US20200085466A1 - Actuation mechanism for use with an ultrasonic surgical instrument - Google Patents
Actuation mechanism for use with an ultrasonic surgical instrument Download PDFInfo
- Publication number
- US20200085466A1 US20200085466A1 US16/578,798 US201916578798A US2020085466A1 US 20200085466 A1 US20200085466 A1 US 20200085466A1 US 201916578798 A US201916578798 A US 201916578798A US 2020085466 A1 US2020085466 A1 US 2020085466A1
- Authority
- US
- United States
- Prior art keywords
- clamp arm
- inner tube
- ultrasonic
- spring
- surgical instrument
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000007246 mechanism Effects 0.000 title claims abstract description 30
- 239000012636 effector Substances 0.000 claims description 37
- 230000033001 locomotion Effects 0.000 claims description 33
- 230000000670 limiting effect Effects 0.000 claims description 15
- 238000005520 cutting process Methods 0.000 abstract description 9
- 238000001356 surgical procedure Methods 0.000 abstract description 9
- 230000015271 coagulation Effects 0.000 abstract description 8
- 238000005345 coagulation Methods 0.000 abstract description 8
- 238000010276 construction Methods 0.000 abstract description 8
- 239000000463 material Substances 0.000 description 58
- 230000014509 gene expression Effects 0.000 description 38
- 210000003811 finger Anatomy 0.000 description 32
- 239000004020 conductor Substances 0.000 description 21
- 230000005540 biological transmission Effects 0.000 description 14
- 230000000875 corresponding effect Effects 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- 238000013461 design Methods 0.000 description 12
- 210000003813 thumb Anatomy 0.000 description 12
- 230000004913 activation Effects 0.000 description 11
- 210000005224 forefinger Anatomy 0.000 description 9
- 230000008901 benefit Effects 0.000 description 8
- 230000000994 depressogenic effect Effects 0.000 description 8
- 239000000945 filler Substances 0.000 description 8
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 7
- 239000004810 polytetrafluoroethylene Substances 0.000 description 7
- 229920006362 Teflon® Polymers 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 238000000418 atomic force spectrum Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 229920001903 high density polyethylene Polymers 0.000 description 4
- 239000004809 Teflon Substances 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000881 depressing effect Effects 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- -1 polytetrafluoroethylene Polymers 0.000 description 3
- 230000036316 preload Effects 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical compound FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000009429 electrical wiring Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229920002457 flexible plastic Polymers 0.000 description 2
- 239000002783 friction material Substances 0.000 description 2
- 210000004247 hand Anatomy 0.000 description 2
- 210000004936 left thumb Anatomy 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000002079 cooperative effect Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000012976 endoscopic surgical procedure Methods 0.000 description 1
- 210000003746 feather Anatomy 0.000 description 1
- 230000008713 feedback mechanism Effects 0.000 description 1
- HDDSHPAODJUKPD-UHFFFAOYSA-N fenbendazole Chemical compound C1=C2NC(NC(=O)OC)=NC2=CC=C1SC1=CC=CC=C1 HDDSHPAODJUKPD-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012830 laparoscopic surgical procedure Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002355 open surgical procedure Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 208000003580 polydactyly Diseases 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229940092174 safe-guard Drugs 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B17/320092—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/28—Surgical forceps
- A61B17/29—Forceps for use in minimally invasive surgery
- A61B17/2909—Handles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/00234—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
- A61B2017/00353—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery one mechanical instrument performing multiple functions, e.g. cutting and grasping
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/0042—Surgical instruments, devices or methods, e.g. tourniquets with special provisions for gripping
- A61B2017/00424—Surgical instruments, devices or methods, e.g. tourniquets with special provisions for gripping ergonomic, e.g. fitting in fist
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/28—Surgical forceps
- A61B17/2812—Surgical forceps with a single pivotal connection
- A61B17/282—Jaws
- A61B2017/2825—Inserts of different material in jaws
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/28—Surgical forceps
- A61B17/2812—Surgical forceps with a single pivotal connection
- A61B17/2841—Handles
- A61B2017/2845—Handles with a spring pushing the handle back
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/28—Surgical forceps
- A61B17/29—Forceps for use in minimally invasive surgery
- A61B17/2909—Handles
- A61B2017/2911—Handles rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B17/320092—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
- A61B2017/320094—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw additional movable means performing clamping operation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B17/320092—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
- A61B2017/320095—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw with sealing or cauterizing means
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49005—Acoustic transducer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49998—Work holding
Definitions
- HANDLE ASSEMBLY HAVING HAND ACTIVATION FOR USE WITH AN ULTRASONIC SURGICAL INSTRUMENT, Ser. No. 11/246,330, filed Oct. 7, 2005, now U.S. Pat. No. 7,846,155;
- the present invention relates, in general, to ultrasonic surgical instruments and, more particularly, to an ultrasonic surgical clamp coagulator apparatus particularly configured to provide increased tissue transaction forces.
- Ultrasonic surgical instruments are finding increasingly widespread applications in surgical procedures by virtue of the unique performance characteristics of such instruments.
- ultrasonic surgical instruments can provide substantially simultaneous cutting of tissue and homeostasis by coagulation, desirably minimizing patient trauma.
- the cutting action is typically effected by an end-effector at the distal end of the instrument, which transmits ultrasonic energy to tissue brought into contact with the end-effector.
- Ultrasonic instruments of this nature can be configured for open surgical use, laparoscopic or endoscopic surgical procedures including robotic-assisted procedures.
- Ultrasonic surgical instruments have been developed that include a clamp mechanism to press tissue against the blade of the end-effector in order to couple ultrasonic energy to the tissue of a patient.
- a clamp mechanism to press tissue against the blade of the end-effector in order to couple ultrasonic energy to the tissue of a patient.
- Such an arrangement (sometimes referred to as a clamp coagulator shears or an ultrasonic transector) is disclosed in U.S. Pat. Nos. 5,322,055; 5,873,873 and 6,325,811, all of which are incorporated herein by reference.
- the surgeon activates the clamp arm to press the clamp pad against the blade by squeezing on the handgrip or handle.
- Tissue tags are the tissue that remains clamped in the jaw that is not transected after the majority of the tissue in the jaw has been transected and falls away. Tissue tags may result from insufficient end-effector proximal loading and/or lower proximal blade activity. Surgeons may mitigate tissue tags either through the addition of vertical tension (i.e. putting tension on the tissue using the blade) or rearward traction on the device in order to move the untransected tissue to a more active portion of the blade to complete the cut.
- vertical tension i.e. putting tension on the tissue using the blade
- rearward traction on the device in order to move the untransected tissue to a more active portion of the blade to complete the cut.
- Some current ultrasonic devices utilize tissue pads that close in parallel with the surface of the blade. This presents certain problems in terms of the pressure profile exerted on the tissue. As tissue is compressed between the jaw and the blade, the proximal portion of the blade deflects under the load more than the proximal portion of the clamp arm moves in applying the load against the blade. This deflection is in part created by the portion of the blade distal to the most distal node of the device. It is also partly created by the deflection of the transmission rod proximal to the most distal node. Additionally, the fact that blade amplitude decreases moving proximal of the tip of the blade makes the situation worse since the amount of energy transferred to the tissue, even if the pressure was constant, is reduced.
- clamp coagulator shears utilize an inner tube within an outer tube concept to drive the clamp arm open and close.
- the clamp arm may be subjected to axial clamp forces exceeding 2.5 pounds and/or torsional abuse loads and may cause the clamp arm to disengage from the inner tube or completely from the shears.
- Some current designs of clamp coagulator shears utilize a constant force spring mechanism that prevents the application of too much force to the clamp arm and blade.
- the mechanism provides relatively constant force to the system, the spring imparts some slope to the force curve. In applications where the clamp force is low, the slope is not significant. In applications with high clamp forces, however, the difference in force attributable to the slope over the possible range of spring compressions becomes very significant and may exceed the maximum force allowable in the blade, in the tube assemblies or in other components of the system. The high slope could allow the maximum force to be exceeded under abuse modes or through normal manufacturing tolerance variations. If this occurs the blade may bend, the actuation mechanism may fail or undesirable tissue effects may occur (i.e. fast cutting, but minimal tissue coagulation).
- Some current designs of clamp coagulator shears utilize force-limiting springs to ensure that clamp forces are within a specified range. It is also necessary for the force-limiting spring design to allow the surgeon to “feather” (apply less than the maximum force and slowly increase to the maximum force). In these mechanisms, therefore, the jaws close until a predetermined force is met and then the additional stroke drives the mechanism into the force limiting range. In some cases, though, the surgeon may, unknowingly, fail to apply the full force of the jaw against the tissue resulting in incomplete tissue cuts or insufficient coagulation. Alternatively, the surgeon may unknowingly release full force of the jaw against the tissue during a transaction that results in incomplete tissue cuts or insufficient coagulation.
- Some current designs of clamp coagulator shears utilize a foot pedal to energize the surgical instrument.
- the surgeon operates the foot pedal while simultaneously applying pressure to the handle to press tissue between the jaw and blade to activate a generator that provides energy that is transmitted to the cutting blade for cutting and coagulating tissue.
- Key drawbacks with this type of instrument activation include the loss of focus on the surgical field while the surgeon searches for the foot pedal, the foot pedal getting in the way of the surgeon's movement during a procedure and surgeon leg fatigue during long cases.
- Some current designs of clamp coagulator shears have eliminated the foot pedal and provided hand activation on a stationary trigger. This may be cumbersome, especially for surgeons with large hands.
- Some current designs of clamp coagulator utilize handles that are either of a pistol or scissors grips design.
- the scissor grip designs may have one thumb or finger grip that is immovable and fixed to the housing and one movable thumb or finger grip. This type of grip may not be entirely familiar to surgeons who use other open-type surgical instruments, such as hemostats, where both thumb and finger grips move in opposition to one another.
- a tissue pad comprising a first component and a second component.
- the first component comprises a first material and a first tissue engaging surface, and the first component has proximal and distal ends.
- the second component comprises a second material and a second tissue engaging surface, and the second component has proximal and distal ends.
- the first and second components are separable. At least a portion of the distal end of the first tissue engaging surface is positioned distal relative to the second tissue engaging surface.
- the first material is different from the second material.
- the first material has a greater lubricity than the second material.
- the second material has a greater resistance to heat than the first material.
- a tissue pad for use in an ultrasonic clamp coagulator comprises a first tissue pad and a second tissue pad.
- the first tissue pad comprises a first material and a first tissue engaging surface, and the first tissue pad has proximal and distal ends.
- the second tissue pad comprises a second material and a second tissue engaging surface, and the second tissue pad has proximal and distal ends.
- the first and second tissue pads are separable. At least a portion of the distal end of the first tissue engaging surface is positioned distal to the second tissue engaging surface.
- the first material is different from the second material.
- the first material has a greater lubricity than the second material.
- the second material has a greater resistance to heat than the first material.
- FIG. 1 is a perspective view illustrating an embodiment of an ultrasonic surgical instrument in accordance with the present invention
- FIG. 2 is a perspective assembly view of an embodiment of an ultrasonic surgical instrument in accordance with the present invention
- FIG. 3 a is a perspective assembly view of the clamp arm and tissue pads
- FIG. 3 b is an elevation section view of the clamp arm and “T” groove
- FIG. 3 c is an elevation section view of the clamp arm and dovetail groove
- FIG. 3 d is a perspective view of the tissue pads aligned and staked within the clamp arm
- FIG. 3 e is an elevation view of the clamp arm illustrating the tapered profile
- FIG. 3 f is a top plan view of the clamp arm
- FIG. 4 a is a perspective assembly view of the blade, clamp arm, tissue pads and actuator tube with the clamp arm in the closed position;
- FIG. 4 b is a perspective assembly view of the blade, clamp arm, tissue pads and actuator tube with the clamp arm in the open position;
- FIG. 4 c is a schematic of a clamp arm in accordance with the present invention illustrating force calculations
- FIG. 5 is a cutaway elevation view of the housing portion of an ultrasonic surgical instrument in accordance with an embodiment of the present invention illustrating force-limiting springs and clamp closure detent mechanism and partial cutaway elevation view of the transmission rod and end effector;
- FIG. 6 a is an exploded view of the housing illustrating the thumb actuation buttons and switch assembly and linkage of the finger grip clamp actuator;
- FIG. 6 b is an exploded view of the housing with the switch assembly removed for clarity;
- FIG. 7 is a perspective assembly view of the switch assembly and electrical ring contactors
- FIG. 8 a is a perspective assembly view of the switch assembly and electrical ring contactors
- FIG. 8 b is a perspective view of the proximal end of the transducer illustrating conductor rings
- FIG. 8 c is an electrical schematic of the pushbutton circuit
- FIG. 9 is a perspective view of an ultrasonic surgical instrument with a cut away view of the housing and connected to a transducer;
- FIG. 10 is a perspective view of an ultrasonic surgical instrument with the trigger extended distally and the clamp arm in the open position;
- FIG. 11 is a perspective view of an ultrasonic surgical instrument with the trigger retracted proximally and the clamp arm in the closed position;
- FIG. 12 is an elevation view of a left-handed grip of an embodiment of an ultrasonic surgical instrument in accordance with the present invention.
- FIG. 13 is an elevation view of a left-handed grip of an ultrasonic surgical instrument in accordance with an embodiment of the present invention with the index finger accessing the rotation wheel;
- FIG. 14 is an elevation view of a left-handed grip of an ultrasonic surgical instrument in accordance with the present invention with the thumb accessing a first activation button;
- FIG. 15 is an elevation view of a left-handed grip of an ultrasonic surgical instrument in accordance with the present invention with the thumb accessing a second activation button;
- FIG. 16 a - c are force curves illustrating various forces as a function of the trigger position and tissue conditions
- FIG. 17 is an elevation view of the surgical instrument with graphical illustrations of the surgeon finger placement
- FIG. 18 is a perspective assembly view of a second embodiment of an ultrasonic surgical instrument in accordance with the present invention.
- FIG. 19 is an exploded view of a handpiece connector
- FIGS. 20 a - b are exploded views of a large slip ring and a small slip ring, respectively;
- FIG. 21 is an exploded view of the flex circuit apparatus
- FIG. 22 is an electrical schematic of the flex circuit of FIG. 21 ;
- FIG. 23 is an elevation view of a surgical instrument in accordance with one aspect of the invention.
- FIG. 24 is a perspective view of a surgical instrument in an alternate aspect of the invention.
- the present invention is particularly directed to an improved ultrasonic surgical clamp coagulator apparatus which is configured for effecting tissue cutting, coagulation, and/or clamping during surgical procedures.
- the present apparatus can be readily configured for use in open surgical procedures, as well as laparoscopic or endoscopic procedures and robot-assisted surgical procedures. Versatile use is facilitated by selective use of ultrasonic energy.
- ultrasonic components of the apparatus When ultrasonic components of the apparatus are inactive, tissue can be readily gripped and manipulated, as desired, without tissue cutting or damage.
- the ultrasonic components When the ultrasonic components are activated, the apparatus permits tissue to be gripped for coupling with the ultrasonic energy to effect tissue coagulation, with application of increased pressure efficiently effecting tissue cutting and coagulation. If desired, ultrasonic energy can be applied to tissue without use of the clamping mechanism of the apparatus by appropriate manipulation of the ultrasonic blade.
- the present clamp coagulator apparatus is particularly configured for disposable use by virtue of its straightforward construction. As such, it is contemplated that the apparatus be used in association with an ultrasonic generator unit of a surgical system, whereby ultrasonic energy from the generator unit provides the desired ultrasonic actuation for the present clamp coagulator apparatus. It will be appreciated that a clamp coagulator apparatus embodying the principles of the present invention can be configured for non-disposable or multiple use, and non-detachably integrated with an associated ultrasonic generator unit. However, detachable connection of the present clamp coagulator apparatus with an associated ultrasonic generator unit is presently preferred for single-patient use of the apparatus.
- the present invention will be described in combination with an ultrasonic instrument as described herein. Such description is exemplary only, and is not intended to limit the scope and applications of the invention.
- the invention is useful in combination with a multitude of ultrasonic instruments including those described in, for example, U.S. Pat. Nos. 5,938,633; 5,935,144; 5,944,737; 5,322,055, 5,630,420; and 5,449,370.
- the surgical system 19 includes an ultrasonic generator 30 connected to an ultrasonic transducer 50 via cable 22 , and an ultrasonic surgical instrument 100 .
- the ultrasonic transducer 50 is referred to as a “hand piece assembly” because the surgical instrument of the surgical system 19 is configured such that a surgeon may grasp and manipulate the ultrasonic transducer 50 during various procedures and operations.
- a suitable generator is the GEN 300 sold by Ethicon Endo-Surgery, Inc. of Cincinnati, Ohio.
- the ultrasonic surgical instrument 100 includes a multi-piece handle assembly 68 adapted to isolate the operator from the vibrations of the acoustic assembly contained within transducer 50 .
- the handle assembly 68 can be shaped to be held by a user in a conventional manner, but it is contemplated that the present ultrasonic surgical instrument 100 principally be grasped and manipulated by a trigger-like arrangement provided by a handle assembly of the instrument, as will be described. While multi-piece handle assembly 68 is illustrated, the handle assembly 68 may comprise a single or unitary component.
- the proximal end of the ultrasonic surgical instrument 100 receives and is fitted to the distal end of the ultrasonic transducer 50 by insertion of the transducer into the handle assembly 68 .
- the ultrasonic surgical instrument 100 may be attached to and removed from the ultrasonic transducer 50 as a unit.
- the ultrasonic surgical instrument 100 may include a handle assembly 68 , comprising mating housing portion 69 , housing portion 70 , and a transmission assembly 71 .
- the construction can be dimensioned such that transmission assembly 71 has an outside diameter of approximately 5 . 5 mm.
- the elongated transmission assembly 71 of the ultrasonic surgical instrument 100 extends orthogonally from the instrument handle assembly 68 .
- the transmission assembly 71 can be selectively rotated with respect to the handle assembly 68 as further described below.
- the handle assembly 68 may be constructed from a durable plastic, such as polycarbonate or a liquid crystal polymer. It is also contemplated that the handle assembly 68 may alternatively be made from a variety of materials including other plastics, ceramics or metals.
- the transmission assembly 71 may include an outer tubular member or outer sheath 72 , an inner tubular actuating member 76 , a waveguide 80 and end-effector 81 (blade 79 , clamp arm 56 and one or more clamp pads 58 ).
- the outer sheath 72 , the actuating member 76 , and the waveguide or transmission rod 80 may be joined together for rotation as a unit (together with ultrasonic transducer 50 ) relative to handle assembly 68 .
- the waveguide 80 which is adapted to transmit ultrasonic energy from transducer 50 to blade 79 may be flexible, semi-flexible or rigid.
- the waveguide 80 may also be configured to amplify the mechanical vibrations transmitted through the waveguide 80 to the blade 79 as is well known in the art.
- the waveguide 80 may further have features to control the gain of the longitudinal vibration along the waveguide 80 and features to tune the waveguide 80 to the resonant frequency of the system.
- waveguide 80 may have any suitable cross-sectional dimension.
- the waveguide 80 may have a substantially uniform cross-section or the waveguide 80 may be tapered at various sections or may be tapered along its entire length.
- the waveguide diameter is about 0.113 inches nominal to minimize the amount of deflection at the blade 79 so that gapping in the proximal portion of the end effector 81 is minimized.
- Ultrasonic waveguide 80 may further include at least one radial hole or aperture 66 extending there through, substantially perpendicular to the longitudinal axis of the waveguide 80 .
- the aperture 66 which may be positioned at a node, is configured to receive a connector pin 27 which connects the waveguide 80 , to the tubular actuating member 76 , and the tubular outer sheath 72 , a rotation knob 29 together for conjoint rotation, including the end effector 81 , relative to instrument handle assembly 68 .
- the ultrasonic waveguide 80 may have a plurality of grooves or notches (not shown) formed in its outer circumference.
- the grooves may be located at nodes of the waveguide 80 to act as alignment indicators for the installation of a damping sheath 62 and stabilizing silicone rings or compliant supports during manufacturing.
- a seal 67 may be provided at the distal-most node, nearest the end-effector 81 , to abate passage of tissue, blood, and other material in the region between the waveguide 80 and actuating member 76 .
- the blade 79 may be integral with the waveguide 80 and formed as a single unit. In an alternate expression of the current embodiment, blade 79 may be connected by a threaded connection, a welded joint, or other coupling mechanisms.
- the distal end of the blade 79 is disposed near an anti-node in order to tune the acoustic assembly to a preferred resonant frequency for when the acoustic assembly is not loaded by tissue.
- the distal end of blade 79 is configured to move longitudinally in the range of, for example, approximately 10 to 500 microns peak-to-peak, and preferably in the range of about 20 to about 200 microns at a predetermined vibrational frequency for of, for example, 55,500 Hz.
- blade 79 is curved along with the associated clamp arm 56 .
- the acoustic assembly of surgical instrument 100 generally includes a first acoustic portion and a second acoustic portion.
- the first acoustic portion comprises the ultrasonically active portions of ultrasonic transducer 50
- the second acoustic portion comprises the ultrasonically active portions of transmission assembly 71 .
- the distal end of the first acoustic portion is operatively coupled to the proximal end of the second acoustic portion by, for example, a threaded connection.
- a force-limiting mechanism 91 is operatively connected to actuating member 76 and comprises a tube collar cap 98 that secures distal washer 97 , distal wave spring 96 , proximal washer 95 and proximal wave spring 94 onto collar cap 93 .
- Collar 93 includes axially extending lugs 92 in engagement with suitable openings 75 in the proximal portion of tubular actuating member 76 .
- a circumferential groove 74 on the actuating member 76 receives on O-ring 73 for engagement with the inside surface of outer sheath 72 .
- Tubular actuating member 76 includes an elongated slot 31 through which the connector pin 27 extends to accommodate reciprocal movement of the actuating member 76 relative to the outer sheath 72 and inner waveguide 80 .
- the force limiting mechanism 91 provides a portion of the clamp drive mechanism of the instrument 100 , which affects pivotal movement of the clamp arm 56 by reciprocation of actuating member 76 .
- the clamp drive mechanism further includes a drive yoke 33 which is operatively connected with an operating trigger 34 of the instrument, with the operating trigger 34 thus interconnected with the reciprocable actuating member 76 via drive yoke 33 and force limiting mechanism 91 .
- Trigger 34 is rotatably connected to drive yoke 33 via pins 35 and 36 and link 37 and rotatably connected to drive yoke 33 and housing 68 via post 38 .
- Movement of trigger 34 toward handgrip 68 translates actuating member 76 proximally, thereby pivoting clamp arm 56 toward blade 79 .
- the trigger-like action provided by trigger 34 and cooperating handgrip 68 facilitates convenient and efficient manipulation and positioning of the instrument, and operation of the clamping mechanism at the distal portion of the instrument whereby tissue is efficiently urged against the blade 79 .
- Movement of trigger 34 away from handgrip 68 translates actuating member 76 distally, thereby pivoting clamp arm 56 away from blade 79 .
- clamp member 60 for use with the present ultrasonic surgical instrument 100 and which is configured for cooperative action with blade 79 .
- the clamp member 60 in combination with blade 79 is commonly referred to as the end effector 81 , and the clamp member 60 is also commonly referred to as the jaw.
- the clamp member 60 includes a pivotally movable clamp arm 56 , which is connected to the distal end of outer sheath 72 and actuation member 76 , in combination with a tissue engaging pad or clamp pad 58 .
- clamp pad 58 is formed from TEFLON® trademark name of E. I.
- Clamp pad 58 mounts on the clamp arm 56 for cooperation with blade 79 , with pivotal movement of the clamp arm 56 positioning the clamp pad in substantially parallel relationship to, and in contact with, blade 79 , thereby defining a tissue treatment region.
- tissue is grasped between clamp pad 58 and blade 79 .
- clamp pad 58 may be provided with non-smooth surface, such as a saw tooth-like configuration to enhance the gripping of tissue in cooperation with the blade 79 .
- the saw tooth-like configuration, or teeth provide traction against the movement of the blade. The teeth also provide counter traction to the blade and clamping movement.
- the saw tooth-like configuration is just one example of many tissue engaging surfaces to prevent movement of the tissue relative to the movement of the blade 79 .
- Other illustrative examples include bumps, criss-cross patterns, tread patterns, a bead or sand blasted surface, etc.
- a first expression of the current embodiment includes a clamp pad 58 having a proximal portion 58 b that is smoother than a distal portion 58 a , such that proximal portion 58 b may be devoid of saw-tooth-like teeth or other tissue engaging surfaces contemplated. Utilizing a smooth proximal portion 58 b on clamp pad 58 allows tissue in the proximal region to move distally, following the vibratory motion of the blade, to the more active region of the blade 79 to prevent tissue tagging. This concept takes advantage of the inherent motion profile of blade 79 .
- the tissue in the proximal region of end effector (area of portion 58 b ) will desiccate and thin, and the distal portion of end effector 81 will transect tissue in that distal region, thereby allowing the desiccated and thin tissue within the proximal region to slide distally into the more active region of end effector 81 to complete the tissue transaction.
- clamp pad 58 consists of one single pad having a smooth proximal end 58 b and a distal portion 58 a that comprises a saw tooth-like configuration.
- clamp pad 58 may consist of two separate components, distal portion 58 a ′ that comprises saw tooth-like teeth and proximal portion 58 b ′ that is smoother relative to distal portion 58 a ′.
- the advantage of two separate components 58 a ′ and 58 b ′ is that each pad may be constructed from different materials.
- having a two-piece tissue pad allows the use of a very lubricious material at the distal end that is not particularly resistant to high temperatures compared to a very high temperature material at the proximal end that is not particularly lubricious because the proximal end is an area of lower amplitude.
- Such a configuration matches the tissue pad materials to the amplitude of the blade 79 .
- clamp pad 58 a ′ is formed from TEFLON® or any other suitable low-friction material.
- Clamp pad 58 b ′ is formed from a base material and at least one filler material, which is a different material from the base material.
- the surface of proximal clamp pad 58 b ′ may be smoother than distal clamp pad 58 a ′, or proximal clamp pad 58 b ′ may also have a similar type saw-tooth configuration.
- tissue pad with a base material and at-least-one filler material allows the base material and the at-least-one filler material to be chosen with a different hardness, stiffness, lubricity, dynamic coefficient of friction, heat transfer coefficient, abradability, heat deflection temperature, glass transition temperature and/or melt temperature to improve the wearability of the tissue pad, which is important when high clamping forces are employed because tissue pads wear faster at higher clamping forces than at lower clamping forces.
- a tissue pad with a base material and at least two filler materials allows the base material and the at-least-two filler materials to be chosen with a different hardness, stiffness, lubricity, dynamic coefficient of friction, heat transfer coefficient, abradability, heat deflection temperature, and/or melt temperature to improve the wearability of the tissue pad, which is important when high clamping forces are employed because tissue pads wear faster at higher clamping forces than at lower clamping forces.
- the advantage of a 15% graphite-filled, 30% PTFE-filled polyimide tissue pad is increased heat resistance, which improves the overall wear resistance of the tissue pad.
- This polyimide-composite clamp pad has a useful heat resistance up about 800° F. to about 1200° F., as compared to a useful heat resistance up to about 660° F. of a PTFE clamp pad.
- Other materials are also useful for a portion of the tissue pad (that is element 58 b ′), such as ceramics, metals, glasses and graphite.
- clamp arm 56 has different shaped slots for accepting two or more tissue pads. This configuration prevents mis-loading of the tissue pads and assures that the appropriate pad is loaded at the correct location within clamp arm 56 .
- clamp arm 56 may comprise a distal T-shaped slot 53 a for accepting a T-shaped flange 53 b ′ of distal clamp pad 58 a ′ and a proximal wedged-shaped or dove tailed-shaped slot 55 a for accepting a wedge-shaped flange 55 b ′ of proximal clamp pad 58 b ′.
- Tab stop 51 engages the proximal end of proximal clamp pad 58 b ′ to secure the clamp pads onto clamp arm 56 .
- flanges 53 b ′ and 55 b ′ and corresponding slots 53 a and 55 a may have alternate shapes and sizes to secure the clamp pads to the clamp arm.
- the illustrated flange configurations shown are exemplary only and accommodate the particular clamp pad material of one embodiment, but the particular size and shape of the flange may vary, including, but not limited to, flanges of the same size and shape. For unitary tissue pads, the flange may be of one configuration.
- other tab stops are possible and may include any of the multiple methods of mechanically attaching the clamp pads to the clamp arm, such as rivets, glue, press fit or any other fastening means well know to the artisan.
- clamp pads 58 a and 58 b are cut on a bias so the interface between the two pads creates an overlap to minimize gapping ( FIGS. 4 a , 4 b ).
- a 45 degree biased cut does allow some gapping to occur, but the amount of gap seen by the tissue is minimized.
- clamp arm 56 increases in its height dimension from the distal end to the proximal end (D 1 ⁇ D 2 ).
- D 2 is from about 105% to about 120% greater than D 1 and more preferably, D 2 is from about 108% to about 113% greater than D 1 , and most preferably, D 2 is about 110% greater than D 1 .
- Slot 153 accepts the flanges from one clamp pad 58 or two clamp pads 58 a and 58 b .
- Tapered clamp arm 56 allows for the use of use flat pads and increases the pressure in the proximal portion of end effector 81 as well as the interference with blade 79 .
- a first expression for a method for inserting clamp pads includes a) inserting first and second clamp pads having a first-shaped flange into a clamp arm 56 having a slot that accepts the first-shaped flange; and b) engaging a pad stop to secure the clamp pads within the clamp arm.
- one clamp pad may be fabricated from a polymeric material such as TEFLON, and the second clamp pad may be fabricated from a base material and at least one filler material, which is a different material from the base material and that clamp arm is fabricated from metal, such as stainless steel, or titanium.
- the tissue surfaces of the clamp pads may be smooth or have tissue gripping features, such as a saw-tooth configuration.
- a third expression for a method for inserting clamp pads includes a) inserting a first clamp pad having a first-shaped flange into a clamp arm having a slot that accepts the first-shaped flange; b) inserting a second clamp pad having a second-shaped flange into the clamp arm having a slot that accepts the second-shaped flange; and c) engaging a pad stop to secure the clamp pads within the clamp arm.
- one clamp pad may be fabricated from a polymeric material such as TEFLON
- the second clamp pad may be fabricated from a base material and at least one filler material, which is a different material from the base material and that clamp arm is fabricated from metal, such as stainless steel, or titanium.
- the tissue surfaces of the clamp pads may be smooth or have tissue-gripping features, such as a saw-tooth configuration.
- a first expression of a method for replacing clamp pads 58 would include the steps of: a) disengaging a pad stop; b) removing a first clamp pad from the clamp arm; c) removing a second clamp pad from the clamp arm; d) inserting third and fourth clamp pads into the clamp arm; and e) engaging a pad stop to secure the third and fourth clamp pads within the clamp arm.
- one of the third and fourth clamp pads may be fabricated from a polymeric material such as TEFLON, and the other clamp pad may be fabricated from a base material and at least one filler material, which is a different material from the base material and that clamp arm is fabricated from metal, such as stainless steel, or titanium.
- the tissue surfaces of the clamp pads may be smooth or have tissue gripping features, such as a saw-tooth configuration.
- pivotal movement of the clamp member 60 with respect to blade 79 is affected by the provision of a pair of pivot points on the clamp arm 56 that interface with the outer tube 72 and inner tube 76 respectively.
- the outer tube 72 is grounded to handle 68 through rotation knob 29 .
- Clamp arm 56 is pivotally connected to outer tube 72 via corresponding through holes 52 a and 52 b on clamp arm 56 and 52 c and 52 d on outer tube 72 .
- a securing pin or rivet 57 slides through holes 52 a - d to secure clamp arm 56 to outer tube 72 .
- pin 57 is laser welded to clamp arm 56 so that pin 57 is fixed to clamp arm 56 and rotates relative to outer sheath 72 .
- Inner tube 76 translates along the longitudinal axis of outer tube 72 and is grounded to the handle 68 through rotation knob 29 .
- Pivot studs 54 a,b ( 54 a not shown) on clamp arm 56 engage pivot holes 54 c,d ( 54 d not shown) at the distal end of inner tube 76 .
- the pivotal connection of clamp arm 56 to the inner and outer tubes 76 , 72 provide more robustness to the end effector 81 and minimize failure modes due to excessive axial or torsional abuse loads. Further, the embodiment increases the effectiveness of the end effector 81 to provide clamp forces in excess of 1.5 lbs. Reciprocal movement of the actuating member 76 , relative to the outer sheath 72 and the waveguide 80 , thereby affects pivotal movement of the clamp arm 56 relative to the end-blade 79 .
- FIG. 4 c illustrates a force diagram and the relationship between the actuation force FA (provided by actuation member 76 ) and transection force FT (measured at the midpoint of the optimal tissue treatment area).
- FIG. 16 c provides a graphical illustration of FT and FA as a function of trigger 34 movement as well as input forces at trigger 34 .
- Tissue marks 61 a, b are etched or raised on clamp arm 56 to provide a visible mark to the surgeon so the surgeon has a clear indication of the optimal tissue treatment area.
- Tissue marks 61 a, b are about 7 mm apart in distance, and more preferably 5 mm apart in distance.
- Rotation of the transmission assembly 71 of ultrasonic surgical instrument 100 may be affected together with relative rotational movement of ultrasonic transducer 50 with respect to instrument handle assembly 68 .
- the proximal portion of the outer sheath 72 may be provided with a pair of wrench flats 46 .
- the wrench flats 46 allow torque to be applied by a suitable torque wrench or the like to thereby permit the waveguide 80 to be joined to the ultrasonic transducer 50 .
- the ultrasonic transducer 50 as well as the transmission assembly 71 , is thus rotatable, as a unit, by suitable manipulation of rotation knob 29 , relative to handle assembly 68 of the instrument.
- the interior of handle assembly 68 is dimensioned to accommodate such relative rotation of the ultrasonic transducer 50 .
- a spring 28 is loaded against rotation knob 29 and an inner housing surface 65 .
- Spring 28 provides a compression or force against rotation knob 29 to inhibit inadvertent rotation of end effector 81 .
- force limiting mechanism 91 provides a first and second compression spring, distal spring 96 and proximal spring 94 .
- Distal spring 96 is operationally coupled to yoke 33 , which in turn is driven by trigger 34 .
- Proximal spring 94 is in operational relationship with distal spring 96 .
- Distal spring 96 generates the end effector load and proximal spring 94 maintains the consistency of the end effector load. As a result, the end effector load is more tightly controlled and component abuse load conditions are reduced. Washers 97 and 95 are a safe guard against distal spring 96 being fully compressed ( FIG. 5 ), thereby preventing the spring material to yield and render spring 96 useless in subsequent clamp arm closures.
- a dual spring force limiting system has applicability in other energy-based surgical devices (such as RF, microwave and laser) that encounter clamping forces, as well as mechanical devices, such as, clip appliers, graspers and staplers.
- energy-based surgical devices such as RF, microwave and laser
- mechanical devices such as, clip appliers, graspers and staplers.
- distal spring 96 has a spring constant greater than 100 pounds per inch and preferably greater than 125 pounds per inch and most preferably about 135 pounds per inch. It is not required that distal spring 96 be preloaded, but may be preloaded at less than 10 pounds, and preferably less than 5 pounds, and most preferably at about 1 pound.
- Proximal spring 94 has a spring constant greater than 25 pounds per inch and preferably greater than 50 pounds per inch and most preferably about 70 pounds per inch.
- Proximal spring 94 is preloaded to a force necessary to achieve the desired transection force as noted in Equation 1, above, and is a function of the mechanical advantage of the clamp arm 56 coupling means and frictional losses in the device. In a second expression of the current embodiment, proximal spring 94 is preloaded at about 12.5 pounds.
- curve 82 illustrates actuation member 76 force and curve 83 represents trigger 34 force as a function of the angular rotation of trigger 34 (on the x-axis, ⁇ 18.0 is the clamp arm 56 fully open and 0.0 is the clamp arm fully closed and against blade 79 ) under no tissue or minimal tissue load operation.
- Point 82 a represents the point at which yoke 33 begins to deflect or compress distal spring 96 and the actuation member 76 force increases as trigger 34 is depressed further until the force reaches the preload value of proximal spring 94 at inflection point 82 b , and the slope of the force curve decreases.
- curve 84 illustrates actuation member 76 force and curve 85 represents trigger 34 force as a function of the angular rotation of trigger 34 under abusive tissue load operation, whereby tissue completely fills the end effector in the open position.
- Point 84 a represents the point at which yoke 33 begins to deflect or compress distal spring 96 and the actuation member 76 force increases as trigger 34 is depressed until the force reaches the preload value of proximal spring 94 at inflection point 84 b , at which point the slope of the force curve decreases.
- surgical instrument 100 further provides for a means for indicating to the surgeon that the trigger has reached full travel and the clamp arm 56 is applying the correct coaptation force to the tissue. This is useful during protracted surgical operations or tissue transection activities when the surgeon's grip may relax, just a bit, without the surgeon's knowledge, and the pressure delivered to the tissue from the clamp arm 56 may be unknowingly decreased.
- a detent spring 110 is supported within a detent support 112 located within housing portion 69 .
- a detent tab 114 on trigger 34 engages and snaps back detent spring 110 when trigger 34 is fully closed or actuation member 76 has reached it most proximal travel.
- Detent spring 110 is generally planar and made of a flexible plastic that adequately deflects when it engages tab 114 thereby providing an audible and/or tactile signal to the surgeon that there is full end effector 81 closure.
- tab 114 strikes and deflects detent spring 110 when trigger 34 is rotated from the full closure position and in the opposite direction thereby providing an audible and/or tactile signal to the surgeon that full closure of end effector 81 no longer exists.
- the indicating means may be either tactile, audible or visual or a combination.
- Various types of indicators may be used including dome switches, solid stops, cantilever springs or any number of mechanical or electrical switches known to those skilled in the art.
- Further various means may be used to provide feedback to the surgeon, including, but not limited to, lights, buzzers, and vibratory elements.
- housing 68 includes a proximal end, a distal end, and a cavity 59 extending longitudinally therein. Cavity 59 is configured to accept a switch assembly 300 and the transducer assembly 50 , which interfaces with housing 68 via switch assembly 300 .
- Transducer 50 includes a first conductive ring 400 and a second conductive ring 410 which are securely disposed within the transducer body 50 .
- first conductive ring 400 comprises a ring member, which is disposed between the transducer 50 and the horn 130 .
- the first conductive ring 400 is formed adjacent to or as part of the flange member 160 within the cavity 162 and is electrically isolated from other electrical components.
- the first conductive ring 400 is anchored to and extends upwardly from a non-conductive platform or the like (not shown) which is formed within the transducer body 50 .
- the first conductive ring 400 is electrically connected to the cable 22 ( FIG. 1 ) by means of one or more electrical wires (not shown), which extend along the length of the transducer body 50 to the first conductive ring 400 .
- the second conductive ring 410 of the transducer 50 similarly comprises a ring member that is disposed between the transducer body 150 and the horn 130 .
- the second conductive ring 410 is disposed between the first conductive ring 400 and the horn 130 and therefore the first and second conductive rings 400 , 410 are concentric members.
- the second conductive ring 410 is likewise electrically isolated from the first conductive ring 400 and other electrical components contained within the transducer 50 .
- the second conductive ring 410 preferably is anchored to and extends upwardly from the non-conductive platform. It will be understood that the first and second conductive rings 400 , 410 are sufficiently spaced from one another so that they are electrically isolated from each other.
- the second conductive ring 410 is also electrically connected to the cable 22 ( FIG. 1 ) by means of one more electrical wires (not shown), which extend along the length of the transducer 50 to the second conductive ring 410 .
- the second conductive ring 410 is thus provided to partially define a second electrical pathway from the cable 22 to the switch mechanism 300 .
- a suitable ultrasonic transducer 50 is Model No. HP054, sold by Ethicon Endo-Surgery, Inc. of Cincinnati, Ohio.
- the distal end of transducer 50 threadedly attaches to the proximal end of transmission rod 80 .
- the distal end of transducer 50 also interfaces with switch assembly 300 to provide the surgeon with finger-activated controls on surgical instrument 100 .
- Switch assembly 300 comprises a pushbutton assembly 310 , a flex circuit assembly 330 , a switch housing 350 , a first spring slip ring conductor 360 and a second spring slip ring conductor 370 .
- Switch housing 350 is generally cylindrical and is supported within handle assembly 68 by way of corresponding supporting mounts on switch assembly 350 and housing portions 69 and 70 .
- Housing 350 defines a first cavity 353 , a mounting boss 352 and a second cavity 351 . Cavity 353 is sized to accept the proximal end of transducer 50 , whereby horn 130 passes through cavity 351 to interface with transmission rod 80 .
- Mounting boss 352 accepts slip ring conductors 360 and 370 , which in turn electrically engage ring contacts 400 and 410 , respectively.
- An alignment pin 354 and snap-fit pin 355 align with corresponding apertures of the flex circuit assembly 330 and pushbutton assembly 310 to secure all components together as discussed below.
- slip ring conductors 360 and 370 are generally open-ended O-shaped springs that slip onto mounting boss 352 .
- Each spring slip-ring comprises two pressure point contacts ( 361 a - b and 371 a - b ) that contact the respective ring conductor 400 and 410 of transducer 50 .
- the spring tension of the slip rings 360 and 370 cause positive contact between contacts 361 a - b , 371 a - b and conductors 400 and 410 . It is evident that the slip-ring construction allows electrical contact to be made even as transducer 50 may be rotated by the surgeon during use of the instrument.
- Posts 364 and 374 of the respective slip rings electrically connect to the respective conductor within flex circuit 330 to complete the electrical circuit as shown in FIG. 8 c.
- a flex circuit 330 provides for the electro-mechanical interface between pushbuttons 311 a, b , 312 a, b and the generator 30 via transducer 50 .
- Flex circuit comprises four dome switches 332 a,b and 334 a, b that are mechanically actuated by depressing pushbuttons 311 a, b or 312 a, b , respectively of corresponding pushbutton assembly 310 .
- Dome switches 332 and 334 are electrical contact switches, that when depressed provide an electrical signal to generator 30 as shown by the electrical wiring schematic of FIG. 8 c .
- Flex circuit 330 also comprises two diodes within a diode package 336 , also illustrated in FIG. 8 c .
- Flex circuit 330 provides conductors, 335 and 337 as is known to those in the art, that connect to slip ring conductors 360 and 370 via electrical tabs 364 and 374 , respectively, which in turn provide electrical contact to ring conductors 400 and 410 , which in turn are connected to conductors in cable 22 that connect to generator 30 .
- Tabs 364 and 374 are soldered to conductors 335 and 337 .
- Flex circuit 330 generally wraps around switch housing 350 so that dome switches 334 a, b and 332 a, b interface with the corresponding backing surfaces 356 a, b and 358 a, b on switch housing 350 .
- Backing surfaces provide a firm support for the dome switches during operation, discussed below.
- Dome switches 334 a, b and 332 a, b may be fixedly attached to backing surfaces 356 a, b and 358 a, b by any convenient method, such as, an adhesive.
- Flex circuit is secured to switch housing 350 via alignment pin 354 and snap-fit pin 355 on switch assembly 350 and corresponding alignment hole 338 and snap-fit hole 339 on flex circuit 330 .
- Pushbutton assembly 310 Layered on top of flex circuit is pushbutton assembly 310 , which has a corresponding saddle-shape as flex circuit 330 , and generally wraps around switch housing 350 .
- Pushbutton assembly 310 comprises four pushbuttons, distal pushbuttons 312 a, b and proximal pushbuttons 311 a, b which have corresponding pressure studs 315 a, b and 314 a, b .
- the pushbuttons are connected to cantilever elements 313 a, b and 316 a, b , which provide a spring-back action after the pushbuttons are depressed.
- switches 312 a and b are in parallel so that a surgeon may operate the pushbuttons using either a left hand or a right hand.
- switches 311 a and b are in parallel so that a surgeon may operate the pushbuttons using either a left hand or a right hand.
- the generator When the surgeon depresses either switch 312 a or 312 b , the generator will respond with a certain energy level, such as a maximum (“max”) power setting; when the surgeon depresses either switch 311 a or 311 b , the generator will respond with a certain energy level, such as a minimum (“min”) power setting, which conforms to accepted industry practice for pushbutton location and the corresponding power setting.
- a certain energy level such as a maximum (“max”) power setting
- min minimum
- the pushbuttons may be molded into the switch housing 350 or into the handle assembly 68 to reduce the number of components and increase the reliability of the overall device.
- the pushbuttons may be attached through small cantilever sections, which allow for sturdy attachment of the pushbutton to the other components, while at the same time allowing for a low force to activate the pushbuttons.
- one expression of the current embodiment allows switches 311 a, b and 312 a, b configured in such a way to provide an ergonomically pleasing grip and operation for the surgeon.
- Switches may be placed in the range of the natural swing of the surgeon's thumb, whether gripping surgical instrument 100 right-handed or left handed.
- the switches are placed on housing 68 to prevent inadvertent button activation on the side of the instrument opposite the thumb while the surgeon depresses trigger 34 or rotates rotation knob 29 .
- a series of partitions such as ridges and/or depressions or “peaks and valleys” that are integrated onto the housing 68 .
- the housing defines a first surface and the series of partitions define at least one second surface such that the second surface is higher than the housing surface.
- the partition may also define a third surface that is lower than the housing surface.
- switches 312 a, b are surrounded by an upper ridge 320 and a lower ridge 324 .
- Ridges 320 and 324 may be discrete physical features, both separated from each other, or ridges 320 and 324 may be continuous in nature without departing from the scope of the invention. Further, the ridges 320 and 324 may continue across the entire upper portion of housing 68 , as shown in FIGS. 12-15 , or ridges 320 and 324 may be more discrete as shown in FIGS. 1 and 2 .
- switches 312 a, b prevent the risk of inadvertent button activation even if a finger crosses over the button due to the fact that the ridges cause the finger to pass above the plane of the button.
- the ridges also provide tactile feedback to the surgeon as to the location of the pushbuttons and whether the button represents min or max power activation.
- switches 312 a, b are surrounded by ridges 320 and 324 and pushbuttons 311 a,b are situated above and proximal of ridge 320 .
- Such tactile feedback is essential to the surgeon, so the surgeon may continuously assess the surgical site, but confidently understand which pushbuttons are being activated.
- switch 312 a, b are nestled within a depression 322 and further surrounded by ridges 320 and 324 .
- a surgeon's left hand is accessing instrument 100 .
- the fore finger and middle finger are poised to activate trigger 34 , and the ring finger and pinkie grasp hand grip 39 .
- the thumb is conveniently positioned to sweep upward to activate pushbutton 312 a or 311 a .
- Ridges 320 and 324 extend across the upper portion of housing 69 .
- FIG. 13 the opposite side of instrument 100 shown in FIG. 12 is illustrated showing pushbuttons 311 b and 312 b .
- the surgeon's forefinger is accessing rotation knob 29 to rotate end effector 81 .
- pushbutton 312 b is subject to inadvertent activation by the forefinger.
- ridge 324 causes the forefinger to elevate above the plane of pushbutton 312 b thereby reducing the risk of inadvertent activation.
- Trigger 34 comprises a base element 45 , which comprises the detent tab 114 and linkage with yoke 33 , discussed below.
- T-shaped finger interface 43 Attached to base element 45 is a generally T-shaped finger interface 43 , which in conjunction with base element 45 define two generally U-shaped openings, a forefinger groove 42 and a middle finger groove 44 .
- the most distal surface portion of T-shaped finger interface 43 defines an actuating surface 41 that also accepts placement of fingers 382 and 384 .
- Grooves 42 and 44 are sized to accept different sized fingers, a common variable as is evident depending upon the sex and size of the surgeon. In a first expression of the current embodiment, the size of grooves 42 and 44 are based on anthropic data for 5th percentile females through to 95th percentile males for finger size.
- grooves 42 and 44 are tapered, whereby the dimension of each groove opening is larger than the dimension of base of each groove 42 and 44 .
- This configuration advantageously allows fingers of varying size to nestle snuggly within each groove and minimize the clearance between the finger and walls of the grooves.
- the clamp arm 56 is fully open relative to the blade 79 when trigger 34 is in its most distal position ( FIG. 10 ). Fingers 382 and 384 may be placed within respective grooves 42 and 44 or alternatively on surface 41 to actuate trigger 34 through its arcuate travel designated by arrow 47 .
- trigger reaches its full proximal travel (when detent tab 114 engages detent spring 110 )
- the clamp arm 56 is in its fully closed position relative to the blade 79 ( FIG. 11 ).
- fingers 382 and 384 engage grooves 42 and 44 and push trigger 34 distally to open the end effector.
- the clamp arm 56 is not biased open so the surgeon cannot control the opening of clamp arm 56 via surface 41 .
- the handle assembly 168 includes two pivoting handle portions 420 and 422 coupled to a right shroud 169 and a left shroud 170 .
- the right shroud 169 is adapted to snap fit on the left shroud 170 via a plurality of inwardly facing prongs formed on the left shroud 170 to form housing 171 .
- a cavity is formed therebetween to accommodate various components that form the handle assembly 168 as further discussed below.
- Apertures 172 and 174 are also formed to accommodate thumb ring or handle portion 420 and finger ring or handle portion 422 , which are located exterior of the left and right shrouds to the actuating linkage contained within the left and right shrouds.
- Aperture 173 is also formed at the proximal end of shrouds to accommodate transducer 50 (See FIG. 8 b ).
- Handle assembly 168 includes a U-shaped yoke 424 slidably attachable within housings 169 and 170 via slots 421 a and 421 b and pins 423 a and 423 b , respectively.
- the distal end of handle 420 at hole 402 attaches to right shroud 169 and yoke via pin 423 a
- the proximal end of handle 420 attaches to yoke 424 via link 428 attached to hole 404 via pin 426 and hole 410 via pin 430 .
- handle 422 at hole 406 attaches to right shroud 169 and yoke via pin 423 b
- the proximal end of handle 422 attaches to yoke 424 via link 432 attached to hole 408 via pin 434 and hole 412 via pin 430
- end effector 81 moves away from blade 79 to form an open jaw (the open position)
- end effector 81 rotates toward blade 79 to capture tissue (the closed position).
- a detent spring 482 is supported within housing portion 171 .
- a detent cam 480 rotates on yoke 168 and engages and snaps back detent spring 482 when handles 420 and 422 are in the fully closed position.
- Detent spring 482 is generally made of a flexible plastic that adequately deflects when it engages cam 480 thereby providing an audible signal to the surgeon that there is full end effector 81 closure.
- 480 strikes and deflects detent spring 482 when handles 420 and 422 are rotated from the full closure position and in the opposite direction thereby providing an audible signal to the surgeon that full closure of end effector 81 no longer exists.
- an actuator post 433 attaches to handle 422 and engages a dome switch 435 covered by silicon rubber located on housing assembly 171 .
- post 433 presses against the silicone which in turn transfers the force to the dome switch 435 , allowing the switch to provide an audible and tactile feedback to the surgeon.
- post 433 is a cylinder having a diameter of 0.170 inches with a 0.070 inch slot in the middle.
- a preferred durometer for the silicon rubber material is 20 Shore A.
- housing 171 also enclosed within housing 171 are connector 450 , slip rings 452 , 454 , flex circuit 456 and rocker switch 462 .
- Rocker switch 462 rotatably attaches to right shroud 169 via aperture 469 and switches 462 and 464 are positioned exterior housing 171 for access by the surgeon.
- Switches 462 and 464 are mechanically connected via a rocker arm 466 comprising a pivot post 468 which interfaces with aperture 469 . In this configuration, switches 462 and 464 cannot be simultaneously depressed, which, if were the case, would provide an error message from generator 30 .
- a flex circuit 456 provides for the electro-mechanical interface between switches 464 and 466 and the generator 30 via the transducer 50 (see FIG. 8 b ).
- flex circuit 456 includes, at the distal end, two dome switches 500 and 502 that are mechanically actuated by depressing corresponding switches 464 and 466 , respectively.
- Dome switches 500 and 502 are electrical contact switches, that when depressed provide an electrical signal to generator 30 as shown by the electrical wiring schematic of FIG. 22 .
- Flex circuit 456 also comprises two diodes within a diode package 504 , also illustrated in FIG. 22 .
- Flex circuit 456 provides conductors, as is known to those in the art, that connect to slip ring conductors 452 and 454 via connector 450 , which in turn provide electrical contact to ring conductors 400 and 410 ( FIG. 8 b ), which in turn are connected to conductors in cable 32 that connect to generator 30 .
- slip ring conductors 452 and 454 are generally open-ended O-shaped springs that slip onto mounting surfaces 453 and 455 of connector 450 , respectively.
- Each spring slip-ring comprises two pressure point contacts ( 510 a - b and 522 a - b ) that contact the respective ring conductor 400 and 410 of handpiece 50 .
- the spring tension of the slip rings 452 and 454 cause positive contact between contacts 510 a - b , 522 a - b and conductors 400 and 410 . It is evident that the slip-ring construction allows electrical contact to be made even as hand piece 50 may be rotated by the surgeon during use of the instrument.
- Posts 512 and 524 of the respective slip rings electrically connect to the respective conductor within flex circuit 456 to complete the electrical circuit as shown in FIG. 22 .
- rotation coupler 130 rotatably engages the distal end of right and left shrouds 169 and 170 .
- Rotation knob 129 couples to rotational coupler 130 , whereby two spring tabs 175 and 175 a (not shown) provide an outward tension or force against the inner surface of rotation knob 129 to inhibit inadvertent rotation of end effector 81 .
- handles 420 and 422 have a soft-touch molded thermo plastic elastomer liner 550 on the inner surface of handles 420 and 422 .
- Plastic liner 550 provides comfort to the surgeon and prevents finger and hand fatigue.
- Plastic liner 550 also provides an enhance gripping surface between the handles and the surgeon's thumb and fingers as opposed to the smooth plastic surface interface of the prior art. This is particularly advantageous for accepting multiple digit sizes of male and female surgeons and still providing a comfortable and positive gripping surface.
- Plastic liner 550 may be smooth or have contours molded onto the surface of liner 550 , such as ribs, as illustrated in FIGS. 23 and 24 . Other contours may be bumps, and peaks and valleys. Various other shapes and interfaces are within the scope of this invention as would be obvious to one skilled in the art.
- Plastic liner 550 is also useful on the interface between the surgeon's finger and trigger 34 ( FIG. 12 ).
- the soft-touch liner 550 has a durometer (hardness) rating from about 35 Shore A to about 75 Shore A, and more particularly from about 50 Shore A to about 60 Shore A.
- durometer hardness
- Such appropriate materials are available from LNP of Exton, Pa. (stock no. 8211-55 B100 GYO-826-3) and Advanced Elastomer Systems of Akron, Ohio (stock no. 8211-55B100).
- the soft-touch material may also be useful to help the surgeon identify a particular feature of the instrument while the surgeon is focused on the operation at hand. For example, a “soft touch” having one contour interface may be placed on the “max” button, and a “soft touch” having a second contour interface may be place on the “min” button so the surgeon may easily recognize the presence of either button without having to lose focus of the surgical site. “Soft touch” may also be implemented on knobs 29 and 129 with contours to identify various rotation positions of end effector 81 .
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Mechanical Engineering (AREA)
- Biomedical Technology (AREA)
- Dentistry (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
- Materials For Medical Uses (AREA)
Abstract
Description
- This application is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 15/947,433, filed Apr. 6, 2018, entitled TISSUE PADS FOR USE WITH SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2018/0221049, which is a divisional application claiming priority under 35 U.S.C. § 121 to U.S. patent application Ser. No. 15/904,828, entitled ACTUATION MECHANISM FOR USE WITH AN ULTRASONIC SURGICAL INSTRUMENT, filed on Feb. 26, 2018, now U.S. Patent Application Publication No. 2018/0177521, which is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 14/269,546, entitled ACTUATION MECHANISM FOR USE WITH AN ULTRASONIC INSTRUMENT, filed on May 5, 2014, which issued on Feb. 27, 2018 as U.S. Pat. No. 9,901,359, which is a divisional application claiming priority under 35 U.S.C. § 121 to U.S. patent application Ser. No. 12/761,431, entitled TISSUE PAD FOR USE WITH AN ULTRASONIC SURGICAL INSTRUMENT, filed on Apr. 16, 2010, which issued on May 6, 2014 as U.S. Pat. No. 8,715,306, which is a divisional application claiming priority under 35 U.S.C. § 121 to U.S. patent application Ser. No. 12/468,130, entitled COMBINATION TISSUE PAD FOR USE WITH AN ULTRASONIC SURGICAL INSTRUMENT, filed on May 19, 2009, which published on Sep. 10, 2009 as U.S. Patent Application Publication No. 2009/0223033, which is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 11/246,794, entitled COMBINATION TISSUE PAD FOR USE WITH AN ULTRASONIC SURGICAL INSTRUMENT, filed on Oct. 7, 2005, which issued on Jun. 9, 2009 as U.S. Pat. No. 7,544,200, which claims the benefit of priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application Ser. No. 60/676,709, entitled ULTRASONIC CLAMP COAGULATOR SURGICAL INSTRUMENT, filed on May 2, 2005, and to U.S. Provisional Patent Application Ser. No. 60/617,427, entitled ULTRASONIC CLAMP COAGULATOR SURGICAL INSTRUMENT, filed on Oct. 8, 2004, the disclosure of each of which is herein incorporated by reference in its entirety.
- This application contains subject matter that relates to and incorporates by reference in their entirety, for any and all purposes, the following non-provisional applications:
- TISSUE PAD FOR USE WITH AN ULTRASONIC SURGICAL INSTRUMENT, Ser. No. 11/245,819, abandoned;
- COMBINATION TISSUE PAD FOR USE WITH AN ULTRASONIC SURGICAL INSTRUMENT, Ser. No. 11/246,794, filed Oct. 7, 2005, now U.S. Pat. No. 7,544,200;
- ACTUATION MECHANISM FOR USE WITH AN ULTRASONIC SURGICAL INSTRUMENT, Ser. No. 11/246,826 , filed Oct. 7, 2005, abandoned;
- CLAMP MECHANISM FOR USE WITH AN ULTRASONIC SURGICAL INSTRUMENT, Ser. No. 11/246,264, filed Oct. 7, 2005, now U.S. Pat. No. 8,057,467;
- FEEDBACK MECHANISM FOR USE WITH AN ULTRASONIC SURGICAL INSTRUMENT, Ser. No. 11/246,384, filed Oct. 7, 2005, abandoned;
- HANDLE ASSEMBLY HAVING HAND ACTIVATION FOR USE WITH AN ULTRASONIC SURGICAL INSTRUMENT, Ser. No. 11/246,330, filed Oct. 7, 2005, now U.S. Pat. No. 7,846,155;
- ULTRASONIC SURGICAL SHEARS AND TISSUE PAD FOR SAME, Ser. No. 11/065,378, filed Feb. 24, 2005, abandoned; and
- HAND ACTIVATED ULTRASONIC INSTRUMENT, Ser. No. 10/869,351, filed Jun. 16, 2004, abandoned.
- The present invention relates, in general, to ultrasonic surgical instruments and, more particularly, to an ultrasonic surgical clamp coagulator apparatus particularly configured to provide increased tissue transaction forces.
- Ultrasonic surgical instruments are finding increasingly widespread applications in surgical procedures by virtue of the unique performance characteristics of such instruments. Depending upon specific instrument configurations and operational parameters, ultrasonic surgical instruments can provide substantially simultaneous cutting of tissue and homeostasis by coagulation, desirably minimizing patient trauma. The cutting action is typically effected by an end-effector at the distal end of the instrument, which transmits ultrasonic energy to tissue brought into contact with the end-effector. Ultrasonic instruments of this nature can be configured for open surgical use, laparoscopic or endoscopic surgical procedures including robotic-assisted procedures.
- Ultrasonic surgical instruments have been developed that include a clamp mechanism to press tissue against the blade of the end-effector in order to couple ultrasonic energy to the tissue of a patient. Such an arrangement (sometimes referred to as a clamp coagulator shears or an ultrasonic transector) is disclosed in U.S. Pat. Nos. 5,322,055; 5,873,873 and 6,325,811, all of which are incorporated herein by reference. The surgeon activates the clamp arm to press the clamp pad against the blade by squeezing on the handgrip or handle.
- Some current ultrasonic shears devices, however, have the tendency to create tissue tags. Tissue tags are the tissue that remains clamped in the jaw that is not transected after the majority of the tissue in the jaw has been transected and falls away. Tissue tags may result from insufficient end-effector proximal loading and/or lower proximal blade activity. Surgeons may mitigate tissue tags either through the addition of vertical tension (i.e. putting tension on the tissue using the blade) or rearward traction on the device in order to move the untransected tissue to a more active portion of the blade to complete the cut.
- Some current ultrasonic devices utilize tissue pads that close in parallel with the surface of the blade. This presents certain problems in terms of the pressure profile exerted on the tissue. As tissue is compressed between the jaw and the blade, the proximal portion of the blade deflects under the load more than the proximal portion of the clamp arm moves in applying the load against the blade. This deflection is in part created by the portion of the blade distal to the most distal node of the device. It is also partly created by the deflection of the transmission rod proximal to the most distal node. Additionally, the fact that blade amplitude decreases moving proximal of the tip of the blade makes the situation worse since the amount of energy transferred to the tissue, even if the pressure was constant, is reduced.
- Current tissue pad designs utilize PTFE material to contact the tissue and blade. Although these designs have been adequate, they tend to suffer from longevity issues since the pads tend to deteriorate over long surgical procedures. Additionally, newer designs of clamp coagulator shears increase blade amplitude and/or the loading of the pad against the tissue and blade and overwhelm the pad material, resulting in less than required tissue pad life. The pad material limits the amount of force that may be applied against the tissue and blade, which in turn limits the tissue thickness or vessel size that some current clamp coagulator shears may effectively cut and coagulate.
- Some current designs of clamp coagulator shears utilize an inner tube within an outer tube concept to drive the clamp arm open and close. During surgical procedures the clamp arm may be subjected to axial clamp forces exceeding 2.5 pounds and/or torsional abuse loads and may cause the clamp arm to disengage from the inner tube or completely from the shears.
- Some current designs of clamp coagulator shears utilize a constant force spring mechanism that prevents the application of too much force to the clamp arm and blade. Although the mechanism provides relatively constant force to the system, the spring imparts some slope to the force curve. In applications where the clamp force is low, the slope is not significant. In applications with high clamp forces, however, the difference in force attributable to the slope over the possible range of spring compressions becomes very significant and may exceed the maximum force allowable in the blade, in the tube assemblies or in other components of the system. The high slope could allow the maximum force to be exceeded under abuse modes or through normal manufacturing tolerance variations. If this occurs the blade may bend, the actuation mechanism may fail or undesirable tissue effects may occur (i.e. fast cutting, but minimal tissue coagulation). This situation is aggravated by the fact that the jaw (the clamp arm and pad) of the device can meet sufficient resistance to engage the force limiting mechanism when the jaw almost contacts the blade (when transecting thin tissue or at the end of the transaction or clamping solid objects such as other devices) or when the jaw is still open (when transecting thick tissue).
- Some current designs of clamp coagulator shears utilize force-limiting springs to ensure that clamp forces are within a specified range. It is also necessary for the force-limiting spring design to allow the surgeon to “feather” (apply less than the maximum force and slowly increase to the maximum force). In these mechanisms, therefore, the jaws close until a predetermined force is met and then the additional stroke drives the mechanism into the force limiting range. In some cases, though, the surgeon may, unknowingly, fail to apply the full force of the jaw against the tissue resulting in incomplete tissue cuts or insufficient coagulation. Alternatively, the surgeon may unknowingly release full force of the jaw against the tissue during a transaction that results in incomplete tissue cuts or insufficient coagulation.
- Some current designs of clamp coagulator shears utilize a foot pedal to energize the surgical instrument. The surgeon operates the foot pedal while simultaneously applying pressure to the handle to press tissue between the jaw and blade to activate a generator that provides energy that is transmitted to the cutting blade for cutting and coagulating tissue. Key drawbacks with this type of instrument activation include the loss of focus on the surgical field while the surgeon searches for the foot pedal, the foot pedal getting in the way of the surgeon's movement during a procedure and surgeon leg fatigue during long cases.
- Some current designs of clamp coagulator shears have eliminated the foot pedal and provided hand activation on a stationary trigger. This may be cumbersome, especially for surgeons with large hands.
- Some current designs of clamp coagulator utilize handles that are either of a pistol or scissors grips design. The scissor grip designs may have one thumb or finger grip that is immovable and fixed to the housing and one movable thumb or finger grip. This type of grip may not be entirely familiar to surgeons who use other open-type surgical instruments, such as hemostats, where both thumb and finger grips move in opposition to one another.
- It would be desirable to provide an ultrasonic surgical instrument that overcomes some of the deficiencies of current instruments. The ultrasonic surgical instrument described herein overcomes those deficiencies.
- A tissue pad comprising a first component and a second component is disclosed. The first component comprises a first material and a first tissue engaging surface, and the first component has proximal and distal ends. The second component comprises a second material and a second tissue engaging surface, and the second component has proximal and distal ends. The first and second components are separable. At least a portion of the distal end of the first tissue engaging surface is positioned distal relative to the second tissue engaging surface. The first material is different from the second material. The first material has a greater lubricity than the second material. The second material has a greater resistance to heat than the first material.
- A tissue pad for use in an ultrasonic clamp coagulator is disclosed. The tissue pad comprises a first tissue pad and a second tissue pad. The first tissue pad comprises a first material and a first tissue engaging surface, and the first tissue pad has proximal and distal ends. The second tissue pad comprises a second material and a second tissue engaging surface, and the second tissue pad has proximal and distal ends. The first and second tissue pads are separable. At least a portion of the distal end of the first tissue engaging surface is positioned distal to the second tissue engaging surface. The first material is different from the second material. The first material has a greater lubricity than the second material. The second material has a greater resistance to heat than the first material.
- The novel features of the invention are set forth with particularity in the appended claims. The invention itself, however, both as to organization and methods of operation, may best be understood by reference to the following description, taken in conjunction with the accompanying drawings in which:
-
FIG. 1 is a perspective view illustrating an embodiment of an ultrasonic surgical instrument in accordance with the present invention; -
FIG. 2 is a perspective assembly view of an embodiment of an ultrasonic surgical instrument in accordance with the present invention; -
FIG. 3a is a perspective assembly view of the clamp arm and tissue pads; -
FIG. 3b is an elevation section view of the clamp arm and “T” groove; -
FIG. 3c is an elevation section view of the clamp arm and dovetail groove; -
FIG. 3d is a perspective view of the tissue pads aligned and staked within the clamp arm; -
FIG. 3e is an elevation view of the clamp arm illustrating the tapered profile; -
FIG. 3f is a top plan view of the clamp arm; -
FIG. 4a is a perspective assembly view of the blade, clamp arm, tissue pads and actuator tube with the clamp arm in the closed position; -
FIG. 4b is a perspective assembly view of the blade, clamp arm, tissue pads and actuator tube with the clamp arm in the open position; -
FIG. 4c is a schematic of a clamp arm in accordance with the present invention illustrating force calculations; -
FIG. 5 is a cutaway elevation view of the housing portion of an ultrasonic surgical instrument in accordance with an embodiment of the present invention illustrating force-limiting springs and clamp closure detent mechanism and partial cutaway elevation view of the transmission rod and end effector; -
FIG. 6a is an exploded view of the housing illustrating the thumb actuation buttons and switch assembly and linkage of the finger grip clamp actuator; -
FIG. 6b is an exploded view of the housing with the switch assembly removed for clarity; -
FIG. 7 is a perspective assembly view of the switch assembly and electrical ring contactors; -
FIG. 8a is a perspective assembly view of the switch assembly and electrical ring contactors; -
FIG. 8b is a perspective view of the proximal end of the transducer illustrating conductor rings; -
FIG. 8c is an electrical schematic of the pushbutton circuit; -
FIG. 9 is a perspective view of an ultrasonic surgical instrument with a cut away view of the housing and connected to a transducer; -
FIG. 10 is a perspective view of an ultrasonic surgical instrument with the trigger extended distally and the clamp arm in the open position; -
FIG. 11 is a perspective view of an ultrasonic surgical instrument with the trigger retracted proximally and the clamp arm in the closed position; -
FIG. 12 is an elevation view of a left-handed grip of an embodiment of an ultrasonic surgical instrument in accordance with the present invention; -
FIG. 13 is an elevation view of a left-handed grip of an ultrasonic surgical instrument in accordance with an embodiment of the present invention with the index finger accessing the rotation wheel; -
FIG. 14 is an elevation view of a left-handed grip of an ultrasonic surgical instrument in accordance with the present invention with the thumb accessing a first activation button; -
FIG. 15 is an elevation view of a left-handed grip of an ultrasonic surgical instrument in accordance with the present invention with the thumb accessing a second activation button; -
FIG. 16a-c are force curves illustrating various forces as a function of the trigger position and tissue conditions; -
FIG. 17 is an elevation view of the surgical instrument with graphical illustrations of the surgeon finger placement; -
FIG. 18 is a perspective assembly view of a second embodiment of an ultrasonic surgical instrument in accordance with the present invention; -
FIG. 19 is an exploded view of a handpiece connector; -
FIGS. 20a-b are exploded views of a large slip ring and a small slip ring, respectively; -
FIG. 21 is an exploded view of the flex circuit apparatus; -
FIG. 22 is an electrical schematic of the flex circuit ofFIG. 21 ; -
FIG. 23 is an elevation view of a surgical instrument in accordance with one aspect of the invention; and -
FIG. 24 is a perspective view of a surgical instrument in an alternate aspect of the invention. - Before explaining the present invention in detail, it should be noted that the invention is not limited in its application or use to the details of construction and arrangement of parts illustrated in the accompanying drawings and description. The illustrative embodiments of the invention may be implemented or incorporated in other embodiments, variations and modifications, and may be practiced or carried out in various ways. Further, unless otherwise indicated, the terms and expressions employed herein have been chosen for the purpose of describing the illustrative embodiments of the present invention for the convenience of the reader and are not for the purpose of limiting the invention.
- Further, it is understood that any one or more of the following-described embodiments, expressions of embodiments, examples, etc. can be combined with any one or more of the other following-described embodiments, expressions of embodiments, examples, etc.
- The present invention is particularly directed to an improved ultrasonic surgical clamp coagulator apparatus which is configured for effecting tissue cutting, coagulation, and/or clamping during surgical procedures. The present apparatus can be readily configured for use in open surgical procedures, as well as laparoscopic or endoscopic procedures and robot-assisted surgical procedures. Versatile use is facilitated by selective use of ultrasonic energy. When ultrasonic components of the apparatus are inactive, tissue can be readily gripped and manipulated, as desired, without tissue cutting or damage. When the ultrasonic components are activated, the apparatus permits tissue to be gripped for coupling with the ultrasonic energy to effect tissue coagulation, with application of increased pressure efficiently effecting tissue cutting and coagulation. If desired, ultrasonic energy can be applied to tissue without use of the clamping mechanism of the apparatus by appropriate manipulation of the ultrasonic blade.
- As will become apparent from the following description, the present clamp coagulator apparatus is particularly configured for disposable use by virtue of its straightforward construction. As such, it is contemplated that the apparatus be used in association with an ultrasonic generator unit of a surgical system, whereby ultrasonic energy from the generator unit provides the desired ultrasonic actuation for the present clamp coagulator apparatus. It will be appreciated that a clamp coagulator apparatus embodying the principles of the present invention can be configured for non-disposable or multiple use, and non-detachably integrated with an associated ultrasonic generator unit. However, detachable connection of the present clamp coagulator apparatus with an associated ultrasonic generator unit is presently preferred for single-patient use of the apparatus.
- The present invention will be described in combination with an ultrasonic instrument as described herein. Such description is exemplary only, and is not intended to limit the scope and applications of the invention. For example, the invention is useful in combination with a multitude of ultrasonic instruments including those described in, for example, U.S. Pat. Nos. 5,938,633; 5,935,144; 5,944,737; 5,322,055, 5,630,420; and 5,449,370.
- With reference to
FIGS. 1-3 , an embodiment of asurgical system 19, including an ultrasonicsurgical instrument 100 in accordance with the present invention is illustrated. Thesurgical system 19 includes anultrasonic generator 30 connected to anultrasonic transducer 50 viacable 22, and an ultrasonicsurgical instrument 100. It will be noted that, in some applications, theultrasonic transducer 50 is referred to as a “hand piece assembly” because the surgical instrument of thesurgical system 19 is configured such that a surgeon may grasp and manipulate theultrasonic transducer 50 during various procedures and operations. A suitable generator is theGEN 300 sold by Ethicon Endo-Surgery, Inc. of Cincinnati, Ohio. - The ultrasonic
surgical instrument 100 includes amulti-piece handle assembly 68 adapted to isolate the operator from the vibrations of the acoustic assembly contained withintransducer 50. Thehandle assembly 68 can be shaped to be held by a user in a conventional manner, but it is contemplated that the present ultrasonicsurgical instrument 100 principally be grasped and manipulated by a trigger-like arrangement provided by a handle assembly of the instrument, as will be described. Whilemulti-piece handle assembly 68 is illustrated, thehandle assembly 68 may comprise a single or unitary component. The proximal end of the ultrasonicsurgical instrument 100 receives and is fitted to the distal end of theultrasonic transducer 50 by insertion of the transducer into thehandle assembly 68. The ultrasonicsurgical instrument 100 may be attached to and removed from theultrasonic transducer 50 as a unit. The ultrasonicsurgical instrument 100 may include ahandle assembly 68, comprisingmating housing portion 69,housing portion 70, and atransmission assembly 71. When the present instrument is configured for endoscopic use, the construction can be dimensioned such thattransmission assembly 71 has an outside diameter of approximately 5.5 mm. Theelongated transmission assembly 71 of the ultrasonicsurgical instrument 100 extends orthogonally from theinstrument handle assembly 68. Thetransmission assembly 71 can be selectively rotated with respect to thehandle assembly 68 as further described below. Thehandle assembly 68 may be constructed from a durable plastic, such as polycarbonate or a liquid crystal polymer. It is also contemplated that thehandle assembly 68 may alternatively be made from a variety of materials including other plastics, ceramics or metals. - The
transmission assembly 71 may include an outer tubular member orouter sheath 72, an inner tubular actuatingmember 76, awaveguide 80 and end-effector 81 (blade 79,clamp arm 56 and one or more clamp pads 58). As will be described, theouter sheath 72, the actuatingmember 76, and the waveguide ortransmission rod 80 may be joined together for rotation as a unit (together with ultrasonic transducer 50) relative to handleassembly 68. Thewaveguide 80, which is adapted to transmit ultrasonic energy fromtransducer 50 toblade 79 may be flexible, semi-flexible or rigid. Thewaveguide 80 may also be configured to amplify the mechanical vibrations transmitted through thewaveguide 80 to theblade 79 as is well known in the art. Thewaveguide 80 may further have features to control the gain of the longitudinal vibration along thewaveguide 80 and features to tune thewaveguide 80 to the resonant frequency of the system. In particular,waveguide 80 may have any suitable cross-sectional dimension. For example, thewaveguide 80 may have a substantially uniform cross-section or thewaveguide 80 may be tapered at various sections or may be tapered along its entire length. In one expression of the current embodiment, the waveguide diameter is about 0.113 inches nominal to minimize the amount of deflection at theblade 79 so that gapping in the proximal portion of theend effector 81 is minimized. -
Ultrasonic waveguide 80 may further include at least one radial hole oraperture 66 extending there through, substantially perpendicular to the longitudinal axis of thewaveguide 80. Theaperture 66, which may be positioned at a node, is configured to receive aconnector pin 27 which connects thewaveguide 80, to thetubular actuating member 76, and the tubularouter sheath 72, arotation knob 29 together for conjoint rotation, including theend effector 81, relative to instrument handleassembly 68. - In one embodiment of the present invention, the
ultrasonic waveguide 80 may have a plurality of grooves or notches (not shown) formed in its outer circumference. The grooves may be located at nodes of thewaveguide 80 to act as alignment indicators for the installation of a dampingsheath 62 and stabilizing silicone rings or compliant supports during manufacturing. Aseal 67 may be provided at the distal-most node, nearest the end-effector 81, to abate passage of tissue, blood, and other material in the region between thewaveguide 80 and actuatingmember 76. - The
blade 79 may be integral with thewaveguide 80 and formed as a single unit. In an alternate expression of the current embodiment,blade 79 may be connected by a threaded connection, a welded joint, or other coupling mechanisms. The distal end of theblade 79 is disposed near an anti-node in order to tune the acoustic assembly to a preferred resonant frequency for when the acoustic assembly is not loaded by tissue. Whenultrasonic transducer 50 is energized, the distal end ofblade 79 is configured to move longitudinally in the range of, for example, approximately 10 to 500 microns peak-to-peak, and preferably in the range of about 20 to about 200 microns at a predetermined vibrational frequency for of, for example, 55,500 Hz. - In accordance with the illustrated embodiment,
blade 79 is curved along with the associatedclamp arm 56. This is illustrative only, andblade 79 and acorresponding clamp arm 56 may be of any shape as is known to the skilled artisan. -
Ultrasonic transducer 50, and anultrasonic waveguide 80 together provide an acoustic assembly of the presentsurgical system 19, with the acoustic assembly providing ultrasonic energy for surgical procedures when powered bygenerator 30. The acoustic assembly ofsurgical instrument 100 generally includes a first acoustic portion and a second acoustic portion. In the present embodiment, the first acoustic portion comprises the ultrasonically active portions ofultrasonic transducer 50, and the second acoustic portion comprises the ultrasonically active portions oftransmission assembly 71. Further, in the present embodiment, the distal end of the first acoustic portion is operatively coupled to the proximal end of the second acoustic portion by, for example, a threaded connection. - With particular reference to
FIGS. 2, and 9-11 , reciprocal movement of actuatingmember 76 drives the clamp arm open and closed. A force-limitingmechanism 91 is operatively connected to actuatingmember 76 and comprises atube collar cap 98 that securesdistal washer 97,distal wave spring 96,proximal washer 95 andproximal wave spring 94 ontocollar cap 93.Collar 93 includes axially extendinglugs 92 in engagement withsuitable openings 75 in the proximal portion of tubular actuatingmember 76. Acircumferential groove 74 on the actuatingmember 76 receives on O-ring 73 for engagement with the inside surface ofouter sheath 72. - Rotation of the actuating
member 76 together with tubularouter sheath 72 andinner waveguide 80 is provided by aconnector pin 27 extending through these components androtation knob 29. Tubular actuatingmember 76 includes anelongated slot 31 through which theconnector pin 27 extends to accommodate reciprocal movement of the actuatingmember 76 relative to theouter sheath 72 andinner waveguide 80. - The
force limiting mechanism 91 provides a portion of the clamp drive mechanism of theinstrument 100, which affects pivotal movement of theclamp arm 56 by reciprocation of actuatingmember 76. The clamp drive mechanism further includes adrive yoke 33 which is operatively connected with anoperating trigger 34 of the instrument, with the operatingtrigger 34 thus interconnected with thereciprocable actuating member 76 viadrive yoke 33 andforce limiting mechanism 91.Trigger 34 is rotatably connected to driveyoke 33 viapins link 37 and rotatably connected to driveyoke 33 andhousing 68 viapost 38. - Movement of
trigger 34 towardhandgrip 68 translates actuatingmember 76 proximally, thereby pivotingclamp arm 56 towardblade 79. The trigger-like action provided bytrigger 34 and cooperatinghandgrip 68 facilitates convenient and efficient manipulation and positioning of the instrument, and operation of the clamping mechanism at the distal portion of the instrument whereby tissue is efficiently urged against theblade 79. Movement oftrigger 34 away fromhandgrip 68 translates actuatingmember 76 distally, thereby pivotingclamp arm 56 away fromblade 79. - With particular reference to
FIGS. 1-4 , therein is illustrated one embodiment ofclamp member 60 for use with the present ultrasonicsurgical instrument 100 and which is configured for cooperative action withblade 79. Theclamp member 60 in combination withblade 79 is commonly referred to as theend effector 81, and theclamp member 60 is also commonly referred to as the jaw. Theclamp member 60 includes a pivotallymovable clamp arm 56, which is connected to the distal end ofouter sheath 72 andactuation member 76, in combination with a tissue engaging pad orclamp pad 58. In one expression of the embodiment,clamp pad 58 is formed from TEFLON® trademark name of E. I. Du Pont de Nemours and Company, a low coefficient of friction polymer material, or any other suitable low-friction material.Clamp pad 58 mounts on theclamp arm 56 for cooperation withblade 79, with pivotal movement of theclamp arm 56 positioning the clamp pad in substantially parallel relationship to, and in contact with,blade 79, thereby defining a tissue treatment region. By this construction, tissue is grasped betweenclamp pad 58 andblade 79. As illustrated,clamp pad 58 may be provided with non-smooth surface, such as a saw tooth-like configuration to enhance the gripping of tissue in cooperation with theblade 79. The saw tooth-like configuration, or teeth, provide traction against the movement of the blade. The teeth also provide counter traction to the blade and clamping movement. As would be appreciated by one skilled in the art, the saw tooth-like configuration is just one example of many tissue engaging surfaces to prevent movement of the tissue relative to the movement of theblade 79. Other illustrative examples include bumps, criss-cross patterns, tread patterns, a bead or sand blasted surface, etc. - With particular reference to
FIG. 3a , a first expression of the current embodiment includes aclamp pad 58 having aproximal portion 58 b that is smoother than adistal portion 58 a, such thatproximal portion 58 b may be devoid of saw-tooth-like teeth or other tissue engaging surfaces contemplated. Utilizing a smoothproximal portion 58 b onclamp pad 58 allows tissue in the proximal region to move distally, following the vibratory motion of the blade, to the more active region of theblade 79 to prevent tissue tagging. This concept takes advantage of the inherent motion profile ofblade 79. Due to sinusoidal motion, the greatest displacement or amplitude of motion is located at the most distal portion ofblade 79, while the proximal portion of the tissue treatment region is on the order of 50% of the distal tip amplitude. During operation, the tissue in the proximal region of end effector (area ofportion 58 b) will desiccate and thin, and the distal portion ofend effector 81 will transect tissue in that distal region, thereby allowing the desiccated and thin tissue within the proximal region to slide distally into the more active region ofend effector 81 to complete the tissue transaction. - In a second expression of the current embodiment,
clamp pad 58 consists of one single pad having a smoothproximal end 58 b and adistal portion 58 a that comprises a saw tooth-like configuration. In a third expression of the current embodiment,clamp pad 58 may consist of two separate components,distal portion 58 a′ that comprises saw tooth-like teeth andproximal portion 58 b′ that is smoother relative todistal portion 58 a′. The advantage of twoseparate components 58 a′ and 58 b′ is that each pad may be constructed from different materials. For example, having a two-piece tissue pad allows the use of a very lubricious material at the distal end that is not particularly resistant to high temperatures compared to a very high temperature material at the proximal end that is not particularly lubricious because the proximal end is an area of lower amplitude. Such a configuration matches the tissue pad materials to the amplitude of theblade 79. - In a fourth expression of the current embodiment of the present invention,
clamp pad 58 a′ is formed from TEFLON® or any other suitable low-friction material.Clamp pad 58 b′ is formed from a base material and at least one filler material, which is a different material from the base material. The surface ofproximal clamp pad 58 b′ may be smoother thandistal clamp pad 58 a′, orproximal clamp pad 58 b′ may also have a similar type saw-tooth configuration. - Several benefits and advantages are obtained from one or more of the expressions of the invention. Having a tissue pad with a base material and at-least-one filler material allows the base material and the at-least-one filler material to be chosen with a different hardness, stiffness, lubricity, dynamic coefficient of friction, heat transfer coefficient, abradability, heat deflection temperature, glass transition temperature and/or melt temperature to improve the wearability of the tissue pad, which is important when high clamping forces are employed because tissue pads wear faster at higher clamping forces than at lower clamping forces. Applicants found, in one experiment, that a 15% graphite-filled polytetrafluoroethylene tissue pad showed substantially the same wear with a 7 pound clamping force as a 100% polytetrafluoroethylene tissue pad showed with a 1.5 pound clamping force. Having a flexible clamping arm and/or a flexible tissue pad should also improve the wearability of the tissue pad due to the ability of the flexible member to more evenly distribute the load across the entire surface of the tissue pad. Further benefits and expressions of this embodiment are disclosed in U.S. provisional patent application Ser. No. 60/548,301, filed on Feb. 27, 2004 and commonly assigned to the assignee of the present application, and which the entire contents are incorporated by reference herein.
- In a fifth expression of the current embodiment, a tissue pad with a base material and at least two filler materials allows the base material and the at-least-two filler materials to be chosen with a different hardness, stiffness, lubricity, dynamic coefficient of friction, heat transfer coefficient, abradability, heat deflection temperature, and/or melt temperature to improve the wearability of the tissue pad, which is important when high clamping forces are employed because tissue pads wear faster at higher clamping forces than at lower clamping forces. Applicants found, in one experiment, that a 15% graphite-filled, 30% PTFE-filled polyimide tissue pad showed substantially the same or better wear with a 4.5 pound clamping force as a 100% polytetrafluoroethylene tissue pad showed with a 1.5 pound clamping force. The advantage of a 15% graphite-filled, 30% PTFE-filled polyimide tissue pad is increased heat resistance, which improves the overall wear resistance of the tissue pad. This polyimide-composite clamp pad has a useful heat resistance up about 800° F. to about 1200° F., as compared to a useful heat resistance up to about 660° F. of a PTFE clamp pad. Alternatively, Other materials are also useful for a portion of the tissue pad (that is
element 58 b′), such as ceramics, metals, glasses and graphite. - Referring to
FIGS. 3a-e , one expression ofclamp arm 56 has different shaped slots for accepting two or more tissue pads. This configuration prevents mis-loading of the tissue pads and assures that the appropriate pad is loaded at the correct location withinclamp arm 56. Forexample clamp arm 56 may comprise a distal T-shapedslot 53 a for accepting a T-shaped flange 53 b′ ofdistal clamp pad 58 a′ and a proximal wedged-shaped or dove tailed-shapedslot 55 a for accepting a wedge-shaped flange 55 b′ ofproximal clamp pad 58 b′.Tab stop 51 engages the proximal end ofproximal clamp pad 58 b′ to secure the clamp pads ontoclamp arm 56. As would be appreciated by those skilled in the art, flanges 53 b′ and 55 b′ andcorresponding slots - In a second expression of the current embodiment,
clamp pads FIGS. 4a, 4b ). For example, a 45 degree biased cut does allow some gapping to occur, but the amount of gap seen by the tissue is minimized. - In a third expression of the current embodiment,
clamp arm 56 increases in its height dimension from the distal end to the proximal end (D1<D2). Preferably, D2 is from about 105% to about 120% greater than D1 and more preferably, D2 is from about 108% to about 113% greater than D1, and most preferably, D2 is about 110% greater than D1.Slot 153 accepts the flanges from oneclamp pad 58 or twoclamp pads Tapered clamp arm 56 allows for the use of use flat pads and increases the pressure in the proximal portion ofend effector 81 as well as the interference withblade 79. Whenclamp arm 56 deflects at a greater rate than theblade 79, pressure still exists at the tissue pad and blade interface and no gap is created. Additionally, the increased pressure helps to offset the decreased blade amplitude at the proximal end ofblade 79 and provides a relatively constant pressure between theclamp pad 58 andblade 79. - A first expression for a method for inserting clamp pads includes a) inserting first and second clamp pads having a first-shaped flange into a
clamp arm 56 having a slot that accepts the first-shaped flange; and b) engaging a pad stop to secure the clamp pads within the clamp arm. In a second expression of this method one clamp pad may be fabricated from a polymeric material such as TEFLON, and the second clamp pad may be fabricated from a base material and at least one filler material, which is a different material from the base material and that clamp arm is fabricated from metal, such as stainless steel, or titanium. The tissue surfaces of the clamp pads may be smooth or have tissue gripping features, such as a saw-tooth configuration. - A third expression for a method for inserting clamp pads includes a) inserting a first clamp pad having a first-shaped flange into a clamp arm having a slot that accepts the first-shaped flange; b) inserting a second clamp pad having a second-shaped flange into the clamp arm having a slot that accepts the second-shaped flange; and c) engaging a pad stop to secure the clamp pads within the clamp arm. In a fourth expression of this method one clamp pad may be fabricated from a polymeric material such as TEFLON, and the second clamp pad may be fabricated from a base material and at least one filler material, which is a different material from the base material and that clamp arm is fabricated from metal, such as stainless steel, or titanium. The tissue surfaces of the clamp pads may be smooth or have tissue-gripping features, such as a saw-tooth configuration.
- A first expression of a method for replacing
clamp pads 58 would include the steps of: a) disengaging a pad stop; b) removing a first clamp pad from the clamp arm; c) removing a second clamp pad from the clamp arm; d) inserting third and fourth clamp pads into the clamp arm; and e) engaging a pad stop to secure the third and fourth clamp pads within the clamp arm. In a second expression of this method one of the third and fourth clamp pads may be fabricated from a polymeric material such as TEFLON, and the other clamp pad may be fabricated from a base material and at least one filler material, which is a different material from the base material and that clamp arm is fabricated from metal, such as stainless steel, or titanium. The tissue surfaces of the clamp pads may be smooth or have tissue gripping features, such as a saw-tooth configuration. - Referring now to
FIG. 4 , pivotal movement of theclamp member 60 with respect toblade 79 is affected by the provision of a pair of pivot points on theclamp arm 56 that interface with theouter tube 72 andinner tube 76 respectively. Theouter tube 72 is grounded to handle 68 throughrotation knob 29.Clamp arm 56 is pivotally connected toouter tube 72 via corresponding throughholes clamp arm outer tube 72. A securing pin or rivet 57 slides through holes 52 a-d to secureclamp arm 56 toouter tube 72. In oneembodiment pin 57 is laser welded to clamparm 56 so thatpin 57 is fixed to clamparm 56 and rotates relative toouter sheath 72. -
Inner tube 76 translates along the longitudinal axis ofouter tube 72 and is grounded to thehandle 68 throughrotation knob 29. Pivotstuds 54 a,b (54 a not shown) onclamp arm 56 engagepivot holes 54 c,d (54 d not shown) at the distal end ofinner tube 76. The pivotal connection ofclamp arm 56 to the inner andouter tubes end effector 81 and minimize failure modes due to excessive axial or torsional abuse loads. Further, the embodiment increases the effectiveness of theend effector 81 to provide clamp forces in excess of 1.5 lbs. Reciprocal movement of the actuatingmember 76, relative to theouter sheath 72 and thewaveguide 80, thereby affects pivotal movement of theclamp arm 56 relative to the end-blade 79. -
FIG. 4c illustrates a force diagram and the relationship between the actuation force FA (provided by actuation member 76) and transection force FT (measured at the midpoint of the optimal tissue treatment area). -
FT=FA(X2/X1) Equation [1] - Where FA equals the spring preload of proximal spring 94 (less frictional losses), which, in one embodiment, is about 12.5 pounds, and FT equals about 4.5 pounds as shown in
FIG. 16c .FIG. 16c provides a graphical illustration of FT and FA as a function oftrigger 34 movement as well as input forces attrigger 34. - FT is measured in the region of the clamp arm/blade interface where optimal tissue treatment occurs as defined by tissue marks 61 a and 61 b. Tissue marks 61 a, b are etched or raised on
clamp arm 56 to provide a visible mark to the surgeon so the surgeon has a clear indication of the optimal tissue treatment area. Tissue marks 61 a, b are about 7 mm apart in distance, and more preferably 5 mm apart in distance. - Rotation of the
transmission assembly 71 of ultrasonicsurgical instrument 100 may be affected together with relative rotational movement ofultrasonic transducer 50 with respect to instrument handleassembly 68. In order to join thetransmission assembly 71 to theultrasonic transducer 50 in ultrasonic-transmitting relationship, the proximal portion of theouter sheath 72 may be provided with a pair ofwrench flats 46. Thewrench flats 46 allow torque to be applied by a suitable torque wrench or the like to thereby permit thewaveguide 80 to be joined to theultrasonic transducer 50. Theultrasonic transducer 50, as well as thetransmission assembly 71, is thus rotatable, as a unit, by suitable manipulation ofrotation knob 29, relative to handleassembly 68 of the instrument. The interior ofhandle assembly 68 is dimensioned to accommodate such relative rotation of theultrasonic transducer 50. Aspring 28 is loaded againstrotation knob 29 and aninner housing surface 65.Spring 28 provides a compression or force againstrotation knob 29 to inhibit inadvertent rotation ofend effector 81. - Referring now to
FIGS. 2, 5, 6 and 16 ,force limiting mechanism 91 provides a first and second compression spring,distal spring 96 andproximal spring 94.Distal spring 96 is operationally coupled toyoke 33, which in turn is driven bytrigger 34.Proximal spring 94 is in operational relationship withdistal spring 96.Distal spring 96 generates the end effector load andproximal spring 94 maintains the consistency of the end effector load. As a result, the end effector load is more tightly controlled and component abuse load conditions are reduced.Washers distal spring 96 being fully compressed (FIG. 5 ), thereby preventing the spring material to yield and renderspring 96 useless in subsequent clamp arm closures. As would be appreciated by one skilled in the art, the application of a dual spring force limiting system has applicability in other energy-based surgical devices (such as RF, microwave and laser) that encounter clamping forces, as well as mechanical devices, such as, clip appliers, graspers and staplers. - In one expression of the current embodiment,
distal spring 96 has a spring constant greater than 100 pounds per inch and preferably greater than 125 pounds per inch and most preferably about 135 pounds per inch. It is not required thatdistal spring 96 be preloaded, but may be preloaded at less than 10 pounds, and preferably less than 5 pounds, and most preferably at about 1 pound.Proximal spring 94 has a spring constant greater than 25 pounds per inch and preferably greater than 50 pounds per inch and most preferably about 70 pounds per inch.Proximal spring 94 is preloaded to a force necessary to achieve the desired transection force as noted inEquation 1, above, and is a function of the mechanical advantage of theclamp arm 56 coupling means and frictional losses in the device. In a second expression of the current embodiment,proximal spring 94 is preloaded at about 12.5 pounds. - Referring now to
FIG. 16a ,curve 82 illustratesactuation member 76 force andcurve 83 representstrigger 34 force as a function of the angular rotation of trigger 34 (on the x-axis, −18.0 is theclamp arm 56 fully open and 0.0 is the clamp arm fully closed and against blade 79) under no tissue or minimal tissue load operation.Point 82 a represents the point at whichyoke 33 begins to deflect or compressdistal spring 96 and theactuation member 76 force increases astrigger 34 is depressed further until the force reaches the preload value ofproximal spring 94 atinflection point 82 b, and the slope of the force curve decreases. - In
FIG. 16b ,curve 84 illustratesactuation member 76 force andcurve 85 representstrigger 34 force as a function of the angular rotation oftrigger 34 under abusive tissue load operation, whereby tissue completely fills the end effector in the open position.Point 84 a represents the point at whichyoke 33 begins to deflect or compressdistal spring 96 and theactuation member 76 force increases astrigger 34 is depressed until the force reaches the preload value ofproximal spring 94 atinflection point 84 b, at which point the slope of the force curve decreases. - Referring now to
FIGS. 2 and 5 ,surgical instrument 100 further provides for a means for indicating to the surgeon that the trigger has reached full travel and theclamp arm 56 is applying the correct coaptation force to the tissue. This is useful during protracted surgical operations or tissue transection activities when the surgeon's grip may relax, just a bit, without the surgeon's knowledge, and the pressure delivered to the tissue from theclamp arm 56 may be unknowingly decreased. - In one expression of the current embodiment, a
detent spring 110 is supported within adetent support 112 located withinhousing portion 69. Adetent tab 114 ontrigger 34 engages and snaps backdetent spring 110 whentrigger 34 is fully closed oractuation member 76 has reached it most proximal travel.Detent spring 110 is generally planar and made of a flexible plastic that adequately deflects when it engagestab 114 thereby providing an audible and/or tactile signal to the surgeon that there isfull end effector 81 closure. Advantageously,tab 114 strikes and deflectsdetent spring 110 whentrigger 34 is rotated from the full closure position and in the opposite direction thereby providing an audible and/or tactile signal to the surgeon that full closure ofend effector 81 no longer exists. As would be appreciated by the skilled artisan, the indicating means may be either tactile, audible or visual or a combination. Various types of indicators may be used including dome switches, solid stops, cantilever springs or any number of mechanical or electrical switches known to those skilled in the art. Further various means may be used to provide feedback to the surgeon, including, but not limited to, lights, buzzers, and vibratory elements. - Referring now to
FIGS. 1, 2 and 6-8 housing 68 includes a proximal end, a distal end, and acavity 59 extending longitudinally therein.Cavity 59 is configured to accept aswitch assembly 300 and thetransducer assembly 50, which interfaces withhousing 68 viaswitch assembly 300. -
Transducer 50 includes a firstconductive ring 400 and a secondconductive ring 410 which are securely disposed within thetransducer body 50. In one expression of the current embodiment, firstconductive ring 400 comprises a ring member, which is disposed between thetransducer 50 and thehorn 130. Preferably the firstconductive ring 400 is formed adjacent to or as part of theflange member 160 within thecavity 162 and is electrically isolated from other electrical components. The firstconductive ring 400 is anchored to and extends upwardly from a non-conductive platform or the like (not shown) which is formed within thetransducer body 50. The firstconductive ring 400 is electrically connected to the cable 22 (FIG. 1 ) by means of one or more electrical wires (not shown), which extend along the length of thetransducer body 50 to the firstconductive ring 400. - The second
conductive ring 410 of thetransducer 50 similarly comprises a ring member that is disposed between the transducer body 150 and thehorn 130. The secondconductive ring 410 is disposed between the firstconductive ring 400 and thehorn 130 and therefore the first and secondconductive rings conductive ring 410 is likewise electrically isolated from the firstconductive ring 400 and other electrical components contained within thetransducer 50. Similar to the firstconductive ring 400, the secondconductive ring 410 preferably is anchored to and extends upwardly from the non-conductive platform. It will be understood that the first and secondconductive rings more spacers 413 disposed between the first and secondconductive rings rings transducer 50. The secondconductive ring 410 is also electrically connected to the cable 22 (FIG. 1 ) by means of one more electrical wires (not shown), which extend along the length of thetransducer 50 to the secondconductive ring 410. The secondconductive ring 410 is thus provided to partially define a second electrical pathway from thecable 22 to theswitch mechanism 300. A suitableultrasonic transducer 50 is Model No. HP054, sold by Ethicon Endo-Surgery, Inc. of Cincinnati, Ohio. - In one expression of the current embodiment, the distal end of
transducer 50 threadedly attaches to the proximal end oftransmission rod 80. The distal end oftransducer 50 also interfaces withswitch assembly 300 to provide the surgeon with finger-activated controls onsurgical instrument 100. -
Switch assembly 300 comprises apushbutton assembly 310, aflex circuit assembly 330, aswitch housing 350, a first springslip ring conductor 360 and a second springslip ring conductor 370.Switch housing 350 is generally cylindrical and is supported withinhandle assembly 68 by way of corresponding supporting mounts onswitch assembly 350 andhousing portions Housing 350 defines afirst cavity 353, a mountingboss 352 and asecond cavity 351.Cavity 353 is sized to accept the proximal end oftransducer 50, wherebyhorn 130 passes throughcavity 351 to interface withtransmission rod 80. Mountingboss 352 acceptsslip ring conductors ring contacts alignment pin 354 and snap-fit pin 355 align with corresponding apertures of theflex circuit assembly 330 andpushbutton assembly 310 to secure all components together as discussed below. - With particular reference now to
FIG. 8a ,slip ring conductors boss 352. Each spring slip-ring comprises two pressure point contacts (361 a-b and 371 a-b) that contact therespective ring conductor transducer 50. The spring tension of the slip rings 360 and 370 cause positive contact between contacts 361 a-b, 371 a-b andconductors transducer 50 may be rotated by the surgeon during use of the instrument.Posts flex circuit 330 to complete the electrical circuit as shown inFIG. 8 c. - A
flex circuit 330 provides for the electro-mechanical interface betweenpushbuttons 311 a, b, 312 a, b and thegenerator 30 viatransducer 50. Flex circuit comprises fourdome switches 332 a,b and 334 a, b that are mechanically actuated by depressingpushbuttons 311 a, b or 312 a, b, respectively ofcorresponding pushbutton assembly 310. Dome switches 332 and 334 are electrical contact switches, that when depressed provide an electrical signal togenerator 30 as shown by the electrical wiring schematic ofFIG. 8c .Flex circuit 330 also comprises two diodes within adiode package 336, also illustrated inFIG. 8c .Flex circuit 330 provides conductors, 335 and 337 as is known to those in the art, that connect to slipring conductors electrical tabs conductors cable 22 that connect togenerator 30.Tabs conductors -
Flex circuit 330 generally wraps around switchhousing 350 so that dome switches 334 a, b and 332 a, b interface with the corresponding backing surfaces 356 a, b and 358 a, b onswitch housing 350. Backing surfaces provide a firm support for the dome switches during operation, discussed below. Dome switches 334 a, b and 332 a, b may be fixedly attached to backingsurfaces 356 a, b and 358 a, b by any convenient method, such as, an adhesive. Flex circuit is secured to switchhousing 350 viaalignment pin 354 and snap-fit pin 355 onswitch assembly 350 andcorresponding alignment hole 338 and snap-fit hole 339 onflex circuit 330. - Layered on top of flex circuit is
pushbutton assembly 310, which has a corresponding saddle-shape asflex circuit 330, and generally wraps around switchhousing 350.Pushbutton assembly 310 comprises four pushbuttons,distal pushbuttons 312 a, b andproximal pushbuttons 311 a, b which have corresponding pressure studs 315 a, b and 314 a, b. The pushbuttons are connected to cantileverelements 313 a, b and 316 a, b, which provide a spring-back action after the pushbuttons are depressed. As is readily apparent, by depressing pushbuttons 311 and 312 the corresponding pressure studs 314 and 315 depress against corresponding dome switches 334 and 332 to activate the circuit illustrated inFIG. 8c .Switches 312 a and b are in parallel so that a surgeon may operate the pushbuttons using either a left hand or a right hand. Likewise, switches 311 a and b are in parallel so that a surgeon may operate the pushbuttons using either a left hand or a right hand. When the surgeon depresses either switch 312 a or 312 b, the generator will respond with a certain energy level, such as a maximum (“max”) power setting; when the surgeon depresses either switch 311 a or 311 b, the generator will respond with a certain energy level, such as a minimum (“min”) power setting, which conforms to accepted industry practice for pushbutton location and the corresponding power setting. - Alternatively, the pushbuttons may be molded into the
switch housing 350 or into thehandle assembly 68 to reduce the number of components and increase the reliability of the overall device. The pushbuttons may be attached through small cantilever sections, which allow for sturdy attachment of the pushbutton to the other components, while at the same time allowing for a low force to activate the pushbuttons. - Referring now to
FIGS. 12-15 , one expression of the current embodiment allowsswitches 311 a, b and 312 a, b configured in such a way to provide an ergonomically pleasing grip and operation for the surgeon. Switches may be placed in the range of the natural swing of the surgeon's thumb, whether grippingsurgical instrument 100 right-handed or left handed. In a second expression of the current embodiment, the switches are placed onhousing 68 to prevent inadvertent button activation on the side of the instrument opposite the thumb while the surgeon depressestrigger 34 or rotatesrotation knob 29. In a third expression of the current embodiment a series of partitions, such as ridges and/or depressions or “peaks and valleys” that are integrated onto thehousing 68. In one example the housing defines a first surface and the series of partitions define at least one second surface such that the second surface is higher than the housing surface. The partition may also define a third surface that is lower than the housing surface. As can be seen inFIGS. 1, 2 switches 312 a, b are surrounded by anupper ridge 320 and alower ridge 324.Ridges ridges ridges housing 68, as shown inFIGS. 12-15 , orridges FIGS. 1 and 2 . This construction and situation ofswitches 312 a, b prevent the risk of inadvertent button activation even if a finger crosses over the button due to the fact that the ridges cause the finger to pass above the plane of the button. The ridges also provide tactile feedback to the surgeon as to the location of the pushbuttons and whether the button represents min or max power activation. As is readily evident, switches 312 a, b are surrounded byridges pushbuttons 311 a,b are situated above and proximal ofridge 320. Such tactile feedback is essential to the surgeon, so the surgeon may continuously assess the surgical site, but confidently understand which pushbuttons are being activated. In a further expression of the current embodiment, switch 312 a, b are nestled within adepression 322 and further surrounded byridges - Referring to
FIG. 12 , a surgeon's left hand is accessinginstrument 100. The fore finger and middle finger are poised to activatetrigger 34, and the ring finger and pinkie grasphand grip 39. The thumb is conveniently positioned to sweep upward to activatepushbutton Ridges housing 69. - In
FIG. 13 , the opposite side ofinstrument 100 shown inFIG. 12 is illustrated showingpushbuttons rotation knob 29 to rotateend effector 81. As can be seen,pushbutton 312 b is subject to inadvertent activation by the forefinger. However,ridge 324 causes the forefinger to elevate above the plane ofpushbutton 312 b thereby reducing the risk of inadvertent activation. - In
FIG. 14 , the surgeon has depressedtrigger 34 to closeclamp arm 56 againstblade 79, and the left thumb has easily accessedpushbutton 312 b to activate max power. - In
FIG. 15 , the surgeon has depressedtrigger 34 to closeclamp arm 56 againstblade 79, and the left thumb has easily accessedpushbutton 311 b to activate min power. - Referring to
FIG. 17 , an expression ofsurgical instrument 100 is shown graphically illustrating a surgeon's finger placement oninstrument 100. Instrumental in the activation of theinstrument 100 is the placement of theforefinger 382 andmiddle finger 384 ontrigger 34. (Using the forefinger and middle finger to activatetrigger 34 is exemplary only. Surgeons with smaller hands may opt to activatetrigger 34 with the middle finger and ring finger, thereby making the forefinger available to rotateknob 29 or even use the ring finger and pinkie toactive trigger 34.)Trigger 34 comprises abase element 45, which comprises thedetent tab 114 and linkage withyoke 33, discussed below. Attached tobase element 45 is a generally T-shapedfinger interface 43, which in conjunction withbase element 45 define two generally U-shaped openings, aforefinger groove 42 and amiddle finger groove 44. The most distal surface portion of T-shapedfinger interface 43 defines anactuating surface 41 that also accepts placement offingers Grooves grooves grooves groove - Referring now also to
FIGS. 10 and 11 , theclamp arm 56 is fully open relative to theblade 79 whentrigger 34 is in its most distal position (FIG. 10 ).Fingers respective grooves surface 41 to actuatetrigger 34 through its arcuate travel designated byarrow 47. When trigger reaches its full proximal travel (whendetent tab 114 engages detent spring 110), theclamp arm 56 is in its fully closed position relative to the blade 79 (FIG. 11 ). In order to reverse the trigger along itstravel 47,fingers grooves trigger 34 distally to open the end effector. Theclamp arm 56 is not biased open so the surgeon cannot control the opening ofclamp arm 56 viasurface 41. - Referring now to
FIG. 18 , elements having similar reference numerals as shown inFIG. 2 have the similar function as already discussed. Particular attention is directed to analternate handle assembly 168 for actuating theend effector 81. Thehandle assembly 168 includes two pivotinghandle portions right shroud 169 and aleft shroud 170. - The
right shroud 169 is adapted to snap fit on theleft shroud 170 via a plurality of inwardly facing prongs formed on theleft shroud 170 to formhousing 171. When theleft shroud 170 is attached to theright shroud 169, a cavity is formed therebetween to accommodate various components that form thehandle assembly 168 as further discussed below.Apertures portion 420 and finger ring or handleportion 422, which are located exterior of the left and right shrouds to the actuating linkage contained within the left and right shrouds.Aperture 173 is also formed at the proximal end of shrouds to accommodate transducer 50 (SeeFIG. 8b ). -
Handle assembly 168 includes aU-shaped yoke 424 slidably attachable withinhousings slots handle 420 athole 402 attaches toright shroud 169 and yoke viapin 423 a, and the proximal end ofhandle 420 attaches toyoke 424 vialink 428 attached to hole 404 viapin 426 andhole 410 viapin 430. The distal end ofhandle 422 athole 406 attaches toright shroud 169 and yoke viapin 423 b, and the proximal end ofhandle 422 attaches toyoke 424 vialink 432 attached to hole 408 viapin 434 andhole 412 viapin 430. In practice as thehandles handle 420, and the surgeon's forefinger and middle finger cooperate with handle 422),end effector 81 moves away fromblade 79 to form an open jaw (the open position), and ashandles housing 171,end effector 81 rotates towardblade 79 to capture tissue (the closed position). - In one expression of the current embodiment, a
detent spring 482 is supported withinhousing portion 171. Adetent cam 480 rotates onyoke 168 and engages and snaps backdetent spring 482 whenhandles Detent spring 482 is generally made of a flexible plastic that adequately deflects when it engagescam 480 thereby providing an audible signal to the surgeon that there isfull end effector 81 closure. Advantageously, 480 strikes and deflectsdetent spring 482 whenhandles end effector 81 no longer exists. - Referring also now to
FIG. 24 , a second expression of the current embodiment is shown having anactuator post 433 attaches to handle 422 and engages adome switch 435 covered by silicon rubber located onhousing assembly 171. When handle 422 is fully closed, post 433 presses against the silicone which in turn transfers the force to thedome switch 435, allowing the switch to provide an audible and tactile feedback to the surgeon. In oneembodiment post 433 is a cylinder having a diameter of 0.170 inches with a 0.070 inch slot in the middle. A preferred durometer for the silicon rubber material is 20 Shore A. - Referring also now to
FIG. 23 , also enclosed withinhousing 171 areconnector 450,slip rings flex circuit 456 androcker switch 462.Rocker switch 462 rotatably attaches toright shroud 169 viaaperture 469 andswitches exterior housing 171 for access by the surgeon.Switches rocker arm 466 comprising apivot post 468 which interfaces withaperture 469. In this configuration, switches 462 and 464 cannot be simultaneously depressed, which, if were the case, would provide an error message fromgenerator 30. Aflex circuit 456 provides for the electro-mechanical interface betweenswitches generator 30 via the transducer 50 (seeFIG. 8b ). Referring toFIG. 21 ,flex circuit 456 includes, at the distal end, twodome switches switches generator 30 as shown by the electrical wiring schematic ofFIG. 22 .Flex circuit 456 also comprises two diodes within adiode package 504, also illustrated inFIG. 22 .Flex circuit 456 provides conductors, as is known to those in the art, that connect to slipring conductors connector 450, which in turn provide electrical contact to ringconductors 400 and 410 (FIG. 8b ), which in turn are connected to conductors in cable 32 that connect togenerator 30. - With particular reference now to
FIGS. 19 and 20 a-b,slip ring conductors surfaces connector 450, respectively. Each spring slip-ring comprises two pressure point contacts (510 a-b and 522 a-b) that contact therespective ring conductor handpiece 50. The spring tension of the slip rings 452 and 454 cause positive contact between contacts 510 a-b, 522 a-b andconductors hand piece 50 may be rotated by the surgeon during use of the instrument.Posts flex circuit 456 to complete the electrical circuit as shown inFIG. 22 . - Referring again to
FIG. 18 ,rotation coupler 130 rotatably engages the distal end of right and leftshrouds Rotation knob 129 couples torotational coupler 130, whereby twospring tabs 175 and 175 a (not shown) provide an outward tension or force against the inner surface ofrotation knob 129 to inhibit inadvertent rotation ofend effector 81. - In an alternate expression of the invention, handles 420 and 422 have a soft-touch molded thermo
plastic elastomer liner 550 on the inner surface ofhandles Plastic liner 550 provides comfort to the surgeon and prevents finger and hand fatigue.Plastic liner 550 also provides an enhance gripping surface between the handles and the surgeon's thumb and fingers as opposed to the smooth plastic surface interface of the prior art. This is particularly advantageous for accepting multiple digit sizes of male and female surgeons and still providing a comfortable and positive gripping surface.Plastic liner 550 may be smooth or have contours molded onto the surface ofliner 550, such as ribs, as illustrated inFIGS. 23 and 24 . Other contours may be bumps, and peaks and valleys. Various other shapes and interfaces are within the scope of this invention as would be obvious to one skilled in the art.Plastic liner 550 is also useful on the interface between the surgeon's finger and trigger 34 (FIG. 12 ). - In one expression of the current embodiment, the soft-
touch liner 550 has a durometer (hardness) rating from about 35 Shore A to about 75 Shore A, and more particularly from about 50 Shore A to about 60 Shore A. Such appropriate materials are available from LNP of Exton, Pa. (stock no. 8211-55 B100 GYO-826-3) and Advanced Elastomer Systems of Akron, Ohio (stock no. 8211-55B100). - The soft-touch material may also be useful to help the surgeon identify a particular feature of the instrument while the surgeon is focused on the operation at hand. For example, a “soft touch” having one contour interface may be placed on the “max” button, and a “soft touch” having a second contour interface may be place on the “min” button so the surgeon may easily recognize the presence of either button without having to lose focus of the surgical site. “Soft touch” may also be implemented on
knobs end effector 81. - While the present invention has been illustrated by description of several embodiments, it is not the intention of the applicant to restrict or limit the spirit and scope of the appended claims to such detail. Numerous variations, changes, and substitutions will occur to those skilled in the art without departing from the scope of the invention. Moreover, the structure of each element associated with the present invention can be alternatively described as a means for providing the function performed by the element. Accordingly, it is intended that the invention be limited only by the spirit and scope of the appended claims.
Claims (21)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/578,798 US20200085466A1 (en) | 2004-10-08 | 2019-09-23 | Actuation mechanism for use with an ultrasonic surgical instrument |
US16/910,654 US20200323551A1 (en) | 2004-10-08 | 2020-06-24 | Actuation mechanism for use with an ultrasonic surgical instrument |
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US61742704P | 2004-10-08 | 2004-10-08 | |
US67670905P | 2005-05-02 | 2005-05-02 | |
US11/246,794 US7544200B2 (en) | 2004-10-08 | 2005-10-07 | Combination tissue pad for use with an ultrasonic surgical instrument |
US12/468,130 US20090223033A1 (en) | 2004-10-08 | 2009-05-19 | Combination tissue pad for use with an ultrasonic surgical instrument |
US12/761,431 US8715306B2 (en) | 2004-10-08 | 2010-04-16 | Tissue pad for use with an ultrasonic surgical instrument |
US14/269,546 US9901359B2 (en) | 2004-10-08 | 2014-05-05 | Actuation mechanism for use with an ultrasonic surgical instrument |
US15/904,828 US11006971B2 (en) | 2004-10-08 | 2018-02-26 | Actuation mechanism for use with an ultrasonic surgical instrument |
US15/947,433 US10537352B2 (en) | 2004-10-08 | 2018-04-06 | Tissue pads for use with surgical instruments |
US16/578,798 US20200085466A1 (en) | 2004-10-08 | 2019-09-23 | Actuation mechanism for use with an ultrasonic surgical instrument |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/947,433 Continuation US10537352B2 (en) | 2004-10-08 | 2018-04-06 | Tissue pads for use with surgical instruments |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/910,654 Continuation US20200323551A1 (en) | 2004-10-08 | 2020-06-24 | Actuation mechanism for use with an ultrasonic surgical instrument |
Publications (1)
Publication Number | Publication Date |
---|---|
US20200085466A1 true US20200085466A1 (en) | 2020-03-19 |
Family
ID=36148984
Family Applications (13)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/246,384 Abandoned US20060079877A1 (en) | 2004-10-08 | 2005-10-07 | Feedback mechanism for use with an ultrasonic surgical instrument |
US11/246,794 Active 2027-03-13 US7544200B2 (en) | 2004-10-08 | 2005-10-07 | Combination tissue pad for use with an ultrasonic surgical instrument |
US11/245,819 Abandoned US20060079874A1 (en) | 2004-10-08 | 2005-10-07 | Tissue pad for use with an ultrasonic surgical instrument |
US11/246,330 Active 2027-09-08 US7846155B2 (en) | 2004-10-08 | 2005-10-07 | Handle assembly having hand activation for use with an ultrasonic surgical instrument |
US11/246,826 Abandoned US20060079879A1 (en) | 2004-10-08 | 2005-10-07 | Actuation mechanism for use with an ultrasonic surgical instrument |
US11/246,264 Active 2027-12-23 US8057467B2 (en) | 2004-10-08 | 2005-10-07 | Clamp mechanism for use with an ultrasonic surgical instrument |
US12/468,130 Abandoned US20090223033A1 (en) | 2004-10-08 | 2009-05-19 | Combination tissue pad for use with an ultrasonic surgical instrument |
US12/761,431 Active 2028-02-09 US8715306B2 (en) | 2004-10-08 | 2010-04-16 | Tissue pad for use with an ultrasonic surgical instrument |
US14/269,546 Active 2026-01-22 US9901359B2 (en) | 2004-10-08 | 2014-05-05 | Actuation mechanism for use with an ultrasonic surgical instrument |
US15/904,828 Active 2026-08-31 US11006971B2 (en) | 2004-10-08 | 2018-02-26 | Actuation mechanism for use with an ultrasonic surgical instrument |
US15/947,433 Active US10537352B2 (en) | 2004-10-08 | 2018-04-06 | Tissue pads for use with surgical instruments |
US16/578,798 Abandoned US20200085466A1 (en) | 2004-10-08 | 2019-09-23 | Actuation mechanism for use with an ultrasonic surgical instrument |
US16/910,654 Pending US20200323551A1 (en) | 2004-10-08 | 2020-06-24 | Actuation mechanism for use with an ultrasonic surgical instrument |
Family Applications Before (11)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/246,384 Abandoned US20060079877A1 (en) | 2004-10-08 | 2005-10-07 | Feedback mechanism for use with an ultrasonic surgical instrument |
US11/246,794 Active 2027-03-13 US7544200B2 (en) | 2004-10-08 | 2005-10-07 | Combination tissue pad for use with an ultrasonic surgical instrument |
US11/245,819 Abandoned US20060079874A1 (en) | 2004-10-08 | 2005-10-07 | Tissue pad for use with an ultrasonic surgical instrument |
US11/246,330 Active 2027-09-08 US7846155B2 (en) | 2004-10-08 | 2005-10-07 | Handle assembly having hand activation for use with an ultrasonic surgical instrument |
US11/246,826 Abandoned US20060079879A1 (en) | 2004-10-08 | 2005-10-07 | Actuation mechanism for use with an ultrasonic surgical instrument |
US11/246,264 Active 2027-12-23 US8057467B2 (en) | 2004-10-08 | 2005-10-07 | Clamp mechanism for use with an ultrasonic surgical instrument |
US12/468,130 Abandoned US20090223033A1 (en) | 2004-10-08 | 2009-05-19 | Combination tissue pad for use with an ultrasonic surgical instrument |
US12/761,431 Active 2028-02-09 US8715306B2 (en) | 2004-10-08 | 2010-04-16 | Tissue pad for use with an ultrasonic surgical instrument |
US14/269,546 Active 2026-01-22 US9901359B2 (en) | 2004-10-08 | 2014-05-05 | Actuation mechanism for use with an ultrasonic surgical instrument |
US15/904,828 Active 2026-08-31 US11006971B2 (en) | 2004-10-08 | 2018-02-26 | Actuation mechanism for use with an ultrasonic surgical instrument |
US15/947,433 Active US10537352B2 (en) | 2004-10-08 | 2018-04-06 | Tissue pads for use with surgical instruments |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/910,654 Pending US20200323551A1 (en) | 2004-10-08 | 2020-06-24 | Actuation mechanism for use with an ultrasonic surgical instrument |
Country Status (11)
Country | Link |
---|---|
US (13) | US20060079877A1 (en) |
EP (2) | EP3162309B1 (en) |
JP (4) | JP5009159B2 (en) |
CN (1) | CN101035482B (en) |
AU (1) | AU2005295010B2 (en) |
BR (1) | BRPI0518171B8 (en) |
CA (1) | CA2582520C (en) |
ES (1) | ES2598134T3 (en) |
MX (1) | MX2007004151A (en) |
PL (1) | PL1802245T3 (en) |
WO (1) | WO2006042210A2 (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10779848B2 (en) | 2006-01-20 | 2020-09-22 | Ethicon Llc | Ultrasound medical instrument having a medical ultrasonic blade |
US10828057B2 (en) | 2007-03-22 | 2020-11-10 | Ethicon Llc | Ultrasonic surgical instruments |
US10835768B2 (en) | 2010-02-11 | 2020-11-17 | Ethicon Llc | Dual purpose surgical instrument for cutting and coagulating tissue |
US10874418B2 (en) | 2004-02-27 | 2020-12-29 | Ethicon Llc | Ultrasonic surgical shears and method for sealing a blood vessel using same |
US10952759B2 (en) | 2016-08-25 | 2021-03-23 | Ethicon Llc | Tissue loading of a surgical instrument |
US10966744B2 (en) | 2016-07-12 | 2021-04-06 | Ethicon Llc | Ultrasonic surgical instrument with piezoelectric central lumen transducer |
US11000707B2 (en) | 2009-06-24 | 2021-05-11 | Ethicon Llc | Ultrasonic surgical instruments |
US11006971B2 (en) | 2004-10-08 | 2021-05-18 | Ethicon Llc | Actuation mechanism for use with an ultrasonic surgical instrument |
US11020140B2 (en) | 2015-06-17 | 2021-06-01 | Cilag Gmbh International | Ultrasonic surgical blade for use with ultrasonic surgical instruments |
US11033292B2 (en) | 2013-12-16 | 2021-06-15 | Cilag Gmbh International | Medical device |
USD924400S1 (en) | 2016-08-16 | 2021-07-06 | Cilag Gmbh International | Surgical instrument |
US11058447B2 (en) | 2007-07-31 | 2021-07-13 | Cilag Gmbh International | Temperature controlled ultrasonic surgical instruments |
US11253288B2 (en) | 2007-11-30 | 2022-02-22 | Cilag Gmbh International | Ultrasonic surgical instrument blades |
US11272952B2 (en) | 2013-03-14 | 2022-03-15 | Cilag Gmbh International | Mechanical fasteners for use with surgical energy devices |
US11350959B2 (en) | 2016-08-25 | 2022-06-07 | Cilag Gmbh International | Ultrasonic transducer techniques for ultrasonic surgical instrument |
US11369402B2 (en) | 2010-02-11 | 2022-06-28 | Cilag Gmbh International | Control systems for ultrasonically powered surgical instruments |
US11439426B2 (en) | 2007-11-30 | 2022-09-13 | Cilag Gmbh International | Ultrasonic surgical blades |
US11553954B2 (en) | 2015-06-30 | 2023-01-17 | Cilag Gmbh International | Translatable outer tube for sealing using shielded lap chole dissector |
US11602371B2 (en) | 2012-06-29 | 2023-03-14 | Cilag Gmbh International | Ultrasonic surgical instruments with control mechanisms |
US11607268B2 (en) | 2007-07-27 | 2023-03-21 | Cilag Gmbh International | Surgical instruments |
US11666784B2 (en) | 2007-07-31 | 2023-06-06 | Cilag Gmbh International | Surgical instruments |
US11690641B2 (en) | 2007-07-27 | 2023-07-04 | Cilag Gmbh International | Ultrasonic end effectors with increased active length |
US11877734B2 (en) | 2007-07-31 | 2024-01-23 | Cilag Gmbh International | Ultrasonic surgical instruments |
US11998229B2 (en) | 2005-10-14 | 2024-06-04 | Cilag Gmbh International | Ultrasonic device for cutting and coagulating |
USD1049376S1 (en) | 2021-06-24 | 2024-10-29 | Cilag Gmbh International | Surgical instrument |
Families Citing this family (1187)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11229472B2 (en) | 2001-06-12 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with multiple magnetic position sensors |
US10285694B2 (en) | 2001-10-20 | 2019-05-14 | Covidien Lp | Surgical stapler with timer and feedback display |
WO2004091377A2 (en) * | 2003-03-28 | 2004-10-28 | Downey Earl C | Surgical instrument with trigger control |
IL155546A (en) * | 2003-04-22 | 2010-06-16 | Healfus Ltd | Apparatus for treatment of damaged tissue |
US20070084897A1 (en) | 2003-05-20 | 2007-04-19 | Shelton Frederick E Iv | Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism |
US9060770B2 (en) | 2003-05-20 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Robotically-driven surgical instrument with E-beam driver |
JP5089980B2 (en) * | 2003-06-17 | 2012-12-05 | エシコン・エンド−サージェリィ・インコーポレイテッド | Manual ultrasonic instrument |
US10022123B2 (en) | 2012-07-09 | 2018-07-17 | Covidien Lp | Surgical adapter assemblies for use between surgical handle assembly and surgical end effectors |
US11311291B2 (en) | 2003-10-17 | 2022-04-26 | Covidien Lp | Surgical adapter assemblies for use between surgical handle assembly and surgical end effectors |
US10105140B2 (en) * | 2009-11-20 | 2018-10-23 | Covidien Lp | Surgical console and hand-held surgical device |
US10041822B2 (en) | 2007-10-05 | 2018-08-07 | Covidien Lp | Methods to shorten calibration times for powered devices |
US11998198B2 (en) | 2004-07-28 | 2024-06-04 | Cilag Gmbh International | Surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
US9072535B2 (en) | 2011-05-27 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with rotatable staple deployment arrangements |
US11896225B2 (en) | 2004-07-28 | 2024-02-13 | Cilag Gmbh International | Staple cartridge comprising a pan |
US8215531B2 (en) | 2004-07-28 | 2012-07-10 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a medical substance dispenser |
WO2006015319A2 (en) | 2004-07-30 | 2006-02-09 | Power Medical Interventions, Inc. | Flexible shaft extender and method of using same |
US20060041252A1 (en) * | 2004-08-17 | 2006-02-23 | Odell Roger C | System and method for monitoring electrosurgical instruments |
US11291443B2 (en) | 2005-06-03 | 2022-04-05 | Covidien Lp | Surgical stapler with timer and feedback display |
WO2007014215A2 (en) * | 2005-07-22 | 2007-02-01 | Berg Howard K | Ultrasonic scalpel device |
US8627995B2 (en) | 2006-05-19 | 2014-01-14 | Ethicon Endo-Sugery, Inc. | Electrically self-powered surgical instrument with cryptographic identification of interchangeable part |
US7479608B2 (en) | 2006-05-19 | 2009-01-20 | Ethicon Endo-Surgery, Inc. | Force switch |
US8573462B2 (en) | 2006-05-19 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Electrical surgical instrument with optimized power supply and drive |
US11751873B2 (en) | 2005-07-26 | 2023-09-12 | Cilag Gmbh International | Electrically powered surgical instrument with manual release |
US8579176B2 (en) | 2005-07-26 | 2013-11-12 | Ethicon Endo-Surgery, Inc. | Surgical stapling and cutting device and method for using the device |
US10314583B2 (en) | 2005-07-26 | 2019-06-11 | Ethicon Llc | Electrically self-powered surgical instrument with manual release |
US11246590B2 (en) | 2005-08-31 | 2022-02-15 | Cilag Gmbh International | Staple cartridge including staple drivers having different unfired heights |
US11484312B2 (en) | 2005-08-31 | 2022-11-01 | Cilag Gmbh International | Staple cartridge comprising a staple driver arrangement |
US10159482B2 (en) | 2005-08-31 | 2018-12-25 | Ethicon Llc | Fastener cartridge assembly comprising a fixed anvil and different staple heights |
US9237891B2 (en) | 2005-08-31 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
US7669746B2 (en) | 2005-08-31 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US7934630B2 (en) | 2005-08-31 | 2011-05-03 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US8080004B2 (en) * | 2005-10-26 | 2011-12-20 | Earl Downey | Laparoscopic surgical instrument |
US20070106317A1 (en) | 2005-11-09 | 2007-05-10 | Shelton Frederick E Iv | Hydraulically and electrically actuated articulation joints for surgical instruments |
US8186555B2 (en) | 2006-01-31 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with mechanical closure system |
GB2435214B (en) * | 2006-01-31 | 2010-01-20 | Michael John Radley Young | Ultrasonic Cutting Tool |
US8708213B2 (en) | 2006-01-31 | 2014-04-29 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a feedback system |
US7845537B2 (en) | 2006-01-31 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument having recording capabilities |
US20110024477A1 (en) | 2009-02-06 | 2011-02-03 | Hall Steven G | Driven Surgical Stapler Improvements |
US11224427B2 (en) | 2006-01-31 | 2022-01-18 | Cilag Gmbh International | Surgical stapling system including a console and retraction assembly |
US8820603B2 (en) | 2006-01-31 | 2014-09-02 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
US7753904B2 (en) | 2006-01-31 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Endoscopic surgical instrument with a handle that can articulate with respect to the shaft |
US11793518B2 (en) | 2006-01-31 | 2023-10-24 | Cilag Gmbh International | Powered surgical instruments with firing system lockout arrangements |
US11278279B2 (en) | 2006-01-31 | 2022-03-22 | Cilag Gmbh International | Surgical instrument assembly |
US20110295295A1 (en) | 2006-01-31 | 2011-12-01 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical instrument having recording capabilities |
US20120292367A1 (en) | 2006-01-31 | 2012-11-22 | Ethicon Endo-Surgery, Inc. | Robotically-controlled end effector |
US8992422B2 (en) | 2006-03-23 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Robotically-controlled endoscopic accessory channel |
US8007494B1 (en) | 2006-04-27 | 2011-08-30 | Encision, Inc. | Device and method to prevent surgical burns |
US8366727B2 (en) * | 2006-06-01 | 2013-02-05 | Ethicon Endo-Surgery, Inc. | Tissue pad ultrasonic surgical instrument |
US8251989B1 (en) | 2006-06-13 | 2012-08-28 | Encision, Inc. | Combined bipolar and monopolar electrosurgical instrument and method |
US8322455B2 (en) | 2006-06-27 | 2012-12-04 | Ethicon Endo-Surgery, Inc. | Manually driven surgical cutting and fastening instrument |
US7665647B2 (en) | 2006-09-29 | 2010-02-23 | Ethicon Endo-Surgery, Inc. | Surgical cutting and stapling device with closure apparatus for limiting maximum tissue compression force |
US10568652B2 (en) | 2006-09-29 | 2020-02-25 | Ethicon Llc | Surgical staples having attached drivers of different heights and stapling instruments for deploying the same |
US11980366B2 (en) | 2006-10-03 | 2024-05-14 | Cilag Gmbh International | Surgical instrument |
US8187272B2 (en) * | 2006-10-06 | 2012-05-29 | Biomedcraft Designs, Inc. | Surgical instrument for coagulation and suction |
US8652120B2 (en) | 2007-01-10 | 2014-02-18 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US11291441B2 (en) | 2007-01-10 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with wireless communication between control unit and remote sensor |
US8684253B2 (en) | 2007-01-10 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
US8840603B2 (en) | 2007-01-10 | 2014-09-23 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US20080169333A1 (en) | 2007-01-11 | 2008-07-17 | Shelton Frederick E | Surgical stapler end effector with tapered distal end |
US11039836B2 (en) | 2007-01-11 | 2021-06-22 | Cilag Gmbh International | Staple cartridge for use with a surgical stapling instrument |
JP5165696B2 (en) * | 2007-01-16 | 2013-03-21 | エシコン・エンド−サージェリィ・インコーポレイテッド | Ultrasonic device for cutting and coagulation |
US7669747B2 (en) | 2007-03-15 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Washer for use with a surgical stapling instrument |
US8226675B2 (en) | 2007-03-22 | 2012-07-24 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US20080234709A1 (en) | 2007-03-22 | 2008-09-25 | Houser Kevin L | Ultrasonic surgical instrument and cartilage and bone shaping blades therefor |
US8142461B2 (en) | 2007-03-22 | 2012-03-27 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8893946B2 (en) | 2007-03-28 | 2014-11-25 | Ethicon Endo-Surgery, Inc. | Laparoscopic tissue thickness and clamp load measuring devices |
US9271751B2 (en) * | 2007-05-29 | 2016-03-01 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical system |
US8931682B2 (en) | 2007-06-04 | 2015-01-13 | Ethicon Endo-Surgery, Inc. | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US11564682B2 (en) | 2007-06-04 | 2023-01-31 | Cilag Gmbh International | Surgical stapler device |
US7753245B2 (en) | 2007-06-22 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments |
US11849941B2 (en) | 2007-06-29 | 2023-12-26 | Cilag Gmbh International | Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis |
US8257377B2 (en) | 2007-07-27 | 2012-09-04 | Ethicon Endo-Surgery, Inc. | Multiple end effectors ultrasonic surgical instruments |
US8348967B2 (en) | 2007-07-27 | 2013-01-08 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US8882791B2 (en) | 2007-07-27 | 2014-11-11 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US8252012B2 (en) * | 2007-07-31 | 2012-08-28 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument with modulator |
US20090054894A1 (en) * | 2007-08-24 | 2009-02-26 | Chie Yachi | Surgical operating apparatus |
US20090054886A1 (en) * | 2007-08-24 | 2009-02-26 | Chie Yachi | Surgical operating apparatus |
CN101801283B (en) | 2007-09-21 | 2012-07-18 | Tyco医疗健康集团 | Surgical device |
US8517241B2 (en) | 2010-04-16 | 2013-08-27 | Covidien Lp | Hand-held surgical devices |
WO2009046234A2 (en) * | 2007-10-05 | 2009-04-09 | Ethicon Endo-Surgery, Inc | Ergonomic surgical instruments |
USD594983S1 (en) | 2007-10-05 | 2009-06-23 | Ethicon Endo-Surgery, Inc. | Handle assembly for surgical instrument |
US10779818B2 (en) | 2007-10-05 | 2020-09-22 | Covidien Lp | Powered surgical stapling device |
US10498269B2 (en) | 2007-10-05 | 2019-12-03 | Covidien Lp | Powered surgical stapling device |
US8241276B2 (en) * | 2007-11-14 | 2012-08-14 | Halt Medical Inc. | RF ablation device with jam-preventing electrical coupling member |
US7901423B2 (en) | 2007-11-30 | 2011-03-08 | Ethicon Endo-Surgery, Inc. | Folded ultrasonic end effectors with increased active length |
US9017355B2 (en) | 2007-12-03 | 2015-04-28 | Covidien Ag | Battery-powered hand-held ultrasonic surgical cautery cutting device |
US8403948B2 (en) * | 2007-12-03 | 2013-03-26 | Covidien Ag | Cordless hand-held ultrasonic cautery cutting device |
US8334468B2 (en) | 2008-11-06 | 2012-12-18 | Covidien Ag | Method of switching a cordless hand-held ultrasonic cautery cutting device |
US9314261B2 (en) | 2007-12-03 | 2016-04-19 | Covidien Ag | Battery-powered hand-held ultrasonic surgical cautery cutting device |
US8663262B2 (en) | 2007-12-03 | 2014-03-04 | Covidien Ag | Battery assembly for battery-powered surgical instruments |
US8435257B2 (en) * | 2007-12-03 | 2013-05-07 | Covidien Ag | Cordless hand-held ultrasonic cautery cutting device and method |
AU2014202152A1 (en) * | 2007-12-03 | 2014-05-15 | Covidien Ag | Cordless hand-held ultrasonic cautery cutting device |
US9107690B2 (en) | 2007-12-03 | 2015-08-18 | Covidien Ag | Battery-powered hand-held ultrasonic surgical cautery cutting device |
US8061014B2 (en) | 2007-12-03 | 2011-11-22 | Covidien Ag | Method of assembling a cordless hand-held ultrasonic cautery cutting device |
US8758391B2 (en) | 2008-02-14 | 2014-06-24 | Ethicon Endo-Surgery, Inc. | Interchangeable tools for surgical instruments |
US8636736B2 (en) | 2008-02-14 | 2014-01-28 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument |
RU2493788C2 (en) | 2008-02-14 | 2013-09-27 | Этикон Эндо-Серджери, Инк. | Surgical cutting and fixing instrument, which has radio-frequency electrodes |
US7866527B2 (en) | 2008-02-14 | 2011-01-11 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with interlockable firing system |
US8573465B2 (en) | 2008-02-14 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical end effector system with rotary actuated closure systems |
US7819298B2 (en) | 2008-02-14 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with control features operable with one hand |
US11986183B2 (en) | 2008-02-14 | 2024-05-21 | Cilag Gmbh International | Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter |
US9179912B2 (en) | 2008-02-14 | 2015-11-10 | Ethicon Endo-Surgery, Inc. | Robotically-controlled motorized surgical cutting and fastening instrument |
US11272927B2 (en) | 2008-02-15 | 2022-03-15 | Cilag Gmbh International | Layer arrangements for surgical staple cartridges |
US10390823B2 (en) | 2008-02-15 | 2019-08-27 | Ethicon Llc | End effector comprising an adjunct |
CA3022982C (en) | 2008-03-31 | 2022-07-26 | Applied Medical Resources Corporation | Electrosurgical system |
US8226665B2 (en) * | 2008-04-04 | 2012-07-24 | Tyco Healthcare Group Lp | Ultrasonic needle driver |
US20090270853A1 (en) * | 2008-04-28 | 2009-10-29 | Chie Yachi | Surgical operating apparatus |
US8058771B2 (en) | 2008-08-06 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic device for cutting and coagulating with stepped output |
US9089360B2 (en) | 2008-08-06 | 2015-07-28 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US8500728B2 (en) | 2008-08-18 | 2013-08-06 | Encision, Inc. | Enhanced control systems including flexible shielding and support systems for electrosurgical applications |
US9833281B2 (en) | 2008-08-18 | 2017-12-05 | Encision Inc. | Enhanced control systems including flexible shielding and support systems for electrosurgical applications |
US20100063527A1 (en) * | 2008-09-05 | 2010-03-11 | Beaupre Jean Michael | Tissue pad |
US9107688B2 (en) | 2008-09-12 | 2015-08-18 | Ethicon Endo-Surgery, Inc. | Activation feature for surgical instrument with pencil grip |
AU2009291688A1 (en) * | 2008-09-12 | 2010-03-18 | Ethicon Endo-Surgery, Inc. | Ultrasonic device for fingertip control |
US9386983B2 (en) | 2008-09-23 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Robotically-controlled motorized surgical instrument |
US8210411B2 (en) | 2008-09-23 | 2012-07-03 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument |
US11648005B2 (en) | 2008-09-23 | 2023-05-16 | Cilag Gmbh International | Robotically-controlled motorized surgical instrument with an end effector |
US9005230B2 (en) | 2008-09-23 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
US8608045B2 (en) | 2008-10-10 | 2013-12-17 | Ethicon Endo-Sugery, Inc. | Powered surgical cutting and stapling apparatus with manually retractable firing system |
US8517239B2 (en) | 2009-02-05 | 2013-08-27 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument comprising a magnetic element driver |
US8444036B2 (en) | 2009-02-06 | 2013-05-21 | Ethicon Endo-Surgery, Inc. | Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector |
BRPI1008667A2 (en) | 2009-02-06 | 2016-03-08 | Ethicom Endo Surgery Inc | improvement of the operated surgical stapler |
US8708211B2 (en) | 2009-02-12 | 2014-04-29 | Covidien Lp | Powered surgical instrument with secondary circuit board |
US9700339B2 (en) | 2009-05-20 | 2017-07-11 | Ethicon Endo-Surgery, Inc. | Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments |
US20100298743A1 (en) * | 2009-05-20 | 2010-11-25 | Ethicon Endo-Surgery, Inc. | Thermally-activated coupling arrangements and methods for attaching tools to ultrasonic surgical instruments |
US8663220B2 (en) | 2009-07-15 | 2014-03-04 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US9017326B2 (en) | 2009-07-15 | 2015-04-28 | Ethicon Endo-Surgery, Inc. | Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments |
US8461744B2 (en) | 2009-07-15 | 2013-06-11 | Ethicon Endo-Surgery, Inc. | Rotating transducer mount for ultrasonic surgical instruments |
US8162965B2 (en) | 2009-09-09 | 2012-04-24 | Tyco Healthcare Group Lp | Low profile cutting assembly with a return spring |
US10172669B2 (en) | 2009-10-09 | 2019-01-08 | Ethicon Llc | Surgical instrument comprising an energy trigger lockout |
US10441345B2 (en) | 2009-10-09 | 2019-10-15 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US9050093B2 (en) | 2009-10-09 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
US11090104B2 (en) | 2009-10-09 | 2021-08-17 | Cilag Gmbh International | Surgical generator for ultrasonic and electrosurgical devices |
USRE47996E1 (en) | 2009-10-09 | 2020-05-19 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US9168054B2 (en) | 2009-10-09 | 2015-10-27 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
US8038693B2 (en) | 2009-10-21 | 2011-10-18 | Tyco Healthcare Group Ip | Methods for ultrasonic tissue sensing and feedback |
US9241730B2 (en) * | 2009-11-25 | 2016-01-26 | Eliaz Babaev | Ultrasound surgical saw |
US8591459B2 (en) | 2009-12-21 | 2013-11-26 | Ethicon Endo-Surgery, Inc. | Use of biomarkers and therapeutic agents with surgical devices |
US8851354B2 (en) | 2009-12-24 | 2014-10-07 | Ethicon Endo-Surgery, Inc. | Surgical cutting instrument that analyzes tissue thickness |
US8220688B2 (en) | 2009-12-24 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument with electric actuator directional control assembly |
EP2474280B1 (en) * | 2010-01-21 | 2015-06-10 | Olympus Medical Systems Corp. | Surgical treatment device |
US8986334B2 (en) * | 2010-02-04 | 2015-03-24 | Nico Corporation | Tissue removal device with tissue grip |
US9486234B2 (en) * | 2010-02-10 | 2016-11-08 | Eliaz Babaev | Surgical saw blade |
US9259234B2 (en) | 2010-02-11 | 2016-02-16 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments with rotatable blade and hollow sheath arrangements |
US8469981B2 (en) | 2010-02-11 | 2013-06-25 | Ethicon Endo-Surgery, Inc. | Rotatable cutting implement arrangements for ultrasonic surgical instruments |
US8579928B2 (en) | 2010-02-11 | 2013-11-12 | Ethicon Endo-Surgery, Inc. | Outer sheath and blade arrangements for ultrasonic surgical instruments |
US8419759B2 (en) | 2010-02-11 | 2013-04-16 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument with comb-like tissue trimming device |
US8961547B2 (en) | 2010-02-11 | 2015-02-24 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with moving cutting implement |
US8531064B2 (en) | 2010-02-11 | 2013-09-10 | Ethicon Endo-Surgery, Inc. | Ultrasonically powered surgical instruments with rotating cutting implement |
US8382782B2 (en) | 2010-02-11 | 2013-02-26 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with partially rotating blade and fixed pad arrangement |
US8323302B2 (en) | 2010-02-11 | 2012-12-04 | Ethicon Endo-Surgery, Inc. | Methods of using ultrasonically powered surgical instruments with rotatable cutting implements |
EP2484301B1 (en) | 2010-02-12 | 2016-06-15 | Olympus Corporation | Ultrasonic treatment device |
US9023032B2 (en) | 2010-03-25 | 2015-05-05 | Covidien Lp | Shaped circuit boards suitable for use in electrosurgical devices and rotatable assemblies including same |
GB2480498A (en) | 2010-05-21 | 2011-11-23 | Ethicon Endo Surgery Inc | Medical device comprising RF circuitry |
JP4797110B1 (en) | 2010-05-27 | 2011-10-19 | 日立アロカメディカル株式会社 | Ultrasonic diagnostic equipment |
JP4892081B2 (en) | 2010-05-27 | 2012-03-07 | 日立アロカメディカル株式会社 | Ultrasonic diagnostic equipment |
JP4797112B1 (en) * | 2010-05-27 | 2011-10-19 | 日立アロカメディカル株式会社 | Ultrasonic diagnostic equipment |
JP4797111B1 (en) | 2010-05-27 | 2011-10-19 | 日立アロカメディカル株式会社 | Ultrasonic diagnostic equipment |
US8795327B2 (en) | 2010-07-22 | 2014-08-05 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument with separate closure and cutting members |
US20120022583A1 (en) * | 2010-07-23 | 2012-01-26 | Eric Sugalski | Surgical Tool with Crossbar Lever |
US9192431B2 (en) | 2010-07-23 | 2015-11-24 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instrument |
US20130338433A1 (en) * | 2010-07-27 | 2013-12-19 | Roger Goldman | Rapidly deployable flexible robotic instrumentation |
US8783543B2 (en) | 2010-07-30 | 2014-07-22 | Ethicon Endo-Surgery, Inc. | Tissue acquisition arrangements and methods for surgical stapling devices |
US11812965B2 (en) | 2010-09-30 | 2023-11-14 | Cilag Gmbh International | Layer of material for a surgical end effector |
US9301755B2 (en) | 2010-09-30 | 2016-04-05 | Ethicon Endo-Surgery, Llc | Compressible staple cartridge assembly |
US11298125B2 (en) | 2010-09-30 | 2022-04-12 | Cilag Gmbh International | Tissue stapler having a thickness compensator |
US9364233B2 (en) | 2010-09-30 | 2016-06-14 | Ethicon Endo-Surgery, Llc | Tissue thickness compensators for circular surgical staplers |
US9386988B2 (en) | 2010-09-30 | 2016-07-12 | Ethicon End-Surgery, LLC | Retainer assembly including a tissue thickness compensator |
US11849952B2 (en) | 2010-09-30 | 2023-12-26 | Cilag Gmbh International | Staple cartridge comprising staples positioned within a compressible portion thereof |
US10945731B2 (en) | 2010-09-30 | 2021-03-16 | Ethicon Llc | Tissue thickness compensator comprising controlled release and expansion |
US9517063B2 (en) | 2012-03-28 | 2016-12-13 | Ethicon Endo-Surgery, Llc | Movable member for use with a tissue thickness compensator |
US9351730B2 (en) | 2011-04-29 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising channels |
US9629814B2 (en) | 2010-09-30 | 2017-04-25 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator configured to redistribute compressive forces |
US9592050B2 (en) | 2010-09-30 | 2017-03-14 | Ethicon Endo-Surgery, Llc | End effector comprising a distal tissue abutment member |
US8695866B2 (en) | 2010-10-01 | 2014-04-15 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a power control circuit |
ES2912092T3 (en) | 2010-10-01 | 2022-05-24 | Applied Med Resources | Electrosurgical instruments and connections thereto |
US8888809B2 (en) | 2010-10-01 | 2014-11-18 | Ethicon Endo-Surgery, Inc. | Surgical instrument with jaw member |
US8979890B2 (en) | 2010-10-01 | 2015-03-17 | Ethicon Endo-Surgery, Inc. | Surgical instrument with jaw member |
US9381058B2 (en) | 2010-11-05 | 2016-07-05 | Ethicon Endo-Surgery, Llc | Recharge system for medical devices |
US9161803B2 (en) | 2010-11-05 | 2015-10-20 | Ethicon Endo-Surgery, Inc. | Motor driven electrosurgical device with mechanical and electrical feedback |
US20120116381A1 (en) | 2010-11-05 | 2012-05-10 | Houser Kevin L | Surgical instrument with charging station and wireless communication |
US20120116261A1 (en) | 2010-11-05 | 2012-05-10 | Mumaw Daniel J | Surgical instrument with slip ring assembly to power ultrasonic transducer |
WO2012061645A1 (en) | 2010-11-05 | 2012-05-10 | Ethicon Endo-Surgery, Inc. | Surgical instrument with modular end effector |
US10660695B2 (en) | 2010-11-05 | 2020-05-26 | Ethicon Llc | Sterile medical instrument charging device |
US10085792B2 (en) | 2010-11-05 | 2018-10-02 | Ethicon Llc | Surgical instrument with motorized attachment feature |
US9597143B2 (en) | 2010-11-05 | 2017-03-21 | Ethicon Endo-Surgery, Llc | Sterile medical instrument charging device |
US9510895B2 (en) | 2010-11-05 | 2016-12-06 | Ethicon Endo-Surgery, Llc | Surgical instrument with modular shaft and end effector |
US9011471B2 (en) | 2010-11-05 | 2015-04-21 | Ethicon Endo-Surgery, Inc. | Surgical instrument with pivoting coupling to modular shaft and end effector |
EP2635207B1 (en) | 2010-11-05 | 2018-01-17 | Ethicon LLC | Medical device usage data processing |
US9421062B2 (en) | 2010-11-05 | 2016-08-23 | Ethicon Endo-Surgery, Llc | Surgical instrument shaft with resiliently biased coupling to handpiece |
US9072523B2 (en) | 2010-11-05 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Medical device with feature for sterile acceptance of non-sterile reusable component |
JP2014500059A (en) | 2010-11-05 | 2014-01-09 | エシコン・エンド−サージェリィ・インコーポレイテッド | User feedback via surgical instrument handpiece |
US9649150B2 (en) | 2010-11-05 | 2017-05-16 | Ethicon Endo-Surgery, Llc | Selective activation of electronic components in medical device |
US9375255B2 (en) * | 2010-11-05 | 2016-06-28 | Ethicon Endo-Surgery, Llc | Surgical instrument handpiece with resiliently biased coupling to modular shaft and end effector |
CN103281982B (en) | 2010-11-05 | 2016-12-28 | 伊西康内外科公司 | There is modular end effector and the surgical instruments of detection structure |
US9247986B2 (en) | 2010-11-05 | 2016-02-02 | Ethicon Endo-Surgery, Llc | Surgical instrument with ultrasonic transducer having integral switches |
US9089338B2 (en) | 2010-11-05 | 2015-07-28 | Ethicon Endo-Surgery, Inc. | Medical device packaging with window for insertion of reusable component |
EP2635229B1 (en) | 2010-11-05 | 2018-01-24 | Ethicon LLC | Medical device packaging with charging interface |
AU2011323287A1 (en) | 2010-11-05 | 2013-05-23 | Ethicon Endo-Surgery, Inc. | Surgical instrument with modular clamp pad |
US9017851B2 (en) | 2010-11-05 | 2015-04-28 | Ethicon Endo-Surgery, Inc. | Sterile housing for non-sterile medical device component |
US10959769B2 (en) | 2010-11-05 | 2021-03-30 | Ethicon Llc | Surgical instrument with slip ring assembly to power ultrasonic transducer |
US9782215B2 (en) | 2010-11-05 | 2017-10-10 | Ethicon Endo-Surgery, Llc | Surgical instrument with ultrasonic transducer having integral switches |
US9526921B2 (en) | 2010-11-05 | 2016-12-27 | Ethicon Endo-Surgery, Llc | User feedback through end effector of surgical instrument |
US10881448B2 (en) | 2010-11-05 | 2021-01-05 | Ethicon Llc | Cam driven coupling between ultrasonic transducer and waveguide in surgical instrument |
US20120116265A1 (en) * | 2010-11-05 | 2012-05-10 | Houser Kevin L | Surgical instrument with charging devices |
US9782214B2 (en) | 2010-11-05 | 2017-10-10 | Ethicon Llc | Surgical instrument with sensor and powered control |
US9039720B2 (en) | 2010-11-05 | 2015-05-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument with ratcheting rotatable shaft |
US9017849B2 (en) | 2010-11-05 | 2015-04-28 | Ethicon Endo-Surgery, Inc. | Power source management for medical device |
US9000720B2 (en) | 2010-11-05 | 2015-04-07 | Ethicon Endo-Surgery, Inc. | Medical device packaging with charging interface |
KR101810609B1 (en) | 2011-02-14 | 2017-12-20 | 삼성전자주식회사 | Semiconductor device and method of manufacturing the same |
JP5200199B2 (en) * | 2011-03-28 | 2013-05-15 | オリンパスメディカルシステムズ株式会社 | Ultrasonic treatment device |
US9028515B2 (en) | 2011-03-30 | 2015-05-12 | Covidien Lp | Ultrasonic surgical instruments |
US8968293B2 (en) | 2011-04-12 | 2015-03-03 | Covidien Lp | Systems and methods for calibrating power measurements in an electrosurgical generator |
CN103596510A (en) * | 2011-04-28 | 2014-02-19 | 伊西康内外科公司 | Ultrasonic device for cutting and coagulating |
BR112013027794B1 (en) | 2011-04-29 | 2020-12-15 | Ethicon Endo-Surgery, Inc | CLAMP CARTRIDGE SET |
US11207064B2 (en) | 2011-05-27 | 2021-12-28 | Cilag Gmbh International | Automated end effector component reloading system for use with a robotic system |
US10080813B2 (en) | 2011-06-02 | 2018-09-25 | Ethicon Llc | Sterile package system for medical device |
US9364288B2 (en) | 2011-07-06 | 2016-06-14 | Ethicon Endo-Surgery, Llc | Sterile battery containment |
US9259265B2 (en) | 2011-07-22 | 2016-02-16 | Ethicon Endo-Surgery, Llc | Surgical instruments for tensioning tissue |
PL2554133T3 (en) * | 2011-08-02 | 2014-05-30 | Erbe Elektromedizin | Instrument for vessel fusion and separation with two arms and with a curved electrode |
USD700967S1 (en) | 2011-08-23 | 2014-03-11 | Covidien Ag | Handle for portable surgical device |
US8679098B2 (en) | 2011-09-13 | 2014-03-25 | Covidien Lp | Rotation knobs for surgical instruments |
US9050125B2 (en) | 2011-10-10 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument with modular end effector |
US20130090576A1 (en) | 2011-10-10 | 2013-04-11 | Foster B. Stulen | Surgical instrument with ultrasonic waveguide defining a fluid lumen |
US9763690B2 (en) * | 2011-10-10 | 2017-09-19 | Ethicon Llc | Surgical instrument with transducer carrier assembly |
US9629652B2 (en) | 2011-10-10 | 2017-04-25 | Ethicon Endo-Surgery, Llc | Surgical instrument with clutching slip ring assembly to power ultrasonic transducer |
US8734476B2 (en) | 2011-10-13 | 2014-05-27 | Ethicon Endo-Surgery, Inc. | Coupling for slip ring assembly and ultrasonic transducer in surgical instrument |
US10085762B2 (en) | 2011-10-21 | 2018-10-02 | Ethicon Llc | Ultrasonic device for cutting and coagulating |
US9333025B2 (en) | 2011-10-24 | 2016-05-10 | Ethicon Endo-Surgery, Llc | Battery initialization clip |
USD687549S1 (en) | 2011-10-24 | 2013-08-06 | Ethicon Endo-Surgery, Inc. | Surgical instrument |
US9480492B2 (en) | 2011-10-25 | 2016-11-01 | Covidien Lp | Apparatus for endoscopic procedures |
US8672206B2 (en) | 2011-10-25 | 2014-03-18 | Covidien Lp | Apparatus for endoscopic procedures |
US8657177B2 (en) | 2011-10-25 | 2014-02-25 | Covidien Lp | Surgical apparatus and method for endoscopic surgery |
US8899462B2 (en) | 2011-10-25 | 2014-12-02 | Covidien Lp | Apparatus for endoscopic procedures |
US9492146B2 (en) | 2011-10-25 | 2016-11-15 | Covidien Lp | Apparatus for endoscopic procedures |
US11207089B2 (en) | 2011-10-25 | 2021-12-28 | Covidien Lp | Apparatus for endoscopic procedures |
US9364231B2 (en) | 2011-10-27 | 2016-06-14 | Covidien Lp | System and method of using simulation reload to optimize staple formation |
US9486243B2 (en) * | 2011-11-08 | 2016-11-08 | Covidien Lp | Systems and methods for treatment of premenstrual dysphoric disorders |
US9241757B2 (en) | 2012-01-13 | 2016-01-26 | Covidien Lp | System and method for performing surgical procedures with a reusable instrument module |
US9636091B2 (en) | 2012-01-13 | 2017-05-02 | Covidien Lp | Hand-held electromechanical surgical system |
US9011434B2 (en) | 2012-01-31 | 2015-04-21 | Boston Scientific Scimed, Inc. | Multi-functional medical device and related methods of use |
JP6165780B2 (en) | 2012-02-10 | 2017-07-19 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | Robot-controlled surgical instrument |
US9044230B2 (en) | 2012-02-13 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status |
US9364249B2 (en) | 2012-03-22 | 2016-06-14 | Ethicon Endo-Surgery, Llc | Method and apparatus for programming modular surgical instrument |
US20130253480A1 (en) | 2012-03-22 | 2013-09-26 | Cory G. Kimball | Surgical instrument usage data management |
AU2013200917A1 (en) | 2012-03-22 | 2013-10-10 | Ethicon Endo-Surgery, Inc. | Activation feature for surgical instrument with pencil grip |
BR112014024194B1 (en) | 2012-03-28 | 2022-03-03 | Ethicon Endo-Surgery, Inc | STAPLER CARTRIDGE SET FOR A SURGICAL STAPLER |
RU2014143258A (en) | 2012-03-28 | 2016-05-20 | Этикон Эндо-Серджери, Инк. | FABRIC THICKNESS COMPENSATOR CONTAINING MANY LAYERS |
CN104334098B (en) | 2012-03-28 | 2017-03-22 | 伊西康内外科公司 | Tissue thickness compensator comprising capsules defining a low pressure environment |
US9724118B2 (en) | 2012-04-09 | 2017-08-08 | Ethicon Endo-Surgery, Llc | Techniques for cutting and coagulating tissue for ultrasonic surgical instruments |
US9439668B2 (en) | 2012-04-09 | 2016-09-13 | Ethicon Endo-Surgery, Llc | Switch arrangements for ultrasonic surgical instruments |
US9226766B2 (en) | 2012-04-09 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Serial communication protocol for medical device |
US9241731B2 (en) | 2012-04-09 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Rotatable electrical connection for ultrasonic surgical instruments |
US20130267874A1 (en) | 2012-04-09 | 2013-10-10 | Amy L. Marcotte | Surgical instrument with nerve detection feature |
US9237921B2 (en) | 2012-04-09 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US9788851B2 (en) | 2012-04-18 | 2017-10-17 | Ethicon Llc | Surgical instrument with tissue density sensing |
US10238416B2 (en) | 2012-04-30 | 2019-03-26 | Ethicon Llc | Ultrasonic device for cutting and coagulating |
US9034009B2 (en) * | 2012-05-01 | 2015-05-19 | Covidien Lp | Surgical forceps |
US11871901B2 (en) | 2012-05-20 | 2024-01-16 | Cilag Gmbh International | Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage |
US9681884B2 (en) | 2012-05-31 | 2017-06-20 | Ethicon Endo-Surgery, Llc | Surgical instrument with stress sensor |
US9301772B2 (en) | 2012-05-31 | 2016-04-05 | Ethicon Endo-Surgery, Llc | Loading cartridge for surgical instrument end effector |
US9572592B2 (en) | 2012-05-31 | 2017-02-21 | Ethicon Endo-Surgery, Llc | Surgical instrument with orientation sensing |
US10080563B2 (en) | 2012-06-01 | 2018-09-25 | Covidien Lp | Loading unit detection assembly and surgical device for use therewith |
US9597104B2 (en) | 2012-06-01 | 2017-03-21 | Covidien Lp | Handheld surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use |
US9868198B2 (en) | 2012-06-01 | 2018-01-16 | Covidien Lp | Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical loading units, and methods of use |
US9101358B2 (en) | 2012-06-15 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Articulatable surgical instrument comprising a firing drive |
US9364220B2 (en) | 2012-06-19 | 2016-06-14 | Covidien Lp | Apparatus for endoscopic procedures |
US9510891B2 (en) | 2012-06-26 | 2016-12-06 | Covidien Lp | Surgical instruments with structures to provide access for cleaning |
US9282974B2 (en) | 2012-06-28 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Empty clip cartridge lockout |
BR112014032776B1 (en) | 2012-06-28 | 2021-09-08 | Ethicon Endo-Surgery, Inc | SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM |
US20140005705A1 (en) | 2012-06-29 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Surgical instruments with articulating shafts |
US9289256B2 (en) | 2012-06-28 | 2016-03-22 | Ethicon Endo-Surgery, Llc | Surgical end effectors having angled tissue-contacting surfaces |
US20140001231A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Firing system lockout arrangements for surgical instruments |
US9204879B2 (en) | 2012-06-28 | 2015-12-08 | Ethicon Endo-Surgery, Inc. | Flexible drive member |
RU2636861C2 (en) | 2012-06-28 | 2017-11-28 | Этикон Эндо-Серджери, Инк. | Blocking of empty cassette with clips |
US9226751B2 (en) | 2012-06-28 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Surgical instrument system including replaceable end effectors |
US11197671B2 (en) | 2012-06-28 | 2021-12-14 | Cilag Gmbh International | Stapling assembly comprising a lockout |
US9198714B2 (en) | 2012-06-29 | 2015-12-01 | Ethicon Endo-Surgery, Inc. | Haptic feedback devices for surgical robot |
US9393037B2 (en) | 2012-06-29 | 2016-07-19 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US20140005702A1 (en) | 2012-06-29 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with distally positioned transducers |
US9408622B2 (en) | 2012-06-29 | 2016-08-09 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US9351754B2 (en) * | 2012-06-29 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments with distally positioned jaw assemblies |
US9326788B2 (en) | 2012-06-29 | 2016-05-03 | Ethicon Endo-Surgery, Llc | Lockout mechanism for use with robotic electrosurgical device |
US9283045B2 (en) | 2012-06-29 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Surgical instruments with fluid management system |
US9226767B2 (en) | 2012-06-29 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Closed feedback control for electrosurgical device |
US9839480B2 (en) | 2012-07-09 | 2017-12-12 | Covidien Lp | Surgical adapter assemblies for use between surgical handle assembly and surgical end effectors |
US9955965B2 (en) | 2012-07-09 | 2018-05-01 | Covidien Lp | Switch block control assembly of a medical device |
US10492814B2 (en) | 2012-07-09 | 2019-12-03 | Covidien Lp | Apparatus for endoscopic procedures |
US9402604B2 (en) | 2012-07-20 | 2016-08-02 | Covidien Lp | Apparatus for endoscopic procedures |
US9161769B2 (en) | 2012-07-30 | 2015-10-20 | Covidien Lp | Endoscopic instrument |
IN2015DN02432A (en) | 2012-09-28 | 2015-09-04 | Ethicon Endo Surgery Inc | |
US9421014B2 (en) | 2012-10-18 | 2016-08-23 | Covidien Lp | Loading unit velocity and position feedback |
US9095367B2 (en) | 2012-10-22 | 2015-08-04 | Ethicon Endo-Surgery, Inc. | Flexible harmonic waveguides/blades for surgical instruments |
US10201365B2 (en) | 2012-10-22 | 2019-02-12 | Ethicon Llc | Surgeon feedback sensing and display methods |
US20140135804A1 (en) * | 2012-11-15 | 2014-05-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic and electrosurgical devices |
US9848900B2 (en) | 2012-12-07 | 2017-12-26 | Ethicon Llc | Ultrasonic surgical blade |
US9572622B2 (en) | 2012-12-10 | 2017-02-21 | Ethicon Endo-Surgery, Llc | Bipolar electrosurgical features for targeted hemostasis |
US9782187B2 (en) | 2013-01-18 | 2017-10-10 | Covidien Lp | Adapter load button lockout |
US20140207124A1 (en) | 2013-01-23 | 2014-07-24 | Ethicon Endo-Surgery, Inc. | Surgical instrument with selectable integral or external power source |
US10918364B2 (en) | 2013-01-24 | 2021-02-16 | Covidien Lp | Intelligent adapter assembly for use with an electromechanical surgical system |
US9421003B2 (en) | 2013-02-18 | 2016-08-23 | Covidien Lp | Apparatus for endoscopic procedures |
US9216013B2 (en) | 2013-02-18 | 2015-12-22 | Covidien Lp | Apparatus for endoscopic procedures |
RU2672520C2 (en) | 2013-03-01 | 2018-11-15 | Этикон Эндо-Серджери, Инк. | Hingedly turnable surgical instruments with conducting ways for signal transfer |
RU2669463C2 (en) | 2013-03-01 | 2018-10-11 | Этикон Эндо-Серджери, Инк. | Surgical instrument with soft stop |
US9220569B2 (en) | 2013-03-13 | 2015-12-29 | Ethicon Endo-Surgery, Inc. | Electrosurgical device with disposable shaft having translating gear and snap fit |
US9737300B2 (en) | 2013-03-13 | 2017-08-22 | Ethicon Llc | Electrosurgical device with disposable shaft having rack and pinion drive |
US9402687B2 (en) | 2013-03-13 | 2016-08-02 | Ethicon Endo-Surgery, Llc | Robotic electrosurgical device with disposable shaft |
US9107685B2 (en) | 2013-03-13 | 2015-08-18 | Ethicon Endo-Surgery, Inc. | Electrosurgical device with disposable shaft having clamshell coupling |
US10058310B2 (en) | 2013-03-13 | 2018-08-28 | Ethicon Llc | Electrosurgical device with drum-driven articulation |
US9492189B2 (en) | 2013-03-13 | 2016-11-15 | Covidien Lp | Apparatus for endoscopic procedures |
US9314308B2 (en) | 2013-03-13 | 2016-04-19 | Ethicon Endo-Surgery, Llc | Robotic ultrasonic surgical device with articulating end effector |
US9254170B2 (en) | 2013-03-13 | 2016-02-09 | Ethicon Endo-Surgery, Inc. | Electrosurgical device with disposable shaft having modular subassembly |
US9877782B2 (en) | 2013-03-14 | 2018-01-30 | Ethicon Llc | Electrosurgical instrument end effector with compliant electrode |
US9254171B2 (en) | 2013-03-14 | 2016-02-09 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument with multi-stage actuator |
US20140276730A1 (en) | 2013-03-14 | 2014-09-18 | Ethicon Endo-Surgery, Inc. | Surgical instrument with reinforced articulation section |
US9629629B2 (en) | 2013-03-14 | 2017-04-25 | Ethicon Endo-Surgey, LLC | Control systems for surgical instruments |
US9168090B2 (en) | 2013-03-14 | 2015-10-27 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument with restricted trigger |
US9883860B2 (en) | 2013-03-14 | 2018-02-06 | Ethicon Llc | Interchangeable shaft assemblies for use with a surgical instrument |
US9241728B2 (en) | 2013-03-15 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument with multiple clamping mechanisms |
EP2777583B1 (en) * | 2013-03-15 | 2020-07-01 | Erbe Elektromedizin GmbH | Instrument for vessel fusion and separation |
US9895161B2 (en) | 2013-03-15 | 2018-02-20 | Ethicon Llc | Ultrasonic surgical shears with clamping feature |
US9510906B2 (en) | 2013-03-15 | 2016-12-06 | Ethicon Endo-Surgery, Llc | Tissue clamping features of surgical instrument end effector |
US9237923B2 (en) | 2013-03-15 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Surgical instrument with partial trigger lockout |
JP6527657B2 (en) * | 2013-03-25 | 2019-06-05 | 株式会社デンソーウェーブ | Arm operating method and operating device |
US9775610B2 (en) | 2013-04-09 | 2017-10-03 | Covidien Lp | Apparatus for endoscopic procedures |
US9700318B2 (en) | 2013-04-09 | 2017-07-11 | Covidien Lp | Apparatus for endoscopic procedures |
BR112015026109B1 (en) | 2013-04-16 | 2022-02-22 | Ethicon Endo-Surgery, Inc | surgical instrument |
US9801626B2 (en) | 2013-04-16 | 2017-10-31 | Ethicon Llc | Modular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts |
US9579118B2 (en) | 2013-05-01 | 2017-02-28 | Ethicon Endo-Surgery, Llc | Electrosurgical instrument with dual blade end effector |
US20140330298A1 (en) * | 2013-05-03 | 2014-11-06 | Ethicon Endo-Surgery, Inc. | Clamp arm features for ultrasonic surgical instrument |
US9566110B2 (en) | 2013-05-09 | 2017-02-14 | Ethicon Endo-Surgery, Llc | Surgical instrument with jaw opening assist feature |
US9629648B2 (en) | 2013-05-10 | 2017-04-25 | Ethicon Endo-Surgery, Llc | Surgical instrument with translating compliant jaw closure feature |
US9237900B2 (en) | 2013-05-10 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Surgical instrument with split jaw |
US9801646B2 (en) | 2013-05-30 | 2017-10-31 | Covidien Lp | Adapter load button decoupled from loading unit sensor |
US9579147B2 (en) | 2013-06-04 | 2017-02-28 | Ethicon Endo-Surgery, Llc | Electrosurgical forceps with translating blade driver |
US9504520B2 (en) | 2013-06-06 | 2016-11-29 | Ethicon Endo-Surgery, Llc | Surgical instrument with modular motor |
US9351788B2 (en) | 2013-06-06 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Surgical instrument having knife band with curved distal edge |
US9775667B2 (en) | 2013-06-18 | 2017-10-03 | Ethicon Llc | Surgical instrument with articulation indicator |
US9797486B2 (en) | 2013-06-20 | 2017-10-24 | Covidien Lp | Adapter direct drive with manual retraction, lockout and connection mechanisms |
CN104248463B (en) * | 2013-06-26 | 2016-12-28 | 瑞奇外科器械(中国)有限公司 | Ultrasound knife and adjusting means thereof |
US9757129B2 (en) | 2013-07-08 | 2017-09-12 | Covidien Lp | Coupling member configured for use with surgical devices |
JP6416260B2 (en) | 2013-08-23 | 2018-10-31 | エシコン エルエルシー | Firing member retractor for a powered surgical instrument |
US20150053746A1 (en) | 2013-08-23 | 2015-02-26 | Ethicon Endo-Surgery, Inc. | Torque optimization for surgical instruments |
US9220508B2 (en) | 2013-09-06 | 2015-12-29 | Ethicon Endo-Surgery, Inc. | Surgical clip applier with articulation section |
US9814514B2 (en) | 2013-09-13 | 2017-11-14 | Ethicon Llc | Electrosurgical (RF) medical instruments for cutting and coagulating tissue |
US10172636B2 (en) | 2013-09-17 | 2019-01-08 | Ethicon Llc | Articulation features for ultrasonic surgical instrument |
US9955966B2 (en) | 2013-09-17 | 2018-05-01 | Covidien Lp | Adapter direct drive with manual retraction, lockout, and connection mechanisms for improper use prevention |
US10271840B2 (en) | 2013-09-18 | 2019-04-30 | Covidien Lp | Apparatus and method for differentiating between tissue and mechanical obstruction in a surgical instrument |
US20150080925A1 (en) * | 2013-09-19 | 2015-03-19 | Ethicon Endo-Surgery, Inc. | Alignment features for ultrasonic surgical instrument |
US10231747B2 (en) | 2013-09-20 | 2019-03-19 | Ethicon Llc | Transducer features for ultrasonic surgical instrument |
US9713469B2 (en) | 2013-09-23 | 2017-07-25 | Ethicon Llc | Surgical stapler with rotary cam drive |
WO2015053905A1 (en) * | 2013-10-10 | 2015-04-16 | GYRUS ACMI, INC. (d/b/a OLYMPUS SURGICAL TECHNOLOGIES AMERICA) | Laparoscopic forceps assembly |
US9974540B2 (en) | 2013-10-18 | 2018-05-22 | Covidien Lp | Adapter direct drive twist-lock retention mechanism |
CN103845092B (en) * | 2013-10-30 | 2016-11-23 | 北京派尔特医疗科技股份有限公司 | Purse-string forceps and suggestion device thereof |
US9295522B2 (en) | 2013-11-08 | 2016-03-29 | Covidien Lp | Medical device adapter with wrist mechanism |
US9265926B2 (en) | 2013-11-08 | 2016-02-23 | Ethicon Endo-Surgery, Llc | Electrosurgical devices |
US9861381B2 (en) | 2013-11-12 | 2018-01-09 | Ethicon Llc | Removable battery casing for surgical instrument |
US9901358B2 (en) | 2013-11-15 | 2018-02-27 | Ethicon Llc | Ultrasonic surgical instrument with integral blade cleaning feature |
US9907600B2 (en) | 2013-11-15 | 2018-03-06 | Ethicon Llc | Ultrasonic anastomosis instrument with piezoelectric sealing head |
US9913655B2 (en) | 2013-11-18 | 2018-03-13 | Ethicon Llc | Surgical instrument with active element and suction cage |
US9763688B2 (en) | 2013-11-20 | 2017-09-19 | Ethicon Llc | Ultrasonic surgical instrument with features for forming bubbles to enhance cavitation |
US9949785B2 (en) | 2013-11-21 | 2018-04-24 | Ethicon Llc | Ultrasonic surgical instrument with electrosurgical feature |
US10368892B2 (en) | 2013-11-22 | 2019-08-06 | Ethicon Llc | Features for coupling surgical instrument shaft assembly with instrument body |
US10226271B2 (en) | 2013-11-22 | 2019-03-12 | Ethicon Llc | Methods and features for coupling ultrasonic surgical instrument components together |
BR112016011680B1 (en) | 2013-11-26 | 2022-02-15 | Ethicon Endo-Surgery, Llc | DEVICE |
USD749730S1 (en) | 2013-11-26 | 2016-02-16 | Ethicon Endo-Surgery, Llc | Blade for ultrasonic surgical instrument |
US9943325B2 (en) | 2013-11-26 | 2018-04-17 | Ethicon Llc | Handpiece and blade configurations for ultrasonic surgical instrument |
US10236616B2 (en) | 2013-12-04 | 2019-03-19 | Covidien Lp | Adapter assembly for interconnecting surgical devices and surgical attachments, and surgical systems thereof |
US9918713B2 (en) | 2013-12-09 | 2018-03-20 | Covidien Lp | Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof |
EP3079608B8 (en) | 2013-12-11 | 2020-04-01 | Covidien LP | Wrist and jaw assemblies for robotic surgical systems |
WO2015088655A1 (en) | 2013-12-12 | 2015-06-18 | Covidien Lp | Gear train assemblies for robotic surgical systems |
US9808245B2 (en) | 2013-12-13 | 2017-11-07 | Covidien Lp | Coupling assembly for interconnecting an adapter assembly and a surgical device, and surgical systems thereof |
GB2521228A (en) | 2013-12-16 | 2015-06-17 | Ethicon Endo Surgery Inc | Medical device |
US9743946B2 (en) | 2013-12-17 | 2017-08-29 | Ethicon Llc | Rotation features for ultrasonic surgical instrument |
US9724120B2 (en) | 2013-12-17 | 2017-08-08 | Ethicon Endo-Surgery, Llc | Clamp arm features for ultrasonic surgical instrument |
US9763674B2 (en) | 2013-12-26 | 2017-09-19 | Ethicon Llc | Ultrasonic bone cutting instrument |
WO2015098229A1 (en) * | 2013-12-26 | 2015-07-02 | オリンパス株式会社 | Insufflator |
US9700341B2 (en) | 2013-12-26 | 2017-07-11 | Ethicon Llc | Loading features for ultrasonic surgical instrument |
US9539020B2 (en) | 2013-12-27 | 2017-01-10 | Ethicon Endo-Surgery, Llc | Coupling features for ultrasonic surgical instrument |
US9795436B2 (en) | 2014-01-07 | 2017-10-24 | Ethicon Llc | Harvesting energy from a surgical generator |
US9655616B2 (en) | 2014-01-22 | 2017-05-23 | Covidien Lp | Apparatus for endoscopic procedures |
US10219869B2 (en) | 2014-02-12 | 2019-03-05 | Covidien Lp | Surgical end effectors and pulley assemblies thereof |
US9962161B2 (en) | 2014-02-12 | 2018-05-08 | Ethicon Llc | Deliverable surgical instrument |
US9301691B2 (en) | 2014-02-21 | 2016-04-05 | Covidien Lp | Instrument for optically detecting tissue attributes |
JP6462004B2 (en) | 2014-02-24 | 2019-01-30 | エシコン エルエルシー | Fastening system with launcher lockout |
WO2015129944A1 (en) * | 2014-02-28 | 2015-09-03 | 김응국 | Ultrasonic surgery apparatus, gripping member provided on jaw thereof, and method for producing gripping member |
US10010340B2 (en) | 2014-02-28 | 2018-07-03 | Ethicon Llc | Ultrasonic surgical instrument with removable handle assembly |
US10349967B2 (en) | 2014-02-28 | 2019-07-16 | Ethicon Llc | Ultrasonic surgical instrument with removable handle assembly |
US9554854B2 (en) | 2014-03-18 | 2017-01-31 | Ethicon Endo-Surgery, Llc | Detecting short circuits in electrosurgical medical devices |
US9675374B2 (en) | 2014-03-24 | 2017-06-13 | Ethicon Llc | Ultrasonic forceps |
US9820738B2 (en) | 2014-03-26 | 2017-11-21 | Ethicon Llc | Surgical instrument comprising interactive systems |
BR112016021943B1 (en) | 2014-03-26 | 2022-06-14 | Ethicon Endo-Surgery, Llc | SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE |
US9826977B2 (en) | 2014-03-26 | 2017-11-28 | Ethicon Llc | Sterilization verification circuit |
US20150272580A1 (en) * | 2014-03-26 | 2015-10-01 | Ethicon Endo-Surgery, Inc. | Verification of number of battery exchanges/procedure count |
US10092310B2 (en) | 2014-03-27 | 2018-10-09 | Ethicon Llc | Electrosurgical devices |
US10463421B2 (en) | 2014-03-27 | 2019-11-05 | Ethicon Llc | Two stage trigger, clamp and cut bipolar vessel sealer |
US9737355B2 (en) | 2014-03-31 | 2017-08-22 | Ethicon Llc | Controlling impedance rise in electrosurgical medical devices |
US10660713B2 (en) | 2014-03-31 | 2020-05-26 | Covidien Lp | Wrist and jaw assemblies for robotic surgical systems |
US9913680B2 (en) | 2014-04-15 | 2018-03-13 | Ethicon Llc | Software algorithms for electrosurgical instruments |
US9801628B2 (en) | 2014-09-26 | 2017-10-31 | Ethicon Llc | Surgical staple and driver arrangements for staple cartridges |
US9844369B2 (en) | 2014-04-16 | 2017-12-19 | Ethicon Llc | Surgical end effectors with firing element monitoring arrangements |
CN106456176B (en) | 2014-04-16 | 2019-06-28 | 伊西康内外科有限责任公司 | Fastener cartridge including the extension with various configuration |
JP6532889B2 (en) | 2014-04-16 | 2019-06-19 | エシコン エルエルシーEthicon LLC | Fastener cartridge assembly and staple holder cover arrangement |
JP6612256B2 (en) | 2014-04-16 | 2019-11-27 | エシコン エルエルシー | Fastener cartridge with non-uniform fastener |
US20150297225A1 (en) | 2014-04-16 | 2015-10-22 | Ethicon Endo-Surgery, Inc. | Fastener cartridges including extensions having different configurations |
US10164466B2 (en) | 2014-04-17 | 2018-12-25 | Covidien Lp | Non-contact surgical adapter electrical interface |
US10080552B2 (en) | 2014-04-21 | 2018-09-25 | Covidien Lp | Adapter assembly with gimbal for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof |
US10667835B2 (en) | 2014-04-22 | 2020-06-02 | Ethicon Llc | Ultrasonic surgical instrument with end effector having restricted articulation |
US10258363B2 (en) | 2014-04-22 | 2019-04-16 | Ethicon Llc | Method of operating an articulating ultrasonic surgical instrument |
US9861366B2 (en) | 2014-05-06 | 2018-01-09 | Covidien Lp | Ejecting assembly for a surgical stapler |
US9439719B2 (en) | 2014-05-09 | 2016-09-13 | Getac Technology Corporation | Operation handles for electrocautery |
KR20240142608A (en) | 2014-05-16 | 2024-09-30 | 어플라이드 메디컬 리소시스 코포레이션 | Electrosurgical system |
US9713466B2 (en) | 2014-05-16 | 2017-07-25 | Covidien Lp | Adaptor for surgical instrument for converting rotary input to linear output |
EP3369392B1 (en) | 2014-05-30 | 2024-05-22 | Applied Medical Resources Corporation | Electrosurgical seal and dissection systems |
US10561418B2 (en) | 2014-06-26 | 2020-02-18 | Covidien Lp | Adapter assemblies for interconnecting surgical loading units and handle assemblies |
US9839425B2 (en) | 2014-06-26 | 2017-12-12 | Covidien Lp | Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof |
US9987095B2 (en) | 2014-06-26 | 2018-06-05 | Covidien Lp | Adapter assemblies for interconnecting electromechanical handle assemblies and surgical loading units |
US9763661B2 (en) | 2014-06-26 | 2017-09-19 | Covidien Lp | Adapter assembly for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof |
US10163589B2 (en) | 2014-06-26 | 2018-12-25 | Covidien Lp | Adapter assemblies for interconnecting surgical loading units and handle assemblies |
US9700333B2 (en) | 2014-06-30 | 2017-07-11 | Ethicon Llc | Surgical instrument with variable tissue compression |
US9750521B2 (en) | 2014-07-22 | 2017-09-05 | Ethicon Llc | Ultrasonic blade overmold |
US10285724B2 (en) | 2014-07-31 | 2019-05-14 | Ethicon Llc | Actuation mechanisms and load adjustment assemblies for surgical instruments |
KR102509324B1 (en) * | 2014-08-15 | 2023-03-10 | 바이탈리텍 인터내셔널, 아이엔씨. | Surgical clamp insert with direction indicator |
US10016199B2 (en) | 2014-09-05 | 2018-07-10 | Ethicon Llc | Polarity of hall magnet to identify cartridge type |
US11311294B2 (en) | 2014-09-05 | 2022-04-26 | Cilag Gmbh International | Powered medical device including measurement of closure state of jaws |
BR112017004361B1 (en) | 2014-09-05 | 2023-04-11 | Ethicon Llc | ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT |
US9901360B2 (en) | 2014-09-17 | 2018-02-27 | Ethicon Llc | Ultrasonic surgical instrument with retractable integral clamp arm |
US10058346B2 (en) | 2014-09-17 | 2018-08-28 | Ethicon Llc | Ultrasonic surgical instrument with removable clamp arm |
US10105142B2 (en) | 2014-09-18 | 2018-10-23 | Ethicon Llc | Surgical stapler with plurality of cutting elements |
MX2017003960A (en) | 2014-09-26 | 2017-12-04 | Ethicon Llc | Surgical stapling buttresses and adjunct materials. |
US11523821B2 (en) | 2014-09-26 | 2022-12-13 | Cilag Gmbh International | Method for creating a flexible staple line |
WO2016057225A1 (en) | 2014-10-07 | 2016-04-14 | Covidien Lp | Handheld electromechanical surgical system |
US10076325B2 (en) | 2014-10-13 | 2018-09-18 | Ethicon Llc | Surgical stapling apparatus comprising a tissue stop |
US9907565B2 (en) | 2014-10-15 | 2018-03-06 | Eithicon LLC | Activation features for ultrasonic surgical instrument |
US9924944B2 (en) | 2014-10-16 | 2018-03-27 | Ethicon Llc | Staple cartridge comprising an adjunct material |
US10729443B2 (en) | 2014-10-21 | 2020-08-04 | Covidien Lp | Adapter, extension, and connector assemblies for surgical devices |
US10226254B2 (en) | 2014-10-21 | 2019-03-12 | Covidien Lp | Adapter, extension, and connector assemblies for surgical devices |
US9949737B2 (en) | 2014-10-22 | 2018-04-24 | Covidien Lp | Adapter assemblies for interconnecting surgical loading units and handle assemblies |
US10085750B2 (en) | 2014-10-22 | 2018-10-02 | Covidien Lp | Adapter with fire rod J-hook lockout |
US10517594B2 (en) | 2014-10-29 | 2019-12-31 | Ethicon Llc | Cartridge assemblies for surgical staplers |
US11141153B2 (en) | 2014-10-29 | 2021-10-12 | Cilag Gmbh International | Staple cartridges comprising driver arrangements |
US10136938B2 (en) | 2014-10-29 | 2018-11-27 | Ethicon Llc | Electrosurgical instrument with sensor |
US11504192B2 (en) | 2014-10-30 | 2022-11-22 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US9844376B2 (en) | 2014-11-06 | 2017-12-19 | Ethicon Llc | Staple cartridge comprising a releasable adjunct material |
US10004529B2 (en) | 2014-11-25 | 2018-06-26 | Ethicon Llc | Features to drive fluid toward an ultrasonic blade of a surgical instrument |
US10433863B2 (en) | 2014-11-25 | 2019-10-08 | Ethicon Llc | Ultrasonic surgical instrument with blade cooling through retraction |
US10206705B2 (en) | 2014-11-25 | 2019-02-19 | Ethicon Llc | Features for communication of fluid through shaft assembly of ultrasonic surgical instrument |
US10639092B2 (en) | 2014-12-08 | 2020-05-05 | Ethicon Llc | Electrode configurations for surgical instruments |
US10736636B2 (en) | 2014-12-10 | 2020-08-11 | Ethicon Llc | Articulatable surgical instrument system |
US10076379B2 (en) | 2014-12-15 | 2018-09-18 | Ethicon Llc | Electrosurgical instrument with removable components for cleaning access |
US10085748B2 (en) | 2014-12-18 | 2018-10-02 | Ethicon Llc | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
US9987000B2 (en) | 2014-12-18 | 2018-06-05 | Ethicon Llc | Surgical instrument assembly comprising a flexible articulation system |
US9943309B2 (en) | 2014-12-18 | 2018-04-17 | Ethicon Llc | Surgical instruments with articulatable end effectors and movable firing beam support arrangements |
MX2017008108A (en) | 2014-12-18 | 2018-03-06 | Ethicon Llc | Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge. |
US9844375B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Drive arrangements for articulatable surgical instruments |
US9844374B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
US10327796B2 (en) | 2014-12-19 | 2019-06-25 | Ethicon Llc | Ultrasonic surgical instrument with dual modes |
US10357311B2 (en) | 2014-12-19 | 2019-07-23 | Ethicon Llc | Electrosurgical instrument with removable jaw components |
US9993284B2 (en) | 2014-12-19 | 2018-06-12 | Ethicon Llc | Electrosurgical instrument with jaw cleaning mode |
US10117706B2 (en) | 2014-12-19 | 2018-11-06 | Ethicon Llc | Electrosurgical instrument with integral tissue removal feature |
US10159524B2 (en) | 2014-12-22 | 2018-12-25 | Ethicon Llc | High power battery powered RF amplifier topology |
EP3236870B1 (en) | 2014-12-23 | 2019-11-06 | Applied Medical Resources Corporation | Bipolar electrosurgical sealer and divider |
USD748259S1 (en) | 2014-12-29 | 2016-01-26 | Applied Medical Resources Corporation | Electrosurgical instrument |
US10537667B2 (en) | 2015-01-28 | 2020-01-21 | Ethicon Llc | High temperature material for use in medical devices |
US10245095B2 (en) | 2015-02-06 | 2019-04-02 | Ethicon Llc | Electrosurgical instrument with rotation and articulation mechanisms |
US10111665B2 (en) | 2015-02-19 | 2018-10-30 | Covidien Lp | Electromechanical surgical systems |
US10045779B2 (en) | 2015-02-27 | 2018-08-14 | Ethicon Llc | Surgical instrument system comprising an inspection station |
US11154301B2 (en) | 2015-02-27 | 2021-10-26 | Cilag Gmbh International | Modular stapling assembly |
US10441279B2 (en) | 2015-03-06 | 2019-10-15 | Ethicon Llc | Multiple level thresholds to modify operation of powered surgical instruments |
JP2020121162A (en) | 2015-03-06 | 2020-08-13 | エシコン エルエルシーEthicon LLC | Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement |
US9924961B2 (en) | 2015-03-06 | 2018-03-27 | Ethicon Endo-Surgery, Llc | Interactive feedback system for powered surgical instruments |
US9993248B2 (en) | 2015-03-06 | 2018-06-12 | Ethicon Endo-Surgery, Llc | Smart sensors with local signal processing |
US10617412B2 (en) | 2015-03-06 | 2020-04-14 | Ethicon Llc | System for detecting the mis-insertion of a staple cartridge into a surgical stapler |
US9808246B2 (en) | 2015-03-06 | 2017-11-07 | Ethicon Endo-Surgery, Llc | Method of operating a powered surgical instrument |
US9901342B2 (en) | 2015-03-06 | 2018-02-27 | Ethicon Endo-Surgery, Llc | Signal and power communication system positioned on a rotatable shaft |
US10548504B2 (en) | 2015-03-06 | 2020-02-04 | Ethicon Llc | Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression |
US10687806B2 (en) | 2015-03-06 | 2020-06-23 | Ethicon Llc | Adaptive tissue compression techniques to adjust closure rates for multiple tissue types |
US10245033B2 (en) | 2015-03-06 | 2019-04-02 | Ethicon Llc | Surgical instrument comprising a lockable battery housing |
US10190888B2 (en) | 2015-03-11 | 2019-01-29 | Covidien Lp | Surgical stapling instruments with linear position assembly |
US10342602B2 (en) | 2015-03-17 | 2019-07-09 | Ethicon Llc | Managing tissue treatment |
US10321950B2 (en) | 2015-03-17 | 2019-06-18 | Ethicon Llc | Managing tissue treatment |
US10595929B2 (en) | 2015-03-24 | 2020-03-24 | Ethicon Llc | Surgical instruments with firing system overload protection mechanisms |
WO2016152306A1 (en) * | 2015-03-24 | 2016-09-29 | オリンパス株式会社 | Medical treatment instrument |
US10213201B2 (en) | 2015-03-31 | 2019-02-26 | Ethicon Llc | Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw |
US10314638B2 (en) | 2015-04-07 | 2019-06-11 | Ethicon Llc | Articulating radio frequency (RF) tissue seal with articulating state sensing |
US10226239B2 (en) | 2015-04-10 | 2019-03-12 | Covidien Lp | Adapter assembly with gimbal for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof |
US10327779B2 (en) | 2015-04-10 | 2019-06-25 | Covidien Lp | Adapter, extension, and connector assemblies for surgical devices |
US11432902B2 (en) | 2015-04-10 | 2022-09-06 | Covidien Lp | Surgical devices with moisture control |
US20160302819A1 (en) | 2015-04-16 | 2016-10-20 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instrument with articulating end effector having a curved blade |
US20160302818A1 (en) | 2015-04-16 | 2016-10-20 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instrument with movable rigidizing member |
US10034683B2 (en) | 2015-04-16 | 2018-07-31 | Ethicon Llc | Ultrasonic surgical instrument with rigidizing articulation drive members |
US10029125B2 (en) | 2015-04-16 | 2018-07-24 | Ethicon Llc | Ultrasonic surgical instrument with articulation joint having integral stiffening members |
US10226274B2 (en) | 2015-04-16 | 2019-03-12 | Ethicon Llc | Ultrasonic surgical instrument with articulation joint having plurality of locking positions |
US10111698B2 (en) | 2015-04-16 | 2018-10-30 | Ethicon Llc | Surgical instrument with rotatable shaft having plurality of locking positions |
US10342567B2 (en) | 2015-04-16 | 2019-07-09 | Ethicon Llc | Ultrasonic surgical instrument with opposing thread drive for end effector articulation |
ES2950459T3 (en) | 2015-04-22 | 2023-10-10 | Covidien Lp | Portable electromechanical surgical system |
US11278286B2 (en) | 2015-04-22 | 2022-03-22 | Covidien Lp | Handheld electromechanical surgical system |
AU2016261462B2 (en) * | 2015-05-12 | 2020-06-04 | Stryker European Operations Holdings Llc | Surgical sagittal blade cartridge with a reinforced guide bar |
US10034684B2 (en) | 2015-06-15 | 2018-07-31 | Ethicon Llc | Apparatus and method for dissecting and coagulating tissue |
WO2016204047A1 (en) | 2015-06-17 | 2016-12-22 | オリンパス株式会社 | Surgical device and surgical system |
US10034704B2 (en) | 2015-06-30 | 2018-07-31 | Ethicon Llc | Surgical instrument with user adaptable algorithms |
US11129669B2 (en) * | 2015-06-30 | 2021-09-28 | Cilag Gmbh International | Surgical system with user adaptable techniques based on tissue type |
US10898256B2 (en) | 2015-06-30 | 2021-01-26 | Ethicon Llc | Surgical system with user adaptable techniques based on tissue impedance |
US11051873B2 (en) | 2015-06-30 | 2021-07-06 | Cilag Gmbh International | Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters |
US10765470B2 (en) | 2015-06-30 | 2020-09-08 | Ethicon Llc | Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters |
US10154852B2 (en) | 2015-07-01 | 2018-12-18 | Ethicon Llc | Ultrasonic surgical blade with improved cutting and coagulation features |
US10751058B2 (en) | 2015-07-28 | 2020-08-25 | Covidien Lp | Adapter assemblies for surgical devices |
US10835249B2 (en) | 2015-08-17 | 2020-11-17 | Ethicon Llc | Implantable layers for a surgical instrument |
US10321930B2 (en) | 2015-08-24 | 2019-06-18 | Ethicon Llc | Activation features for ultrasonic surgical instrument |
US10130383B2 (en) | 2015-08-25 | 2018-11-20 | Ethicon Llc | Ultrasonic surgical instrument with rotatable actuation levers and mechanical lockout |
US10258361B2 (en) | 2015-08-26 | 2019-04-16 | Ethicon Llc | Ultrasonic surgical instrument with slidable flexing activation member |
US10426506B2 (en) | 2015-08-26 | 2019-10-01 | Ethicon Llc | Ultrasonic surgical instrument with multi-grip activation and power selection |
US10413314B2 (en) | 2015-08-26 | 2019-09-17 | Ethicon Llc | Ultrasonic surgical instrument with activation member pair and slidable cover |
US10507033B2 (en) | 2015-08-26 | 2019-12-17 | Ethicon Llc | Ultrasonic surgical instrument with replaceable clamp pad |
US10456157B2 (en) | 2015-08-26 | 2019-10-29 | Ethicon Llc | Ultrasonic surgical instrument clamp arm with snap-on clamp pad |
US10105139B2 (en) | 2015-09-23 | 2018-10-23 | Ethicon Llc | Surgical stapler having downstream current-based motor control |
US10238386B2 (en) | 2015-09-23 | 2019-03-26 | Ethicon Llc | Surgical stapler having motor control based on an electrical parameter related to a motor current |
US10327769B2 (en) | 2015-09-23 | 2019-06-25 | Ethicon Llc | Surgical stapler having motor control based on a drive system component |
US10363036B2 (en) | 2015-09-23 | 2019-07-30 | Ethicon Llc | Surgical stapler having force-based motor control |
US10299878B2 (en) | 2015-09-25 | 2019-05-28 | Ethicon Llc | Implantable adjunct systems for determining adjunct skew |
CN108024835B (en) | 2015-09-25 | 2021-08-31 | 柯惠Lp公司 | Robotic surgical assembly and instrument drive connector therefor |
US10736685B2 (en) | 2015-09-30 | 2020-08-11 | Ethicon Llc | Generator for digitally generating combined electrical signal waveforms for ultrasonic surgical instruments |
US11890015B2 (en) | 2015-09-30 | 2024-02-06 | Cilag Gmbh International | Compressible adjunct with crossing spacer fibers |
US10478188B2 (en) | 2015-09-30 | 2019-11-19 | Ethicon Llc | Implantable layer comprising a constricted configuration |
US20170086829A1 (en) | 2015-09-30 | 2017-03-30 | Ethicon Endo-Surgery, Llc | Compressible adjunct with intermediate supporting structures |
US10980539B2 (en) | 2015-09-30 | 2021-04-20 | Ethicon Llc | Implantable adjunct comprising bonded layers |
US10371238B2 (en) | 2015-10-09 | 2019-08-06 | Covidien Lp | Adapter assembly for surgical device |
US10413298B2 (en) | 2015-10-14 | 2019-09-17 | Covidien Lp | Adapter assembly for surgical devices |
US10492820B2 (en) | 2015-10-16 | 2019-12-03 | Ethicon Llc | Ultrasonic surgical instrument with removable shaft assembly portion |
US10959771B2 (en) | 2015-10-16 | 2021-03-30 | Ethicon Llc | Suction and irrigation sealing grasper |
US10595930B2 (en) | 2015-10-16 | 2020-03-24 | Ethicon Llc | Electrode wiping surgical device |
US11045275B2 (en) | 2015-10-19 | 2021-06-29 | Cilag Gmbh International | Surgical instrument with dual mode end effector and side-loaded clamp arm assembly |
US10507035B2 (en) | 2015-10-20 | 2019-12-17 | Ethicon Llc | Surgical instrument providing ultrasonic tissue emulsification and ultrasonic shearing |
US10028765B2 (en) | 2015-10-30 | 2018-07-24 | Ethicon Llc | Ultrasonic surgical instrument clamp arm with proximal nodal pad |
US10939952B2 (en) | 2015-11-06 | 2021-03-09 | Covidien Lp | Adapter, extension, and connector assemblies for surgical devices |
US10729435B2 (en) | 2015-11-06 | 2020-08-04 | Covidien Lp | Adapter assemblies for interconnecting surgical loading units and handle assemblies |
US10292705B2 (en) | 2015-11-06 | 2019-05-21 | Covidien Lp | Surgical apparatus |
US10639059B2 (en) | 2015-11-25 | 2020-05-05 | Ethicon Llc | Restricted usage features for surgical instrument |
US10617411B2 (en) | 2015-12-01 | 2020-04-14 | Covidien Lp | Adapter assembly for surgical device |
CN109068937B (en) * | 2015-12-08 | 2021-07-23 | 天津瑞奇外科器械股份有限公司 | Ultrasonic surgical instrument |
US20170164972A1 (en) | 2015-12-10 | 2017-06-15 | Ethicon Endo-Surgery, Llc | End effector for instrument with ultrasonic and electrosurgical features |
US20170164997A1 (en) | 2015-12-10 | 2017-06-15 | Ethicon Endo-Surgery, Llc | Method of treating tissue using end effector with ultrasonic and electrosurgical features |
US10433841B2 (en) | 2015-12-10 | 2019-10-08 | Covidien Lp | Adapter assembly for surgical device |
US10660692B2 (en) | 2015-12-10 | 2020-05-26 | Ethicon Llc | End effector for instrument with ultrasonic blade and bipolar clamp arm |
US10470790B2 (en) | 2015-12-16 | 2019-11-12 | Ethicon Llc | Surgical instrument with selector |
US10238413B2 (en) | 2015-12-16 | 2019-03-26 | Ethicon Llc | Surgical instrument with multi-function button |
US20170172614A1 (en) | 2015-12-17 | 2017-06-22 | Ethicon Endo-Surgery, Llc | Surgical instrument with multi-functioning trigger |
US10492885B2 (en) | 2015-12-17 | 2019-12-03 | Ethicon Llc | Ultrasonic surgical instrument with cleaning port |
US10368957B2 (en) | 2015-12-21 | 2019-08-06 | Ethicon Llc | Ultrasonic surgical instrument with blade cleaning feature |
US10368894B2 (en) | 2015-12-21 | 2019-08-06 | Ethicon Llc | Surgical instrument with variable clamping force |
US10231749B2 (en) | 2015-12-21 | 2019-03-19 | Ethicon Llc | Ultrasonic surgical instrument with blade replacement features |
US10314607B2 (en) | 2015-12-21 | 2019-06-11 | Ethicon Llc | Ultrasonic surgical instrument with tubular acoustic waveguide segment |
CN106901805A (en) * | 2015-12-22 | 2017-06-30 | 无锡祥生医学影像有限责任公司 | The power limit structure of ultrasound knife transducer module |
US10253847B2 (en) | 2015-12-22 | 2019-04-09 | Covidien Lp | Electromechanical surgical devices with single motor drives and adapter assemblies therfor |
US10420554B2 (en) | 2015-12-22 | 2019-09-24 | Covidien Lp | Personalization of powered surgical devices |
US10743901B2 (en) | 2015-12-29 | 2020-08-18 | Ethicon Llc | Snap fit clamp pad for ultrasonic surgical instrument |
US10265068B2 (en) | 2015-12-30 | 2019-04-23 | Ethicon Llc | Surgical instruments with separable motors and motor control circuits |
US10179022B2 (en) | 2015-12-30 | 2019-01-15 | Ethicon Llc | Jaw position impedance limiter for electrosurgical instrument |
US10959806B2 (en) | 2015-12-30 | 2021-03-30 | Ethicon Llc | Energized medical device with reusable handle |
US10292704B2 (en) | 2015-12-30 | 2019-05-21 | Ethicon Llc | Mechanisms for compensating for battery pack failure in powered surgical instruments |
US10470791B2 (en) | 2015-12-30 | 2019-11-12 | Ethicon Llc | Surgical instrument with staged application of electrosurgical and ultrasonic energy |
US10368865B2 (en) | 2015-12-30 | 2019-08-06 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10575892B2 (en) | 2015-12-31 | 2020-03-03 | Ethicon Llc | Adapter for electrical surgical instruments |
US10314579B2 (en) | 2016-01-07 | 2019-06-11 | Covidien Lp | Adapter assemblies for interconnecting surgical loading units and handle assemblies |
GB201600546D0 (en) | 2016-01-12 | 2016-02-24 | Gyrus Medical Ltd | Electrosurgical device |
US10524797B2 (en) | 2016-01-13 | 2020-01-07 | Covidien Lp | Adapter assembly including a removable trocar assembly |
US11229471B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
US10716615B2 (en) | 2016-01-15 | 2020-07-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade |
US20170202595A1 (en) | 2016-01-15 | 2017-07-20 | Ethicon Endo-Surgery, Llc | Modular battery powered handheld surgical instrument with a plurality of control programs |
US11129670B2 (en) | 2016-01-15 | 2021-09-28 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization |
US11229450B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with motor drive |
US10660623B2 (en) | 2016-01-15 | 2020-05-26 | Covidien Lp | Centering mechanism for articulation joint |
US10508720B2 (en) | 2016-01-21 | 2019-12-17 | Covidien Lp | Adapter assembly with planetary gear drive for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof |
US11213293B2 (en) | 2016-02-09 | 2022-01-04 | Cilag Gmbh International | Articulatable surgical instruments with single articulation link arrangements |
BR112018016098B1 (en) | 2016-02-09 | 2023-02-23 | Ethicon Llc | SURGICAL INSTRUMENT |
US10433837B2 (en) | 2016-02-09 | 2019-10-08 | Ethicon Llc | Surgical instruments with multiple link articulation arrangements |
US10835255B2 (en) | 2016-02-10 | 2020-11-17 | Covidien Lp | Adapter assemblies for interconnecting electromechanical handle assemblies and surgical loading units |
US10398439B2 (en) | 2016-02-10 | 2019-09-03 | Covidien Lp | Adapter, extension, and connector assemblies for surgical devices |
US10448948B2 (en) | 2016-02-12 | 2019-10-22 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10258331B2 (en) | 2016-02-12 | 2019-04-16 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US11224426B2 (en) | 2016-02-12 | 2022-01-18 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10603065B2 (en) * | 2016-02-18 | 2020-03-31 | Covidien Lp | Surgical instruments and jaw members thereof |
US10555769B2 (en) | 2016-02-22 | 2020-02-11 | Ethicon Llc | Flexible circuits for electrosurgical instrument |
US10459740B2 (en) | 2016-03-04 | 2019-10-29 | Ethicon Llc | System and method to establish current setpoint for ultrasonic transducer |
US10617413B2 (en) | 2016-04-01 | 2020-04-14 | Ethicon Llc | Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts |
US10285705B2 (en) | 2016-04-01 | 2019-05-14 | Ethicon Llc | Surgical stapling system comprising a grooved forming pocket |
US10492819B2 (en) | 2016-04-01 | 2019-12-03 | Ethicon Llc | Surgical instrument with dual mode articulation drive |
US10175096B2 (en) | 2016-04-01 | 2019-01-08 | Ethicon Llc | System and method to enable re-use of surgical instrument |
US10743850B2 (en) | 2016-04-04 | 2020-08-18 | Ethicon Llc | Surgical instrument with locking articulation drive wheel |
US10575836B2 (en) | 2016-04-04 | 2020-03-03 | Ethicon Llc | Surgical instrument with selectively locked articulation assembly |
US10507034B2 (en) | 2016-04-04 | 2019-12-17 | Ethicon Llc | Surgical instrument with motorized articulation drive in shaft rotation knob |
US10405876B2 (en) | 2016-04-05 | 2019-09-10 | Ethicon Llc | Articulation joint for surgical instrument |
US10433864B2 (en) | 2016-04-13 | 2019-10-08 | Ethicon Llc | Ultrasonic surgical instrument with sliding blade sheath |
US10426467B2 (en) | 2016-04-15 | 2019-10-01 | Ethicon Llc | Surgical instrument with detection sensors |
US11179150B2 (en) | 2016-04-15 | 2021-11-23 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10492783B2 (en) | 2016-04-15 | 2019-12-03 | Ethicon, Llc | Surgical instrument with improved stop/start control during a firing motion |
US10335145B2 (en) | 2016-04-15 | 2019-07-02 | Ethicon Llc | Modular surgical instrument with configurable operating mode |
US10357247B2 (en) | 2016-04-15 | 2019-07-23 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US10828028B2 (en) | 2016-04-15 | 2020-11-10 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US10456137B2 (en) | 2016-04-15 | 2019-10-29 | Ethicon Llc | Staple formation detection mechanisms |
US11607239B2 (en) | 2016-04-15 | 2023-03-21 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10405859B2 (en) | 2016-04-15 | 2019-09-10 | Ethicon Llc | Surgical instrument with adjustable stop/start control during a firing motion |
US10363037B2 (en) | 2016-04-18 | 2019-07-30 | Ethicon Llc | Surgical instrument system comprising a magnetic lockout |
US11317917B2 (en) | 2016-04-18 | 2022-05-03 | Cilag Gmbh International | Surgical stapling system comprising a lockable firing assembly |
US20170296173A1 (en) | 2016-04-18 | 2017-10-19 | Ethicon Endo-Surgery, Llc | Method for operating a surgical instrument |
US10286424B2 (en) | 2016-04-26 | 2019-05-14 | Ethicon Llc | Ultrasonic cleaning of surgical instrument |
US10646269B2 (en) | 2016-04-29 | 2020-05-12 | Ethicon Llc | Non-linear jaw gap for electrosurgical instruments |
US10172684B2 (en) | 2016-04-29 | 2019-01-08 | Ethicon Llc | Lifecycle monitoring features for surgical instrument |
US10987156B2 (en) | 2016-04-29 | 2021-04-27 | Ethicon Llc | Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members |
US10856934B2 (en) | 2016-04-29 | 2020-12-08 | Ethicon Llc | Electrosurgical instrument with electrically conductive gap setting and tissue engaging members |
US10702329B2 (en) | 2016-04-29 | 2020-07-07 | Ethicon Llc | Jaw structure with distal post for electrosurgical instruments |
US10485607B2 (en) | 2016-04-29 | 2019-11-26 | Ethicon Llc | Jaw structure with distal closure for electrosurgical instruments |
US10456193B2 (en) | 2016-05-03 | 2019-10-29 | Ethicon Llc | Medical device with a bilateral jaw configuration for nerve stimulation |
US10368898B2 (en) | 2016-05-05 | 2019-08-06 | Covidien Lp | Ultrasonic surgical instrument |
US10799239B2 (en) | 2016-05-09 | 2020-10-13 | Covidien Lp | Adapter assembly with pulley system and worm gear drive for interconnecting electromechanical surgical devices and surgical end effectors |
US10588610B2 (en) | 2016-05-10 | 2020-03-17 | Covidien Lp | Adapter assemblies for surgical devices |
US10736637B2 (en) | 2016-05-10 | 2020-08-11 | Covidien Lp | Brake for adapter assemblies for surgical devices |
US10463374B2 (en) | 2016-05-17 | 2019-11-05 | Covidien Lp | Adapter assembly for a flexible circular stapler |
US10702302B2 (en) | 2016-05-17 | 2020-07-07 | Covidien Lp | Adapter assembly including a removable trocar assembly |
US10543013B2 (en) | 2016-05-19 | 2020-01-28 | Ethicon Llc | Passive dissection features for ultrasonic surgical instrument |
US10624667B2 (en) | 2016-05-20 | 2020-04-21 | Ethicon Llc | System and method to track usage of surgical instrument |
US10555748B2 (en) | 2016-05-25 | 2020-02-11 | Ethicon Llc | Features and methods to control delivery of cooling fluid to end effector of ultrasonic surgical instrument |
WO2017203628A1 (en) * | 2016-05-25 | 2017-11-30 | オリンパス株式会社 | Gripping treatment instrument |
US10702296B2 (en) | 2016-05-25 | 2020-07-07 | Ethicon Llc | Ultrasonic surgical instrument with cooling conduit |
US10660663B2 (en) | 2016-05-25 | 2020-05-26 | Ethicon Llc | Ultrasonic surgical instrument blade with heat reduction feature |
AU2017269271B2 (en) | 2016-05-26 | 2021-07-08 | Covidien Lp | Robotic surgical assemblies |
CN105943123B (en) * | 2016-06-23 | 2018-09-18 | 山东威瑞外科医用制品有限公司 | Ultrasound knife tissue pad molding machine and method |
US10543014B2 (en) | 2016-07-01 | 2020-01-28 | Ethicon Llc | Ultrasonic surgical instrument with clamp arm deflection feature |
US10258362B2 (en) | 2016-07-12 | 2019-04-16 | Ethicon Llc | Ultrasonic surgical instrument with AD HOC formed blade |
WO2018011920A1 (en) * | 2016-07-13 | 2018-01-18 | オリンパス株式会社 | Grasping and treating device |
US10893883B2 (en) | 2016-07-13 | 2021-01-19 | Ethicon Llc | Ultrasonic assembly for use with ultrasonic surgical instruments |
US10842522B2 (en) | 2016-07-15 | 2020-11-24 | Ethicon Llc | Ultrasonic surgical instruments having offset blades |
US10653398B2 (en) | 2016-08-05 | 2020-05-19 | Covidien Lp | Adapter assemblies for surgical devices |
US10376305B2 (en) | 2016-08-05 | 2019-08-13 | Ethicon Llc | Methods and systems for advanced harmonic energy |
US10285723B2 (en) | 2016-08-09 | 2019-05-14 | Ethicon Llc | Ultrasonic surgical blade with improved heel portion |
US10792064B2 (en) | 2016-08-12 | 2020-10-06 | Covidien Lp | Energy-based surgical instrument for treating tissue |
US10555750B2 (en) | 2016-08-25 | 2020-02-11 | Ethicon Llc | Ultrasonic surgical instrument with replaceable blade having identification feature |
US10751117B2 (en) | 2016-09-23 | 2020-08-25 | Ethicon Llc | Electrosurgical instrument with fluid diverter |
US11116594B2 (en) | 2016-11-08 | 2021-09-14 | Covidien Lp | Surgical systems including adapter assemblies for interconnecting electromechanical surgical devices and end effectors |
US11039848B2 (en) * | 2016-11-16 | 2021-06-22 | Cilag Gmbh International | Surgical instrument with spot coagulation control and algorithm |
US10987124B2 (en) | 2016-11-22 | 2021-04-27 | Covidien Lp | Surgical instruments and jaw members thereof |
US10603064B2 (en) | 2016-11-28 | 2020-03-31 | Ethicon Llc | Ultrasonic transducer |
US11266430B2 (en) | 2016-11-29 | 2022-03-08 | Cilag Gmbh International | End effector control and calibration |
US10646300B2 (en) | 2016-12-14 | 2020-05-12 | Ethicon Llc | Ultrasonic surgical instrument with transducer locking feature |
US10603129B2 (en) | 2016-12-14 | 2020-03-31 | Ethicon Llc | Ultrasonic surgical instrument with integral torque wrench and longitudinal engagement |
US10575917B2 (en) | 2016-12-14 | 2020-03-03 | Ethicon Llc | Ultrasonic surgical instrument with integral torque wrench and transverse engagement |
US10660722B2 (en) | 2016-12-14 | 2020-05-26 | Ethicon Llc | Ultrasonic surgical instrument with integral shaft assembly torque wrench |
US9833256B1 (en) | 2016-12-14 | 2017-12-05 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instrument with transducer slip joint |
US11419606B2 (en) | 2016-12-21 | 2022-08-23 | Cilag Gmbh International | Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems |
US20180168615A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument |
US10835247B2 (en) | 2016-12-21 | 2020-11-17 | Ethicon Llc | Lockout arrangements for surgical end effectors |
US10888322B2 (en) | 2016-12-21 | 2021-01-12 | Ethicon Llc | Surgical instrument comprising a cutting member |
US10675026B2 (en) | 2016-12-21 | 2020-06-09 | Ethicon Llc | Methods of stapling tissue |
US10471282B2 (en) | 2016-12-21 | 2019-11-12 | Ethicon Llc | Ultrasonic robotic tool actuation |
MX2019007311A (en) | 2016-12-21 | 2019-11-18 | Ethicon Llc | Surgical stapling systems. |
US10568625B2 (en) | 2016-12-21 | 2020-02-25 | Ethicon Llc | Staple cartridges and arrangements of staples and staple cavities therein |
CN110114014B (en) | 2016-12-21 | 2022-08-09 | 爱惜康有限责任公司 | Surgical instrument system including end effector and firing assembly lockout |
US10624635B2 (en) | 2016-12-21 | 2020-04-21 | Ethicon Llc | Firing members with non-parallel jaw engagement features for surgical end effectors |
US20180168619A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling systems |
US11134942B2 (en) | 2016-12-21 | 2021-10-05 | Cilag Gmbh International | Surgical stapling instruments and staple-forming anvils |
US10426471B2 (en) | 2016-12-21 | 2019-10-01 | Ethicon Llc | Surgical instrument with multiple failure response modes |
US10695055B2 (en) | 2016-12-21 | 2020-06-30 | Ethicon Llc | Firing assembly comprising a lockout |
US10499914B2 (en) | 2016-12-21 | 2019-12-10 | Ethicon Llc | Staple forming pocket arrangements |
US20180168625A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling instruments with smart staple cartridges |
US11191539B2 (en) | 2016-12-21 | 2021-12-07 | Cilag Gmbh International | Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system |
US10667810B2 (en) | 2016-12-21 | 2020-06-02 | Ethicon Llc | Closure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems |
JP7010956B2 (en) | 2016-12-21 | 2022-01-26 | エシコン エルエルシー | How to staple tissue |
US10856868B2 (en) | 2016-12-21 | 2020-12-08 | Ethicon Llc | Firing member pin configurations |
JP6983893B2 (en) | 2016-12-21 | 2021-12-17 | エシコン エルエルシーEthicon LLC | Lockout configuration for surgical end effectors and replaceable tool assemblies |
US10368897B2 (en) | 2017-02-09 | 2019-08-06 | Covidien Lp | Ultrasonic surgical instrument |
US11033325B2 (en) | 2017-02-16 | 2021-06-15 | Cilag Gmbh International | Electrosurgical instrument with telescoping suction port and debris cleaner |
US10631945B2 (en) | 2017-02-28 | 2020-04-28 | Covidien Lp | Autoclavable load sensing device |
US11272929B2 (en) | 2017-03-03 | 2022-03-15 | Covidien Lp | Dynamically matching input and output shaft speeds of articulating adapter assemblies for surgical instruments |
US10299790B2 (en) | 2017-03-03 | 2019-05-28 | Covidien Lp | Adapter with centering mechanism for articulation joint |
US10799284B2 (en) | 2017-03-15 | 2020-10-13 | Ethicon Llc | Electrosurgical instrument with textured jaws |
US10660641B2 (en) | 2017-03-16 | 2020-05-26 | Covidien Lp | Adapter with centering mechanism for articulation joint |
US11497546B2 (en) | 2017-03-31 | 2022-11-15 | Cilag Gmbh International | Area ratios of patterned coatings on RF electrodes to reduce sticking |
WO2018193500A1 (en) | 2017-04-17 | 2018-10-25 | オリンパス株式会社 | Power transmission mechanism and treatment instrument |
US10932845B2 (en) | 2017-04-27 | 2021-03-02 | Ethicon Llc | Detent feature for articulation control in surgical instrument |
US10980594B2 (en) | 2017-04-27 | 2021-04-20 | Ethicon Llc | Articulation drive feature in surgical instrument |
US10881451B2 (en) | 2017-04-27 | 2021-01-05 | Ethicon Llc | Lead screw assembly for articulation control in surgical instrument |
US10390858B2 (en) | 2017-05-02 | 2019-08-27 | Covidien Lp | Powered surgical device with speed and current derivative motor shut off |
US11324502B2 (en) | 2017-05-02 | 2022-05-10 | Covidien Lp | Surgical loading unit including an articulating end effector |
US10603035B2 (en) | 2017-05-02 | 2020-03-31 | Covidien Lp | Surgical loading unit including an articulating end effector |
US11311295B2 (en) | 2017-05-15 | 2022-04-26 | Covidien Lp | Adaptive powered stapling algorithm with calibration factor |
US10571435B2 (en) | 2017-06-08 | 2020-02-25 | Covidien Lp | Systems and methods for digital control of ultrasonic devices |
TWI721278B (en) * | 2017-06-15 | 2021-03-11 | 大陸商天津瑞奇外科器械股份有限公司 | Ultrasonic surgical instruments |
USD890784S1 (en) | 2017-06-20 | 2020-07-21 | Ethicon Llc | Display panel with changeable graphical user interface |
US10307170B2 (en) | 2017-06-20 | 2019-06-04 | Ethicon Llc | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
US10390841B2 (en) | 2017-06-20 | 2019-08-27 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
US11517325B2 (en) | 2017-06-20 | 2022-12-06 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval |
USD879809S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with changeable graphical user interface |
US10888321B2 (en) | 2017-06-20 | 2021-01-12 | Ethicon Llc | Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument |
USD879808S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with graphical user interface |
US11071554B2 (en) | 2017-06-20 | 2021-07-27 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements |
US10327767B2 (en) | 2017-06-20 | 2019-06-25 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
US11382638B2 (en) | 2017-06-20 | 2022-07-12 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance |
US10646220B2 (en) | 2017-06-20 | 2020-05-12 | Ethicon Llc | Systems and methods for controlling displacement member velocity for a surgical instrument |
US10813639B2 (en) | 2017-06-20 | 2020-10-27 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions |
US10881399B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
US10881396B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Surgical instrument with variable duration trigger arrangement |
US11653914B2 (en) | 2017-06-20 | 2023-05-23 | Cilag Gmbh International | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector |
US11090046B2 (en) | 2017-06-20 | 2021-08-17 | Cilag Gmbh International | Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument |
US10980537B2 (en) | 2017-06-20 | 2021-04-20 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations |
US10779820B2 (en) | 2017-06-20 | 2020-09-22 | Ethicon Llc | Systems and methods for controlling motor speed according to user input for a surgical instrument |
US10368864B2 (en) | 2017-06-20 | 2019-08-06 | Ethicon Llc | Systems and methods for controlling displaying motor velocity for a surgical instrument |
US10624633B2 (en) | 2017-06-20 | 2020-04-21 | Ethicon Llc | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument |
US10856869B2 (en) | 2017-06-27 | 2020-12-08 | Ethicon Llc | Surgical anvil arrangements |
US11266405B2 (en) | 2017-06-27 | 2022-03-08 | Cilag Gmbh International | Surgical anvil manufacturing methods |
US11324503B2 (en) | 2017-06-27 | 2022-05-10 | Cilag Gmbh International | Surgical firing member arrangements |
US10993716B2 (en) | 2017-06-27 | 2021-05-04 | Ethicon Llc | Surgical anvil arrangements |
US10772629B2 (en) | 2017-06-27 | 2020-09-15 | Ethicon Llc | Surgical anvil arrangements |
US10631859B2 (en) | 2017-06-27 | 2020-04-28 | Ethicon Llc | Articulation systems for surgical instruments |
US11564686B2 (en) | 2017-06-28 | 2023-01-31 | Cilag Gmbh International | Surgical shaft assemblies with flexible interfaces |
US10903685B2 (en) | 2017-06-28 | 2021-01-26 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies forming capacitive channels |
US11058424B2 (en) | 2017-06-28 | 2021-07-13 | Cilag Gmbh International | Surgical instrument comprising an offset articulation joint |
USD906355S1 (en) | 2017-06-28 | 2020-12-29 | Ethicon Llc | Display screen or portion thereof with a graphical user interface for a surgical instrument |
US10603117B2 (en) | 2017-06-28 | 2020-03-31 | Ethicon Llc | Articulation state detection mechanisms |
US11246592B2 (en) | 2017-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical instrument comprising an articulation system lockable to a frame |
USD869655S1 (en) | 2017-06-28 | 2019-12-10 | Ethicon Llc | Surgical fastener cartridge |
US10639037B2 (en) | 2017-06-28 | 2020-05-05 | Ethicon Llc | Surgical instrument with axially movable closure member |
USD854151S1 (en) | 2017-06-28 | 2019-07-16 | Ethicon Llc | Surgical instrument shaft |
EP3420947B1 (en) | 2017-06-28 | 2022-05-25 | Cilag GmbH International | Surgical instrument comprising selectively actuatable rotatable couplers |
US10765427B2 (en) | 2017-06-28 | 2020-09-08 | Ethicon Llc | Method for articulating a surgical instrument |
USD851762S1 (en) | 2017-06-28 | 2019-06-18 | Ethicon Llc | Anvil |
US10716614B2 (en) | 2017-06-28 | 2020-07-21 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies with increased contact pressure |
US11259805B2 (en) | 2017-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical instrument comprising firing member supports |
US10211586B2 (en) | 2017-06-28 | 2019-02-19 | Ethicon Llc | Surgical shaft assemblies with watertight housings |
US10398434B2 (en) | 2017-06-29 | 2019-09-03 | Ethicon Llc | Closed loop velocity control of closure member for robotic surgical instrument |
US10258418B2 (en) | 2017-06-29 | 2019-04-16 | Ethicon Llc | System for controlling articulation forces |
US10932772B2 (en) | 2017-06-29 | 2021-03-02 | Ethicon Llc | Methods for closed loop velocity control for robotic surgical instrument |
US10898183B2 (en) | 2017-06-29 | 2021-01-26 | Ethicon Llc | Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing |
US11007022B2 (en) | 2017-06-29 | 2021-05-18 | Ethicon Llc | Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument |
US10820920B2 (en) | 2017-07-05 | 2020-11-03 | Ethicon Llc | Reusable ultrasonic medical devices and methods of their use |
US10478211B2 (en) | 2017-07-07 | 2019-11-19 | Ethicon Llc | Features to promote removal of debris from within ultrasonic surgical instrument |
JP6828162B2 (en) * | 2017-07-21 | 2021-02-10 | オリンパス株式会社 | Blade of ultrasonic treatment tool and ultrasonic treatment tool |
CN107280735B (en) * | 2017-07-21 | 2020-08-04 | 上海逸思医疗科技有限公司 | Repeatedly-usable ultrasonic surgical instrument |
US20190038308A1 (en) * | 2017-08-02 | 2019-02-07 | Covidien Lp | Jaw members for surgical instruments and surgical instruments incorporating the same |
US11304695B2 (en) | 2017-08-03 | 2022-04-19 | Cilag Gmbh International | Surgical system shaft interconnection |
US11471155B2 (en) | 2017-08-03 | 2022-10-18 | Cilag Gmbh International | Surgical system bailout |
US11944300B2 (en) | 2017-08-03 | 2024-04-02 | Cilag Gmbh International | Method for operating a surgical system bailout |
US11974742B2 (en) | 2017-08-03 | 2024-05-07 | Cilag Gmbh International | Surgical system comprising an articulation bailout |
WO2019036896A1 (en) * | 2017-08-22 | 2019-02-28 | Covidien Lp | Energy-based surgical instruments and systems configured to minimize thermal spread |
US10772700B2 (en) | 2017-08-23 | 2020-09-15 | Covidien Lp | Contactless loading unit detection |
US10932846B2 (en) | 2017-08-25 | 2021-03-02 | Ethicon Llc | Articulation section for shaft assembly of surgical instrument |
US10925682B2 (en) | 2017-08-29 | 2021-02-23 | Ethicon Llc | Electrically-powered surgical systems employing variable compression during treatment |
US10888370B2 (en) | 2017-08-29 | 2021-01-12 | Ethicon Llc | Methods, systems, and devices for controlling electrosurgical tools |
US11013528B2 (en) | 2017-08-29 | 2021-05-25 | Ethicon Llc | Electrically-powered surgical systems providing fine clamping control during energy delivery |
US10470758B2 (en) | 2017-08-29 | 2019-11-12 | Ethicon Llc | Suturing device |
US10881403B2 (en) | 2017-08-29 | 2021-01-05 | Ethicon Llc | Endocutter control system |
US10772677B2 (en) | 2017-08-29 | 2020-09-15 | Ethicon Llc | Electrically-powered surgical systems |
US10912567B2 (en) | 2017-08-29 | 2021-02-09 | Ethicon Llc | Circular stapler |
US10485527B2 (en) | 2017-08-29 | 2019-11-26 | Ethicon Llc | Control system for clip applier |
US10898219B2 (en) | 2017-08-29 | 2021-01-26 | Ethicon Llc | Electrically-powered surgical systems for cutting and welding solid organs |
US10905493B2 (en) | 2017-08-29 | 2021-02-02 | Ethicon Llc | Methods, systems, and devices for controlling electrosurgical tools |
US10905421B2 (en) | 2017-08-29 | 2021-02-02 | Ethicon Llc | Electrically-powered surgical box staplers |
US10905417B2 (en) | 2017-08-29 | 2021-02-02 | Ethicon Llc | Circular stapler |
US10932808B2 (en) | 2017-08-29 | 2021-03-02 | Ethicon Llc | Methods, systems, and devices for controlling electrosurgical tools |
US10856928B2 (en) | 2017-08-29 | 2020-12-08 | Ethicon Llc | Electrically-powered surgical systems |
CN111093537A (en) | 2017-08-29 | 2020-05-01 | 爱惜康有限责任公司 | Motorized surgical system for cutting and welding solid organs |
US11504126B2 (en) | 2017-08-29 | 2022-11-22 | Cilag Gmbh International | Control system for clip applier |
US11172928B2 (en) | 2017-08-29 | 2021-11-16 | Cilag Gmbh International | Endocutter control system |
US10548601B2 (en) | 2017-08-29 | 2020-02-04 | Ethicon Llc | Control system for clip applier |
US11160602B2 (en) | 2017-08-29 | 2021-11-02 | Cilag Gmbh International | Control of surgical field irrigation |
US10675082B2 (en) | 2017-08-29 | 2020-06-09 | Ethicon Llc | Control of surgical field irrigation by electrosurgical tool |
US10912581B2 (en) | 2017-08-29 | 2021-02-09 | Ethicon Llc | Electrically-powered surgical systems with articulation-compensated ultrasonic energy delivery |
JP2020533061A (en) | 2017-09-06 | 2020-11-19 | コヴィディエン リミテッド パートナーシップ | Boundary scaling of surgical robots |
US10925629B2 (en) | 2017-09-18 | 2021-02-23 | Novuson Surgical, Inc. | Transducer for therapeutic ultrasound apparatus and method |
USD907648S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
US10743872B2 (en) | 2017-09-29 | 2020-08-18 | Ethicon Llc | System and methods for controlling a display of a surgical instrument |
US10796471B2 (en) | 2017-09-29 | 2020-10-06 | Ethicon Llc | Systems and methods of displaying a knife position for a surgical instrument |
US11399829B2 (en) | 2017-09-29 | 2022-08-02 | Cilag Gmbh International | Systems and methods of initiating a power shutdown mode for a surgical instrument |
US11490951B2 (en) | 2017-09-29 | 2022-11-08 | Cilag Gmbh International | Saline contact with electrodes |
US10765429B2 (en) | 2017-09-29 | 2020-09-08 | Ethicon Llc | Systems and methods for providing alerts according to the operational state of a surgical instrument |
US11033323B2 (en) | 2017-09-29 | 2021-06-15 | Cilag Gmbh International | Systems and methods for managing fluid and suction in electrosurgical systems |
US11484358B2 (en) | 2017-09-29 | 2022-11-01 | Cilag Gmbh International | Flexible electrosurgical instrument |
USD907647S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
USD917500S1 (en) | 2017-09-29 | 2021-04-27 | Ethicon Llc | Display screen or portion thereof with graphical user interface |
CN107550526B (en) * | 2017-10-16 | 2020-07-03 | 吉林大学 | Handheld minimally invasive surgical instrument with self-locking property |
US11311342B2 (en) | 2017-10-30 | 2022-04-26 | Cilag Gmbh International | Method for communicating with surgical instrument systems |
US11134944B2 (en) | 2017-10-30 | 2021-10-05 | Cilag Gmbh International | Surgical stapler knife motion controls |
US10959744B2 (en) | 2017-10-30 | 2021-03-30 | Ethicon Llc | Surgical dissectors and manufacturing techniques |
US11291510B2 (en) | 2017-10-30 | 2022-04-05 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11229436B2 (en) | 2017-10-30 | 2022-01-25 | Cilag Gmbh International | Surgical system comprising a surgical tool and a surgical hub |
US11801098B2 (en) | 2017-10-30 | 2023-10-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11564756B2 (en) | 2017-10-30 | 2023-01-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
US11026687B2 (en) | 2017-10-30 | 2021-06-08 | Cilag Gmbh International | Clip applier comprising clip advancing systems |
US11510741B2 (en) | 2017-10-30 | 2022-11-29 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
US11911045B2 (en) | 2017-10-30 | 2024-02-27 | Cllag GmbH International | Method for operating a powered articulating multi-clip applier |
US11090075B2 (en) | 2017-10-30 | 2021-08-17 | Cilag Gmbh International | Articulation features for surgical end effector |
US11317919B2 (en) | 2017-10-30 | 2022-05-03 | Cilag Gmbh International | Clip applier comprising a clip crimping system |
US10842490B2 (en) | 2017-10-31 | 2020-11-24 | Ethicon Llc | Cartridge body design with force reduction based on firing completion |
US10779903B2 (en) | 2017-10-31 | 2020-09-22 | Ethicon Llc | Positive shaft rotation lock activated by jaw closure |
US11123094B2 (en) | 2017-12-13 | 2021-09-21 | Covidien Lp | Ultrasonic surgical instruments and methods for sealing and/or cutting tissue |
US10869666B2 (en) | 2017-12-15 | 2020-12-22 | Ethicon Llc | Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument |
US10779825B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments |
US11006955B2 (en) | 2017-12-15 | 2021-05-18 | Ethicon Llc | End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments |
US10779826B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Methods of operating surgical end effectors |
US10743874B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Sealed adapters for use with electromechanical surgical instruments |
US10743875B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member |
US11197670B2 (en) | 2017-12-15 | 2021-12-14 | Cilag Gmbh International | Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed |
US10828033B2 (en) | 2017-12-15 | 2020-11-10 | Ethicon Llc | Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto |
US10687813B2 (en) | 2017-12-15 | 2020-06-23 | Ethicon Llc | Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments |
US11071543B2 (en) | 2017-12-15 | 2021-07-27 | Cilag Gmbh International | Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges |
US10966718B2 (en) | 2017-12-15 | 2021-04-06 | Ethicon Llc | Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments |
US11033267B2 (en) | 2017-12-15 | 2021-06-15 | Ethicon Llc | Systems and methods of controlling a clamping member firing rate of a surgical instrument |
US11020112B2 (en) | 2017-12-19 | 2021-06-01 | Ethicon Llc | Surgical tools configured for interchangeable use with different controller interfaces |
USD910847S1 (en) | 2017-12-19 | 2021-02-16 | Ethicon Llc | Surgical instrument assembly |
US11045270B2 (en) | 2017-12-19 | 2021-06-29 | Cilag Gmbh International | Robotic attachment comprising exterior drive actuator |
US10729509B2 (en) | 2017-12-19 | 2020-08-04 | Ethicon Llc | Surgical instrument comprising closure and firing locking mechanism |
US10716565B2 (en) | 2017-12-19 | 2020-07-21 | Ethicon Llc | Surgical instruments with dual articulation drivers |
US10835330B2 (en) | 2017-12-19 | 2020-11-17 | Ethicon Llc | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
US10743868B2 (en) | 2017-12-21 | 2020-08-18 | Ethicon Llc | Surgical instrument comprising a pivotable distal head |
US11076853B2 (en) | 2017-12-21 | 2021-08-03 | Cilag Gmbh International | Systems and methods of displaying a knife position during transection for a surgical instrument |
US11311290B2 (en) | 2017-12-21 | 2022-04-26 | Cilag Gmbh International | Surgical instrument comprising an end effector dampener |
US11129680B2 (en) | 2017-12-21 | 2021-09-28 | Cilag Gmbh International | Surgical instrument comprising a projector |
US12096916B2 (en) | 2017-12-28 | 2024-09-24 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
US20190206569A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Method of cloud based data analytics for use with the hub |
US11969142B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws |
US11659023B2 (en) | 2017-12-28 | 2023-05-23 | Cilag Gmbh International | Method of hub communication |
US11419667B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location |
US11864728B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
US11291495B2 (en) | 2017-12-28 | 2022-04-05 | Cilag Gmbh International | Interruption of energy due to inadvertent capacitive coupling |
US11832840B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical instrument having a flexible circuit |
US11589888B2 (en) | 2017-12-28 | 2023-02-28 | Cilag Gmbh International | Method for controlling smart energy devices |
US11096693B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing |
US11253315B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Increasing radio frequency to create pad-less monopolar loop |
US11311306B2 (en) | 2017-12-28 | 2022-04-26 | Cilag Gmbh International | Surgical systems for detecting end effector tissue distribution irregularities |
US11529187B2 (en) | 2017-12-28 | 2022-12-20 | Cilag Gmbh International | Surgical evacuation sensor arrangements |
US11744604B2 (en) | 2017-12-28 | 2023-09-05 | Cilag Gmbh International | Surgical instrument with a hardware-only control circuit |
US12062442B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Method for operating surgical instrument systems |
US11419630B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Surgical system distributed processing |
US11284936B2 (en) | 2017-12-28 | 2022-03-29 | Cilag Gmbh International | Surgical instrument having a flexible electrode |
US11903601B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Surgical instrument comprising a plurality of drive systems |
US11786251B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11464535B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Detection of end effector emersion in liquid |
US11666331B2 (en) | 2017-12-28 | 2023-06-06 | Cilag Gmbh International | Systems for detecting proximity of surgical end effector to cancerous tissue |
US11576677B2 (en) | 2017-12-28 | 2023-02-14 | Cilag Gmbh International | Method of hub communication, processing, display, and cloud analytics |
US11672605B2 (en) | 2017-12-28 | 2023-06-13 | Cilag Gmbh International | Sterile field interactive control displays |
US20190201139A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Communication arrangements for robot-assisted surgical platforms |
US11100631B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Use of laser light and red-green-blue coloration to determine properties of back scattered light |
US11571234B2 (en) | 2017-12-28 | 2023-02-07 | Cilag Gmbh International | Temperature control of ultrasonic end effector and control system therefor |
US11304745B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical evacuation sensing and display |
US11612408B2 (en) | 2017-12-28 | 2023-03-28 | Cilag Gmbh International | Determining tissue composition via an ultrasonic system |
US11160605B2 (en) | 2017-12-28 | 2021-11-02 | Cilag Gmbh International | Surgical evacuation sensing and motor control |
US11559307B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method of robotic hub communication, detection, and control |
US11109866B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Method for circular stapler control algorithm adjustment based on situational awareness |
US11896443B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Control of a surgical system through a surgical barrier |
US11424027B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Method for operating surgical instrument systems |
US11857152B2 (en) | 2017-12-28 | 2024-01-02 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
US11786245B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Surgical systems with prioritized data transmission capabilities |
US11896322B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub |
US11998193B2 (en) | 2017-12-28 | 2024-06-04 | Cilag Gmbh International | Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation |
US20190201146A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Safety systems for smart powered surgical stapling |
US11559308B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method for smart energy device infrastructure |
US11540855B2 (en) | 2017-12-28 | 2023-01-03 | Cilag Gmbh International | Controlling activation of an ultrasonic surgical instrument according to the presence of tissue |
US11832899B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical systems with autonomously adjustable control programs |
US11633237B2 (en) | 2017-12-28 | 2023-04-25 | Cilag Gmbh International | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
US11818052B2 (en) | 2017-12-28 | 2023-11-14 | Cilag Gmbh International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11324557B2 (en) | 2017-12-28 | 2022-05-10 | Cilag Gmbh International | Surgical instrument with a sensing array |
US11132462B2 (en) | 2017-12-28 | 2021-09-28 | Cilag Gmbh International | Data stripping method to interrogate patient records and create anonymized record |
US11364075B2 (en) | 2017-12-28 | 2022-06-21 | Cilag Gmbh International | Radio frequency energy device for delivering combined electrical signals |
US11844579B2 (en) | 2017-12-28 | 2023-12-19 | Cilag Gmbh International | Adjustments based on airborne particle properties |
US11308075B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity |
US11410259B2 (en) | 2017-12-28 | 2022-08-09 | Cilag Gmbh International | Adaptive control program updates for surgical devices |
US11446052B2 (en) | 2017-12-28 | 2022-09-20 | Cilag Gmbh International | Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue |
US20190201039A1 (en) | 2017-12-28 | 2019-07-04 | Ethicon Llc | Situational awareness of electrosurgical systems |
US10892995B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
US11464559B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Estimating state of ultrasonic end effector and control system therefor |
US11389164B2 (en) | 2017-12-28 | 2022-07-19 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
US11179208B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Cloud-based medical analytics for security and authentication trends and reactive measures |
US11166772B2 (en) | 2017-12-28 | 2021-11-09 | Cilag Gmbh International | Surgical hub coordination of control and communication of operating room devices |
US11304699B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
US11937769B2 (en) | 2017-12-28 | 2024-03-26 | Cilag Gmbh International | Method of hub communication, processing, storage and display |
US11304720B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Activation of energy devices |
US11969216B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
US11423007B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Adjustment of device control programs based on stratified contextual data in addition to the data |
US11266468B2 (en) | 2017-12-28 | 2022-03-08 | Cilag Gmbh International | Cooperative utilization of data derived from secondary sources by intelligent surgical hubs |
US11273001B2 (en) | 2017-12-28 | 2022-03-15 | Cilag Gmbh International | Surgical hub and modular device response adjustment based on situational awareness |
US11278281B2 (en) | 2017-12-28 | 2022-03-22 | Cilag Gmbh International | Interactive surgical system |
US11432885B2 (en) | 2017-12-28 | 2022-09-06 | Cilag Gmbh International | Sensing arrangements for robot-assisted surgical platforms |
US11317937B2 (en) | 2018-03-08 | 2022-05-03 | Cilag Gmbh International | Determining the state of an ultrasonic end effector |
US11076921B2 (en) | 2017-12-28 | 2021-08-03 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
US11304763B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use |
US11234756B2 (en) | 2017-12-28 | 2022-02-01 | Cilag Gmbh International | Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter |
US11602393B2 (en) | 2017-12-28 | 2023-03-14 | Cilag Gmbh International | Surgical evacuation sensing and generator control |
US10758310B2 (en) | 2017-12-28 | 2020-09-01 | Ethicon Llc | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
US11058498B2 (en) | 2017-12-28 | 2021-07-13 | Cilag Gmbh International | Cooperative surgical actions for robot-assisted surgical platforms |
US11376002B2 (en) | 2017-12-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument cartridge sensor assemblies |
US11678881B2 (en) | 2017-12-28 | 2023-06-20 | Cilag Gmbh International | Spatial awareness of surgical hubs in operating rooms |
US11202570B2 (en) | 2017-12-28 | 2021-12-21 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
US11257589B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
EP3735196A4 (en) | 2018-01-04 | 2022-01-12 | Covidien LP | Robotic surgical instrument including high articulation wrist assembly with torque transmission and mechanical manipulation |
US11076910B2 (en) | 2018-01-22 | 2021-08-03 | Covidien Lp | Jaw members for surgical instruments and surgical instruments incorporating the same |
JP7168839B2 (en) * | 2018-01-22 | 2022-11-10 | 寛国 川澄 | scissors forceps |
CN108175452B (en) * | 2018-01-29 | 2020-09-01 | 吉林大学 | Manual-control flexible minimally invasive surgical instrument with self-locking and quick replacement functions |
US11246621B2 (en) | 2018-01-29 | 2022-02-15 | Covidien Lp | Ultrasonic transducers and ultrasonic surgical instruments including the same |
US11259832B2 (en) | 2018-01-29 | 2022-03-01 | Covidien Lp | Ultrasonic horn for an ultrasonic surgical instrument, ultrasonic surgical instrument including the same, and method of manufacturing an ultrasonic horn |
US11246617B2 (en) | 2018-01-29 | 2022-02-15 | Covidien Lp | Compact ultrasonic transducer and ultrasonic surgical instrument including the same |
US11229449B2 (en) | 2018-02-05 | 2022-01-25 | Covidien Lp | Ultrasonic horn, ultrasonic transducer assembly, and ultrasonic surgical instrument including the same |
NL2020421B1 (en) * | 2018-02-12 | 2019-08-19 | Deam Holding B V | Surgical instrument with mechanically operable lever |
US10582944B2 (en) | 2018-02-23 | 2020-03-10 | Covidien Lp | Ultrasonic surgical instrument with torque assist feature |
US11337746B2 (en) | 2018-03-08 | 2022-05-24 | Cilag Gmbh International | Smart blade and power pulsing |
US11259830B2 (en) | 2018-03-08 | 2022-03-01 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
US11399858B2 (en) | 2018-03-08 | 2022-08-02 | Cilag Gmbh International | Application of smart blade technology |
CN213646135U (en) | 2018-03-16 | 2021-07-09 | 米沃奇电动工具公司 | Blade clamp and reciprocating electric tool |
US11207067B2 (en) | 2018-03-28 | 2021-12-28 | Cilag Gmbh International | Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing |
US11219453B2 (en) | 2018-03-28 | 2022-01-11 | Cilag Gmbh International | Surgical stapling devices with cartridge compatible closure and firing lockout arrangements |
US11471156B2 (en) | 2018-03-28 | 2022-10-18 | Cilag Gmbh International | Surgical stapling devices with improved rotary driven closure systems |
US11259806B2 (en) | 2018-03-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein |
US11278280B2 (en) | 2018-03-28 | 2022-03-22 | Cilag Gmbh International | Surgical instrument comprising a jaw closure lockout |
US11090047B2 (en) | 2018-03-28 | 2021-08-17 | Cilag Gmbh International | Surgical instrument comprising an adaptive control system |
US11197668B2 (en) | 2018-03-28 | 2021-12-14 | Cilag Gmbh International | Surgical stapling assembly comprising a lockout and an exterior access orifice to permit artificial unlocking of the lockout |
JP7069334B2 (en) | 2018-03-29 | 2022-05-17 | コヴィディエン リミテッド パートナーシップ | Robotic surgery system and instrument drive assembly |
USD887806S1 (en) | 2018-04-03 | 2020-06-23 | Milwaukee Electric Tool Corporation | Jigsaw |
WO2019194987A1 (en) | 2018-04-03 | 2019-10-10 | Milwaukee Electric Tool Corporation | Jigsaw |
US11076881B2 (en) | 2018-04-12 | 2021-08-03 | Cilag Gmbh International | Electrical lockout for ultrasonic surgical instrument |
US10945755B2 (en) | 2018-04-12 | 2021-03-16 | Ethicon Llc | Mechanical lockout for ultrasonic surgical instrument |
US11051841B2 (en) | 2018-04-12 | 2021-07-06 | Ethicon Llc | Mechanical lockout for ultrasonic surgical instrument |
US11160578B2 (en) | 2018-04-12 | 2021-11-02 | Cilag Gmbh International | Mechanical lockout for ultrasonic surgical instrument |
US11160556B2 (en) | 2018-04-23 | 2021-11-02 | Covidien Lp | Threaded trocar for adapter assemblies |
US11896230B2 (en) | 2018-05-07 | 2024-02-13 | Covidien Lp | Handheld electromechanical surgical device including load sensor having spherical ball pivots |
US11399839B2 (en) | 2018-05-07 | 2022-08-02 | Covidien Lp | Surgical devices including trocar lock and trocar connection indicator |
US11534172B2 (en) | 2018-05-07 | 2022-12-27 | Covidien Lp | Electromechanical surgical stapler including trocar assembly release mechanism |
US10828060B2 (en) * | 2018-06-13 | 2020-11-10 | Covidien Lp | Hemostat-style ultrasonic surgical instrument with clamp force-limiting feature |
JP2019217025A (en) * | 2018-06-20 | 2019-12-26 | リバーフィールド株式会社 | Operation tool |
US20190388091A1 (en) | 2018-06-21 | 2019-12-26 | Covidien Lp | Powered surgical devices including strain gauges incorporated into flex circuits |
US11241233B2 (en) | 2018-07-10 | 2022-02-08 | Covidien Lp | Apparatus for ensuring strain gauge accuracy in medical reusable device |
EP3826566A4 (en) | 2018-07-26 | 2022-08-10 | Covidien LP | Surgical robotic systems |
US11596496B2 (en) | 2018-08-13 | 2023-03-07 | Covidien Lp | Surgical devices with moisture control |
US11076858B2 (en) | 2018-08-14 | 2021-08-03 | Covidien Lp | Single use electronics for surgical devices |
US10856870B2 (en) | 2018-08-20 | 2020-12-08 | Ethicon Llc | Switching arrangements for motor powered articulatable surgical instruments |
US10779821B2 (en) | 2018-08-20 | 2020-09-22 | Ethicon Llc | Surgical stapler anvils with tissue stop features configured to avoid tissue pinch |
US10842492B2 (en) | 2018-08-20 | 2020-11-24 | Ethicon Llc | Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system |
USD914878S1 (en) | 2018-08-20 | 2021-03-30 | Ethicon Llc | Surgical instrument anvil |
US11207065B2 (en) | 2018-08-20 | 2021-12-28 | Cilag Gmbh International | Method for fabricating surgical stapler anvils |
US10912559B2 (en) | 2018-08-20 | 2021-02-09 | Ethicon Llc | Reinforced deformable anvil tip for surgical stapler anvil |
US11039834B2 (en) | 2018-08-20 | 2021-06-22 | Cilag Gmbh International | Surgical stapler anvils with staple directing protrusions and tissue stability features |
US11083458B2 (en) | 2018-08-20 | 2021-08-10 | Cilag Gmbh International | Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions |
US11253256B2 (en) | 2018-08-20 | 2022-02-22 | Cilag Gmbh International | Articulatable motor powered surgical instruments with dedicated articulation motor arrangements |
US11045192B2 (en) | 2018-08-20 | 2021-06-29 | Cilag Gmbh International | Fabricating techniques for surgical stapler anvils |
US11324501B2 (en) | 2018-08-20 | 2022-05-10 | Cilag Gmbh International | Surgical stapling devices with improved closure members |
US11291440B2 (en) | 2018-08-20 | 2022-04-05 | Cilag Gmbh International | Method for operating a powered articulatable surgical instrument |
AU2019335013A1 (en) | 2018-09-05 | 2021-03-25 | Applied Medical Resources Corporation | Electrosurgical generator control system |
US11510669B2 (en) | 2020-09-29 | 2022-11-29 | Covidien Lp | Hand-held surgical instruments |
US11717276B2 (en) | 2018-10-30 | 2023-08-08 | Covidien Lp | Surgical devices including adapters and seals |
WO2020102086A1 (en) | 2018-11-15 | 2020-05-22 | Applied Medical Resources Corporation | Laparoscopic grasper with force-limiting grasping mechanism |
KR20210092263A (en) | 2018-11-16 | 2021-07-23 | 어플라이드 메디컬 리소시스 코포레이션 | electrosurgical system |
WO2020152811A1 (en) | 2019-01-23 | 2020-07-30 | オリンパス株式会社 | Energy treatment tool |
US11369377B2 (en) | 2019-02-19 | 2022-06-28 | Cilag Gmbh International | Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout |
US11298129B2 (en) | 2019-02-19 | 2022-04-12 | Cilag Gmbh International | Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge |
US11357503B2 (en) | 2019-02-19 | 2022-06-14 | Cilag Gmbh International | Staple cartridge retainers with frangible retention features and methods of using same |
US11317915B2 (en) | 2019-02-19 | 2022-05-03 | Cilag Gmbh International | Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers |
US11751872B2 (en) | 2019-02-19 | 2023-09-12 | Cilag Gmbh International | Insertable deactivator element for surgical stapler lockouts |
WO2020174583A1 (en) * | 2019-02-26 | 2020-09-03 | オリンパス株式会社 | Ultrasonic transducer and ultrasonic treatment tool |
US11696761B2 (en) | 2019-03-25 | 2023-07-11 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11147553B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11147551B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11172929B2 (en) | 2019-03-25 | 2021-11-16 | Cilag Gmbh International | Articulation drive arrangements for surgical systems |
US11241228B2 (en) | 2019-04-05 | 2022-02-08 | Covidien Lp | Surgical instrument including an adapter assembly and an articulating surgical loading unit |
US11369378B2 (en) | 2019-04-18 | 2022-06-28 | Covidien Lp | Surgical instrument including an adapter assembly and an articulating surgical loading unit |
US11471157B2 (en) | 2019-04-30 | 2022-10-18 | Cilag Gmbh International | Articulation control mapping for a surgical instrument |
US11123095B2 (en) | 2019-04-30 | 2021-09-21 | Cilag Gmbh International | Blade grounding mechanisms and alternative pin designs |
US11452528B2 (en) | 2019-04-30 | 2022-09-27 | Cilag Gmbh International | Articulation actuators for a surgical instrument |
US11903581B2 (en) | 2019-04-30 | 2024-02-20 | Cilag Gmbh International | Methods for stapling tissue using a surgical instrument |
US11426251B2 (en) | 2019-04-30 | 2022-08-30 | Cilag Gmbh International | Articulation directional lights on a surgical instrument |
US11350960B2 (en) | 2019-04-30 | 2022-06-07 | Cilag Gmbh International | Dual sterilization and temperature based sterilization detection |
US11179177B2 (en) | 2019-04-30 | 2021-11-23 | Cilag Gmbh International | Ultrasonic blade and clamp arm matching design |
US11432816B2 (en) | 2019-04-30 | 2022-09-06 | Cilag Gmbh International | Articulation pin for a surgical instrument |
US11253254B2 (en) | 2019-04-30 | 2022-02-22 | Cilag Gmbh International | Shaft rotation actuator on a surgical instrument |
US11202650B2 (en) | 2019-04-30 | 2021-12-21 | Cilag Gmbh International | Blade cooling gas/fluid storage |
US11648009B2 (en) | 2019-04-30 | 2023-05-16 | Cilag Gmbh International | Rotatable jaw tip for a surgical instrument |
US11426168B2 (en) | 2019-07-05 | 2022-08-30 | Covidien Lp | Trocar coupling assemblies for a surgical stapler |
US11464541B2 (en) | 2019-06-24 | 2022-10-11 | Covidien Lp | Retaining mechanisms for trocar assembly |
US11123101B2 (en) | 2019-07-05 | 2021-09-21 | Covidien Lp | Retaining mechanisms for trocar assemblies |
US11446035B2 (en) | 2019-06-24 | 2022-09-20 | Covidien Lp | Retaining mechanisms for trocar assemblies |
US11058429B2 (en) | 2019-06-24 | 2021-07-13 | Covidien Lp | Load sensing assemblies and methods of manufacturing load sensing assemblies |
USD964564S1 (en) | 2019-06-25 | 2022-09-20 | Cilag Gmbh International | Surgical staple cartridge retainer with a closure system authentication key |
USD950728S1 (en) | 2019-06-25 | 2022-05-03 | Cilag Gmbh International | Surgical staple cartridge |
USD952144S1 (en) | 2019-06-25 | 2022-05-17 | Cilag Gmbh International | Surgical staple cartridge retainer with firing system authentication key |
US12004740B2 (en) | 2019-06-28 | 2024-06-11 | Cilag Gmbh International | Surgical stapling system having an information decryption protocol |
US11376098B2 (en) | 2019-06-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument system comprising an RFID system |
US11399837B2 (en) | 2019-06-28 | 2022-08-02 | Cilag Gmbh International | Mechanisms for motor control adjustments of a motorized surgical instrument |
US11553971B2 (en) | 2019-06-28 | 2023-01-17 | Cilag Gmbh International | Surgical RFID assemblies for display and communication |
US11497492B2 (en) | 2019-06-28 | 2022-11-15 | Cilag Gmbh International | Surgical instrument including an articulation lock |
US11051807B2 (en) | 2019-06-28 | 2021-07-06 | Cilag Gmbh International | Packaging assembly including a particulate trap |
US11523822B2 (en) | 2019-06-28 | 2022-12-13 | Cilag Gmbh International | Battery pack including a circuit interrupter |
US11464601B2 (en) | 2019-06-28 | 2022-10-11 | Cilag Gmbh International | Surgical instrument comprising an RFID system for tracking a movable component |
US11224497B2 (en) | 2019-06-28 | 2022-01-18 | Cilag Gmbh International | Surgical systems with multiple RFID tags |
US11426167B2 (en) | 2019-06-28 | 2022-08-30 | Cilag Gmbh International | Mechanisms for proper anvil attachment surgical stapling head assembly |
US11219455B2 (en) | 2019-06-28 | 2022-01-11 | Cilag Gmbh International | Surgical instrument including a lockout key |
US11229437B2 (en) | 2019-06-28 | 2022-01-25 | Cilag Gmbh International | Method for authenticating the compatibility of a staple cartridge with a surgical instrument |
US11246678B2 (en) | 2019-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical stapling system having a frangible RFID tag |
US11627959B2 (en) | 2019-06-28 | 2023-04-18 | Cilag Gmbh International | Surgical instruments including manual and powered system lockouts |
US11638587B2 (en) | 2019-06-28 | 2023-05-02 | Cilag Gmbh International | RFID identification systems for surgical instruments |
US11298132B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Inlernational | Staple cartridge including a honeycomb extension |
US11684434B2 (en) | 2019-06-28 | 2023-06-27 | Cilag Gmbh International | Surgical RFID assemblies for instrument operational setting control |
US11478241B2 (en) | 2019-06-28 | 2022-10-25 | Cilag Gmbh International | Staple cartridge including projections |
US11259803B2 (en) | 2019-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling system having an information encryption protocol |
US11660163B2 (en) | 2019-06-28 | 2023-05-30 | Cilag Gmbh International | Surgical system with RFID tags for updating motor assembly parameters |
US11298127B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Interational | Surgical stapling system having a lockout mechanism for an incompatible cartridge |
US11771419B2 (en) | 2019-06-28 | 2023-10-03 | Cilag Gmbh International | Packaging for a replaceable component of a surgical stapling system |
US11291451B2 (en) | 2019-06-28 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with battery compatibility verification functionality |
US11123093B2 (en) | 2019-07-09 | 2021-09-21 | Covidien Lp | Jaw drive arm for surgical instruments and surgical instruments incorporating the same |
US11478268B2 (en) | 2019-08-16 | 2022-10-25 | Covidien Lp | Jaw members for surgical instruments and surgical instruments incorporating the same |
CN111954500B (en) * | 2019-08-20 | 2022-02-15 | 大和机器株式会社 | Instrument for laparoscopic surgery |
US11612409B2 (en) | 2019-08-30 | 2023-03-28 | Cilag Gmbh International | Ultrasonic transducer alignment of an articulating ultrasonic surgical instrument |
US11690642B2 (en) | 2019-08-30 | 2023-07-04 | Cilag Gmbh International | Ultrasonic surgical instrument with a multi-planar articulating shaft assembly |
US11457945B2 (en) | 2019-08-30 | 2022-10-04 | Cilag Gmbh International | Ultrasonic blade and clamp arm alignment features |
WO2021038372A1 (en) | 2019-08-30 | 2021-03-04 | Ethicon Llc | Ultrasonic surgical instrument with a multi-planar articulating shaft assembly |
US11471181B2 (en) | 2019-08-30 | 2022-10-18 | Cilag Gmbh International | Ultrasonic surgical instrument with axisymmetric clamping |
US11712261B2 (en) | 2019-08-30 | 2023-08-01 | Cilag Gmbh International | Rotatable linear actuation mechanism |
US12023065B2 (en) | 2019-09-03 | 2024-07-02 | Covidien Lp | Bi-stable spring-latch connector for ultrasonic surgical instruments |
US11666357B2 (en) | 2019-09-16 | 2023-06-06 | Covidien Lp | Enclosure for electronics of a surgical instrument |
CN110575115A (en) * | 2019-09-23 | 2019-12-17 | 武汉佑康科技有限公司 | Endoscope structure capable of stepless self-locking |
CN110584751B (en) * | 2019-09-27 | 2024-10-01 | 湖南瀚德微创医疗科技有限公司 | Pliers head for prolonging service life of ultrasonic cutting hemostatic knife |
US11857283B2 (en) | 2019-11-05 | 2024-01-02 | Cilag Gmbh International | Articulation joint with helical lumen |
US11737747B2 (en) | 2019-12-17 | 2023-08-29 | Covidien Lp | Hand-held surgical instruments |
US11701111B2 (en) | 2019-12-19 | 2023-07-18 | Cilag Gmbh International | Method for operating a surgical stapling instrument |
US11304696B2 (en) | 2019-12-19 | 2022-04-19 | Cilag Gmbh International | Surgical instrument comprising a powered articulation system |
US11911032B2 (en) | 2019-12-19 | 2024-02-27 | Cilag Gmbh International | Staple cartridge comprising a seating cam |
US11576672B2 (en) | 2019-12-19 | 2023-02-14 | Cilag Gmbh International | Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw |
US11446029B2 (en) | 2019-12-19 | 2022-09-20 | Cilag Gmbh International | Staple cartridge comprising projections extending from a curved deck surface |
US11607219B2 (en) | 2019-12-19 | 2023-03-21 | Cilag Gmbh International | Staple cartridge comprising a detachable tissue cutting knife |
US11464512B2 (en) | 2019-12-19 | 2022-10-11 | Cilag Gmbh International | Staple cartridge comprising a curved deck surface |
US11234698B2 (en) | 2019-12-19 | 2022-02-01 | Cilag Gmbh International | Stapling system comprising a clamp lockout and a firing lockout |
US11844520B2 (en) | 2019-12-19 | 2023-12-19 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US12035913B2 (en) | 2019-12-19 | 2024-07-16 | Cilag Gmbh International | Staple cartridge comprising a deployable knife |
US11504122B2 (en) | 2019-12-19 | 2022-11-22 | Cilag Gmbh International | Surgical instrument comprising a nested firing member |
US11529139B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Motor driven surgical instrument |
US11559304B2 (en) | 2019-12-19 | 2023-01-24 | Cilag Gmbh International | Surgical instrument comprising a rapid closure mechanism |
US11529137B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11931033B2 (en) | 2019-12-19 | 2024-03-19 | Cilag Gmbh International | Staple cartridge comprising a latch lockout |
US11291447B2 (en) | 2019-12-19 | 2022-04-05 | Cilag Gmbh International | Stapling instrument comprising independent jaw closing and staple firing systems |
US11583275B2 (en) | 2019-12-27 | 2023-02-21 | Covidien Lp | Surgical instruments including sensor assembly |
US12053224B2 (en) | 2019-12-30 | 2024-08-06 | Cilag Gmbh International | Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction |
US11707318B2 (en) | 2019-12-30 | 2023-07-25 | Cilag Gmbh International | Surgical instrument with jaw alignment features |
US11986201B2 (en) | 2019-12-30 | 2024-05-21 | Cilag Gmbh International | Method for operating a surgical instrument |
US12076006B2 (en) | 2019-12-30 | 2024-09-03 | Cilag Gmbh International | Surgical instrument comprising an orientation detection system |
US20210196363A1 (en) | 2019-12-30 | 2021-07-01 | Ethicon Llc | Electrosurgical instrument with electrodes operable in bipolar and monopolar modes |
US12064109B2 (en) | 2019-12-30 | 2024-08-20 | Cilag Gmbh International | Surgical instrument comprising a feedback control circuit |
US11786294B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Control program for modular combination energy device |
US11812957B2 (en) | 2019-12-30 | 2023-11-14 | Cilag Gmbh International | Surgical instrument comprising a signal interference resolution system |
US11974801B2 (en) | 2019-12-30 | 2024-05-07 | Cilag Gmbh International | Electrosurgical instrument with flexible wiring assemblies |
US11779387B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Clamp arm jaw to minimize tissue sticking and improve tissue control |
US11696776B2 (en) | 2019-12-30 | 2023-07-11 | Cilag Gmbh International | Articulatable surgical instrument |
US11911063B2 (en) | 2019-12-30 | 2024-02-27 | Cilag Gmbh International | Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade |
US11944366B2 (en) | 2019-12-30 | 2024-04-02 | Cilag Gmbh International | Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode |
US11660089B2 (en) | 2019-12-30 | 2023-05-30 | Cilag Gmbh International | Surgical instrument comprising a sensing system |
US11937863B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Deflectable electrode with variable compression bias along the length of the deflectable electrode |
US12023086B2 (en) | 2019-12-30 | 2024-07-02 | Cilag Gmbh International | Electrosurgical instrument for delivering blended energy modalities to tissue |
US12082808B2 (en) | 2019-12-30 | 2024-09-10 | Cilag Gmbh International | Surgical instrument comprising a control system responsive to software configurations |
US11779329B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a flex circuit including a sensor system |
US11589916B2 (en) | 2019-12-30 | 2023-02-28 | Cilag Gmbh International | Electrosurgical instruments with electrodes having variable energy densities |
US11786291B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Deflectable support of RF energy electrode with respect to opposing ultrasonic blade |
US11452525B2 (en) | 2019-12-30 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising an adjustment system |
US12114912B2 (en) | 2019-12-30 | 2024-10-15 | Cilag Gmbh International | Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode |
US11950797B2 (en) | 2019-12-30 | 2024-04-09 | Cilag Gmbh International | Deflectable electrode with higher distal bias relative to proximal bias |
US12102305B2 (en) | 2020-01-15 | 2024-10-01 | Covidien Lp | Adapter assemblies and surgical loading units |
US11504117B2 (en) | 2020-04-02 | 2022-11-22 | Covidien Lp | Hand-held surgical instruments |
US12004769B2 (en) | 2020-05-20 | 2024-06-11 | Covidien Lp | Ultrasonic transducer assembly for an ultrasonic surgical instrument |
CN111479210B (en) * | 2020-05-25 | 2024-09-10 | 东莞天籁之音电声制品有限公司 | Multifunctional loudspeaker terminal riveting clamp |
USD975851S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD976401S1 (en) | 2020-06-02 | 2023-01-24 | Cilag Gmbh International | Staple cartridge |
USD975850S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD966512S1 (en) | 2020-06-02 | 2022-10-11 | Cilag Gmbh International | Staple cartridge |
USD967421S1 (en) | 2020-06-02 | 2022-10-18 | Cilag Gmbh International | Staple cartridge |
USD975278S1 (en) | 2020-06-02 | 2023-01-10 | Cilag Gmbh International | Staple cartridge |
USD974560S1 (en) | 2020-06-02 | 2023-01-03 | Cilag Gmbh International | Staple cartridge |
US12016557B2 (en) | 2020-06-10 | 2024-06-25 | Covidien Lp | Sealed electrical connection between surgical loading unit and adapter |
WO2021257520A1 (en) * | 2020-06-16 | 2021-12-23 | Grena Usa Llc | Grip force attenuator |
US11857247B2 (en) | 2020-07-17 | 2024-01-02 | Cilag Gmbh International | Jaw for surgical instrument end effector |
CN111772733B (en) * | 2020-07-24 | 2021-05-14 | 中国人民解放军陆军第七十三集团军医院 | Two-way grasping forceps for digestive endoscopy |
US20220031350A1 (en) | 2020-07-28 | 2022-02-03 | Cilag Gmbh International | Surgical instruments with double pivot articulation joint arrangements |
CN111973895B (en) * | 2020-09-01 | 2022-08-26 | 陈琛 | Clinical ultrasonic therapeutic instrument of gynaecology and obstetrics |
US11660091B2 (en) | 2020-09-08 | 2023-05-30 | Covidien Lp | Surgical device with seal assembly |
US11571192B2 (en) | 2020-09-25 | 2023-02-07 | Covidien Lp | Adapter assembly for surgical devices |
US20220110673A1 (en) | 2020-10-13 | 2022-04-14 | Cilag Gmbh International | Structured tissue contact surface for energy-based surgical instrument |
US11617599B2 (en) | 2020-10-15 | 2023-04-04 | Covidien Lp | Ultrasonic surgical instrument |
WO2022084840A1 (en) | 2020-10-22 | 2022-04-28 | Cilag Gmbh International | Ultrasonic surgical instrument with translating transducer, waveguide and blade |
US11890030B2 (en) | 2020-10-22 | 2024-02-06 | Auris Health, Inc. | Surgical instrument with an articulatable shaft assembly and dual end effector roll |
US11998227B2 (en) | 2020-10-22 | 2024-06-04 | Cilag Gmbh International | Ultrasonic surgical instrument with a distally grounded acoustic waveguide |
US11950798B2 (en) | 2020-10-22 | 2024-04-09 | Cilag Gmbh International | Surgical instrument with non-clamping sensor feedback |
US11931059B2 (en) | 2020-10-22 | 2024-03-19 | Cilag Gmbh International | Surgical instrument with a carrier kart and various communication cable arrangements |
US12016587B2 (en) | 2020-10-22 | 2024-06-25 | Cilag Gmbh International | Carrier kart and jaw closure of an ultrasonic surgical instrument |
US12035935B2 (en) | 2020-10-22 | 2024-07-16 | Cilag Gmbh International | Surgical instrument and carrier kart supporting ultrasonic transducer |
US11944341B2 (en) | 2020-10-22 | 2024-04-02 | Cilag Gmbh International | Ultrasonic surgical instrument with a mid-shaft closure system and related methods |
US11998228B2 (en) | 2020-10-22 | 2024-06-04 | Cilag Gmbh International | Ultrasonic surgical instrument with a carrier kart and reusable stage |
EP4299031A3 (en) | 2020-10-22 | 2024-03-13 | Cilag GmbH International | Surgical instrument with an articulatable shaft assembly and dual end effector roll |
US11806037B2 (en) | 2020-10-22 | 2023-11-07 | Cilag Gmbh International | Damping rings for an ultrasonic surgical instrument |
USD1013170S1 (en) | 2020-10-29 | 2024-01-30 | Cilag Gmbh International | Surgical instrument assembly |
US11452526B2 (en) | 2020-10-29 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising a staged voltage regulation start-up system |
US11779330B2 (en) | 2020-10-29 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a jaw alignment system |
US11517390B2 (en) | 2020-10-29 | 2022-12-06 | Cilag Gmbh International | Surgical instrument comprising a limited travel switch |
US11896217B2 (en) | 2020-10-29 | 2024-02-13 | Cilag Gmbh International | Surgical instrument comprising an articulation lock |
US11931025B2 (en) | 2020-10-29 | 2024-03-19 | Cilag Gmbh International | Surgical instrument comprising a releasable closure drive lock |
USD980425S1 (en) | 2020-10-29 | 2023-03-07 | Cilag Gmbh International | Surgical instrument assembly |
US11717289B2 (en) | 2020-10-29 | 2023-08-08 | Cilag Gmbh International | Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable |
US11617577B2 (en) | 2020-10-29 | 2023-04-04 | Cilag Gmbh International | Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable |
US12053175B2 (en) | 2020-10-29 | 2024-08-06 | Cilag Gmbh International | Surgical instrument comprising a stowed closure actuator stop |
US11844518B2 (en) | 2020-10-29 | 2023-12-19 | Cilag Gmbh International | Method for operating a surgical instrument |
US11534259B2 (en) | 2020-10-29 | 2022-12-27 | Cilag Gmbh International | Surgical instrument comprising an articulation indicator |
CN112515738B (en) * | 2020-11-12 | 2023-06-13 | 嘉善飞阔医疗科技有限公司 | Ultrasonic scalpel capable of being stably and repeatedly used |
US11653915B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Surgical instruments with sled location detection and adjustment features |
US11849943B2 (en) | 2020-12-02 | 2023-12-26 | Cilag Gmbh International | Surgical instrument with cartridge release mechanisms |
US11890010B2 (en) | 2020-12-02 | 2024-02-06 | Cllag GmbH International | Dual-sided reinforced reload for surgical instruments |
US11944296B2 (en) | 2020-12-02 | 2024-04-02 | Cilag Gmbh International | Powered surgical instruments with external connectors |
US11678882B2 (en) | 2020-12-02 | 2023-06-20 | Cilag Gmbh International | Surgical instruments with interactive features to remedy incidental sled movements |
US11744581B2 (en) | 2020-12-02 | 2023-09-05 | Cilag Gmbh International | Powered surgical instruments with multi-phase tissue treatment |
US11627960B2 (en) | 2020-12-02 | 2023-04-18 | Cilag Gmbh International | Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections |
US11737751B2 (en) | 2020-12-02 | 2023-08-29 | Cilag Gmbh International | Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings |
US11653920B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Powered surgical instruments with communication interfaces through sterile barrier |
US12059196B2 (en) | 2020-12-15 | 2024-08-13 | Covidien Lp | Energy-based surgical instrument for grasping, treating, and/or dividing tissue |
US11806068B2 (en) | 2020-12-15 | 2023-11-07 | Covidien Lp | Energy-based surgical instrument for grasping, treating, and/or dividing tissue |
US11911064B2 (en) | 2020-12-21 | 2024-02-27 | Cilag Gmbh International | Ultrasonic surgical instrument with a clamp arm clocking assembly |
US11992257B2 (en) | 2020-12-29 | 2024-05-28 | Cilag Gmbh International | Energized surgical instrument system with multi-generator output monitoring |
US20220202474A1 (en) | 2020-12-29 | 2022-06-30 | Ethicon Llc | Filter for monopolar surgical instrument energy path |
US12096971B2 (en) | 2020-12-29 | 2024-09-24 | Cilag Gmbh International | Electrosurgical instrument with electrical resistance monitor at rotary coupling |
US20220202470A1 (en) | 2020-12-29 | 2022-06-30 | Ethicon Llc | Electrosurgical instrument system with parasitic energy loss monitor |
US20220202487A1 (en) | 2020-12-29 | 2022-06-30 | Ethicon Llc | Electrosurgical instrument with shaft voltage monitor |
US12011217B2 (en) | 2020-12-29 | 2024-06-18 | Cilag Gmbh International | Electrosurgical instrument with modular component contact monitoring |
US11793514B2 (en) | 2021-02-26 | 2023-10-24 | Cilag Gmbh International | Staple cartridge comprising sensor array which may be embedded in cartridge body |
US12108951B2 (en) | 2021-02-26 | 2024-10-08 | Cilag Gmbh International | Staple cartridge comprising a sensing array and a temperature control system |
US11950777B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Staple cartridge comprising an information access control system |
US11749877B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Stapling instrument comprising a signal antenna |
US11950779B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Method of powering and communicating with a staple cartridge |
US11980362B2 (en) | 2021-02-26 | 2024-05-14 | Cilag Gmbh International | Surgical instrument system comprising a power transfer coil |
US11925349B2 (en) | 2021-02-26 | 2024-03-12 | Cilag Gmbh International | Adjustment to transfer parameters to improve available power |
US11812964B2 (en) | 2021-02-26 | 2023-11-14 | Cilag Gmbh International | Staple cartridge comprising a power management circuit |
US11751869B2 (en) | 2021-02-26 | 2023-09-12 | Cilag Gmbh International | Monitoring of multiple sensors over time to detect moving characteristics of tissue |
US11730473B2 (en) | 2021-02-26 | 2023-08-22 | Cilag Gmbh International | Monitoring of manufacturing life-cycle |
US11701113B2 (en) | 2021-02-26 | 2023-07-18 | Cilag Gmbh International | Stapling instrument comprising a separate power antenna and a data transfer antenna |
US11723657B2 (en) | 2021-02-26 | 2023-08-15 | Cilag Gmbh International | Adjustable communication based on available bandwidth and power capacity |
US11696757B2 (en) | 2021-02-26 | 2023-07-11 | Cilag Gmbh International | Monitoring of internal systems to detect and track cartridge motion status |
US11744583B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Distal communication array to tune frequency of RF systems |
US11759202B2 (en) | 2021-03-22 | 2023-09-19 | Cilag Gmbh International | Staple cartridge comprising an implantable layer |
US11717291B2 (en) | 2021-03-22 | 2023-08-08 | Cilag Gmbh International | Staple cartridge comprising staples configured to apply different tissue compression |
US11806011B2 (en) | 2021-03-22 | 2023-11-07 | Cilag Gmbh International | Stapling instrument comprising tissue compression systems |
US11723658B2 (en) | 2021-03-22 | 2023-08-15 | Cilag Gmbh International | Staple cartridge comprising a firing lockout |
US11826042B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Surgical instrument comprising a firing drive including a selectable leverage mechanism |
US11737749B2 (en) | 2021-03-22 | 2023-08-29 | Cilag Gmbh International | Surgical stapling instrument comprising a retraction system |
US11826012B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising a pulsed motor-driven firing rack |
US11786243B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Firing members having flexible portions for adapting to a load during a surgical firing stroke |
US11832816B2 (en) | 2021-03-24 | 2023-12-05 | Cilag Gmbh International | Surgical stapling assembly comprising nonplanar staples and planar staples |
US11944336B2 (en) | 2021-03-24 | 2024-04-02 | Cilag Gmbh International | Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments |
US11786239B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Surgical instrument articulation joint arrangements comprising multiple moving linkage features |
US11744603B2 (en) | 2021-03-24 | 2023-09-05 | Cilag Gmbh International | Multi-axis pivot joints for surgical instruments and methods for manufacturing same |
US11793516B2 (en) | 2021-03-24 | 2023-10-24 | Cilag Gmbh International | Surgical staple cartridge comprising longitudinal support beam |
US11896219B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Mating features between drivers and underside of a cartridge deck |
US11849945B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising eccentrically driven firing member |
US12102323B2 (en) | 2021-03-24 | 2024-10-01 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising a floatable component |
US11896218B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Method of using a powered stapling device |
US11857183B2 (en) | 2021-03-24 | 2024-01-02 | Cilag Gmbh International | Stapling assembly components having metal substrates and plastic bodies |
US11849944B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Drivers for fastener cartridge assemblies having rotary drive screws |
US11903582B2 (en) | 2021-03-24 | 2024-02-20 | Cilag Gmbh International | Leveraging surfaces for cartridge installation |
US11937892B2 (en) | 2021-04-30 | 2024-03-26 | Cilag Gmbh International | Variable jaw closure of a robotic surgical system |
US11607218B2 (en) | 2021-04-30 | 2023-03-21 | Cilag Gmbh International | Translatable barrel cam of a robotic surgical system |
US11826047B2 (en) | 2021-05-28 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising jaw mounts |
US11944340B2 (en) | 2021-06-11 | 2024-04-02 | Cilag Gmbh International | Suction and irrigation valve and method of priming same in a robotic surgical system |
US11786248B2 (en) | 2021-07-09 | 2023-10-17 | Covidien Lp | Surgical stapling device including a buttress retention assembly |
CN113813019B (en) * | 2021-07-21 | 2023-07-21 | 青岛健新医疗科技有限公司 | Ultrasonic surgical instrument |
CN113456177A (en) * | 2021-07-28 | 2021-10-01 | 无锡贝恩外科器械有限公司 | Structure for controlling pressure to be uniformly distributed |
US11819209B2 (en) | 2021-08-03 | 2023-11-21 | Covidien Lp | Hand-held surgical instruments |
CN115702814A (en) * | 2021-08-12 | 2023-02-17 | 奥林巴斯医疗株式会社 | Ultrasonic treatment instrument |
US11862884B2 (en) | 2021-08-16 | 2024-01-02 | Covidien Lp | Surgical instrument with electrical connection |
US11633180B2 (en) | 2021-09-24 | 2023-04-25 | Thompson Surgical Instruments, Inc. | Surgical retractor system and clip-on joint clamp |
US11717312B2 (en) | 2021-10-01 | 2023-08-08 | Covidien Lp | Surgical system including blade visualization markings |
US11877745B2 (en) | 2021-10-18 | 2024-01-23 | Cilag Gmbh International | Surgical stapling assembly having longitudinally-repeating staple leg clusters |
US11980363B2 (en) | 2021-10-18 | 2024-05-14 | Cilag Gmbh International | Row-to-row staple array variations |
US11957337B2 (en) | 2021-10-18 | 2024-04-16 | Cilag Gmbh International | Surgical stapling assembly with offset ramped drive surfaces |
WO2023073524A2 (en) * | 2021-10-25 | 2023-05-04 | Cilag Gmbh International | Electrodes and methods for use with a multi-layer clamp arm pad to enhance the performance of a surgical device |
US12089841B2 (en) | 2021-10-28 | 2024-09-17 | Cilag CmbH International | Staple cartridge identification systems |
US11937816B2 (en) | 2021-10-28 | 2024-03-26 | Cilag Gmbh International | Electrical lead arrangements for surgical instruments |
US11957342B2 (en) | 2021-11-01 | 2024-04-16 | Cilag Gmbh International | Devices, systems, and methods for detecting tissue and foreign objects during a surgical operation |
CN114366285A (en) * | 2022-01-25 | 2022-04-19 | 武汉半边天医疗技术发展有限公司 | Conductive tetrafluoro radio frequency ultrasonic knife |
US20230355266A1 (en) | 2022-05-05 | 2023-11-09 | Cilag Gmbh International | Clamp force control feature for surgical end effector |
CN114869359B (en) * | 2022-05-27 | 2023-08-22 | 四川大学华西医院 | Catheter apparatus |
CN115040201B (en) * | 2022-06-02 | 2023-08-18 | 以诺康医疗科技(苏州)有限公司 | Scissor type ultrasonic surgical instrument |
US20240000476A1 (en) | 2022-06-30 | 2024-01-04 | Cilag Gmbh International | Surgical system and methods of assembly and disassembly of surgical instrument |
US20240000474A1 (en) | 2022-06-30 | 2024-01-04 | Cilag Gmbh International | Surgical instrument with predetermined separation feature for waste stream utilization and related methods |
US20240000491A1 (en) | 2022-06-30 | 2024-01-04 | Cilag Gmbh International | Reclamation packaging for surgical instrument and related methods |
US20240000475A1 (en) | 2022-06-30 | 2024-01-04 | Cilag Gmbh International | Surgical instrument with various alignment features and method for improved disassembly and assembly |
US20240006810A1 (en) | 2022-06-30 | 2024-01-04 | Cilag Gmbh International | Surgical instrument with removable cable and associated couplings |
US20240001416A1 (en) | 2022-06-30 | 2024-01-04 | Cilag Gmbh International | System for determining disposal of surgical instrument and related methods |
US20240000526A1 (en) | 2022-06-30 | 2024-01-04 | Cilag Gmbh International | Robotic surgical system with removable portion and method of disassembling same |
US20240003820A1 (en) | 2022-06-30 | 2024-01-04 | Cilag Gmbh International | Surgical system and methods for instrument assessment and cleaning |
US20240006048A1 (en) | 2022-06-30 | 2024-01-04 | Cilag Gmbh International | Method of reclaiming portions of surgical instruments for remanufacturing and sustainability |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5725536A (en) * | 1996-02-20 | 1998-03-10 | Richard-Allen Medical Industries, Inc. | Articulated surgical instrument with improved articulation control mechanism |
US5762255A (en) * | 1996-02-20 | 1998-06-09 | Richard-Allan Medical Industries, Inc. | Surgical instrument with improvement safety lockout mechanisms |
US5797537A (en) * | 1996-02-20 | 1998-08-25 | Richard-Allan Medical Industries, Inc. | Articulated surgical instrument with improved firing mechanism |
US5820009A (en) * | 1996-02-20 | 1998-10-13 | Richard-Allan Medical Industries, Inc. | Articulated surgical instrument with improved jaw closure mechanism |
US6010054A (en) * | 1996-02-20 | 2000-01-04 | Imagyn Medical Technologies | Linear stapling instrument with improved staple cartridge |
US20130072948A1 (en) * | 2011-09-19 | 2013-03-21 | Cost Containment, Inc. | Suture passer device and suture needle |
Family Cites Families (2279)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE25033E (en) | 1961-08-29 | Vibratory machine tool and vibratory abrasion method | ||
US1570025A (en) | 1926-01-19 | John van doiten yottng | ||
CA837241A (en) | 1970-03-17 | M. Minchenko Hildegard | Electromechanical transducer | |
US969528A (en) | 1909-12-23 | 1910-09-06 | Reuben B Disbrow | Butter-spade. |
US1813902A (en) | 1928-01-18 | 1931-07-14 | Liebel Flarsheim Co | Electrosurgical apparatus |
US2188497A (en) | 1936-09-24 | 1940-01-30 | Waldorf Paper Prod Co | Container and method of making the same |
US2366274A (en) | 1942-06-03 | 1945-01-02 | Brunswick Balke Collender Co | Plastic fastening means and method of applying the same |
US2510693A (en) | 1944-03-29 | 1950-06-06 | Lee B Green | Fastening member |
US2425245A (en) | 1945-03-30 | 1947-08-05 | Conrad B Johnson | Cushion grip for air hammers and the like |
US2458152A (en) | 1945-04-03 | 1949-01-04 | Us Rubber Co | Plastic rivet and method of making same |
US2442966A (en) | 1946-09-07 | 1948-06-08 | American Cystoscope Makers Inc | Electrosurgical resecting instrument |
US2597564A (en) | 1948-01-31 | 1952-05-20 | Kenly C Bugg | Stitch and seam opener |
US2704333A (en) | 1951-03-15 | 1955-03-15 | Raytheon Mfg Co | Ultrasonic vibratory devices |
US2748967A (en) | 1952-03-19 | 1956-06-05 | William B Roach | Bottle closure |
DE1004260B (en) | 1952-03-24 | 1957-03-14 | Efen Elektrotech Fab | Fuse link for standardized house connection boxes up to 100 Amp. |
US2849788A (en) | 1952-08-02 | 1958-09-02 | A V Roe Canada Ltd | Method and apparatus for making hollow blades |
US2743726A (en) | 1953-05-28 | 1956-05-01 | Herman R Grieshaber | Surgical instrument |
US3033407A (en) | 1953-07-03 | 1962-05-08 | Union Carbide Corp | Bottle closures |
US2736960A (en) | 1954-01-29 | 1956-03-06 | James A Armstrong | Razor blade knife |
US2874470A (en) | 1954-05-28 | 1959-02-24 | James R Richards | High frequency dental tool |
DE1008144B (en) | 1955-02-26 | 1957-05-09 | Artur Haerter K G | Electric dry shaver |
NL106732C (en) | 1955-03-08 | |||
US2845072A (en) | 1955-06-21 | 1958-07-29 | William A Shafer | Surgical knife |
US3053124A (en) | 1959-11-16 | 1962-09-11 | Cavitron Ultrasonics Inc | Ultrasonic welding |
US3015961A (en) | 1960-05-02 | 1962-01-09 | Sheffield Corp | Machine component |
US3166971A (en) | 1960-11-23 | 1965-01-26 | Air Reduction | Riveting by electric discharge |
US3082805A (en) | 1960-12-21 | 1963-03-26 | John H Royce | Tissue macerator |
US3433226A (en) | 1965-07-21 | 1969-03-18 | Aeroprojects Inc | Vibratory catheterization apparatus and method of using |
US3503398A (en) | 1965-09-10 | 1970-03-31 | American Hospital Supply Corp | Atraumatic clamp for vascular surgery |
US3322403A (en) | 1965-11-15 | 1967-05-30 | Gray Company Inc | Agitator |
US3616375A (en) | 1966-03-03 | 1971-10-26 | Inoue K | Method employing wave energy for the extraction of sulfur from petroleum and the like |
US3525912A (en) | 1966-03-28 | 1970-08-25 | Scovill Manufacturing Co | Selectable power source for a motor driven appliance |
US3432691A (en) | 1966-09-15 | 1969-03-11 | Branson Instr | Oscillatory circuit for electro-acoustic converter |
US3526219A (en) | 1967-07-21 | 1970-09-01 | Ultrasonic Systems | Method and apparatus for ultrasonically removing tissue from a biological organism |
US3554198A (en) | 1967-08-04 | 1971-01-12 | Cardiac Electronics Inc | Patient-isolating circuitry for cardiac facing device |
US3503397A (en) * | 1967-09-21 | 1970-03-31 | American Hospital Supply Corp | Atraumatic surgical clamp |
US3503396A (en) * | 1967-09-21 | 1970-03-31 | American Hospital Supply Corp | Atraumatic surgical clamp |
US3636943A (en) | 1967-10-27 | 1972-01-25 | Ultrasonic Systems | Ultrasonic cauterization |
US3606682A (en) | 1967-10-30 | 1971-09-21 | Corning Glass Works | Razor blades |
US3514856A (en) | 1967-10-30 | 1970-06-02 | Corning Glass Works | Razor blade configuration |
US3513848A (en) | 1967-12-11 | 1970-05-26 | Ultrasonic Systems | Ultrasonic suturing |
US3489930A (en) | 1968-07-29 | 1970-01-13 | Branson Instr | Apparatus for controlling the power supplied to an ultrasonic transducer |
US3580841A (en) | 1969-07-31 | 1971-05-25 | Us Interior | Ultrathin semipermeable membrane |
US3629726A (en) | 1969-08-29 | 1971-12-21 | Surgical Design Corp | Oscillator and oscillator control circuit |
US3614484A (en) | 1970-03-25 | 1971-10-19 | Branson Instr | Ultrasonic motion adapter for a machine tool |
DE2065681A1 (en) | 1970-04-25 | 1975-03-20 | Eduard Kloz | Compound piezo electric transducer - is for bi-directional vibration and has an angled centre junction carrying two vibrators |
CH541958A (en) | 1970-11-03 | 1973-09-30 | Eduard Kloz & Heinz Kloz | Device for smashing bladder, ureter and renal pelvic stones using ultrasound |
US3668486A (en) | 1971-01-08 | 1972-06-06 | Crest Ultrasonics Corp | Load-sensitive generator for driving piezo-electric transducers |
US3924335A (en) | 1971-02-26 | 1975-12-09 | Ultrasonic Systems | Ultrasonic dental and other instrument means and methods |
US3809977A (en) | 1971-02-26 | 1974-05-07 | Ultrasonic Systems | Ultrasonic kits and motor systems |
US3703651A (en) | 1971-07-12 | 1972-11-21 | Kollmorgen Corp | Temperature-controlled integrated circuits |
US3776238A (en) | 1971-08-24 | 1973-12-04 | Univ California | Ophthalmic instrument |
US3777760A (en) | 1971-09-09 | 1973-12-11 | H Essner | Surgical stick |
US3702948A (en) | 1972-01-07 | 1972-11-14 | Ultrasonic Systems | Ultrasonic motors and scissors |
US3885438A (en) | 1972-02-04 | 1975-05-27 | Sr Rano J Harris | Automatic fluid injector |
US3805787A (en) | 1972-06-16 | 1974-04-23 | Surgical Design Corp | Ultrasonic surgical instrument |
US3832776A (en) | 1972-11-24 | 1974-09-03 | H Sawyer | Electronically powered knife |
US3830098A (en) | 1973-03-22 | 1974-08-20 | Blackstone Corp | Output monitored electromechanical devices |
US3900823A (en) | 1973-03-28 | 1975-08-19 | Nathan O Sokal | Amplifying and processing apparatus for modulated carrier signals |
US5172344A (en) | 1973-06-29 | 1992-12-15 | Raytheon Company | Deep submergence transducer |
US4058126A (en) | 1973-08-02 | 1977-11-15 | Leveen Harry H | Device for the fracture of the blood vessel lining |
DE2339827B2 (en) | 1973-08-06 | 1977-02-24 | A6 In 3-02 | DENTAL EQUIPMENT |
US3918442A (en) | 1973-10-10 | 1975-11-11 | Georgy Alexandrovich Nikolaev | Surgical instrument for ultrasonic joining of biological tissue |
US3875945A (en) | 1973-11-02 | 1975-04-08 | Demetron Corp | Electrosurgery instrument |
JPS50100891A (en) | 1973-12-21 | 1975-08-09 | ||
US3854737A (en) | 1974-01-21 | 1974-12-17 | Chemprene | Combination rotary and reciprocating unitary sealing mechanism |
US4012647A (en) | 1974-01-31 | 1977-03-15 | Ultrasonic Systems, Inc. | Ultrasonic motors and converters |
US3956826A (en) | 1974-03-19 | 1976-05-18 | Cavitron Corporation | Ultrasonic device and method |
US4085893A (en) | 1974-03-20 | 1978-04-25 | Durley Iii Benton A | Ultrasonic humidifiers, atomizers and the like |
JPS5818787B2 (en) | 1974-09-03 | 1983-04-14 | 呉羽化学工業株式会社 | Kobunshi Film Denkisoshi no Seizouhouhou |
US3946738A (en) | 1974-10-24 | 1976-03-30 | Newton David W | Leakage current cancelling circuit for use with electrosurgical instrument |
US3955859A (en) | 1975-03-25 | 1976-05-11 | The Torrington Company | Bearing with multiple lip seal |
US4005714A (en) | 1975-05-03 | 1977-02-01 | Richard Wolf Gmbh | Bipolar coagulation forceps |
US4074719A (en) | 1975-07-12 | 1978-02-21 | Kurt Semm | Method of and device for causing blood coagulation |
US4034762A (en) | 1975-08-04 | 1977-07-12 | Electro Medical Systems, Inc. | Vas cautery apparatus |
US4193009A (en) | 1976-01-26 | 1980-03-11 | Durley Benton A Iii | Ultrasonic piezoelectric transducer using a rubber mounting |
US4169984A (en) | 1976-11-30 | 1979-10-02 | Contract Systems Associates, Inc. | Ultrasonic probe |
DE2656278B2 (en) | 1976-12-11 | 1979-03-15 | Kurt Prof. Dr.Med. 2300 Kiel Semm | Electrocoagulation instrument and |
US4203430A (en) | 1976-12-16 | 1980-05-20 | Nagashige Takahashi | Device for controlling curvature of an end section in an endoscope |
JPS6034433B2 (en) | 1977-03-07 | 1985-08-08 | 株式会社豊田中央研究所 | ultrasonic transducer |
US4180074A (en) | 1977-03-15 | 1979-12-25 | Fibra-Sonics, Inc. | Device and method for applying precise irrigation, aspiration, medication, ultrasonic power and dwell time to biotissue for surgery and treatment |
US4167944A (en) | 1977-06-27 | 1979-09-18 | Surgical Design Corp. | Rotatable surgical cutting instrument with improved cutter blade wear |
US4300083A (en) | 1977-07-05 | 1981-11-10 | Automation Devices, Inc. | Constant amplitude controller and method |
US4200106A (en) | 1977-10-11 | 1980-04-29 | Dinkelkamp Henry T | Fixed arc cyclic ophthalmic surgical instrument |
US4203444A (en) | 1977-11-07 | 1980-05-20 | Dyonics, Inc. | Surgical instrument suitable for closed surgery such as of the knee |
US4188927A (en) | 1978-01-12 | 1980-02-19 | Valleylab, Inc. | Multiple source electrosurgical generator |
US4304987A (en) | 1978-09-18 | 1981-12-08 | Raychem Corporation | Electrical devices comprising conductive polymer compositions |
GB2032221A (en) | 1978-10-23 | 1980-04-30 | Keeler Instr Ltd | Hand Held Ultrasonic Transducer Instrument |
US4237441A (en) | 1978-12-01 | 1980-12-02 | Raychem Corporation | Low resistivity PTC compositions |
JPS5590195A (en) | 1978-12-28 | 1980-07-08 | Ootake Seisakusho:Kk | Ultrasonic oscillator with output meter |
FR2454351A1 (en) | 1979-04-19 | 1980-11-14 | Mecasonic Sa | High power transducer for ultrasonic welding machine - where two half wave piezoelectric emitters are coupled together to form one wavelength |
SU850068A1 (en) | 1979-06-01 | 1981-07-30 | Всесоюзный Научно-Исследовательскийинститут Медицинского Приборостроения | Device for ultrasonic surgery |
US4352459A (en) | 1979-11-13 | 1982-10-05 | Sono-Tek Corporation | Ultrasonic liquid atomizer having an axially-extending liquid feed passage |
US4314559A (en) | 1979-12-12 | 1982-02-09 | Corning Glass Works | Nonstick conductive coating |
US4281785A (en) | 1979-12-21 | 1981-08-04 | Dayco Corporation | Stapling apparatus and method and thermoplastic stables used therewith |
US4545926A (en) | 1980-04-21 | 1985-10-08 | Raychem Corporation | Conductive polymer compositions and devices |
JPS614260B2 (en) | 1980-05-13 | 1986-02-07 | Amerikan Hosupitaru Sapurai Corp | |
US4306570A (en) | 1980-08-20 | 1981-12-22 | Matthews Larry S | Counter rotating biopsy needle |
US4562838A (en) | 1981-01-23 | 1986-01-07 | Walker William S | Electrosurgery instrument |
US5026370A (en) | 1981-03-11 | 1991-06-25 | Lottick Edward A | Electrocautery instrument |
US4463759A (en) | 1982-01-13 | 1984-08-07 | Garito Jon C | Universal finger/foot switch adaptor for tube-type electrosurgical instrument |
US4535773A (en) | 1982-03-26 | 1985-08-20 | Inbae Yoon | Safety puncturing instrument and method |
US4512344A (en) | 1982-05-12 | 1985-04-23 | Barber Forest C | Arthroscopic surgery dissecting apparatus |
US4445063A (en) | 1982-07-26 | 1984-04-24 | Solid State Systems, Corporation | Energizing circuit for ultrasonic transducer |
US4452473A (en) | 1982-07-26 | 1984-06-05 | Baxter Travenol Laboratories, Inc. | Luer connection system |
US4491132A (en) | 1982-08-06 | 1985-01-01 | Zimmer, Inc. | Sheath and retractable surgical tool combination |
US4545374A (en) | 1982-09-03 | 1985-10-08 | Jacobson Robert E | Method and instruments for performing a percutaneous lumbar diskectomy |
US4492231A (en) | 1982-09-17 | 1985-01-08 | Auth David C | Non-sticking electrocautery system and forceps |
US4553544A (en) | 1982-09-20 | 1985-11-19 | Janome Sewing Machine Co. Ltd. | Suturing instrument for surgical operation |
US4504264A (en) | 1982-09-24 | 1985-03-12 | Kelman Charles D | Apparatus for and method of removal of material using ultrasonic vibraton |
US4526571A (en) | 1982-10-15 | 1985-07-02 | Cooper Lasersonics, Inc. | Curved ultrasonic surgical aspirator |
EP0111386B1 (en) | 1982-10-26 | 1987-11-19 | University Of Aberdeen | Ultrasound hyperthermia unit |
JPS5968513U (en) | 1982-10-28 | 1984-05-09 | 持田製薬株式会社 | Horn for ultrasonic scalpel |
DE3301890C2 (en) | 1983-01-21 | 1986-04-10 | W.C. Heraeus Gmbh, 6450 Hanau | Retractor |
JPS6045668A (en) | 1983-08-23 | 1985-03-12 | 廣瀬 徳三 | Sewing method and apparatus using resin needle achieving stitch yarn effect |
DE3480462D1 (en) | 1983-09-13 | 1989-12-21 | Valleylab Inc | Electrosurgical generator |
US4550870A (en) | 1983-10-13 | 1985-11-05 | Alchemia Ltd. Partnership | Stapling device |
US4808154A (en) | 1983-10-26 | 1989-02-28 | Freeman Jerre M | Phacoemulsification/irrigation and aspiration sleeve apparatus |
US4878493A (en) | 1983-10-28 | 1989-11-07 | Ninetronix Venture I | Hand-held diathermy apparatus |
US4494759A (en) | 1983-10-31 | 1985-01-22 | Kieffer Robert A | Seal for relatively rotatable parts |
JPS60104872A (en) | 1983-11-09 | 1985-06-10 | Nippon Pillar Packing Co Ltd | Shaft seal device for emergency use |
US4574615A (en) | 1983-12-19 | 1986-03-11 | The Babcock & Wilcox Company | Sonic apparatus and method for detecting the presence of a gaseous substance in a closed space |
US4617927A (en) | 1984-02-29 | 1986-10-21 | Aspen Laboratories, Inc. | Electrosurgical unit |
US4633119A (en) | 1984-07-02 | 1986-12-30 | Gould Inc. | Broadband multi-resonant longitudinal vibrator transducer |
US4641053A (en) | 1984-08-14 | 1987-02-03 | Matsushita Seiko Co., Ltd. | Ultrasonic liquid atomizer with an improved soft start circuit |
EP0171967A3 (en) | 1984-08-15 | 1987-11-04 | Valleylab, Inc. | Electrosurgical generator |
US4633874A (en) | 1984-10-19 | 1987-01-06 | Senmed, Inc. | Surgical stapling instrument with jaw latching mechanism and disposable staple cartridge |
US4634420A (en) | 1984-10-31 | 1987-01-06 | United Sonics Incorporated | Apparatus and method for removing tissue mass from an organism |
US4821719A (en) | 1984-12-03 | 1989-04-18 | Fogarty Thomas J | Cohesive-adhesive atraumatic clamp |
US4649919A (en) | 1985-01-23 | 1987-03-17 | Precision Surgical Instruments, Inc. | Surgical instrument |
US4663677A (en) * | 1985-07-24 | 1987-05-05 | Iomega Corporation | Magnetic disk drive having a movable drive motor loading mechanism |
US4640279A (en) | 1985-08-08 | 1987-02-03 | Oximetrix, Inc. | Combination surgical scalpel and electrosurgical instrument |
US4922902A (en) | 1986-05-19 | 1990-05-08 | Valleylab, Inc. | Method for removing cellular material with endoscopic ultrasonic aspirator |
US4750488A (en) | 1986-05-19 | 1988-06-14 | Sonomed Technology, Inc. | Vibration apparatus preferably for endoscopic ultrasonic aspirator |
US4712722A (en) | 1985-09-04 | 1987-12-15 | Eg&G, Inc. | Concurrent ultrasonic weld evaluation system |
JPS6266848A (en) | 1985-09-20 | 1987-03-26 | 住友ベークライト株式会社 | Surgical operation appliance |
US4674502A (en) | 1985-09-27 | 1987-06-23 | Coopervision, Inc. | Intraocular surgical instrument |
US4983160A (en) | 1985-09-27 | 1991-01-08 | Nestle S.A. | Rigid transparent fluid conduit for ophthalmic surgical irrigation |
US4708127A (en) | 1985-10-24 | 1987-11-24 | The Birtcher Corporation | Ultrasonic generating system with feedback control |
US4662068A (en) | 1985-11-14 | 1987-05-05 | Eli Polonsky | Suture fusing and cutting apparatus |
US4646738A (en) | 1985-12-05 | 1987-03-03 | Concept, Inc. | Rotary surgical tool |
US5047043A (en) | 1986-03-11 | 1991-09-10 | Olympus Optical Co., Ltd. | Resecting device for living organism tissue utilizing ultrasonic vibrations |
US4696667A (en) | 1986-03-20 | 1987-09-29 | Helmut Masch | Intravascular catheter and method |
JPH0796017B2 (en) | 1986-03-20 | 1995-10-18 | オリンパス光学工業株式会社 | Biopsy device |
JPH0767460B2 (en) | 1986-03-28 | 1995-07-26 | オリンパス光学工業株式会社 | Ultrasonic treatment device |
US4827911A (en) | 1986-04-02 | 1989-05-09 | Cooper Lasersonics, Inc. | Method and apparatus for ultrasonic surgical fragmentation and removal of tissue |
JPS62292154A (en) | 1986-06-13 | 1987-12-18 | オリンパス光学工業株式会社 | Ultrasonic living body tissue cutting probe |
JPS62292153A (en) | 1986-06-13 | 1987-12-18 | オリンパス光学工業株式会社 | Ultrasonic living body tissue cutting probe |
DE3689889D1 (en) | 1986-07-17 | 1994-07-07 | Erbe Elektromedizin | High-frequency surgical device for the thermal coagulation of biological tissues. |
US4735603A (en) | 1986-09-10 | 1988-04-05 | James H. Goodson | Laser smoke evacuation system and method |
JPH0777161B2 (en) | 1986-10-24 | 1995-08-16 | 日本メクトロン株式会社 | PTC composition, method for producing the same and PTC element |
JPS63109386A (en) | 1986-10-28 | 1988-05-14 | Honda Denshi Giken:Kk | Method for compensating temperature of ultrasonic sensor |
EP0270819A3 (en) | 1986-11-07 | 1989-01-11 | Alcon Laboratories, Inc. | Linear power control for ultrasonic probe with tuned reactance |
US4954960A (en) | 1986-11-07 | 1990-09-04 | Alcon Laboratories | Linear power control for ultrasonic probe with tuned reactance |
US4852578A (en) | 1986-11-13 | 1989-08-01 | The United State Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Rapidly quantifying the relative distention of a human bladder |
US4761871A (en) | 1986-11-21 | 1988-08-09 | Phillips Petroleum Company | Method of joining two thermoplastic articles |
US5058570A (en) | 1986-11-27 | 1991-10-22 | Sumitomo Bakelite Company Limited | Ultrasonic surgical apparatus |
US4836186A (en) | 1987-01-16 | 1989-06-06 | Scholz Francis J | Body compression device for patients under fluoroscopic examination |
US4838853A (en) | 1987-02-05 | 1989-06-13 | Interventional Technologies Inc. | Apparatus for trimming meniscus |
DE8702446U1 (en) | 1987-02-18 | 1987-10-08 | Kothe, Lutz, 7760 Radolfzell | Medical device |
US4783997A (en) | 1987-02-26 | 1988-11-15 | Panametrics, Inc. | Ultrasonic transducers for high temperature applications |
DE3807004A1 (en) | 1987-03-02 | 1988-09-15 | Olympus Optical Co | ULTRASONIC TREATMENT DEVICE |
IL82163A (en) | 1987-04-10 | 1990-07-26 | Laser Ind Ltd | Optical-fiber type power transmission device |
US4936842A (en) | 1987-05-08 | 1990-06-26 | Circon Corporation | Electrosurgical probe apparatus |
JP2568564B2 (en) | 1987-07-21 | 1997-01-08 | 松下電器産業株式会社 | Lining material and ultrasonic drive motor using the lining material |
US5106538A (en) | 1987-07-21 | 1992-04-21 | Raychem Corporation | Conductive polymer composition |
US4867157A (en) | 1987-08-13 | 1989-09-19 | Baxter Travenol Laboratories, Inc. | Surgical cutting instrument |
US4850354A (en) | 1987-08-13 | 1989-07-25 | Baxter Travenol Laboratories, Inc. | Surgical cutting instrument |
US4819635A (en) | 1987-09-18 | 1989-04-11 | Henry Shapiro | Tubular microsurgery cutting apparatus |
US4844064A (en) | 1987-09-30 | 1989-07-04 | Baxter Travenol Laboratories, Inc. | Surgical cutting instrument with end and side openings |
US5015227A (en) | 1987-09-30 | 1991-05-14 | Valleylab Inc. | Apparatus for providing enhanced tissue fragmentation and/or hemostasis |
US4915643A (en) | 1987-10-28 | 1990-04-10 | Yazaki Corporation | Connector |
US5035695A (en) | 1987-11-30 | 1991-07-30 | Jaroy Weber, Jr. | Extendable electrocautery surgery apparatus and method |
JPH01151452A (en) | 1987-12-09 | 1989-06-14 | Olympus Optical Co Ltd | Ultrasonic suction apparatus |
JPH01198540A (en) | 1987-12-24 | 1989-08-10 | Sumitomo Bakelite Co Ltd | Excretory treatment apparatus |
ATE132047T1 (en) | 1988-01-20 | 1996-01-15 | G2 Design Ltd | DIATHERMY DEVICE |
US5163421A (en) | 1988-01-22 | 1992-11-17 | Angiosonics, Inc. | In vivo ultrasonic system with angioplasty and ultrasonic contrast imaging |
US4862890A (en) | 1988-02-29 | 1989-09-05 | Everest Medical Corporation | Electrosurgical spatula blade with ceramic substrate |
EP0336742A3 (en) | 1988-04-08 | 1990-05-16 | Bristol-Myers Company | Method and apparatus for the calibration of electrosurgical apparatus |
US4869715A (en) | 1988-04-21 | 1989-09-26 | Sherburne Fred S | Ultrasonic cone and method of construction |
JPH0532094Y2 (en) | 1988-05-17 | 1993-08-18 | ||
US4910389A (en) | 1988-06-03 | 1990-03-20 | Raychem Corporation | Conductive polymer compositions |
US4880015A (en) | 1988-06-03 | 1989-11-14 | Nierman David M | Biopsy forceps |
US4965532A (en) | 1988-06-17 | 1990-10-23 | Olympus Optical Co., Ltd. | Circuit for driving ultrasonic transducer |
US4896009A (en) | 1988-07-11 | 1990-01-23 | James River Corporation | Gas permeable microwave reactive package |
US4865159A (en) | 1988-07-18 | 1989-09-12 | Jamison Michael V | Acoustic horn and attachment device |
JP3088004B2 (en) | 1989-04-28 | 2000-09-18 | 株式会社東芝 | Operation command device |
US4920978A (en) | 1988-08-31 | 1990-05-01 | Triangle Research And Development Corporation | Method and apparatus for the endoscopic treatment of deep tumors using RF hyperthermia |
US4903696A (en) | 1988-10-06 | 1990-02-27 | Everest Medical Corporation | Electrosurgical generator |
JPH0529698Y2 (en) | 1988-10-27 | 1993-07-29 | ||
GB2226245A (en) | 1988-11-18 | 1990-06-27 | Alan Crockard | Endoscope, remote actuator and aneurysm clip applicator. |
US5318570A (en) | 1989-01-31 | 1994-06-07 | Advanced Osseous Technologies, Inc. | Ultrasonic tool |
US5324297A (en) | 1989-01-31 | 1994-06-28 | Advanced Osseous Technologies, Inc. | Ultrasonic tool connector |
US5061269A (en) | 1989-02-07 | 1991-10-29 | Joseph J. Berke | Surgical rongeur power grip structure and method |
US5084052A (en) | 1989-02-09 | 1992-01-28 | Baxter International Inc. | Surgical cutting instrument with plurality of openings |
DE3904558C2 (en) | 1989-02-15 | 1997-09-18 | Lindenmeier Heinz | Automatically power-controlled high-frequency generator for high-frequency surgery |
US4981756A (en) | 1989-03-21 | 1991-01-01 | Vac-Tec Systems, Inc. | Method for coated surgical instruments and tools |
US5653713A (en) | 1989-04-24 | 1997-08-05 | Michelson; Gary Karlin | Surgical rongeur |
US5451227A (en) | 1989-04-24 | 1995-09-19 | Michaelson; Gary K. | Thin foot plate multi bite rongeur |
US6129740A (en) | 1989-04-24 | 2000-10-10 | Michelson; Gary Karlin | Instrument handle design |
JPH02286149A (en) | 1989-04-27 | 1990-11-26 | Sumitomo Bakelite Co Ltd | Surgery operating device |
CA2007210C (en) | 1989-05-10 | 1996-07-09 | Stephen D. Kuslich | Intervertebral reamer |
US5226910A (en) | 1989-07-05 | 1993-07-13 | Kabushiki Kaisha Topcon | Surgical cutter |
JP2829864B2 (en) | 1989-07-05 | 1998-12-02 | 株式会社トプコン | Surgical cutter |
DE3923851C1 (en) | 1989-07-19 | 1990-08-16 | Richard Wolf Gmbh, 7134 Knittlingen, De | |
US5123903A (en) | 1989-08-10 | 1992-06-23 | Medical Products Development, Inc. | Disposable aspiration sleeve for ultrasonic lipectomy |
US5226909A (en) | 1989-09-12 | 1993-07-13 | Devices For Vascular Intervention, Inc. | Atherectomy device having helical blade and blade guide |
DE69019289T2 (en) | 1989-10-27 | 1996-02-01 | Storz Instr Co | Method for driving an ultrasonic transducer. |
US5105117A (en) | 1989-10-31 | 1992-04-14 | Brother Kogyo Kabushiki Kaisha | Ultrasonic motor |
US5167619A (en) | 1989-11-17 | 1992-12-01 | Sonokineticss Group | Apparatus and method for removal of cement from bone cavities |
US5176677A (en) | 1989-11-17 | 1993-01-05 | Sonokinetics Group | Endoscopic ultrasonic rotary electro-cauterizing aspirator |
US6099550A (en) | 1989-12-05 | 2000-08-08 | Yoon; Inbae | Surgical instrument having jaws and an operating channel and method for use thereof |
US5984938A (en) | 1989-12-05 | 1999-11-16 | Yoon; Inbae | Surgical instrument with jaws and movable internal scissors and method for use thereof |
US5665100A (en) | 1989-12-05 | 1997-09-09 | Yoon; Inbae | Multifunctional instrument with interchangeable operating units for performing endoscopic procedures |
US5108383A (en) | 1989-12-08 | 1992-04-28 | Allied-Signal Inc. | Membranes for absorbent packets |
US5057119A (en) | 1989-12-12 | 1991-10-15 | Ultracision Inc. | Apparatus and methods for attaching and detaching an ultrasonic actuated blade/coupler and an acoustical mount therefor |
US5059210A (en) | 1989-12-12 | 1991-10-22 | Ultracision Inc. | Apparatus and methods for attaching and detaching an ultrasonic actuated blade/coupler and an acoustical mount therefor |
US4978067A (en) | 1989-12-22 | 1990-12-18 | Sono-Tek Corporation | Unitary axial flow tube ultrasonic atomizer with enhanced sealing |
US5096532A (en) | 1990-01-10 | 1992-03-17 | Kimberly-Clark Corporation | Ultrasonic rotary horn |
IL93141A0 (en) | 1990-01-23 | 1990-11-05 | Urcan Medical Ltd | Ultrasonic recanalization system |
US5391144A (en) | 1990-02-02 | 1995-02-21 | Olympus Optical Co., Ltd. | Ultrasonic treatment apparatus |
US5126618A (en) | 1990-03-06 | 1992-06-30 | Brother Kogyo Kabushiki Kaisha | Longitudinal-effect type laminar piezoelectric/electrostrictive driver, and printing actuator using the driver |
US5167725A (en) | 1990-08-01 | 1992-12-01 | Ultracision, Inc. | Titanium alloy blade coupler coated with nickel-chrome for ultrasonic scalpel |
US5026387A (en) | 1990-03-12 | 1991-06-25 | Ultracision Inc. | Method and apparatus for ultrasonic surgical cutting and hemostatis |
US5263957A (en) | 1990-03-12 | 1993-11-23 | Ultracision Inc. | Ultrasonic scalpel blade and methods of application |
US5112300A (en) | 1990-04-03 | 1992-05-12 | Alcon Surgical, Inc. | Method and apparatus for controlling ultrasonic fragmentation of body tissue |
JPH042570U (en) | 1990-04-19 | 1992-01-10 | ||
US5241968A (en) | 1990-05-10 | 1993-09-07 | Symbiosis Corporation | Single acting endoscopic instruments |
US5156633A (en) | 1990-05-10 | 1992-10-20 | Symbiosis Corporation | Maryland dissector laparoscopic instrument |
CA2042006C (en) | 1990-05-11 | 1995-08-29 | Morito Idemoto | Surgical ultrasonic horn |
JPH0546429Y2 (en) | 1990-06-21 | 1993-12-06 | ||
WO1991017716A1 (en) | 1990-05-17 | 1991-11-28 | Sumitomo Bakelite Company Limited | Surgical instrument |
USD327872S (en) | 1990-06-06 | 1992-07-14 | Raychem Corporation | Coaxial cable connector |
US5275609A (en) | 1990-06-22 | 1994-01-04 | Vance Products Incorporated | Surgical cutting instrument |
US5593425A (en) | 1990-06-28 | 1997-01-14 | Peter M. Bonutti | Surgical devices assembled using heat bonable materials |
US7208013B1 (en) | 1990-06-28 | 2007-04-24 | Bonutti Ip, Llc | Composite surgical devices |
US5269785A (en) | 1990-06-28 | 1993-12-14 | Bonutti Peter M | Apparatus and method for tissue removal |
JP2863280B2 (en) | 1990-07-04 | 1999-03-03 | アスモ株式会社 | Driving method of ultrasonic motor |
JP2987175B2 (en) | 1990-07-05 | 1999-12-06 | オリンパス光学工業株式会社 | Ultrasound therapy equipment |
JPH0621450Y2 (en) | 1990-07-05 | 1994-06-08 | アロカ株式会社 | Ultrasonic surgical instrument |
US5159226A (en) | 1990-07-16 | 1992-10-27 | Atlantic Richfield Company | Torsional force transducer and method of operation |
US5911699A (en) | 1990-07-17 | 1999-06-15 | Aziz Yehia Anis | Removal of tissue |
US5209776A (en) | 1990-07-27 | 1993-05-11 | The Trustees Of Columbia University In The City Of New York | Tissue bonding and sealing composition and method of using the same |
US5218529A (en) | 1990-07-30 | 1993-06-08 | University Of Georgia Research Foundation, Inc. | Neural network system and methods for analysis of organic materials and structures using spectral data |
JPH04106932A (en) * | 1990-08-27 | 1992-04-08 | Fujitsu Ltd | Manufacture of bipolar transistor |
USD332660S (en) | 1990-09-17 | 1993-01-19 | United States Surgical Corporation | Surgical clip applier |
US5088687A (en) | 1990-09-19 | 1992-02-18 | Stender Carl H | Ball valve seat for high temperature service |
US5725529A (en) | 1990-09-25 | 1998-03-10 | Innovasive Devices, Inc. | Bone fastener |
US5104025A (en) | 1990-09-28 | 1992-04-14 | Ethicon, Inc. | Intraluminal anastomotic surgical stapler with detached anvil |
USD330253S (en) * | 1990-10-04 | 1992-10-13 | Birtcher Medical Systems, Inc. | Electrosurgical handpiece |
US5509922A (en) | 1990-10-05 | 1996-04-23 | United States Surgical Corporation | Endoscopic surgical instrument |
US5486189A (en) | 1990-10-05 | 1996-01-23 | United States Surgical Corporation | Endoscopic surgical instrument |
JPH04150847A (en) | 1990-10-12 | 1992-05-25 | Katsuya Takasu | Armpit smell surgical apparatus and chip for operation |
US5042707A (en) | 1990-10-16 | 1991-08-27 | Taheri Syde A | Intravascular stapler, and method of operating same |
US5190541A (en) | 1990-10-17 | 1993-03-02 | Boston Scientific Corporation | Surgical instrument and method |
JP2960954B2 (en) | 1990-10-17 | 1999-10-12 | オリンパス光学工業株式会社 | Ultrasound therapy equipment |
JPH04161078A (en) | 1990-10-20 | 1992-06-04 | Brother Ind Ltd | Driver for standing wave ultrasonic motor |
US5242460A (en) | 1990-10-25 | 1993-09-07 | Devices For Vascular Intervention, Inc. | Atherectomy catheter having axially-disposed cutting edge |
US5152762A (en) | 1990-11-16 | 1992-10-06 | Birtcher Medical Systems, Inc. | Current leakage control for electrosurgical generator |
US5162044A (en) | 1990-12-10 | 1992-11-10 | Storz Instrument Company | Phacoemulsification transducer with rotatable handle |
US5447509A (en) | 1991-01-11 | 1995-09-05 | Baxter International Inc. | Ultrasound catheter system having modulated output with feedback control |
US5368557A (en) | 1991-01-11 | 1994-11-29 | Baxter International Inc. | Ultrasonic ablation catheter device having multiple ultrasound transmission members |
US5222937A (en) | 1991-01-11 | 1993-06-29 | Olympus Optical Co., Ltd. | Ultrasonic treatment apparatus |
US5304115A (en) | 1991-01-11 | 1994-04-19 | Baxter International Inc. | Ultrasonic angioplasty device incorporating improved transmission member and ablation probe |
US5957882A (en) | 1991-01-11 | 1999-09-28 | Advanced Cardiovascular Systems, Inc. | Ultrasound devices for ablating and removing obstructive matter from anatomical passageways and blood vessels |
US5184605A (en) | 1991-01-31 | 1993-02-09 | Excel Tech Ltd. | Therapeutic ultrasound generator with radiation dose control |
WO1992014514A1 (en) | 1991-02-13 | 1992-09-03 | Applied Medical Resources, Inc. | Surgical trocar |
US5156613A (en) | 1991-02-13 | 1992-10-20 | Interface Biomedical Laboratories Corp. | Collagen welding rod material for use in tissue welding |
US5231989A (en) | 1991-02-15 | 1993-08-03 | Raychem Corporation | Steerable cannula |
US5409453A (en) | 1992-08-12 | 1995-04-25 | Vidamed, Inc. | Steerable medical probe with stylets |
US5438997A (en) | 1991-03-13 | 1995-08-08 | Sieben; Wayne | Intravascular imaging apparatus and methods for use and manufacture |
CA2061885A1 (en) * | 1991-03-14 | 1992-09-15 | David T. Green | Approximating apparatus for surgical jaw structure |
US5217460A (en) | 1991-03-22 | 1993-06-08 | Knoepfler Dennis J | Multiple purpose forceps |
US5109819A (en) | 1991-03-29 | 1992-05-05 | Cummins Electronics Company, Inc. | Accelerator control system for a motor vehicle |
JP3064458B2 (en) | 1991-04-02 | 2000-07-12 | 日本電気株式会社 | Thickness longitudinal vibration piezoelectric transformer and its driving method |
US5258004A (en) | 1991-04-04 | 1993-11-02 | Symbiosis Corporation | Double acting, dual pivot thoracoscopic surgical lung clamps |
US5396900A (en) | 1991-04-04 | 1995-03-14 | Symbiosis Corporation | Endoscopic end effectors constructed from a combination of conductive and non-conductive materials and useful for selective endoscopic cautery |
US5163537A (en) | 1991-04-29 | 1992-11-17 | Simmons-Rand Company | Battery changing system for electric battery-powered vehicles |
US5160334A (en) | 1991-04-30 | 1992-11-03 | Utah Medical Products, Inc. | Electrosurgical generator and suction apparatus |
US5221282A (en) | 1991-05-29 | 1993-06-22 | Sonokinetics Group | Tapered tip ultrasonic aspirator |
US5472443A (en) | 1991-06-07 | 1995-12-05 | Hemostatic Surgery Corporation | Electrosurgical apparatus employing constant voltage and methods of use |
US5324289A (en) | 1991-06-07 | 1994-06-28 | Hemostatic Surgery Corporation | Hemostatic bi-polar electrosurgical cutting apparatus and methods of use |
US5196007A (en) | 1991-06-07 | 1993-03-23 | Alan Ellman | Electrosurgical handpiece with activator |
US5484436A (en) | 1991-06-07 | 1996-01-16 | Hemostatic Surgery Corporation | Bi-polar electrosurgical instruments and methods of making |
US5234428A (en) | 1991-06-11 | 1993-08-10 | Kaufman David I | Disposable electrocautery/cutting instrument with integral continuous smoke evacuation |
US5496411A (en) | 1991-06-14 | 1996-03-05 | Halcro Nominees Pty. Ltd. | Ultrasonic vibration generator and use of same for cleaning objects in a volume of liquid |
US5176695A (en) | 1991-07-08 | 1993-01-05 | Davinci Medical, Inc. | Surgical cutting means |
USD334173S (en) | 1991-07-17 | 1993-03-23 | Pan-International Industrial Corp. | Plastic outer shell for a computer connector |
US5234436A (en) | 1991-07-17 | 1993-08-10 | Eaton Alexander M | Sheath structure for a surgical knife |
US5257988A (en) | 1991-07-19 | 1993-11-02 | L'esperance Medical Technologies, Inc. | Apparatus for phacoemulsifying cataractous-lens tissue within a protected environment |
US5383888A (en) | 1992-02-12 | 1995-01-24 | United States Surgical Corporation | Articulating endoscopic surgical apparatus |
US5387207A (en) | 1991-08-12 | 1995-02-07 | The Procter & Gamble Company | Thin-unit-wet absorbent foam materials for aqueous body fluids and process for making same |
GR920100358A (en) | 1991-08-23 | 1993-06-07 | Ethicon Inc | Surgical anastomosis stapling instrument. |
US5285795A (en) | 1991-09-12 | 1994-02-15 | Surgical Dynamics, Inc. | Percutaneous discectomy system having a bendable discectomy probe and a steerable cannula |
US5275607A (en) | 1991-09-23 | 1994-01-04 | Visionary Medical, Inc. | Intraocular surgical scissors |
US5476479A (en) | 1991-09-26 | 1995-12-19 | United States Surgical Corporation | Handle for endoscopic surgical instruments and jaw structure |
JPH0595955A (en) | 1991-10-07 | 1993-04-20 | Olympus Optical Co Ltd | Ultrasonic therapeutic apparatus |
US5242385A (en) | 1991-10-08 | 1993-09-07 | Surgical Design Corporation | Ultrasonic handpiece |
CA2535467C (en) | 1991-10-09 | 2008-04-01 | Ethicon, Inc. | Electrosurgical device |
USD347474S (en) | 1991-10-11 | 1994-05-31 | Ethicon, Inc. | Endoscopic stapler |
US5307976A (en) | 1991-10-18 | 1994-05-03 | Ethicon, Inc. | Linear stapling mechanism with cutting means |
US6250532B1 (en) | 1991-10-18 | 2001-06-26 | United States Surgical Corporation | Surgical stapling apparatus |
US5711472A (en) | 1991-10-18 | 1998-01-27 | United States Surgical Corporation | Self contained gas powered surgical apparatus |
US5395312A (en) | 1991-10-18 | 1995-03-07 | Desai; Ashvin | Surgical tool |
US5326013A (en) | 1991-10-18 | 1994-07-05 | United States Surgical Corporation | Self contained gas powered surgical apparatus |
US5356064A (en) * | 1991-10-18 | 1994-10-18 | United States Surgical Corporation | Apparatus and method for applying surgical staples to attach an object to body tissue |
US5312023A (en) | 1991-10-18 | 1994-05-17 | United States Surgical Corporation | Self contained gas powered surgical apparatus |
US5562703A (en) | 1994-06-14 | 1996-10-08 | Desai; Ashvin H. | Endoscopic surgical instrument |
US5478003A (en) | 1991-10-18 | 1995-12-26 | United States Surgical Corporation | Surgical apparatus |
JPH05115490A (en) | 1991-10-25 | 1993-05-14 | Olympus Optical Co Ltd | Ultrasonic treatment device |
US5713896A (en) | 1991-11-01 | 1998-02-03 | Medical Scientific, Inc. | Impedance feedback electrosurgical system |
US5665085A (en) | 1991-11-01 | 1997-09-09 | Medical Scientific, Inc. | Electrosurgical cutting tool |
US5531744A (en) | 1991-11-01 | 1996-07-02 | Medical Scientific, Inc. | Alternative current pathways for bipolar surgical cutting tool |
CA2122834C (en) | 1991-11-04 | 1999-10-05 | Henry Nita | Ultrasonic ablation device adapted for guidewire passage |
US5383874A (en) | 1991-11-08 | 1995-01-24 | Ep Technologies, Inc. | Systems for identifying catheters and monitoring their use |
JPH07500757A (en) | 1991-11-08 | 1995-01-26 | イーピー テクノロジーズ,インコーポレイテッド | System and method for ablating tissue while monitoring tissue impedance |
US5197964A (en) | 1991-11-12 | 1993-03-30 | Everest Medical Corporation | Bipolar instrument utilizing one stationary electrode and one movable electrode |
US5254129A (en) | 1991-11-22 | 1993-10-19 | Alexander Chris B | Arthroscopic resector |
US5433725A (en) | 1991-12-13 | 1995-07-18 | Unisurge, Inc. | Hand-held surgical device and tools for use therewith, assembly and method |
US6210402B1 (en) | 1995-11-22 | 2001-04-03 | Arthrocare Corporation | Methods for electrosurgical dermatological treatment |
US5213103A (en) | 1992-01-31 | 1993-05-25 | Acoustic Imaging Technologies Corp. | Apparatus for and method of cooling ultrasonic medical transducers by conductive heat transfer |
WO1993014708A1 (en) | 1992-02-03 | 1993-08-05 | Ultracision Inc. | Laparoscopic surgical apparatus and methods using ultrasonic energy |
US5324299A (en) | 1992-02-03 | 1994-06-28 | Ultracision, Inc. | Ultrasonic scalpel blade and methods of application |
AU663543B2 (en) | 1992-02-07 | 1995-10-12 | Sherwood Services Ag | Ultrasonic surgical apparatus |
US5387215A (en) | 1992-02-12 | 1995-02-07 | Sierra Surgical Inc. | Surgical instrument for cutting hard tissue and method of use |
US5626595A (en) | 1992-02-14 | 1997-05-06 | Automated Medical Instruments, Inc. | Automated surgical instrument |
US5428504A (en) | 1992-02-18 | 1995-06-27 | Motorola, Inc. | Cooling cover for RF power devices |
US5645075A (en) | 1992-02-18 | 1997-07-08 | Symbiosis Corporation | Jaw assembly for an endoscopic instrument |
US5261922A (en) | 1992-02-20 | 1993-11-16 | Hood Larry L | Improved ultrasonic knife |
US5695510A (en) | 1992-02-20 | 1997-12-09 | Hood; Larry L. | Ultrasonic knife |
US5269297A (en) | 1992-02-27 | 1993-12-14 | Angiosonics Inc. | Ultrasonic transmission apparatus |
US5171251A (en) | 1992-03-02 | 1992-12-15 | Ethicon, Inc. | Surgical clip having hole therein and method of anchoring suture |
US5213569A (en) | 1992-03-31 | 1993-05-25 | Davis Peter L | Tip for a tissue phacoemulsification device |
US5411481A (en) | 1992-04-08 | 1995-05-02 | American Cyanamid Co. | Surgical purse string suturing instrument and method |
US5372585A (en) | 1992-04-09 | 1994-12-13 | Tiefenbrun; Jonathan | Instrument and associated method for applying biologically effective composition during laparoscopic operation |
US5540681A (en) | 1992-04-10 | 1996-07-30 | Medtronic Cardiorhythm | Method and system for radiofrequency ablation of tissue |
US5318525A (en) | 1992-04-10 | 1994-06-07 | Medtronic Cardiorhythm | Steerable electrode catheter |
US5620459A (en) | 1992-04-15 | 1997-04-15 | Microsurge, Inc. | Surgical instrument |
US5318589A (en) * | 1992-04-15 | 1994-06-07 | Microsurge, Inc. | Surgical instrument for endoscopic surgery |
US5300068A (en) | 1992-04-21 | 1994-04-05 | St. Jude Medical, Inc. | Electrosurgical apparatus |
US5443463A (en) | 1992-05-01 | 1995-08-22 | Vesta Medical, Inc. | Coagulating forceps |
US5318564A (en) | 1992-05-01 | 1994-06-07 | Hemostatic Surgery Corporation | Bipolar surgical snare and methods of use |
US5353474A (en) | 1992-05-01 | 1994-10-11 | Good Wayne T | Transferrable personalized grip for a handle assembly and method for making same |
US5293863A (en) | 1992-05-08 | 1994-03-15 | Loma Linda University Medical Center | Bladed endoscopic retractor |
US5389098A (en) | 1992-05-19 | 1995-02-14 | Olympus Optical Co., Ltd. | Surgical device for stapling and/or fastening body tissues |
JP3069819B2 (en) | 1992-05-28 | 2000-07-24 | 富士通株式会社 | Heat sink, heat sink fixture used for the heat sink, and portable electronic device using the heat sink |
US5906625A (en) | 1992-06-04 | 1999-05-25 | Olympus Optical Co., Ltd. | Tissue-fixing surgical instrument, tissue-fixing device, and method of fixing tissue |
US5318563A (en) | 1992-06-04 | 1994-06-07 | Valley Forge Scientific Corporation | Bipolar RF generator |
US5658300A (en) | 1992-06-04 | 1997-08-19 | Olympus Optical Co., Ltd. | Tissue fixing surgical instrument, tissue-fixing device, and method of fixing tissues |
JPH0647048A (en) | 1992-06-04 | 1994-02-22 | Olympus Optical Co Ltd | Ligature and suture device |
US5383883A (en) | 1992-06-07 | 1995-01-24 | Wilk; Peter J. | Method for ultrasonically applying a surgical device |
JP3098858B2 (en) | 1992-06-08 | 2000-10-16 | オリンパス光学工業株式会社 | Ultrasonic motor |
DE69316894T2 (en) | 1992-06-24 | 1998-09-24 | Microsurge Inc | REUSABLE ENDOSCOPIC, SURGICAL INSTRUMENT |
JP3386517B2 (en) | 1992-06-26 | 2003-03-17 | オリンパス光学工業株式会社 | Ultrasonic treatment equipment |
US6449006B1 (en) | 1992-06-26 | 2002-09-10 | Apollo Camera, Llc | LED illumination system for endoscopic cameras |
US5408268A (en) | 1992-06-26 | 1995-04-18 | Apollo Camera, L.L.C. | Video imaging system and method using a single full frame sensor and sequential color object illumination |
US5264925A (en) | 1992-06-26 | 1993-11-23 | Life Surgery, Inc. | Single sensor video imaging system and method using sequential color object illumination |
US5394187A (en) | 1992-06-26 | 1995-02-28 | Apollo Camera, L.L.C. | Video imaging systems and method using a single interline progressive scanning sensor and sequential color object illumination |
US5366466A (en) | 1992-07-09 | 1994-11-22 | Unisurge, Inc. | Surgical scissors |
DE9210327U1 (en) | 1992-07-16 | 1992-11-26 | Kothe, Lutz, 7760 Radolfzell | Forceps handle for medical equipment |
US5657429A (en) | 1992-08-10 | 1997-08-12 | Computer Motion, Inc. | Automated endoscope system optimal positioning |
US5542916A (en) | 1992-08-12 | 1996-08-06 | Vidamed, Inc. | Dual-channel RF power delivery system |
US5258006A (en) | 1992-08-21 | 1993-11-02 | Everest Medical Corporation | Bipolar electrosurgical forceps |
US5282817A (en) | 1992-09-08 | 1994-02-01 | Hoogeboom Thomas J | Actuating handle for multipurpose surgical instrument |
US5562659A (en) | 1992-09-09 | 1996-10-08 | Materials Conversion Corp. | Electro-surgical instrument and method of fabrication |
JPH06104503A (en) | 1992-09-18 | 1994-04-15 | Sharp Corp | Bimorph piezoelectric actuator |
US5282800A (en) | 1992-09-18 | 1994-02-01 | Edward Weck, Inc. | Surgical instrument |
US5334198A (en) | 1992-10-09 | 1994-08-02 | Innovasive Devices, Inc. | Surgical instrument |
US5330502A (en) | 1992-10-09 | 1994-07-19 | Ethicon, Inc. | Rotational endoscopic mechanism with jointed drive mechanism |
US5626587A (en) | 1992-10-09 | 1997-05-06 | Ethicon Endo-Surgery, Inc. | Method for operating a surgical instrument |
US5662662A (en) | 1992-10-09 | 1997-09-02 | Ethicon Endo-Surgery, Inc. | Surgical instrument and method |
US5601224A (en) | 1992-10-09 | 1997-02-11 | Ethicon, Inc. | Surgical instrument |
US5520704A (en) | 1992-10-09 | 1996-05-28 | United States Surgical Corporation | Everting forceps with locking mechanism |
US5312327A (en) | 1992-10-09 | 1994-05-17 | Symbiosis Corporation | Cautery override safety systems endoscopic electrosurgical suction-irrigation instrument |
US5374813A (en) | 1992-10-15 | 1994-12-20 | Life Surgery, Inc. | Surgical instrument recycling and tracking system |
US5289436A (en) | 1992-10-22 | 1994-02-22 | General Electric Company | Ultrasonic waveguide |
US5309927A (en) | 1992-10-22 | 1994-05-10 | Ethicon, Inc. | Circular stapler tissue retention spring method |
US5275166A (en) | 1992-11-16 | 1994-01-04 | Ethicon, Inc. | Method and apparatus for performing ultrasonic assisted surgical procedures |
US5395364A (en) | 1993-06-10 | 1995-03-07 | Symbiosis Corporation | Endoscopic instrument incorporating an elastomeric fluid seal |
US5397293A (en) | 1992-11-25 | 1995-03-14 | Misonix, Inc. | Ultrasonic device with sheath and transverse motion damping |
EP0768840B1 (en) | 1992-11-30 | 2001-12-12 | Sherwood Services AG | Circuitry for an ultrasonic surgical instrument with an energy initiator to maintain the vibration and linear dynamics |
US5400267A (en) | 1992-12-08 | 1995-03-21 | Hemostatix Corporation | Local in-device memory feature for electrically powered medical equipment |
US5807393A (en) | 1992-12-22 | 1998-09-15 | Ethicon Endo-Surgery, Inc. | Surgical tissue treating device with locking mechanism |
US5558671A (en) | 1993-07-22 | 1996-09-24 | Yates; David C. | Impedance feedback monitor for electrosurgical instrument |
US5403312A (en) | 1993-07-22 | 1995-04-04 | Ethicon, Inc. | Electrosurgical hemostatic device |
US5354265A (en) | 1992-12-30 | 1994-10-11 | Mackool Richard J | Fluid infusion sleeve |
DE4300307C2 (en) | 1993-01-08 | 1996-09-19 | Aesculap Ag | Surgical instrument |
US5385570A (en) | 1993-01-12 | 1995-01-31 | R. J. Surgical Instruments, Inc. | Surgical cutting instrument |
JPH06217988A (en) | 1993-01-26 | 1994-08-09 | Terumo Corp | Blood vessel sticking instrument |
US5322055B1 (en) * | 1993-01-27 | 1997-10-14 | Ultracision Inc | Clamp coagulator/cutting system for ultrasonic surgical instruments |
DE69409565T2 (en) * | 1993-01-29 | 1998-10-01 | Smith & Nephew Inc | Swiveling curved instrument |
US5620447A (en) | 1993-01-29 | 1997-04-15 | Smith & Nephew Dyonics Inc. | Surgical instrument |
US5342359A (en) | 1993-02-05 | 1994-08-30 | Everest Medical Corporation | Bipolar coagulation device |
US5357423A (en) | 1993-02-22 | 1994-10-18 | Kulicke And Soffa Investments, Inc. | Apparatus and method for automatically adjusting power output of an ultrasonic generator |
KR940019363A (en) | 1993-02-22 | 1994-09-14 | 요시히데 시바노 | Oscillator Oscillation Method in Ultrasonic Cleaning |
US5445638B1 (en) | 1993-03-08 | 1998-05-05 | Everest Medical Corp | Bipolar coagulation and cutting forceps |
US5381067A (en) | 1993-03-10 | 1995-01-10 | Hewlett-Packard Company | Electrical impedance normalization for an ultrasonic transducer array |
JPH07507707A (en) | 1993-03-22 | 1995-08-31 | アニス,アジズ・イェヒア | tissue removal |
US5346502A (en) | 1993-04-15 | 1994-09-13 | Ultracision, Inc. | Laparoscopic ultrasonic surgical instrument and methods for manufacturing the instruments |
US5370645A (en) | 1993-04-19 | 1994-12-06 | Valleylab Inc. | Electrosurgical processor and method of use |
US5540375A (en) | 1993-04-20 | 1996-07-30 | United States Surgical Corporation | Endoscopic stapler |
ATE231364T1 (en) | 1993-04-30 | 2003-02-15 | Medical Scient Inc | ELECTROSURGICAL IMPEDANCE FEEDBACK SYSTEM |
GB9309142D0 (en) | 1993-05-04 | 1993-06-16 | Gyrus Medical Ltd | Laparoscopic instrument |
CA2121194A1 (en) | 1993-05-06 | 1994-11-07 | Corbett Stone | Bipolar electrosurgical instruments |
US5449370A (en) | 1993-05-12 | 1995-09-12 | Ethicon, Inc. | Blunt tipped ultrasonic trocar |
WO1994026167A1 (en) | 1993-05-14 | 1994-11-24 | Sri International | Remote center positioner |
CA2124109A1 (en) | 1993-05-24 | 1994-11-25 | Mark T. Byrne | Endoscopic surgical instrument with electromagnetic sensor |
US5396266A (en) | 1993-06-08 | 1995-03-07 | Technical Research Associates, Inc. | Kinesthetic feedback apparatus and method |
US5500216A (en) | 1993-06-18 | 1996-03-19 | Julian; Jorge V. | Topical hydrophobic composition and method |
USD354564S (en) | 1993-06-25 | 1995-01-17 | Richard-Allan Medical Industries, Inc. | Surgical clip applier |
US5395363A (en) | 1993-06-29 | 1995-03-07 | Utah Medical Products | Diathermy coagulation and ablation apparatus and method |
US5715817A (en) | 1993-06-29 | 1998-02-10 | C.R. Bard, Inc. | Bidirectional steering catheter |
DE4323585A1 (en) | 1993-07-14 | 1995-01-19 | Delma Elektro Med App | Bipolar high-frequency surgical instrument |
US5501654A (en) | 1993-07-15 | 1996-03-26 | Ethicon, Inc. | Endoscopic instrument having articulating element |
US5731804A (en) | 1995-01-18 | 1998-03-24 | Immersion Human Interface Corp. | Method and apparatus for providing high bandwidth, low noise mechanical I/O for computer systems |
US5805140A (en) | 1993-07-16 | 1998-09-08 | Immersion Corporation | High bandwidth force feedback interface using voice coils and flexures |
JPH09501333A (en) | 1993-07-21 | 1997-02-10 | エイチ. クリーマン,チャールズ | Surgical instruments for endoscopy and surgery |
US5792165A (en) | 1993-07-21 | 1998-08-11 | Charles H. Klieman | Endoscopic instrument with detachable end effector |
US5827323A (en) | 1993-07-21 | 1998-10-27 | Charles H. Klieman | Surgical instrument for endoscopic and general surgery |
GR940100335A (en) | 1993-07-22 | 1996-05-22 | Ethicon Inc. | Electrosurgical device for placing staples. |
US5693051A (en) | 1993-07-22 | 1997-12-02 | Ethicon Endo-Surgery, Inc. | Electrosurgical hemostatic device with adaptive electrodes |
US5810811A (en) | 1993-07-22 | 1998-09-22 | Ethicon Endo-Surgery, Inc. | Electrosurgical hemostatic device |
US5709680A (en) | 1993-07-22 | 1998-01-20 | Ethicon Endo-Surgery, Inc. | Electrosurgical hemostatic device |
US5688270A (en) | 1993-07-22 | 1997-11-18 | Ethicon Endo-Surgery,Inc. | Electrosurgical hemostatic device with recessed and/or offset electrodes |
US5817093A (en) | 1993-07-22 | 1998-10-06 | Ethicon Endo-Surgery, Inc. | Impedance feedback monitor with query electrode for electrosurgical instrument |
CA2145314C (en) | 1993-07-26 | 2005-05-03 | Rickey D. Hart | Suture grasping device |
US5678568A (en) | 1993-07-27 | 1997-10-21 | Olympus Optical Co., Ltd. | System control apparatus, medical system control apparatus and image-plane display method of medical system control apparatus |
US5419761A (en) | 1993-08-03 | 1995-05-30 | Misonix, Inc. | Liposuction apparatus and associated method |
US5858018A (en) | 1993-08-25 | 1999-01-12 | Apollo Camera, Llc | Low profile tool for applying spring action ligation clips |
CA2147757A1 (en) | 1993-08-25 | 1995-03-02 | John I. Shipp | Surgical ligation clip |
US5483501A (en) | 1993-09-14 | 1996-01-09 | The Whitaker Corporation | Short distance ultrasonic distance meter |
US5397333A (en) | 1993-09-24 | 1995-03-14 | Nusurg Medical, Inc. | Surgical hook knife |
US5371429A (en) | 1993-09-28 | 1994-12-06 | Misonix, Inc. | Electromechanical transducer device |
US5361583A (en) | 1993-09-30 | 1994-11-08 | Ethicon, Inc. | Pressurized fluid actuation system with variable force and stroke output for use in a surgical instrument |
US5339723A (en) | 1993-09-30 | 1994-08-23 | Ethicon, Inc. | Pressurized fluid actuation system for amplifying operator input force in a surgical instrument |
US6210403B1 (en) | 1993-10-07 | 2001-04-03 | Sherwood Services Ag | Automatic control for energy from an electrosurgical generator |
US5607436A (en) * | 1993-10-08 | 1997-03-04 | United States Surgical Corporation | Apparatus for applying surgical clips |
US5456689A (en) | 1993-10-13 | 1995-10-10 | Arnold J. Kresch | Method and device for tissue resection |
WO1995010978A1 (en) | 1993-10-19 | 1995-04-27 | Ep Technologies, Inc. | Segmented electrode assemblies for ablation of tissue |
US5423844A (en) | 1993-10-22 | 1995-06-13 | Promex, Inc. | Rotary surgical cutting instrument |
US5472005A (en) | 1993-11-16 | 1995-12-05 | Campbell; Keith S. | Ultrasonic cleaning apparatus for cleaning chandeliers |
DE4340056A1 (en) | 1993-11-24 | 1995-06-01 | Delma Elektro Med App | Laparoscopic surgical device |
USD358887S (en) | 1993-12-02 | 1995-05-30 | Cobot Medical Corporation | Combined cutting and coagulating forceps |
US5458598A (en) | 1993-12-02 | 1995-10-17 | Cabot Technology Corporation | Cutting and coagulating forceps |
US5490860A (en) | 1993-12-08 | 1996-02-13 | Sofamor Danek Properties, Inc. | Portable power cutting tool |
US5471988A (en) | 1993-12-24 | 1995-12-05 | Olympus Optical Co., Ltd. | Ultrasonic diagnosis and therapy system in which focusing point of therapeutic ultrasonic wave is locked at predetermined position within observation ultrasonic scanning range |
JPH07185457A (en) | 1993-12-27 | 1995-07-25 | Olympus Optical Co Ltd | Supersonic wave oscillator drive circuit |
US5359994A (en) | 1994-01-24 | 1994-11-01 | Welch Allyn, Inc. | Proximal steering cable adjustment |
US5465895A (en) | 1994-02-03 | 1995-11-14 | Ethicon Endo-Surgery, Inc. | Surgical stapler instrument |
US5413107A (en) | 1994-02-16 | 1995-05-09 | Tetrad Corporation | Ultrasonic probe having articulated structure and rotatable transducer head |
DE4405656C2 (en) | 1994-02-22 | 1998-12-10 | Ferton Holding | Body stone removal device |
US5429131A (en) | 1994-02-25 | 1995-07-04 | The Regents Of The University Of California | Magnetized electrode tip catheter |
DE4447669B4 (en) | 1994-02-27 | 2005-12-08 | Hahn, Rainer, Dr.Med.Dent. | Use of a suspension which serves to transmit sound between an ultrasonically stressed working tip and a material to be processed |
US5649955A (en) | 1994-03-17 | 1997-07-22 | Terumo Kabushiki Kaisha | Surgical instrument |
US5649547A (en) | 1994-03-24 | 1997-07-22 | Biopsys Medical, Inc. | Methods and devices for automated biopsy and collection of soft tissue |
US5584830A (en) | 1994-03-30 | 1996-12-17 | Medtronic Cardiorhythm | Method and system for radiofrequency ablation of cardiac tissue |
US6500112B1 (en) | 1994-03-30 | 2002-12-31 | Brava, Llc | Vacuum dome with supporting rim and rim cushion |
US5511556A (en) | 1994-04-11 | 1996-04-30 | Desantis; Stephen A. | Needle core biopsy instrument |
US5817033A (en) | 1994-04-11 | 1998-10-06 | Desantis; Stephen A. | Needle core biopsy device |
US5417709A (en) | 1994-04-12 | 1995-05-23 | Symbiosis Corporation | Endoscopic instrument with end effectors forming suction and/or irrigation lumens |
US5480409A (en) | 1994-05-10 | 1996-01-02 | Riza; Erol D. | Laparoscopic surgical instrument |
JP3514506B2 (en) | 1994-05-11 | 2004-03-31 | アロカ株式会社 | Bolted ultrasonic vibrator |
US5553675A (en) | 1994-06-10 | 1996-09-10 | Minnesota Mining And Manufacturing Company | Orthopedic surgical device |
NZ272354A (en) | 1994-06-17 | 1997-10-24 | Trudell Medical Ltd | Catheter system; method and apparatus for delivering an aerosol form of medication to the lungs, details of method and of catheter apparatus |
US5823197A (en) | 1994-06-24 | 1998-10-20 | Somnus Medical Technologies, Inc. | Method for internal ablation of turbinates |
US6033401A (en) | 1997-03-12 | 2000-03-07 | Advanced Closure Systems, Inc. | Vascular sealing device with microwave antenna |
US6464689B1 (en) | 1999-09-08 | 2002-10-15 | Curon Medical, Inc. | Graphical user interface for monitoring and controlling use of medical devices |
JPH0824266A (en) | 1994-07-20 | 1996-01-30 | Sumitomo Bakelite Co Ltd | Horn for ultrasonic operation apparatus |
AU694225B2 (en) | 1994-08-02 | 1998-07-16 | Ethicon Endo-Surgery, Inc. | Ultrasonic hemostatic and cutting instrument |
US5779130A (en) | 1994-08-05 | 1998-07-14 | United States Surgical Corporation | Self-contained powered surgical apparatus |
US5507738A (en) | 1994-08-05 | 1996-04-16 | Microsonic Engineering Devices Company, Inc. | Ultrasonic vascular surgical system |
US5451220A (en) | 1994-08-15 | 1995-09-19 | Microsonic Engineering Devices Company, Inc. | Battery operated multifunction ultrasonic wire for angioplasty |
TW266267B (en) | 1994-08-23 | 1995-12-21 | Ciba Geigy | Process for sterilizing articles and providing sterile storage environments |
US5456684A (en) | 1994-09-08 | 1995-10-10 | Hutchinson Technology Incorporated | Multifunctional minimally invasive surgical instrument |
US5522839A (en) | 1994-09-09 | 1996-06-04 | Pilling Weck Incorporated | Dissecting forceps |
US5694936A (en) | 1994-09-17 | 1997-12-09 | Kabushiki Kaisha Toshiba | Ultrasonic apparatus for thermotherapy with variable frequency for suppressing cavitation |
DE4434938C1 (en) * | 1994-09-30 | 1996-02-01 | Jenoptik Technologie Gmbh | Tongs for laser radiation application in biological tissue |
US5527273A (en) | 1994-10-06 | 1996-06-18 | Misonix, Inc. | Ultrasonic lipectomy probe and method for manufacture |
US5674219A (en) | 1994-10-06 | 1997-10-07 | Donaldson Company, Inc. | Electrosurgical smoke evacuator |
US6142994A (en) * | 1994-10-07 | 2000-11-07 | Ep Technologies, Inc. | Surgical method and apparatus for positioning a diagnostic a therapeutic element within the body |
US5632717A (en) | 1994-10-07 | 1997-05-27 | Yoon; Inbae | Penetrating endoscope |
EP0705571A1 (en) | 1994-10-07 | 1996-04-10 | United States Surgical Corporation | Self-contained powered surgical apparatus |
US5562609A (en) | 1994-10-07 | 1996-10-08 | Fibrasonics, Inc. | Ultrasonic surgical probe |
US5562610A (en) | 1994-10-07 | 1996-10-08 | Fibrasonics Inc. | Needle for ultrasonic surgical probe |
US5720742A (en) | 1994-10-11 | 1998-02-24 | Zacharias; Jaime | Controller and actuating system for surgical instrument |
JP2638750B2 (en) | 1994-10-13 | 1997-08-06 | リョービ株式会社 | Power tool handle structure |
US5752973A (en) | 1994-10-18 | 1998-05-19 | Archimedes Surgical, Inc. | Endoscopic surgical gripping instrument with universal joint jaw coupler |
USD381077S (en) | 1994-10-25 | 1997-07-15 | Ethicon Endo-Surgery | Multifunctional surgical stapling instrument |
US6689086B1 (en) | 1994-10-27 | 2004-02-10 | Advanced Cardiovascular Systems, Inc. | Method of using a catheter for delivery of ultrasonic energy and medicament |
US5717306A (en) | 1994-11-18 | 1998-02-10 | Shipp; John I. | Battery identification and power interrupt system |
JPH08153914A (en) | 1994-11-25 | 1996-06-11 | Philips Japan Ltd | Piezoelectric ceramic transformer |
DE4444853B4 (en) | 1994-12-16 | 2006-09-28 | Hilti Ag | Hand tool for material-removing machining with an electro-acoustic transducer for the generation of ultrasonic vibrations |
US5704534A (en) | 1994-12-19 | 1998-01-06 | Ethicon Endo-Surgery, Inc. | Articulation assembly for surgical instruments |
US5632432A (en) | 1994-12-19 | 1997-05-27 | Ethicon Endo-Surgery, Inc. | Surgical instrument |
US5836957A (en) | 1994-12-22 | 1998-11-17 | Devices For Vascular Intervention, Inc. | Large volume atherectomy device |
AU701320B2 (en) | 1994-12-22 | 1999-01-28 | Ethicon Endo-Surgery, Inc. | Impedance feedback monitor with query electrode for electrosurgical instrument |
US5505693A (en) | 1994-12-30 | 1996-04-09 | Mackool; Richard J. | Method and apparatus for reducing friction and heat generation by an ultrasonic device during surgery |
US5563179A (en) | 1995-01-10 | 1996-10-08 | The Proctor & Gamble Company | Absorbent foams made from high internal phase emulsions useful for acquiring and distributing aqueous fluids |
US5486162A (en) | 1995-01-11 | 1996-01-23 | Fibrasonics, Inc. | Bubble control device for an ultrasonic surgical probe |
US5603711A (en) | 1995-01-20 | 1997-02-18 | Everest Medical Corp. | Endoscopic bipolar biopsy forceps |
CA2168404C (en) | 1995-02-01 | 2007-07-10 | Dale Schulze | Surgical instrument with expandable cutting element |
US5573424A (en) | 1995-02-09 | 1996-11-12 | Everest Medical Corporation | Apparatus for interfacing a bipolar electrosurgical instrument to a monopolar generator |
US6409722B1 (en) | 1998-07-07 | 2002-06-25 | Medtronic, Inc. | Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue |
US5647871A (en) | 1995-03-10 | 1997-07-15 | Microsurge, Inc. | Electrosurgery with cooled electrodes |
US6544264B2 (en) | 1995-03-10 | 2003-04-08 | Seedling Enterprises, Llc | Electrosurgery with cooled electrodes |
US6503248B1 (en) | 2000-10-30 | 2003-01-07 | Seedling Enterprises, Llc | Cooled, non-sticking electrosurgical devices |
CA2214413A1 (en) | 1995-03-15 | 1996-09-19 | Sunds Defibrator Woodhandling Oy | A method of increasing the strength of a blade, and a blade |
DK0817594T3 (en) | 1995-03-28 | 2002-07-15 | Straub Medical Ag | Catheter for removal of abnormal deposits in human blood vessels |
US5571121A (en) | 1995-03-28 | 1996-11-05 | Heifetz; Milton D. | Atraumatic clamp for temporary occlusion of blood vessels |
US5882206A (en) | 1995-03-29 | 1999-03-16 | Gillio; Robert G. | Virtual surgery system |
US5575799A (en) | 1995-03-30 | 1996-11-19 | United States Surgical Corporation | Articulating surgical apparatus |
US5618307A (en) | 1995-04-03 | 1997-04-08 | Heartport, Inc. | Clamp assembly and method of use |
US5599350A (en) | 1995-04-03 | 1997-02-04 | Ethicon Endo-Surgery, Inc. | Electrosurgical clamping device with coagulation feedback |
JP3686117B2 (en) | 1995-04-06 | 2005-08-24 | オリンパス株式会社 | Ultrasonic incision coagulator |
US6056735A (en) | 1996-04-04 | 2000-05-02 | Olympus Optical Co., Ltd. | Ultrasound treatment system |
JP3571414B2 (en) | 1995-05-11 | 2004-09-29 | オリンパス株式会社 | Ultrasonic incision coagulation equipment |
JP3989030B2 (en) * | 1995-04-06 | 2007-10-10 | オリンパス株式会社 | Ultrasonic incision coagulator |
US6669690B1 (en) | 1995-04-06 | 2003-12-30 | Olympus Optical Co., Ltd. | Ultrasound treatment system |
US5624452A (en) | 1995-04-07 | 1997-04-29 | Ethicon Endo-Surgery, Inc. | Hemostatic surgical cutting or stapling instrument |
US5779701A (en) | 1995-04-27 | 1998-07-14 | Symbiosis Corporation | Bipolar endoscopic surgical scissor blades and instrument incorporating the same |
US5800432A (en) | 1995-05-01 | 1998-09-01 | Ep Technologies, Inc. | Systems and methods for actively cooling ablation electrodes using diodes |
US6575969B1 (en) | 1995-05-04 | 2003-06-10 | Sherwood Services Ag | Cool-tip radiofrequency thermosurgery electrode system for tumor ablation |
US6430446B1 (en) | 1995-05-05 | 2002-08-06 | Thermage, Inc. | Apparatus for tissue remodeling |
US5674235A (en) | 1995-05-10 | 1997-10-07 | Ultralase Technologies International | Ultrasonic surgical cutting instrument |
AU6268396A (en) | 1995-06-02 | 1996-12-18 | Surgical Design Corporation | Phacoemulsification handpiece, sleeve, and tip |
US5720744A (en) | 1995-06-06 | 1998-02-24 | Valleylab Inc | Control system for neurosurgery |
WO1996039086A1 (en) | 1995-06-06 | 1996-12-12 | Valleylab Inc. | Power control for an electrosurgical generator |
US6293943B1 (en) | 1995-06-07 | 2001-09-25 | Ep Technologies, Inc. | Tissue heating and ablation systems and methods which predict maximum tissue temperature |
US6149620A (en) | 1995-11-22 | 2000-11-21 | Arthrocare Corporation | System and methods for electrosurgical tissue treatment in the presence of electrically conductive fluid |
US6210337B1 (en) | 1995-06-07 | 2001-04-03 | Atl Ultrasound Inc. | Ultrasonic endoscopic probe |
US7090672B2 (en) | 1995-06-07 | 2006-08-15 | Arthrocare Corporation | Method for treating obstructive sleep disorder includes removing tissue from the base of tongue |
US5643301A (en) | 1995-06-07 | 1997-07-01 | General Surgical Innovations, Inc. | Cannula assembly with squeeze operated valve |
US5647851A (en) | 1995-06-12 | 1997-07-15 | Pokras; Norman M. | Method and apparatus for vibrating an injection device |
JP4219418B2 (en) | 1995-06-13 | 2009-02-04 | 株式会社ミワテック | Ultrasonic surgical device |
US5591187A (en) | 1995-07-14 | 1997-01-07 | Dekel; Moshe | Laparoscopic tissue retrieval device and method |
US5762256A (en) | 1995-08-28 | 1998-06-09 | United States Surgical Corporation | Surgical stapler |
US5782396A (en) | 1995-08-28 | 1998-07-21 | United States Surgical Corporation | Surgical stapler |
JP3760959B2 (en) | 1995-09-06 | 2006-03-29 | 株式会社デンソー | Generator |
US6001120A (en) | 1995-09-07 | 1999-12-14 | Levin; John M. | Universal dissector |
US5662667A (en) | 1995-09-19 | 1997-09-02 | Ethicon Endo-Surgery, Inc. | Surgical clamping mechanism |
US5776130A (en) | 1995-09-19 | 1998-07-07 | Valleylab, Inc. | Vascular tissue sealing pressure control |
US5797959A (en) | 1995-09-21 | 1998-08-25 | United States Surgical Corporation | Surgical apparatus with articulating jaw structure |
US5772659A (en) | 1995-09-26 | 1998-06-30 | Valleylab Inc. | Electrosurgical generator power control circuit and method |
US5630420A (en) | 1995-09-29 | 1997-05-20 | Ethicon Endo-Surgery, Inc. | Ultrasonic instrument for surgical applications |
US5674220A (en) | 1995-09-29 | 1997-10-07 | Ethicon Endo-Surgery, Inc. | Bipolar electrosurgical clamping device |
US5883615A (en) | 1995-09-29 | 1999-03-16 | Liebel-Flarsheim Company | Foot-operated control system for a multi-function |
US6059997A (en) | 1995-09-29 | 2000-05-09 | Littlelfuse, Inc. | Polymeric PTC compositions |
US5796188A (en) | 1995-10-05 | 1998-08-18 | Xomed Surgical Products, Inc. | Battery-powered medical instrument with power booster |
AU7398196A (en) | 1995-10-11 | 1997-04-30 | Fusion Medical Technologies, Inc. | Device and method for sealing tissue |
US6428538B1 (en) | 1995-10-20 | 2002-08-06 | United States Surgical Corporation | Apparatus and method for thermal treatment of body tissue |
GB9521772D0 (en) | 1995-10-24 | 1996-01-03 | Gyrus Medical Ltd | An electrosurgical instrument |
US5772434A (en) | 1995-11-28 | 1998-06-30 | Winston; Ronald H. | Ultrasonic tooth cleaner |
JPH09140722A (en) | 1995-11-29 | 1997-06-03 | Olympus Optical Co Ltd | Ultrasonic therapy instrument |
US5658281A (en) | 1995-12-04 | 1997-08-19 | Valleylab Inc | Bipolar electrosurgical scissors and method of manufacture |
US5755717A (en) | 1996-01-16 | 1998-05-26 | Ethicon Endo-Surgery, Inc. | Electrosurgical clamping device with improved coagulation feedback |
US5916229A (en) | 1996-02-07 | 1999-06-29 | Evans; Donald | Rotating needle biopsy device and method |
US5669922A (en) | 1996-02-20 | 1997-09-23 | Hood; Larry | Ultrasonically driven blade with a radial hook that defines a circular recess |
US5792138A (en) | 1996-02-22 | 1998-08-11 | Apollo Camera, Llc | Cordless bipolar electrocautery unit with automatic power control |
US6682501B1 (en) | 1996-02-23 | 2004-01-27 | Gyrus Ent, L.L.C. | Submucosal tonsillectomy apparatus and method |
US5609573A (en) | 1996-02-28 | 1997-03-11 | Conmed Corporation | Electrosurgical suction/irrigation instrument |
DE19608716C1 (en) | 1996-03-06 | 1997-04-17 | Aesculap Ag | Bipolar surgical holding instrument |
US6036707A (en) | 1996-03-07 | 2000-03-14 | Devices For Vascular Intervention | Catheter device having a selectively flexible housing |
US6325795B1 (en) | 1996-03-12 | 2001-12-04 | Sherwood Services Ag | Replaceable accessory cord and handswitch |
US5702390A (en) | 1996-03-12 | 1997-12-30 | Ethicon Endo-Surgery, Inc. | Bioplar cutting and coagulation instrument |
US5830224A (en) | 1996-03-15 | 1998-11-03 | Beth Israel Deaconess Medical Center | Catheter apparatus and methodology for generating a fistula on-demand between closely associated blood vessels at a pre-chosen anatomic site in-vivo |
US5728130A (en) | 1996-03-22 | 1998-03-17 | Olympus Optical Co., Ltd. | Ultrasonic trocar system |
FR2746995B1 (en) | 1996-03-28 | 1998-05-15 | Sgs Thomson Microelectronics | TRANSMISSION ENCODING METHOD AND DEVICE AND USE OF THE METHOD |
US5700261A (en) | 1996-03-29 | 1997-12-23 | Ethicon Endo-Surgery, Inc. | Bipolar Scissors |
US5766164A (en) | 1996-07-03 | 1998-06-16 | Eclipse Surgical Technologies, Inc. | Contiguous, branched transmyocardial revascularization (TMR) channel, method and device |
USD416089S (en) | 1996-04-08 | 1999-11-02 | Richard-Allan Medical Industries, Inc. | Endoscopic linear stapling and dividing surgical instrument |
US5792135A (en) | 1996-05-20 | 1998-08-11 | Intuitive Surgical, Inc. | Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity |
US5843109A (en) | 1996-05-29 | 1998-12-01 | Allergan | Ultrasonic handpiece with multiple piezoelectric elements and heat dissipator |
US5746756A (en) | 1996-06-03 | 1998-05-05 | Ethicon Endo-Surgery, Inc. | Internal ultrasonic tip amplifier |
JPH11128238A (en) | 1997-10-28 | 1999-05-18 | Olympus Optical Co Ltd | Ultrasonic therapy device |
US6887252B1 (en) | 1996-06-21 | 2005-05-03 | Olympus Corporation | Ultrasonic treatment appliance |
JP3704399B2 (en) * | 1996-06-21 | 2005-10-12 | オリンパス株式会社 | Ultrasonic treatment device |
US6129735A (en) * | 1996-06-21 | 2000-10-10 | Olympus Optical Co., Ltd. | Ultrasonic treatment appliance |
JP3274826B2 (en) | 1997-10-15 | 2002-04-15 | オリンパス光学工業株式会社 | Ultrasonic treatment tool |
US5906628A (en) | 1996-06-26 | 1999-05-25 | Olympus Optical Co., Ltd. | Ultrasonic treatment instrument |
JPH105237A (en) | 1996-06-26 | 1998-01-13 | Olympus Optical Co Ltd | Ultrasonic processor |
AU737271B2 (en) | 1996-07-01 | 2001-08-16 | Ethicon Endo-Surgery, Inc. | Fingertip-mounted minimally invasive surgical instruments and methods of use |
US6113594A (en) | 1996-07-02 | 2000-09-05 | Ethicon, Inc. | Systems, methods and apparatus for performing resection/ablation in a conductive medium |
US6358264B2 (en) | 1996-07-24 | 2002-03-19 | Surgical Design Corporation | Surgical instruments with movable member |
US5800448A (en) | 1996-07-24 | 1998-09-01 | Surgical Design Corporation | Ultrasonic surgical instrument |
GB9616186D0 (en) | 1996-08-01 | 1996-09-11 | Ratcliff Henry K | Untrasonic generator |
US6031526A (en) | 1996-08-08 | 2000-02-29 | Apollo Camera, Llc | Voice controlled medical text and image reporting system |
US6017354A (en) | 1996-08-15 | 2000-01-25 | Stryker Corporation | Integrated system for powered surgical tools |
US5971949A (en) | 1996-08-19 | 1999-10-26 | Angiosonics Inc. | Ultrasound transmission apparatus and method of using same |
US6544260B1 (en) | 1996-08-20 | 2003-04-08 | Oratec Interventions, Inc. | Method for treating tissue in arthroscopic environment using precooling and apparatus for same |
US5836943A (en) | 1996-08-23 | 1998-11-17 | Team Medical, L.L.C. | Electrosurgical generator |
US5993972A (en) | 1996-08-26 | 1999-11-30 | Tyndale Plains-Hunter, Ltd. | Hydrophilic and hydrophobic polyether polyurethanes and uses therefor |
US5941887A (en) | 1996-09-03 | 1999-08-24 | Bausch & Lomb Surgical, Inc. | Sleeve for a surgical instrument |
US6364888B1 (en) | 1996-09-09 | 2002-04-02 | Intuitive Surgical, Inc. | Alignment of master and slave in a minimally invasive surgical apparatus |
US5836909A (en) | 1996-09-13 | 1998-11-17 | Cosmescu; Ioan | Automatic fluid control system for use in open and laparoscopic laser surgery and electrosurgery and method therefor |
DE29623113U1 (en) | 1996-09-18 | 1997-10-30 | Winter & Ibe Olympus | Axial handle for surgical, especially endoscopic, instruments |
US20050143769A1 (en) | 2002-08-19 | 2005-06-30 | White Jeffrey S. | Ultrasonic dissector |
CA2213948C (en) | 1996-09-19 | 2006-06-06 | United States Surgical Corporation | Ultrasonic dissector |
GB2317566B (en) | 1996-09-27 | 2000-08-09 | Smiths Industries Plc | Electrosurgery apparatus |
US5833696A (en) | 1996-10-03 | 1998-11-10 | United States Surgical Corporation | Apparatus for applying surgical clips |
EP1698289B1 (en) | 1996-10-04 | 2008-04-30 | United States Surgical Corporation | Instrument for cutting tissue |
EP1946708B1 (en) | 1996-10-04 | 2011-06-22 | Tyco Healthcare Group LP | Instrument for cutting tissue |
US6109500A (en) | 1996-10-04 | 2000-08-29 | United States Surgical Corporation | Lockout mechanism for a surgical stapler |
US6036667A (en) | 1996-10-04 | 2000-03-14 | United States Surgical Corporation | Ultrasonic dissection and coagulation system |
CA2268977A1 (en) | 1996-10-17 | 1998-04-23 | Ethicon Endo-Surgery, Inc. | Methods and devices for improving blood flow to the heart of a patient |
US5989274A (en) | 1996-10-17 | 1999-11-23 | Ethicon Endo-Surgery, Inc. | Methods and devices for improving blood flow to a heart of a patient |
IT240192Y1 (en) | 1996-10-18 | 2001-03-26 | Biorem S R L | EQUIPMENT FOR THE EXFOLIATION OF THE CORNEAL STATE OF THE EPIDERMIDE AND THE REVITALIZATION OF THE SKIN |
US5730752A (en) | 1996-10-29 | 1998-03-24 | Femrx, Inc. | Tubular surgical cutters having aspiration flow control ports |
US6126676A (en) | 1996-10-30 | 2000-10-03 | Ethicon, Inc. | Surgical tipping apparatus |
US6238366B1 (en) | 1996-10-31 | 2001-05-29 | Ethicon, Inc. | System for fluid retention management |
US6292700B1 (en) | 1999-09-10 | 2001-09-18 | Surx, Inc. | Endopelvic fascia treatment for incontinence |
US6091995A (en) | 1996-11-08 | 2000-07-18 | Surx, Inc. | Devices, methods, and systems for shrinking tissues |
US5810869A (en) | 1996-11-18 | 1998-09-22 | Localmed, Inc. | Methods for loading coaxial catheters |
US5931848A (en) | 1996-12-02 | 1999-08-03 | Angiotrax, Inc. | Methods for transluminally performing surgery |
US5891142A (en) | 1996-12-06 | 1999-04-06 | Eggers & Associates, Inc. | Electrosurgical forceps |
DE19651362C1 (en) | 1996-12-10 | 1998-06-10 | Endress Hauser Gmbh Co | Device for monitoring a predetermined level in a container |
US6132368A (en) | 1996-12-12 | 2000-10-17 | Intuitive Surgical, Inc. | Multi-component telepresence system and method |
US6331181B1 (en) | 1998-12-08 | 2001-12-18 | Intuitive Surgical, Inc. | Surgical robotic tools, data architecture, and use |
US5808396A (en) | 1996-12-18 | 1998-09-15 | Alcon Laboratories, Inc. | System and method for tuning and controlling an ultrasonic handpiece |
US5910129A (en) | 1996-12-19 | 1999-06-08 | Ep Technologies, Inc. | Catheter distal assembly with pull wires |
US5776155A (en) | 1996-12-23 | 1998-07-07 | Ethicon Endo-Surgery, Inc. | Methods and devices for attaching and detaching transmission components |
US6051010A (en) | 1996-12-23 | 2000-04-18 | Ethicon Endo-Surgery, Inc. | Methods and devices for joining transmission components |
US6063098A (en) | 1996-12-23 | 2000-05-16 | Houser; Kevin | Articulable ultrasonic surgical apparatus |
SE508289C2 (en) | 1997-01-28 | 1998-09-21 | Ericsson Telefon Ab L M | Method and apparatus for monitoring and controlling oscillator signal |
US6156389A (en) | 1997-02-03 | 2000-12-05 | Cytonix Corporation | Hydrophobic coating compositions, articles coated with said compositions, and processes for manufacturing same |
US5916213A (en) | 1997-02-04 | 1999-06-29 | Medtronic, Inc. | Systems and methods for tissue mapping and ablation |
US5904681A (en) | 1997-02-10 | 1999-05-18 | Hugh S. West, Jr. | Endoscopic surgical instrument with ability to selectively remove different tissue with mechanical and electrical energy |
US5810828A (en) | 1997-02-13 | 1998-09-22 | Mednext, Inc. | Adjustable depth drill guide |
US5968060A (en) | 1997-02-28 | 1999-10-19 | Ethicon Endo-Surgery, Inc. | Ultrasonic interlock and method of using the same |
US6508825B1 (en) | 1997-02-28 | 2003-01-21 | Lumend, Inc. | Apparatus for treating vascular occlusions |
US5944737A (en) | 1997-10-10 | 1999-08-31 | Ethicon Endo-Surgery, Inc. | Ultrasonic clamp coagulator apparatus having improved waveguide support member |
US5989275A (en) | 1997-02-28 | 1999-11-23 | Ethicon Endo-Surgery, Inc. | Damping ultrasonic transmission components |
US6206844B1 (en) | 1997-02-28 | 2001-03-27 | Ethicon Endo-Surgery, Inc. | Reusable ultrasonic surgical instrument with removable outer sheath |
US5810859A (en) | 1997-02-28 | 1998-09-22 | Ethicon Endo-Surgery, Inc. | Apparatus for applying torque to an ultrasonic transmission component |
US5957943A (en) | 1997-03-05 | 1999-09-28 | Ethicon Endo-Surgery, Inc. | Method and devices for increasing ultrasonic effects |
US6626901B1 (en) | 1997-03-05 | 2003-09-30 | The Trustees Of Columbia University In The City Of New York | Electrothermal instrument for sealing and joining or cutting tissue |
US7083613B2 (en) | 1997-03-05 | 2006-08-01 | The Trustees Of Columbia University In The City Of New York | Ringed forceps |
US6461363B1 (en) | 1997-03-10 | 2002-10-08 | Donald L. Gadberry | Surgical clips and clamps |
US5800449A (en) | 1997-03-11 | 1998-09-01 | Ethicon Endo-Surgery, Inc. | Knife shield for surgical instruments |
US5879363A (en) | 1997-03-18 | 1999-03-09 | Circuit Tree Medical, Inc. | Disposable surgical ultrasonic transducer |
JP3832075B2 (en) | 1997-03-25 | 2006-10-11 | セイコーエプソン株式会社 | Inkjet recording head, method for manufacturing the same, and piezoelectric element |
US6033399A (en) | 1997-04-09 | 2000-03-07 | Valleylab, Inc. | Electrosurgical generator with adaptive power control |
US5897569A (en) | 1997-04-16 | 1999-04-27 | Ethicon Endo-Surgery, Inc. | Ultrasonic generator with supervisory control circuitry |
GB9708268D0 (en) | 1997-04-24 | 1997-06-18 | Gyrus Medical Ltd | An electrosurgical instrument |
JPH10295700A (en) | 1997-04-25 | 1998-11-10 | Sumitomo Bakelite Co Ltd | Surgical operation appliance |
AU6357298A (en) | 1997-04-28 | 1998-10-29 | Ethicon Endo-Surgery, Inc. | Methods and devices for controlling the vibration of ultrasonic transmission components |
US5968007A (en) | 1997-05-01 | 1999-10-19 | Sonics & Materials, Inc. | Power-limit control for ultrasonic surgical instrument |
US5807310A (en) | 1997-05-13 | 1998-09-15 | Nexus Medical System, Inc. Llc | Irrigation sleeve for an ultrasonic tip |
USH2037H1 (en) | 1997-05-14 | 2002-07-02 | David C. Yates | Electrosurgical hemostatic device including an anvil |
USH1904H (en) | 1997-05-14 | 2000-10-03 | Ethicon Endo-Surgery, Inc. | Electrosurgical hemostatic method and device |
US6183426B1 (en) | 1997-05-15 | 2001-02-06 | Matsushita Electric Works, Ltd. | Ultrasonic wave applying apparatus |
US6152902A (en) | 1997-06-03 | 2000-11-28 | Ethicon, Inc. | Method and apparatus for collecting surgical fluids |
US5851212A (en) | 1997-06-11 | 1998-12-22 | Endius Incorporated | Surgical instrument |
FR2764516B1 (en) | 1997-06-11 | 1999-09-03 | Inst Nat Sante Rech Med | ULTRASONIC INTRATISSULAIRE APPLICATOR FOR HYPERTHERMIA |
EP0998229A4 (en) | 1997-06-17 | 2001-04-04 | Cool Laser Optics Inc | Method and apparatus for temperature control of biologic tissue with simultaneous irradiation |
US6231565B1 (en) | 1997-06-18 | 2001-05-15 | United States Surgical Corporation | Robotic arm DLUs for performing surgical tasks |
US6053906A (en) | 1997-06-25 | 2000-04-25 | Olympus Optical Co., Ltd. | Ultrasonic operation apparatus |
JPH1112222A (en) | 1997-06-25 | 1999-01-19 | Nippon Shokubai Co Ltd | Recovery of acrylic acid |
US6144402A (en) | 1997-07-08 | 2000-11-07 | Microtune, Inc. | Internet transaction acceleration |
US5938633A (en) | 1997-07-09 | 1999-08-17 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical devices |
US6096037A (en) | 1997-07-29 | 2000-08-01 | Medtronic, Inc. | Tissue sealing electrosurgery device and methods of sealing tissue |
JP2001510067A (en) | 1997-07-18 | 2001-07-31 | ガイラス・メディカル・リミテッド | Electrosurgical instrument |
EP0895755B1 (en) | 1997-08-04 | 2005-04-27 | Ethicon, Inc. | Apparatus for treating body tissue |
US6024750A (en) | 1997-08-14 | 2000-02-15 | United States Surgical | Ultrasonic curved blade |
US6024744A (en) | 1997-08-27 | 2000-02-15 | Ethicon, Inc. | Combined bipolar scissor and grasper |
US6217591B1 (en) | 1997-08-28 | 2001-04-17 | Axya Medical, Inc. | Suture fastening device |
US5893880A (en) | 1997-08-28 | 1999-04-13 | Axya Medical Inc. | Fused loop filamentous material |
US6013052A (en) | 1997-09-04 | 2000-01-11 | Ep Technologies, Inc. | Catheter and piston-type actuation device for use with same |
US6065735A (en) * | 1997-09-04 | 2000-05-23 | Clark; Garry E. | Electric valve universal retrofit configuration having misalignment correction |
US6267761B1 (en) | 1997-09-09 | 2001-07-31 | Sherwood Services Ag | Apparatus and method for sealing and cutting tissue |
AU9478498A (en) | 1997-09-11 | 1999-03-29 | Genzyme Corporation | Articulating endoscopic implant rotator surgical apparatus and method for using same |
US5836990A (en) | 1997-09-19 | 1998-11-17 | Medtronic, Inc. | Method and apparatus for determining electrode/tissue contact |
US5865361A (en) | 1997-09-23 | 1999-02-02 | United States Surgical Corporation | Surgical stapling apparatus |
US5921956A (en) | 1997-09-24 | 1999-07-13 | Smith & Nephew, Inc. | Surgical instrument |
US6436116B1 (en) | 1997-10-06 | 2002-08-20 | Smith & Nephew, Inc. | Methods and apparatus for removing veins |
US6048224A (en) | 1997-10-09 | 2000-04-11 | Tekonsha Engineering Company | Sealed multiple-contact electrical connector |
US5954746A (en) | 1997-10-09 | 1999-09-21 | Ethicon Endo-Surgery, Inc. | Dual cam trigger for a surgical instrument |
US5980510A (en) | 1997-10-10 | 1999-11-09 | Ethicon Endo-Surgery, Inc. | Ultrasonic clamp coagulator apparatus having improved clamp arm pivot mount |
US5873873A (en) | 1997-10-10 | 1999-02-23 | Ethicon Endo-Surgery, Inc. | Ultrasonic clamp coagulator apparatus having improved clamp mechanism |
US5954736A (en) | 1997-10-10 | 1999-09-21 | Ethicon Endo-Surgery, Inc. | Coagulator apparatus having indexed rotational positioning |
US6068647A (en) | 1997-10-10 | 2000-05-30 | Ethicon Endo-Surgery, Inc. | Ultrasonic clamp coagulator apparatus having improved clamp arm tissue pad |
US5893835A (en) | 1997-10-10 | 1999-04-13 | Ethicon Endo-Surgery, Inc. | Ultrasonic clamp coagulator apparatus having dual rotational positioning |
US5947984A (en) * | 1997-10-10 | 1999-09-07 | Ethicon Endo-Surger, Inc. | Ultrasonic clamp coagulator apparatus having force limiting clamping mechanism |
SE510713C2 (en) | 1997-10-10 | 1999-06-14 | Ericsson Telefon Ab L M | Phase locking circuit and method for controlling voltage controlled oscillator |
US6050943A (en) | 1997-10-14 | 2000-04-18 | Guided Therapy Systems, Inc. | Imaging, therapy, and temperature monitoring ultrasonic system |
US5974342A (en) | 1997-10-16 | 1999-10-26 | Electrologic Of America, Inc. | Electrical stimulation therapy method and apparatus |
US6176857B1 (en) | 1997-10-22 | 2001-01-23 | Oratec Interventions, Inc. | Method and apparatus for applying thermal energy to tissue asymmetrically |
JP2001520081A (en) | 1997-10-23 | 2001-10-30 | アースロケア コーポレイション | Power supply for electrosurgery in conductive fluids and method of supplying the same |
AU1401699A (en) | 1997-11-12 | 1999-05-31 | Isothermix, Inc. | Methods and apparatus for welding blood vessels |
US6050996A (en) | 1997-11-12 | 2000-04-18 | Sherwood Services Ag | Bipolar electrosurgical instrument with replaceable electrodes |
US6187003B1 (en) | 1997-11-12 | 2001-02-13 | Sherwood Services Ag | Bipolar electrosurgical instrument for sealing vessels |
US6156029A (en) | 1997-11-25 | 2000-12-05 | Eclipse Surgical Technologies, Inc. | Selective treatment of endocardial/myocardial boundary |
US6068627A (en) | 1997-12-10 | 2000-05-30 | Valleylab, Inc. | Smart recognition apparatus and method |
US6007552A (en) * | 1997-12-18 | 1999-12-28 | Minumys | Vascular clamps and surgical retractors with directional filaments for tissue engagement |
US6126629A (en) | 1997-12-18 | 2000-10-03 | Bausch & Lomb Surgical, Inc. | Multiple port phaco needle |
US6033375A (en) | 1997-12-23 | 2000-03-07 | Fibrasonics Inc. | Ultrasonic probe with isolated and teflon coated outer cannula |
US6270471B1 (en) | 1997-12-23 | 2001-08-07 | Misonix Incorporated | Ultrasonic probe with isolated outer cannula |
JPH11178833A (en) | 1997-12-24 | 1999-07-06 | Olympus Optical Co Ltd | Ultrasonic treatment implement |
US6165150A (en) | 1997-12-29 | 2000-12-26 | Surgical Design Corporation | Tips for ultrasonic handpiece |
US6388657B1 (en) | 1997-12-31 | 2002-05-14 | Anthony James Francis Natoli | Virtual reality keyboard system and method |
JP4343434B2 (en) | 1998-01-19 | 2009-10-14 | ヤング、マイケル・ジョン・ラドリー | Ultrasonic cutting tools |
JP2000139943A (en) | 1998-09-02 | 2000-05-23 | Olympus Optical Co Ltd | High-frequency treating instrument |
US6736813B2 (en) | 1998-01-23 | 2004-05-18 | Olympus Optical Co., Ltd. | High-frequency treatment tool |
DE19803439A1 (en) | 1998-01-29 | 1999-08-05 | Sachse Hans E | Bone removal appliance of hollow cylinder with inner dia. deviating from circular cross section |
US6296640B1 (en) | 1998-02-06 | 2001-10-02 | Ethicon Endo-Surgery, Inc. | RF bipolar end effector for use in electrosurgical instruments |
US6562037B2 (en) | 1998-02-12 | 2003-05-13 | Boris E. Paton | Bonding of soft biological tissues by passing high frequency electric current therethrough |
JPH11225951A (en) | 1998-02-17 | 1999-08-24 | Olympus Optical Co Ltd | Treatment tool for endoscope |
AU2769399A (en) | 1998-02-17 | 1999-08-30 | James A. Baker Jr. | Radiofrequency medical instrument for vessel welding |
DE19806718A1 (en) | 1998-02-18 | 1999-08-26 | Storz Endoskop Gmbh | System for treating of body tissue using ultrasound with generator and unit transmitting ultrasound on tissue and hollow probe |
US8303576B2 (en) | 1998-02-24 | 2012-11-06 | Hansen Medical, Inc. | Interchangeable surgical instrument |
US6860878B2 (en) | 1998-02-24 | 2005-03-01 | Endovia Medical Inc. | Interchangeable instrument |
US6810281B2 (en) | 2000-12-21 | 2004-10-26 | Endovia Medical, Inc. | Medical mapping system |
US7775972B2 (en) | 1998-02-24 | 2010-08-17 | Hansen Medical, Inc. | Flexible instrument |
US20060074442A1 (en) | 2000-04-06 | 2006-04-06 | Revascular Therapeutics, Inc. | Guidewire for crossing occlusions or stenoses |
US6159160A (en) | 1998-03-26 | 2000-12-12 | Ethicon, Inc. | System and method for controlled infusion and pressure monitoring |
US5935144A (en) | 1998-04-09 | 1999-08-10 | Ethicon Endo-Surgery, Inc. | Double sealed acoustic isolation members for ultrasonic |
US5897523A (en) | 1998-04-13 | 1999-04-27 | Ethicon Endo-Surgery, Inc. | Articulating ultrasonic surgical instrument |
US6454782B1 (en) | 1998-04-13 | 2002-09-24 | Ethicon Endo-Surgery, Inc. | Actuation mechanism for surgical instruments |
US5980546A (en) | 1998-04-13 | 1999-11-09 | Nexus Medical System, Inc. Llc | Guillotine cutter used with medical procedures |
US6589200B1 (en) | 1999-02-22 | 2003-07-08 | Ethicon Endo-Surgery, Inc. | Articulating ultrasonic surgical shears |
JP3537387B2 (en) | 1998-04-16 | 2004-06-14 | オリンパス株式会社 | Ultrasonic treatment tool |
JP3686765B2 (en) * | 1998-04-16 | 2005-08-24 | オリンパス株式会社 | Ultrasonic treatment device |
AU754594B2 (en) | 1998-04-24 | 2002-11-21 | Indigo Medical, Incorporated | Energy application system with ancillary information exchange capability, energy applicator, and methods associated therewith |
US6003517A (en) | 1998-04-30 | 1999-12-21 | Ethicon Endo-Surgery, Inc. | Method for using an electrosurgical device on lung tissue |
US6270831B2 (en) | 1998-04-30 | 2001-08-07 | Medquest Products, Inc. | Method and apparatus for providing a conductive, amorphous non-stick coating |
US6514252B2 (en) | 1998-05-01 | 2003-02-04 | Perfect Surgical Techniques, Inc. | Bipolar surgical instruments having focused electrical fields |
US5994855A (en) | 1998-05-07 | 1999-11-30 | Optiva Corporation | Automatic power adjustment system for introductory use of a vibrating device on a human body |
US6193709B1 (en) | 1998-05-13 | 2001-02-27 | Olympus Optical Co., Ltd. | Ultrasonic treatment apparatus |
US6162194A (en) | 1998-05-20 | 2000-12-19 | Apollo Camera, Llc | Surgical irrigation apparatus and methods for use |
US6974450B2 (en) | 1999-12-30 | 2005-12-13 | Pearl Technology Holdings, Llc | Face-lifting device |
US6165191A (en) | 1998-05-28 | 2000-12-26 | Olympus Optical Co., Ltd. | Ultrasonic treating tool |
US7198635B2 (en) | 2000-10-17 | 2007-04-03 | Asthmatx, Inc. | Modification of airways by application of energy |
US6132448A (en) | 1998-06-19 | 2000-10-17 | Stryker Corporation | Endoscopic irrigated bur |
US6679882B1 (en) | 1998-06-22 | 2004-01-20 | Lina Medical Aps | Electrosurgical device for coagulating and for making incisions, a method of severing blood vessels and a method of coagulating and for making incisions in or severing tissue |
US6660017B2 (en) | 1998-06-29 | 2003-12-09 | Ethicon Endo-Surgery, Inc. | Balanced ultrasonic blade including a singular balance asymmetry |
US6077285A (en) | 1998-06-29 | 2000-06-20 | Alcon Laboratories, Inc. | Torsional ultrasound handpiece |
CA2276313C (en) | 1998-06-29 | 2008-01-29 | Ethicon Endo-Surgery, Inc. | Balanced ultrasonic blade including a plurality of balance asymmetries |
US6309400B2 (en) | 1998-06-29 | 2001-10-30 | Ethicon Endo-Surgery, Inc. | Curved ultrasonic blade having a trapezoidal cross section |
CA2276316C (en) | 1998-06-29 | 2008-02-12 | Ethicon Endo-Surgery, Inc. | Method of balancing asymmetric ultrasonic surgical blades |
US6066132A (en) | 1998-06-30 | 2000-05-23 | Ethicon, Inc. | Articulating endometrial ablation device |
US6537272B2 (en) | 1998-07-07 | 2003-03-25 | Medtronic, Inc. | Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue |
US6409743B1 (en) | 1998-07-08 | 2002-06-25 | Axya Medical, Inc. | Devices and methods for securing sutures and ligatures without knots |
US6096033A (en) | 1998-07-20 | 2000-08-01 | Tu; Hosheng | Medical device having ultrasonic ablation capability |
US6099539A (en) | 1998-07-27 | 2000-08-08 | Thomas J. Fogarty | Surgical clamp pad with interdigitating teeth |
US6572639B1 (en) | 1998-07-31 | 2003-06-03 | Surx, Inc. | Interspersed heating/cooling to shrink tissues for incontinence |
US7534243B1 (en) | 1998-08-12 | 2009-05-19 | Maquet Cardiovascular Llc | Dissection and welding of tissue |
US6794027B1 (en) | 1998-08-24 | 2004-09-21 | Daikin Industries, Ltd. | Thin coating film comprising fluorine-containing polymer and method of forming same |
US6833865B1 (en) | 1998-09-01 | 2004-12-21 | Virage, Inc. | Embedded metadata engines in digital capture devices |
DE19839826A1 (en) | 1998-09-01 | 2000-03-02 | Karl Fastenmeier | High-frequency device for generating a plasma arc for the treatment of human tissue |
US6440147B1 (en) | 1998-09-03 | 2002-08-27 | Rubicor Medical, Inc. | Excisional biopsy devices and methods |
US6932876B1 (en) | 1998-09-03 | 2005-08-23 | U.I.T., L.L.C. | Ultrasonic impact machining of body surfaces to correct defects and strengthen work surfaces |
US6022362A (en) | 1998-09-03 | 2000-02-08 | Rubicor Medical, Inc. | Excisional biopsy devices and methods |
US6086584A (en) | 1998-09-10 | 2000-07-11 | Ethicon, Inc. | Cellular sublimation probe and methods |
US6123702A (en) | 1998-09-10 | 2000-09-26 | Scimed Life Systems, Inc. | Systems and methods for controlling power in an electrosurgical probe |
US6245065B1 (en) | 1998-09-10 | 2001-06-12 | Scimed Life Systems, Inc. | Systems and methods for controlling power in an electrosurgical probe |
US6391026B1 (en) | 1998-09-18 | 2002-05-21 | Pro Duct Health, Inc. | Methods and systems for treating breast tissue |
US7686763B2 (en) | 1998-09-18 | 2010-03-30 | University Of Washington | Use of contrast agents to increase the effectiveness of high intensity focused ultrasound therapy |
US6132427A (en) | 1998-09-21 | 2000-10-17 | Medicor Corporation | Electrosurgical instruments |
US6402748B1 (en) | 1998-09-23 | 2002-06-11 | Sherwood Services Ag | Electrosurgical device having a dielectrical seal |
US6929602B2 (en) | 1998-09-28 | 2005-08-16 | Kabushiki Kaisha Toshiba | Endoscope apparatus |
JP4136118B2 (en) | 1998-09-30 | 2008-08-20 | オリンパス株式会社 | Electrosurgical equipment |
US6585735B1 (en) | 1998-10-23 | 2003-07-01 | Sherwood Services Ag | Endoscopic bipolar electrosurgical forceps |
CA2347286A1 (en) * | 1998-10-23 | 2000-05-04 | Applied Medical Resources Corporation | Surgical grasper with inserts and method of using same |
US7118570B2 (en) | 2001-04-06 | 2006-10-10 | Sherwood Services Ag | Vessel sealing forceps with disposable electrodes |
US6398779B1 (en) | 1998-10-23 | 2002-06-04 | Sherwood Services Ag | Vessel sealing system |
CA2347633C (en) | 1998-10-23 | 2011-01-04 | Sherwood Services Ag | Endoscopic bipolar electrosurgical forceps |
US7137980B2 (en) | 1998-10-23 | 2006-11-21 | Sherwood Services Ag | Method and system for controlling output of RF medical generator |
US7267677B2 (en) | 1998-10-23 | 2007-09-11 | Sherwood Services Ag | Vessel sealing instrument |
US20040167508A1 (en) | 2002-02-11 | 2004-08-26 | Robert Wham | Vessel sealing system |
US20040249374A1 (en) | 1998-10-23 | 2004-12-09 | Tetzlaff Philip M. | Vessel sealing instrument |
US6511480B1 (en) | 1998-10-23 | 2003-01-28 | Sherwood Services Ag | Open vessel sealing forceps with disposable electrodes |
JP4245278B2 (en) | 1998-10-23 | 2009-03-25 | コビディエン アクチェンゲゼルシャフト | Forceps for external incision blood vessel sealing with disposable electrodes |
US6796981B2 (en) | 1999-09-30 | 2004-09-28 | Sherwood Services Ag | Vessel sealing system |
US6277117B1 (en) | 1998-10-23 | 2001-08-21 | Sherwood Services Ag | Open vessel sealing forceps with disposable electrodes |
US20100042093A9 (en) | 1998-10-23 | 2010-02-18 | Wham Robert H | System and method for terminating treatment in impedance feedback algorithm |
US7364577B2 (en) | 2002-02-11 | 2008-04-29 | Sherwood Services Ag | Vessel sealing system |
US7901400B2 (en) | 1998-10-23 | 2011-03-08 | Covidien Ag | Method and system for controlling output of RF medical generator |
US6174311B1 (en) | 1998-10-28 | 2001-01-16 | Sdgi Holdings, Inc. | Interbody fusion grafts and instrumentation |
JP2000210299A (en) | 1999-01-20 | 2000-08-02 | Olympus Optical Co Ltd | Surgical operation instrument |
DE19850068C1 (en) | 1998-10-30 | 2000-06-08 | Storz Karl Gmbh & Co Kg | Medical instrument for tissue preparation |
US6459926B1 (en) | 1998-11-20 | 2002-10-01 | Intuitive Surgical, Inc. | Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery |
US6120519A (en) | 1998-12-02 | 2000-09-19 | Weber; Paul J. | Advanced fulcrum liposuction device |
EP1016630B1 (en) | 1998-12-30 | 2005-12-28 | Wedeco AG | Apparatus for ultraviolet irradiation and disinfection of flowing sewage with reduced UV transmission coefficients |
JP3349139B2 (en) | 2000-01-20 | 2002-11-20 | オリンパス光学工業株式会社 | Coagulation incision system |
US20030171747A1 (en) | 1999-01-25 | 2003-09-11 | Olympus Optical Co., Ltd. | Medical treatment instrument |
JP3255885B2 (en) | 1999-01-25 | 2002-02-12 | オリンパス光学工業株式会社 | Medical treatment tools |
US7189206B2 (en) | 2003-02-24 | 2007-03-13 | Senorx, Inc. | Biopsy device with inner cutter |
US6174309B1 (en) | 1999-02-11 | 2001-01-16 | Medical Scientific, Inc. | Seal & cut electrosurgical instrument |
US6332891B1 (en) | 1999-02-16 | 2001-12-25 | Stryker Corporation | System and method for performing image guided surgery |
US6350269B1 (en) | 1999-03-01 | 2002-02-26 | Apollo Camera, L.L.C. | Ligation clip and clip applier |
DE19908721A1 (en) | 1999-03-01 | 2000-09-28 | Storz Karl Gmbh & Co Kg | Instrument for cutting biological and especially human tissue |
US6290575B1 (en) | 1999-03-01 | 2001-09-18 | John I. Shipp | Surgical ligation clip with increased ligating force |
US6027515A (en) | 1999-03-02 | 2000-02-22 | Sound Surgical Technologies Llc | Pulsed ultrasonic device and method |
US7550216B2 (en) | 1999-03-03 | 2009-06-23 | Foster-Miller, Inc. | Composite solid polymer electrolyte membranes |
US6666875B1 (en) | 1999-03-05 | 2003-12-23 | Olympus Optical Co., Ltd. | Surgical apparatus permitting recharge of battery-driven surgical instrument in noncontact state |
US20020022836A1 (en) | 1999-03-05 | 2002-02-21 | Gyrus Medical Limited | Electrosurgery system |
US6582427B1 (en) | 1999-03-05 | 2003-06-24 | Gyrus Medical Limited | Electrosurgery system |
US6311783B1 (en) | 1999-03-08 | 2001-11-06 | William Harpell | Gardening tool |
US6190386B1 (en) | 1999-03-09 | 2001-02-20 | Everest Medical Corporation | Electrosurgical forceps with needle electrodes |
US6569178B1 (en) * | 1999-03-09 | 2003-05-27 | Olympus Optical Co., Ltd. | Ultrasonic coagulating/cutting apparatus |
US6582451B1 (en) | 1999-03-16 | 2003-06-24 | The University Of Sydney | Device for use in surgery |
JP2000271145A (en) | 1999-03-24 | 2000-10-03 | Olympus Optical Co Ltd | Device and system for treatment |
US6251110B1 (en) | 1999-03-31 | 2001-06-26 | Ethicon Endo-Surgery, Inc. | Combined radio frequency and ultrasonic surgical device |
US6416486B1 (en) | 1999-03-31 | 2002-07-09 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical device having an embedding surface and a coagulating surface |
US6257241B1 (en) | 1999-03-31 | 2001-07-10 | Ethicon Endo-Surgery, Inc. | Method for repairing tissue defects using ultrasonic radio frequency energy |
US6287344B1 (en) | 1999-03-31 | 2001-09-11 | Ethicon Endo-Surgery, Inc. | Method for repairing tissue defects using an ultrasonic device |
JP2000287987A (en) | 1999-04-01 | 2000-10-17 | Olympus Optical Co Ltd | Chargeable battery type medical treatment apparatus |
US6594552B1 (en) | 1999-04-07 | 2003-07-15 | Intuitive Surgical, Inc. | Grip strength with tactile feedback for robotic surgery |
DE60040788D1 (en) | 1999-04-15 | 2008-12-24 | Ethicon Endo Surgery | METHOD FOR TUNING ULTRASOUND TRANSFORMERS |
US6278218B1 (en) | 1999-04-15 | 2001-08-21 | Ethicon Endo-Surgery, Inc. | Apparatus and method for tuning ultrasonic transducers |
AU4420100A (en) | 1999-04-21 | 2000-11-10 | Michael John Radley Young | Improved waveguide output configurations |
US6152923A (en) | 1999-04-28 | 2000-11-28 | Sherwood Services Ag | Multi-contact forceps and method of sealing, coagulating, cauterizing and/or cutting vessels and tissue |
US6689146B1 (en) | 1999-04-29 | 2004-02-10 | Stryker Corporation | Powered surgical handpiece with integrated irrigator and suction application |
JP2000312682A (en) * | 1999-04-30 | 2000-11-14 | Olympus Optical Co Ltd | Ultrasonic treatment tool |
ES2270814T3 (en) | 1999-05-07 | 2007-04-16 | AESCULAP AG & CO. KG | ROTATING SURGICAL TOOL. |
US20030130693A1 (en) | 1999-05-18 | 2003-07-10 | Levin John M. | Laparoscopic/thorascopic insertion caps |
US6233476B1 (en) | 1999-05-18 | 2001-05-15 | Mediguide Ltd. | Medical positioning system |
US6174310B1 (en) | 1999-05-24 | 2001-01-16 | Kirwan Surgical Products, Inc. | Bipolar coaxial coagulator having offset connector pin |
US6454781B1 (en) | 1999-05-26 | 2002-09-24 | Ethicon Endo-Surgery, Inc. | Feedback control in an ultrasonic surgical instrument for improved tissue effects |
US7695485B2 (en) | 2001-11-30 | 2010-04-13 | Power Medical Interventions, Llc | Surgical device |
US6517565B1 (en) | 1999-06-02 | 2003-02-11 | Power Medical Interventions, Inc. | Carriage assembly for controlling a steering wire steering mechanism within a flexible shaft |
KR100660771B1 (en) | 1999-06-03 | 2006-12-26 | 아스린 에스.아. | Security device comprising a stop member for drilling instrument used in particular in dental surgery and device pre-calibrating and storing drilling depth |
US6416525B1 (en) | 1999-06-08 | 2002-07-09 | Olympus Optical Co., Ltd. | Ultrasonic vibrator capable of infallably preventing drops of water from entering the inside of a casing of the vibrator even if autoclave sterilization without a drying process is performed |
US6273852B1 (en) | 1999-06-09 | 2001-08-14 | Ethicon, Inc. | Surgical instrument and method for treating female urinary incontinence |
US6228104B1 (en) | 1999-06-18 | 2001-05-08 | Novare Surgical Systems, Inc. | Surgical clamp having replaceable pad |
US6117152A (en) | 1999-06-18 | 2000-09-12 | Ethicon Endo-Surgery, Inc. | Multi-function ultrasonic surgical instrument |
US6273902B1 (en) | 1999-06-18 | 2001-08-14 | Novare Surgical Systems, Inc. | Surgical clamp having replaceable pad |
US6387112B1 (en) | 1999-06-18 | 2002-05-14 | Novare Surgical Systems, Inc. | Surgical clamp having replaceable pad |
US6299621B1 (en) | 1999-06-18 | 2001-10-09 | Novare Surgical Systems, Inc. | Surgical clamp pads with elastomer impregnated mesh |
US6214023B1 (en) * | 1999-06-21 | 2001-04-10 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument with removable clamp arm |
US6293954B1 (en) | 1999-06-21 | 2001-09-25 | Novare Surgical Systems, Inc. | Surgical clamp with replaceable clamp members |
US6811842B1 (en) | 1999-06-29 | 2004-11-02 | The Procter & Gamble Company | Liquid transport member for high flux rates between two port regions |
US6254623B1 (en) * | 1999-06-30 | 2001-07-03 | Ethicon Endo-Surgery, Inc. | Ultrasonic clamp coagulator surgical instrument with improved blade geometry |
US6488196B1 (en) | 1999-06-30 | 2002-12-03 | Axya Medical, Inc. | Surgical stapler and method of applying plastic staples to body tissue |
US20010031950A1 (en) | 1999-07-16 | 2001-10-18 | Samantha Bell | Surgical blade coatings |
JP2001029353A (en) | 1999-07-21 | 2001-02-06 | Olympus Optical Co Ltd | Ultrasonic treating device |
US6423073B2 (en) | 1999-07-23 | 2002-07-23 | Ethicon, Inc. | Instrument for inserting graft fixation device |
US6258034B1 (en) | 1999-08-04 | 2001-07-10 | Acuson Corporation | Apodization methods and apparatus for acoustic phased array aperture for diagnostic medical ultrasound transducer |
TW449185U (en) | 1999-08-20 | 2001-08-01 | Chroma Ate Inc | Charge/discharge control circuit for battery |
US6666860B1 (en) | 1999-08-24 | 2003-12-23 | Olympus Optical Co., Ltd. | Electric treatment system |
DE19940689A1 (en) * | 1999-08-27 | 2001-04-05 | Storz Karl Gmbh & Co Kg | Bipolar medical instrument |
US20020087155A1 (en) | 1999-08-30 | 2002-07-04 | Underwood Ronald A. | Systems and methods for intradermal collagen stimulation |
US6333488B1 (en) | 1999-08-30 | 2001-12-25 | General Electric Company | Method for setting up and controlling confinement media flow in laser shock peening |
US6419675B1 (en) | 1999-09-03 | 2002-07-16 | Conmed Corporation | Electrosurgical coagulating and cutting instrument |
US6651669B1 (en) | 1999-09-07 | 2003-11-25 | Scimed Life Systems, Inc. | Systems and methods to identify and disable re-used single use devices based on cataloging catheter usage |
US7077039B2 (en) | 2001-11-13 | 2006-07-18 | Sd3, Llc | Detection system for power equipment |
US6524251B2 (en) | 1999-10-05 | 2003-02-25 | Omnisonics Medical Technologies, Inc. | Ultrasonic device for tissue ablation and sheath for use therewith |
US20030036705A1 (en) | 1999-10-05 | 2003-02-20 | Omnisonics Medical Technologies, Inc. | Ultrasonic probe device having an impedance mismatch with rapid attachment and detachment means |
US6695782B2 (en) | 1999-10-05 | 2004-02-24 | Omnisonics Medical Technologies, Inc. | Ultrasonic probe device with rapid attachment and detachment means |
US20040097996A1 (en) | 1999-10-05 | 2004-05-20 | Omnisonics Medical Technologies, Inc. | Apparatus and method of removing occlusions using an ultrasonic medical device operating in a transverse mode |
US6551337B1 (en) | 1999-10-05 | 2003-04-22 | Omnisonics Medical Technologies, Inc. | Ultrasonic medical device operating in a transverse mode |
JP4233742B2 (en) * | 1999-10-05 | 2009-03-04 | エシコン・エンド−サージェリィ・インコーポレイテッド | Connecting curved clamp arms and tissue pads used with ultrasonic surgical instruments |
US6379350B1 (en) | 1999-10-05 | 2002-04-30 | Oratec Interventions, Inc. | Surgical instrument for ablation and aspiration |
US6325811B1 (en) * | 1999-10-05 | 2001-12-04 | Ethicon Endo-Surgery, Inc. | Blades with functional balance asymmetries for use with ultrasonic surgical instruments |
US6432118B1 (en) | 1999-10-05 | 2002-08-13 | Ethicon Endo-Surgery, Inc. | Multifunctional curved blade for use with an ultrasonic surgical instrument |
US20020077550A1 (en) | 1999-10-05 | 2002-06-20 | Rabiner Robert A. | Apparatus and method for treating gynecological diseases using an ultrasonic medical device operating in a transverse mode |
US6458142B1 (en) * | 1999-10-05 | 2002-10-01 | Ethicon Endo-Surgery, Inc. | Force limiting mechanism for an ultrasonic surgical instrument |
US6204592B1 (en) | 1999-10-12 | 2001-03-20 | Ben Hur | Ultrasonic nailing and drilling apparatus |
DK1150616T3 (en) | 1999-10-15 | 2006-02-13 | Lina Medical Aps | Surgical device for coagulation and for incision, a method for cutting blood vessels and a method for coagulating and for incision in wounds or for cutting wounds |
US7615076B2 (en) | 1999-10-20 | 2009-11-10 | Anulex Technologies, Inc. | Method and apparatus for the treatment of the intervertebral disc annulus |
US6340878B1 (en) | 1999-10-22 | 2002-01-22 | Motorola, Inc. | Silicon equivalent PTC circuit |
US20030109875A1 (en) | 1999-10-22 | 2003-06-12 | Tetzlaff Philip M. | Open vessel sealing forceps with disposable electrodes |
US6716215B1 (en) | 1999-10-29 | 2004-04-06 | Image-Guided Neurologics | Cranial drill with sterile barrier |
HRP990264A2 (en) | 1999-11-02 | 2001-06-30 | Josip Paladino | Neurosurgical endoscopic ultrasonic contact probe |
US6440062B1 (en) | 1999-11-10 | 2002-08-27 | Asahi Kogaku Kogyo Kabushiki Kaisha | Control wire driving mechanism for use in endoscope |
US6443969B1 (en) | 2000-08-15 | 2002-09-03 | Misonix, Inc. | Ultrasonic cutting blade with cooling |
AU5943900A (en) | 1999-11-29 | 2001-05-31 | Alcon Universal Limited | Torsional ultrasound handpiece |
JP2001149374A (en) | 1999-11-29 | 2001-06-05 | Asahi Optical Co Ltd | Tissue-collection instrument for endoscope |
RU2154437C1 (en) | 1999-11-30 | 2000-08-20 | Зао "Вниимп-Вита" | Electrosurgical apparatus |
US7153312B1 (en) | 1999-12-02 | 2006-12-26 | Smith & Nephew Inc. | Closure device and method for tissue repair |
US6635057B2 (en) | 1999-12-02 | 2003-10-21 | Olympus Optical Co. Ltd. | Electric operation apparatus |
US6352532B1 (en) | 1999-12-14 | 2002-03-05 | Ethicon Endo-Surgery, Inc. | Active load control of ultrasonic surgical instruments |
US6743245B2 (en) | 1999-12-20 | 2004-06-01 | Alcon Universal Ltd. | Asynchronous method of operating microsurgical instruments |
JP2001170066A (en) | 1999-12-21 | 2001-06-26 | Olympus Optical Co Ltd | Ultrasonic treatment tool |
DK176336B1 (en) | 1999-12-22 | 2007-08-20 | Asahi Optical Co Ltd | Endoscopic tissue collection instrument |
US6884252B1 (en) | 2000-04-04 | 2005-04-26 | Circuit Tree Medical, Inc. | Low frequency cataract fragmenting device |
US6511493B1 (en) | 2000-01-10 | 2003-01-28 | Hydrocision, Inc. | Liquid jet-powered surgical instruments |
US6702821B2 (en) | 2000-01-14 | 2004-03-09 | The Bonutti 2003 Trust A | Instrumentation for minimally invasive joint replacement and methods for using same |
US6699214B2 (en) | 2000-01-19 | 2004-03-02 | Scimed Life Systems, Inc. | Shear-sensitive injectable delivery system |
US6416469B1 (en) | 2000-01-26 | 2002-07-09 | Genzyme Corporation | Suture organizing and retaining device and base member for surgical retractor |
US6589239B2 (en) | 2000-02-01 | 2003-07-08 | Ashok C. Khandkar | Electrosurgical knife |
AU2001234681A1 (en) | 2000-02-01 | 2001-08-14 | Sound Surgical Technologies Llc | Aluminum ultrasonic surgical applicator and method of making such an applicator |
SE0000344D0 (en) | 2000-02-02 | 2000-02-02 | Sudhir Chowdhury | Disinfection of water |
US6569109B2 (en) | 2000-02-04 | 2003-05-27 | Olympus Optical Co., Ltd. | Ultrasonic operation apparatus for performing follow-up control of resonance frequency drive of ultrasonic oscillator by digital PLL system using DDS (direct digital synthesizer) |
JP2002186901A (en) | 2000-12-21 | 2002-07-02 | Olympus Optical Co Ltd | Ultrasonic surgical equipment |
RU2201169C2 (en) | 2000-02-08 | 2003-03-27 | Санкт-Петербургская медицинская академия последипломного образования | Ultrasonic device for carrying out neurosurgical treatment |
US6564806B1 (en) | 2000-02-18 | 2003-05-20 | Thomas J. Fogarty | Device for accurately marking tissue |
EP1259155B1 (en) | 2000-02-18 | 2010-12-08 | Fogarty, Thomas J. | Improved device for accurately marking tissue |
US6723091B2 (en) | 2000-02-22 | 2004-04-20 | Gyrus Medical Limited | Tissue resurfacing |
US6629974B2 (en) | 2000-02-22 | 2003-10-07 | Gyrus Medical Limited | Tissue treatment method |
WO2001062173A2 (en) | 2000-02-25 | 2001-08-30 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and apparatuses for maintaining a trajectory in sterotaxi for tracking a target inside a body |
US6702761B1 (en) | 2000-03-06 | 2004-03-09 | Fonar Corporation | Vibration assisted needle device |
US6558385B1 (en) | 2000-09-22 | 2003-05-06 | Tissuelink Medical, Inc. | Fluid-assisted medical device |
US8048070B2 (en) | 2000-03-06 | 2011-11-01 | Salient Surgical Technologies, Inc. | Fluid-assisted medical devices, systems and methods |
US6506208B2 (en) | 2000-03-06 | 2003-01-14 | Robert B. Hunt | Surgical instrument |
US6953461B2 (en) | 2002-05-16 | 2005-10-11 | Tissuelink Medical, Inc. | Fluid-assisted medical devices, systems and methods |
US6428539B1 (en) | 2000-03-09 | 2002-08-06 | Origin Medsystems, Inc. | Apparatus and method for minimally invasive surgery using rotational cutting tool |
US6575929B2 (en) | 2000-03-14 | 2003-06-10 | Alcon Manufacturing, Ltd. | Pumping chamber for a liquefaction handpiece |
AU2001245727A1 (en) | 2000-03-15 | 2001-09-24 | Bioaccess, Inc. | Orthopedic medical device |
DE20004812U1 (en) | 2000-03-16 | 2000-09-28 | Knop, Christian, Dr., 30163 Hannover | Endoscopic expanding pliers |
US6926712B2 (en) | 2000-03-24 | 2005-08-09 | Boston Scientific Scimed, Inc. | Clamp having at least one malleable clamp member and surgical method employing the same |
US6423082B1 (en) | 2000-03-31 | 2002-07-23 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical blade with improved cutting and coagulation features |
US6623501B2 (en) | 2000-04-05 | 2003-09-23 | Therasense, Inc. | Reusable ceramic skin-piercing device |
FR2807827B1 (en) | 2000-04-12 | 2002-07-05 | Technomed Medical Systems | FLUID HANDLING SYSTEM FOR THERAPY APPARATUS |
US6984220B2 (en) | 2000-04-12 | 2006-01-10 | Wuchinich David G | Longitudinal-torsional ultrasonic tissue dissection |
US20030120306A1 (en) | 2000-04-21 | 2003-06-26 | Vascular Control System | Method and apparatus for the detection and occlusion of blood vessels |
AU2001249874A1 (en) | 2000-04-27 | 2001-11-12 | Medtronic, Inc. | System and method for assessing transmurality of ablation lesions |
WO2001082812A1 (en) | 2000-04-27 | 2001-11-08 | Medtronic, Inc. | Vibration sensitive ablation apparatus and method |
AU6321301A (en) | 2000-05-16 | 2001-11-26 | Atrionix Inc | Apparatus and method incorporating an ultrasound transducer onto a delivery member |
DE10025352B4 (en) | 2000-05-23 | 2007-09-20 | Hilti Ag | Tool device with an ultrasonic adapter |
USD445092S1 (en) | 2000-05-24 | 2001-07-17 | Aten International Co., Ltd. | Computer-cord-connector |
USD445764S1 (en) | 2000-05-24 | 2001-07-31 | Aten International Co., Ltd. | Computer-cord-connector |
WO2001089396A1 (en) | 2000-05-25 | 2001-11-29 | United States Surgical, A Division Of Tyco Healthcare Group Lp | Surgical instrument with cushioned handle assembly |
US20030204188A1 (en) | 2001-11-07 | 2003-10-30 | Artemis Medical, Inc. | Tissue separating and localizing catheter assembly |
DE10028319A1 (en) | 2000-06-07 | 2001-12-13 | Endress Hauser Gmbh Co | Electromechanical transducer has piezoelectric elements in stack with intermediate contact electrodes in form of flat connecting vanes fed out of flexible circuit board |
WO2001095810A2 (en) | 2000-06-14 | 2001-12-20 | Harmonia Medical Technologies, Inc. | Surgical instrument and method of using the same |
US6558376B2 (en) * | 2000-06-30 | 2003-05-06 | Gregory D. Bishop | Method of use of an ultrasonic clamp and coagulation apparatus with tissue support surface |
US6511478B1 (en) | 2000-06-30 | 2003-01-28 | Scimed Life Systems, Inc. | Medical probe with reduced number of temperature sensor wires |
US7235073B2 (en) | 2000-07-06 | 2007-06-26 | Ethicon Endo-Surgery, Inc. | Cooled electrosurgical forceps |
US6746443B1 (en) | 2000-07-27 | 2004-06-08 | Intuitive Surgical Inc. | Roll-pitch-roll surgical tool |
JP2003000612A (en) | 2001-06-18 | 2003-01-07 | Olympus Optical Co Ltd | Energy treating system |
US6761698B2 (en) | 2000-07-28 | 2004-07-13 | Olympus Corporation | Ultrasonic operation system |
US6773443B2 (en) | 2000-07-31 | 2004-08-10 | Regents Of The University Of Minnesota | Method and apparatus for taking a biopsy |
CN100394171C (en) * | 2000-08-02 | 2008-06-11 | 卡钳技术有限公司 | High throughput analysis system based on separation |
DE20013827U1 (en) | 2000-08-10 | 2001-12-20 | Kaltenbach & Voigt GmbH & Co., 88400 Biberach | Medical or dental treatment instrument with a tool holder in the form of a vibrating rod |
US6719766B1 (en) | 2000-08-24 | 2004-04-13 | Novare Surgical Systems, Inc. | Surgical clamp pads having surface overlay |
JP3841627B2 (en) | 2000-08-24 | 2006-11-01 | オリンパス株式会社 | Ultrasonic coagulation and incision device |
DE10042606A1 (en) | 2000-08-30 | 2001-08-16 | Siemens Ag | Medical instrument has two interfitting cannulas with curvature altered by twisting by means of cog wheels, or drive mechanism. |
US6551309B1 (en) | 2000-09-14 | 2003-04-22 | Cryoflex, Inc. | Dual action cryoprobe and methods of using the same |
IT1318881B1 (en) | 2000-09-19 | 2003-09-10 | St Microelectronics Srl | HIGH EFFICIENCY PILOTING CIRCUIT FOR CAPACITIVE LOADS. |
US20020082621A1 (en) | 2000-09-22 | 2002-06-27 | Schurr Marc O. | Methods and devices for folding and securing tissue |
US6475215B1 (en) | 2000-10-12 | 2002-11-05 | Naim Erturk Tanrisever | Quantum energy surgical device and method |
GB0025427D0 (en) | 2000-10-17 | 2000-11-29 | Young Michael J R | Ultrasonic tool mechanism |
CA2359281C (en) | 2000-10-20 | 2010-12-14 | Ethicon Endo-Surgery, Inc. | Detection circuitry for surgical handpiece system |
US6338657B1 (en) | 2000-10-20 | 2002-01-15 | Ethicon Endo-Surgery | Hand piece connector |
US6679899B2 (en) | 2000-10-20 | 2004-01-20 | Ethicon Endo-Surgery, Inc. | Method for detecting transverse vibrations in an ultrasonic hand piece |
US6623500B1 (en) | 2000-10-20 | 2003-09-23 | Ethicon Endo-Surgery, Inc. | Ring contact for rotatable connection of switch assembly for use in a surgical system |
US6678621B2 (en) | 2000-10-20 | 2004-01-13 | Ethicon Endo-Surgery, Inc. | Output displacement control using phase margin in an ultrasonic surgical hand piece |
US7077853B2 (en) | 2000-10-20 | 2006-07-18 | Ethicon Endo-Surgery, Inc. | Method for calculating transducer capacitance to determine transducer temperature |
US7273483B2 (en) | 2000-10-20 | 2007-09-25 | Ethicon Endo-Surgery, Inc. | Apparatus and method for alerting generator functions in an ultrasonic surgical system |
JP4156231B2 (en) | 2000-10-20 | 2008-09-24 | エシコン・エンド−サージェリィ・インコーポレイテッド | Method for detecting transverse vibrations in an ultrasonic hand piece |
US6480796B2 (en) | 2000-10-20 | 2002-11-12 | Ethicon Endo-Surgery, Inc. | Method for improving the start up of an ultrasonic system under zero load conditions |
US6945981B2 (en) | 2000-10-20 | 2005-09-20 | Ethicon-Endo Surgery, Inc. | Finger operated switch for controlling a surgical handpiece |
US6626926B2 (en) | 2000-10-20 | 2003-09-30 | Ethicon Endo-Surgery, Inc. | Method for driving an ultrasonic system to improve acquisition of blade resonance frequency at startup |
US20020049551A1 (en) | 2000-10-20 | 2002-04-25 | Ethicon Endo-Surgery, Inc. | Method for differentiating between burdened and cracked ultrasonically tuned blades |
US6633234B2 (en) | 2000-10-20 | 2003-10-14 | Ethicon Endo-Surgery, Inc. | Method for detecting blade breakage using rate and/or impedance information |
US6537291B2 (en) | 2000-10-20 | 2003-03-25 | Ethicon Endo-Surgery, Inc. | Method for detecting a loose blade in a hand piece connected to an ultrasonic surgical system |
JP4248781B2 (en) | 2000-10-20 | 2009-04-02 | エシコン・エンド−サージェリィ・インコーポレイテッド | Detection circuit for surgical handpiece system |
US6809508B2 (en) | 2000-10-20 | 2004-10-26 | Ethicon Endo-Surgery, Inc. | Detection circuitry for surgical handpiece system |
US6908472B2 (en) | 2000-10-20 | 2005-06-21 | Ethicon Endo-Surgery, Inc. | Apparatus and method for altering generator functions in an ultrasonic surgical system |
USD511145S1 (en) | 2000-10-20 | 2005-11-01 | Ethicon Endo-Surgery, Inc. | Hand piece switch adapter |
US6662127B2 (en) | 2000-10-20 | 2003-12-09 | Ethicon Endo-Surgery, Inc. | Method for detecting presence of a blade in an ultrasonic system |
US6527736B1 (en) | 2000-10-23 | 2003-03-04 | Grieshaber & Co. Ag Schaffhausen | Device for use in ophthalmologic procedures |
US6500176B1 (en) | 2000-10-23 | 2002-12-31 | Csaba Truckai | Electrosurgical systems and techniques for sealing tissue |
US6656177B2 (en) | 2000-10-23 | 2003-12-02 | Csaba Truckai | Electrosurgical systems and techniques for sealing tissue |
JP2002132917A (en) | 2000-10-26 | 2002-05-10 | Fujitsu Ltd | Printing service method and system, and printer |
US6893435B2 (en) | 2000-10-31 | 2005-05-17 | Gyrus Medical Limited | Electrosurgical system |
US20030139741A1 (en) | 2000-10-31 | 2003-07-24 | Gyrus Medical Limited | Surgical instrument |
JP2002143177A (en) | 2000-11-07 | 2002-05-21 | Miwatec:Kk | Ultrasonic hand piece and ultrasonic horn used therefor |
US7267685B2 (en) | 2000-11-16 | 2007-09-11 | Cordis Corporation | Bilateral extension prosthesis and method of delivery |
US6733506B1 (en) | 2000-11-16 | 2004-05-11 | Ethicon, Inc. | Apparatus and method for attaching soft tissue to bone |
CN2460047Y (en) | 2000-11-16 | 2001-11-21 | 黄健平 | Computer virtual B ultrasonic diagnostic apparatus |
US6543452B1 (en) | 2000-11-16 | 2003-04-08 | Medilyfe, Inc. | Nasal intubation device and system for intubation |
IT249046Y1 (en) | 2000-12-11 | 2003-03-25 | Optikon 2000 Spa | EMULSIFIED TIP FOR OCULISTIC SURGERY, IN PARTICULAR FOR THE PHACOEMULSIFICATION OF CATARACT. |
JP4080874B2 (en) | 2000-12-20 | 2008-04-23 | フォックス ハロウ テクノロジーズ,インコーポレイティド | Bulking catheter |
DE20021619U1 (en) | 2000-12-21 | 2001-03-08 | Neumann, Anne-Kathrin, 26605 Aurich | Surgical hand tool, in particular ultrasound scalpel |
JP3561234B2 (en) | 2000-12-21 | 2004-09-02 | アイシン機工株式会社 | Ultrasonic generation transmission device |
US6690960B2 (en) | 2000-12-21 | 2004-02-10 | David T. Chen | Video-based surgical targeting system |
US8133218B2 (en) | 2000-12-28 | 2012-03-13 | Senorx, Inc. | Electrosurgical medical system and method |
US6840938B1 (en) | 2000-12-29 | 2005-01-11 | Intuitive Surgical, Inc. | Bipolar cauterizing instrument |
US7530986B2 (en) | 2001-01-08 | 2009-05-12 | Ethicon Endo-Surgery, Inc. | Laminated ultrasonic end effector |
CA2434151C (en) | 2001-01-11 | 2009-12-22 | Rita Medical Systems, Inc. | Bone-treatment instrument and method |
US20040138621A1 (en) | 2003-01-14 | 2004-07-15 | Jahns Scott E. | Devices and methods for interstitial injection of biologic agents into tissue |
US6554829B2 (en) | 2001-01-24 | 2003-04-29 | Ethicon, Inc. | Electrosurgical instrument with minimally invasive jaws |
US6464702B2 (en) | 2001-01-24 | 2002-10-15 | Ethicon, Inc. | Electrosurgical instrument with closing tube for conducting RF energy and moving jaws |
US6620161B2 (en) | 2001-01-24 | 2003-09-16 | Ethicon, Inc. | Electrosurgical instrument with an operational sequencing element |
US6458128B1 (en) | 2001-01-24 | 2002-10-01 | Ethicon, Inc. | Electrosurgical instrument with a longitudinal element for conducting RF energy and moving a cutting element |
US20020107517A1 (en) | 2001-01-26 | 2002-08-08 | Witt David A. | Electrosurgical instrument for coagulation and cutting |
US6712805B2 (en) | 2001-01-29 | 2004-03-30 | Ultra Sonic Tech Llc | Method and apparatus for intradermal incorporation of microparticles containing encapsulated drugs using low frequency ultrasound |
US6500188B2 (en) | 2001-01-29 | 2002-12-31 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument with finger actuator |
EP1359851B1 (en) | 2001-01-31 | 2010-09-22 | Rex Medical, Inc. | Apparatus for stapling and resectioning gastro-edophageal tissue |
USD444365S1 (en) | 2001-01-31 | 2001-07-03 | Campbell Hausfeld/Scott Fetzer Company | Handheld power tool housing and handle |
US6752815B2 (en) | 2001-01-31 | 2004-06-22 | Ethicon Endo-Surgery, Inc. | Method and waveguides for changing the direction of longitudinal vibrations |
US6561983B2 (en) | 2001-01-31 | 2003-05-13 | Ethicon Endo-Surgery, Inc. | Attachments of components of ultrasonic blades or waveguides |
US20080214967A1 (en) | 2004-02-17 | 2008-09-04 | Ernest Aranyi | Ultrasonic surgical instrument |
US20040054364A1 (en) | 2002-02-08 | 2004-03-18 | Ernest Aranyi | Ultrasonic surgical instrument |
CA2437582C (en) | 2001-02-08 | 2009-09-15 | Tyco Healthcare Group Lp | Ultrasonic surgical instrument |
JP2002233533A (en) | 2001-02-09 | 2002-08-20 | Olympus Optical Co Ltd | Ultrasonic treatment apparatus |
US20040097911A1 (en) | 2001-02-13 | 2004-05-20 | Olympus Optical Co., Ltd. | Ultrasonic operating apparartus and tool for changing tip thereof |
JP2002238919A (en) | 2001-02-20 | 2002-08-27 | Olympus Optical Co Ltd | Control apparatus for medical care system and medical care system |
US6533784B2 (en) | 2001-02-24 | 2003-03-18 | Csaba Truckai | Electrosurgical working end for transecting and sealing tissue |
US6383194B1 (en) | 2001-02-26 | 2002-05-07 | Viswanadham Pothula | Flexible ultrasonic surgical snare |
WO2002067798A1 (en) | 2001-02-26 | 2002-09-06 | Ntero Surgical, Inc. | System and method for reducing post-surgical complications |
US6719776B2 (en) * | 2001-03-01 | 2004-04-13 | Ethicon Endo-Surgery, Inc. | Thumb pad actuator for an ultrasonic surgical instrument |
JP2002263579A (en) | 2001-03-07 | 2002-09-17 | Olympus Optical Co Ltd | Ultrasonic transducer drive unit |
US6623444B2 (en) | 2001-03-21 | 2003-09-23 | Advanced Medical Applications, Inc. | Ultrasonic catheter drug delivery method and device |
DE10114551C1 (en) | 2001-03-24 | 2002-10-02 | Karlsruhe Forschzent | microgrippers |
US6514267B2 (en) | 2001-03-26 | 2003-02-04 | Iep Pharmaceutical Devices Inc. | Ultrasonic scalpel |
US20030014087A1 (en) | 2001-03-30 | 2003-01-16 | Neurocontrol Corporation | Systems and methods for performing prosthetic or therapeutic neuromuscular stimulation using a programmable universal external controller |
US6626848B2 (en) | 2001-03-30 | 2003-09-30 | Eric M. Neuenfeldt | Method and device to reduce needle insertion force |
US8348880B2 (en) | 2001-04-04 | 2013-01-08 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument incorporating fluid management |
USD457958S1 (en) | 2001-04-06 | 2002-05-28 | Sherwood Services Ag | Vessel sealer and divider |
US7101373B2 (en) | 2001-04-06 | 2006-09-05 | Sherwood Services Ag | Vessel sealer and divider |
DE60142587D1 (en) | 2001-04-06 | 2010-08-26 | Covidien Ag | Blood vessel sealing and separating device |
AU2001249937B2 (en) | 2001-04-06 | 2006-02-09 | Covidien Ag | Vessel sealing instrument |
US7083618B2 (en) | 2001-04-06 | 2006-08-01 | Sherwood Services Ag | Vessel sealer and divider |
US20030229344A1 (en) | 2002-01-22 | 2003-12-11 | Dycus Sean T. | Vessel sealer and divider and method of manufacturing same |
US7101372B2 (en) | 2001-04-06 | 2006-09-05 | Sherwood Sevices Ag | Vessel sealer and divider |
CA2442598C (en) | 2001-04-06 | 2011-10-04 | Sean T. Dycus | Vessel sealer and divider with non-conductive stop members |
US7101371B2 (en) | 2001-04-06 | 2006-09-05 | Dycus Sean T | Vessel sealer and divider |
US20020151837A1 (en) | 2001-04-16 | 2002-10-17 | Surgicon Inc. | Surgical irrigation apparatus and methods for use |
JP2002306504A (en) | 2001-04-18 | 2002-10-22 | Olympus Optical Co Ltd | Surgical system |
US7824401B2 (en) | 2004-10-08 | 2010-11-02 | Intuitive Surgical Operations, Inc. | Robotic tool with wristed monopolar electrosurgical end effectors |
US6783524B2 (en) | 2001-04-19 | 2004-08-31 | Intuitive Surgical, Inc. | Robotic surgical tool with ultrasound cauterizing and cutting instrument |
US6562035B1 (en) | 2001-04-19 | 2003-05-13 | Levin John M | Insulated surgical scissors including cauterizing tip |
US6994708B2 (en) | 2001-04-19 | 2006-02-07 | Intuitive Surgical | Robotic tool with monopolar electro-surgical scissors |
ATE551955T1 (en) | 2001-04-20 | 2012-04-15 | Tyco Healthcare | SURGICAL DEVICE HAVING BIPOLAR OR ULTRASONIC FEATURES |
US6648883B2 (en) * | 2001-04-26 | 2003-11-18 | Medtronic, Inc. | Ablation system and method of use |
US6699240B2 (en) | 2001-04-26 | 2004-03-02 | Medtronic, Inc. | Method and apparatus for tissue ablation |
US7959626B2 (en) | 2001-04-26 | 2011-06-14 | Medtronic, Inc. | Transmural ablation systems and methods |
US6913579B2 (en) | 2001-05-01 | 2005-07-05 | Surgrx, Inc. | Electrosurgical working end and method for obtaining tissue samples for biopsy |
US6531846B1 (en) | 2001-05-03 | 2003-03-11 | National Semiconductor Corporation | Final discharge of a cell activated by a circuit that senses when a charging fault has occurred |
US20020165577A1 (en) | 2001-05-04 | 2002-11-07 | Ethicon Endo-Surgery, Inc. | Easily detachable ultrasonic clamping device |
EP1385439A1 (en) | 2001-05-10 | 2004-02-04 | Rita Medical Systems, Inc. | Rf tissue ablation apparatus and method |
US6588277B2 (en) | 2001-05-21 | 2003-07-08 | Ethicon Endo-Surgery | Method for detecting transverse mode vibrations in an ultrasonic hand piece/blade |
US6656198B2 (en) | 2001-06-01 | 2003-12-02 | Ethicon-Endo Surgery, Inc. | Trocar with reinforced obturator shaft |
US8052672B2 (en) | 2001-06-06 | 2011-11-08 | LENR Solutions, Inc. | Fat removal and nerve protection device and method |
US11229472B2 (en) | 2001-06-12 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with multiple magnetic position sensors |
US6498421B1 (en) | 2001-06-15 | 2002-12-24 | Amega Lab, L.L.C. | Ultrasonic drilling device with arc-shaped probe |
JP2003010201A (en) | 2001-06-27 | 2003-01-14 | Pentax Corp | Ultrasonic therapeutic instrument |
WO2003001988A2 (en) | 2001-06-29 | 2003-01-09 | The Trustees Of Columbia University In City Of New York | Tripod knife for venous access |
US6817974B2 (en) | 2001-06-29 | 2004-11-16 | Intuitive Surgical, Inc. | Surgical tool having positively positionable tendon-actuated multi-disk wrist joint |
AU2002322374B2 (en) | 2001-06-29 | 2006-10-26 | Intuitive Surgical, Inc. | Platform link wrist mechanism |
US7135029B2 (en) | 2001-06-29 | 2006-11-14 | Makin Inder Raj S | Ultrasonic surgical instrument for intracorporeal sonodynamic therapy |
US20040243147A1 (en) | 2001-07-03 | 2004-12-02 | Lipow Kenneth I. | Surgical robot and robotic controller |
US6740079B1 (en) | 2001-07-12 | 2004-05-25 | Neothermia Corporation | Electrosurgical generator |
US6923804B2 (en) | 2001-07-12 | 2005-08-02 | Neothermia Corporation | Electrosurgical generator |
US7037255B2 (en) | 2001-07-27 | 2006-05-02 | Ams Research Corporation | Surgical instruments for addressing pelvic disorders |
IL144638A (en) | 2001-07-30 | 2005-12-18 | Nano Size Ltd | High power ultrasound reactor for the production of nano-powder materials |
US6778023B2 (en) | 2001-07-31 | 2004-08-17 | Nokia Corporation | Tunable filter and method of tuning a filter |
US7208005B2 (en) | 2001-08-06 | 2007-04-24 | The Penn State Research Foundation | Multifunctional tool and method for minimally invasive surgery |
US20030040758A1 (en) | 2001-08-21 | 2003-02-27 | Yulun Wang | Robotically controlled surgical instrument, visual force-feedback |
US6602229B2 (en) | 2001-08-24 | 2003-08-05 | Ronald G. Coss | Vibrating injection needle |
US7282048B2 (en) | 2001-08-27 | 2007-10-16 | Gyrus Medical Limited | Electrosurgical generator and system |
WO2004078051A2 (en) | 2001-08-27 | 2004-09-16 | Gyrus Medial Limited | Electrosurgical system |
US6808525B2 (en) | 2001-08-27 | 2004-10-26 | Gyrus Medical, Inc. | Bipolar electrosurgical hook probe for cutting and coagulating tissue |
US6994709B2 (en) | 2001-08-30 | 2006-02-07 | Olympus Corporation | Treatment device for tissue from living tissues |
NL1018874C2 (en) | 2001-09-03 | 2003-03-05 | Michel Petronella Hub Vleugels | Surgical instrument. |
US7229455B2 (en) | 2001-09-03 | 2007-06-12 | Olympus Corporation | Ultrasonic calculus treatment apparatus |
WO2007143665A2 (en) | 2006-06-05 | 2007-12-13 | Broncus Technologies, Inc. | Devices for creating passages and sensing blood vessels |
US20050033278A1 (en) | 2001-09-05 | 2005-02-10 | Mcclurken Michael | Fluid assisted medical devices, fluid delivery systems and controllers for such devices, and methods |
US20030050572A1 (en) | 2001-09-07 | 2003-03-13 | Brautigam Robert T. | Specimen retrieving needle |
US6802843B2 (en) | 2001-09-13 | 2004-10-12 | Csaba Truckai | Electrosurgical working end with resistive gradient electrodes |
US6773434B2 (en) | 2001-09-18 | 2004-08-10 | Ethicon, Inc. | Combination bipolar forceps and scissors instrument |
US6773409B2 (en) * | 2001-09-19 | 2004-08-10 | Surgrx Llc | Surgical system for applying ultrasonic energy to tissue |
GB2379878B (en) | 2001-09-21 | 2004-11-10 | Gyrus Medical Ltd | Electrosurgical system and method |
US6616661B2 (en) | 2001-09-28 | 2003-09-09 | Ethicon, Inc. | Surgical device for clamping, ligating, and severing tissue |
WO2003028544A2 (en) | 2001-10-04 | 2003-04-10 | Gibbens & Borders, Llc | Cycling suturing and knot-tying device |
US7796969B2 (en) | 2001-10-10 | 2010-09-14 | Peregrine Semiconductor Corporation | Symmetrically and asymmetrically stacked transistor group RF switch |
ES2327907T3 (en) | 2001-10-11 | 2009-11-05 | Tyco Healthcare Group Lp | LONG ILTRASONIC CUTTING BLADE SHAPED BY SMALLER STRATIFIED BLADES. |
US6656124B2 (en) | 2001-10-15 | 2003-12-02 | Vermon | Stack based multidimensional ultrasonic transducer array |
JP2003126110A (en) | 2001-10-24 | 2003-05-07 | Olympus Optical Co Ltd | Ultrasonic treatment equipment |
US7070597B2 (en) | 2001-10-18 | 2006-07-04 | Surgrx, Inc. | Electrosurgical working end for controlled energy delivery |
US20050267464A1 (en) | 2001-10-18 | 2005-12-01 | Surgrx, Inc. | Electrosurgical instrument and method of use |
US6929644B2 (en) | 2001-10-22 | 2005-08-16 | Surgrx Inc. | Electrosurgical jaw structure for controlled energy delivery |
US6685703B2 (en) | 2001-10-19 | 2004-02-03 | Scimed Life Systems, Inc. | Generator and probe adapter |
US7311709B2 (en) | 2001-10-22 | 2007-12-25 | Surgrx, Inc. | Electrosurgical instrument and method of use |
US6905497B2 (en) | 2001-10-22 | 2005-06-14 | Surgrx, Inc. | Jaw structure for electrosurgical instrument |
US8075558B2 (en) | 2002-04-30 | 2011-12-13 | Surgrx, Inc. | Electrosurgical instrument and method |
US20060293656A1 (en) | 2001-10-22 | 2006-12-28 | Shadduck John H | Electrosurgical instrument and method of use |
US6770072B1 (en) | 2001-10-22 | 2004-08-03 | Surgrx, Inc. | Electrosurgical jaw structure for controlled energy delivery |
US6926716B2 (en) | 2001-11-09 | 2005-08-09 | Surgrx Inc. | Electrosurgical instrument |
US7041102B2 (en) | 2001-10-22 | 2006-05-09 | Surgrx, Inc. | Electrosurgical working end with replaceable cartridges |
US7083619B2 (en) | 2001-10-22 | 2006-08-01 | Surgrx, Inc. | Electrosurgical instrument and method of use |
US7125409B2 (en) | 2001-10-22 | 2006-10-24 | Surgrx, Inc. | Electrosurgical working end for controlled energy delivery |
US7517349B2 (en) | 2001-10-22 | 2009-04-14 | Vnus Medical Technologies, Inc. | Electrosurgical instrument and method |
US7189233B2 (en) | 2001-10-22 | 2007-03-13 | Surgrx, Inc. | Electrosurgical instrument |
US7011657B2 (en) | 2001-10-22 | 2006-03-14 | Surgrx, Inc. | Jaw structure for electrosurgical instrument and method of use |
US20040098010A1 (en) | 2001-10-22 | 2004-05-20 | Glenn Davison | Confuser crown skin pricker |
US7354440B2 (en) | 2001-10-22 | 2008-04-08 | Surgrx, Inc. | Electrosurgical instrument and method of use |
JP2003126104A (en) | 2001-10-23 | 2003-05-07 | Olympus Optical Co Ltd | Ultrasonic incision apparatus |
CA2463903A1 (en) | 2001-10-24 | 2003-05-01 | Stephen L.(M.D.) Tillim | A handle/grip and method for designing the like |
JP3676997B2 (en) | 2001-11-07 | 2005-07-27 | 株式会社岳将 | Spindle structure of ultrasonic processing machine and support horn used therefor |
JP4302524B2 (en) | 2001-11-08 | 2009-07-29 | エシコン・エンド−サージェリィ・インコーポレイテッド | Ultrasonic clamp coagulator with improved clamping end effector |
US7018354B2 (en) | 2001-11-08 | 2006-03-28 | El Hassane Tazi | Liposuction devices and methods and surrounding aspiration systems and methods |
US6719765B2 (en) | 2001-12-03 | 2004-04-13 | Bonutti 2003 Trust-A | Magnetic suturing system and method |
US7686770B2 (en) | 2005-10-14 | 2010-03-30 | Microfabrica Inc. | Discrete or continuous tissue capture device and method for making |
US7785324B2 (en) * | 2005-02-25 | 2010-08-31 | Endoscopic Technologies, Inc. (Estech) | Clamp based lesion formation apparatus and methods configured to protect non-target tissue |
US7753908B2 (en) | 2002-02-19 | 2010-07-13 | Endoscopic Technologies, Inc. (Estech) | Apparatus for securing an electrophysiology probe to a clamp |
US7226448B2 (en) | 2001-12-04 | 2007-06-05 | Estech, Inc. (Endoscopic Technologies, Inc.) | Cardiac treatment devices and methods |
RU22035U1 (en) | 2001-12-06 | 2002-03-10 | Общество с ограниченной ответственностью "Научно-производственное объединение "Каскад-НТЛ" | DEVICE FOR COAGULATION AND RESECTION OF BIOLOGICAL TISSUES |
US7052496B2 (en) | 2001-12-11 | 2006-05-30 | Olympus Optical Co., Ltd. | Instrument for high-frequency treatment and method of high-frequency treatment |
US20030114851A1 (en) | 2001-12-13 | 2003-06-19 | Csaba Truckai | Electrosurgical jaws for controlled application of clamping pressure |
US20040199194A1 (en) | 2001-12-18 | 2004-10-07 | Witt David A. | Curved clamp arm tissue pad attachment for use with ultrasonic surgical instruments |
US6887221B1 (en) | 2001-12-18 | 2005-05-03 | Microsurgical Technology, Inc. | Connector for irrigation-aspiration instrument |
US6780191B2 (en) | 2001-12-28 | 2004-08-24 | Yacmur Llc | Cannula system |
US6602252B2 (en) | 2002-01-03 | 2003-08-05 | Starion Instruments Corporation | Combined dissecting, cauterizing, and stapling device |
JP4109096B2 (en) | 2002-01-11 | 2008-06-25 | オリンパス株式会社 | Ultrasonic treatment device |
DE10201569B4 (en) | 2002-01-11 | 2008-12-24 | Aesculap Ag | Surgical instrument |
ATE540606T1 (en) | 2002-01-22 | 2012-01-15 | Surgrx Inc | ELECTROSURGICAL INSTRUMENT AND METHOD OF USE |
US20030144680A1 (en) | 2002-01-22 | 2003-07-31 | Sontra Medical, Inc. | Portable ultrasonic scalpel/cautery device |
US6676660B2 (en) | 2002-01-23 | 2004-01-13 | Ethicon Endo-Surgery, Inc. | Feedback light apparatus and method for use with an electrosurgical instrument |
US6887209B2 (en) | 2002-01-25 | 2005-05-03 | Advanced Medical Optics | Pulsed vacuum and/or flow method and apparatus for tissue removal |
DE10204487B4 (en) | 2002-01-30 | 2004-03-04 | Infineon Technologies Ag | temperature sensor |
DE10203630A1 (en) | 2002-01-30 | 2003-08-14 | Fraunhofer Ges Forschung | Sample holder for cryopreservation of biological samples |
JP2003230567A (en) | 2002-02-07 | 2003-08-19 | Olympus Optical Co Ltd | Ultrasonic treating instrument |
US7625370B2 (en) | 2002-02-13 | 2009-12-01 | Applied Medical Resources Corporation | Tissue fusion/welder apparatus and method |
US20080177268A1 (en) | 2002-02-14 | 2008-07-24 | Wolfgang Daum | Minimally-Invasive Approach to Bone-Obstructed Soft Tissue |
US6733498B2 (en) | 2002-02-19 | 2004-05-11 | Live Tissue Connect, Inc. | System and method for control of tissue welding |
US20030158548A1 (en) | 2002-02-19 | 2003-08-21 | Phan Huy D. | Surgical system including clamp and apparatus for securing an energy transmission device to the clamp and method of converting a clamp into an electrophysiology device |
US6610059B1 (en) | 2002-02-25 | 2003-08-26 | Hs West Investments Llc | Endoscopic instruments and methods for improved bubble aspiration at a surgical site |
US7041083B2 (en) | 2002-02-26 | 2006-05-09 | Scimed Life Systems, Inc. | Medical catheter assembly including a removable inner sleeve and method of using the same |
US20030160698A1 (en) | 2002-02-26 | 2003-08-28 | Safety Syringes, Inc. | Systems and methods for tracking pharmaceuticals within a facility |
US6648839B2 (en) | 2002-02-28 | 2003-11-18 | Misonix, Incorporated | Ultrasonic medical treatment device for RF cauterization and related method |
US6942676B2 (en) | 2002-03-21 | 2005-09-13 | Novare Surgical Systems, Inc. | Surgical clamp pads with deflecting elements |
US7247161B2 (en) | 2002-03-22 | 2007-07-24 | Gyrus Ent L.L.C. | Powered surgical apparatus, method of manufacturing powered surgical apparatus, and method of using powered surgical apparatus |
GB2387782B (en) | 2002-03-28 | 2004-04-07 | Michael John Radley Young | Improved surgical tool mechanism |
WO2003084601A2 (en) | 2002-04-02 | 2003-10-16 | Lumerx, Inc. | Apparatus and methods using visible light for debilitating and/or killing microorganisms within the body |
AU2003265111A1 (en) | 2002-04-05 | 2003-11-17 | Misonix Incorporated | Electromechanical transducer with ergonomic shape |
WO2003086223A1 (en) | 2002-04-12 | 2003-10-23 | San Diego Swiss Machining, Inc. | Ultrasonic microtube dental instruments and methods of using same |
US7258688B1 (en) | 2002-04-16 | 2007-08-21 | Baylis Medical Company Inc. | Computerized electrical signal generator |
JP2003305050A (en) | 2002-04-17 | 2003-10-28 | Olympus Optical Co Ltd | Ultrasonic operation apparatus |
US20040030330A1 (en) | 2002-04-18 | 2004-02-12 | Brassell James L. | Electrosurgery systems |
EP1496805B1 (en) | 2002-04-25 | 2012-01-11 | Tyco Healthcare Group LP | Surgical instruments including micro-electromechanical systems (mems) |
US20030204199A1 (en) | 2002-04-30 | 2003-10-30 | Novak Theodore A. D. | Device and method for ultrasonic tissue excision with tissue selectivity |
AU2003230359B2 (en) | 2002-05-10 | 2008-11-13 | Covidien Lp | Electrosurgical stapling apparatus |
US20030212332A1 (en) | 2002-05-13 | 2003-11-13 | Paul Fenton | Disposable ultrasonic soft tissue cutting and coagulation systems |
US20030212422A1 (en) | 2002-05-13 | 2003-11-13 | Paul Fenton | Ultrasonic soft tissue cutting and coagulation systems with movable vibrating probe and fixed receiving clamp |
US20030212392A1 (en) | 2002-05-13 | 2003-11-13 | Paul Fenton | Ultrasonic soft tissue cutting and coagulation systems having a curvilinear blade member and clamp |
GB2388741B (en) | 2002-05-17 | 2004-06-30 | Morgan Crucible Co | Transducer assembly |
US6814731B2 (en) | 2002-05-20 | 2004-11-09 | Scimed Life Systems, Inc. | Methods for RF ablation using jet injection of conductive fluid |
JP2004000336A (en) | 2002-05-31 | 2004-01-08 | Olympus Corp | Ultrasonic treatment apparatus |
US6543456B1 (en) | 2002-05-31 | 2003-04-08 | Ethicon Endo-Surgery, Inc. | Method for minimally invasive surgery in the digestive system |
US20060159731A1 (en) | 2002-06-03 | 2006-07-20 | Yissum Research Development Company Of The Hebrew University Of Jerusalem | Multi-layer collagenic article useful for wounds healing and a method for its production thereof |
ATE528046T1 (en) | 2002-06-04 | 2011-10-15 | Sound Surgical Technologies Llc | ULTRASONIC DEVICE FOR TISSUE COAGULATION |
JP4808961B2 (en) | 2002-06-04 | 2011-11-02 | オフィス オブ テクノロジー ライセンシング スタンフォード ユニバーシティ | Device for rapidly aspirating and collecting body tissue from an encapsulated body space |
US7066893B2 (en) | 2002-06-06 | 2006-06-27 | Ethicon Endo-Surgery, Inc. | Biopsy method |
US6855140B2 (en) | 2002-06-06 | 2005-02-15 | Thomas E. Albrecht | Method of tissue lesion removal |
US7153315B2 (en) | 2002-06-11 | 2006-12-26 | Boston Scientific Scimed, Inc. | Catheter balloon with ultrasonic microscalpel blades |
US6783491B2 (en) | 2002-06-13 | 2004-08-31 | Vahid Saadat | Shape lockable apparatus and method for advancing an instrument through unsupported anatomy |
RU2284160C2 (en) | 2002-06-24 | 2006-09-27 | Аркадий Вениаминович Дубровский | Device for rotating remote control instrument |
AUPS322702A0 (en) | 2002-06-28 | 2002-07-18 | Cochlear Limited | Cochlear implant electrode array |
US7331410B2 (en) | 2002-07-03 | 2008-02-19 | Smith International, Inc. | Drill bit arcuate-shaped inserts with cutting edges and method of manufacture |
US7318831B2 (en) | 2002-07-13 | 2008-01-15 | Stryker Corporation | System and method for performing irrigated nose and throat surgery |
US6958071B2 (en) | 2002-07-13 | 2005-10-25 | Stryker Corporation | Surgical tool system |
US6929622B2 (en) | 2002-07-15 | 2005-08-16 | Lai-Wen Chian | Safety syringe cylinder |
US20040047485A1 (en) | 2002-07-16 | 2004-03-11 | Stewart Sherrit | Folded horns for vibration actuators |
DE20303777U1 (en) | 2002-07-22 | 2003-12-11 | Söring GmbH | Medical treatment device with ultrasonic vibration generator in handpiece for treatment of wounds, has adaptor sleeve which can be attached for receiving suction tube |
JP2004057588A (en) | 2002-07-30 | 2004-02-26 | Olympus Corp | Surgical treatment instrument |
AU2003269931A1 (en) | 2002-07-31 | 2004-02-16 | Tyco Heathcare Group, Lp | Tool member cover and cover deployment device |
JP4388475B2 (en) | 2002-08-02 | 2009-12-24 | オリンパス株式会社 | Ultrasonic treatment device |
US20040030254A1 (en) | 2002-08-07 | 2004-02-12 | Eilaz Babaev | Device and method for ultrasound wound debridement |
US20040176751A1 (en) | 2002-08-14 | 2004-09-09 | Endovia Medical, Inc. | Robotic medical instrument system |
US20040132383A1 (en) | 2002-08-14 | 2004-07-08 | Langford Mark A. | Fluid jet cutting system |
JP2004073582A (en) | 2002-08-20 | 2004-03-11 | Olympus Corp | Vital tissue abscise tool |
US6942677B2 (en) | 2003-02-26 | 2005-09-13 | Flowcardia, Inc. | Ultrasound catheter apparatus |
USD490059S1 (en) | 2002-09-09 | 2004-05-18 | Thermal Dynamics Corporation | Connector adapter |
DE10241702A1 (en) | 2002-09-09 | 2004-03-18 | Berchtold Holding Gmbh | ultrasonic instrument |
US20040064151A1 (en) | 2002-09-27 | 2004-04-01 | Starion Instruments Corporation | Ultrasonic forceps |
GB2408607A (en) | 2002-09-27 | 2005-06-01 | Hill Rom Services Inc | Universal communications monitoring tracking and control system for a healthcare facility |
US7087054B2 (en) | 2002-10-01 | 2006-08-08 | Surgrx, Inc. | Electrosurgical instrument and method of use |
ATE416707T1 (en) | 2002-10-02 | 2008-12-15 | Olympus Corp | OPERATIONAL SYSTEM WITH MULTIPLE MEDICAL DEVICES AND MULTIPLE REMOTE CONTROLS |
CA2712039C (en) | 2002-10-04 | 2013-03-12 | Tyco Healthcare Group Lp | Tool assembly for surgical stapling device |
US7931649B2 (en) | 2002-10-04 | 2011-04-26 | Tyco Healthcare Group Lp | Vessel sealing instrument with electrical cutting mechanism |
USD477408S1 (en) | 2002-10-04 | 2003-07-15 | Conmed Corporation | Electrosurgical generator |
ES2274284T3 (en) | 2002-10-04 | 2007-05-16 | Tyco Healthcare Group Lp | SURGICAL STAPLER WITH UNIVERSAL ARTICULATION AND DEVICE FOR PREVIOUS SUPPORT OF THE FABRIC. |
ES2377813T5 (en) | 2002-10-04 | 2020-12-18 | Covidien Lp | Tool set for a surgical stapling device |
JP2004129871A (en) | 2002-10-10 | 2004-04-30 | Olympus Corp | Ultrasonic operating device |
US7041088B2 (en) | 2002-10-11 | 2006-05-09 | Ethicon, Inc. | Medical devices having durable and lubricious polymeric coating |
US7682366B2 (en) | 2002-10-16 | 2010-03-23 | Olympus Corporation | Calculus manipulation apparatus |
US20040147934A1 (en) | 2002-10-18 | 2004-07-29 | Kiester P. Douglas | Oscillating, steerable, surgical burring tool and method of using the same |
US20040092921A1 (en) | 2002-10-21 | 2004-05-13 | Kadziauskas Kenneth E. | System and method for pulsed ultrasonic power delivery employing cavitation effects |
JP2003116870A (en) | 2002-10-23 | 2003-04-22 | Miwatec:Kk | Ultrasonic hand piece and ultrasonic horn used for this |
US20040092992A1 (en) | 2002-10-23 | 2004-05-13 | Kenneth Adams | Disposable battery powered rotary tissue cutting instruments and methods therefor |
ATE485777T1 (en) | 2002-10-25 | 2010-11-15 | Hydrocision Inc | SURGICAL DEVICE FOR GENERATING A JET OF LIQUID FOR THE REMOVAL OF BIOLOGICAL TISSUE |
US8162966B2 (en) | 2002-10-25 | 2012-04-24 | Hydrocision, Inc. | Surgical devices incorporating liquid jet assisted tissue manipulation and methods for their use |
JP4086621B2 (en) | 2002-10-28 | 2008-05-14 | 株式会社トップ | Surgical instrument handle structure |
US7083620B2 (en) | 2002-10-30 | 2006-08-01 | Medtronic, Inc. | Electrosurgical hemostat |
US20040121159A1 (en) | 2002-11-08 | 2004-06-24 | Nathan Cloud | Microtome blade coating for enhanced performance |
US7678125B2 (en) | 2002-11-12 | 2010-03-16 | Apollo Camera, L.L.C. | Surgical ligation clip |
US6786383B2 (en) | 2002-11-14 | 2004-09-07 | Kimberly-Clark Worldwide, Inc. | Ultrasonic horn assembly with fused stack components |
US20040097912A1 (en) | 2002-11-18 | 2004-05-20 | Gonnering Wayne J. | Electrosurgical generator and method with removable front panel having replaceable electrical connection sockets and illuminated receptacles |
US6835082B2 (en) | 2002-11-18 | 2004-12-28 | Conmed Corporation | Monopolar electrosurgical multi-plug connector device and method which accepts multiple different connector plugs |
US6942660B2 (en) | 2002-11-19 | 2005-09-13 | Conmed Corporation | Electrosurgical generator and method with multiple semi-autonomously executable functions |
US6948503B2 (en) | 2002-11-19 | 2005-09-27 | Conmed Corporation | Electrosurgical generator and method for cross-checking output power |
US6905499B1 (en) | 2002-11-26 | 2005-06-14 | Thermal Corp. | Heat pipe for cautery surgical Instrument |
US7390317B2 (en) | 2002-12-02 | 2008-06-24 | Applied Medical Resources Corporation | Universal access seal |
JP2004180997A (en) | 2002-12-04 | 2004-07-02 | Olympus Corp | Stone crushing apparatus under the use of endoscope |
JP4095919B2 (en) | 2002-12-09 | 2008-06-04 | ジンマー株式会社 | Measuring device for total knee replacement surgery |
US7217128B2 (en) | 2002-12-12 | 2007-05-15 | Discus Dental Impressions, Inc. | Ultrasonic dental insert having interchangeable plastic and metal tips |
US8057468B2 (en) | 2002-12-17 | 2011-11-15 | Bovie Medical Corporation | Method to generate a plasma stream for performing electrosurgery |
US20040176686A1 (en) | 2002-12-23 | 2004-09-09 | Omnisonics Medical Technologies, Inc. | Apparatus and method for ultrasonic medical device with improved visibility in imaging procedures |
US6875220B2 (en) | 2002-12-30 | 2005-04-05 | Cybersonics, Inc. | Dual probe |
US8454639B2 (en) | 2002-12-30 | 2013-06-04 | Cybersonics, Inc. | Dual probe with floating inner probe |
AU2003303525A1 (en) | 2002-12-31 | 2004-07-29 | Ultra-Sonic Technologies, L.L.C. | Transdermal delivery using encapsulated agent activated by ultrasound and/or heat |
JP2004209043A (en) | 2003-01-06 | 2004-07-29 | Olympus Corp | Ultrasonic treatment apparatus |
JP2004209042A (en) | 2003-01-06 | 2004-07-29 | Olympus Corp | Ultrasonic treatment apparatus |
US6926717B1 (en) | 2003-01-14 | 2005-08-09 | Jon C. Garito | Electrosurgical breast electrode |
US7287682B1 (en) | 2003-01-20 | 2007-10-30 | Hazem Ezzat | Surgical device and method |
US6899685B2 (en) | 2003-01-24 | 2005-05-31 | Acueity, Inc. | Biopsy device |
JP2004248368A (en) | 2003-02-12 | 2004-09-02 | Asmo Co Ltd | Ultrasonic motor and manufacturing method thereof |
US7169146B2 (en) | 2003-02-14 | 2007-01-30 | Surgrx, Inc. | Electrosurgical probe and method of use |
ES2367304T3 (en) | 2003-02-20 | 2011-11-02 | Covidien Ag | SYSTEM AND METHOD FOR CONNECTING AN ELECTROCHURGICAL INSTRUMENT TO A GENERATOR. |
US7077845B2 (en) | 2003-03-11 | 2006-07-18 | Arthrex, Inc. | Surgical abrader with suction port proximal to bearing |
WO2004080291A2 (en) | 2003-03-12 | 2004-09-23 | Color Kinetics Incorporated | Methods and systems for medical lighting |
US7776036B2 (en) | 2003-03-13 | 2010-08-17 | Covidien Ag | Bipolar concentric electrode assembly for soft tissue fusion |
US20060064086A1 (en) | 2003-03-13 | 2006-03-23 | Darren Odom | Bipolar forceps with multiple electrode array end effector assembly |
WO2004083797A2 (en) | 2003-03-14 | 2004-09-30 | Thermosurgery Technologies, Inc. | Hyperthermia treatment system |
US7293562B2 (en) | 2003-03-27 | 2007-11-13 | Cierra, Inc. | Energy based devices and methods for treatment of anatomic tissue defects |
US20040199192A1 (en) | 2003-04-04 | 2004-10-07 | Takayuki Akahoshi | Phacoemulsification needle |
JP3840194B2 (en) | 2003-04-07 | 2006-11-01 | キヤノン株式会社 | Vibrating knife |
US7566318B2 (en) | 2003-04-11 | 2009-07-28 | Cardiac Pacemakers, Inc. | Ultrasonic subcutaneous dissection tool incorporating fluid delivery |
WO2004098426A1 (en) | 2003-04-15 | 2004-11-18 | Omnisonics Medical Technologies, Inc. | Apparatus and method for preshaped ultrasonic probe |
US20040215132A1 (en) | 2003-04-22 | 2004-10-28 | Inbae Yoon | Spot coagulating & occluding instrument and method of use |
US7147638B2 (en) | 2003-05-01 | 2006-12-12 | Sherwood Services Ag | Electrosurgical instrument which reduces thermal damage to adjacent tissue |
WO2004098385A2 (en) | 2003-05-01 | 2004-11-18 | Sherwood Services Ag | Method and system for programing and controlling an electrosurgical generator system |
US8128624B2 (en) | 2003-05-01 | 2012-03-06 | Covidien Ag | Electrosurgical instrument that directs energy delivery and protects adjacent tissue |
US7160299B2 (en) | 2003-05-01 | 2007-01-09 | Sherwood Services Ag | Method of fusing biomaterials with radiofrequency energy |
AU2004241092B2 (en) | 2003-05-15 | 2009-06-04 | Covidien Ag | Tissue sealer with non-conductive variable stop members and method of sealing tissue |
USD496997S1 (en) | 2003-05-15 | 2004-10-05 | Sherwood Services Ag | Vessel sealer and divider |
US7431694B2 (en) | 2003-05-16 | 2008-10-07 | Ethicon Endo-Surgery, Inc. | Method of guiding medical devices |
US7000818B2 (en) | 2003-05-20 | 2006-02-21 | Ethicon, Endo-Surger, Inc. | Surgical stapling instrument having separate distinct closing and firing systems |
US9060770B2 (en) | 2003-05-20 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Robotically-driven surgical instrument with E-beam driver |
US7380695B2 (en) | 2003-05-20 | 2008-06-03 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a single lockout mechanism for prevention of firing |
US20100222752A1 (en) | 2003-05-20 | 2010-09-02 | Collins Jr James F | Ophthalmic fluid delivery system |
DE60326121D1 (en) | 2003-05-20 | 2009-03-26 | Dsm Ip Assets Bv | Process for the preparation of nanostructured surface coatings, their coatings and articles containing the coating |
US7380696B2 (en) | 2003-05-20 | 2008-06-03 | Ethicon Endo-Surgery, Inc. | Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
US7002283B2 (en) | 2003-06-03 | 2006-02-21 | Asm Assembly Automation Ltd. | Ultrasonic transducer assembly |
USD491666S1 (en) | 2003-06-03 | 2004-06-15 | Megadyne Medical Products, Inc. | Electrosurgical generator |
ITVI20030111A1 (en) | 2003-06-06 | 2004-12-07 | Telea Electronic Eng Srl | ELECTRONIC SCALPEL FOR COAGULATION. |
US8172870B2 (en) | 2003-06-09 | 2012-05-08 | Microline Surgical, Inc. | Ligation clip applier |
US7150749B2 (en) | 2003-06-13 | 2006-12-19 | Sherwood Services Ag | Vessel sealer and divider having elongated knife stroke and safety cutting mechanism |
US7156846B2 (en) | 2003-06-13 | 2007-01-02 | Sherwood Services Ag | Vessel sealer and divider for use with small trocars and cannulas |
US7597693B2 (en) | 2003-06-13 | 2009-10-06 | Covidien Ag | Vessel sealer and divider for use with small trocars and cannulas |
JP4664909B2 (en) | 2003-06-17 | 2011-04-06 | タイコ ヘルスケア グループ リミテッド パートナーシップ | Surgical stapling device |
JP5089980B2 (en) * | 2003-06-17 | 2012-12-05 | エシコン・エンド−サージェリィ・インコーポレイテッド | Manual ultrasonic instrument |
US20040260273A1 (en) | 2003-06-18 | 2004-12-23 | Wan Elaine Y. | Magnetic surgical instrument system |
US20040260300A1 (en) | 2003-06-20 | 2004-12-23 | Bogomir Gorensek | Method of delivering an implant through an annular defect in an intervertebral disc |
AU2004253501B2 (en) | 2003-06-24 | 2011-10-20 | Healthonics, Inc. | Apparatus and method for bioelectric stimulation, healing acceleration, pain relief, or pathogen devitalization |
US9035741B2 (en) | 2003-06-27 | 2015-05-19 | Stryker Corporation | Foot-operated control console for wirelessly controlling medical devices |
US20040267298A1 (en) | 2003-06-30 | 2004-12-30 | Sound Surgical Technologies Llc | Ultrasonic cutting and coagulation knife using transverse vibrations |
US7037306B2 (en) | 2003-06-30 | 2006-05-02 | Ethicon, Inc. | System for creating linear lesions for the treatment of atrial fibrillation |
US7066895B2 (en) | 2003-06-30 | 2006-06-27 | Ethicon, Inc. | Ultrasonic radial focused transducer for pulmonary vein ablation |
US7128720B2 (en) | 2003-06-30 | 2006-10-31 | Ethicon, Inc. | Ultrasonic finger probe |
US7074218B2 (en) | 2003-06-30 | 2006-07-11 | Ethicon, Inc. | Multi-modality ablation device |
JP4206843B2 (en) | 2003-07-02 | 2009-01-14 | アイシン・エィ・ダブリュ株式会社 | Navigation device |
JP2005027907A (en) | 2003-07-07 | 2005-02-03 | Olympus Corp | Ultrasonic surgery system and probe |
US7055731B2 (en) | 2003-07-09 | 2006-06-06 | Ethicon Endo-Surgery Inc. | Surgical stapling instrument incorporating a tapered firing bar for increased flexibility around the articulation joint |
US7111769B2 (en) | 2003-07-09 | 2006-09-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument incorporating an articulation mechanism having rotation about the longitudinal axis |
US6981628B2 (en) | 2003-07-09 | 2006-01-03 | Ethicon Endo-Surgery, Inc. | Surgical instrument with a lateral-moving articulation control |
US6786382B1 (en) | 2003-07-09 | 2004-09-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument incorporating an articulation joint for a firing bar track |
JP3895709B2 (en) | 2003-07-10 | 2007-03-22 | オリンパス株式会社 | Ultrasonic coagulation / cutting device and control method of ultrasonic coagulation / cutting device |
JP2005040222A (en) | 2003-07-24 | 2005-02-17 | Olympus Corp | Ultrasonic treatment apparatus |
US7144403B2 (en) | 2003-07-29 | 2006-12-05 | Alcon, Inc. | Surgical knife |
JP4128496B2 (en) | 2003-07-30 | 2008-07-30 | オリンパス株式会社 | Ultrasonic treatment device |
JP4472395B2 (en) | 2003-08-07 | 2010-06-02 | オリンパス株式会社 | Ultrasonic surgery system |
US6915623B2 (en) | 2003-08-14 | 2005-07-12 | Ethicon, Inc. | Method for assembling a package for sutures |
US7951165B2 (en) | 2003-08-18 | 2011-05-31 | Boston Scientific Scimed, Inc. | Endoscopic medical instrument and related methods of use |
JP2005058616A (en) | 2003-08-19 | 2005-03-10 | Olympus Corp | Control device for medical system and method of control for medical system |
US8562604B2 (en) | 2003-08-19 | 2013-10-22 | Miyuki Nishimura | Bipolar high frequency treatment device |
JP3999715B2 (en) | 2003-08-28 | 2007-10-31 | オリンパス株式会社 | Ultrasonic treatment device |
JP4217134B2 (en) | 2003-08-28 | 2009-01-28 | オリンパス株式会社 | Switch control device |
US7578820B2 (en) | 2003-09-02 | 2009-08-25 | Moore Jeffrey D | Devices and techniques for a minimally invasive disc space preparation and implant insertion |
JP2005074088A (en) | 2003-09-02 | 2005-03-24 | Olympus Corp | Ultrasonic treating instrument |
EP1514518A1 (en) | 2003-09-11 | 2005-03-16 | SDGI Holdings, Inc. | Impulsive percussion instruments for endplate preparation |
US9168085B2 (en) | 2006-09-29 | 2015-10-27 | Baylis Medical Company Inc. | Monitoring and controlling energy delivery of an electrosurgical device |
JP4127810B2 (en) | 2003-09-19 | 2008-07-30 | オリンパス株式会社 | Ultrasonic vibrator and manufacturing method thereof |
JP4129217B2 (en) | 2003-09-29 | 2008-08-06 | オリンパス株式会社 | Ultrasonic surgery system, abnormality detection method and abnormality detection program thereof |
US7083075B2 (en) | 2003-09-29 | 2006-08-01 | Ethicon Endo-Surgery, Inc. | Multi-stroke mechanism with automatic end of stroke retraction |
US7135018B2 (en) | 2003-09-30 | 2006-11-14 | Ethicon, Inc. | Electrosurgical instrument and method for transecting an organ |
US6746284B1 (en) | 2003-10-02 | 2004-06-08 | Hon Hai Precision Ind. Co., Ltd. | Electrical connector assembly having signal and power terminals |
JP4391788B2 (en) | 2003-10-03 | 2009-12-24 | オリンパス株式会社 | Medical system control device |
US8357103B2 (en) | 2003-10-14 | 2013-01-22 | Suros Surgical Systems, Inc. | Vacuum assisted biopsy needle set |
JP2005118357A (en) | 2003-10-17 | 2005-05-12 | Olympus Corp | Ultrasonic therapy apparatus |
USD509589S1 (en) | 2003-10-17 | 2005-09-13 | Tyco Healthcare Group, Lp | Handle for surgical instrument |
JP4642770B2 (en) | 2003-10-17 | 2011-03-02 | タイコ ヘルスケア グループ リミテッド パートナーシップ | Surgical stapling device with independent tip rotation |
JP4189840B2 (en) | 2003-10-20 | 2008-12-03 | 独立行政法人産業技術総合研究所 | Apparatus and program for estimating viscoelasticity of soft tissue using ultrasound |
US7572266B2 (en) | 2003-10-21 | 2009-08-11 | Young Wayne P | Clip applier tool having a discharge configuration |
US20050090817A1 (en) | 2003-10-22 | 2005-04-28 | Scimed Life Systems, Inc. | Bendable endoscopic bipolar device |
WO2005039395A2 (en) | 2003-10-23 | 2005-05-06 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Sonic and ultrasonic surgical tips |
US7217269B2 (en) | 2003-10-28 | 2007-05-15 | Uab Research Foundation | Electrosurgical control system |
US7686826B2 (en) | 2003-10-30 | 2010-03-30 | Cambridge Endoscopic Devices, Inc. | Surgical instrument |
US20050096683A1 (en) | 2003-11-01 | 2005-05-05 | Medtronic, Inc. | Using thinner laminations to reduce operating temperature in a high speed hand-held surgical power tool |
US6979332B2 (en) | 2003-11-04 | 2005-12-27 | Medtronic, Inc. | Surgical micro-resecting instrument with electrocautery and continuous aspiration features |
US7163548B2 (en) | 2003-11-05 | 2007-01-16 | Ethicon Endo-Surgery, Inc | Ultrasonic surgical blade and instrument having a gain step |
CA2544749A1 (en) | 2003-11-12 | 2005-05-26 | Applied Medical Resources Corporation | Overmolded grasper jaw |
US7232440B2 (en) | 2003-11-17 | 2007-06-19 | Sherwood Services Ag | Bipolar forceps having monopolar extension |
US7367976B2 (en) | 2003-11-17 | 2008-05-06 | Sherwood Services Ag | Bipolar forceps having monopolar extension |
US7131970B2 (en) | 2003-11-19 | 2006-11-07 | Sherwood Services Ag | Open vessel sealing instrument with cutting mechanism |
US7252667B2 (en) | 2003-11-19 | 2007-08-07 | Sherwood Services Ag | Open vessel sealing instrument with cutting mechanism and distal lockout |
US7811283B2 (en) | 2003-11-19 | 2010-10-12 | Covidien Ag | Open vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety |
WO2005052959A2 (en) | 2003-11-19 | 2005-06-09 | Surgrx, Inc. | Polymer compositions exhibiting a ptc property and method of fabrication |
US7241294B2 (en) * | 2003-11-19 | 2007-07-10 | Sherwood Services Ag | Pistol grip electrosurgical pencil with manual aspirator/irrigator and methods of using the same |
US7442193B2 (en) | 2003-11-20 | 2008-10-28 | Covidien Ag | Electrically conductive/insulative over-shoe for tissue fusion |
US7879033B2 (en) | 2003-11-20 | 2011-02-01 | Covidien Ag | Electrosurgical pencil with advanced ES controls |
US7131860B2 (en) | 2003-11-20 | 2006-11-07 | Sherwood Services Ag | Connector systems for electrosurgical generator |
US7300435B2 (en) | 2003-11-21 | 2007-11-27 | Sherwood Services Ag | Automatic control system for an electrosurgical generator |
US7118564B2 (en) | 2003-11-26 | 2006-10-10 | Ethicon Endo-Surgery, Inc. | Medical treatment system with energy delivery device for limiting reuse |
US7317955B2 (en) | 2003-12-12 | 2008-01-08 | Conmed Corporation | Virtual operating room integration |
JP2007513729A (en) | 2003-12-15 | 2007-05-31 | ソネンコ リミテッド | Ultrasound drug delivery system |
EP1543854A1 (en) | 2003-12-16 | 2005-06-22 | Novo Nordisk A/S | Vibrating injection needle and method for detecting the presence of medicament therein |
US20050149108A1 (en) | 2003-12-17 | 2005-07-07 | Microvention, Inc. | Implant delivery and detachment system and method |
US7338463B2 (en) | 2003-12-19 | 2008-03-04 | Boston Scientific Scimed, Inc. | Balloon blade sheath |
US7326236B2 (en) | 2003-12-23 | 2008-02-05 | Xtent, Inc. | Devices and methods for controlling and indicating the length of an interventional element |
CN1634601A (en) | 2003-12-26 | 2005-07-06 | 吉林省中立实业有限公司 | Method for sterilizing medical appliance |
US8337407B2 (en) | 2003-12-30 | 2012-12-25 | Liposonix, Inc. | Articulating arm for medical procedures |
US7210881B2 (en) | 2003-12-30 | 2007-05-01 | Greenberg Alex M | Sleeved stop for a drill bit |
US20050143759A1 (en) * | 2003-12-30 | 2005-06-30 | Kelly William D. | Curved cutter stapler shaped for male pelvis |
US7182762B2 (en) | 2003-12-30 | 2007-02-27 | Smith & Nephew, Inc. | Electrosurgical device |
JP4262631B2 (en) | 2004-01-13 | 2009-05-13 | オリンパス株式会社 | Ultrasonic treatment device |
US7632269B2 (en) | 2004-01-16 | 2009-12-15 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument with replaceable cartridge |
US20050165429A1 (en) | 2004-01-23 | 2005-07-28 | Peter Douglas | Surgical clamp possessing a combined parallel and scissor style clamp head |
US7251531B2 (en) | 2004-01-30 | 2007-07-31 | Ams Research Corporation | Heating method for tissue contraction |
US20050171522A1 (en) | 2004-01-30 | 2005-08-04 | Christopherson Mark A. | Transurethral needle ablation system with needle position indicator |
US20050177184A1 (en) | 2004-02-09 | 2005-08-11 | Easley James C. | Torsional dissection tip |
US7488322B2 (en) | 2004-02-11 | 2009-02-10 | Medtronic, Inc. | High speed surgical cutting instrument |
CN1922563A (en) | 2004-02-25 | 2007-02-28 | 玛格戴恩医疗产品公司 | Electrosurgical counter and lockout mechanism |
US7124932B2 (en) | 2004-02-25 | 2006-10-24 | Megadyne Medical Products, Inc. | Electrosurgical counter and lockout mechanism |
US20050188743A1 (en) | 2004-02-26 | 2005-09-01 | H. P. Intellectual Corp. | Automatic ultrasonic frequency calibration scheme |
US20050234484A1 (en) | 2004-02-27 | 2005-10-20 | Houser Kevin L | Ultrasonic surgical blade having transverse and longitudinal vibration |
US8182501B2 (en) | 2004-02-27 | 2012-05-22 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical shears and method for sealing a blood vessel using same |
US7235071B2 (en) | 2004-02-27 | 2007-06-26 | Conmed Corporation | Gas-assisted electrosurgical accessory connector and method with improved gas sealing and biasing for maintaining a gas tight seal |
US20050192610A1 (en) | 2004-02-27 | 2005-09-01 | Houser Kevin L. | Ultrasonic surgical shears and tissue pad for same |
CA2557649C (en) | 2004-02-27 | 2011-10-04 | Ethicon Endo-Surgery Inc. | Ultrasonic surgical shears and tissue pad for same |
US20050192611A1 (en) | 2004-02-27 | 2005-09-01 | Houser Kevin L. | Ultrasonic surgical instrument, shears and tissue pad, method for sealing a blood vessel and method for transecting patient tissue |
US7703459B2 (en) | 2004-03-09 | 2010-04-27 | Usgi Medical, Inc. | Apparatus and methods for mapping out endoluminal gastrointestinal surgery |
US7179254B2 (en) | 2004-03-09 | 2007-02-20 | Ethicon, Inc. | High intensity ablation device |
JP4073410B2 (en) | 2004-03-11 | 2008-04-09 | オリンパス株式会社 | Ultrasonic treatment device |
US7955331B2 (en) | 2004-03-12 | 2011-06-07 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument and method of use |
US7625388B2 (en) | 2004-03-22 | 2009-12-01 | Alcon, Inc. | Method of controlling a surgical system based on a load on the cutting tip of a handpiece |
US20050249667A1 (en) | 2004-03-24 | 2005-11-10 | Tuszynski Jack A | Process for treating a biological organism |
JP4282523B2 (en) | 2004-03-30 | 2009-06-24 | オリンパス株式会社 | Ultrasonic treatment device |
WO2005099605A1 (en) | 2004-03-30 | 2005-10-27 | Olympus Corporation | Ultrasonic treatment device and assembling/disassembling method therefor, and ultrasonic treatment system |
CA2603195C (en) | 2004-04-05 | 2016-07-12 | Robert A. Ganz | Device and method for treating tissue |
US20050222598A1 (en) | 2004-04-05 | 2005-10-06 | Manoa Medical, Inc., A Delaware Corporation | Tissue cutting device |
JP2005296412A (en) | 2004-04-13 | 2005-10-27 | Olympus Corp | Endoscopic treatment apparatus |
US7220951B2 (en) | 2004-04-19 | 2007-05-22 | Surgrx, Inc. | Surgical sealing surfaces and methods of use |
JP4291202B2 (en) | 2004-04-20 | 2009-07-08 | オリンパス株式会社 | Ultrasonic treatment device |
BRPI0510550A (en) | 2004-05-03 | 2007-11-20 | Ams Res Corp | surgical implant, surgical kit, method for forming or assembling a surgical implant, insertion mold, apparatus, and method for producing a surgical implant |
EP1668760A2 (en) | 2004-05-04 | 2006-06-14 | 02Micro, Inc. | Cordless power tool with tool identification circuitry |
US20050256405A1 (en) | 2004-05-17 | 2005-11-17 | Makin Inder Raj S | Ultrasound-based procedure for uterine medical treatment |
US7951095B2 (en) | 2004-05-20 | 2011-05-31 | Ethicon Endo-Surgery, Inc. | Ultrasound medical system |
US20050261588A1 (en) | 2004-05-21 | 2005-11-24 | Makin Inder Raj S | Ultrasound medical system |
US7708751B2 (en) | 2004-05-21 | 2010-05-04 | Ethicon Endo-Surgery, Inc. | MRI biopsy device |
US9638770B2 (en) | 2004-05-21 | 2017-05-02 | Devicor Medical Products, Inc. | MRI biopsy apparatus incorporating an imageable penetrating portion |
US7066936B2 (en) | 2004-06-07 | 2006-06-27 | Ethicon, Inc. | Surgical cutting and tissue vaporizing instrument |
US7828808B2 (en) | 2004-06-07 | 2010-11-09 | Novare Surgical Systems, Inc. | Link systems and articulation mechanisms for remote manipulation of surgical or diagnostic tools |
JP2008501444A (en) | 2004-06-07 | 2008-01-24 | エドワーズ ライフサイエンシーズ コーポレイション | Method and device for directional resection of tissue |
WO2005122918A1 (en) | 2004-06-15 | 2005-12-29 | Olympus Corporation | Energy treatment tool |
JP4343778B2 (en) | 2004-06-16 | 2009-10-14 | オリンパス株式会社 | Ultrasonic surgical device |
JP2006006410A (en) | 2004-06-22 | 2006-01-12 | Olympus Corp | Ultrasonic surgery apparatus |
DE102004031141A1 (en) | 2004-06-28 | 2006-01-26 | Erbe Elektromedizin Gmbh | Electrosurgical instrument |
USD536093S1 (en) | 2004-07-15 | 2007-01-30 | Olympus Corporation | Treatment apparatus for endoscope |
US7896875B2 (en) | 2004-07-20 | 2011-03-01 | Microline Surgical, Inc. | Battery powered electrosurgical system |
US7147138B2 (en) | 2004-07-28 | 2006-12-12 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having an electroactive polymer actuated buttress deployment mechanism |
US7407077B2 (en) | 2004-07-28 | 2008-08-05 | Ethicon Endo-Surgery, Inc. | Electroactive polymer-based actuation mechanism for linear surgical stapler |
US7862579B2 (en) | 2004-07-28 | 2011-01-04 | Ethicon Endo-Surgery, Inc. | Electroactive polymer-based articulation mechanism for grasper |
US7506790B2 (en) | 2004-07-28 | 2009-03-24 | Ethicon Endo-Surgery, Inc. | Surgical instrument incorporating an electrically actuated articulation mechanism |
US7143925B2 (en) | 2004-07-28 | 2006-12-05 | Ethicon Endo-Surgery, Inc. | Surgical instrument incorporating EAP blocking lockout mechanism |
US9072535B2 (en) | 2011-05-27 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with rotatable staple deployment arrangements |
CA2574977C (en) | 2004-07-29 | 2010-01-26 | X-Sten, Corp. | Spinal ligament modification devices |
US20060025802A1 (en) * | 2004-07-30 | 2006-02-02 | Sowers William W | Embolic coil delivery system with U-shaped fiber release mechanism |
CN100394897C (en) | 2004-08-03 | 2008-06-18 | 张毓笠 | Compound vibrated ultrasonic bone surgery apparatus |
US8911438B2 (en) | 2004-08-10 | 2014-12-16 | Medtronic, Inc. | Tuna device with integrated saline reservoir |
DE102004040959B4 (en) | 2004-08-24 | 2008-12-24 | Erbe Elektromedizin Gmbh | Surgical instrument |
US7195631B2 (en) | 2004-09-09 | 2007-03-27 | Sherwood Services Ag | Forceps with spring loaded end effector assembly |
JP4300169B2 (en) | 2004-09-10 | 2009-07-22 | アロカ株式会社 | Ultrasound surgical device |
WO2006030563A1 (en) | 2004-09-14 | 2006-03-23 | Olympus Corporation | Ultrasonic treatment implement, and probe, treatment section, and large-diameter section for ultrasonic treatment implement |
US20070190485A1 (en) | 2004-09-21 | 2007-08-16 | Discus Dental Impressions, Inc. | Dental instrument |
US7540872B2 (en) | 2004-09-21 | 2009-06-02 | Covidien Ag | Articulating bipolar electrosurgical instrument |
US7077036B1 (en) * | 2004-09-23 | 2006-07-18 | James Adams | Timing gear pliers |
JP4727964B2 (en) | 2004-09-24 | 2011-07-20 | 株式会社日立製作所 | Semiconductor device |
MX2007003095A (en) | 2004-09-24 | 2007-05-16 | Univ Leland Stanford Junior | Methods and devices for the non-thermal, electrically-induced closure of blood vessels. |
US7740594B2 (en) | 2004-09-29 | 2010-06-22 | Ethicon Endo-Surgery, Inc. | Cutter for biopsy device |
USD541418S1 (en) | 2004-10-06 | 2007-04-24 | Sherwood Services Ag | Lung sealing device |
USD531311S1 (en) | 2004-10-06 | 2006-10-31 | Sherwood Services Ag | Pistol grip style elongated dissecting and dividing instrument |
US7553309B2 (en) | 2004-10-08 | 2009-06-30 | Covidien Ag | Electrosurgical system employing multiple electrodes and method thereof |
ES2598134T3 (en) * | 2004-10-08 | 2017-01-25 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instrument |
US7628792B2 (en) | 2004-10-08 | 2009-12-08 | Covidien Ag | Bilateral foot jaws |
JP2006115631A (en) | 2004-10-15 | 2006-04-27 | Konica Minolta Holdings Inc | Piezoelectric driving device |
US7738969B2 (en) | 2004-10-15 | 2010-06-15 | Baxano, Inc. | Devices and methods for selective surgical removal of tissue |
WO2006044693A2 (en) | 2004-10-18 | 2006-04-27 | Black & Decker Inc. | Cordless power system |
US7582086B2 (en) | 2004-10-20 | 2009-09-01 | Atricure, Inc. | Surgical clamp |
JP4287354B2 (en) | 2004-10-25 | 2009-07-01 | 株式会社日立製作所 | Surgical instruments |
US7337010B2 (en) | 2004-10-29 | 2008-02-26 | Medtronic, Inc. | Medical device having lithium-ion battery |
US20060095045A1 (en) | 2004-11-01 | 2006-05-04 | Sdgi Holdings, Inc. | Methods for explantation of intervertebral disc implants |
US7156201B2 (en) | 2004-11-04 | 2007-01-02 | Advanced Ultrasonic Solutions, Inc. | Ultrasonic rod waveguide-radiator |
WO2006048966A1 (en) | 2004-11-04 | 2006-05-11 | Olympus Medical Systems Corp. | Ultrasonic treating device, endoscope device and treating method |
US7479148B2 (en) | 2004-11-08 | 2009-01-20 | Crescendo Technologies, Llc | Ultrasonic shear with asymmetrical motion |
US7641671B2 (en) | 2004-11-22 | 2010-01-05 | Design Standards Corporation | Closing assemblies for clamping device |
US7156189B1 (en) | 2004-12-01 | 2007-01-02 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Self mountable and extractable ultrasonic/sonic anchor |
GB0426503D0 (en) | 2004-12-02 | 2005-01-05 | Orthosonics Ltd | Improved osteotome |
JP2006158525A (en) | 2004-12-03 | 2006-06-22 | Olympus Medical Systems Corp | Ultrasonic surgical apparatus, and method of driving ultrasonic treatment instrument |
US7803168B2 (en) | 2004-12-09 | 2010-09-28 | The Foundry, Llc | Aortic valve repair |
US7371227B2 (en) | 2004-12-17 | 2008-05-13 | Ethicon Endo-Surgery, Inc. | Trocar seal assembly |
US7691095B2 (en) | 2004-12-28 | 2010-04-06 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Bi-directional steerable catheter control handle |
US7513025B2 (en) | 2004-12-28 | 2009-04-07 | The Boeing Company | Magnetic field concentrator for electromagnetic forming |
US8628534B2 (en) | 2005-02-02 | 2014-01-14 | DePuy Synthes Products, LLC | Ultrasonic cutting device |
JP2006217716A (en) | 2005-02-02 | 2006-08-17 | Olympus Corp | Ultrasonic actuator driving unit and ultrasonic actuator driving method |
US7559450B2 (en) | 2005-02-18 | 2009-07-14 | Ethicon Endo-Surgery, Inc. | Surgical instrument incorporating a fluid transfer controlled articulation mechanism |
US7559452B2 (en) | 2005-02-18 | 2009-07-14 | Ethicon Endo-Surgery, Inc. | Surgical instrument having fluid actuated opposing jaws |
US7784662B2 (en) | 2005-02-18 | 2010-08-31 | Ethicon Endo-Surgery, Inc. | Surgical instrument with articulating shaft with single pivot closure and double pivot frame ground |
US7780054B2 (en) | 2005-02-18 | 2010-08-24 | Ethicon Endo-Surgery, Inc. | Surgical instrument with laterally moved shaft actuator coupled to pivoting articulation joint |
US7654431B2 (en) | 2005-02-18 | 2010-02-02 | Ethicon Endo-Surgery, Inc. | Surgical instrument with guided laterally moving articulation member |
WO2006096169A1 (en) | 2005-03-03 | 2006-09-14 | Granit Medical Innovations, Llc | Needle biopsy forceps with integral sample ejector |
GB2423931B (en) | 2005-03-03 | 2009-08-26 | Michael John Radley Young | Ultrasonic cutting tool |
US7674263B2 (en) | 2005-03-04 | 2010-03-09 | Gyrus Ent, L.L.C. | Surgical instrument and method |
US7699846B2 (en) | 2005-03-04 | 2010-04-20 | Gyrus Ent L.L.C. | Surgical instrument and method |
US20060200041A1 (en) | 2005-03-04 | 2006-09-07 | Ethicon Endo-Surgery, Inc. | Biopsy device incorporating an adjustable probe sleeve |
US9031667B2 (en) | 2005-03-04 | 2015-05-12 | InterventionTechnology Pty Ltd | Minimal device and method for effecting hyperthermia derived anesthesia |
US20060217729A1 (en) | 2005-03-09 | 2006-09-28 | Brasseler Usa Medical Llc | Surgical apparatus and tools for same |
US20060206100A1 (en) | 2005-03-09 | 2006-09-14 | Brasseler Usa Medical Llc | Surgical apparatus and power module for same, and a method of preparing a surgical apparatus |
USD552241S1 (en) | 2005-03-10 | 2007-10-02 | Conmed Corporation | Electrosurgical generator |
US20060211943A1 (en) | 2005-03-15 | 2006-09-21 | Crescendo Technologies, Llc | Ultrasonic blade with terminal end balance features |
US7285895B2 (en) | 2005-03-15 | 2007-10-23 | Crescendo Technologies, Llc | Ultrasonic medical device and method |
US7784663B2 (en) | 2005-03-17 | 2010-08-31 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having load sensing control circuitry |
US7931611B2 (en) | 2005-03-23 | 2011-04-26 | Misonix, Incorporated | Ultrasonic wound debrider probe and method of use |
US8197472B2 (en) | 2005-03-25 | 2012-06-12 | Maquet Cardiovascular, Llc | Tissue welding and cutting apparatus and method |
US7918848B2 (en) | 2005-03-25 | 2011-04-05 | Maquet Cardiovascular, Llc | Tissue welding and cutting apparatus and method |
US7335997B2 (en) | 2005-03-31 | 2008-02-26 | Ethicon Endo-Surgery, Inc. | System for controlling ultrasonic clamping and cutting instruments |
US7491202B2 (en) | 2005-03-31 | 2009-02-17 | Covidien Ag | Electrosurgical forceps with slow closure sealing plates and method of sealing tissue |
US20060224160A1 (en) | 2005-04-01 | 2006-10-05 | Trieu Hai H | Instruments and methods for aggressive yet continuous tissue removal |
JP2006288431A (en) | 2005-04-05 | 2006-10-26 | Olympus Medical Systems Corp | Ultrasonic surgical system |
ES2352980T3 (en) | 2005-04-06 | 2011-02-24 | Mallinckrodt, Inc. | SYSTEMS AND METHODS FOR MANAGING INFORMATION RELATED TO MEDICAL FLUIDS AND RECIPIENTS FOR THEMSELVES. |
EP1869424A4 (en) | 2005-04-11 | 2015-01-14 | Terumo Corp | Methods and apparatus to achieve a closure of a layered tissue defect |
US20060264809A1 (en) | 2005-04-12 | 2006-11-23 | Hansmann Douglas R | Ultrasound catheter with cavitation promoting surface |
US8092475B2 (en) | 2005-04-15 | 2012-01-10 | Integra Lifesciences (Ireland) Ltd. | Ultrasonic horn for removal of hard tissue |
AU2006239877B2 (en) | 2005-04-21 | 2012-11-01 | Boston Scientific Scimed, Inc. | Control methods and devices for energy delivery |
CN101166472A (en) | 2005-04-25 | 2008-04-23 | 皇家飞利浦电子股份有限公司 | Ultrasound transducer assembly having improved thermal management |
GB2425480B (en) | 2005-04-27 | 2010-04-21 | Sra Dev Ltd | Improved ultrasonic surgical tool |
JP4966296B2 (en) | 2005-04-29 | 2012-07-04 | ボヴィー メディカル コーポレイション | Forceps for endoscopic or arthroscopic surgery |
US20070011836A1 (en) | 2005-05-03 | 2007-01-18 | Second Act Partners, Inc. | Oral hygiene devices employing an acoustic waveguide |
US7320687B2 (en) | 2005-05-04 | 2008-01-22 | Lee Thomas H | Tendon stripper |
US8597193B2 (en) | 2005-05-06 | 2013-12-03 | Vasonova, Inc. | Apparatus and method for endovascular device guiding and positioning using physiological parameters |
US9339323B2 (en) | 2005-05-12 | 2016-05-17 | Aesculap Ag | Electrocautery method and apparatus |
US7803156B2 (en) | 2006-03-08 | 2010-09-28 | Aragon Surgical, Inc. | Method and apparatus for surgical electrocautery |
US20060257819A1 (en) | 2005-05-16 | 2006-11-16 | Johnson Douglas B | Endodontic procedure employing simultaneous liquefaction and acoustic debridgement |
US20060270916A1 (en) | 2005-05-20 | 2006-11-30 | Medtronic, Inc. | Portable therapy delivery device with a removable connector board |
JP4398406B2 (en) | 2005-06-01 | 2010-01-13 | オリンパスメディカルシステムズ株式会社 | Surgical instruments |
US7717312B2 (en) | 2005-06-03 | 2010-05-18 | Tyco Healthcare Group Lp | Surgical instruments employing sensors |
CN1877756A (en) | 2005-06-10 | 2006-12-13 | 富准精密工业(深圳)有限公司 | Magnetic powder |
US20080147058A1 (en) | 2005-06-13 | 2008-06-19 | Horrell Robin S | Electrocautery system, provided with safe lighting during operational use |
CA2613360A1 (en) | 2005-06-21 | 2007-01-04 | Traxtal Inc. | System, method and apparatus for navigated therapy and diagnosis |
US7727177B2 (en) | 2005-06-21 | 2010-06-01 | Inasurgica, Llc | Four function surgical instrument |
JP2007000427A (en) | 2005-06-24 | 2007-01-11 | Olympus Medical Systems Corp | Endoscope |
US20070005002A1 (en) | 2005-06-30 | 2007-01-04 | Intuitive Surgical Inc. | Robotic surgical instruments for irrigation, aspiration, and blowing |
JP2007007810A (en) | 2005-07-01 | 2007-01-18 | Bosch Corp | Spindle for ultrasonic machining |
US7632267B2 (en) | 2005-07-06 | 2009-12-15 | Arthrocare Corporation | Fuse-electrode electrosurgical apparatus |
WO2007008703A2 (en) | 2005-07-08 | 2007-01-18 | Conceptual Gray, Llc | Apparatus and method thereof for drilling holes in discrete controlled increments |
WO2007008710A2 (en) | 2005-07-11 | 2007-01-18 | Kyphon Inc. | Apparatus and methods of tissue removal within a spine |
US20070060935A1 (en) | 2005-07-11 | 2007-03-15 | Schwardt Jeffrey D | Apparatus and methods of tissue removal within a spine |
US20070016236A1 (en) | 2005-07-18 | 2007-01-18 | Crescendo Technologies, Llc | Balanced ultrasonic curved blade |
WO2007014215A2 (en) | 2005-07-22 | 2007-02-01 | Berg Howard K | Ultrasonic scalpel device |
US20070063618A1 (en) | 2005-07-25 | 2007-03-22 | Piezoinnovations | Ultrasonic transducer devices and methods of manufacture |
US8579176B2 (en) | 2005-07-26 | 2013-11-12 | Ethicon Endo-Surgery, Inc. | Surgical stapling and cutting device and method for using the device |
US8573462B2 (en) | 2006-05-19 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Electrical surgical instrument with optimized power supply and drive |
US7959050B2 (en) | 2005-07-26 | 2011-06-14 | Ethicon Endo-Surgery, Inc | Electrically self-powered surgical instrument with manual release |
US8097012B2 (en) | 2005-07-27 | 2012-01-17 | The Spectranetics Corporation | Endocardial lead removing apparatus |
DE602005017139D1 (en) | 2005-07-28 | 2009-11-26 | Covidien Ag | Electrode arrangement with electrode heat sink for an electrosurgical device |
EP1749479A1 (en) | 2005-08-02 | 2007-02-07 | Marco Gandini | Retractor instrument |
US7659833B2 (en) | 2005-08-02 | 2010-02-09 | Warner Thomas P | System and method for remotely controlling devices |
US7540871B2 (en) | 2005-08-03 | 2009-06-02 | Conmed Corporation | Integrated three-port receptacle and method for connecting hand and foot switched electrosurgical accessories |
JP5124920B2 (en) | 2005-08-16 | 2013-01-23 | コニカミノルタアドバンストレイヤー株式会社 | Drive device |
US7628791B2 (en) | 2005-08-19 | 2009-12-08 | Covidien Ag | Single action tissue sealer |
JP4402629B2 (en) | 2005-08-19 | 2010-01-20 | オリンパスメディカルシステムズ株式会社 | Ultrasonic coagulation and incision device |
US7751115B2 (en) | 2005-08-26 | 2010-07-06 | Lg Electronics Inc. | Electronic paper display device, manufacturing method and driving method thereof |
US8800838B2 (en) | 2005-08-31 | 2014-08-12 | Ethicon Endo-Surgery, Inc. | Robotically-controlled cable-based surgical end effectors |
US9237891B2 (en) | 2005-08-31 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
US20070056596A1 (en) | 2005-08-31 | 2007-03-15 | Alcon, Inc. | Pulse manipulation for controlling a phacoemulsification surgical system |
US8016843B2 (en) | 2005-09-09 | 2011-09-13 | Alcon Research Ltd | Ultrasonic knife |
US8852184B2 (en) | 2005-09-15 | 2014-10-07 | Cannuflow, Inc. | Arthroscopic surgical temperature control system |
US7472815B2 (en) | 2005-09-21 | 2009-01-06 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with collapsible features for controlling staple height |
EP1767164B1 (en) | 2005-09-22 | 2013-01-09 | Covidien AG | Electrode assembly for tissue fusion |
US9445784B2 (en) | 2005-09-22 | 2016-09-20 | Boston Scientific Scimed, Inc | Intravascular ultrasound catheter |
US7451904B2 (en) | 2005-09-26 | 2008-11-18 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having end effector gripping surfaces |
US7311526B2 (en) | 2005-09-26 | 2007-12-25 | Apple Inc. | Magnetic connector for electronic device |
DK1928518T3 (en) | 2005-09-27 | 2016-08-01 | Allegiance Corp | MEDICAL SUCTION AND douche |
US7357287B2 (en) | 2005-09-29 | 2008-04-15 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having preloaded firing assistance mechanism |
CA2561034C (en) | 2005-09-30 | 2014-12-09 | Sherwood Services Ag | Flexible endoscopic catheter with an end effector for coagulating and transfecting tissue |
US7879035B2 (en) | 2005-09-30 | 2011-02-01 | Covidien Ag | Insulating boot for electrosurgical forceps |
US7722607B2 (en) | 2005-09-30 | 2010-05-25 | Covidien Ag | In-line vessel sealer and divider |
CN100467087C (en) | 2005-09-30 | 2009-03-11 | 东北大学 | Cranial nerve electrostimulating device capable of remotely controlling exercise behevior |
US7846161B2 (en) | 2005-09-30 | 2010-12-07 | Covidien Ag | Insulating boot for electrosurgical forceps |
US20070074584A1 (en) | 2005-10-03 | 2007-04-05 | Joseph Talarico | Gentle touch surgical instrument and method of using same |
US7572268B2 (en) | 2005-10-13 | 2009-08-11 | Bacoustics, Llc | Apparatus and methods for the selective removal of tissue using combinations of ultrasonic energy and cryogenic energy |
US20070191713A1 (en) | 2005-10-14 | 2007-08-16 | Eichmann Stephen E | Ultrasonic device for cutting and coagulating |
US8152825B2 (en) | 2005-10-14 | 2012-04-10 | Ethicon Endo-Surgery, Inc. | Medical ultrasound system and handpiece and methods for making and tuning |
US20080033465A1 (en) | 2006-08-01 | 2008-02-07 | Baxano, Inc. | Multi-Wire Tissue Cutter |
US20080051812A1 (en) | 2006-08-01 | 2008-02-28 | Baxano, Inc. | Multi-Wire Tissue Cutter |
CN2868227Y (en) | 2005-10-24 | 2007-02-14 | 钟李宽 | Five-in-one cutting knife |
US7607557B2 (en) | 2005-11-04 | 2009-10-27 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments structured for pump-assisted delivery of medical agents |
WO2007056590A1 (en) | 2005-11-08 | 2007-05-18 | Trustees Of Boston University | Manipulators employing multiple deformable elongate members |
US20070106317A1 (en) | 2005-11-09 | 2007-05-10 | Shelton Frederick E Iv | Hydraulically and electrically actuated articulation joints for surgical instruments |
US20070118115A1 (en) | 2005-11-22 | 2007-05-24 | Sherwood Services Ag | Bipolar electrosurgical sealing instrument having an improved tissue gripping device |
US7997278B2 (en) | 2005-11-23 | 2011-08-16 | Barrx Medical, Inc. | Precision ablating method |
US8246642B2 (en) | 2005-12-01 | 2012-08-21 | Ethicon Endo-Surgery, Inc. | Ultrasonic medical instrument and medical instrument connection assembly |
EP1956992B1 (en) | 2005-12-02 | 2013-03-06 | Koninklijke Philips Electronics N.V. | Automating the ablation procedure to minimize the need for manual intervention |
US7282836B2 (en) | 2005-12-08 | 2007-10-16 | Samsung Electronics Co., Ltd. | Method and apparatus for a D33 mode piezoelectric actuator with a bending motion |
US8033173B2 (en) | 2005-12-12 | 2011-10-11 | Kimberly-Clark Worldwide, Inc. | Amplifying ultrasonic waveguides |
US20070130771A1 (en) | 2005-12-12 | 2007-06-14 | Kimberly-Clark Worldwide, Inc. | Methods for producing ultrasonic waveguides having improved amplification |
US20070149881A1 (en) | 2005-12-22 | 2007-06-28 | Rabin Barry H | Ultrasonically Powered Medical Devices and Systems, and Methods and Uses Thereof |
US7930065B2 (en) | 2005-12-30 | 2011-04-19 | Intuitive Surgical Operations, Inc. | Robotic surgery system including position sensors using fiber bragg gratings |
US8382748B2 (en) | 2006-01-03 | 2013-02-26 | Donald J. Geisel | High efficiency, precision electrosurgical apparatus and method |
US7670334B2 (en) | 2006-01-10 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Surgical instrument having an articulating end effector |
US7871392B2 (en) | 2006-01-12 | 2011-01-18 | Integra Lifesciences (Ireland) Ltd. | Endoscopic ultrasonic surgical aspirator for use in fluid filled cavities |
US8721657B2 (en) | 2006-01-13 | 2014-05-13 | Olympus Medical Systems Corp. | Medical instrument |
CN100463660C (en) | 2006-01-18 | 2009-02-25 | 重庆海扶(Hifu)技术有限公司 | Ultrasonic therapeutic pincers |
US20070166663A1 (en) | 2006-01-18 | 2007-07-19 | Telles Heidi A | Cordless ultrasonic dental scaler |
US7621930B2 (en) | 2006-01-20 | 2009-11-24 | Ethicon Endo-Surgery, Inc. | Ultrasound medical instrument having a medical ultrasonic blade |
US20070173872A1 (en) | 2006-01-23 | 2007-07-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument for cutting and coagulating patient tissue |
WO2007087411A2 (en) | 2006-01-23 | 2007-08-02 | Piezoinnovations | Methods of manufacture of sonar and ultrasonic transducer devices and composite actuators |
US20160045248A1 (en) | 2006-01-24 | 2016-02-18 | Covidien Lp | System and method for tissue sealing |
US20070173813A1 (en) | 2006-01-24 | 2007-07-26 | Sherwood Services Ag | System and method for tissue sealing |
US8734443B2 (en) | 2006-01-24 | 2014-05-27 | Covidien Lp | Vessel sealer and divider for large tissue structures |
US8882766B2 (en) | 2006-01-24 | 2014-11-11 | Covidien Ag | Method and system for controlling delivery of energy to divide tissue |
US7766910B2 (en) | 2006-01-24 | 2010-08-03 | Tyco Healthcare Group Lp | Vessel sealer and divider for large tissue structures |
US8298232B2 (en) | 2006-01-24 | 2012-10-30 | Tyco Healthcare Group Lp | Endoscopic vessel sealer and divider for large tissue structures |
US8685016B2 (en) | 2006-01-24 | 2014-04-01 | Covidien Ag | System and method for tissue sealing |
US8241282B2 (en) | 2006-01-24 | 2012-08-14 | Tyco Healthcare Group Lp | Vessel sealing cutting assemblies |
US7815641B2 (en) | 2006-01-25 | 2010-10-19 | The Regents Of The University Of Michigan | Surgical instrument and method for use thereof |
AU2007210010A1 (en) | 2006-01-27 | 2007-08-09 | Medtronic, Inc. | Ablation device and system for guiding said ablation device into a patient's body |
US20110295295A1 (en) | 2006-01-31 | 2011-12-01 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical instrument having recording capabilities |
US7753904B2 (en) | 2006-01-31 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Endoscopic surgical instrument with a handle that can articulate with respect to the shaft |
US7770775B2 (en) | 2006-01-31 | 2010-08-10 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with adaptive user feedback |
WO2007089724A2 (en) | 2006-01-31 | 2007-08-09 | Angiotech Biocoatings Corp. | Lubricious coatings |
US8708213B2 (en) | 2006-01-31 | 2014-04-29 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a feedback system |
US8161977B2 (en) | 2006-01-31 | 2012-04-24 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
US7644848B2 (en) | 2006-01-31 | 2010-01-12 | Ethicon Endo-Surgery, Inc. | Electronic lockouts and surgical instrument including same |
US7845537B2 (en) | 2006-01-31 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument having recording capabilities |
US7416101B2 (en) | 2006-01-31 | 2008-08-26 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with loading force feedback |
US7464846B2 (en) | 2006-01-31 | 2008-12-16 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a removable battery |
US7422139B2 (en) | 2006-01-31 | 2008-09-09 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting fastening instrument with tactile position feedback |
US7766210B2 (en) | 2006-01-31 | 2010-08-03 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with user feedback system |
US7568603B2 (en) | 2006-01-31 | 2009-08-04 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with articulatable end effector |
EP1815950A1 (en) | 2006-02-03 | 2007-08-08 | The European Atomic Energy Community (EURATOM), represented by the European Commission | Robotic surgical system for performing minimally invasive medical procedures |
US7503893B2 (en) | 2006-02-03 | 2009-03-17 | Cannuflow, Inc. | Anti-extravasation sheath and method |
CA2640174C (en) | 2006-02-07 | 2011-11-08 | Ams Research Corporation | Laparoscopic laser device and method |
US7936203B2 (en) | 2006-02-08 | 2011-05-03 | Micron Technology, Inc. | Temperature compensation via power supply modification to produce a temperature-independent delay in an integrated circuit |
AR059339A1 (en) | 2006-02-09 | 2008-03-26 | Chugai Pharmaceutical Co Ltd | CUMARINE DERIVATIVES FOR PROLIFERATIVE DISORDERS OF CELLS, PHARMACEUTICAL COMPOSITION AND THERAPEUTIC AGENT CONTAINING THEM |
US20070191712A1 (en) | 2006-02-15 | 2007-08-16 | Ethicon Endo-Surgery, Inc. | Method for sealing a blood vessel, a medical system and a medical instrument |
US7662151B2 (en) | 2006-02-15 | 2010-02-16 | Boston Scientific Scimed, Inc. | Contact sensitive probes |
US7854735B2 (en) | 2006-02-16 | 2010-12-21 | Ethicon Endo-Surgery, Inc. | Energy-based medical treatment system and method |
US20070239101A1 (en) | 2006-02-21 | 2007-10-11 | David Kellogg | Method for applying serum to a person's skin |
US8025630B2 (en) | 2006-02-22 | 2011-09-27 | Olympus Medical Systems Corp. | Treatment apparatus |
US7645278B2 (en) | 2006-02-22 | 2010-01-12 | Olympus Corporation | Coagulating cutter |
US9820771B2 (en) | 2006-03-03 | 2017-11-21 | Axcess Instruments Inc. | Apparatus and method for minimally invasive surgery |
KR101332173B1 (en) | 2006-03-13 | 2013-11-25 | 미니랩 테크놀러지스 인코포레이티드 | Minimally invasive surgical assembly and methods |
US20070219481A1 (en) | 2006-03-16 | 2007-09-20 | Eilaz Babaev | Apparatus and methods for the treatment of avian influenza with ultrasound |
US7648499B2 (en) | 2006-03-21 | 2010-01-19 | Covidien Ag | System and method for generating radio frequency energy |
US8394115B2 (en) | 2006-03-22 | 2013-03-12 | Ethicon Endo-Surgery, Inc. | Composite end effector for an ultrasonic surgical instrument |
US8992422B2 (en) | 2006-03-23 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Robotically-controlled endoscopic accessory channel |
US9675375B2 (en) | 2006-03-29 | 2017-06-13 | Ethicon Llc | Ultrasonic surgical system and method |
US20070236213A1 (en) | 2006-03-30 | 2007-10-11 | Paden Bradley E | Telemetry method and apparatus using magnetically-driven mems resonant structure |
US20100081863A1 (en) | 2008-09-30 | 2010-04-01 | Ethicon Endo-Surgery, Inc. | Methods and devices for performing gastrectomies and gastroplasties |
US8430811B2 (en) | 2008-09-30 | 2013-04-30 | Ethicon Endo-Surgery, Inc. | Multiple port surgical access device |
US8425410B2 (en) | 2008-09-30 | 2013-04-23 | Ethicon Endo-Surgery, Inc. | Surgical access device with protective element |
US8485970B2 (en) | 2008-09-30 | 2013-07-16 | Ethicon Endo-Surgery, Inc. | Surgical access device |
US20100081883A1 (en) | 2008-09-30 | 2010-04-01 | Ethicon Endo-Surgery, Inc. | Methods and devices for performing gastroplasties using a multiple port access device |
JP5062577B2 (en) | 2006-04-11 | 2012-10-31 | エルベ エレクトロメディツィン ゲーエムベーハー | Multifunctional device for endoscopic surgery |
US20070249941A1 (en) | 2006-04-21 | 2007-10-25 | Alcon, Inc. | Method for driving an ultrasonic handpiece with a class D amplifier |
US20070265560A1 (en) | 2006-04-24 | 2007-11-15 | Ekos Corporation | Ultrasound Therapy System |
US7601119B2 (en) | 2006-04-25 | 2009-10-13 | Hrayr Kamig Shahinian | Remote manipulator with eyeballs |
US7867228B2 (en) | 2006-04-28 | 2011-01-11 | Ethicon Endo-Surgery, Inc. | Apparatus and method for performing an endoscopic mucosal resection |
US9339326B2 (en) | 2006-05-03 | 2016-05-17 | Boston Scientific Scimed, Inc. | Diamond-like carbon electrode coating |
US7641653B2 (en) | 2006-05-04 | 2010-01-05 | Covidien Ag | Open vessel sealing forceps disposable handswitch |
US20070265613A1 (en) | 2006-05-10 | 2007-11-15 | Edelstein Peter Seth | Method and apparatus for sealing tissue |
US20070265616A1 (en) | 2006-05-10 | 2007-11-15 | Sherwood Services Ag | Vessel sealing instrument with optimized power density |
US7351095B2 (en) | 2006-05-10 | 2008-04-01 | Craig Olsen | Disposable surgical connector |
US7586289B2 (en) | 2006-05-23 | 2009-09-08 | Ultralife Corporation | Complete discharge device |
US20080039746A1 (en) | 2006-05-25 | 2008-02-14 | Medtronic, Inc. | Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions |
US8366727B2 (en) | 2006-06-01 | 2013-02-05 | Ethicon Endo-Surgery, Inc. | Tissue pad ultrasonic surgical instrument |
EP1862133A1 (en) | 2006-06-02 | 2007-12-05 | Olympus Medical Systems Corp. | Ultrasonic surgical apparatus and method of driving ultrasonic treatment device |
US7431704B2 (en) | 2006-06-07 | 2008-10-07 | Bacoustics, Llc | Apparatus and method for the treatment of tissue with ultrasound energy by direct contact |
US20070287933A1 (en) | 2006-06-08 | 2007-12-13 | Chris Phan | Tissue debulking device and method of using the same |
JP5083210B2 (en) | 2006-06-13 | 2012-11-28 | コニカミノルタエムジー株式会社 | Array-type ultrasonic probe and manufacturing method thereof |
US8814870B2 (en) | 2006-06-14 | 2014-08-26 | Misonix, Incorporated | Hook shaped ultrasonic cutting blade |
US20080097501A1 (en) | 2006-06-22 | 2008-04-24 | Tyco Healthcare Group Lp | Ultrasonic probe deflection sensor |
ES2928065T3 (en) | 2006-06-28 | 2022-11-15 | Medtronic Ardian Luxembourg | Thermally induced renal neuromodulation systems |
JP4157574B2 (en) | 2006-07-04 | 2008-10-01 | オリンパスメディカルシステムズ株式会社 | Surgical instrument |
EP2043542B1 (en) | 2006-07-06 | 2014-09-03 | Leroy L. Yates | Resecting device |
US7776037B2 (en) | 2006-07-07 | 2010-08-17 | Covidien Ag | System and method for controlling electrode gap during tissue sealing |
US7717914B2 (en) | 2006-07-11 | 2010-05-18 | Olympus Medical Systems Corporation | Treatment device |
US7502234B2 (en) | 2006-07-12 | 2009-03-10 | Aaron Medical Industries, Inc. | Planar transformer power supply |
US20080015575A1 (en) | 2006-07-14 | 2008-01-17 | Sherwood Services Ag | Vessel sealing instrument with pre-heated electrodes |
US20080013809A1 (en) | 2006-07-14 | 2008-01-17 | Bracco Imaging, Spa | Methods and apparatuses for registration in image guided surgery |
US7419490B2 (en) | 2006-07-27 | 2008-09-02 | Applied Medical Resources Corporation | Bipolar electrosurgical scissors |
US7587536B2 (en) | 2006-07-28 | 2009-09-08 | Icron Technologies Corporation | Method and apparatus for distributing USB hub functions across a network |
US20080029573A1 (en) | 2006-08-02 | 2008-02-07 | Shelton Frederick E | Pneumatically powered surgical cutting and fastening instrument with replaceable power sources |
US9757142B2 (en) | 2006-08-09 | 2017-09-12 | Olympus Corporation | Relay device and ultrasonic-surgical and electrosurgical system |
US20080125768A1 (en) | 2006-08-09 | 2008-05-29 | Olympus Medical Systems Corp. | Relay device and ultrasonic-surgical and electrosurgical system |
US7708758B2 (en) | 2006-08-16 | 2010-05-04 | Cambridge Endoscopic Devices, Inc. | Surgical instrument |
US7919184B2 (en) | 2006-08-21 | 2011-04-05 | Mohapatra Satish C | Hybrid nanoparticles |
EP2056935A2 (en) | 2006-08-25 | 2009-05-13 | Eilaz Babaev | Portable ultrasound device for the treatment of wounds |
US20080058775A1 (en) | 2006-08-29 | 2008-03-06 | Darian Alexander L | Ultrasonic debrider probe and method of use |
US8430897B2 (en) | 2006-08-29 | 2013-04-30 | Misonix Incorporated | Ultrasonic wound debrider probe and method of use |
US20080071269A1 (en) | 2006-09-18 | 2008-03-20 | Cytyc Corporation | Curved Endoscopic Medical Device |
US7780663B2 (en) | 2006-09-22 | 2010-08-24 | Ethicon Endo-Surgery, Inc. | End effector coatings for electrosurgical instruments |
US9107692B2 (en) | 2006-09-22 | 2015-08-18 | The Invention Science Fund I, Llc | Switchable sterilizing cutting system |
US20100049180A1 (en) | 2007-10-19 | 2010-02-25 | Lockheed Martin Corporation | System and method for conditioning animal tissue using laser light |
US7665647B2 (en) | 2006-09-29 | 2010-02-23 | Ethicon Endo-Surgery, Inc. | Surgical cutting and stapling device with closure apparatus for limiting maximum tissue compression force |
US20110087276A1 (en) | 2009-10-09 | 2011-04-14 | Ethicon Endo-Surgery, Inc. | Method for forming a staple |
US20080082098A1 (en) | 2006-09-29 | 2008-04-03 | Kazue Tanaka | Electric processing system |
US20080082039A1 (en) | 2006-09-29 | 2008-04-03 | Eilaz Babaev | Ultrasound Liquid Delivery Device |
US7799020B2 (en) | 2006-10-02 | 2010-09-21 | Conmed Corporation | Near-instantaneous responsive closed loop control electrosurgical generator and method |
US7637410B2 (en) | 2006-10-06 | 2009-12-29 | Tyco Healthcare Group Lp | Surgical instrument including a locking assembly |
CA2664167A1 (en) | 2006-10-06 | 2008-04-17 | Tyco Healthcare Group Lp | Endoscopic vessel sealer and divider having a flexible articulating shaft |
US20090082716A1 (en) | 2006-10-13 | 2009-03-26 | Takayuki Akahoshi Akahoshi | Linear to Torsional Converter for Phaco Handpieces |
EP2076193A4 (en) | 2006-10-18 | 2010-02-03 | Minnow Medical Inc | Tuned rf energy and electrical tissue characterization for selective treatment of target tissues |
EP2455034B1 (en) | 2006-10-18 | 2017-07-19 | Vessix Vascular, Inc. | System for inducing desirable temperature effects on body tissue |
US20080147092A1 (en) | 2006-10-23 | 2008-06-19 | Michael Rogge | Hybrid energy instrument combined with clip application capability |
US20080114355A1 (en) | 2006-11-09 | 2008-05-15 | Ncontact Surgical, Inc. | Vacuum coagulation probes |
JP2008119250A (en) | 2006-11-13 | 2008-05-29 | Miwatec:Kk | Handpiece for ultrasonic surgical instrument, and horn |
US20080114364A1 (en) | 2006-11-15 | 2008-05-15 | Aoi Medical, Inc. | Tissue cavitation device and method |
US7714481B2 (en) | 2006-11-30 | 2010-05-11 | Olympus Medical Systems Corp. | Ultrasonic treatment apparatus |
US9456877B2 (en) | 2006-12-01 | 2016-10-04 | Boston Scientific Scimed, Inc. | Direct drive instruments and methods of use |
CA2670969C (en) | 2006-12-06 | 2016-01-19 | Boston Scientific Limited | Tissue ablation using pulse modulated radio frequency energy |
DE102006058867A1 (en) | 2006-12-07 | 2008-06-12 | Aesculap Ag & Co. Kg | Surgical switching power supply and surgical DC power tool |
US7846160B2 (en) | 2006-12-21 | 2010-12-07 | Cytyc Corporation | Method and apparatus for sterilization |
US8444637B2 (en) | 2006-12-29 | 2013-05-21 | St. Jude Medical, Atrial Filbrillation Division, Inc. | Steerable ablation device |
DE602006014291D1 (en) | 2006-12-29 | 2010-06-24 | Ultrazonix Dnt Ab | Manufacturing process for a membrane and article provided with such a membrane |
US8684253B2 (en) | 2007-01-10 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
US8652120B2 (en) | 2007-01-10 | 2014-02-18 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US20080169333A1 (en) | 2007-01-11 | 2008-07-17 | Shelton Frederick E | Surgical stapler end effector with tapered distal end |
US8529565B2 (en) | 2007-01-15 | 2013-09-10 | Olympus Medical Systems Corp. | Ultrasonic operating apparatus |
US20080171938A1 (en) | 2007-01-15 | 2008-07-17 | Shinya Masuda | Ultrasonic operating apparatus |
JP5165696B2 (en) | 2007-01-16 | 2013-03-21 | エシコン・エンド−サージェリィ・インコーポレイテッド | Ultrasonic device for cutting and coagulation |
ATE450894T1 (en) | 2007-01-30 | 2009-12-15 | Delphi Tech Inc | PRODUCTION METHOD FOR A PIEZOELECTRIC ACTUATOR |
EP1972264A1 (en) | 2007-02-07 | 2008-09-24 | CODMAN & SHURTLEFF, INC. | Endoscopic instrument holder |
TWM318226U (en) | 2007-02-09 | 2007-09-01 | Guo-An Guo | Structure for fast connection of waterproof cable connector |
US7935114B2 (en) | 2007-02-14 | 2011-05-03 | Olympus Medical Systems Corp. | Curative treatment system, curative treatment device, and treatment method for living tissue using energy |
US7789883B2 (en) | 2007-02-14 | 2010-09-07 | Olympus Medical Systems Corp. | Curative treatment system, curative treatment device, and treatment method for living tissue using energy |
EP2653128B1 (en) | 2007-02-25 | 2016-10-19 | Avent, Inc. | Control of energy delivery to multiple energy delivery devices |
US20080208108A1 (en) | 2007-02-28 | 2008-08-28 | Kenichi Kimura | Treatment apparatus for operation |
WO2008109061A2 (en) | 2007-03-01 | 2008-09-12 | Lightfleet Corporation | Time domain symbols |
AU2008223389B2 (en) | 2007-03-06 | 2013-07-11 | Covidien Lp | Surgical stapling apparatus |
US7669747B2 (en) | 2007-03-15 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Washer for use with a surgical stapling instrument |
US8226675B2 (en) | 2007-03-22 | 2012-07-24 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8142461B2 (en) | 2007-03-22 | 2012-03-27 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US20080234709A1 (en) | 2007-03-22 | 2008-09-25 | Houser Kevin L | Ultrasonic surgical instrument and cartilage and bone shaping blades therefor |
CN101674780B (en) | 2007-03-22 | 2012-05-23 | 伊西康内外科公司 | Ultrasonic surgical instrument blades |
US8911460B2 (en) | 2007-03-22 | 2014-12-16 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US8057498B2 (en) | 2007-11-30 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument blades |
US7862560B2 (en) | 2007-03-23 | 2011-01-04 | Arthrocare Corporation | Ablation apparatus having reduced nerve stimulation and related methods |
US8608745B2 (en) | 2007-03-26 | 2013-12-17 | DePuy Synthes Products, LLC | System, apparatus, and method for cutting bone during an orthopaedic surgical procedure |
JP5074069B2 (en) | 2007-03-29 | 2012-11-14 | オリンパスメディカルシステムズ株式会社 | Multi-joint bending mechanism and medical device with multi-joint bending mechanism |
JP5197980B2 (en) | 2007-03-29 | 2013-05-15 | オリンパスメディカルシステムズ株式会社 | Multi-joint bending mechanism and medical device with multi-joint bending mechanism |
US8377044B2 (en) | 2007-03-30 | 2013-02-19 | Ethicon Endo-Surgery, Inc. | Detachable end effectors |
US20080243162A1 (en) | 2007-04-02 | 2008-10-02 | Norikiyo Shibata | Trocar |
US8187267B2 (en) | 2007-05-23 | 2012-05-29 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Ablation catheter with flexible tip and methods of making the same |
US20090270812A1 (en) | 2007-04-06 | 2009-10-29 | Interlace Medical , Inc. | Access device with enhanced working channel |
EP2134283B1 (en) | 2007-04-06 | 2014-06-11 | Hologic, Inc. | System and device for tissue removal |
US9259233B2 (en) | 2007-04-06 | 2016-02-16 | Hologic, Inc. | Method and device for distending a gynecological cavity |
WO2008130793A1 (en) | 2007-04-17 | 2008-10-30 | Tyco Healthcare Group Lp | Electrical connector adapter |
US8814856B2 (en) | 2007-04-30 | 2014-08-26 | Medtronic, Inc. | Extension and retraction mechanism for a hand-held device |
GB0708783D0 (en) | 2007-05-04 | 2007-06-13 | Gyrus Medical Ltd | Electrosurgical system |
US20090327715A1 (en) | 2007-05-04 | 2009-12-31 | Smith Kevin W | System and Method for Cryptographic Identification of Interchangeable Parts |
US20080281200A1 (en) | 2007-05-10 | 2008-11-13 | Misonix, Incorporated | Elevated coupling liquid temperature during HIFU treatment method and hardware |
US8641704B2 (en) | 2007-05-11 | 2014-02-04 | Medtronic Ablation Frontiers Llc | Ablation therapy system and method for treating continuous atrial fibrillation |
US7832611B2 (en) | 2007-05-16 | 2010-11-16 | The Invention Science Fund I, Llc | Steerable surgical stapler |
JP5019108B2 (en) | 2007-05-22 | 2012-09-05 | オリンパス株式会社 | Treatment tool |
US20080294051A1 (en) | 2007-05-25 | 2008-11-27 | Machiko Koshigoe | Ultrasonic operating apparatus |
US8409234B2 (en) | 2007-05-25 | 2013-04-02 | Hansen Medical, Inc. | Rotational apparatus system and method for a robotic instrument system |
US7798386B2 (en) | 2007-05-30 | 2010-09-21 | Ethicon Endo-Surgery, Inc. | Surgical instrument articulation joint cover |
US7810693B2 (en) | 2007-05-30 | 2010-10-12 | Ethicon Endo-Surgery, Inc. | Surgical stapling and cutting instrument with articulatable end effector |
US7549564B2 (en) | 2007-06-22 | 2009-06-23 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with an articulating end effector |
US20080296346A1 (en) | 2007-05-31 | 2008-12-04 | Shelton Iv Frederick E | Pneumatically powered surgical cutting and fastening instrument with electrical control and recording mechanisms |
US8157145B2 (en) | 2007-05-31 | 2012-04-17 | Ethicon Endo-Surgery, Inc. | Pneumatically powered surgical cutting and fastening instrument with electrical feedback |
US7832408B2 (en) | 2007-06-04 | 2010-11-16 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a directional switching mechanism |
US8931682B2 (en) | 2007-06-04 | 2015-01-13 | Ethicon Endo-Surgery, Inc. | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US7819299B2 (en) | 2007-06-04 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a common trigger for actuating an end effector closing system and a staple firing system |
WO2008154338A1 (en) | 2007-06-07 | 2008-12-18 | Piezo Resonance Innovations, Inc. | Eye surgical tool |
US20090023985A1 (en) | 2007-06-14 | 2009-01-22 | Usgi Medical, Inc. | Endoluminal instrument management system |
US8659208B1 (en) | 2007-06-14 | 2014-02-25 | Misonix, Inc. | Waveform generator for driving electromechanical device |
US8845630B2 (en) | 2007-06-15 | 2014-09-30 | Syneron Medical Ltd | Devices and methods for percutaneous energy delivery |
US7588176B2 (en) | 2007-06-18 | 2009-09-15 | Ethicon Endo-Surgery, Inc. | Surgical cutting instrument with improved closure system |
GB2450679A (en) | 2007-06-19 | 2009-01-07 | Gyrus Medical Ltd | Electrosurgical System with status indicators on instruments |
USD578643S1 (en) | 2007-06-20 | 2008-10-14 | Abbott Laboratories | Medical device delivery handle |
USD578645S1 (en) | 2007-06-20 | 2008-10-14 | Abbott Laboratories | Medical device delivery handle |
USD576725S1 (en) | 2007-06-20 | 2008-09-09 | Abbot Laboratories, Inc. | Medical device delivery handle |
USD578644S1 (en) | 2007-06-20 | 2008-10-14 | Abbott Laboratories | Medical device delivery handle |
US7658311B2 (en) | 2007-06-22 | 2010-02-09 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with a geared return mechanism |
US8308040B2 (en) | 2007-06-22 | 2012-11-13 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with an articulatable end effector |
US7604150B2 (en) | 2007-06-22 | 2009-10-20 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument with an anti-back up mechanism |
US8328738B2 (en) | 2007-06-29 | 2012-12-11 | Actuated Medical, Inc. | Medical tool for reduced penetration force with feedback means |
US8651230B2 (en) | 2007-07-03 | 2014-02-18 | Industrial Sonomechanics, Llc | High capacity ultrasonic reactor system |
US8105230B2 (en) | 2007-07-09 | 2012-01-31 | Olympus Medical Systems Corp. | Medical system |
US7834484B2 (en) | 2007-07-16 | 2010-11-16 | Tyco Healthcare Group Lp | Connection cable and method for activating a voltage-controlled generator |
DE102007034271A1 (en) | 2007-07-19 | 2009-01-22 | Celon Ag Medical Instruments | High-frequency surgical device and method for its operation |
US8348967B2 (en) | 2007-07-27 | 2013-01-08 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US8702609B2 (en) | 2007-07-27 | 2014-04-22 | Meridian Cardiovascular Systems, Inc. | Image-guided intravascular therapy catheters |
US8257377B2 (en) | 2007-07-27 | 2012-09-04 | Ethicon Endo-Surgery, Inc. | Multiple end effectors ultrasonic surgical instruments |
US8523889B2 (en) | 2007-07-27 | 2013-09-03 | Ethicon Endo-Surgery, Inc. | Ultrasonic end effectors with increased active length |
US8882791B2 (en) | 2007-07-27 | 2014-11-11 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US8808319B2 (en) | 2007-07-27 | 2014-08-19 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8252012B2 (en) | 2007-07-31 | 2012-08-28 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument with modulator |
US8512365B2 (en) | 2007-07-31 | 2013-08-20 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8430898B2 (en) | 2007-07-31 | 2013-04-30 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US9044261B2 (en) | 2007-07-31 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Temperature controlled ultrasonic surgical instruments |
US20090043228A1 (en) | 2007-08-06 | 2009-02-12 | Boston Scientific Scimed, Inc. | Laser shock peening of medical devices |
US20090048589A1 (en) | 2007-08-14 | 2009-02-19 | Tomoyuki Takashino | Treatment device and treatment method for living tissue |
US8137263B2 (en) | 2007-08-24 | 2012-03-20 | Karl Storz Endovision, Inc. | Articulating endoscope instrument |
US20090054894A1 (en) | 2007-08-24 | 2009-02-26 | Chie Yachi | Surgical operating apparatus |
US20090054886A1 (en) | 2007-08-24 | 2009-02-26 | Chie Yachi | Surgical operating apparatus |
GB0716590D0 (en) | 2007-08-24 | 2007-10-03 | Gyrus Medical Ltd | Electrosurgical system |
DE102007040358A1 (en) | 2007-08-27 | 2009-03-05 | Technische Universität München | Trocar tube, trocar, obturator or rectoscope for transluminal endoscopic surgery over natural orifices |
US8579897B2 (en) | 2007-11-21 | 2013-11-12 | Ethicon Endo-Surgery, Inc. | Bipolar forceps |
US8070036B1 (en) | 2007-09-06 | 2011-12-06 | Cardica, Inc | True multi-fire surgical stapler configured to fire staples of different sizes |
US7876030B2 (en) | 2007-09-11 | 2011-01-25 | Ngk Spark Plug Co., Ltd. | Ultrasonic transducer which is either crimped or welded during assembly |
JP4104648B1 (en) | 2007-09-13 | 2008-06-18 | 和征 榊原 | Battery pack |
US20090076506A1 (en) | 2007-09-18 | 2009-03-19 | Surgrx, Inc. | Electrosurgical instrument and method |
DE102007044790A1 (en) | 2007-09-19 | 2009-04-02 | Dieter Mann | One-hand device for eye surgery |
US20090082766A1 (en) | 2007-09-20 | 2009-03-26 | Tyco Healthcare Group Lp | Tissue Sealer and End Effector Assembly and Method of Manufacturing Same |
DE102007047243A1 (en) | 2007-09-25 | 2009-04-02 | Karl Storz Gmbh & Co. Kg | Bipolar medical instrument |
US20090088785A1 (en) | 2007-09-28 | 2009-04-02 | Shinya Masuda | Surgical operating apparatus |
US8241283B2 (en) | 2007-09-28 | 2012-08-14 | Tyco Healthcare Group Lp | Dual durometer insulating boot for electrosurgical forceps |
US7703653B2 (en) | 2007-09-28 | 2010-04-27 | Tyco Healthcare Group Lp | Articulation mechanism for surgical instrument |
EP2044888B1 (en) | 2007-10-05 | 2016-12-07 | Covidien LP | Articulation mechanism for a surgical instrument |
USD594983S1 (en) | 2007-10-05 | 2009-06-23 | Ethicon Endo-Surgery, Inc. | Handle assembly for surgical instrument |
WO2009046234A2 (en) | 2007-10-05 | 2009-04-09 | Ethicon Endo-Surgery, Inc | Ergonomic surgical instruments |
AU2008310869B2 (en) | 2007-10-10 | 2014-04-17 | Ethicon Endo-Surgery, Inc | Ultrasonic device for cutting and coagulating |
US8070762B2 (en) | 2007-10-22 | 2011-12-06 | Atheromed Inc. | Atherectomy devices and methods |
US8460284B2 (en) | 2007-10-26 | 2013-06-11 | Encision, Inc. | Multiple parameter fault detection in electrosurgical instrument shields |
JP5115148B2 (en) | 2007-10-30 | 2013-01-09 | 三菱マテリアル株式会社 | Insert detachable cutting tool head member and insert detachable cutting tool |
JP5364255B2 (en) | 2007-10-31 | 2013-12-11 | テルモ株式会社 | Medical manipulator |
PL2214562T3 (en) | 2007-11-05 | 2016-10-31 | Surgical instrument for sealing blood vessels, and heat-curable adhesive as a medicament | |
US8241343B2 (en) | 2007-11-08 | 2012-08-14 | Angiodynamics, Inc. | Device and method for providing power to lighting elements for use as a visual indicator in a medical probe |
EP2211744A1 (en) | 2007-11-13 | 2010-08-04 | Boston Scientific Scimed, Inc. | Apparatus system and method for coagulating and cutting tissue |
EP2060238B1 (en) | 2007-11-15 | 2012-02-15 | Ewald Hensler | Coagulation instrument |
US9326754B2 (en) | 2007-11-20 | 2016-05-03 | The Cleveland Clinic | Method and apparatus for tissue sampling |
US8758342B2 (en) | 2007-11-28 | 2014-06-24 | Covidien Ag | Cordless power-assisted medical cauterization and cutting device |
US8377059B2 (en) | 2007-11-28 | 2013-02-19 | Covidien Ag | Cordless medical cauterization and cutting device |
US9050098B2 (en) | 2007-11-28 | 2015-06-09 | Covidien Ag | Cordless medical cauterization and cutting device |
US10010339B2 (en) | 2007-11-30 | 2018-07-03 | Ethicon Llc | Ultrasonic surgical blades |
US7901423B2 (en) | 2007-11-30 | 2011-03-08 | Ethicon Endo-Surgery, Inc. | Folded ultrasonic end effectors with increased active length |
US9107690B2 (en) | 2007-12-03 | 2015-08-18 | Covidien Ag | Battery-powered hand-held ultrasonic surgical cautery cutting device |
US8663262B2 (en) | 2007-12-03 | 2014-03-04 | Covidien Ag | Battery assembly for battery-powered surgical instruments |
US8061014B2 (en) | 2007-12-03 | 2011-11-22 | Covidien Ag | Method of assembling a cordless hand-held ultrasonic cautery cutting device |
US8435257B2 (en) | 2007-12-03 | 2013-05-07 | Covidien Ag | Cordless hand-held ultrasonic cautery cutting device and method |
US8334468B2 (en) | 2008-11-06 | 2012-12-18 | Covidien Ag | Method of switching a cordless hand-held ultrasonic cautery cutting device |
US8403948B2 (en) | 2007-12-03 | 2013-03-26 | Covidien Ag | Cordless hand-held ultrasonic cautery cutting device |
US9017355B2 (en) | 2007-12-03 | 2015-04-28 | Covidien Ag | Battery-powered hand-held ultrasonic surgical cautery cutting device |
US8303613B2 (en) | 2007-12-07 | 2012-11-06 | Zevex, Inc. | Ultrasonic instrument using langevin type transducers to create transverse motion |
WO2009082477A2 (en) | 2007-12-18 | 2009-07-02 | Bovie Medical | Surgical apparatus with removable tool cartridge |
US20090163807A1 (en) | 2007-12-21 | 2009-06-25 | Sliwa John W | Finger-mounted or robot-mounted transducer device |
US9043018B2 (en) | 2007-12-27 | 2015-05-26 | Intuitive Surgical Operations, Inc. | Medical device with orientable tip for robotically directed laser cutting and biomaterial application |
US8147488B2 (en) | 2007-12-28 | 2012-04-03 | Olympus Medical Systems Corp. | Surgical operating apparatus |
US7533830B1 (en) | 2007-12-28 | 2009-05-19 | Kimberly-Clark Worldwide, Inc. | Control system and method for operating an ultrasonic liquid delivery device |
US8186877B2 (en) | 2007-12-30 | 2012-05-29 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and system for using common subchannel to assess the operating characteristics of transducers |
US20090182322A1 (en) | 2008-01-11 | 2009-07-16 | Live Tissue Connect, Inc. | Bipolar modular forceps modular arms |
US20090182331A1 (en) | 2008-01-11 | 2009-07-16 | Live Tissue Connect, Inc. | Bipolar modular forceps cover assembly |
US7578166B2 (en) | 2008-01-14 | 2009-08-25 | Grant Prideco, L.P. | Acoustic transducer calibration block and method |
US20090182332A1 (en) | 2008-01-15 | 2009-07-16 | Ethicon Endo-Surgery, Inc. | In-line electrosurgical forceps |
US8870867B2 (en) | 2008-02-06 | 2014-10-28 | Aesculap Ag | Articulable electrosurgical instrument with a stabilizable articulation actuator |
US8622274B2 (en) | 2008-02-14 | 2014-01-07 | Ethicon Endo-Surgery, Inc. | Motorized cutting and fastening instrument having control circuit for optimizing battery usage |
US7861906B2 (en) | 2008-02-14 | 2011-01-04 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with articulatable components |
US7819298B2 (en) | 2008-02-14 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with control features operable with one hand |
US9179912B2 (en) | 2008-02-14 | 2015-11-10 | Ethicon Endo-Surgery, Inc. | Robotically-controlled motorized surgical cutting and fastening instrument |
US8657174B2 (en) | 2008-02-14 | 2014-02-25 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument having handle based power source |
US8382792B2 (en) | 2008-02-14 | 2013-02-26 | Covidien Lp | End effector assembly for electrosurgical device |
US8573465B2 (en) | 2008-02-14 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical end effector system with rotary actuated closure systems |
US8636736B2 (en) | 2008-02-14 | 2014-01-28 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument |
US8752749B2 (en) | 2008-02-14 | 2014-06-17 | Ethicon Endo-Surgery, Inc. | Robotically-controlled disposable motor-driven loading unit |
US7980443B2 (en) | 2008-02-15 | 2011-07-19 | Ethicon Endo-Surgery, Inc. | End effectors for a surgical cutting and stapling instrument |
US20090216157A1 (en) | 2008-02-22 | 2009-08-27 | Norihiro Yamada | Ultrasonic operating apparatus |
US8388646B2 (en) | 2008-02-22 | 2013-03-05 | Covidien Lp | Monocoque jaw design |
US8395299B2 (en) | 2008-02-22 | 2013-03-12 | Piezo-Innocations | Ultrasonic torsional mode and longitudinal-torsional mode transducer system |
US8246575B2 (en) | 2008-02-26 | 2012-08-21 | Tyco Healthcare Group Lp | Flexible hollow spine with locking feature and manipulation structure |
GB2460392B (en) | 2008-02-29 | 2012-08-01 | Surgical Innovations Ltd | Handle |
EP3352107A1 (en) | 2008-03-03 | 2018-07-25 | NIKE Innovate C.V. | Interactive athletic equipment system |
DE102008013590A1 (en) | 2008-03-11 | 2009-09-24 | Epcos Ag | Method for operating a piezoelectric element |
US8328802B2 (en) | 2008-03-19 | 2012-12-11 | Covidien Ag | Cordless medical cauterization and cutting device |
JP2009236177A (en) | 2008-03-26 | 2009-10-15 | Nok Corp | Sealing structure |
US9241768B2 (en) | 2008-03-27 | 2016-01-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Intelligent input device controller for a robotic catheter system |
US8641663B2 (en) | 2008-03-27 | 2014-02-04 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Robotic catheter system input device |
US20090248021A1 (en) | 2008-03-31 | 2009-10-01 | Tyco Healthcare Group Lp | End Effector Assembly for Electrosurgical Devices and System for Using the Same |
US8484833B2 (en) | 2008-03-31 | 2013-07-16 | Covidien Lp | Automated assembly device to tolerate blade variation |
CA3022982C (en) | 2008-03-31 | 2022-07-26 | Applied Medical Resources Corporation | Electrosurgical system |
US9642669B2 (en) | 2008-04-01 | 2017-05-09 | Olympus Corporation | Treatment system, and treatment method for living tissue using energy |
US8226665B2 (en) | 2008-04-04 | 2012-07-24 | Tyco Healthcare Group Lp | Ultrasonic needle driver |
US20090254080A1 (en) | 2008-04-07 | 2009-10-08 | Satoshi Honda | Surgical operation apparatus |
US20090254077A1 (en) | 2008-04-08 | 2009-10-08 | Tyco Healthcare Group Lp | Arc Generation in a Fluid Medium |
US20090259149A1 (en) | 2008-04-15 | 2009-10-15 | Naoko Tahara | Power supply apparatus for operation |
DE102008019380B4 (en) | 2008-04-17 | 2012-11-22 | Erbe Elektromedizin Gmbh | Bipolar clamp for HF surgery |
US20090264909A1 (en) | 2008-04-18 | 2009-10-22 | Jean Michael Beaupre | Ultrasonic shears stop pad |
US20090270891A1 (en) | 2008-04-18 | 2009-10-29 | Jean Michael Beaupre | Balanced ultrasonic curved blade |
US8357158B2 (en) | 2008-04-22 | 2013-01-22 | Covidien Lp | Jaw closure detection system |
WO2009132359A2 (en) | 2008-04-25 | 2009-10-29 | Downey Earl C | Laparoscopic surgical instrument |
US20090270853A1 (en) | 2008-04-28 | 2009-10-29 | Chie Yachi | Surgical operating apparatus |
AU2009244445B8 (en) | 2008-05-05 | 2014-12-18 | Stryker Corporation | A powered surgical tool system and control console |
JP5380705B2 (en) | 2008-05-15 | 2014-01-08 | 株式会社リバーセイコー | Endoscopic high frequency hemostatic forceps |
US20090287205A1 (en) | 2008-05-16 | 2009-11-19 | Boston Scientific Scimed, Inc. | Systems and methods for preventing tissue popping caused by bubble expansion during tissue ablation |
GB0809243D0 (en) | 2008-05-21 | 2008-06-25 | Sra Dev Ltd | Improved torsional mode tissue dissector |
US7922061B2 (en) | 2008-05-21 | 2011-04-12 | Ethicon Endo-Surgery, Inc. | Surgical instrument with automatically reconfigurable articulating end effector |
GB0809461D0 (en) | 2008-05-23 | 2008-07-02 | Gyrus Medical Ltd | An electrosurgical generator and system |
US9402680B2 (en) | 2008-05-27 | 2016-08-02 | Maquet Cardiovasular, Llc | Surgical instrument and method |
US8403926B2 (en) | 2008-06-05 | 2013-03-26 | Ethicon Endo-Surgery, Inc. | Manually articulating devices |
JP2009297352A (en) | 2008-06-16 | 2009-12-24 | Konica Minolta Medical & Graphic Inc | Ultrasonic probe and ultrasonic diagnostic apparatus |
JP5379501B2 (en) | 2008-06-19 | 2013-12-25 | オリンパスメディカルシステムズ株式会社 | Ultrasonic treatment device |
JP5430161B2 (en) | 2008-06-19 | 2014-02-26 | オリンパスメディカルシステムズ株式会社 | Ultrasonic surgical device |
US7543730B1 (en) | 2008-06-24 | 2009-06-09 | Tyco Healthcare Group Lp | Segmented drive member for surgical instruments |
JP2010009686A (en) | 2008-06-27 | 2010-01-14 | Pioneer Electronic Corp | Optical disk reading apparatus, its management information providing method, management information providing program, computer readable recording medium-recorded management information providing program, and optical disk reproduction system |
DE102008038314A1 (en) | 2008-06-30 | 2010-01-07 | Erbe Elektromedizin Gmbh | An electrosurgical generator for treating a biological tissue, a method for controlling an output voltage of an electrosurgical generator, and corresponding use of the ESR |
US9265567B2 (en) | 2008-06-30 | 2016-02-23 | Intuitive Surgical Operations, Inc. | Vessel sealing instrument with stepped jaw |
US8340726B1 (en) | 2008-06-30 | 2012-12-25 | Iwao Fujisaki | Communication device |
CA2730240A1 (en) | 2008-07-08 | 2010-01-14 | Tyco Healthcare Group Lp | Surgical attachment for use with a robotic surgical system |
US8262563B2 (en) | 2008-07-14 | 2012-09-11 | Ethicon Endo-Surgery, Inc. | Endoscopic translumenal articulatable steerable overtube |
US9204923B2 (en) | 2008-07-16 | 2015-12-08 | Intuitive Surgical Operations, Inc. | Medical instrument electronically energized using drive cables |
US8771270B2 (en) | 2008-07-16 | 2014-07-08 | Intuitive Surgical Operations, Inc. | Bipolar cautery instrument |
JP4267055B1 (en) | 2008-07-18 | 2009-05-27 | 規方 田熊 | Suction catheter and suction catheter system |
FR2934390B1 (en) | 2008-07-22 | 2010-08-13 | St Microelectronics Rousset | MULTICANAL TRANSMISSION ON A UNIFIL BUS |
JP5384869B2 (en) | 2008-07-24 | 2014-01-08 | オリンパスメディカルシステムズ株式会社 | Endoscopic treatment system |
US9247953B2 (en) | 2008-08-01 | 2016-02-02 | Syntheon, Llc | Medical ultrasonic cauterization and cutting device and method |
US8801752B2 (en) | 2008-08-04 | 2014-08-12 | Covidien Lp | Articulating surgical device |
US8968355B2 (en) | 2008-08-04 | 2015-03-03 | Covidien Lp | Articulating surgical device |
US9089360B2 (en) | 2008-08-06 | 2015-07-28 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US8058771B2 (en) | 2008-08-06 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic device for cutting and coagulating with stepped output |
US8529437B2 (en) | 2008-08-06 | 2013-09-10 | Encision, Inc. | Multifunctional surgical instrument with flexible end effector tools |
US20100036370A1 (en) | 2008-08-07 | 2010-02-11 | Al Mirel | Electrosurgical instrument jaw structure with cutting tip |
US8454599B2 (en) | 2008-08-13 | 2013-06-04 | Olympus Medical Systems Corp. | Treatment apparatus and electro-surgical device |
US8257387B2 (en) | 2008-08-15 | 2012-09-04 | Tyco Healthcare Group Lp | Method of transferring pressure in an articulating surgical instrument |
US8974477B2 (en) | 2008-08-29 | 2015-03-10 | Olympus Medical Systems Corp. | Ultrasonic operating apparatus |
US20100057118A1 (en) | 2008-09-03 | 2010-03-04 | Dietz Timothy G | Ultrasonic surgical blade |
US20100063528A1 (en) | 2008-09-05 | 2010-03-11 | Beaupre Jean Michael | Ultrasonic shears actuating mechanism |
US20100063527A1 (en) | 2008-09-05 | 2010-03-11 | Beaupre Jean Michael | Tissue pad |
AU2009291688A1 (en) | 2008-09-12 | 2010-03-18 | Ethicon Endo-Surgery, Inc. | Ultrasonic device for fingertip control |
US7832612B2 (en) | 2008-09-19 | 2010-11-16 | Ethicon Endo-Surgery, Inc. | Lockout arrangement for a surgical stapler |
US8210411B2 (en) | 2008-09-23 | 2012-07-03 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument |
US9386983B2 (en) | 2008-09-23 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Robotically-controlled motorized surgical instrument |
US9050083B2 (en) | 2008-09-23 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
US8328761B2 (en) | 2008-09-30 | 2012-12-11 | Ethicon Endo-Surgery, Inc. | Variable surgical access device |
US7967602B2 (en) | 2008-10-07 | 2011-06-28 | John Theodore Lindquist | Pliers for forming orthodontic wires |
US20100331873A1 (en) | 2009-06-30 | 2010-12-30 | Dannaher William D | Ultrasonic device for cutting and coagulating |
US8020743B2 (en) | 2008-10-15 | 2011-09-20 | Ethicon Endo-Surgery, Inc. | Powered articulatable surgical cutting and fastening instrument with flexible drive member |
US20100106173A1 (en) | 2008-10-23 | 2010-04-29 | Hideto Yoshimine | Ultrasonic surgical device |
US20110313415A1 (en) | 2008-11-11 | 2011-12-22 | The Board Of Regents Of The University Of Texas System | Medical Devices, Apparatuses, Systems, and Methods |
JP5271050B2 (en) | 2008-11-20 | 2013-08-21 | アズビル株式会社 | Hume food management system and management method |
US8197479B2 (en) | 2008-12-10 | 2012-06-12 | Tyco Healthcare Group Lp | Vessel sealer and divider |
EP2376175B1 (en) | 2008-12-12 | 2019-01-30 | Corindus, Inc. | Remote catheter procedure system |
US20100168741A1 (en) | 2008-12-29 | 2010-07-01 | Hideo Sanai | Surgical operation apparatus |
US8864757B2 (en) | 2008-12-31 | 2014-10-21 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for measuring force and torque applied to a catheter electrode tip |
JP5569818B2 (en) | 2009-01-07 | 2014-08-13 | エンライテン テクノロジーズ, インコーポレイテッド | Tissue removal device, system and method |
US8602031B2 (en) | 2009-01-12 | 2013-12-10 | Hansen Medical, Inc. | Modular interfaces and drive actuation through barrier |
US8235917B2 (en) | 2009-01-13 | 2012-08-07 | Tyco Healthcare Group Lp | Wireless electrosurgical controller |
US20100187283A1 (en) | 2009-01-26 | 2010-07-29 | Lawrence Crainich | Method For Feeding Staples In a Low Profile Surgical Stapler |
US8287485B2 (en) | 2009-01-28 | 2012-10-16 | Olympus Medical Systems Corp. | Treatment system for surgery and control method of treatment system for surgery |
US20110278343A1 (en) | 2009-01-29 | 2011-11-17 | Cardica, Inc. | Clamping of Hybrid Surgical Instrument |
US8989855B2 (en) | 2009-01-30 | 2015-03-24 | Medtronic Xomed, Inc. | Nerve monitoring during electrosurgery |
US8397971B2 (en) | 2009-02-05 | 2013-03-19 | Ethicon Endo-Surgery, Inc. | Sterilizable surgical instrument |
US8485413B2 (en) | 2009-02-05 | 2013-07-16 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument comprising an articulation joint |
US8414577B2 (en) | 2009-02-05 | 2013-04-09 | Ethicon Endo-Surgery, Inc. | Surgical instruments and components for use in sterile environments |
DE102009010101A1 (en) | 2009-02-24 | 2010-08-26 | Karl Storz Gmbh & Co. Kg | Medical instrument for grasping surgical sutures |
US20100228191A1 (en) | 2009-03-05 | 2010-09-09 | Hansen Medical, Inc. | Lockable support assembly and method |
US8858547B2 (en) | 2009-03-05 | 2014-10-14 | Intuitive Surgical Operations, Inc. | Cut and seal instrument |
EP2403421B1 (en) | 2009-03-05 | 2019-07-31 | Covidien LP | Endoscopic vessel sealer and divider having a flexible articulating shaft |
US8418073B2 (en) | 2009-03-09 | 2013-04-09 | Intuitive Surgical Operations, Inc. | User interfaces for electrosurgical tools in robotic surgical systems |
US8423182B2 (en) | 2009-03-09 | 2013-04-16 | Intuitive Surgical Operations, Inc. | Adaptable integrated energy control system for electrosurgical tools in robotic surgical systems |
US9351642B2 (en) | 2009-03-12 | 2016-05-31 | The General Hospital Corporation | Non-contact optical system, computer-accessible medium and method for measurement at least one mechanical property of tissue using coherent speckle technique(s) |
US20100234906A1 (en) | 2009-03-16 | 2010-09-16 | Pacesetter, Inc. | System and method for controlling rate-adaptive pacing based on a cardiac force-frequency relation detected by an implantable medical device |
US8298225B2 (en) | 2009-03-19 | 2012-10-30 | Tyco Healthcare Group Lp | System and method for return electrode monitoring |
US8066167B2 (en) | 2009-03-23 | 2011-11-29 | Ethicon Endo-Surgery, Inc. | Circular surgical stapling instrument with anvil locking system |
CN102123670B (en) | 2009-03-24 | 2014-03-19 | 奥林巴斯医疗株式会社 | Robot system for endoscope treatment |
US8251994B2 (en) | 2009-04-07 | 2012-08-28 | Tyco Healthcare Group Lp | Vessel sealer and divider with blade deployment alarm |
US8287532B2 (en) | 2009-04-13 | 2012-10-16 | Biosense Webster, Inc. | Epicardial mapping and ablation catheter |
US10045819B2 (en) | 2009-04-14 | 2018-08-14 | Covidien Lp | Frequency identification for microwave ablation probes |
US8506561B2 (en) | 2009-04-17 | 2013-08-13 | Domain Surgical, Inc. | Catheter with inductively heated regions |
US20100274278A1 (en) | 2009-04-22 | 2010-10-28 | Pare Surgical, Inc. | Endoscopic tissue grasping apparatus and method |
US20100274160A1 (en) | 2009-04-22 | 2010-10-28 | Chie Yachi | Switching structure and surgical equipment |
US8277446B2 (en) | 2009-04-24 | 2012-10-02 | Tyco Healthcare Group Lp | Electrosurgical tissue sealer and cutter |
USD621503S1 (en) | 2009-04-28 | 2010-08-10 | Tyco Healthcare Group Ip | Pistol grip laparoscopic sealing and dissection device |
RU2405603C1 (en) | 2009-05-04 | 2010-12-10 | Валерий Викторович Педдер | High-amplitude acoustic system for ultrasonic surgery and therapy |
US8246615B2 (en) | 2009-05-19 | 2012-08-21 | Vivant Medical, Inc. | Tissue impedance measurement using a secondary frequency |
US9700339B2 (en) | 2009-05-20 | 2017-07-11 | Ethicon Endo-Surgery, Inc. | Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments |
US20100298743A1 (en) | 2009-05-20 | 2010-11-25 | Ethicon Endo-Surgery, Inc. | Thermally-activated coupling arrangements and methods for attaching tools to ultrasonic surgical instruments |
US8056720B2 (en) | 2009-05-28 | 2011-11-15 | Symmetry Medical Manufacturing, Inc. | Method and system for medical instrument sterilization containers |
US8845537B2 (en) | 2009-06-03 | 2014-09-30 | Olympus Medical Systems Corp. | Ultrasound operation apparatus, ultrasound operation system, and cavitation utilization method |
WO2010144545A1 (en) | 2009-06-09 | 2010-12-16 | Vascular Technology, Inc. | Soft tissue dissector |
US8650728B2 (en) | 2009-06-24 | 2014-02-18 | Ethicon Endo-Surgery, Inc. | Method of assembling a transducer for a surgical instrument |
US20100331742A1 (en) | 2009-06-26 | 2010-12-30 | Shinya Masuda | Surgical operating apparatus |
WO2011004449A1 (en) | 2009-07-06 | 2011-01-13 | オリンパスメディカルシステムズ株式会社 | Ultrasonic surgery apparatus |
US8246618B2 (en) | 2009-07-08 | 2012-08-21 | Tyco Healthcare Group Lp | Electrosurgical jaws with offset knife |
EP3524189B1 (en) | 2009-07-15 | 2020-12-09 | Ethicon LLC | Ultrasonic surgical instrument having clamp with electrodes |
US8663220B2 (en) | 2009-07-15 | 2014-03-04 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US8461744B2 (en) | 2009-07-15 | 2013-06-11 | Ethicon Endo-Surgery, Inc. | Rotating transducer mount for ultrasonic surgical instruments |
US9017326B2 (en) | 2009-07-15 | 2015-04-28 | Ethicon Endo-Surgery, Inc. | Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments |
GB2472216A (en) | 2009-07-28 | 2011-02-02 | Gyrus Medical Ltd | Bipolar electrosurgical instrument with four electrodes |
US8647350B2 (en) | 2009-08-11 | 2014-02-11 | Raptor Ridge, Llc | Delivery device and method for compliant tissue fasteners |
EP2464417B1 (en) | 2009-08-14 | 2014-04-30 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical apparatus |
US9737735B2 (en) | 2009-08-14 | 2017-08-22 | Ethicon Llc | Ultrasonic surgical apparatus with silicon waveguide |
US8430876B2 (en) | 2009-08-27 | 2013-04-30 | Tyco Healthcare Group Lp | Vessel sealer and divider with knife lockout |
US8747351B2 (en) | 2009-08-28 | 2014-06-10 | Biosense Webster, Inc. | Catheter with multi-functional control handle having linear mechanism |
US8568412B2 (en) | 2009-09-09 | 2013-10-29 | Covidien Lp | Apparatus and method of controlling cutting blade travel through the use of etched features |
EP2478854B8 (en) | 2009-09-15 | 2019-03-06 | Olympus Corporation | Endoscope treatment tool |
DE102009041329A1 (en) | 2009-09-15 | 2011-03-24 | Celon Ag Medical Instruments | Combined Ultrasonic and HF Surgical System |
US8207651B2 (en) | 2009-09-16 | 2012-06-26 | Tyco Healthcare Group Lp | Low energy or minimum disturbance method for measuring frequency response functions of ultrasonic surgical devices in determining optimum operating point |
WO2011060031A1 (en) | 2009-09-23 | 2011-05-19 | Intuitive Surgical Operations, Inc. | Curved cannula surgical system |
US8568400B2 (en) | 2009-09-23 | 2013-10-29 | Covidien Lp | Methods and apparatus for smart handset design in surgical instruments |
US8323310B2 (en) | 2009-09-29 | 2012-12-04 | Covidien Lp | Vessel sealing jaw with offset sealing surface |
US9820806B2 (en) | 2009-09-29 | 2017-11-21 | Covidien Lp | Switch assembly for electrosurgical instrument |
US8292886B2 (en) | 2009-10-06 | 2012-10-23 | Tyco Healthcare Group Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US8906016B2 (en) | 2009-10-09 | 2014-12-09 | Ethicon Endo-Surgery, Inc. | Surgical instrument for transmitting energy to tissue comprising steam control paths |
US8574231B2 (en) | 2009-10-09 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Surgical instrument for transmitting energy to tissue comprising a movable electrode or insulator |
US8747404B2 (en) | 2009-10-09 | 2014-06-10 | Ethicon Endo-Surgery, Inc. | Surgical instrument for transmitting energy to tissue comprising non-conductive grasping portions |
US8939974B2 (en) | 2009-10-09 | 2015-01-27 | Ethicon Endo-Surgery, Inc. | Surgical instrument comprising first and second drive systems actuatable by a common trigger mechanism |
US9050093B2 (en) | 2009-10-09 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
US9168054B2 (en) | 2009-10-09 | 2015-10-27 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
US8623011B2 (en) | 2009-10-09 | 2014-01-07 | Ethicon Endo-Surgery, Inc. | Magnetic surgical sled with locking arm |
US10172669B2 (en) | 2009-10-09 | 2019-01-08 | Ethicon Llc | Surgical instrument comprising an energy trigger lockout |
US10441345B2 (en) | 2009-10-09 | 2019-10-15 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US8038693B2 (en) | 2009-10-21 | 2011-10-18 | Tyco Healthcare Group Ip | Methods for ultrasonic tissue sensing and feedback |
WO2011052939A2 (en) | 2009-10-26 | 2011-05-05 | 주식회사 이턴 | Surgical instrument and adapter for single port surgery |
US8388647B2 (en) | 2009-10-28 | 2013-03-05 | Covidien Lp | Apparatus for tissue sealing |
US8460288B2 (en) | 2009-10-28 | 2013-06-11 | Olympus Corporation | Biological-tissue joining apparatus |
BR112012011435B1 (en) | 2009-11-13 | 2020-06-23 | Intuitive Surgical Operations, Inc. | Surgical instrument mechanism, robotic surgical instrument set and robotic surgical instrument system |
US20110125151A1 (en) | 2009-11-24 | 2011-05-26 | Strauss Timo | High frequency surgical device |
US9241730B2 (en) | 2009-11-25 | 2016-01-26 | Eliaz Babaev | Ultrasound surgical saw |
US8070711B2 (en) | 2009-12-09 | 2011-12-06 | Alcon Research, Ltd. | Thermal management algorithm for phacoemulsification system |
US8136712B2 (en) | 2009-12-10 | 2012-03-20 | Ethicon Endo-Surgery, Inc. | Surgical stapler with discrete staple height adjustment and tactile feedback |
US10039588B2 (en) | 2009-12-16 | 2018-08-07 | Covidien Lp | System and method for tissue sealing |
USD627066S1 (en) | 2009-12-18 | 2010-11-09 | Tyco Healthcare Group Lp | Surgical instrument handle |
US8591459B2 (en) | 2009-12-21 | 2013-11-26 | Ethicon Endo-Surgery, Inc. | Use of biomarkers and therapeutic agents with surgical devices |
US8851354B2 (en) | 2009-12-24 | 2014-10-07 | Ethicon Endo-Surgery, Inc. | Surgical cutting instrument that analyzes tissue thickness |
US8267300B2 (en) | 2009-12-30 | 2012-09-18 | Ethicon Endo-Surgery, Inc. | Dampening device for endoscopic surgical stapler |
WO2011089717A1 (en) | 2010-01-22 | 2011-07-28 | オリンパスメディカルシステムズ株式会社 | Treatment tool, treatment device, and treatment method |
US8374670B2 (en) | 2010-01-22 | 2013-02-12 | Biosense Webster, Inc. | Catheter having a force sensing distal tip |
KR101638393B1 (en) | 2010-01-29 | 2016-07-11 | 삼성전자주식회사 | Apparatus and method for displaying capacity and charging/discharging state of battery in poertable device |
JP5468926B2 (en) | 2010-02-02 | 2014-04-09 | 日本特殊陶業株式会社 | Ultrasonic transducer |
US8328061B2 (en) | 2010-02-02 | 2012-12-11 | Covidien Lp | Surgical instrument for joining tissue |
US8486096B2 (en) | 2010-02-11 | 2013-07-16 | Ethicon Endo-Surgery, Inc. | Dual purpose surgical instrument for cutting and coagulating tissue |
US8961547B2 (en) | 2010-02-11 | 2015-02-24 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with moving cutting implement |
US8579928B2 (en) | 2010-02-11 | 2013-11-12 | Ethicon Endo-Surgery, Inc. | Outer sheath and blade arrangements for ultrasonic surgical instruments |
US8419759B2 (en) | 2010-02-11 | 2013-04-16 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument with comb-like tissue trimming device |
US8531064B2 (en) | 2010-02-11 | 2013-09-10 | Ethicon Endo-Surgery, Inc. | Ultrasonically powered surgical instruments with rotating cutting implement |
US9259234B2 (en) | 2010-02-11 | 2016-02-16 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments with rotatable blade and hollow sheath arrangements |
US8951272B2 (en) | 2010-02-11 | 2015-02-10 | Ethicon Endo-Surgery, Inc. | Seal arrangements for ultrasonically powered surgical instruments |
US8382782B2 (en) | 2010-02-11 | 2013-02-26 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with partially rotating blade and fixed pad arrangement |
US8469981B2 (en) | 2010-02-11 | 2013-06-25 | Ethicon Endo-Surgery, Inc. | Rotatable cutting implement arrangements for ultrasonic surgical instruments |
US8323302B2 (en) | 2010-02-11 | 2012-12-04 | Ethicon Endo-Surgery, Inc. | Methods of using ultrasonically powered surgical instruments with rotatable cutting implements |
EP2484301B1 (en) | 2010-02-12 | 2016-06-15 | Olympus Corporation | Ultrasonic treatment device |
USD631155S1 (en) | 2010-02-23 | 2011-01-18 | Cambridge Endoscopic Devices, Inc. | Medical instrument |
US8403945B2 (en) | 2010-02-25 | 2013-03-26 | Covidien Lp | Articulating endoscopic surgical clip applier |
US8439912B2 (en) | 2010-02-26 | 2013-05-14 | Covidien Lp | De-tensioning mechanism for articulation drive cables |
US9107684B2 (en) | 2010-03-05 | 2015-08-18 | Covidien Lp | System and method for transferring power to intrabody instruments |
US8864761B2 (en) | 2010-03-10 | 2014-10-21 | Covidien Lp | System and method for determining proximity relative to a critical structure |
US8827992B2 (en) | 2010-03-26 | 2014-09-09 | Aesculap Ag | Impedance mediated control of power delivery for electrosurgery |
US8696665B2 (en) | 2010-03-26 | 2014-04-15 | Ethicon Endo-Surgery, Inc. | Surgical cutting and sealing instrument with reduced firing force |
US8419727B2 (en) | 2010-03-26 | 2013-04-16 | Aesculap Ag | Impedance mediated power delivery for electrosurgery |
USD638540S1 (en) | 2010-04-08 | 2011-05-24 | Terumo Kabushiki Kaisha | Manipulator system operating handle for medical use |
US8834518B2 (en) | 2010-04-12 | 2014-09-16 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instruments with cam-actuated jaws |
US8709035B2 (en) | 2010-04-12 | 2014-04-29 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instruments with jaws having a parallel closure motion |
US8623044B2 (en) | 2010-04-12 | 2014-01-07 | Ethicon Endo-Surgery, Inc. | Cable actuated end-effector for a surgical instrument |
US8496682B2 (en) | 2010-04-12 | 2013-07-30 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instruments with cam-actuated jaws |
US8535311B2 (en) | 2010-04-22 | 2013-09-17 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument comprising closing and firing systems |
US9241692B2 (en) | 2010-04-28 | 2016-01-26 | Sanovas, Inc. | Pressure/vacuum actuated catheter forceps |
US10265118B2 (en) | 2010-05-04 | 2019-04-23 | Covidien Lp | Pinion blade drive mechanism for a laparoscopic vessel dissector |
US8562592B2 (en) | 2010-05-07 | 2013-10-22 | Ethicon Endo-Surgery, Inc. | Compound angle laparoscopic methods and devices |
US8685020B2 (en) | 2010-05-17 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instruments and end effectors therefor |
JP5059231B2 (en) | 2010-05-18 | 2012-10-24 | オリンパスメディカルシステムズ株式会社 | Medical equipment |
US9044256B2 (en) | 2010-05-19 | 2015-06-02 | Board Of Regents, The University Of Texas System | Medical devices, apparatuses, systems, and methods |
US20110284014A1 (en) | 2010-05-19 | 2011-11-24 | The Board Of Regents Of The University Of Texas System | Medical Devices That Include Removable Magnet Units and Related Methods |
USD669992S1 (en) | 2010-05-20 | 2012-10-30 | Sound Surgical Technologies, Llc | Ultrasonic amplifier |
US9059547B2 (en) | 2010-05-20 | 2015-06-16 | Cook Medical Technologies Llc | Lead system for electrical devices used in medical procedures |
GB2480498A (en) | 2010-05-21 | 2011-11-23 | Ethicon Endo Surgery Inc | Medical device comprising RF circuitry |
US20110291526A1 (en) | 2010-05-27 | 2011-12-01 | Innowattech Ltd. | Piezoelectric stack compression generator |
US8638428B2 (en) | 2010-06-01 | 2014-01-28 | Joe Denton Brown | Method and apparatus for using optical feedback to detect fiber breakdown during surgical laser procedures |
US8491625B2 (en) | 2010-06-02 | 2013-07-23 | Covidien Lp | Apparatus for performing an electrosurgical procedure |
US8430877B2 (en) | 2010-06-02 | 2013-04-30 | Covidien Lp | Apparatus for performing an electrosurgical procedure |
US8790342B2 (en) | 2010-06-09 | 2014-07-29 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument employing pressure-variation electrodes |
US8795276B2 (en) | 2010-06-09 | 2014-08-05 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument employing a plurality of electrodes |
US8926607B2 (en) | 2010-06-09 | 2015-01-06 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument employing multiple positive temperature coefficient electrodes |
US8888776B2 (en) | 2010-06-09 | 2014-11-18 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument employing an electrode |
US8753338B2 (en) | 2010-06-10 | 2014-06-17 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument employing a thermal management system |
US20110306967A1 (en) | 2010-06-10 | 2011-12-15 | Payne Gwendolyn P | Cooling configurations for electrosurgical instruments |
US8764747B2 (en) | 2010-06-10 | 2014-07-01 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument comprising sequentially activated electrodes |
US9005199B2 (en) | 2010-06-10 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Heat management configurations for controlling heat dissipation from electrosurgical instruments |
JP5006475B2 (en) | 2010-06-17 | 2012-08-22 | オリンパスメディカルシステムズ株式会社 | Ultrasonic treatment system and method for operating ultrasonic treatment system |
US20120004655A1 (en) | 2010-06-30 | 2012-01-05 | Harrison Jay Kim | Bipolar Connector System |
ES2758557T3 (en) | 2010-07-07 | 2020-05-05 | Carevature Medical Ltd | Surgical device for tissue removal |
US9149324B2 (en) | 2010-07-08 | 2015-10-06 | Ethicon Endo-Surgery, Inc. | Surgical instrument comprising an articulatable end effector |
US8834466B2 (en) | 2010-07-08 | 2014-09-16 | Ethicon Endo-Surgery, Inc. | Surgical instrument comprising an articulatable end effector |
US8512336B2 (en) | 2010-07-08 | 2013-08-20 | Covidien Lp | Optimal geometries for creating current densities in a bipolar electrode configuration |
US8453906B2 (en) | 2010-07-14 | 2013-06-04 | Ethicon Endo-Surgery, Inc. | Surgical instruments with electrodes |
US20120016413A1 (en) | 2010-07-14 | 2012-01-19 | Ethicon Endo-Surgery, Inc. | Surgical fastening devices comprising rivets |
US8795327B2 (en) | 2010-07-22 | 2014-08-05 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument with separate closure and cutting members |
US20120022519A1 (en) | 2010-07-22 | 2012-01-26 | Ethicon Endo-Surgery, Inc. | Surgical cutting and sealing instrument with controlled energy delivery |
USD637288S1 (en) | 2010-07-23 | 2011-05-03 | Conmed Corporation | Surgical handpiece |
US8979844B2 (en) | 2010-07-23 | 2015-03-17 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instrument |
US20120022583A1 (en) | 2010-07-23 | 2012-01-26 | Eric Sugalski | Surgical Tool with Crossbar Lever |
US20120022526A1 (en) | 2010-07-23 | 2012-01-26 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instrument |
US8979843B2 (en) | 2010-07-23 | 2015-03-17 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instrument |
US9011437B2 (en) | 2010-07-23 | 2015-04-21 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instrument |
US8702704B2 (en) | 2010-07-23 | 2014-04-22 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instrument |
US9192431B2 (en) | 2010-07-23 | 2015-11-24 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instrument |
US8298233B2 (en) | 2010-08-20 | 2012-10-30 | Tyco Healthcare Group Lp | Surgical instrument configured for use with interchangeable hand grips |
US8663222B2 (en) | 2010-09-07 | 2014-03-04 | Covidien Lp | Dynamic and static bipolar electrical sealing and cutting device |
FR2964554B1 (en) | 2010-09-13 | 2013-08-09 | Satelec Soc | SURGICAL HANDPIECE COMPRISING AN ULTRASONIC PIEZOELECTRIC TRANSDUCER |
KR20120030174A (en) | 2010-09-17 | 2012-03-28 | 삼성전자주식회사 | Surgery robot system and surgery apparatus and method for providing tactile feedback |
US9545253B2 (en) | 2010-09-24 | 2017-01-17 | Ethicon Endo-Surgery, Llc | Surgical instrument with contained dual helix actuator assembly |
US9089327B2 (en) | 2010-09-24 | 2015-07-28 | Ethicon Endo-Surgery, Inc. | Surgical instrument with multi-phase trigger bias |
US9402682B2 (en) | 2010-09-24 | 2016-08-02 | Ethicon Endo-Surgery, Llc | Articulation joint features for articulating surgical device |
US20120078244A1 (en) | 2010-09-24 | 2012-03-29 | Worrell Barry C | Control features for articulating surgical device |
USD669993S1 (en) | 2010-09-29 | 2012-10-30 | Sound Surgical Technologies, Llc | Console for use in power assisted lipoplasty |
US8752699B2 (en) | 2010-09-30 | 2014-06-17 | Ethicon Endo-Surgery, Inc. | Implantable fastener cartridge comprising bioabsorbable layers |
US8899461B2 (en) | 2010-10-01 | 2014-12-02 | Covidien Lp | Tissue stop for surgical instrument |
US8888809B2 (en) | 2010-10-01 | 2014-11-18 | Ethicon Endo-Surgery, Inc. | Surgical instrument with jaw member |
USD696631S1 (en) | 2011-05-17 | 2013-12-31 | Ethicon Endo-Surgery, Inc. | Electrical connector |
US8695866B2 (en) | 2010-10-01 | 2014-04-15 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a power control circuit |
US9017372B2 (en) | 2010-10-01 | 2015-04-28 | Covidien Lp | Blade deployment mechanisms for surgical forceps |
US8979890B2 (en) | 2010-10-01 | 2015-03-17 | Ethicon Endo-Surgery, Inc. | Surgical instrument with jaw member |
JP5905472B2 (en) | 2010-10-01 | 2016-04-20 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | Surgical instrument having jaw members |
US9345534B2 (en) | 2010-10-04 | 2016-05-24 | Covidien Lp | Vessel sealing instrument |
GB201017968D0 (en) | 2010-10-23 | 2010-12-08 | Sra Dev Ltd | Ergonomic handpiece for laparoscopic and open surgery |
US8628529B2 (en) | 2010-10-26 | 2014-01-14 | Ethicon Endo-Surgery, Inc. | Surgical instrument with magnetic clamping force |
US20120109186A1 (en) | 2010-10-29 | 2012-05-03 | Parrott David A | Articulating laparoscopic surgical instruments |
US9451967B2 (en) | 2010-11-01 | 2016-09-27 | Boston Scientific Scimed, Inc. | Tissue closure |
US9011471B2 (en) | 2010-11-05 | 2015-04-21 | Ethicon Endo-Surgery, Inc. | Surgical instrument with pivoting coupling to modular shaft and end effector |
US9381058B2 (en) | 2010-11-05 | 2016-07-05 | Ethicon Endo-Surgery, Llc | Recharge system for medical devices |
US9597143B2 (en) | 2010-11-05 | 2017-03-21 | Ethicon Endo-Surgery, Llc | Sterile medical instrument charging device |
US20120116265A1 (en) | 2010-11-05 | 2012-05-10 | Houser Kevin L | Surgical instrument with charging devices |
US9782214B2 (en) | 2010-11-05 | 2017-10-10 | Ethicon Llc | Surgical instrument with sensor and powered control |
US9161803B2 (en) | 2010-11-05 | 2015-10-20 | Ethicon Endo-Surgery, Inc. | Motor driven electrosurgical device with mechanical and electrical feedback |
JP2014500059A (en) | 2010-11-05 | 2014-01-09 | エシコン・エンド−サージェリィ・インコーポレイテッド | User feedback via surgical instrument handpiece |
US9510895B2 (en) | 2010-11-05 | 2016-12-06 | Ethicon Endo-Surgery, Llc | Surgical instrument with modular shaft and end effector |
US10959769B2 (en) | 2010-11-05 | 2021-03-30 | Ethicon Llc | Surgical instrument with slip ring assembly to power ultrasonic transducer |
WO2012066983A1 (en) | 2010-11-15 | 2012-05-24 | オリンパスメディカルシステムズ株式会社 | Ultrasound transducer, ultrasound treatment tool, ultrasound treatment device, and method for assembling ultrasound transducer |
KR101993815B1 (en) | 2010-11-15 | 2019-06-27 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | Decoupling instrument shaft roll and end effector actuation in a surgical instrument |
US8480703B2 (en) | 2010-11-19 | 2013-07-09 | Covidien Lp | Surgical device |
US8784418B2 (en) | 2010-11-29 | 2014-07-22 | Covidien Lp | Endoscopic surgical forceps |
US8920421B2 (en) | 2010-11-29 | 2014-12-30 | Covidien Lp | System and method for tissue sealing |
JP5734631B2 (en) | 2010-12-02 | 2015-06-17 | オリンパス株式会社 | Surgery support system |
US8801710B2 (en) | 2010-12-07 | 2014-08-12 | Immersion Corporation | Electrosurgical sealing tool having haptic feedback |
US10470788B2 (en) | 2010-12-07 | 2019-11-12 | Misonix, Inc | Ultrasonic instrument, associated method of use and related manufacturing method |
US8715277B2 (en) | 2010-12-08 | 2014-05-06 | Ethicon Endo-Surgery, Inc. | Control of jaw compression in surgical instrument having end effector with opposing jaw members |
BR112013016141A2 (en) | 2010-12-23 | 2018-06-26 | Straumann Holding Ag | medical instrument storage cartridge |
US8862955B2 (en) | 2010-12-29 | 2014-10-14 | Stmicroelectronics S.R.L. | Apparatus for at-speed testing, in inter-domain mode, of a multi-clock-domain digital integrated circuit according to BIST or SCAN techniques |
US8936614B2 (en) | 2010-12-30 | 2015-01-20 | Covidien Lp | Combined unilateral/bilateral jaws on a surgical instrument |
US9044245B2 (en) | 2011-01-05 | 2015-06-02 | Medtronic Ablation Frontiers Llc | Multipolarity epicardial radiofrequency ablation |
CN102595386A (en) | 2011-01-06 | 2012-07-18 | 北京三星通信技术研究有限公司 | Method for supporting mobility of user equipment (UE) |
US9113940B2 (en) | 2011-01-14 | 2015-08-25 | Covidien Lp | Trigger lockout and kickback mechanism for surgical instruments |
US9028476B2 (en) | 2011-02-03 | 2015-05-12 | Covidien Lp | Dual antenna microwave resection and ablation device, system and method of use |
US9326787B2 (en) | 2011-02-07 | 2016-05-03 | Olympus Corporation | Energy treatment instrument |
AU2012214166A1 (en) | 2011-02-10 | 2013-09-12 | Actuated Medical, Inc. | Medical tool with electromechanical control and feedback |
US8986287B2 (en) | 2011-02-14 | 2015-03-24 | Adrian E. Park | Adjustable laparoscopic instrument handle |
KR101964642B1 (en) | 2011-02-15 | 2019-04-02 | 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 | Seals and sealing methods for a surgical instrument having an articulated end effector actuated by a drive shaft |
JP6293486B2 (en) | 2011-02-15 | 2018-03-14 | インテュイティブ サージカル オペレーションズ, インコーポレイテッド | System for detecting unsuccessful clamping or firing |
EP3308723B1 (en) | 2011-02-15 | 2021-03-10 | Intuitive Surgical Operations Inc. | Systems for indicating a clamping prediction |
US8767970B2 (en) | 2011-02-16 | 2014-07-01 | Apple Inc. | Audio panning with multi-channel surround sound decoding |
US9055961B2 (en) | 2011-02-18 | 2015-06-16 | Intuitive Surgical Operations, Inc. | Fusing and cutting surgical instrument and related methods |
CN103118603B (en) | 2011-03-17 | 2015-08-19 | 奥林巴斯医疗株式会社 | medical liquid feeding device |
CN103747752B (en) | 2011-03-24 | 2017-04-26 | 伊西康内外科公司 | Energy-based scissors device |
JP5165163B2 (en) | 2011-03-24 | 2013-03-21 | オリンパスメディカルシステムズ株式会社 | Grasping treatment device |
CN202027624U (en) | 2011-03-25 | 2011-11-09 | 薛新汶 | Ultrasonic tool used for surgery |
US10729458B2 (en) | 2011-03-30 | 2020-08-04 | Covidien Lp | Ultrasonic surgical instruments |
US8974479B2 (en) | 2011-03-30 | 2015-03-10 | Covidien Lp | Ultrasonic surgical instruments |
WO2012135721A1 (en) | 2011-03-30 | 2012-10-04 | Tyco Healthcare Group Lp | Ultrasonic surgical instruments |
US20120265241A1 (en) | 2011-04-12 | 2012-10-18 | Tyco Healthcare Group Lp | Surgical Forceps and Method of Manufacturing Thereof |
CA2774751C (en) | 2011-04-15 | 2018-11-06 | Covidien Ag | Battery powered hand-held ultrasonic surgical cautery cutting device |
CN103596510A (en) | 2011-04-28 | 2014-02-19 | 伊西康内外科公司 | Ultrasonic device for cutting and coagulating |
JP5763407B2 (en) | 2011-05-09 | 2015-08-12 | 株式会社ダイヘン | Abnormality detection device and power generation system provided with the abnormality detection device |
US8444664B2 (en) | 2011-05-16 | 2013-05-21 | Covidien Lp | Medical ultrasound instrument with articulated jaws |
US20120296371A1 (en) | 2011-05-17 | 2012-11-22 | Tyco Healthcare Group Lp | Modular Shaft for Endoscopic Vessel Sealer and Divider |
US8968283B2 (en) | 2011-05-19 | 2015-03-03 | Covidien Lp | Ultrasound device for precise tissue sealing and blade-less cutting |
US9358065B2 (en) | 2011-06-23 | 2016-06-07 | Covidien Lp | Shaped electrode bipolar resection apparatus, system and methods of use |
US9615877B2 (en) | 2011-06-17 | 2017-04-11 | Covidien Lp | Tissue sealing forceps |
US20130023925A1 (en) | 2011-07-20 | 2013-01-24 | Tyco Healthcare Group Lp | Articulating Surgical Apparatus |
US8568390B2 (en) | 2011-07-20 | 2013-10-29 | Covidien Lp | Articulating surgical apparatus |
US9259265B2 (en) | 2011-07-22 | 2016-02-16 | Ethicon Endo-Surgery, Llc | Surgical instruments for tensioning tissue |
EP2554132B1 (en) | 2011-08-01 | 2016-03-02 | Erbe Elektromedizin GmbH | Tissue fusion instrument |
US9314301B2 (en) | 2011-08-01 | 2016-04-19 | Miramar Labs, Inc. | Applicator and tissue interface module for dermatological device |
CN102335778A (en) | 2011-08-03 | 2012-02-01 | 四川欧曼机械有限公司 | Cutting tool used for metal processing |
JP5936914B2 (en) | 2011-08-04 | 2016-06-22 | オリンパス株式会社 | Operation input device and manipulator system including the same |
JP5851147B2 (en) | 2011-08-05 | 2016-02-03 | オリンパス株式会社 | Ultrasonic vibration device |
US8968317B2 (en) | 2011-08-18 | 2015-03-03 | Covidien Lp | Surgical forceps |
US9033973B2 (en) | 2011-08-30 | 2015-05-19 | Covidien Lp | System and method for DC tissue impedance sensing |
US9044243B2 (en) | 2011-08-30 | 2015-06-02 | Ethcon Endo-Surgery, Inc. | Surgical cutting and fastening device with descendible second trigger arrangement |
DE102011082102A1 (en) | 2011-09-02 | 2013-03-07 | Celon Ag Medical Instruments | Electrode arrangement and electronic gripping instrument |
DE102011082307A1 (en) | 2011-09-07 | 2013-03-07 | Celon Ag Medical Instruments | Electrosurgical instrument, electrosurgical device and related methods |
US8961515B2 (en) | 2011-09-28 | 2015-02-24 | Covidien Lp | Electrosurgical instrument |
US9204918B2 (en) | 2011-09-28 | 2015-12-08 | RELIGN Corporation | Medical ablation system and method of use |
US9668806B2 (en) | 2011-09-29 | 2017-06-06 | Covidien Lp | Surgical forceps including a removable stop member |
BR112014007752B1 (en) | 2011-09-30 | 2021-12-14 | Ethicon Endo-Surgery, Inc. | SURGICAL DEVICE |
US20130090576A1 (en) | 2011-10-10 | 2013-04-11 | Foster B. Stulen | Surgical instrument with ultrasonic waveguide defining a fluid lumen |
US8734476B2 (en) | 2011-10-13 | 2014-05-27 | Ethicon Endo-Surgery, Inc. | Coupling for slip ring assembly and ultrasonic transducer in surgical instrument |
EP2768418B1 (en) | 2011-10-19 | 2017-07-19 | Ethicon Endo-Surgery, Inc. | Clip applier adapted for use with a surgical robot |
US10085762B2 (en) | 2011-10-21 | 2018-10-02 | Ethicon Llc | Ultrasonic device for cutting and coagulating |
US9333025B2 (en) | 2011-10-24 | 2016-05-10 | Ethicon Endo-Surgery, Llc | Battery initialization clip |
USD687549S1 (en) | 2011-10-24 | 2013-08-06 | Ethicon Endo-Surgery, Inc. | Surgical instrument |
US8899462B2 (en) | 2011-10-25 | 2014-12-02 | Covidien Lp | Apparatus for endoscopic procedures |
CN103889355B (en) | 2011-10-26 | 2016-06-15 | 奥林巴斯株式会社 | Ultrasonic operation system |
CN103945783B (en) | 2011-11-15 | 2016-10-26 | 直观外科手术操作公司 | There is the operating theater instruments of the blade packed up |
US9063049B2 (en) | 2011-11-25 | 2015-06-23 | Hydro Honing Laboratories, Inc. | Apparatus and method for quantifying metal surface treatment |
US20130158659A1 (en) | 2011-12-20 | 2013-06-20 | Richard A. Bergs | Medical Devices, Apparatuses, Systems, and Methods With Configurations for Shaping Magnetic-Fields and Interactions |
US20130158660A1 (en) | 2011-12-20 | 2013-06-20 | Richard A. Bergs | Medical Devices, Apparatuses, Systems, and Methods with Magnetic Shielding |
DE102012100040A1 (en) | 2012-01-04 | 2013-07-04 | Aesculap Ag | Electrosurgical instrument and jaw part for this |
US8382775B1 (en) | 2012-01-08 | 2013-02-26 | Vibrynt, Inc. | Methods, instruments and devices for extragastric reduction of stomach volume |
US9125722B2 (en) | 2012-02-09 | 2015-09-08 | Donald N. Schwartz | Device for the ultrasonic treatment of glaucoma having a concave tip |
JP6165780B2 (en) | 2012-02-10 | 2017-07-19 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | Robot-controlled surgical instrument |
US8752264B2 (en) | 2012-03-06 | 2014-06-17 | Covidien Lp | Surgical tissue sealer |
US20130253256A1 (en) | 2012-03-20 | 2013-09-26 | David B. Griffith | Apparatuses, systems, and methods for use and transport of magnetic medical devices with transport fixtures or safety cages |
TWM438061U (en) | 2012-04-03 | 2012-09-21 | Inhon Internat Co Ltd | Connector module and a male connector and the female connector |
US9439668B2 (en) | 2012-04-09 | 2016-09-13 | Ethicon Endo-Surgery, Llc | Switch arrangements for ultrasonic surgical instruments |
US9237921B2 (en) | 2012-04-09 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US9241731B2 (en) | 2012-04-09 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Rotatable electrical connection for ultrasonic surgical instruments |
US9226766B2 (en) | 2012-04-09 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Serial communication protocol for medical device |
US9724118B2 (en) | 2012-04-09 | 2017-08-08 | Ethicon Endo-Surgery, Llc | Techniques for cutting and coagulating tissue for ultrasonic surgical instruments |
JP5883343B2 (en) | 2012-04-12 | 2016-03-15 | 株式会社スズキプレシオン | Medical manipulator |
US8968294B2 (en) | 2012-04-17 | 2015-03-03 | Covidien Lp | Single or limited use device designs |
EP2838439A4 (en) | 2012-04-18 | 2015-11-25 | Cardica Inc | Safety lockout for surgical stapler |
US9788851B2 (en) | 2012-04-18 | 2017-10-17 | Ethicon Llc | Surgical instrument with tissue density sensing |
US9216050B2 (en) | 2012-05-01 | 2015-12-22 | Medtronic Ablation Frontiers Llc | Detection of microbubble formation during catheter ablation |
JP6224082B2 (en) | 2012-05-02 | 2017-11-01 | エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. | Electrosurgical device for cutting and coagulation |
US9301772B2 (en) | 2012-05-31 | 2016-04-05 | Ethicon Endo-Surgery, Llc | Loading cartridge for surgical instrument end effector |
EP2859857B1 (en) | 2012-06-06 | 2017-10-25 | Olympus Corporation | Connection mechanism for ultrasound-vibration generating/transmitting unit, and production method for ultrasound-vibration generating/transmitting unit |
EP2859858B1 (en) | 2012-06-06 | 2016-12-28 | Olympus Corporation | Ultrasound probe |
US10677764B2 (en) | 2012-06-11 | 2020-06-09 | Covidien Lp | Temperature estimation and tissue detection of an ultrasonic dissector from frequency response monitoring |
US11076880B2 (en) | 2012-06-11 | 2021-08-03 | Covidien Lp | Temperature estimation and tissue detection of an ultrasonic dissector from frequency response monitoring |
EP3593740B1 (en) | 2012-06-20 | 2021-10-06 | Stryker Corporation | System for off-axis tissue manipulation |
US9119657B2 (en) | 2012-06-28 | 2015-09-01 | Ethicon Endo-Surgery, Inc. | Rotary actuatable closure arrangement for surgical end effector |
US9101385B2 (en) | 2012-06-28 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Electrode connections for rotary driven surgical tools |
US9125662B2 (en) | 2012-06-28 | 2015-09-08 | Ethicon Endo-Surgery, Inc. | Multi-axis articulating and rotating surgical tools |
US8747238B2 (en) | 2012-06-28 | 2014-06-10 | Ethicon Endo-Surgery, Inc. | Rotary drive shaft assemblies for surgical instruments with articulatable end effectors |
US20140001231A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Firing system lockout arrangements for surgical instruments |
US9282974B2 (en) | 2012-06-28 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Empty clip cartridge lockout |
US20140005640A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Surgical end effector jaw and electrode configurations |
US9204879B2 (en) | 2012-06-28 | 2015-12-08 | Ethicon Endo-Surgery, Inc. | Flexible drive member |
US20140005705A1 (en) | 2012-06-29 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Surgical instruments with articulating shafts |
US9561038B2 (en) | 2012-06-28 | 2017-02-07 | Ethicon Endo-Surgery, Llc | Interchangeable clip applier |
US9289256B2 (en) | 2012-06-28 | 2016-03-22 | Ethicon Endo-Surgery, Llc | Surgical end effectors having angled tissue-contacting surfaces |
US9072536B2 (en) | 2012-06-28 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Differential locking arrangements for rotary powered surgical instruments |
US9226751B2 (en) | 2012-06-28 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Surgical instrument system including replaceable end effectors |
US9028494B2 (en) | 2012-06-28 | 2015-05-12 | Ethicon Endo-Surgery, Inc. | Interchangeable end effector coupling arrangement |
US9408622B2 (en) | 2012-06-29 | 2016-08-09 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US9226767B2 (en) | 2012-06-29 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Closed feedback control for electrosurgical device |
US9283045B2 (en) | 2012-06-29 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Surgical instruments with fluid management system |
US9820768B2 (en) | 2012-06-29 | 2017-11-21 | Ethicon Llc | Ultrasonic surgical instruments with control mechanisms |
US9393037B2 (en) | 2012-06-29 | 2016-07-19 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US9351754B2 (en) | 2012-06-29 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments with distally positioned jaw assemblies |
US9198714B2 (en) | 2012-06-29 | 2015-12-01 | Ethicon Endo-Surgery, Inc. | Haptic feedback devices for surgical robot |
US10028786B2 (en) | 2012-06-29 | 2018-07-24 | Covidien Lp | Helical connector assembly |
US9326788B2 (en) | 2012-06-29 | 2016-05-03 | Ethicon Endo-Surgery, Llc | Lockout mechanism for use with robotic electrosurgical device |
US20140005702A1 (en) | 2012-06-29 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with distally positioned transducers |
US20140081299A1 (en) | 2012-09-19 | 2014-03-20 | Timothy G. Dietz | Micromachined Ultrasonic Scalpel with Embedded Piezoelectric Actuator |
CN104661608B (en) | 2012-09-24 | 2017-10-13 | 奥林巴斯株式会社 | Processing assembly and its manufacture method and processing utensil |
CN104334103B (en) | 2012-09-24 | 2016-10-26 | 奥林巴斯株式会社 | Ultrasound wave working cell and ultrasonic treatment unit |
US9147965B2 (en) | 2012-09-26 | 2015-09-29 | Kc Magcon, Inc. | Magnetic-enabled connector device |
IN2015DN02432A (en) | 2012-09-28 | 2015-09-04 | Ethicon Endo Surgery Inc | |
US9687290B2 (en) | 2012-10-02 | 2017-06-27 | Covidien Lp | Energy-based medical devices |
US9622729B2 (en) | 2012-10-06 | 2017-04-18 | Steerable Instruments nv | Crosstalk reducing handle for surgical articulated instruments |
US9526564B2 (en) | 2012-10-08 | 2016-12-27 | Covidien Lp | Electric stapler device |
US9095367B2 (en) | 2012-10-22 | 2015-08-04 | Ethicon Endo-Surgery, Inc. | Flexible harmonic waveguides/blades for surgical instruments |
US10201365B2 (en) | 2012-10-22 | 2019-02-12 | Ethicon Llc | Surgeon feedback sensing and display methods |
US20140121569A1 (en) | 2012-10-25 | 2014-05-01 | Solta Medical, Inc. | Ultrasonically heated probe |
US20140135804A1 (en) | 2012-11-15 | 2014-05-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic and electrosurgical devices |
EP2932930B1 (en) | 2012-12-13 | 2018-06-27 | Olympus Corporation | Treatment instrument |
US9468498B2 (en) | 2012-12-20 | 2016-10-18 | Cook Medical Technologies Llc | Magnetic activation of monopolar and bipolar devices |
US20140194874A1 (en) | 2013-01-10 | 2014-07-10 | Ethicon Endo-Surgery, Inc. | Electrosurgical end effector with independent closure feature and blade |
US20140194875A1 (en) | 2013-01-10 | 2014-07-10 | Covidien Lp | Surgical forceps |
US9149325B2 (en) | 2013-01-25 | 2015-10-06 | Ethicon Endo-Surgery, Inc. | End effector with compliant clamping jaw |
US9610114B2 (en) | 2013-01-29 | 2017-04-04 | Ethicon Endo-Surgery, Llc | Bipolar electrosurgical hand shears |
US9398911B2 (en) | 2013-03-01 | 2016-07-26 | Ethicon Endo-Surgery, Llc | Rotary powered surgical instruments with multiple degrees of freedom |
US9456863B2 (en) | 2013-03-11 | 2016-10-04 | Covidien Lp | Surgical instrument with switch activation control |
US10070916B2 (en) | 2013-03-11 | 2018-09-11 | Covidien Lp | Surgical instrument with system and method for springing open jaw members |
US9168090B2 (en) | 2013-03-14 | 2015-10-27 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument with restricted trigger |
US10226273B2 (en) | 2013-03-14 | 2019-03-12 | Ethicon Llc | Mechanical fasteners for use with surgical energy devices |
US9364235B2 (en) * | 2013-03-14 | 2016-06-14 | C.R. Bard, Inc. | Power assist device for a surgical instrument |
US9254171B2 (en) | 2013-03-14 | 2016-02-09 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument with multi-stage actuator |
US9237923B2 (en) | 2013-03-15 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Surgical instrument with partial trigger lockout |
US9510906B2 (en) | 2013-03-15 | 2016-12-06 | Ethicon Endo-Surgery, Llc | Tissue clamping features of surgical instrument end effector |
US9241728B2 (en) | 2013-03-15 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument with multiple clamping mechanisms |
CA3135151A1 (en) | 2013-04-08 | 2014-10-16 | Boston Scientific Scimed, Inc. | Fluid management system |
US9801626B2 (en) | 2013-04-16 | 2017-10-31 | Ethicon Llc | Modular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts |
EP2992847B1 (en) | 2013-05-02 | 2017-08-30 | Olympus Corporation | Ultrasonic treatment system |
US9574644B2 (en) | 2013-05-30 | 2017-02-21 | Ethicon Endo-Surgery, Llc | Power module for use with a surgical instrument |
WO2014196640A1 (en) | 2013-06-07 | 2014-12-11 | オリンパスメディカルシステムズ株式会社 | Ultrasonic probe and ultrasonic treatment apparatus |
US20140371735A1 (en) | 2013-06-12 | 2014-12-18 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument end effector with preheating element |
US10182837B2 (en) | 2013-06-28 | 2019-01-22 | Misonix, Inc. | Sheath coupling member and associated instrument assembly |
WO2015001822A1 (en) | 2013-07-03 | 2015-01-08 | オリンパス株式会社 | Ultrasonic vibration device, ultrasonic vibration device manufacturing method, and ultrasonic medical apparatus |
KR20150006519A (en) | 2013-07-08 | 2015-01-19 | 삼성메디슨 주식회사 | Ultrasound Probe and Manufacturing Method thereof |
WO2015020147A1 (en) | 2013-08-07 | 2015-02-12 | オリンパスメディカルシステムズ株式会社 | Ultrasonic probe and ultrasonic treatment device |
US9295514B2 (en) | 2013-08-30 | 2016-03-29 | Ethicon Endo-Surgery, Llc | Surgical devices with close quarter articulation features |
US9814514B2 (en) | 2013-09-13 | 2017-11-14 | Ethicon Llc | Electrosurgical (RF) medical instruments for cutting and coagulating tissue |
US20150080876A1 (en) | 2013-09-16 | 2015-03-19 | Ethoicon Endo-Surgery, Inc | Integrated systems for electrosurgical steam or smoke control |
US9861428B2 (en) | 2013-09-16 | 2018-01-09 | Ethicon Llc | Integrated systems for electrosurgical steam or smoke control |
US10231747B2 (en) | 2013-09-20 | 2019-03-19 | Ethicon Llc | Transducer features for ultrasonic surgical instrument |
US9918736B2 (en) | 2013-09-25 | 2018-03-20 | Covidien Lp | Ultrasonic dissector and sealer |
US20150112335A1 (en) | 2013-10-18 | 2015-04-23 | Ethicon Endo-Surgery, Inc. | Electrosurgical devices with fluid flow control |
JP6154729B2 (en) | 2013-10-28 | 2017-06-28 | 富士フイルム株式会社 | Method for manufacturing piezoelectric element |
US9265926B2 (en) | 2013-11-08 | 2016-02-23 | Ethicon Endo-Surgery, Llc | Electrosurgical devices |
US9526565B2 (en) | 2013-11-08 | 2016-12-27 | Ethicon Endo-Surgery, Llc | Electrosurgical devices |
US9861381B2 (en) | 2013-11-12 | 2018-01-09 | Ethicon Llc | Removable battery casing for surgical instrument |
USD763442S1 (en) | 2013-11-15 | 2016-08-09 | Ethicon Endo-Surgery, Llc | Handpiece for surgical instrument |
US9913655B2 (en) | 2013-11-18 | 2018-03-13 | Ethicon Llc | Surgical instrument with active element and suction cage |
US9949785B2 (en) | 2013-11-21 | 2018-04-24 | Ethicon Llc | Ultrasonic surgical instrument with electrosurgical feature |
US10368892B2 (en) | 2013-11-22 | 2019-08-06 | Ethicon Llc | Features for coupling surgical instrument shaft assembly with instrument body |
US9943325B2 (en) | 2013-11-26 | 2018-04-17 | Ethicon Llc | Handpiece and blade configurations for ultrasonic surgical instrument |
BR112016011680B1 (en) | 2013-11-26 | 2022-02-15 | Ethicon Endo-Surgery, Llc | DEVICE |
CN103668171A (en) | 2013-12-25 | 2014-03-26 | 江苏万力机械股份有限公司 | Combined treatment method for prolonging life of oversized shearing equipment tool |
US9795436B2 (en) | 2014-01-07 | 2017-10-24 | Ethicon Llc | Harvesting energy from a surgical generator |
US9408660B2 (en) | 2014-01-17 | 2016-08-09 | Ethicon Endo-Surgery, Llc | Device trigger dampening mechanism |
JP5836543B1 (en) | 2014-02-06 | 2015-12-24 | オリンパス株式会社 | Ultrasonic probe and ultrasonic treatment apparatus |
US10420607B2 (en) | 2014-02-14 | 2019-09-24 | Arthrocare Corporation | Methods and systems related to an electrosurgical controller |
EP3115010A4 (en) | 2014-03-03 | 2017-10-18 | Olympus Corporation | Ultrasound instrument and probe |
FR3018184B1 (en) | 2014-03-07 | 2018-04-06 | Nsk France | ULTRASONIC SURGICAL INSTRUMENT FOR RHINOPLASTY |
US20160128769A1 (en) | 2014-03-11 | 2016-05-12 | Michael Rontal | Surgical device for the removal of tissue employing a vibrating beam with cold plasma sterilization |
US9486235B2 (en) | 2014-03-11 | 2016-11-08 | Michael Rontal | Surgical device employing a cantilevered beam dissector |
US9554854B2 (en) | 2014-03-18 | 2017-01-31 | Ethicon Endo-Surgery, Llc | Detecting short circuits in electrosurgical medical devices |
US9675374B2 (en) | 2014-03-24 | 2017-06-13 | Ethicon Llc | Ultrasonic forceps |
US10463421B2 (en) | 2014-03-27 | 2019-11-05 | Ethicon Llc | Two stage trigger, clamp and cut bipolar vessel sealer |
US20150272659A1 (en) | 2014-03-27 | 2015-10-01 | Ethicon Endo-Surgery, Inc. | Two stage trigger, clamp and cut bipolar vessel sealer |
US10092310B2 (en) | 2014-03-27 | 2018-10-09 | Ethicon Llc | Electrosurgical devices |
US9737355B2 (en) | 2014-03-31 | 2017-08-22 | Ethicon Llc | Controlling impedance rise in electrosurgical medical devices |
CN103921215B (en) | 2014-04-01 | 2016-04-27 | 上海电气电站设备有限公司 | The minimizing technology of burr on a kind of straight trough broaching tool |
WO2015157703A2 (en) | 2014-04-11 | 2015-10-15 | Smith & Nephew, Inc. | Dmls orthopedic intramedullary device and method of manufacture |
KR20150118750A (en) | 2014-04-15 | 2015-10-23 | 삼성전자주식회사 | Ultrasonic imaging apparatus |
US9913680B2 (en) | 2014-04-15 | 2018-03-13 | Ethicon Llc | Software algorithms for electrosurgical instruments |
US9757186B2 (en) | 2014-04-17 | 2017-09-12 | Ethicon Llc | Device status feedback for bipolar tissue spacer |
JP6326275B2 (en) | 2014-04-25 | 2018-05-16 | オリンパス株式会社 | Ultrasonic transducer and ultrasonic medical device |
DE102014108914A1 (en) | 2014-06-25 | 2015-12-31 | Aesculap Ag | Electrosurgical instrument and jaw part for this |
JPWO2016009921A1 (en) | 2014-07-15 | 2017-04-27 | オリンパス株式会社 | Treatment tool |
US10285724B2 (en) | 2014-07-31 | 2019-05-14 | Ethicon Llc | Actuation mechanisms and load adjustment assemblies for surgical instruments |
US10194976B2 (en) | 2014-08-25 | 2019-02-05 | Ethicon Llc | Lockout disabling mechanism |
US20160051316A1 (en) | 2014-08-25 | 2016-02-25 | Ethicon Endo-Surgery, Inc. | Electrosurgical electrode mechanism |
US9877776B2 (en) | 2014-08-25 | 2018-01-30 | Ethicon Llc | Simultaneous I-beam and spring driven cam jaw closure mechanism |
US10194972B2 (en) | 2014-08-26 | 2019-02-05 | Ethicon Llc | Managing tissue treatment |
US10639092B2 (en) | 2014-12-08 | 2020-05-05 | Ethicon Llc | Electrode configurations for surgical instruments |
US10188385B2 (en) | 2014-12-18 | 2019-01-29 | Ethicon Llc | Surgical instrument system comprising lockable systems |
GB2533411B (en) | 2014-12-19 | 2020-08-05 | Gyrus Medical Ltd | Electrosurgical system |
US9848937B2 (en) | 2014-12-22 | 2017-12-26 | Ethicon Llc | End effector with detectable configurations |
US10111699B2 (en) | 2014-12-22 | 2018-10-30 | Ethicon Llc | RF tissue sealer, shear grip, trigger lock mechanism and energy activation |
US20160175029A1 (en) | 2014-12-22 | 2016-06-23 | Ethicon Endo-Surgery, Inc. | Tissue sealing and cutting instrument with locking features |
US10159524B2 (en) | 2014-12-22 | 2018-12-25 | Ethicon Llc | High power battery powered RF amplifier topology |
US10092348B2 (en) | 2014-12-22 | 2018-10-09 | Ethicon Llc | RF tissue sealer, shear grip, trigger lock mechanism and energy activation |
GB2535627B (en) | 2015-01-14 | 2017-06-28 | Gyrus Medical Ltd | Electrosurgical system |
GB2535003B (en) | 2015-01-14 | 2018-12-12 | Gyrus Medical Ltd | Electrosurgical instrument |
US10537667B2 (en) | 2015-01-28 | 2020-01-21 | Ethicon Llc | High temperature material for use in medical devices |
US10245095B2 (en) | 2015-02-06 | 2019-04-02 | Ethicon Llc | Electrosurgical instrument with rotation and articulation mechanisms |
US20160262786A1 (en) | 2015-03-10 | 2016-09-15 | Ethicon Endo-Surgery, Llc | Surgical blades with fatigue resistant properties |
US10342602B2 (en) | 2015-03-17 | 2019-07-09 | Ethicon Llc | Managing tissue treatment |
US10321950B2 (en) | 2015-03-17 | 2019-06-18 | Ethicon Llc | Managing tissue treatment |
US20160270842A1 (en) | 2015-03-20 | 2016-09-22 | Ethicon Endo-Surgery, Llc | Electrosurgical device having controllable current paths |
US10595929B2 (en) | 2015-03-24 | 2020-03-24 | Ethicon Llc | Surgical instruments with firing system overload protection mechanisms |
US10314638B2 (en) | 2015-04-07 | 2019-06-11 | Ethicon Llc | Articulating radio frequency (RF) tissue seal with articulating state sensing |
US10117702B2 (en) | 2015-04-10 | 2018-11-06 | Ethicon Llc | Surgical generator systems and related methods |
US20160296270A1 (en) | 2015-04-10 | 2016-10-13 | Ethicon Endo-Surgery, Llc | Devices and methods for providing additional power to surgical devices |
US10130410B2 (en) | 2015-04-17 | 2018-11-20 | Ethicon Llc | Electrosurgical instrument including a cutting member decouplable from a cutting member trigger |
US9872725B2 (en) | 2015-04-29 | 2018-01-23 | Ethicon Llc | RF tissue sealer with mode selection |
US10034684B2 (en) | 2015-06-15 | 2018-07-31 | Ethicon Llc | Apparatus and method for dissecting and coagulating tissue |
US11020140B2 (en) | 2015-06-17 | 2021-06-01 | Cilag Gmbh International | Ultrasonic surgical blade for use with ultrasonic surgical instruments |
US10357303B2 (en) | 2015-06-30 | 2019-07-23 | Ethicon Llc | Translatable outer tube for sealing using shielded lap chole dissector |
US10034704B2 (en) | 2015-06-30 | 2018-07-31 | Ethicon Llc | Surgical instrument with user adaptable algorithms |
US10765470B2 (en) | 2015-06-30 | 2020-09-08 | Ethicon Llc | Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters |
US10154852B2 (en) | 2015-07-01 | 2018-12-18 | Ethicon Llc | Ultrasonic surgical blade with improved cutting and coagulation features |
US10736685B2 (en) | 2015-09-30 | 2020-08-11 | Ethicon Llc | Generator for digitally generating combined electrical signal waveforms for ultrasonic surgical instruments |
US10595930B2 (en) | 2015-10-16 | 2020-03-24 | Ethicon Llc | Electrode wiping surgical device |
US10028765B2 (en) | 2015-10-30 | 2018-07-24 | Ethicon Llc | Ultrasonic surgical instrument clamp arm with proximal nodal pad |
US20170164972A1 (en) | 2015-12-10 | 2017-06-15 | Ethicon Endo-Surgery, Llc | End effector for instrument with ultrasonic and electrosurgical features |
US10368894B2 (en) | 2015-12-21 | 2019-08-06 | Ethicon Llc | Surgical instrument with variable clamping force |
US10368957B2 (en) | 2015-12-21 | 2019-08-06 | Ethicon Llc | Ultrasonic surgical instrument with blade cleaning feature |
US10179022B2 (en) | 2015-12-30 | 2019-01-15 | Ethicon Llc | Jaw position impedance limiter for electrosurgical instrument |
US10575892B2 (en) | 2015-12-31 | 2020-03-03 | Ethicon Llc | Adapter for electrical surgical instruments |
US20170189095A1 (en) | 2015-12-31 | 2017-07-06 | Ethicon Endo-Surgery, Llc | Multiple port electrical isolation technique for surgical instruments |
US11229471B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
US20170202595A1 (en) | 2016-01-15 | 2017-07-20 | Ethicon Endo-Surgery, Llc | Modular battery powered handheld surgical instrument with a plurality of control programs |
US11229450B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with motor drive |
US11129670B2 (en) | 2016-01-15 | 2021-09-28 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization |
US10716615B2 (en) | 2016-01-15 | 2020-07-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade |
US10555769B2 (en) | 2016-02-22 | 2020-02-11 | Ethicon Llc | Flexible circuits for electrosurgical instrument |
CN106077718B (en) | 2016-06-14 | 2018-03-20 | 杭州电子科技大学 | A kind of rotating ultrasonic chief axis of energy quick-replaceable sound system |
US10245064B2 (en) | 2016-07-12 | 2019-04-02 | Ethicon Llc | Ultrasonic surgical instrument with piezoelectric central lumen transducer |
US10893883B2 (en) | 2016-07-13 | 2021-01-19 | Ethicon Llc | Ultrasonic assembly for use with ultrasonic surgical instruments |
US10842522B2 (en) | 2016-07-15 | 2020-11-24 | Ethicon Llc | Ultrasonic surgical instruments having offset blades |
US10285723B2 (en) | 2016-08-09 | 2019-05-14 | Ethicon Llc | Ultrasonic surgical blade with improved heel portion |
USD847990S1 (en) | 2016-08-16 | 2019-05-07 | Ethicon Llc | Surgical instrument |
US10952759B2 (en) | 2016-08-25 | 2021-03-23 | Ethicon Llc | Tissue loading of a surgical instrument |
US10555750B2 (en) | 2016-08-25 | 2020-02-11 | Ethicon Llc | Ultrasonic surgical instrument with replaceable blade having identification feature |
US10736649B2 (en) | 2016-08-25 | 2020-08-11 | Ethicon Llc | Electrical and thermal connections for ultrasonic transducer |
US10603064B2 (en) | 2016-11-28 | 2020-03-31 | Ethicon Llc | Ultrasonic transducer |
US9833256B1 (en) | 2016-12-14 | 2017-12-05 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instrument with transducer slip joint |
US10881451B2 (en) | 2017-04-27 | 2021-01-05 | Ethicon Llc | Lead screw assembly for articulation control in surgical instrument |
US10820920B2 (en) | 2017-07-05 | 2020-11-03 | Ethicon Llc | Reusable ultrasonic medical devices and methods of their use |
US10561436B2 (en) | 2017-07-31 | 2020-02-18 | Ethicon Llc | Surgical instrument use indicator |
-
2005
- 2005-10-07 ES ES05818040.7T patent/ES2598134T3/en active Active
- 2005-10-07 US US11/246,384 patent/US20060079877A1/en not_active Abandoned
- 2005-10-07 US US11/246,794 patent/US7544200B2/en active Active
- 2005-10-07 MX MX2007004151A patent/MX2007004151A/en active IP Right Grant
- 2005-10-07 BR BRPI0518171A patent/BRPI0518171B8/en active IP Right Grant
- 2005-10-07 AU AU2005295010A patent/AU2005295010B2/en not_active Ceased
- 2005-10-07 US US11/245,819 patent/US20060079874A1/en not_active Abandoned
- 2005-10-07 US US11/246,330 patent/US7846155B2/en active Active
- 2005-10-07 US US11/246,826 patent/US20060079879A1/en not_active Abandoned
- 2005-10-07 PL PL05818040T patent/PL1802245T3/en unknown
- 2005-10-07 JP JP2007535884A patent/JP5009159B2/en active Active
- 2005-10-07 EP EP16180205.3A patent/EP3162309B1/en active Active
- 2005-10-07 CA CA2582520A patent/CA2582520C/en not_active Expired - Fee Related
- 2005-10-07 US US11/246,264 patent/US8057467B2/en active Active
- 2005-10-07 CN CN2005800343956A patent/CN101035482B/en active Active
- 2005-10-07 WO PCT/US2005/036389 patent/WO2006042210A2/en active Application Filing
- 2005-10-07 EP EP05818040.7A patent/EP1802245B8/en active Active
-
2009
- 2009-05-19 US US12/468,130 patent/US20090223033A1/en not_active Abandoned
-
2010
- 2010-04-16 US US12/761,431 patent/US8715306B2/en active Active
-
2011
- 2011-06-03 JP JP2011124991A patent/JP5296145B2/en active Active
- 2011-06-03 JP JP2011124975A patent/JP5738683B2/en active Active
- 2011-06-03 JP JP2011124957A patent/JP5341138B2/en active Active
-
2014
- 2014-05-05 US US14/269,546 patent/US9901359B2/en active Active
-
2018
- 2018-02-26 US US15/904,828 patent/US11006971B2/en active Active
- 2018-04-06 US US15/947,433 patent/US10537352B2/en active Active
-
2019
- 2019-09-23 US US16/578,798 patent/US20200085466A1/en not_active Abandoned
-
2020
- 2020-06-24 US US16/910,654 patent/US20200323551A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5725536A (en) * | 1996-02-20 | 1998-03-10 | Richard-Allen Medical Industries, Inc. | Articulated surgical instrument with improved articulation control mechanism |
US5762255A (en) * | 1996-02-20 | 1998-06-09 | Richard-Allan Medical Industries, Inc. | Surgical instrument with improvement safety lockout mechanisms |
US5797537A (en) * | 1996-02-20 | 1998-08-25 | Richard-Allan Medical Industries, Inc. | Articulated surgical instrument with improved firing mechanism |
US5820009A (en) * | 1996-02-20 | 1998-10-13 | Richard-Allan Medical Industries, Inc. | Articulated surgical instrument with improved jaw closure mechanism |
US6010054A (en) * | 1996-02-20 | 2000-01-04 | Imagyn Medical Technologies | Linear stapling instrument with improved staple cartridge |
US20130072948A1 (en) * | 2011-09-19 | 2013-03-21 | Cost Containment, Inc. | Suture passer device and suture needle |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11730507B2 (en) | 2004-02-27 | 2023-08-22 | Cilag Gmbh International | Ultrasonic surgical shears and method for sealing a blood vessel using same |
US10874418B2 (en) | 2004-02-27 | 2020-12-29 | Ethicon Llc | Ultrasonic surgical shears and method for sealing a blood vessel using same |
US11006971B2 (en) | 2004-10-08 | 2021-05-18 | Ethicon Llc | Actuation mechanism for use with an ultrasonic surgical instrument |
US11998229B2 (en) | 2005-10-14 | 2024-06-04 | Cilag Gmbh International | Ultrasonic device for cutting and coagulating |
US10779848B2 (en) | 2006-01-20 | 2020-09-22 | Ethicon Llc | Ultrasound medical instrument having a medical ultrasonic blade |
US12042168B2 (en) | 2006-01-20 | 2024-07-23 | Cilag Gmbh International | Ultrasound medical instrument having a medical ultrasonic blade |
US10828057B2 (en) | 2007-03-22 | 2020-11-10 | Ethicon Llc | Ultrasonic surgical instruments |
US11690641B2 (en) | 2007-07-27 | 2023-07-04 | Cilag Gmbh International | Ultrasonic end effectors with increased active length |
US11607268B2 (en) | 2007-07-27 | 2023-03-21 | Cilag Gmbh International | Surgical instruments |
US11666784B2 (en) | 2007-07-31 | 2023-06-06 | Cilag Gmbh International | Surgical instruments |
US11877734B2 (en) | 2007-07-31 | 2024-01-23 | Cilag Gmbh International | Ultrasonic surgical instruments |
US11058447B2 (en) | 2007-07-31 | 2021-07-13 | Cilag Gmbh International | Temperature controlled ultrasonic surgical instruments |
US11690643B2 (en) | 2007-11-30 | 2023-07-04 | Cilag Gmbh International | Ultrasonic surgical blades |
US11439426B2 (en) | 2007-11-30 | 2022-09-13 | Cilag Gmbh International | Ultrasonic surgical blades |
US11253288B2 (en) | 2007-11-30 | 2022-02-22 | Cilag Gmbh International | Ultrasonic surgical instrument blades |
US11266433B2 (en) | 2007-11-30 | 2022-03-08 | Cilag Gmbh International | Ultrasonic surgical instrument blades |
US11766276B2 (en) | 2007-11-30 | 2023-09-26 | Cilag Gmbh International | Ultrasonic surgical blades |
US11000707B2 (en) | 2009-06-24 | 2021-05-11 | Ethicon Llc | Ultrasonic surgical instruments |
US11179582B2 (en) | 2009-06-24 | 2021-11-23 | Cilag Gmbh International | Ultrasonic surgical instruments |
US11369402B2 (en) | 2010-02-11 | 2022-06-28 | Cilag Gmbh International | Control systems for ultrasonically powered surgical instruments |
US10835768B2 (en) | 2010-02-11 | 2020-11-17 | Ethicon Llc | Dual purpose surgical instrument for cutting and coagulating tissue |
US11602371B2 (en) | 2012-06-29 | 2023-03-14 | Cilag Gmbh International | Ultrasonic surgical instruments with control mechanisms |
US11272952B2 (en) | 2013-03-14 | 2022-03-15 | Cilag Gmbh International | Mechanical fasteners for use with surgical energy devices |
US11033292B2 (en) | 2013-12-16 | 2021-06-15 | Cilag Gmbh International | Medical device |
US11020140B2 (en) | 2015-06-17 | 2021-06-01 | Cilag Gmbh International | Ultrasonic surgical blade for use with ultrasonic surgical instruments |
US11553954B2 (en) | 2015-06-30 | 2023-01-17 | Cilag Gmbh International | Translatable outer tube for sealing using shielded lap chole dissector |
US11883055B2 (en) | 2016-07-12 | 2024-01-30 | Cilag Gmbh International | Ultrasonic surgical instrument with piezoelectric central lumen transducer |
US10966744B2 (en) | 2016-07-12 | 2021-04-06 | Ethicon Llc | Ultrasonic surgical instrument with piezoelectric central lumen transducer |
USD924400S1 (en) | 2016-08-16 | 2021-07-06 | Cilag Gmbh International | Surgical instrument |
US11350959B2 (en) | 2016-08-25 | 2022-06-07 | Cilag Gmbh International | Ultrasonic transducer techniques for ultrasonic surgical instrument |
US11925378B2 (en) | 2016-08-25 | 2024-03-12 | Cilag Gmbh International | Ultrasonic transducer for surgical instrument |
US10952759B2 (en) | 2016-08-25 | 2021-03-23 | Ethicon Llc | Tissue loading of a surgical instrument |
USD1049376S1 (en) | 2021-06-24 | 2024-10-29 | Cilag Gmbh International | Surgical instrument |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200323551A1 (en) | Actuation mechanism for use with an ultrasonic surgical instrument | |
US9023072B2 (en) | Mechanism for assembly of ultrasonic instrument | |
CA2974930C (en) | Ultrasonic surgical instrument |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
AS | Assignment |
Owner name: ETHICON LLC, PUERTO RICO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FALLER, CRAIG N.;HOUSER, KEVIN L.;NEUROHR, MARK A.;SIGNING DATES FROM 20200109 TO 20200113;REEL/FRAME:052367/0139 |
|
AS | Assignment |
Owner name: CILAG GMBH INTERNATIONAL, SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ETHICON LLC;REEL/FRAME:056601/0339 Effective date: 20210405 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |