal may be vapor deposited as a single element or two or more of ingredients may be vapor deposited together.
  • the electrode may also be formed of an alloy by vapor depositing plural metals together, or a previously prepared alloy may also be vapor deposited.
  • the sheet resistance of the cathode and the anode is preferably lower.
  • the material for the light-emitting layer may be optional so long as it can form a layer having a function capable of injecting electrons from the anode or the hole-injecting layer, the hole-transporting layer and a function of emitting light by providing re-combination sites for holes and electrons upon application of electric field(s).
  • Typical examples of thereof include carbazole derivatives, benzoxazole derivatives, triphenylamine derivatives, benzimidazole derivatives, benzothiazole derivatives, styrylbenzene derivatives, polyphenyl derivatives, diphenyl butadiene derivatives, tetraphenyl butadiene derivatives, naphthalimide derivatives, coumarine derivatives, perylene derivatives, perynone derivatives, oxadiazole derivatives, aldazine derivatives, pyrralizine derivatives, cyclopentadiene derivatives, bisstyryl anthracene derivatives, quinacridone derivatives, pyrrolopyridine derivatives, thiadiazopyridine derivatives, styrylamine derivatives, aromatic dimethylidene compounds, organic borane derivatives, compounds represented by the general formula (3) or formula (4) of the invention, or various typical, metal complexes including with an 8-quinolinol derivatives and rare earth
  • the polymer or oligomer compound may be incorporated with the platinum complex of the invention as a partial structure.
  • the material for the light-emitting layer is not restricted to the specific examples described above.
  • the light-emitting layer may be of a single layered structure comprising one or more of the materials described above or may be of a multi-layered structure comprising plural layers each of an identical composition of or different kinds of compositions.
  • the thickness of the light-emitting layer is not particularly restricted and, usually, it is, preferably, selected within a range from 1 nm to 5 ⁇ m, more preferably, from 5 nm to 1 ⁇ m and, further preferably, from 10 nm to 500 nm.
  • the preparation method of the light-emitting layers is not particularly restricted and includes a method such as an electron beam method, a sputtering method, a resistance-heating vapor deposition method, a molecular lamination method, a coating method (spin coating method, casting method, dip-coating method, etc.), an ink jet method, an LB method, etc. and preferably includes the resistance-heating vapor deposition method and the coating method.
  • a method such as an electron beam method, a sputtering method, a resistance-heating vapor deposition method, a molecular lamination method, a coating method (spin coating method, casting method, dip-coating method, etc.), an ink jet method, an LB method, etc. and preferably includes the resistance-heating vapor deposition method and the coating method.
  • the material for the hole-injecting layer and the hole-transporting layer is optional so long as it has a function of injecting holes from the anode, a function of transporting the holes and a function of forming barriers to electrons injected from the cathode.
  • carbazole derivatives triazole derivatives, oxadiazole derivatives, oxazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styryl anthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidine compounds, porphyrin compounds, polysilane compounds, poly(N-vinylcarbazole) derivatives, aniline copolymer, conductive polymeric oligomers such as thiophene oligomers and polythiophene, organic silane derivatives, organic borane derivatives, phthalocyanine derivatives, compounds represented by the general formula (3) or (4) of the invention, platinum complex
  • the thickness of the hole-injecting layer and the hole-transporting layer is not particularly restricted and usually it is, preferably, selected within a range from 1 nm to 5 ⁇ m, more preferably, from 5 nm to 1 ⁇ m and, further preferably, from 10 nm to 500 nm.
  • the hole-injecting layer and the hole-transporting layer may be of a single layered structure comprising one or more of the materials described above or may be of a multi-layered structure comprising plural layers of an identical composition or of different kinds of compositions.
  • a vapor deposition method As the method of preparing the hole-injecting layer and the hole-transporting layer, a vapor deposition method, an LB method, a method of coating the hole-injecting and transporting material being dissolved or dispersed in a solvent (spin coating method, casting method, dip-coating method, etc.), or ink jet method may be used.
  • the coating method the material may be dissolved or dispersed together with a resin ingredient.
  • the resin ingredient includes, for example, poly(vinyl chloride), polycarbonate, polystyrene, poly(methyl methacrylate), poly(butyl methacrylate), polyester, polysulfone, poly(phenylene oxide), polybutadiene, poly(N-vinylcarbazole), hydrocarbon resin, ketone resin, phenoxy resin, polyamide, ethyl cellulose, vinyl acetate, ABS resin, alkyd resin, epoxy resin and, silicone resin.
  • the material for the electron injecting layer and the electron-transporting layer is optional so long as it has a function of injecting electrons from the cathode, a function of transporting electrons and a function of forming barriers to holes injected from the anode.
  • the ionization potential for the hole blocking layer having a function of forming barriers to holes injected from the anode those higher than the ionization potential of the light-emitting layer are selected.
  • triazole derivative oxazole derivative
  • polycyclic compounds heterocyclic compounds such as bathocuproin, oxadiazole derivatives, fluorenone derivatives, diphenylquinone derivatives, thiopyrane dioxide derivatives, anthraquinone dimethane derivatives, anthrone derivatives, carbodiimide derivatives, fluorenilydene methane derivatives, distyrylpyrazine derivatives, acid anhydrides of aromatic tetra carboxylic acids such as naphthalene tetracarboxylic acid, or perylene tetracarboxylic acid, phthalocyanine derivatives, and 8-quinolinol derivatives, metal phthalocyanine, metal complexes having benzoxazole or benzothiaole as a ligand, organic silane derivatives, organic borane derivatives, the compound represented by the general formula (3) or formula (4) of the invention, poly(N-vinylcarbazol
  • the platinum complex of the invention may be contained as a partial structure in the polymer or oligomer compound.
  • the materials for the electron injecting layer and the electron-transporting layer is not restricted to them.
  • the thickness of the electron injecting layer and the electron-transporting layer is not particularly restricted and usually it is, preferably, selected within a range from 1 nm to 5 ⁇ m, more preferably, from 5 nm to 1 ⁇ m and further preferably, from 10 nm to 500 nm.
  • the electron injecting layer and the electron-transporting layer may be of a single layered structure comprising one or more of the materials described above or may be of a multi-layered structure comprising plural layers of an identical composition or of different kinds of compositions.
  • a vapor deposition method, LB method, a method of coating the hole-injecting and transporting material being dissolved or dispersed in a solvent spin coating method, casting method, dip-coating method, etc.
  • ink jet method ink jet method
  • the material may be dissolved or dispersed together with the resin ingredient(s) and the resin ingredient exemplified for the case of the hole-injecting layer and the hole-transporting layer may be applied.
  • the material for the protective layer may be optional so long as if has a function of inhibiting matters that promote degradation of the device such as moisture or oxygen from intruding into the device.
  • Specific examples include, metals such as indium, tin, lead, gold, silver, copper, aluminum, titanium, and nickel, metal oxides such as magnesium oxide, silicon oxide, dialuminum trioxide, germanium oxide, nickel oxide, calcium oxide, barium oxide, diiron trioxide, diytterbium trioxide, and titanium oxide, metal fluorides such as magnesium fluoride, lithium fluoride, aluminum fluoride, or calcium fluoride, polyethylene, polypropylene, poly(methyl methacrylate), polyimide, polyurea, poly(tetrafluoroethylene), poly(chloro trifluoroethylene), poly(dichloro fluoro ethylene), copolymer of chloro trifluoro ethylene and dichloro difluoro ethylene, copolymer obtained by copolymerizing a monomer mixture containing t
  • the method of forming the protective film there is no particular restriction also on the method of forming the protective film and, for example, a method such as a vacuum vapor deposition method, a sputtering method, a reactive sputtering method, an MBE (Molecular Beam Epitaxy), a cluster ion beam method, an ion plating method, a plasma polymerization method (high frequency-excited ion plating method), a plasma CVD method, a laser CVD method, a thermal CVD method, a gas source CVD method, and a coating method is applicable.
  • a method such as a vacuum vapor deposition method, a sputtering method, a reactive sputtering method, an MBE (Molecular Beam Epitaxy), a cluster ion beam method, an ion plating method, a plasma polymerization method (high frequency-excited ion plating method), a plasma CVD method, a laser CVD method, a thermal CVD method, a gas source
  • reaction mixture was neutralized by aqueous sodium thiosulfate, the mixture was extracted with toluene, the solvent was distilled off, and the residue was purified by silica gel column chromatography, thereby obtaining desired white solid (1.30 g).
  • dichlorobis(benzonitrile)platinum (II) (228 mg), N,N-bis(6-phenylpyridine-2-yl)aniline (193 mg) obtained by Example 1 and 10 ml of o-xylene were stirred at 150° C. for 1 day. After the reaction mixture was allowed to cool, to which was then added water, the mixture was extracted with dichloromethane, the solvent was distilled off, and the residue was purified by silica gel column chromatography, thereby obtaining desired yellow crystal (172 mg).
  • the desired compound was obtained as solid in the same manner as with Example 1, except for changing 2-bromo-6-phenylpyridine (660 mg) with 2-(m-chlorophenyl)pyridine (600 mg) obtained by Reference Example 2, and changing aniline (131 mg) with aniline (140 mg).
  • the objective platinum complex was prepared according to the method described in a document (Organometallics, Vol 18, No 17, 3337-3341).
  • the desired compound was obtained as solid (420 mg) in the same manner as with Example 1, except for changing aniline (131 mg) with 3,5-di(t-butyl)aniline (219 mg), and changing 2-bromo-6-phenyl-pyridine (660 mg) with 2-bromo-6-phenylpyridine (500 mg).
  • the desired compound was obtained as yellow crystal (451 mg) in the same manner as with Example 2, except for changing N,N-bis(6-phenylpyridine-2-yl)aniline (193 mg) with N,N-bis(6-phenylpyridine-2-yl)-3,5-di(t-butyl)aniline (546 mg) obtained by Example 5, and changing dichloro bis(benzonitrile)platinum (228 mg) with dichloro bis(benzonitrile)platinum (504 mg).
  • the desired compound was obtained as reddish crystal (124 mg) in the same manner as with Example 4, except for changing N,N-bis[3-(2-pyridyl)phenyl]aniline (250 mg) with N,N-bis[3-(2-pyridyl)phenyl]-3,5-di(t-butyl)aniline (248 mg) obtained by Example 7, and changing potassium tetrachloroplatinate (II) (260 mg) with potassium tetrachloroplatinate (II) (306 mg).
  • reaction mixture was poured into an aqueous saturated ammonium chloride solution, the mixture was extracted with diethylether, the solvent of organic layer was distilled off, and the residue was purified by silica gel column chromatography, thereby obtaining 2.8 g of (2-bromo-6-phenylthiopyridine) as brown oil. Yield: 49.9%.
  • a hexane (70 ml) solution of N,N-dimethylaminoethanol (12.0 ml, 118.5 mmol) was dropwise added to a hexane solution of n-butyllithium (150 ml, 1.58 M, 237.0 mmol) at 5° C. while 30 minutes.
  • a hexane (10 ml) solution of 2-phenylpyridine (8.5 ml, 59.3 mmol) was dropwise added to the mixture at 5° C. while 20 minutes.
  • a hexane solution of 2-lithio-6-phenylpyridine was prepared by the mixture stirred at 5° C. for 1 hour additionally.
  • a diethyl ether (40 ml) solution of 6-phenyl-2,2′-bipyridine (7.0 g, 30.1 mmol) obtained by Reference Example 9 was cooled to 5° C., and the ether solution of 2-methoxyphenyllithium prepared as above was dropwise added to thereto while 20 minutes.
  • This reaction mixture was stirred for 18 hours at room temperature, then the mixture was poured into an aqueous saturated ammonium chloride solution, an organic layer was separated, furthermore an aqueous layer was extracted with dichloromethane. The organic layer was combined, and the solvent was distilled off, then saturated potassium permanganate acetone solution (400 ml) was added to the residue, the mixture was stirred for 30 minutes at room temperature.
  • Acetic anhydride (580 ⁇ L, 6.2 mmol) was dropwise added to a pyridine (20 ml) solution of 2-(6′-phenyl-2,2′-bipyridine-6-yl)phenol (1.0 g, 3.1 mmol) obtained by Example 14, then the mixture was stirred for 24 hours at room temperature. The solvent was distilled off from the reaction mixture, and the residue was purified by silica gel column chromatography and recrystallization, thereby obtaining 1.05 g of 6-(2-acetoxyphenyl)-6′-phenyl-2,2′-bipyridine as yellow crystal. Yield: 93.0%.
  • reaction mixture was poured into an aqueous saturated ammonium chloride solution, an organic layer was separated, furthermore an aqueous layer was extracted with toluene.
  • organic layer was combined, and the solvent was distilled off, and the residue was purified by silica gel column chromatography and recrystallization, thereby obtaining 646 mg of 1,2-bis(6-phenylpyridine-2-yl)ethane as white powder. Yield: 65.1%.
  • a hexane (150 ml) solution of N,N-dimethylaminoethanol (21.0 ml, 210.0 mmol) was dropwise added to a hexane solution of n-butyllithium (266 ml, 1.58 M, 420.0 mmol) at 5° C. while 1 hour.
  • a hexane (15 ml) solution of 2-phenylpyridine (15.0 ml, 105.0 mmol) was dropwise added to the mixture at 5° C. while 20 minutes.
  • a hexane solution of 2-lithio-6-phenylpyridine was prepared by the mixture stirred at 5° C. for 1 hour additionally.
  • reaction mixture was poured into an aqueous ammonium chloride-saturated solution, an organic layer was separated, furthermore an aqueous layer was extracted with toluene.
  • organic layer was combined, and the solvent was distilled off, and the residue was purified by silica gel column chromatography and recrystallization, thereby obtaining 1.1 g of 1,1-bis(6-phenylpyridine-2-yl)methanol as white powder. Yield: 61.2%.
  • Example 12 190 mg of the target platinum complex was obtained as yellow crystal in a similar manner to Example 12 from 180 mg of dichlorobis(benzonitrile)platinum with 200 mg of N,N-bis(6-phenylpyridine-2-yl)-1-pyrenylamine.
  • 262 mg of the target platinum complex was obtained as reddish crystal in a similar manner to Example 26 from 169 mg of platinum chloride (II) with 400 mg of N,N-bis[3-(2-pyridyl)phenyl]4-(9H-carbazole-9-yl)aniline.
  • Example 2 230 mg of the title compound was obtained as glassy solid in a similar manner to Example 1 from 423 mg of 2-biphenylamine with 1 g of 2-(3-chlorophenyl)pyridine.
  • Example 26 172 mg of the target platinum complex was obtained as reddish crystal in a similar manner to Example 26 from 230 mg of platinum chloride (II) with 128 mg of N,N-bis[3-(2-pyridyl)phenyl]-2-biphenylamine.
  • 131 mg of the target platinum complex was obtained as reddish crystal in a similar manner to Example 26 from 101 mg of platinum chloride (II) with 216 mg of N,N-bis[3-(2-pyridyl)phenyl]-4-diphenylaminoaniline.
  • Example 26 87 mg of the target platinum complex was obtained as reddish crystal in a similar manner to Example 26 from 70 mg of platinum chloride (II) with 130 mg of 6,6′-bis(diphenylamino)-2,2′-bipyridine.
  • 6-phenyl-6′-trifluoromethanesulfonyloxy-2,2′-bipyridine 790 mg
  • palladium acetate 9.7 mg
  • triphenylphosphine triphenylphosphine
  • reaction mixture was allowed to warm to room temperature while 1 hour, tetrakis(triphenylphosphine)palladium (203 mg) and 3,3′-dibromobenzophenone (2.0 g, 5.88 mmol) were successively added thereto, the reaction mixture was stirred under reflux for 18 hours. After the reaction mixture was allowed to cool, then the mixture was poured into a mixture of ethylenediaminetetraacetic acid (7.0 g)/an aqueous saturated sodium hydrogen carbonate solution (210 ml), an organic layer was separated, furthermore an aqueous layer was extracted with toluene.
  • ethylenediaminetetraacetic acid 7.0 g
  • an aqueous saturated sodium hydrogen carbonate solution 210 ml
  • Example 2 133 mg of the title compound was obtained as glassy solid in a similar manner to Example 1 from 365 mg of 3,5-diphenylaniline with 350 mg of 2-bromo-6-(2-pyridyl)pyridine and 296 mg of 2-bromomesitylene.
  • Example 26 60 mg of the target platinum complex was obtained as reddish crystal in a similar manner to Example 26 from 68 mg of platinum chloride (II) with 133 mg of N-mesityl-N-2-(6-(2-pyridyl)pyridine-2-yl]-3,5-diphenylaniline.
  • the reaction was conducted in the same manner as with Example 46, except substitution carbonylbis[3-(4-t-butylpyridine-2-yl)benzene] for carbonylbis[3-(2-pyridine-2-yl)benzene].
  • the solvent of the reaction mixture was distilled off, and the residue was purified by silica gel column chromatography and crystallization, thereby obtaining target platinum complex as yellow powder.
  • 325 mg of the target platinum complex was obtained in a similar manner to Example 26 from 212 mg of platinum chloride (II) with 409 mg of N,N-bis[3-(2-pyridyl)phenyl]-4-n-octylaniline.
  • 325 mg of the target platinum complex was obtained as reddish crystal in a similar manner to Example 26 from 179 mg of platinum chloride (II) with 344 mg of N,N-bis[3-(4-t-butylpyridine-2-yl)phenyl]aniline.
  • An organic EL device of a structure shown in FIG. 1 was manufactured.
  • an anode (f), a hole-transporting layer (e), a light-emitting layer (d) comprising a host material and a dope material, a hole blocking layer (c), an electron-transporting layer (b) and a cathode (a) were formed successively from the side of the glass substrate (g).
  • each of the anode (f) and the cathode (a) are connected to a lead wire, and voltage could be applied between the anode (f) and the cathode (a).
  • the anode (f) was an ITO film and deposited on the glass substrate (g).
  • the hole-transporting layer (e) was formed by using the following compound ( ⁇ -NPD)
  • the light-emitting layer (d) containing the host material and the phosphorescent material as dopant was formed by using both of the following compound (CBP):
  • Example 2 the platinum complex obtained in Example 2 and by vacuum vapor co-deposition (doping amount 3% by weight) to a thickness of 35 nm over the hole-transporting layer (e).
  • the hole blocking layer (c) was formed by using the following compound (BCP)
  • the electron-transporting layer (b) was formed by using the following compound (Alq 3 ):
  • the cathode (a) was formed of a laminate by vacuum vapor co-depositing Mg and Ag at a ratio of 10:1 to a thickness of 100 nm successively from the side of the electron-transporting layer (b) and then further vacuum vapor depositing Ag at a thickness of 10 nm.
  • Example 69 A device having the same device structure as in Example 69 and using the platinum complex obtained in Example 6 for the light-emitting layer (d) was manufactured.
  • Example 69 A device having the same device structure as in Example 69 and using the platinum complex obtained in Example 4 for the light-emitting layer (d) was manufactured.
  • Example 69 A device having the same device structure as in Example 69 and using the platinum complex obtained in Example 12 for the light-emitting layer (d) was manufactured.
  • Example 69 A device having the same device structure as in Example 69 and using the platinum complex obtained in Example 8 for the light-emitting layer (d) was manufactured.
  • Example 69 A device having the same device structure as in Example 69 and using the platinum complex obtained in Example 26 for the light-emitting layer (d) was manufactured.
  • BAlq is the following compound.
US10/578,237 2003-11-04 2004-10-27 Platinum complex and light emitting device Active US7442797B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003374861 2003-11-04
JP2003-374861 2003-11-04
PCT/JP2004/015889 WO2005042444A2 (fr) 2003-11-04 2004-10-27 Complexe de platine et element luminescent

Publications (2)

Publication Number Publication Date
US20070103060A1 US20070103060A1 (en) 2007-05-10
US7442797B2 true US7442797B2 (en) 2008-10-28

Family

ID=34544228

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/578,237 Active US7442797B2 (en) 2003-11-04 2004-10-27 Platinum complex and light emitting device

Country Status (7)

Country Link
US (1) US7442797B2 (fr)
EP (1) EP1683804B1 (fr)
JP (1) JP4110173B2 (fr)
KR (1) KR101044087B1 (fr)
CN (1) CN100445294C (fr)
TW (1) TWI316540B (fr)
WO (1) WO2005042444A2 (fr)

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060060842A1 (en) * 2004-09-17 2006-03-23 Fuji Photo Film Co., Ltd. Organic electroluminescent device
US20060073359A1 (en) * 2004-09-27 2006-04-06 Fuji Photo Film Co., Ltd. Light-emitting device
US20060182992A1 (en) * 2003-06-02 2006-08-17 Kazumi Nii Organic electroluminescent devices and metal complex compounds
US20060263632A1 (en) * 2005-04-25 2006-11-23 Fuji Photo Film Co., Ltd. Organic electroluminescent device
US20110095281A1 (en) * 2008-11-13 2011-04-28 Merck Patent Gmbh Materials for organic electroluminescent devices
US20110263615A1 (en) * 2007-04-02 2011-10-27 Gatti Mcarthur Silvia Pyridine and pyrimidine derivatives as mglur2 antagonists
US20130274473A1 (en) * 2012-04-12 2013-10-17 The University Of Hong Kong Platinum(ii) complexes for oled applications
WO2014015936A1 (fr) * 2012-07-23 2014-01-30 Merck Patent Gmbh Ligands et leur préparation
US20140114072A1 (en) * 2010-04-30 2014-04-24 Jian Li Synthesis of four coordinated palladium complexes and their applications in light emitting devices thereof
US8871361B2 (en) 2011-02-23 2014-10-28 Universal Display Corporation Tetradentate platinum complexes
US20140371825A1 (en) * 2012-01-16 2014-12-18 Merck Patent Gmbh Organic metal complexes
US8933239B1 (en) 2013-07-16 2015-01-13 Dow Global Technologies Llc Bis(aryl)acetal compounds
US8962779B2 (en) 2013-07-16 2015-02-24 Dow Global Technologies Llc Method of forming polyaryl polymers
US9063420B2 (en) 2013-07-16 2015-06-23 Rohm And Haas Electronic Materials Llc Photoresist composition, coated substrate, and method of forming electronic device
US9224963B2 (en) 2013-12-09 2015-12-29 Arizona Board Of Regents On Behalf Of Arizona State University Stable emitters
US9238668B2 (en) 2011-05-26 2016-01-19 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Synthesis of platinum and palladium complexes as narrow-band phosphorescent emitters for full color displays
US9324957B2 (en) 2010-04-30 2016-04-26 Arizona Board Of Regents On Behalf Of Arizona State University Synthesis of four coordinated gold complexes and their applications in light emitting devices thereof
US9385329B2 (en) 2013-10-14 2016-07-05 Arizona Board of Regents on behalf of Arizona State University and Universal Display Corporation Platinum complexes and devices
US9410016B2 (en) 2013-07-16 2016-08-09 Dow Global Technologies Llc Aromatic polyacetals and articles comprising them
US9425415B2 (en) 2011-02-18 2016-08-23 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Four coordinated platinum and palladium complexes with geometrically distorted charge transfer state and their applications in light emitting devices
US9550801B2 (en) 2009-04-06 2017-01-24 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Synthesis of four coordinated platinum complexes and their applications in light emitting devices thereof
US9617291B2 (en) 2015-06-03 2017-04-11 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate and octahedral metal complexes containing naphthyridinocarbazole and its analogues
US9673409B2 (en) 2013-06-10 2017-06-06 Arizona Board Of Regents On Behalf Of Arizona State University Phosphorescent tetradentate metal complexes having modified emission spectra
US9711741B2 (en) 2012-08-24 2017-07-18 Arizona Board Of Regents On Behalf Of Arizona State University Metal compounds and methods and uses thereof
US9711739B2 (en) 2015-06-02 2017-07-18 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes containing indoloacridine and its analogues
US9783564B2 (en) 2011-07-25 2017-10-10 Universal Display Corporation Organic electroluminescent materials and devices
US9818959B2 (en) 2014-07-29 2017-11-14 Arizona Board of Regents on behlaf of Arizona State University Metal-assisted delayed fluorescent emitters containing tridentate ligands
US20170365801A1 (en) * 2016-06-20 2017-12-21 Universal Display Corporation Organic electroluminescent materials and devices
US9865826B2 (en) 2014-07-09 2018-01-09 Samsung Electronics Co., Ltd. Organometallic compound and organic light-emitting device including the same
US9882150B2 (en) 2012-09-24 2018-01-30 Arizona Board Of Regents For And On Behalf Of Arizona State University Metal compounds, methods, and uses thereof
US9920242B2 (en) 2014-08-22 2018-03-20 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent materials as co-host materials for fluorescent OLEDs
US9923155B2 (en) 2014-07-24 2018-03-20 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) complexes cyclometalated with functionalized phenyl carbene ligands and their analogues
US9941479B2 (en) 2014-06-02 2018-04-10 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate cyclometalated platinum complexes containing 9,10-dihydroacridine and its analogues
US10020455B2 (en) 2014-01-07 2018-07-10 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complex emitters containing phenyl-pyrazole and its analogues
US10033003B2 (en) 2014-11-10 2018-07-24 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes with carbon group bridging ligands
US10056567B2 (en) 2014-02-28 2018-08-21 Arizona Board Of Regents On Behalf Of Arizona State University Chiral metal complexes as emitters for organic polarized electroluminescent devices
US10103340B2 (en) 2011-06-03 2018-10-16 Merck Patent Gmbh Metal complexes
US10135008B2 (en) 2014-01-07 2018-11-20 Universal Display Corporation Organic electroluminescent materials and devices
US10158091B2 (en) 2015-08-04 2018-12-18 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) and palladium (II) complexes, devices, and uses thereof
US10177323B2 (en) 2016-08-22 2019-01-08 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) and palladium (II) complexes and octahedral iridium complexes employing azepine functional groups and their analogues
US10374174B2 (en) 2015-01-09 2019-08-06 Samsung Electronics Co., Ltd. Organometallic compound and organic light-emitting device including the same
US10516117B2 (en) 2017-05-19 2019-12-24 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emttters employing benzo-imidazo-phenanthridine and analogues
US10566566B2 (en) 2016-09-27 2020-02-18 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including the organometallic compound, and diagnosis composition including the organometallic compound
US10629829B2 (en) 2015-03-13 2020-04-21 Samsung Electronics Co., Ltd. Organometallic compound and organic light-emitting device including the same
US10793546B2 (en) 2014-08-15 2020-10-06 Arizona Board Of Regents On Behalf Of Arizona State University Non-platinum metal complexes for excimer based single dopant white organic light emitting diodes
US10822363B2 (en) 2016-10-12 2020-11-03 Arizona Board Of Regents On Behalf Of Arizona State University Narrow band red phosphorescent tetradentate platinum (II) complexes
US10964897B2 (en) 2014-07-28 2021-03-30 Arizona Board Of Regents On Behalf Of Arizona State University Tridentate cyclometalated metal complexes with six-membered coordination rings
US10991897B2 (en) 2014-11-10 2021-04-27 Arizona Board Of Regents On Behalf Of Arizona State University Emitters based on octahedral metal complexes
US10995108B2 (en) 2012-10-26 2021-05-04 Arizona Board Of Regents On Behalf Of Arizona State University Metal complexes, methods, and uses thereof
US11101435B2 (en) 2017-05-19 2021-08-24 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complexes based on biscarbazole and analogues
US11183670B2 (en) 2016-12-16 2021-11-23 Arizona Board Of Regents On Behalf Of Arizona State University Organic light emitting diode with split emissive layer
US11211571B2 (en) 2015-08-18 2021-12-28 Samsung Electronics Co., Ltd. Organometallic compound and organic light-emitting device including the same
US11329244B2 (en) 2014-08-22 2022-05-10 Arizona Board Of Regents On Behalf Of Arizona State University Organic light-emitting diodes with fluorescent and phosphorescent emitters
US11335865B2 (en) 2016-04-15 2022-05-17 Arizona Board Of Regents On Behalf Of Arizona State University OLED with multi-emissive material layer
US11588121B2 (en) 2016-06-20 2023-02-21 Universal Display Corporation Organic electroluminescent materials and devices
US11594688B2 (en) 2017-10-17 2023-02-28 Arizona Board Of Regents On Behalf Of Arizona State University Display and lighting devices comprising phosphorescent excimers with preferred molecular orientation as monochromatic emitters
US11594691B2 (en) 2019-01-25 2023-02-28 Arizona Board Of Regents On Behalf Of Arizona State University Light outcoupling efficiency of phosphorescent OLEDs by mixing horizontally aligned fluorescent emitters
US11647643B2 (en) 2017-10-17 2023-05-09 Arizona Board Of Regents On Behalf Of Arizona State University Hole-blocking materials for organic light emitting diodes
US11672167B2 (en) 2015-03-13 2023-06-06 Samsung Electronics Co., Ltd. Organometallic compound and organic light-emitting device including the same
US11708385B2 (en) 2017-01-27 2023-07-25 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emitters employing pyrido-pyrrolo-acridine and analogues
US11737350B2 (en) 2015-08-13 2023-08-22 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including the organometallic compound, and diagnosis composition including the organometallic compound
US11785838B2 (en) 2019-10-02 2023-10-10 Arizona Board Of Regents On Behalf Of Arizona State University Green and red organic light-emitting diodes employing excimer emitters
US11878988B2 (en) 2019-01-24 2024-01-23 Arizona Board Of Regents On Behalf Of Arizona State University Blue phosphorescent emitters employing functionalized imidazophenthridine and analogues
US11917902B2 (en) 2012-09-25 2024-02-27 Universal Display Corporation Organic electroluminescent materials and devices
US11930697B2 (en) 2019-01-04 2024-03-12 Samsung Display Co., Ltd. Organometallic compound and organic light-emitting device including the same
US11930662B2 (en) 2015-06-04 2024-03-12 Arizona Board Of Regents On Behalf Of Arizona State University Transparent electroluminescent devices with controlled one-side emissive displays
US11945985B2 (en) 2020-05-19 2024-04-02 Arizona Board Of Regents On Behalf Of Arizona State University Metal assisted delayed fluorescent emitters for organic light-emitting diodes
US11957044B2 (en) 2017-09-05 2024-04-09 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including the same, and diagnostic composition including the organometallic compound
US11981692B2 (en) 2017-06-16 2024-05-14 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including the organometallic compound, and diagnostic composition including the organometallic compound

Families Citing this family (167)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100956051B1 (ko) 2003-05-09 2010-05-06 후지필름 가부시키가이샤 유기 전계발광 소자 및 백금 화합물
JP4460952B2 (ja) * 2003-06-02 2010-05-12 富士フイルム株式会社 有機電界発光素子及び錯体化合物
DE10350722A1 (de) * 2003-10-30 2005-05-25 Covion Organic Semiconductors Gmbh Metallkomplexe
JP4749744B2 (ja) * 2004-03-31 2011-08-17 富士フイルム株式会社 有機電界発光素子
JP2005327526A (ja) * 2004-05-13 2005-11-24 Fuji Photo Film Co Ltd 有機電界発光素子
JP5008974B2 (ja) * 2004-05-18 2012-08-22 日本放送協会 発光素子
JP2006093665A (ja) * 2004-08-26 2006-04-06 Fuji Photo Film Co Ltd 有機電界発光素子
JP4500735B2 (ja) 2004-09-22 2010-07-14 富士フイルム株式会社 有機電界発光素子
JP2006193573A (ja) * 2005-01-12 2006-07-27 Sumitomo Chemical Co Ltd 白色led用金属錯体蛍光体
JP4773109B2 (ja) * 2005-02-28 2011-09-14 高砂香料工業株式会社 白金錯体及び発光素子
US7771845B2 (en) 2005-03-14 2010-08-10 Fujifilm Corporation Organic electroluminescent device
WO2006098120A1 (fr) * 2005-03-16 2006-09-21 Konica Minolta Holdings, Inc. Materiau pour dispositif electroluminescent organique et dispositif electroluminescent organique
JP4790298B2 (ja) * 2005-04-08 2011-10-12 日本放送協会 良溶解性イリジウム錯体及び有機el素子
TWI391027B (zh) * 2005-04-25 2013-03-21 Fujifilm Corp 有機電致發光裝置
JP4934346B2 (ja) * 2005-04-25 2012-05-16 富士フイルム株式会社 有機電界発光素子
US7758971B2 (en) * 2005-04-25 2010-07-20 Fujifilm Corporation Organic electroluminescent device
JP4934345B2 (ja) * 2005-04-25 2012-05-16 富士フイルム株式会社 有機電界発光素子
JP4533796B2 (ja) * 2005-05-06 2010-09-01 富士フイルム株式会社 有機電界発光素子
JP2006344891A (ja) * 2005-06-10 2006-12-21 Fujifilm Holdings Corp 有機電界発光素子
US20100219397A1 (en) * 2005-08-05 2010-09-02 Idemitsu Kosan Co., Ltd. Transition metal complex compound and organic electroluminescent device using same
JP4789556B2 (ja) * 2005-09-21 2011-10-12 富士フイルム株式会社 有機電界発光素子
US8206839B2 (en) 2005-10-04 2012-06-26 Fujifilm Corporation Organic electroluminescent element
KR102103062B1 (ko) 2006-02-10 2020-04-22 유니버셜 디스플레이 코포레이션 시클로금속화 이미다조[1,2-f]페난트리딘 및 디이미다조[1,2-a:1',2'-c]퀴나졸린 리간드, 및 이의 등전자성 및 벤즈고리화된 유사체의 금속 착체
US8273467B2 (en) 2006-02-28 2012-09-25 Fujifilm Corporation Organic electroluminescent device
US20100084967A1 (en) * 2007-03-28 2010-04-08 Fujifilm Corporation Organic electroluminescent device
JP2009076865A (ja) 2007-08-29 2009-04-09 Fujifilm Corp 有機電界発光素子
KR101548382B1 (ko) 2007-09-14 2015-08-28 유디씨 아일랜드 리미티드 유기 전계 발광 소자
JP4579320B2 (ja) * 2007-09-14 2010-11-10 富士フイルム株式会社 有機電界発光素子
JP5481385B2 (ja) * 2007-11-15 2014-04-23 日東電工株式会社 発光素子および発光組成物
JP5243972B2 (ja) 2008-02-28 2013-07-24 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子
JP4531836B2 (ja) 2008-04-22 2010-08-25 富士フイルム株式会社 有機電界発光素子並びに新規な白金錯体化合物及びその配位子となり得る新規化合物
CN101567425B (zh) * 2008-04-22 2012-10-24 富士胶片株式会社 有机电致发光装置、新型铂络合物和能够作为其配体的新型化合物
JP4531842B2 (ja) * 2008-04-24 2010-08-25 富士フイルム株式会社 有機電界発光素子
JP4562805B2 (ja) * 2008-04-24 2010-10-13 富士フイルム株式会社 白金錯体
JP4558061B2 (ja) * 2008-04-28 2010-10-06 富士フイルム株式会社 有機電界発光素子
JP2012505298A (ja) 2008-10-13 2012-03-01 日東電工株式会社 印刷可能な発光組成物
DE102008057051B4 (de) * 2008-11-13 2021-06-17 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
CN101486901B (zh) * 2009-02-17 2012-07-18 中国科学院上海微系统与信息技术研究所 对卤代烃有传感功能的铂中心的发光材料、方法及应用
DE102009013041A1 (de) 2009-03-13 2010-09-16 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
EP2461387A4 (fr) 2009-07-31 2013-01-23 Udc Ireland Ltd Matériau de dépôt en phase vapeur pour dispositif organique et procédé de fabrication de dispositif organique
DE102009042693A1 (de) 2009-09-23 2011-03-24 Merck Patent Gmbh Materialien für elektronische Vorrichtungen
KR20110049244A (ko) * 2009-11-04 2011-05-12 다우어드밴스드디스플레이머티리얼 유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
JP4659910B2 (ja) * 2010-01-07 2011-03-30 富士フイルム株式会社 発光素子
JP2010093294A (ja) * 2010-01-15 2010-04-22 Fujifilm Corp 有機電界発光素子
US8288187B2 (en) 2010-01-20 2012-10-16 Universal Display Corporation Electroluminescent devices for lighting applications
JP4682264B2 (ja) * 2010-05-28 2011-05-11 富士フイルム株式会社 有機電界発光素子
US8877353B2 (en) 2010-07-21 2014-11-04 Versitech Limited Platinum (II) tetradentate ONCN complexes for organic light-emitting diode applications
DE102010031914A1 (de) * 2010-07-22 2012-01-26 Merck Patent Gmbh Carbodiimid-Leuchtstoffe
US9435021B2 (en) * 2010-07-29 2016-09-06 University Of Southern California Co-deposition methods for the fabrication of organic optoelectronic devices
JP5097808B2 (ja) * 2010-08-30 2012-12-12 富士フイルム株式会社 発光素子
US8957217B2 (en) * 2011-05-31 2015-02-17 The University Of Hong Kong Phosphorescent material, their preparations and applications
JP6234666B2 (ja) * 2011-07-25 2017-11-22 ユニバーサル ディスプレイ コーポレイション 四座配位白金錯体
WO2013020631A1 (fr) 2011-08-10 2013-02-14 Merck Patent Gmbh Complexes métalliques
JP5913938B2 (ja) 2011-11-30 2016-05-11 富士フイルム株式会社 光拡散性転写材料、光拡散層の形成方法、及び有機電界発光装置の製造方法
US8772485B2 (en) * 2011-12-09 2014-07-08 The University Of Hong Kong Palladium complexes for organic light-emitting diodes
KR20180126629A (ko) * 2011-12-12 2018-11-27 메르크 파텐트 게엠베하 전자 소자용 화합물
KR102012047B1 (ko) 2012-01-06 2019-08-19 유니버셜 디스플레이 코포레이션 효율이 큰 인광 물질
US9386657B2 (en) 2012-03-15 2016-07-05 Universal Display Corporation Organic Electroluminescent materials and devices
US9540329B2 (en) 2012-07-19 2017-01-10 Universal Display Corporation Organic electroluminescent materials and devices
US9252363B2 (en) 2012-10-04 2016-02-02 Universal Display Corporation Aryloxyalkylcarboxylate solvent compositions for inkjet printing of organic layers
JP5484542B2 (ja) * 2012-10-12 2014-05-07 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子および化合物
US9196860B2 (en) 2012-12-04 2015-11-24 Universal Display Corporation Compounds for triplet-triplet annihilation upconversion
US8716484B1 (en) 2012-12-05 2014-05-06 Universal Display Corporation Hole transporting materials with twisted aryl groups
US9653691B2 (en) 2012-12-12 2017-05-16 Universal Display Corporation Phosphorescence-sensitizing fluorescence material system
WO2014106524A2 (fr) * 2013-01-03 2014-07-10 Merck Patent Gmbh Matériaux pour dispositifs électroniques
US9876173B2 (en) 2013-12-09 2018-01-23 Universal Display Corporation Organic electroluminescent materials and devices
JP2014143422A (ja) * 2014-02-19 2014-08-07 Udc Ireland Ltd 有機電界発光素子
US10038153B2 (en) * 2014-04-03 2018-07-31 Versitech Limited Platinum (II) emitters for OLED applications
US9450198B2 (en) 2014-04-15 2016-09-20 Universal Display Corporation Organic electroluminescent materials and devices
CN105884810A (zh) * 2015-01-26 2016-08-24 上海和辉光电有限公司 一种化合物及包含该化合物的材料、有机电致发光器件
US10144867B2 (en) 2015-02-13 2018-12-04 Universal Display Corporation Organic electroluminescent materials and devices
US9929361B2 (en) 2015-02-16 2018-03-27 Universal Display Corporation Organic electroluminescent materials and devices
US11056657B2 (en) 2015-02-27 2021-07-06 University Display Corporation Organic electroluminescent materials and devices
US9859510B2 (en) 2015-05-15 2018-01-02 Universal Display Corporation Organic electroluminescent materials and devices
US10418568B2 (en) 2015-06-01 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
US11127905B2 (en) 2015-07-29 2021-09-21 Universal Display Corporation Organic electroluminescent materials and devices
CN106432317A (zh) * 2015-08-06 2017-02-22 上海和辉光电有限公司 一种硅杂螺芴衍生物及其应用
KR102613048B1 (ko) * 2015-08-18 2023-12-15 삼성전자주식회사 유기금속 화합물 및 이를 포함한 유기 발광 소자
US10361381B2 (en) 2015-09-03 2019-07-23 Universal Display Corporation Organic electroluminescent materials and devices
US20170229663A1 (en) 2016-02-09 2017-08-10 Universal Display Corporation Organic electroluminescent materials and devices
KR102654858B1 (ko) 2016-02-11 2024-04-05 삼성전자주식회사 유기금속 화합물, 이를 포함한 유기 발광 소자 및 이를 포함한 진단용 조성물
US10236456B2 (en) 2016-04-11 2019-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US11482683B2 (en) 2016-06-20 2022-10-25 Universal Display Corporation Organic electroluminescent materials and devices
EP3266790B1 (fr) 2016-07-05 2019-11-06 Samsung Electronics Co., Ltd Composé organométallique, dispositif électroluminescent organique le comprenant et composition de diagnostic comprenant le composé organométallique
KR20180023297A (ko) * 2016-08-25 2018-03-07 삼성전자주식회사 유기금속 화합물, 이를 포함한 유기 발광 소자 및 이를 포함한 진단용 조성물
US10608186B2 (en) 2016-09-14 2020-03-31 Universal Display Corporation Organic electroluminescent materials and devices
US10680187B2 (en) 2016-09-23 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
US11196010B2 (en) 2016-10-03 2021-12-07 Universal Display Corporation Organic electroluminescent materials and devices
US11011709B2 (en) 2016-10-07 2021-05-18 Universal Display Corporation Organic electroluminescent materials and devices
US20180130956A1 (en) 2016-11-09 2018-05-10 Universal Display Corporation Organic electroluminescent materials and devices
US10680188B2 (en) 2016-11-11 2020-06-09 Universal Display Corporation Organic electroluminescent materials and devices
KR102654864B1 (ko) * 2016-11-18 2024-04-05 삼성전자주식회사 유기금속 화합물, 이를 포함한 유기 발광 소자 및 이를 포함한 진단용 조성물
US11780865B2 (en) 2017-01-09 2023-10-10 Universal Display Corporation Organic electroluminescent materials and devices
US11053268B2 (en) * 2017-01-20 2021-07-06 Universal Display Corporation Organic electroluminescent materials and devices
KR20180097372A (ko) * 2017-02-23 2018-08-31 삼성전자주식회사 유기금속 화합물, 이를 포함한 유기 발광 소자 및 이를 포함한 진단용 조성물
US10844085B2 (en) 2017-03-29 2020-11-24 Universal Display Corporation Organic electroluminescent materials and devices
KR102429875B1 (ko) * 2017-04-21 2022-08-05 삼성전자주식회사 유기금속 화합물 및 이를 포함한 유기 발광 소자
KR102496480B1 (ko) 2017-04-25 2023-02-06 삼성전자주식회사 유기금속 화합물, 이를 포함한 유기 발광 소자 및 이를 포함한 조성물
US10944060B2 (en) 2017-05-11 2021-03-09 Universal Display Corporation Organic electroluminescent materials and devices
KR20180137311A (ko) * 2017-06-16 2018-12-27 삼성전자주식회사 유기금속 화합물, 이를 포함한 유기 발광 소자 및 이를 포함한 진단용 조성물
US20180370999A1 (en) 2017-06-23 2018-12-27 Universal Display Corporation Organic electroluminescent materials and devices
US11228010B2 (en) 2017-07-26 2022-01-18 Universal Display Corporation Organic electroluminescent materials and devices
US11744142B2 (en) 2017-08-10 2023-08-29 Universal Display Corporation Organic electroluminescent materials and devices
KR20190026613A (ko) * 2017-09-05 2019-03-13 삼성전자주식회사 유기금속 화합물, 이를 포함한 유기 발광 소자 및 이를 포함한 진단용 조성물
KR102637104B1 (ko) * 2017-11-08 2024-02-15 삼성전자주식회사 유기금속 화합물, 이를 포함한 유기 발광 소자 및 이를 포함한 진단용 조성물
KR102518722B1 (ko) 2017-11-21 2023-04-07 삼성디스플레이 주식회사 유기금속 화합물 및 이를 포함한 유기 발광 소자
US20190161504A1 (en) 2017-11-28 2019-05-30 University Of Southern California Carbene compounds and organic electroluminescent devices
EP3492480B1 (fr) 2017-11-29 2021-10-20 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
US11937503B2 (en) 2017-11-30 2024-03-19 Universal Display Corporation Organic electroluminescent materials and devices
US11542289B2 (en) 2018-01-26 2023-01-03 Universal Display Corporation Organic electroluminescent materials and devices
TWI828664B (zh) 2018-03-19 2024-01-11 愛爾蘭商Udc愛爾蘭責任有限公司 金屬錯合物
US20190352322A1 (en) * 2018-05-18 2019-11-21 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including the organometallic compound, diagnostic composition including the organometallic compound
CN108948096B (zh) * 2018-08-02 2021-04-02 浙江工业大学 基于联苯基的四齿环金属铂配合物及其应用
US20200075870A1 (en) 2018-08-22 2020-03-05 Universal Display Corporation Organic electroluminescent materials and devices
CN111269711A (zh) * 2018-12-04 2020-06-12 香港大学 过渡金属发光配合物和使用方法
US11737349B2 (en) 2018-12-12 2023-08-22 Universal Display Corporation Organic electroluminescent materials and devices
CN109503667B (zh) * 2018-12-28 2020-09-08 西安交通大学 三配体协同增强聚集诱导发光有机金属铂配合物发光材料
CN111377971B (zh) * 2018-12-28 2023-03-31 广东阿格蕾雅光电材料有限公司 一种n^n^c^o型四齿铂(ii)配合物的制备及应用
US11780829B2 (en) 2019-01-30 2023-10-10 The University Of Southern California Organic electroluminescent materials and devices
US20200251664A1 (en) 2019-02-01 2020-08-06 Universal Display Corporation Organic electroluminescent materials and devices
JP2020158491A (ja) 2019-03-26 2020-10-01 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料及びデバイス
US20210032278A1 (en) 2019-07-30 2021-02-04 Universal Display Corporation Organic electroluminescent materials and devices
US20210047354A1 (en) 2019-08-16 2021-02-18 Universal Display Corporation Organic electroluminescent materials and devices
US20210135130A1 (en) 2019-11-04 2021-05-06 Universal Display Corporation Organic electroluminescent materials and devices
KR20210073250A (ko) * 2019-12-10 2021-06-18 삼성전자주식회사 유기금속 화합물, 이를 포함한 유기 발광 소자 및 이를 포함한 진단용 조성물
CN112979709B (zh) * 2019-12-16 2022-09-02 广东阿格蕾雅光电材料有限公司 一种金属配合物及其应用
CN113024606B (zh) * 2019-12-24 2023-04-18 广东阿格蕾雅光电材料有限公司 一种o^c^n^n型四齿铂(ii)配合物、制备方法及其应用
CN113121605B (zh) * 2019-12-30 2022-12-02 江苏三月科技股份有限公司 一种红色有机电致磷光铂配合物及其在oled器件上的应用
CN113121508B (zh) * 2019-12-30 2022-05-13 江苏三月科技股份有限公司 一种含金属铂的有机电致发光材料及其应用
CN113121500B (zh) * 2019-12-30 2022-03-08 江苏三月科技股份有限公司 一种作为oled掺杂材料的磷光铂配合物及其应用
US20210217969A1 (en) 2020-01-06 2021-07-15 Universal Display Corporation Organic electroluminescent materials and devices
US20220336759A1 (en) 2020-01-28 2022-10-20 Universal Display Corporation Organic electroluminescent materials and devices
DE102020110305A1 (de) * 2020-04-15 2021-10-21 Bundesanstalt Für Materialforschung Und -Prüfung Verwendung von d8-Metallkomplexverbindungen mit Liganden-kontrollierten Aggregations- und Lumineszenzeigenschaften
WO2021243015A1 (fr) * 2020-05-27 2021-12-02 The Penn State Research Foundation Composés antibactériens
KR20210156385A (ko) * 2020-06-17 2021-12-27 삼성디스플레이 주식회사 유기금속 화합물, 이를 포함한 발광 소자 및 상기 발광 소자를 포함한 전자 장치
EP3937268A1 (fr) 2020-07-10 2022-01-12 Universal Display Corporation Delo plasmoniques et émetteurs à dipôle vertical
KR20220014443A (ko) * 2020-07-27 2022-02-07 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 다환 화합물
EP4214779A1 (fr) 2020-09-18 2023-07-26 Samsung Display Co., Ltd. Dispositif électroluminescent organique
US20220158096A1 (en) 2020-11-16 2022-05-19 Universal Display Corporation Organic electroluminescent materials and devices
US20220165967A1 (en) 2020-11-24 2022-05-26 Universal Display Corporation Organic electroluminescent materials and devices
US20220162243A1 (en) 2020-11-24 2022-05-26 Universal Display Corporation Organic electroluminescent materials and devices
KR102284600B1 (ko) 2021-01-28 2021-08-02 (주)랩토 유기 금속 착물 및 이를 포함한 유기 전계발광 소자
US20220271241A1 (en) 2021-02-03 2022-08-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4059915A3 (fr) 2021-02-26 2022-12-28 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4060758A3 (fr) 2021-02-26 2023-03-29 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
US20220298192A1 (en) * 2021-03-05 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20220298190A1 (en) 2021-03-12 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20220298193A1 (en) 2021-03-15 2022-09-22 Universal Display Corporation Organic electroluminescent materials and devices
US20220340607A1 (en) 2021-04-05 2022-10-27 Universal Display Corporation Organic electroluminescent materials and devices
EP4075531A1 (fr) 2021-04-13 2022-10-19 Universal Display Corporation Delo plasmoniques et émetteurs à dipôle vertical
US20220352478A1 (en) 2021-04-14 2022-11-03 Universal Display Corporation Organic eletroluminescent materials and devices
US20230006149A1 (en) 2021-04-23 2023-01-05 Universal Display Corporation Organic electroluminescent materials and devices
US20220407020A1 (en) 2021-04-23 2022-12-22 Universal Display Corporation Organic electroluminescent materials and devices
CN113234106B (zh) * 2021-06-04 2022-11-04 北京八亿时空液晶科技股份有限公司 一种四齿环金属配合物及有机发光装置
US20230133787A1 (en) 2021-06-08 2023-05-04 University Of Southern California Molecular Alignment of Homoleptic Iridium Phosphors
EP4151699A1 (fr) 2021-09-17 2023-03-22 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
EP4212539A1 (fr) 2021-12-16 2023-07-19 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP4231804A3 (fr) 2022-02-16 2023-09-20 Universal Display Corporation Matériaux et dispositifs électroluminescents organiques
US20230292592A1 (en) 2022-03-09 2023-09-14 Universal Display Corporation Organic electroluminescent materials and devices
US20230337516A1 (en) 2022-04-18 2023-10-19 Universal Display Corporation Organic electroluminescent materials and devices
US20230389421A1 (en) 2022-05-24 2023-11-30 Universal Display Corporation Organic electroluminescent materials and devices
EP4293001A1 (fr) 2022-06-08 2023-12-20 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
US20240016051A1 (en) 2022-06-28 2024-01-11 Universal Display Corporation Organic electroluminescent materials and devices
US20240107880A1 (en) 2022-08-17 2024-03-28 Universal Display Corporation Organic electroluminescent materials and devices
EP4362645A3 (fr) 2022-10-27 2024-05-15 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP4362630A2 (fr) 2022-10-27 2024-05-01 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs
EP4362631A3 (fr) 2022-10-27 2024-05-08 Universal Display Corporation Matériaux électroluminescents organiques et dispositifs

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02134643A (ja) 1988-11-15 1990-05-23 Canon Inc 電子写真感光体
WO2001070395A2 (fr) 2000-03-22 2001-09-27 Borealis Technology Oy Catalyseurs
JP2002175883A (ja) 2000-09-20 2002-06-21 Konica Corp 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子材料および表示装置
WO2004108857A1 (fr) 2003-06-02 2004-12-16 Fuji Photo Film Co., Ltd. Dispositifs electroluminescents organiques et composes de complexes metalliques
DE10350722A1 (de) 2003-10-30 2005-05-25 Covion Organic Semiconductors Gmbh Metallkomplexe
US20060202197A1 (en) * 2005-02-28 2006-09-14 Takasago International Corporation Platinum complex and light-emitting device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4460952B2 (ja) * 2003-06-02 2010-05-12 富士フイルム株式会社 有機電界発光素子及び錯体化合物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02134643A (ja) 1988-11-15 1990-05-23 Canon Inc 電子写真感光体
WO2001070395A2 (fr) 2000-03-22 2001-09-27 Borealis Technology Oy Catalyseurs
JP2002175883A (ja) 2000-09-20 2002-06-21 Konica Corp 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子材料および表示装置
WO2004108857A1 (fr) 2003-06-02 2004-12-16 Fuji Photo Film Co., Ltd. Dispositifs electroluminescents organiques et composes de complexes metalliques
US20060182992A1 (en) 2003-06-02 2006-08-17 Kazumi Nii Organic electroluminescent devices and metal complex compounds
DE10350722A1 (de) 2003-10-30 2005-05-25 Covion Organic Semiconductors Gmbh Metallkomplexe
US20070082284A1 (en) 2003-10-30 2007-04-12 Merck Patent Gmbh Metal complexes with bipodal ligands
US20060202197A1 (en) * 2005-02-28 2006-09-14 Takasago International Corporation Platinum complex and light-emitting device

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
Boenneman et al., Cobalt-Catalyzed One-Step Synthesis of Dipyridines, No. 9, pp. 600-602 (1975).
Canary et al.: "Solid State and Solution Characterization of Chiral, Conformationally Mobile Tripodal Ligands" Inorg. Chem. 1998, vol. 37, pp. 6255-6262 (Nov. 11, 1998).
Chotalia et al.: "A conveniently high yield synthesis of 2,2':6,2':6''2'':6'',2'''';6'''',2'''' sexipyridine and helical transition-metal complexes of substituted sexipyridines" J. Chem. Soc., Dalton Trans., 1996, pp. 4207-4216.
Funeriu et al: "Multiple Expression of Molecular Information: Enforced Generation of Different Supramolecular Inorganic Architectures by Processing of the Same Ligand Information through Specific Coordination Algorithms" Chem. Eur. J. 2000, vol. 6, No. 12, pp. 2103-2111.
Grant et al.: "Syntheses, crystal structures and properties of mononuclear chromium (III) and dinuclear vanadium (III) and copper (II) complexes with a bis-bipyridyl ligand" J. Chem. Soc. Dalton Trans., 1999, pp. 3399-3405.
Hannon et al., Tetrahedron Letters, 39:8509-8512 (1998).
Lehn et al.: "165. Efficient Synthesis of 1,2-Bis(2,2'-bipyrdinyl)ethane and 1,2-Bis(1,10-phenathrolinyl)ethane Ligands by Oxidative Coupling of the Corresponding Monomeric Methylene Carbanions" Helvetica Chimica Acta-vol 71, 1988, pp. 1511-1516.
Lin et al., Chem. Eur. J., 9(6):1263-1272 (2003).
Mandon et al.: "Trigonal Bipyramidal Geometry and Tridentate Coordination Mode of the Tripod in FECI2 Complexes with Tris(2-pyridylmethyl)amine Derivatives Bis-alpha-Substituted with Bulky Groups. Structures and Spectroscopic Comparative Studies" Inorg. Chem. 2002, vol. 41, No. 22, pp. 5364-5372 (Sep. 19, 2002).
Montalti et al.: "A Luminescent Anion Sensor Based on a Europium Hybrid Complex" J. Am. Chem. Soc. 2001, vol. 123, pp. 12694-12695 (Nov. 20, 2001).
Nierengarten et al.: "High Molecular Weight Cu Coordination Polymers and Their Characterisation by Electrospray Mass Spectrometry (ESMS)" Eur. J. Inorg. Chem. 2002, pp. 573-579.
Tarazona et al.: "Conformational and Dielectric Studies on Polysulfides with Pyridine Groups in the Main Chain" Macromolecules 1992, vol. 25, pp. 5020-5025.
Zhang et al., Synthetic Communications, 31(8):1129-1139 (2001).

Cited By (135)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11393989B2 (en) 2003-06-02 2022-07-19 Udc Ireland Limited Organic electroluminescent devices and metal complex compounds
US8940415B2 (en) * 2003-06-02 2015-01-27 Udc Ireland Limited Organic electroluminescent devices and metal complex compounds
US10153444B2 (en) 2003-06-02 2018-12-11 Udc Ireland Limited Organic electroluminescent devices and metal complex compounds
US10396299B2 (en) 2003-06-02 2019-08-27 Udc Ireland Limited Organic electroluminescent devices and metal complex compounds
US7569692B2 (en) * 2003-06-02 2009-08-04 Fujifilm Corporation Organic electroluminescent devices and metal complex compounds
US20060182992A1 (en) * 2003-06-02 2006-08-17 Kazumi Nii Organic electroluminescent devices and metal complex compounds
US20120169220A1 (en) * 2003-06-02 2012-07-05 Kazumi Nii Organic electroluminescent devices and metal complex compounds
US7579093B2 (en) * 2004-09-17 2009-08-25 Fujifilm Corporation Organic electroluminescent device
US20060060842A1 (en) * 2004-09-17 2006-03-23 Fuji Photo Film Co., Ltd. Organic electroluminescent device
US7732606B2 (en) * 2004-09-27 2010-06-08 Fujifilm Corporation Light-emitting device
US20060073359A1 (en) * 2004-09-27 2006-04-06 Fuji Photo Film Co., Ltd. Light-emitting device
US20060263632A1 (en) * 2005-04-25 2006-11-23 Fuji Photo Film Co., Ltd. Organic electroluminescent device
US7736755B2 (en) * 2005-04-25 2010-06-15 Fujifilm Corporation Organic electroluminescent device
US8415380B2 (en) * 2007-04-02 2013-04-09 Hoffmann-La Roche Inc. Pyridine and pyrimidine derivatives as MGLUR2 antagonists
US20110263615A1 (en) * 2007-04-02 2011-10-27 Gatti Mcarthur Silvia Pyridine and pyrimidine derivatives as mglur2 antagonists
US8597798B2 (en) 2008-11-13 2013-12-03 Merck Patent Gmbh Materials for organic electroluminescent devices
US20110095281A1 (en) * 2008-11-13 2011-04-28 Merck Patent Gmbh Materials for organic electroluminescent devices
US9550801B2 (en) 2009-04-06 2017-01-24 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Synthesis of four coordinated platinum complexes and their applications in light emitting devices thereof
US10263197B2 (en) 2010-04-30 2019-04-16 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Synthesis of four coordinated palladium complexes and their applications in light emitting devices thereof
US9324957B2 (en) 2010-04-30 2016-04-26 Arizona Board Of Regents On Behalf Of Arizona State University Synthesis of four coordinated gold complexes and their applications in light emitting devices thereof
US9382273B2 (en) * 2010-04-30 2016-07-05 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Synthesis of four coordinated palladium complexes and their applications in light emitting devices thereof
US9755163B2 (en) 2010-04-30 2017-09-05 Arizona Board Of Regents Acting For Or On Behalf Of Arizona State University Synthesis of four coordinated palladium complexes and their applications in light emitting devices thereof
US20140114072A1 (en) * 2010-04-30 2014-04-24 Jian Li Synthesis of four coordinated palladium complexes and their applications in light emitting devices thereof
US10727422B2 (en) 2010-04-30 2020-07-28 Arizona Board Of Regents On Behalf Of Arizona State University Synthesis of four coordinated palladium complexes and their applications in light emitting devices thereof
US9425415B2 (en) 2011-02-18 2016-08-23 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Four coordinated platinum and palladium complexes with geometrically distorted charge transfer state and their applications in light emitting devices
US9711742B2 (en) 2011-02-18 2017-07-18 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Four coordinated platinum and palladium complexes with geometrically distorted charge transfer state and their applications in light emitting devices
US10381580B2 (en) 2011-02-23 2019-08-13 Universal Display Corporation Organic electroluminescent materials and devices
US8871361B2 (en) 2011-02-23 2014-10-28 Universal Display Corporation Tetradentate platinum complexes
US9947880B2 (en) 2011-02-23 2018-04-17 Universal Display Corporation Organic electroluminescent materials and devices
US9238668B2 (en) 2011-05-26 2016-01-19 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Synthesis of platinum and palladium complexes as narrow-band phosphorescent emitters for full color displays
US10804476B2 (en) 2011-05-26 2020-10-13 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Synthesis of platinum and palladium complexes as narrow-band phosphorescent emitters for full color displays
US11121328B2 (en) 2011-05-26 2021-09-14 Arizona Board Of Regents On Behalf Of Arizona State University Synthesis of platinum and palladium complexes as narrow-band phosphorescent emitters for full color displays
US9698359B2 (en) 2011-05-26 2017-07-04 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Synthesis of platinum and palladium complexes as narrow-band phosphorescent emitters for full color displays
US10103340B2 (en) 2011-06-03 2018-10-16 Merck Patent Gmbh Metal complexes
US10214551B2 (en) 2011-07-25 2019-02-26 Universal Display Corporation Organic electroluminescent materials and devices
US9783564B2 (en) 2011-07-25 2017-10-10 Universal Display Corporation Organic electroluminescent materials and devices
US20140371825A1 (en) * 2012-01-16 2014-12-18 Merck Patent Gmbh Organic metal complexes
US9748502B2 (en) * 2012-01-16 2017-08-29 Merck Patent Gmbh Organic metal complexes
US10403833B2 (en) 2012-01-16 2019-09-03 Merck Patent Gmbh Organic metal complexes
US9306178B2 (en) * 2012-04-12 2016-04-05 The University Of Hong Kong Platinum(II) complexes for OLED applications
US10243154B2 (en) 2012-04-12 2019-03-26 Versitech Limited Platinum(II) complexes for OLED applications
US20130274473A1 (en) * 2012-04-12 2013-10-17 The University Of Hong Kong Platinum(ii) complexes for oled applications
US10008681B2 (en) 2012-04-12 2018-06-26 Versitech Limited Platinum(II) complexes for OLED applications
WO2014015936A1 (fr) * 2012-07-23 2014-01-30 Merck Patent Gmbh Ligands et leur préparation
US9682958B2 (en) * 2012-07-23 2017-06-20 Merck Patent Gmbh Ligands and their preparation
US20150175574A1 (en) * 2012-07-23 2015-06-25 Merck Patent Gmbh Ligands And Their Preparation
US9711741B2 (en) 2012-08-24 2017-07-18 Arizona Board Of Regents On Behalf Of Arizona State University Metal compounds and methods and uses thereof
US11114626B2 (en) 2012-09-24 2021-09-07 Arizona Board Of Regents On Behalf Of Arizona State University Metal compounds, methods, and uses thereof
US9882150B2 (en) 2012-09-24 2018-01-30 Arizona Board Of Regents For And On Behalf Of Arizona State University Metal compounds, methods, and uses thereof
US10622571B2 (en) 2012-09-24 2020-04-14 Arizona Board Of Regents For And On Behalf Of Arizona State University Metal compounds, methods, and uses thereof
US11917902B2 (en) 2012-09-25 2024-02-27 Universal Display Corporation Organic electroluminescent materials and devices
US10995108B2 (en) 2012-10-26 2021-05-04 Arizona Board Of Regents On Behalf Of Arizona State University Metal complexes, methods, and uses thereof
US9899614B2 (en) 2013-06-10 2018-02-20 Arizona Board Of Regents On Behalf Of Arizona State University Phosphorescent tetradentate metal complexes having modified emission spectra
US9673409B2 (en) 2013-06-10 2017-06-06 Arizona Board Of Regents On Behalf Of Arizona State University Phosphorescent tetradentate metal complexes having modified emission spectra
US10211414B2 (en) 2013-06-10 2019-02-19 Arizona Board Of Regents On Behalf Of Arizona State University Phosphorescent tetradentate metal complexes having modified emission spectra
US8962779B2 (en) 2013-07-16 2015-02-24 Dow Global Technologies Llc Method of forming polyaryl polymers
US8933239B1 (en) 2013-07-16 2015-01-13 Dow Global Technologies Llc Bis(aryl)acetal compounds
US9063420B2 (en) 2013-07-16 2015-06-23 Rohm And Haas Electronic Materials Llc Photoresist composition, coated substrate, and method of forming electronic device
US9410016B2 (en) 2013-07-16 2016-08-09 Dow Global Technologies Llc Aromatic polyacetals and articles comprising them
US9947881B2 (en) 2013-10-14 2018-04-17 Arizona Board Of Regents On Behalf Of Arizona State University Platinum complexes and devices
US11189808B2 (en) 2013-10-14 2021-11-30 Arizona Board Of Regents On Behalf Of Arizona State University Platinum complexes and devices
US9385329B2 (en) 2013-10-14 2016-07-05 Arizona Board of Regents on behalf of Arizona State University and Universal Display Corporation Platinum complexes and devices
US10566553B2 (en) 2013-10-14 2020-02-18 Arizona Board Of Regents On Behalf Of Arizona State University Platinum complexes and devices
US9224963B2 (en) 2013-12-09 2015-12-29 Arizona Board Of Regents On Behalf Of Arizona State University Stable emitters
US10020455B2 (en) 2014-01-07 2018-07-10 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complex emitters containing phenyl-pyrazole and its analogues
US10937976B2 (en) 2014-01-07 2021-03-02 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complex emitters containing phenyl-pyrazole and its analogues
US10749122B2 (en) 2014-01-07 2020-08-18 Universal Display Corporation Organic electroluminescent materials and devices
US10135008B2 (en) 2014-01-07 2018-11-20 Universal Display Corporation Organic electroluminescent materials and devices
US11930698B2 (en) 2014-01-07 2024-03-12 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complex emitters containing phenyl-pyrazole and its analogues
US11943999B2 (en) 2014-01-07 2024-03-26 Universal Display Corporation Organic electroluminescent materials and devices
US10985331B2 (en) 2014-01-07 2021-04-20 Universal Display Corporation Organic electroluminescent materials and devices
US10056567B2 (en) 2014-02-28 2018-08-21 Arizona Board Of Regents On Behalf Of Arizona State University Chiral metal complexes as emitters for organic polarized electroluminescent devices
US11011712B2 (en) 2014-06-02 2021-05-18 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate cyclometalated platinum complexes containing 9,10-dihydroacridine and its analogues
US11839144B2 (en) 2014-06-02 2023-12-05 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate cyclometalated platinum complexes containing 9,10-dihydroacridine and its analogues
US9941479B2 (en) 2014-06-02 2018-04-10 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate cyclometalated platinum complexes containing 9,10-dihydroacridine and its analogues
US10340467B2 (en) 2014-07-09 2019-07-02 Samsung Electronics Co., Ltd. Organometallic compound and organic light-emitting device including the same
US9865826B2 (en) 2014-07-09 2018-01-09 Samsung Electronics Co., Ltd. Organometallic compound and organic light-emitting device including the same
US10886478B2 (en) 2014-07-24 2021-01-05 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) complexes cyclometalated with functionalized phenyl carbene ligands and their analogues
US9923155B2 (en) 2014-07-24 2018-03-20 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) complexes cyclometalated with functionalized phenyl carbene ligands and their analogues
US10964897B2 (en) 2014-07-28 2021-03-30 Arizona Board Of Regents On Behalf Of Arizona State University Tridentate cyclometalated metal complexes with six-membered coordination rings
US11145830B2 (en) 2014-07-29 2021-10-12 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emitters containing tridentate ligands
US9818959B2 (en) 2014-07-29 2017-11-14 Arizona Board of Regents on behlaf of Arizona State University Metal-assisted delayed fluorescent emitters containing tridentate ligands
US10790457B2 (en) 2014-07-29 2020-09-29 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emitters containing tridentate ligands
US10793546B2 (en) 2014-08-15 2020-10-06 Arizona Board Of Regents On Behalf Of Arizona State University Non-platinum metal complexes for excimer based single dopant white organic light emitting diodes
US11339324B2 (en) 2014-08-22 2022-05-24 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent materials as co-host materials for fluorescent OLEDs
US10745615B2 (en) 2014-08-22 2020-08-18 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent materials as co-host materials for fluorescent OLEDs
US11795387B2 (en) 2014-08-22 2023-10-24 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent materials as co-host materials for fluorescent OLEDs
US10294417B2 (en) 2014-08-22 2019-05-21 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent materials as co-host materials for fluorescent OLEDS
US11329244B2 (en) 2014-08-22 2022-05-10 Arizona Board Of Regents On Behalf Of Arizona State University Organic light-emitting diodes with fluorescent and phosphorescent emitters
US9920242B2 (en) 2014-08-22 2018-03-20 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent materials as co-host materials for fluorescent OLEDs
US10944064B2 (en) 2014-11-10 2021-03-09 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes with carbon group bridging ligands
US10033003B2 (en) 2014-11-10 2018-07-24 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes with carbon group bridging ligands
US11856840B2 (en) 2014-11-10 2023-12-26 Arizona Board Of Regents On Behalf Of Arizona State University Emitters based on octahedral metal complexes
US11653560B2 (en) 2014-11-10 2023-05-16 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes with carbon group bridging ligands
US10991897B2 (en) 2014-11-10 2021-04-27 Arizona Board Of Regents On Behalf Of Arizona State University Emitters based on octahedral metal complexes
US10374174B2 (en) 2015-01-09 2019-08-06 Samsung Electronics Co., Ltd. Organometallic compound and organic light-emitting device including the same
US10629829B2 (en) 2015-03-13 2020-04-21 Samsung Electronics Co., Ltd. Organometallic compound and organic light-emitting device including the same
US11672167B2 (en) 2015-03-13 2023-06-06 Samsung Electronics Co., Ltd. Organometallic compound and organic light-emitting device including the same
US10056564B2 (en) 2015-06-02 2018-08-21 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes containing indoloacridine and its analogues
US9711739B2 (en) 2015-06-02 2017-07-18 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes containing indoloacridine and its analogues
US10836785B2 (en) 2015-06-03 2020-11-17 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate and octahedral metal complexes containing naphthyridinocarbazole and its analogues
US9879039B2 (en) 2015-06-03 2018-01-30 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate and octahedral metal complexes containing naphthyridinocarbazole and its analogues
US11472827B2 (en) 2015-06-03 2022-10-18 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate and octahedral metal complexes containing naphthyridinocarbazole and its analogues
US9617291B2 (en) 2015-06-03 2017-04-11 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate and octahedral metal complexes containing naphthyridinocarbazole and its analogues
US11930662B2 (en) 2015-06-04 2024-03-12 Arizona Board Of Regents On Behalf Of Arizona State University Transparent electroluminescent devices with controlled one-side emissive displays
US10158091B2 (en) 2015-08-04 2018-12-18 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) and palladium (II) complexes, devices, and uses thereof
US10930865B2 (en) 2015-08-04 2021-02-23 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) and palladium (II) complexes, devices, and uses thereof
US11737350B2 (en) 2015-08-13 2023-08-22 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including the organometallic compound, and diagnosis composition including the organometallic compound
US11211571B2 (en) 2015-08-18 2021-12-28 Samsung Electronics Co., Ltd. Organometallic compound and organic light-emitting device including the same
US11335865B2 (en) 2016-04-15 2022-05-17 Arizona Board Of Regents On Behalf Of Arizona State University OLED with multi-emissive material layer
US20170365801A1 (en) * 2016-06-20 2017-12-21 Universal Display Corporation Organic electroluminescent materials and devices
US10672997B2 (en) * 2016-06-20 2020-06-02 Universal Display Corporation Organic electroluminescent materials and devices
US11903306B2 (en) 2016-06-20 2024-02-13 Universal Display Corporation Organic electroluminescent materials and devices
US11424419B2 (en) 2016-06-20 2022-08-23 Universal Display Corporation Organic electroluminescent materials and devices
US11588121B2 (en) 2016-06-20 2023-02-21 Universal Display Corporation Organic electroluminescent materials and devices
US11839139B2 (en) 2016-06-20 2023-12-05 Universal Display Corporation Organic electroluminescent materials and devices
US10566554B2 (en) 2016-08-22 2020-02-18 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) and palladium (II) complexes and octahedral iridium complexes employing azepine functional groups and their analogues
US10177323B2 (en) 2016-08-22 2019-01-08 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) and palladium (II) complexes and octahedral iridium complexes employing azepine functional groups and their analogues
US10566566B2 (en) 2016-09-27 2020-02-18 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including the organometallic compound, and diagnosis composition including the organometallic compound
US10822363B2 (en) 2016-10-12 2020-11-03 Arizona Board Of Regents On Behalf Of Arizona State University Narrow band red phosphorescent tetradentate platinum (II) complexes
US11183670B2 (en) 2016-12-16 2021-11-23 Arizona Board Of Regents On Behalf Of Arizona State University Organic light emitting diode with split emissive layer
US11708385B2 (en) 2017-01-27 2023-07-25 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emitters employing pyrido-pyrrolo-acridine and analogues
US10516117B2 (en) 2017-05-19 2019-12-24 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emttters employing benzo-imidazo-phenanthridine and analogues
US11974495B2 (en) 2017-05-19 2024-04-30 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complexes based on biscarbazole and analogues
US11063228B2 (en) 2017-05-19 2021-07-13 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emitters employing benzo-imidazo-phenanthridine and analogues
US11101435B2 (en) 2017-05-19 2021-08-24 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complexes based on biscarbazole and analogues
US11981692B2 (en) 2017-06-16 2024-05-14 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including the organometallic compound, and diagnostic composition including the organometallic compound
US11957044B2 (en) 2017-09-05 2024-04-09 Samsung Electronics Co., Ltd. Organometallic compound, organic light-emitting device including the same, and diagnostic composition including the organometallic compound
US11647643B2 (en) 2017-10-17 2023-05-09 Arizona Board Of Regents On Behalf Of Arizona State University Hole-blocking materials for organic light emitting diodes
US11594688B2 (en) 2017-10-17 2023-02-28 Arizona Board Of Regents On Behalf Of Arizona State University Display and lighting devices comprising phosphorescent excimers with preferred molecular orientation as monochromatic emitters
US11930697B2 (en) 2019-01-04 2024-03-12 Samsung Display Co., Ltd. Organometallic compound and organic light-emitting device including the same
US11878988B2 (en) 2019-01-24 2024-01-23 Arizona Board Of Regents On Behalf Of Arizona State University Blue phosphorescent emitters employing functionalized imidazophenthridine and analogues
US11594691B2 (en) 2019-01-25 2023-02-28 Arizona Board Of Regents On Behalf Of Arizona State University Light outcoupling efficiency of phosphorescent OLEDs by mixing horizontally aligned fluorescent emitters
US11785838B2 (en) 2019-10-02 2023-10-10 Arizona Board Of Regents On Behalf Of Arizona State University Green and red organic light-emitting diodes employing excimer emitters
US11945985B2 (en) 2020-05-19 2024-04-02 Arizona Board Of Regents On Behalf Of Arizona State University Metal assisted delayed fluorescent emitters for organic light-emitting diodes

Also Published As

Publication number Publication date
WO2005042444A3 (fr) 2005-06-23
JP4110173B2 (ja) 2008-07-02
EP1683804A2 (fr) 2006-07-26
CN1875026A (zh) 2006-12-06
KR20060115371A (ko) 2006-11-08
TW200528535A (en) 2005-09-01
US20070103060A1 (en) 2007-05-10
TWI316540B (en) 2009-11-01
WO2005042444A2 (fr) 2005-05-12
JPWO2005042444A1 (ja) 2007-04-26
EP1683804B1 (fr) 2013-07-31
KR101044087B1 (ko) 2011-06-27
CN100445294C (zh) 2008-12-24
EP1683804A4 (fr) 2009-04-01

Similar Documents

Publication Publication Date Title
US7442797B2 (en) Platinum complex and light emitting device
US10892426B2 (en) Organic electroluminescent materials and devices
US11482684B2 (en) Organic electroluminescent materials and devices
US10000517B2 (en) Organic electroluminescent materials and devices
US9193745B2 (en) Heteroleptic iridium complex
US10457699B2 (en) Organic electroluminescent materials and devices
US7604874B2 (en) Organic compounds for electroluminescence and organic electroluminescent devices using the same
JP4773109B2 (ja) 白金錯体及び発光素子
US9725476B2 (en) Silylated metal complexes
US20060094875A1 (en) Platinum complexes
TWI466980B (zh) Organic electroluminescent elements
JPWO2004039914A1 (ja) 発光素子
JP2004331508A (ja) 白金錯体
US20090102363A1 (en) Metal complex compound, material for organic electroluminescence device and organic electroluminescence device using the same
US20070111024A1 (en) Metal complex compound and organic electroluminescence device containing the same
US20200255464A1 (en) Organic Electroluminescent Materials and Devices
JP4406045B2 (ja) 新たな有機発光化合物及びこれを利用した有機発光素子
US20210384449A1 (en) Organic Electroluminescent Materials and Devices
US20090039767A1 (en) Metal complex compound, material for organic electroluminescence device and organic electroluminescence device using the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: TAKASAGO INTERNATIONAL CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ITOH, HISANORI;NAKAYAMA, YUJI;IWATA, TAKESHI;AND OTHERS;REEL/FRAME:017896/0545;SIGNING DATES FROM 20060329 TO 20060331

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12