JP3386517B2 - Ultrasonic treatment equipment - Google Patents

Ultrasonic treatment equipment

Info

Publication number
JP3386517B2
JP3386517B2 JP17218593A JP17218593A JP3386517B2 JP 3386517 B2 JP3386517 B2 JP 3386517B2 JP 17218593 A JP17218593 A JP 17218593A JP 17218593 A JP17218593 A JP 17218593A JP 3386517 B2 JP3386517 B2 JP 3386517B2
Authority
JP
Japan
Prior art keywords
pipe
vibration
transmitting member
ultrasonic
cured film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17218593A
Other languages
Japanese (ja)
Other versions
JPH0670938A (en
Inventor
文二 秋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP17218593A priority Critical patent/JP3386517B2/en
Publication of JPH0670938A publication Critical patent/JPH0670938A/en
Application granted granted Critical
Publication of JP3386517B2 publication Critical patent/JP3386517B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、超音波振動で生体組織
や結石破壊等の処置を行う超音波処置装置に関する。 【0002】 【従来の技術】最近、超音波処置装置を用いて、前立腺
の切除術や結石の破壊等の処置が行なわれている。かか
る超音波処置装置は、振動子とホーンを連結するととも
に、そのホーンの先端に振動伝達部材を連結して構成さ
れており、振動子から発生する超音波振動をホーンで増
幅(集中)して振動伝達部材に伝達し、振動伝達部材の
先端を生体内の患部組織に押し当てることにより、該先
端で組織を破壊切断したり、乳化させたりしている。と
ころで、図8に示すように、振動伝達部材としてパイプ
aを用いた超音波処置装置においては、従来より、図8
(A)に示すようにパイプaに対しパイプ先端tにおい
て振幅の腹となるように超音波振動bを伝えることが行
なわれている。すなわち、パイプ先端tに最大振幅を生
じさせて上記各種の処置を行なうようにしている。そし
て、図8(B)に示すように、この時の応力分はrのよ
うである。しかるに、このような超音波処置装置の振動
伝達部材は、通常、細径の金属パイプが長時間かつ長期
間使用されるため、金属疲労や振動摩擦による発熱等に
より振動伝達部材の機械的強度が低下し、使用中に折損
することがある。このようにパイプが使用中に折損する
と、例えば腎臓内の結石を破砕する超音波処置装置で
は、振動伝達部材の折損片が腎臓内に残留して回収不能
となる可能性があり、極めて危険であった。そこで、こ
のような事故を防ぐために、特開昭63−122447
号公報で開示されるように、パイプの振動子側の付け根
に機械的強度の弱い部分を設けて、パイプを振動させた
場合、最初に弱い部分から折れるような構造とし、使用
中にパイプが切損した場合に容易に回収できるようにし
ている。 【0003】 【発明が解決しようとする課題】しかし、特開昭63−
122447号公報の超音波処置装置によれば、それ以
前の超音波処置装置が有していた、折損した破片が体内
に残る危険性は減少するが、パイプ自体は超音波振動に
対し強度向上がなされておらず、逆に強度の弱い部分を
設けたため、加えることができる振幅は小さくなる。よ
って、結石等を破砕する能力が劣るばかりでなく、大振
幅を必要とする組織の乳化処置が難しくなる。また、意
図的にパイプに折れ易い部分を設けるために、超音波処
置装置の寿命が短くなりコスト的な問題が生じる。本発
明は、上記従来技術の問題点に鑑みなされたもので、振
動伝達部材先端の振幅を大きく振動させることができる
とともに、折損(疲労破壊)しにくく、かつ仮に破損し
た場合にあっても破損片を体内に残すことがない超音波
処置装置を提供することを目的とする。 【0004】 【課題を解決するための手段】上記目的を達成するため
に本発明の超音波処置装置は、超音波振動を発生可能な
超音波振動子と、前記超音波振動子に連結し、前記超音
波振動子で発生された前記超音波振動を生体組織に伝達
可能な管状に形成された振動伝達部材と、前記振動伝達
部材の外表面にポリマー剤を塗布して硬化形成させた、
前記振動伝達部材の伸縮性より高い伸縮性の第1の硬化
膜層と、前記振動伝達部材の内表面にポリマー剤を塗布
して硬化形成させた、前記振動伝達部材の伸縮性より高
い伸縮性の第2の硬化膜層と、を具備したことを特徴と
する。 【0005】 【作用】超音波振動により共振している振動伝達部材で
は、部分的に振動伝達部材の伸び縮みに対応して、応力
が長さ方向に発生するが、かかる応力は節で最大とな
り、腹で最小となる。この時の振動パターンは、振動伝
達部材の先端が腹(最大振幅)となるようにすることに
より、先端部で効率的に組織の乳化等の処置が可能とな
る。また、ホーンと振動伝達部材の境界部(接続部)が
腹となる振動パターンとすることにより、この部分に生
じる応力は最小となり、接続部でホーンや振動伝達部材
が折れることはなくなる。このとき振動伝達部材の節部
にかかる(引張り)応力により、振動伝達部材の表面に
おいて、亀裂が発生し、さらにそれが進行して振動伝達
部材の折損につながるのであるが、振動伝達部材表面は
一般に無欠陥ではなくクラックや傷といった欠陥が存在
し、ここに応力が集中するとともに、この表面に存在す
る欠陥が、亀裂の進行を促進(ノッチ効果)している。 【0006】本発明においては、振動伝達部材の外表面
と内表面をポリマー剤を塗布して硬化形成させた第1お
よび第2の硬化膜層で覆うため、振動伝達部材の内外表
面に存在するクラック等の欠陥はポリマー剤により埋め
られるので、応力集中を起こさずノッチ効果を生じるこ
とが押さえられえる。よって、本発明のように、内外表
面をポリマー剤の第1および第2の硬化膜層で覆った振
動伝達部材においては、覆っていないものに比べ金属疲
労の進行を抑圧でき、寿命が長くなる。また本発明にお
いては、内外表面を振動伝達部材よりも延性に富んだ第
1および第2の硬化膜層で覆っているので、振動伝達部
材が伝達する超音波を抑圧することがなく、超音波処置
に必要な最適条件による振幅を設定することができると
ともに、仮に振動伝達部材が破断した場合でも、第1お
よび第2の硬化膜層が延びて、その破断した先端側の破
損片を把持するように覆われているため、体内に残留す
ることはない。 【0007】 【実施例1】図1は、本発明に係る超音波処置装置の実
施例1における振動伝達部材であるパイプを示す断面
図、図2は、超音波処置装置を示す正面図、図3は、パ
イプに生じる振幅及び応力状態を示す説明図である。図
2において、1はランジュバン型の振動子(圧電素子、
電極、ブロックを接続してなる)、2は振動子1に連結
したコニカル型のホーン、3はホーン2の先端に連結し
た振動伝達部材としてのパイプである。これらの振動子
1,ホーン2,パイプ3は、それぞれ各部品の接続部に
ねじ部が設けられ、このねじ部により螺合接続されてい
る。 【0008】パイプ3は、その長さがn/2・λ(nは
自然数、λは波長)となるように設定されるとともに、
振動子1から発する超音波振動bの腹が、図3(A)に
示すようにホーン2とパイプ3の境界部に位置するよう
に定められており、パイプ3の先端tが腹となるように
超音波振動bをパイプ3へ伝達させることができるよう
にしている。 【0009】そして、パイプ3の外表面3aと内表面3
bには、図1に示すように、第1の硬化膜層4aと第2
の硬化膜層4bから成る保護膜4が設けられている。こ
の保護膜4の第1および第2の硬化膜層4a,4bは、
パイプ3に熱処理(500℃、6時間の時効)を施した
後、ディッピングにより2液混合型エポキシ系接着剤
((株)アルファ技研、商品名アルテコF−05)を外
表面3aと内表面3bに塗布し、80℃の温度で2時間
加熱硬化して形成した。 【0010】ここに、パイプ3の内外表面3a,3bを
微視的に観ると、図4に示すように欠陥5があるが、保
護膜4の第1および第2の硬化膜層4a,4bは、この
欠陥5を埋めるのが目的であるため、パイプ3の全面を
覆っていればかならずしも均一な厚さにする必要がない
が、エポキシ系接着剤は接着力が強いので余り厚いと、
保護膜4の第1および第2の硬化膜層4a,4bにより
Ti合金からなるパイプ3の共振による伸び縮みを抑え
てしまう虞れがあるため、保護膜4の第1および第2の
硬化膜層4a,4bの厚さは10μm以下が好ましいと
ともにパイプ3の伸縮性より高い硬化膜層により形成す
る。 【0011】なお、図5は、パイプ3が共振により伸び
縮みする際にパイプ3の内外表面3a,3bに存在する
欠陥5による応力集中効果(ノッチ効果)の影響で、パ
イプ3に亀裂6が生じている状態を示している。 【0012】本実施例の超音波処置装置にあっては、振
動子1に駆動電圧を印加すると、振動子1からの超音波
振動bがホーン2を通じてパイプ3へ伝達され、また、
パイプ3には図3(B)に示すような応力部分rが生ず
る。このとき、一般に、パイプは共振による伸び縮みを
繰り返し、パイプ3の内外表面3a,3bに存在する欠
陥部でノッチ効果を起こすが、本実施例におけるパイプ
3は、内外表面3a,3bに保護膜4の第1および第2
の硬化膜層4a,4bを設け欠陥5を埋めてあるため応
力集中を起こすことなく、パイプ3を振動させることが
できる。 【0013】本実施例によれば、パイプ3の内外表面3
a,3bに保護膜4の第1および第2の硬化膜層4a,
4bを形成したので、保護膜4を設けていない従来のも
のに比べ、振幅を大きくしても欠陥5における応力集中
がなくなり、共振時に折れることがなくなった。このた
め、パイプ3の先端tの振幅を従来よりも大きくするこ
とができ、結石等の破壊効率を高めることができた。さ
らに、パイプ3の内外表面3a,3bを保護膜4の第1
および第2の硬化膜層4a,4bで覆ってあるため、仮
にパイプ3が折れた場合でも、折れたパイプ3及びパイ
プ3の破片は体内に残ることなく安全である。 【0014】実際に、本実施例の超音波処置装置と従来
技術の装置を比較すると、パイプ先端tを振幅300μ
mで振動させた場合、保護膜のない従来のパイプでは1
0本中9本が折れ、そのうち7本は折れた部分から先端
側が取れたが、本実施例のパイプ3では、10本中1本
が細径パイプの接続部分で折れたが、保護膜4により、
折れた先端部が脱落することはなかった。 【0015】 【実施例2】本発明の実施例2を図1を用いて以下に説
明する。本実施例は、東燃(株)製ポリシラザンPHP
S−2を用い、無機ポリマーよりなる保護膜4の第1お
よび第2の硬化膜層4a,4bをパイプ3の内外表面3
a,3bに設けた。また、パイプ3は、β型Ti合金で
あるTi−15V−3Al−3Sn−3Crを用いた。
保護膜4の第1および第2の硬化膜層4a,4bの形成
にあたり、ポリシラザンをディッピングによりパイプ3
の内外表面3a,3bに塗布し、100℃の温度で10
分乾燥させた後、400℃、30分の焼成を行い、パイ
プ3の内外表面3a,3bにこのパイプ3より伸縮性の
高い第1および第2の硬化膜層4a,4bを形成するこ
とによりを覆った。その他の構成は実施例1と同様であ
る。 【0016】本実施例によれば、上記実施例1と同様な
作用、効果を得ることができる。また、実際に、保護膜
4の第1および第2の硬化膜層4a,4bを設けたパイ
プ3を使用した本実施例の超音波処置装置を、保護膜4
を設けない従来の同一径パイプと同等の先端振幅300
μmで振動させた場合、従来の同一径パイプでは10本
中8本が折れ、そのうち5本は折れた部分から先端側が
取れたが、本実施例におけるパイプ3では、10本中2
本が細径パイプの接続部分で折れたが、内外表面3a,
3bに設けた保護膜4の第1および第2の硬化膜層4
a,4bにより、折れた先端部が取れることはなかっ
た。 【0017】 【実施例3】図6は、本発明の実施例3におけるパイプ
の断面図、図7は、パイプに生ずる振幅と応力を示す線
図である。図6に示すように、パイプ10は、細径部1
0aと太径部10bとから構成され、細径部10aは、
パイプ10の先端から長さλ/4だけ形成されている。
細径部10aと太径部10bの接続部分は、細径部10
aの外径をφ,太径部10bの外径をφとした場
合、(φ+φ)/2の曲率半径を有する曲面に形成
されている。その他の構成は上記実施例1と同様であ
る。 【0018】本実施例によれば、パイプ10の細径部1
0aの断面積をS(=22mm)、太径部10bの
断面積をS(=125mm)としたとき、太径部1
0bから細径部に伝えられる超音波振動は、細径部10
において、その振動が約S/S倍に増幅されるた
め、図7(A)に示すように、パイプ10の先端(細径
部10aの先端)の振幅を大きくすることができる。ま
た、このときパイプ10にかかる応力は、図7(B)に
示すように、細径部10aと太径部10bとの接続部分
における細径部10aのパイプ10側で最大となる。こ
のため、パイプ10に超音波振動を生じさせ場合、応力
が最大となる部分のみで折れる可能性を有するが、パイ
プ10の内外表面10c,10dの全表面に保護膜4の
第1および第2の硬化膜層4a,4bを設けてあるた
め、パイプ10の内外表面10c,10dの全表面に存
在する欠陥は埋められ、上記実施例と同様にパイプ10
が折れることなく振動させることができる。 【0019】したがって、パイプ10に加える振幅に対
して、パイプ10(細径部10a)の先端に生ずる振幅
を印加振幅より大きくすることができるので、同一径の
パイプを使用した場合に比べ、より効果的に結石破壊等
の治療を行なうことが可能になった。 【0020】実際に、パイプ10に振幅60μmの超音
波振動を加えたところ、パイプ10の先端部では、約S
/S(=125/22)倍に相当する最大振幅30
0μmで振動させることができた。そして、パイプ10
の先端を上記のように振幅300μmで10本振動させ
た時、折れたパイプはなかったが、従来の保護膜を設け
ない同一径のパイプでは、10本中9本が折れ、そのう
ち7本は折れた部分から先端側が取れた。 【0021】なお、上記各実施例において、パイプ材料
として、Ti−15V−3Al−3Sn−3Crを用い
た場合を示したが、例えば、表1に示すような耐力が高
い材料であれば上記実施例で挙げた材料に限定されるこ
とはない。 【0022】 【表1】 【0023】しかし、耐力が高くても、振幅を大きくか
せぐためには、なるべくヤング率の低い材料を用いるこ
とが望ましく、表1のα+β型チタン合金、β型チタン
合金が最適である。中でも、Ti−15V−3Al−3
Sn−3Crは、長尺でかつ安定した品質でパイプ加工
ができるため、現在のところ最も優れた材料であり、本
実施例においても採用している。 【0024】また、ポリマー剤を塗布して硬化形成して
なる保護層4の第1および第2の硬化膜層4a,4bの
材質もパイプ3の内外表面3a,3b,10c,10d
に確実に付着し、かつパイプ3,10の伸縮性より高い
伸縮性のものであれば、その材質には限定されず、エポ
キシ系接着剤のような有機物あるいはポリシラザンのよ
うな無機物が用いられ、ディッピング、吹き付け、刷毛
塗り等により保護層4の第1および第2の硬化膜層4
a,4bを設けることができる。さらに、保護層4とし
ての第1および第2の硬化膜層4a,4bの厚さは、振
動伝達部材の共振による伸び縮みを抑えない厚さ、経験
的に10μm以下程度が好ましい。 【0025】 【発明の効果】以上のように、本発明によれば、振動伝
達部材の内外表面を第1および第2の硬化膜層から成る
保護膜で覆うので、振動伝達部材の内外表面に存在する
欠陥部に保護膜が入り込み、欠陥部での応力集中を抑
制、阻止することができる結果、保護膜、特に内外表面
の第1および第2の硬化膜を設けていない従来のものに
比べ、振動伝達部材に存在する欠陥の応力集中を懸念す
ることなく、振幅を大きくすることができるとともに、
適切な振幅を選択しつつ処置することが可能となり、よ
り効果的に結石破壊等の治療を行えることができるもの
で、超音波処置装置本来の機能をより向上することがで
きる。 【0026】また、振動伝達部材に亀裂が生じた場合で
も、振動伝達部材の内外表面をポリマー剤を塗布して硬
化形成した第1および第2の硬化膜層から成る保護膜で
覆うので、振動伝達部材の折れた部分が脱落したり、破
片を発生することがなく、折れた振動伝達部材および振
動伝達部材の破片が体内に残存するのを確実に防止する
ことができるので、信頼性の高い超音波処置装置を提供
することができる。 【0027】さらに、振動伝達部材の内外表面を覆う第
1および第2の硬化膜層は、振動伝達部材の伸縮性より
高い伸縮性のある硬化膜層により形成するもので、振動
伝達部材の本来の機能を阻害することなく、しかも前記
欠陥の応力集中を抑制、阻止する作用効果を達成し、同
時に振動伝達部材自体の疲労強度を向上させることがで
き、寿命の長い超音波処置装置を提供することができ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic treatment apparatus for treating a living tissue or a calculus by ultrasonic vibration. [0002] Recently, treatments such as resection of the prostate and destruction of calculi have been performed using an ultrasonic treatment apparatus. Such an ultrasonic treatment apparatus is configured such that a vibrator and a horn are connected and a vibration transmitting member is connected to a tip of the horn, and the ultrasonic vibration generated from the vibrator is amplified (concentrated) by the horn. The vibration is transmitted to the vibration transmitting member, and the distal end of the vibration transmitting member is pressed against the diseased tissue in the living body, whereby the tissue is destructively cut or emulsified at the distal end. By the way, as shown in FIG. 8, in an ultrasonic treatment apparatus using a pipe a as a vibration transmitting member, conventionally, FIG.
As shown in (A), ultrasonic vibration b is transmitted to a pipe a so as to have an antinode of amplitude at a pipe tip t. That is, the above-described various treatments are performed by generating the maximum amplitude at the pipe tip t. Then, as shown in FIG. 8B, the stress component at this time is like r. However, as the vibration transmitting member of such an ultrasonic treatment apparatus, since a small-diameter metal pipe is usually used for a long time and for a long period of time, the mechanical strength of the vibration transmitting member due to heat generation due to metal fatigue and vibration friction is increased. May drop and break during use. If the pipe breaks during use in this way, for example, in an ultrasonic treatment apparatus that breaks stones in the kidney, broken pieces of the vibration transmission member may remain in the kidney and cannot be collected, which is extremely dangerous. there were. In order to prevent such an accident, Japanese Patent Application Laid-Open No.
As disclosed in the publication, a portion having a low mechanical strength is provided at the base of the vibrator side of the pipe, and when the pipe is vibrated, the structure is first broken from the weak portion, and the pipe is used during use. In the event of breakage, it can be easily recovered. [0003] However, Japanese Patent Application Laid-Open
According to the ultrasonic treatment apparatus disclosed in JP-A-122247, the risk of broken fragments remaining in the body, which the previous ultrasonic treatment apparatus has, is reduced, but the pipe itself has improved strength against ultrasonic vibration. However, since a weak portion is provided, the amplitude that can be added becomes small. Therefore, not only is the ability to crush stones or the like inferior, but also it becomes difficult to emulsify a tissue requiring a large amplitude. In addition, since the pipe is intentionally provided with a portion that is easily broken, the life of the ultrasonic treatment apparatus is shortened, which causes a problem in cost. The present invention has been made in view of the above-described problems of the related art, and can vibrate the amplitude of the tip of the vibration transmitting member to a large extent, hardly break (fatigue fracture), and break even if it is broken. It is an object of the present invention to provide an ultrasonic treatment apparatus that does not leave pieces in the body. [0004] In order to achieve the above object, an ultrasonic treatment apparatus according to the present invention comprises an ultrasonic vibrator capable of generating ultrasonic vibration, and an ultrasonic vibrator connected to the ultrasonic vibrator. A vibration transmitting member formed in a tubular shape capable of transmitting the ultrasonic vibration generated by the ultrasonic vibrator to a living tissue, and a polymer agent is applied to an outer surface of the vibration transmitting member and cured to form.
A first cured film layer having an elasticity higher than that of the vibration transmitting member, and a polymer agent applied to an inner surface of the vibration transmitting member and formed by curing, the elasticity being higher than the elasticity of the vibration transmitting member. And a second cured film layer. In the vibration transmitting member resonating due to the ultrasonic vibration, stress is generated in the length direction in accordance with the expansion and contraction of the vibration transmitting member, but the stress becomes maximum at the node. , Minimum on belly. The vibration pattern at this time is such that the distal end of the vibration transmitting member has an antinode (maximum amplitude), so that treatment such as tissue emulsification can be efficiently performed at the distal end. Further, by forming a vibration pattern in which the boundary (connection portion) between the horn and the vibration transmission member becomes an antinode, the stress generated in this portion is minimized, and the horn and the vibration transmission member do not break at the connection portion. At this time, cracks are generated on the surface of the vibration transmitting member due to (tensile) stress applied to the nodes of the vibration transmitting member, and the cracks further progress, leading to breakage of the vibration transmitting member. In general, defects such as cracks and scratches are present instead of no defects, and stress concentrates on the defects, and the defects existing on the surface accelerate the progress of cracks (notch effect). In the present invention, since the outer and inner surfaces of the vibration transmitting member are covered with the first and second cured film layers formed by applying a polymer agent and being cured, the outer and inner surfaces are present on the inner and outer surfaces of the vibration transmitting member. Since defects such as cracks are filled with the polymer agent, it is possible to suppress occurrence of a notch effect without causing stress concentration. Therefore, in the vibration transmitting member in which the inner and outer surfaces are covered with the first and second cured film layers of the polymer agent as in the present invention, the progress of metal fatigue can be suppressed as compared with the uncovered member, and the life is prolonged. . Further, in the present invention, since the inner and outer surfaces are covered with the first and second cured film layers which are more ductile than the vibration transmitting member, the ultrasonic waves transmitted by the vibration transmitting member are not suppressed, and The amplitude can be set according to the optimum conditions required for the treatment, and even if the vibration transmitting member is broken, the first and second cured film layers extend to grip the broken piece on the broken tip side. So it does not remain in the body. FIG. 1 is a sectional view showing a pipe which is a vibration transmitting member in an ultrasonic treatment apparatus according to a first embodiment of the present invention. FIG. 2 is a front view showing the ultrasonic treatment apparatus. FIG. 3 is an explanatory diagram showing an amplitude and a stress state generated in the pipe. In FIG. 2, reference numeral 1 denotes a Langevin type vibrator (piezoelectric element,
2 is a conical horn connected to the vibrator 1, and 3 is a pipe as a vibration transmitting member connected to the tip of the horn 2. The vibrator 1, the horn 2, and the pipe 3 are each provided with a screw portion at a connection portion of each component, and are screwed together by the screw portion. The length of the pipe 3 is set to be n / 2 · λ (n is a natural number and λ is a wavelength).
The antinode of the ultrasonic vibration b emitted from the vibrator 1 is determined so as to be located at the boundary between the horn 2 and the pipe 3 as shown in FIG. 3A, and the tip t of the pipe 3 becomes the antinode. The ultrasonic vibration “b” can be transmitted to the pipe 3. The outer surface 3a and the inner surface 3 of the pipe 3
b, as shown in FIG. 1, a first cured film layer 4a and a second cured film layer 4a.
The protective film 4 made of the cured film layer 4b is provided. The first and second cured film layers 4a and 4b of the protective film 4
After heat-treating the pipe 3 (aging at 500 ° C. for 6 hours), the two-part mixed epoxy adhesive (Alpha Giken Co., Ltd., trade name: Arteco F-05) is dipped into an outer surface 3a and an inner surface 3b. And cured by heating at a temperature of 80 ° C. for 2 hours. Here, when the inner and outer surfaces 3a and 3b of the pipe 3 are microscopically observed, there are defects 5 as shown in FIG. 4, but the first and second cured film layers 4a and 4b of the protective film 4 are present. The purpose of this is to fill the defect 5, so that it is not always necessary to cover the entire surface of the pipe 3 with a uniform thickness. However, since the epoxy adhesive has a strong adhesive force, if it is too thick,
Since the first and second cured film layers 4a and 4b of the protective film 4 may suppress expansion and contraction of the pipe 3 made of Ti alloy due to resonance, the first and second cured films of the protective film 4 may be suppressed. The thickness of the layers 4a and 4b is preferably 10 μm or less and is formed of a cured film layer having higher elasticity than the pipe 3. FIG. 5 shows that when the pipe 3 expands and contracts due to resonance, cracks 6 are formed in the pipe 3 due to the stress concentration effect (notch effect) due to the defects 5 present on the inner and outer surfaces 3a and 3b of the pipe 3. This shows the situation that has occurred. In the ultrasonic treatment apparatus of this embodiment, when a driving voltage is applied to the vibrator 1, the ultrasonic vibration b from the vibrator 1 is transmitted to the pipe 3 through the horn 2, and
The pipe 3 has a stress portion r as shown in FIG. At this time, in general, the pipe repeatedly expands and contracts due to resonance, and causes a notch effect at a defective portion existing on the inner and outer surfaces 3a and 3b of the pipe 3. However, the pipe 3 in this embodiment has a protective film on the inner and outer surfaces 3a and 3b. Fourth first and second
Since the cured film layers 4a and 4b are provided to fill the defects 5, the pipe 3 can be vibrated without causing stress concentration. According to this embodiment, the inner and outer surfaces 3 of the pipe 3
a, 3b, the first and second cured film layers 4a,
Since the 4b was formed, stress concentration at the defect 5 was eliminated even when the amplitude was increased, and breakage at the time of resonance was eliminated, as compared with the conventional device without the protective film 4. For this reason, the amplitude of the tip t of the pipe 3 can be made larger than before, and the destruction efficiency of stones and the like can be increased. Further, the inner and outer surfaces 3a and 3b of the pipe 3
And since it is covered with the second cured film layers 4a and 4b, even if the pipe 3 is broken, the broken pipe 3 and fragments of the pipe 3 do not remain in the body and are safe. Actually, when comparing the ultrasonic treatment apparatus of the present embodiment with the prior art apparatus, the pipe tip t has an amplitude of 300 μm.
m, the conventional pipe without the protective film has
Nine of the 0 pieces broke, and 7 of them broke at the leading end from the broken portion. In the pipe 3 of the present embodiment, one of the 10 pieces broke at the connecting portion of the small-diameter pipe. By
The broken tip did not fall off. Embodiment 2 Embodiment 2 of the present invention will be described below with reference to FIG. In this embodiment, a polysilazane PHP manufactured by Tonen Corp. is used.
Using S-2, the first and second cured film layers 4a and 4b of the protective film 4 made of an inorganic polymer are applied to the inner and outer surfaces 3 of the pipe 3.
a, 3b. Further, for the pipe 3, Ti-15V-3Al-3Sn-3Cr which is a β-type Ti alloy was used.
In forming the first and second cured film layers 4a and 4b of the protective film 4, the pipe 3 is formed by dipping polysilazane.
And applied to the inner and outer surfaces 3a and 3b of
After drying for a minute, baking is performed at 400 ° C. for 30 minutes to form first and second cured film layers 4 a and 4 b having higher elasticity than the pipe 3 on the inner and outer surfaces 3 a and 3 b of the pipe 3. Covered. Other configurations are the same as in the first embodiment. According to this embodiment, the same operation and effect as those of the first embodiment can be obtained. In addition, actually, the ultrasonic treatment apparatus of this embodiment using the pipe 3 provided with the first and second cured film layers 4a and 4b of the protective film 4 is replaced with the protective film 4
Tip amplitude 300 equivalent to conventional same-diameter pipes without
When vibrated at μm, eight out of ten conventional pipes of the same diameter broke, and five of them broke the leading end from the broken part. In the pipe 3 in this embodiment, two out of ten pipes were broken.
The book broke at the connection of the small diameter pipe, but the inner and outer surfaces 3a,
First and second cured film layers 4 of protective film 4 provided on 3b
Due to a and 4b, the broken tip did not come off. FIG. 6 is a sectional view of a pipe according to a third embodiment of the present invention, and FIG. 7 is a diagram showing amplitude and stress generated in the pipe. As shown in FIG. 6, the pipe 10 is
0a and a large diameter portion 10b, and the small diameter portion 10a
A length of λ / 4 is formed from the tip of the pipe 10.
The connection between the small diameter portion 10a and the large diameter portion 10b is
When the outer diameter of a is φ 1 and the outer diameter of the large diameter portion 10b is φ 2 , it is formed on a curved surface having a radius of curvature of (φ 1 + φ 2 ) / 2. Other configurations are the same as those in the first embodiment. According to this embodiment, the small diameter portion 1 of the pipe 10
0a is S 1 (= 22 mm 2 ), and the cross-sectional area of the large-diameter portion 10b is S 2 (= 125 mm 2 ).
0b is transmitted to the small-diameter portion by the ultrasonic vibration.
In, since the vibration is amplified to approximately S 2 / S 1 times, as shown in FIG. 7 (A), it is possible to increase the amplitude of the tip of the pipe 10 (the tip of the small-diameter portion 10a). Further, at this time, the stress applied to the pipe 10 becomes maximum on the pipe 10 side of the small diameter portion 10a in the connection portion between the small diameter portion 10a and the large diameter portion 10b, as shown in FIG. For this reason, when ultrasonic vibration is generated in the pipe 10, there is a possibility that the pipe 10 is broken only at the portion where the stress is maximum, but the first and second protection films 4 are formed on the entire inner and outer surfaces 10 c and 10 d of the pipe 10. Since the cured film layers 4a and 4b are provided, defects existing on the entire inner and outer surfaces 10c and 10d of the pipe 10 are filled, and the pipe 10
Can be vibrated without breaking. Therefore, the amplitude generated at the tip of the pipe 10 (small diameter portion 10a) can be made larger than the applied amplitude with respect to the amplitude applied to the pipe 10, so that the amplitude is larger than when the pipes having the same diameter are used. It has become possible to effectively treat stone destruction and the like. When an ultrasonic vibration having an amplitude of 60 μm was actually applied to the pipe 10, about S
The maximum amplitude 30 corresponding to 2 / S 1 (= 125/22) times
It was possible to vibrate at 0 μm. And the pipe 10
When 10 tips were vibrated at an amplitude of 300 μm as described above, there were no broken pipes. However, in the case of conventional pipes having the same diameter without a protective film, 9 out of 10 pipes were broken, and 7 of them were broken. The tip side was removed from the broken part. In each of the above embodiments, the case where Ti-15V-3Al-3Sn-3Cr is used as the pipe material is shown. It is not limited to the materials given in the examples. [Table 1] However, in order to increase the amplitude even if the proof stress is high, it is desirable to use a material having as low a Young's modulus as possible, and the α + β type titanium alloy and β type titanium alloy shown in Table 1 are most suitable. Among them, Ti-15V-3Al-3
Sn-3Cr is the most excellent material at present because it can be processed into a long and stable quality pipe, and is also used in this embodiment. The material of the first and second cured film layers 4a and 4b of the protective layer 4 formed by applying and curing the polymer agent is also the inner and outer surfaces 3a, 3b, 10c and 10d of the pipe 3.
The material is not particularly limited as long as it has a higher elasticity than the elasticity of the pipes 3 and 10, and an organic material such as an epoxy adhesive or an inorganic material such as polysilazane is used. First and second cured film layers 4 of protective layer 4 by dipping, spraying, brushing, etc.
a, 4b can be provided. Further, the thickness of the first and second cured film layers 4a and 4b as the protective layer 4 is preferably a thickness which does not suppress expansion and contraction due to resonance of the vibration transmitting member, and is empirically about 10 μm or less. As described above, according to the present invention, since the inner and outer surfaces of the vibration transmitting member are covered with the protective films composed of the first and second cured film layers, the inner and outer surfaces of the vibration transmitting member are covered. As a result, the protective film enters the existing defective portion, and the concentration of stress at the defective portion can be suppressed or prevented. As a result, the protective film, especially the first and second cured films on the inner and outer surfaces, is not provided. The amplitude can be increased without fear of stress concentration of a defect existing in the vibration transmitting member,
It is possible to perform treatment while selecting an appropriate amplitude, and it is possible to more effectively perform treatment such as calculus destruction, so that the original function of the ultrasonic treatment apparatus can be further improved. Even if a crack is generated in the vibration transmitting member, since the inner and outer surfaces of the vibration transmitting member are covered with the protective film composed of the first and second cured film layers formed by applying a polymer agent and curing. Since the broken portion of the transmission member does not fall off or generate fragments, it is possible to reliably prevent the broken vibration transmission member and the fragments of the vibration transmission member from remaining in the body. An ultrasonic treatment device can be provided. Further, the first and second cured film layers covering the inner and outer surfaces of the vibration transmitting member are formed of an elastic cured film layer having a higher elasticity than the elasticity of the vibration transmitting member. The present invention provides an ultrasonic treatment apparatus having a long service life, capable of achieving the effect of suppressing and preventing the stress concentration of the defect without impairing the function of the vibration transmission member, and at the same time, improving the fatigue strength of the vibration transmission member itself. be able to.

【図面の簡単な説明】 【図1】本発明の実施例1における超音波処置装置のパ
イプを示す断面図である。 【図2】本発明の実施例1の超音波処置装置を示す正面
図である。 【図3】本発明の実施例1における超音波処置装置のパ
イプに生じる振幅と応力を示す線図である。 【図4】図1におけるC部の拡大断面図である。 【図5】パイプに生じる亀裂の状態を示すパイプの断面
図である。 【図6】本発明の実施例3における超音波処置装置のパ
イプを示す断面図である。 【図7】本発明の実施例3におけるパイプに生じる振幅
と応力を示す線図である。 【図8】従来技術を説明するための説明図である。 【符号の説明】 1 振動子 2 ホーン 3 10 パイプ 4 保護膜
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing a pipe of an ultrasonic treatment apparatus according to Embodiment 1 of the present invention. FIG. 2 is a front view showing the ultrasonic treatment apparatus according to the first embodiment of the present invention. FIG. 3 is a diagram illustrating amplitude and stress generated in a pipe of the ultrasonic treatment apparatus according to the first embodiment of the present invention. FIG. 4 is an enlarged sectional view of a portion C in FIG. FIG. 5 is a cross-sectional view of the pipe showing a state of a crack generated in the pipe. FIG. 6 is a sectional view showing a pipe of the ultrasonic treatment apparatus according to the third embodiment of the present invention. FIG. 7 is a diagram illustrating amplitude and stress generated in a pipe according to a third embodiment of the present invention. FIG. 8 is an explanatory diagram for explaining a conventional technique. [Description of Signs] 1 vibrator 2 horn 3 10 pipe 4 protective film

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) A61B 18/00 A61B 17/22 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) A61B 18/00 A61B 17/22

Claims (1)

(57)【特許請求の範囲】 【請求項1】 超音波振動を発生可能な超音波振動子
と、 前記超音波振動子に連結し、前記超音波振動子で発生さ
れた前記超音波振動を生体組織に伝達可能な管状に形成
された振動伝達部材と、 前記振動伝達部材の外表面にポリマー剤を塗布して硬化
形成させた、前記振動伝達部材の伸縮性より高い伸縮性
の第1の硬化膜層と、 前記振動伝達部材の内表面にポリマー剤を塗布して硬化
形成させた、前記振動伝達部材の伸縮性より高い伸縮性
の第2の硬化膜層と、 を具備したことを特徴とする超音波処置装置。
(57) [Claim 1] An ultrasonic vibrator capable of generating ultrasonic vibration, and connected to the ultrasonic vibrator, wherein the ultrasonic vibration generated by the ultrasonic vibrator is generated. A vibration transmitting member formed in a tubular shape that can be transmitted to a biological tissue; and a first elastic member having a higher elasticity than the elastic member of the vibration transmitting member, which is formed by applying a polymer agent to an outer surface of the vibration transmitting member and curing the same. A cured film layer, and a second cured film layer having a higher elasticity than the elasticity of the vibration transmission member, which is formed by applying a polymer agent to the inner surface of the vibration transmission member and curing the same. Ultrasonic treatment device.
JP17218593A 1992-06-26 1993-06-18 Ultrasonic treatment equipment Expired - Fee Related JP3386517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17218593A JP3386517B2 (en) 1992-06-26 1993-06-18 Ultrasonic treatment equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP19342392 1992-06-26
JP4-193423 1992-06-26
JP17218593A JP3386517B2 (en) 1992-06-26 1993-06-18 Ultrasonic treatment equipment

Publications (2)

Publication Number Publication Date
JPH0670938A JPH0670938A (en) 1994-03-15
JP3386517B2 true JP3386517B2 (en) 2003-03-17

Family

ID=26494633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17218593A Expired - Fee Related JP3386517B2 (en) 1992-06-26 1993-06-18 Ultrasonic treatment equipment

Country Status (1)

Country Link
JP (1) JP3386517B2 (en)

Families Citing this family (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11229472B2 (en) 2001-06-12 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with multiple magnetic position sensors
CN100450393C (en) * 2003-11-04 2009-01-14 华盛顿大学 Toothbrush employing an acoustic waveguide
US8182501B2 (en) 2004-02-27 2012-05-22 Ethicon Endo-Surgery, Inc. Ultrasonic surgical shears and method for sealing a blood vessel using same
FR2869792B1 (en) * 2004-05-05 2006-07-14 Satelec Soc ULTRASOUND DENTAL INSTRUMENT
PL1802245T3 (en) 2004-10-08 2017-01-31 Ethicon Endosurgery Llc Ultrasonic surgical instrument
US20070191713A1 (en) 2005-10-14 2007-08-16 Eichmann Stephen E Ultrasonic device for cutting and coagulating
US7621930B2 (en) 2006-01-20 2009-11-24 Ethicon Endo-Surgery, Inc. Ultrasound medical instrument having a medical ultrasonic blade
US8057498B2 (en) 2007-11-30 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US8142461B2 (en) 2007-03-22 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical instruments
US8911460B2 (en) 2007-03-22 2014-12-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8523889B2 (en) 2007-07-27 2013-09-03 Ethicon Endo-Surgery, Inc. Ultrasonic end effectors with increased active length
US8882791B2 (en) 2007-07-27 2014-11-11 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8808319B2 (en) 2007-07-27 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical instruments
US8430898B2 (en) 2007-07-31 2013-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8512365B2 (en) 2007-07-31 2013-08-20 Ethicon Endo-Surgery, Inc. Surgical instruments
US9044261B2 (en) 2007-07-31 2015-06-02 Ethicon Endo-Surgery, Inc. Temperature controlled ultrasonic surgical instruments
EP2217157A2 (en) 2007-10-05 2010-08-18 Ethicon Endo-Surgery, Inc. Ergonomic surgical instruments
US10010339B2 (en) 2007-11-30 2018-07-03 Ethicon Llc Ultrasonic surgical blades
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US8663220B2 (en) 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
USRE47996E1 (en) 2009-10-09 2020-05-19 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US9039695B2 (en) 2009-10-09 2015-05-26 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US9168054B2 (en) 2009-10-09 2015-10-27 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US8486096B2 (en) 2010-02-11 2013-07-16 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
US8951272B2 (en) 2010-02-11 2015-02-10 Ethicon Endo-Surgery, Inc. Seal arrangements for ultrasonically powered surgical instruments
US8961547B2 (en) 2010-02-11 2015-02-24 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with moving cutting implement
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
GB2480498A (en) 2010-05-21 2011-11-23 Ethicon Endo Surgery Inc Medical device comprising RF circuitry
US8795327B2 (en) 2010-07-22 2014-08-05 Ethicon Endo-Surgery, Inc. Electrosurgical instrument with separate closure and cutting members
US9192431B2 (en) 2010-07-23 2015-11-24 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US9259265B2 (en) 2011-07-22 2016-02-16 Ethicon Endo-Surgery, Llc Surgical instruments for tensioning tissue
JP6165780B2 (en) 2012-02-10 2017-07-19 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Robot-controlled surgical instrument
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US9724118B2 (en) 2012-04-09 2017-08-08 Ethicon Endo-Surgery, Llc Techniques for cutting and coagulating tissue for ultrasonic surgical instruments
US20140005705A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical instruments with articulating shafts
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US20140005702A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned transducers
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
CN104853688B (en) 2012-09-28 2017-11-28 伊西康内外科公司 Multifunctional bipolar tweezers
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US10201365B2 (en) 2012-10-22 2019-02-12 Ethicon Llc Surgeon feedback sensing and display methods
US20140135804A1 (en) 2012-11-15 2014-05-15 Ethicon Endo-Surgery, Inc. Ultrasonic and electrosurgical devices
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
US9241728B2 (en) 2013-03-15 2016-01-26 Ethicon Endo-Surgery, Inc. Surgical instrument with multiple clamping mechanisms
US9814514B2 (en) 2013-09-13 2017-11-14 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US9265926B2 (en) 2013-11-08 2016-02-23 Ethicon Endo-Surgery, Llc Electrosurgical devices
GB2521228A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
GB2521229A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
US9795436B2 (en) 2014-01-07 2017-10-24 Ethicon Llc Harvesting energy from a surgical generator
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US10092310B2 (en) 2014-03-27 2018-10-09 Ethicon Llc Electrosurgical devices
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US9913680B2 (en) 2014-04-15 2018-03-13 Ethicon Llc Software algorithms for electrosurgical instruments
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10245095B2 (en) 2015-02-06 2019-04-02 Ethicon Llc Electrosurgical instrument with rotation and articulation mechanisms
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10034684B2 (en) 2015-06-15 2018-07-31 Ethicon Llc Apparatus and method for dissecting and coagulating tissue
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US10765470B2 (en) 2015-06-30 2020-09-08 Ethicon Llc Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters
US10154852B2 (en) 2015-07-01 2018-12-18 Ethicon Llc Ultrasonic surgical blade with improved cutting and coagulation features
US11058475B2 (en) 2015-09-30 2021-07-13 Cilag Gmbh International Method and apparatus for selecting operations of a surgical instrument based on user intention
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US10709469B2 (en) 2016-01-15 2020-07-14 Ethicon Llc Modular battery powered handheld surgical instrument with energy conservation techniques
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US10285723B2 (en) 2016-08-09 2019-05-14 Ethicon Llc Ultrasonic surgical blade with improved heel portion
USD847990S1 (en) 2016-08-16 2019-05-07 Ethicon Llc Surgical instrument
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US10420580B2 (en) 2016-08-25 2019-09-24 Ethicon Llc Ultrasonic transducer for surgical instrument
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11744636B2 (en) 2019-12-30 2023-09-05 Cilag Gmbh International Electrosurgical systems with integrated and external power sources
US20210196361A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical instrument with monopolar and bipolar energy capabilities
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11786294B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Control program for modular combination energy device
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US20210196363A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical instrument with electrodes operable in bipolar and monopolar modes
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade

Also Published As

Publication number Publication date
JPH0670938A (en) 1994-03-15

Similar Documents

Publication Publication Date Title
JP3386517B2 (en) Ultrasonic treatment equipment
RU2738737C2 (en) Method and system for generating mechanical pulses
US6551337B1 (en) Ultrasonic medical device operating in a transverse mode
US8394115B2 (en) Composite end effector for an ultrasonic surgical instrument
DK170230B1 (en) Horn for use in an ultrasonic surgical surgical instrument
JP3285367B2 (en) Optical fiber probe and laser propagation device
JPS6266848A (en) Surgical operation appliance
US20050187513A1 (en) Apparatus and method for an ultrasonic medical device operating in torsional and transverse modes
JP2022550177A (en) ultrasonic probe
EP3512443B1 (en) Tip for an ultrasonic surgical tool with case hardened cutting edges and method of making same
JPS6311147A (en) Ultrasonic treatment apparatus
JP2009000586A (en) Ultrasound generator and ultrasound generating system
WO2020152783A1 (en) Ultrasonic treatment tool and vibration transmission member
JPS63305856A (en) Ultrasonic treatment apparatus
RU2547793C1 (en) Ultrasonic waveguide for surgical applications
JPH0298345A (en) Ultrasonic processing device
JPS62207450A (en) Handpiece
Tschepe et al. Transmission of laser radiation and acoustical waves via optical fibers for surgical therapy
JPH03976Y2 (en)
Desinger et al. New application system for laser and ultrasonic therapy in endoscopic surgery
JPS62164445A (en) Surgical operation jig
JPH0767463B2 (en) Ultrasonic treatment device
EP1500373A2 (en) Ultrasonic medical device operating in a transverse mode
JPS62217951A (en) Ultrasonic probe
JPH0292350A (en) Calculus treatment device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020430

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100110

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees