JP3088004B2 - Operation command device - Google Patents

Operation command device

Info

Publication number
JP3088004B2
JP3088004B2 JP10756289A JP10756289A JP3088004B2 JP 3088004 B2 JP3088004 B2 JP 3088004B2 JP 10756289 A JP10756289 A JP 10756289A JP 10756289 A JP10756289 A JP 10756289A JP 3088004 B2 JP3088004 B2 JP 3088004B2
Authority
JP
Grant status
Grant
Patent type
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10756289A
Other languages
Japanese (ja)
Other versions
JPH02292193A (en )
Inventor
信一郎 西田
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date
Family has litigation

Links

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、例えば各種作業を行なうクレーンや、マニピュレータ等の作業体を遠隔操作するのに用いる操作指令装置に関する。 DETAILED DESCRIPTION OF THE INVENTION OBJECTS OF THE INVENTION (FIELD OF THE INVENTION) The present invention, for example, cranes and performing various tasks, on the operation command device using a working body of the manipulator or the like to remotely.

(従来の技術) 従来、この種の操作指令装置としては、第7図に示すように、ジョイスティックと称する操作部1が軸受2を介して操作自在に配設され、この操作部1を操作者3が操作すると、その操作量に対応した操作反力がスプリング等の弾性部材4により発生され、操作者3に付与される。 The (prior art) Conventionally, this type of operation command device, as shown in FIG. 7, the operation unit 1 is referred to as a joystick is arranged freely operated through the bearing 2, the operator of the operation unit 1 When 3 is operated, the operation reaction force corresponding to the operation amount is generated by the elastic member 4 such as a spring, it is applied to the operator 3. 同時に、操作部1は、その操作変位量が変位検出器5により検出され、この変位検出器5の検出値に対応した指令信号を図示しないマニピュレータに出力して動作させる。 At the same time, the operation unit 1, the operation amount of displacement is detected by the displacement detector 5, is operated by an output to a manipulator (not shown) a command signal corresponding to the detected value of the displacement detector 5.

ところが、上記操作指令装置では、マニピュレータ(図示せず)の先端部の力/トルクを感得することができないことにより、その先端部における力の微妙な調整が困難なために、過大な力が発生して取扱い対象を破損したりするおそれがあり、その取扱い操作に高度な熟練が要求されていた。 However, the above operation command unit, the manipulator by the inability to kantoku the tip of the force / torque (not shown), due to the fine adjustment of the force at the tip difficult, excessive force is generated and there is a risk of damaged handling target, a highly skilled has been required for the handling operation.

(発明が解決しようとする課題) 以上述べたように、従来操作指令装置では、マニピュレータ先端部の微妙な力加減を調整することが困難なために、取扱い対象を破損したりするおそれがあり、この取扱い操作に熟練が要求されていた。 As mentioned (invention will to challenge Solved) above, in the conventional operation command device, since it is difficult to adjust the delicate force adjustment of the manipulator tip, there is a risk of damaged handling target, skilled in the handling operation has been requested.

この発明は上記の事情に鑑みてなされたもので、作業体先端部の力加減の調整を行ない得るようにして、簡便な取扱い操作を実現し得るようにした操作指令装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, aims to provide as may perform adjustment of the force adjustment of the working body tip, the operation command apparatus that can realize convenient handling operations to.

[発明の構成] (課題を解決するための手段) この発明は、作業体に対して遠隔的に速度指令を出力して該作業体を駆動制御する操作自在な操作部と、この操作部の操作軸の基準位置からの正及び負方向の変位を検出する変位検出手段と、前記作業体に付与される正及び負方向の力を検出する力検出手段と、前記操作部の操作反力を設定するものであって、前記力検出手段で検出される力が正方向の状態で、前記操作部の操作反力レベルを、負方向に比して正方向が剛のレベル特性に設定し、前記力検出手段で検出される力が負方向の状態で、 [Configuration of the Invention (Means for Solving the Problems) This invention includes a operably operation unit for driving and controlling the work body outputs a remotely speed command to the working body, the operation portion a displacement detector for detecting the displacement of the positive and negative direction from the reference position of the operating shaft, a force detection means for detecting the positive and negative directions of the force applied to the working body, the operation reaction force of the operating unit be one set, the force detected by said force detecting means in the forward direction of the state, the operation reaction force level of the operating unit is set to the level characteristic of the positive direction than in the negative direction is rigid, force to be detected in the negative direction of the state in the force detecting means,
前記操作部の操作反力を、正方向に比して負方向が剛のレベル特性に設定し、その各レベル特性に基づいて前記変位検出手段の検出値に対応した操作反力を生成し、前記操作部に付与する操作反力設定手段とを備えて操作指令装置を構成したものである。 The operation reaction force of the operating unit, and set the negative direction than in the positive direction to the level characteristic of rigid, generates an operation reaction force corresponding to the detected value of the displacement detecting means on the basis of their respective level characteristics, it is obtained by configuring the operation instruction device and an operation reaction force setting means to be applied to the operation portion.

(作用) 上記構成によれば、操作部には、その操作に連動して、作業体に付与される正及び負方向の力に対応した正及び負方向の操作反力が、操作部の操作位置に応じたレベルで付与される。 (Operation) According to the above configuration, the operation unit, in conjunction with the operation, the operation reaction force of the positive and the positive and negative direction corresponding to the negative direction of the force applied to the working body, the operation section operation It is granted at the level corresponding to the position. 従って、操作者は、作業体先端部に付与される正及び負方向の力を感得しながらの操作が可能となることにより、作業体先端部の微妙な力加減を考慮した操作を行なうことができる。 Thus, the operator, by a possible operation while kantoku positive and negative directions of the force applied to the working body tip, to perform an operation considering the delicate force adjustment of the working body tip can.

(実施例) 以下、この発明の実施例について、図面を参照して詳細に説明する。 (Example) Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

第1図はこの発明の一実施例に係る操作指令装置を示すもので、操作部10は支持構体11内に第1〜第3の並進機構12〜14を介して矢印A,B,C方向の並進3軸(並進3 But Figure 1 is showing an operation command device according to one embodiment of the present invention, the operation unit 10 is an arrow through the first to third translation mechanism 12-14 in the support structure 11 A, B, C direction three translational axes (translation 3
自由度)及び第1〜第3の回転機構15〜17を介して矢印 Degrees of freedom) and the first to third via a rotation mechanism 15-17 arrow
D,E,F方向の回転3軸(回転3自由度)回りに回転自在に配設される。 D, E, rotating three axes (three rotational degrees of freedom) of the F direction is rotatably disposed about. この操作部10は、操作者18により操作されると、基部に設けた力/トルクセンサ19が、その操作にともなう力/トルクを検出し、その力/トルクに対応した速度で駆動制御される。 The operation unit 10, when operated by an operator 18, a force / torque sensor 19 provided in the base portion, detects a force / torque associated with the operation, are driven and controlled at a speed corresponding to the force / torque . この際、操作部10は、その操作量に対応したマニピュレータ速度指令V Rを図示しないマニピュレータ駆動制御部に出力してマニピュレータ At this time, the operation unit 10, and outputs it to the manipulator driving control unit (not shown) the manipulator speed command V R corresponding to the operation amount manipulators
20を遠隔操作せしめる。 20 allowed to remote operation.

すなわち、上記操作部10には第2図に示すように、その操作軸10aに対応して変位センサ21が配設される。 That is, the operation unit 10 as shown in FIG. 2, the displacement sensor 21 are arranged corresponding to the operation shaft 10a. この変位センサ21の出力端は第3図に示すように、操作反力設定部22の演算部23の一方の入力端に接続される。 The output of the displacement sensor 21, as shown in FIG. 3, is connected to one input terminal of the operational portion 23 of the operation reaction force setting section 22. この演算部23の他方の入力端にはマニピュレータ20の先端部に設けた先端力センサ2の出力端が座標変換部25を介して接続される。 This is the other input terminal of the arithmetic unit 23 the output end of the tip force sensor 2 provided at the tip portion of the manipulator 20 are connected via a coordinate converter 25. 座標変換部25は先端力センサの検出信号をマニピュレータ20の基部の座標系に変換して該座標系に平行な方向の力を算出し、演算部23に出力する。 Coordinate conversion unit 25 calculates a parallel force to the coordinate system by converting the detection signal of the tip force sensor coordinate system of the base of the manipulator 20, and outputs to the operation unit 23. 演算部23は、入力したマニピュレータ20の先端力及び操作部10の変位に基づいて後述するように操作反力F Rを求めて、その出力端より減算器26に出力する。 Calculation unit 23 obtains the operational reaction force F R, as will be described later based on the displacement of the tip force and the operation unit 10 of the input manipulator 20, and outputs to the subtracter 26 from the output end. 減算器26の他方の入力端には上記力/トルクセンサ19の出力端が座標変換部27を介して接続される。 To the other input terminal of the subtracter 26 output terminal of the power / torque sensor 19 are connected via a coordinate converter 27. 座標変換部27は上記力/ Coordinate conversion unit 27 the force /
トルクセンサ19の検出信号を操作部10の第1図における In the first diagram of the operation unit 10 a detection signal of the torque sensor 19
ABCに平行な座標軸を有する基部の座標系に変換して該座標系に平行な方向の力/トルクF mを算出し、上記減算器26に出力する。 Calculating the direction of the force / torque F m parallel to the coordinate system is converted into the coordinate system of the base having parallel axes to ABC, and outputs to the subtracter 26. 減算器26は入力した力/トルクF mと操作反力F Rを減算して反力設定値ΔFを求めてモータ駆動制御部28に出力する。 Subtractor 26 is by subtracting the force / torque F m and the operation reaction force F R input determined reaction force setting value ΔF outputs to the motor drive control unit 28. このモータ駆動制御部28は入力した反力設定値ΔFに対応した目標トルクを後述するように求めて各自由度に対応する駆動モータ12a(第2図参照、但し、図中では、第1〜第3の並進機構12〜14及び第1〜第3の回転機構15〜17のうち、第1の並進機構12 The motor drive control unit 28 a reaction force setpoint driving motor 12a which asked to below the target torque corresponding to ΔF corresponding to each degree of freedom (Figure 2 reference input, however, in the drawing, first to the third translation mechanism 12-14 and among the first to third rotating mechanism 15 to 17, the first translation mechanism 12
以外の他の5軸に対応する駆動モータについては図示せず)を制御し、上記6自由度に対応される第1〜第3の並進機構12〜14及び第1〜第3の回転機構15〜17で構成される駆動機構部29を駆動して操作部10を制御する。 Other not shown for driving the motor corresponding to the 5-axis) controls other than the first to third translational mechanisms 12-14 and the first to third rotary mechanism which is corresponding to the six degrees of freedom 15 by driving the configured drive mechanism 29 to 17 for controlling the operation unit 10.

ここで、駆動機構部29の操作変位X mは、減算器30の一方に入力される。 Here, the operating displacement X m of the drive mechanism unit 29 is input to one of the subtractor 30. 減算器30の他方の入力端には基準位置座標部31からの基準位置X oが入力されており、これらを引き算して変位量Xを求める。 Reference position X o from a reference position coordinates 31 to the other input terminal of the subtractor 30 is inputted, it obtains the displacement amount X by subtracting them. そして、減算器30の出力端には乗算部32が接続される。 The multiplication unit 32 is connected to the output of the subtractor 30. 乗算部は、入力した変位量Xに比例係数Gを掛けてマニピュレータ指令速度V Rを求め、図示しないマニピュレータ駆動部に出力したマニピュレータ20を駆動制御する。 Multiplying unit obtains the manipulator command speed V R by multiplying a proportional coefficient G to the displacement X input, drives and controls the manipulator 20 outputting the manipulator driving unit (not shown). また、減算器30の出力端には上記変位センサ21が接続される。 Further, the displacement sensor 21 is connected to the output of the subtractor 30. この変位センサ21 This displacement sensor 21
は減算器30で検出した変位量Xを検出して上記演算部23 The arithmetic unit 23 detects the displacement X detected by the subtracter 30
に出力する。 And outputs it to.

上記モータ駆動制御部28は、例えば第4図に示すように構成され、1自由度分のモータ速度Θ (i=1,2,3, The motor drive control unit 28 is configured to example shown in FIG. 4, one degree of freedom worth of motor speed Θ i (i = 1,2,3,
4,5,6)が6自由度分求められる。 4, 5, 6) is 6 is required degrees of freedom worth. 即ち、入力した1自由度分の反力設定値ΔF i (i=1,2,3,4,5,6)はPID制御回路に導かれて目標トルクτ (i=1,2,3,4,5,6)が算出され、この目標トルクτ に対応して駆動モータ12 That is, the reaction force setting one degree of freedom amount entered values ΔF i (i = 1,2,3,4,5,6) is guided to the PID control circuit target torque τ i (i = 1,2,3 , 4,5,6) is calculated, the driving motor 12 corresponding to the target torque tau i
a(図2参照)が駆動される。 a (see FIG. 2) is driven. ここで、駆動モータ12a Here, the drive motor 12a
は、そのモータ速度Θ で対応する第1の並進機構12を駆動制御する。 It controls the driving of the first translation mechanism 12 corresponding with the motor speed theta i.

上記構成において、操作部10は、使用者により操作されると、力/トルクセンサ19が力/トルクを検出して座法変換部27に出力される。 In the above structure, the operation unit 10, when operated by the user, a force / torque sensor 19 is output to the sitting converter 27 detects a force / torque. 座標変換部27は入力した検出値を前述したように座標変換して力/トルクF mを求め、 The coordinate conversion unit 27 obtains a force / torque F m by coordinate transformation as described above the detection value input,
この力/トルクF mをモータ駆動制御部28に出力する。 And it outputs the force / torque F m in the motor drive control unit 28. ここで、モータ駆動制御部28は前述したように、矢印A〜 Here, the motor drive control unit 28 as described above, arrows A~
F方向の6自由度における目標トルクを求めて、この目標トルクに対応したモータ速度Θを求め、駆動モータ12 Seeking target torque in six degrees of freedom of the F direction, determine the motor speed Θ corresponding to the target torque, the drive motor 12
a(第2図参照、但し、図中では、第1〜第3の並進機構12〜14及び第1〜第3の回転機構15〜17のうち、第1 a (FIG. 2 reference, however, in the figure, among the first to third translational mechanisms 12-14 and the first to third rotary mechanism 15 to 17, the first
の並進機構12以外の他の5軸に対応する駆動モータについては図示せず)を駆動して操作部10を駆動制御する。 By driving the not shown) for driving and controlling the operation unit 10 for driving the motor corresponding to the other five axes other than translation mechanism 12.
すると、操作部10は、その操作量に対応したマニピュレータ速度指令V Rを求めてマニピュレータ20を遠隔操作する。 Then, the operation unit 10, to remotely control the manipulator 20 seeking manipulator speed command V R corresponding to the operation amount. 同時に、操作部10の操作軸10aの変位が変位センサ2 At the same time, the displacement of the operating shaft 10a of the operation unit 10 is a displacement sensor 2
1で検出され、この変位センサ21の検出値(基準位置からの変位量X)は演算部23に出力される。 It is detected at 1, (the displacement X from the reference position) value detected by the displacement sensor 21 is output to the arithmetic unit 23. この演算部23 The arithmetic unit 23
にはマニピュレータ先端部の先端力センサ24の検出値f Detection value f of the tip force sensor 24 of the manipulator tip in
が入力されており、以下に述べるような手順で1自由度毎に6自由度分の操作反力F Riを(i=1,2,3,4,5,6)を算出する。 There are input to calculate 1 operation reaction force F Ri of six degrees of freedom min for each degree of freedom the (i = 1,2,3,4,5,6) in the procedure as described below.

すなわち、操作反力F Riは、マニピュレータ20に対して基準位置(原点O)X oより負方向(引張方向)及び正方向(圧接方向)の力が付与されると、その力に応じてレベルが切り替え設定されて異なるレベルで設定される。 That is, the operation reaction force F Ri, when the power of the reference position relative to the manipulator 20 (the origin O) X o from the negative direction (tensile direction) and forward (pressure direction) is applied, depending on the force level There are set at different levels are switching setting. 例えば、先端力センサ24で検出した検出値f=0の状態では、第5図中実線で示す如く基準位置X oに対して略対称のレベル特性に設定され、f>0の状態では、第5図中破線で示すように正方向に剛となるように設定され、f<0の状態では、第5図中一点鎖線で示すように負方向に剛となるように設定される。 For example, in the state of the detected value f = 0 detected by the tip force sensor 24, is set to a level characteristic of substantially symmetrical with respect to a reference position X o as shown in Fig. 5 the solid line, f> in the 0 state, the 5 is set to be rigid in the positive direction as indicated by broken line in the drawing, in the state of f <0, is set to be rigid in the negative direction as indicated by one-dot chain line in Figure 5. そして、基準位置 The reference position
X oに対する変位量Xは、例えば正方向の所定の位置aと負方向の所定の位置−aと中間−a<X<a領域において、操作反力F Ri =0の不感領域が設けられ、操作時における操作反力F Riのいわゆる発振現象の防止が図られる。 Displacement with respect to X o X, for example, in the positive direction of the predetermined position a and the negative direction of a predetermined position -a intermediate -a <X <a region, the dead area of the operation reaction force F Ri = 0 is provided, prevention operation of the so-called oscillation phenomenon of the reaction force F Ri at the time of operation is achieved. 即ち、変位量X≧aの時には、 F Ri =K a・X−a/K aの演算が行われて操作反力F Rが算出される。 That is, when the displacement X ≧ a is, F Ri = K a · X -a / K a operational reaction force F R operation is performed in are calculated. そして、X Then, X
≦−aの時には、 F R =K b・X+a/K bの演算が行われて操作反力F Riが算出される。 ≦ when the -a, F R = K b · X + a / K b calculation is performed of the reaction force F Ri is calculated. ここで、K Here, K
a ,K bは、仮想的なばね係数で、先端力センサ24の検出値fに応じて切り替え設定され、f≧0の時、 K a =C・|f|+C o K b =C oの式で求められ、f≦0の時、 K a =C o K b =C・|f|+C oの式で求められる。 a, K b is the virtual spring coefficient, is switching setting according to the detected value f of the tip force sensor 24, when f ≧ 0, K a = C · | of + C o K b = C o | f given by equation, when f ≦ 0, K a = C o K b = C · | determined by the formula + C o | f. なお、C,C oは、正の定数である。 In addition, C, C o is a positive constant.

上記減算器26は、力/トルクセンサ19で検出した力/ The subtracter 26 is detected by the force / torque sensor 19 force /
トルクF mと、上述したように1自由度づつ求めた6自由度分の操作反力F Rとを引算して反力設定値ΔFを求め、 A torque F m, sought by subtracting the 1 and flexibility at a time the reaction force of six degrees of freedom fraction obtained F R as described above the reaction force setting value [Delta] F,
モータ駆動制御部28に出力する。 And outputs to the motor drive control unit 28. このモータ駆動制御部 The motor drive control unit
28は、反力設定値ΔFに対応した目標トルクで駆動モータ12a(第2図参照、但し図の都合上、第1の並進機構1 28, the reaction force set value the drive motor 12a (Figure 2 referred to in the target torque corresponding to [Delta] F, although for convenience of drawing, the first translation mechanism 1
2以外の他の5軸に対応する駆動モータについては図示せず)を駆動制御し、ここに駆動機構部29を形成する第1〜第3の並進機構12〜14及び第1〜第3の回転機構15 Driving motor corresponding to the other five axes other than 2 drives and controls the not shown), where the first to third to form the driving mechanism 29 translating mechanism 12 to 14 and the first to third rotation mechanism 15
〜17がモータ速度Θで駆動制御されて操作部10が動作制御される。 To 17 are driven and controlled by a motor speed Θ by the operation unit 10 is operated controlled. この際、操作部10には、前述したように、その変位量Xと、マニピュレータ20に対して基準位置(原点)X oより負方向(引張方向)及び正方向(圧接方向) At this time, the operation unit 10, as described above, the amount of displacement X, the reference position relative to the manipulator 20 (the origin) X o from the negative direction (tensile direction) and forward (pressure direction)
に付与される力に応じて演算部23で算出した負及び正方向の操作反力F Rが付与される。 Negative and positive directions of the operation reaction force F R calculated in the calculating portion 23 in response to forces applied to is applied.

同時に、操作部10の操作量に対応した駆動機構部29の操作変位X mが減算器30に入力される。 At the same time, operational displacement X m of the drive mechanism 29 corresponding to the operation amount of the operation unit 10 is input to the subtracter 30. 減算器30は、入力した操作変位X mと基準位置座標部31から基準位置X oを引き算して変位量Xを求められる。 Subtracter 30 is calculated the displacement X from the operating displacement X m and the reference position coordinates 31 entered by subtracting the reference position X o. この変位量Xは乗算部 The amount of displacement X is the multiplication unit
32で比例係数Gが乗算されてマニピュレータ指令速度V R 32 proportional coefficient G is multiplied by by the manipulator command speed V R
が生成され、このマニピュレータ指令速度V Rが図示しないマニピュレータ駆動部に出力されてマニピュレータ20 There are generated, the manipulator 20 is outputted to the manipulator drive section the manipulator command speed V R is not shown
が駆動制御される。 There is driven and controlled.

なお、上記マニピュレータ速度指令V R 、力/トルク Note that the manipulator speed command V R, the force / torque
F m 、操作反力F R 、操作変位X m 、変位量X、基準位置X o F m, the operational reaction force F R, operational displacement X m, displacement X, the reference position X o,
反力設定値ΔF、モータ速度Θは、ベクトル量である。 Reaction force setting value [Delta] F, the motor speed theta, is a vector quantity.

このように、上記操作指令装置は、操作部10の操作に連動して、マニピュレータ20に付与される力及び操作部 Thus, the operation command device, in conjunction with the operation of the operation unit 10, the force and the operation unit is applied to the manipulator 20
10の基準位置X oからの正及び負方向の変位量Xに応じて正及び負方向の仮想的なばね係数を設定して操作部10の正及び負方向の操作反力F Rを切換設定するように構成したことにより、操作者18がマニピュレータ先端部に付与される正及び負方向の力を感得しながらの操作が可能となるため、マニピュレータ20の先端部の微妙な力加減を考慮した操作を行なうことができる。 10 switch setting the positive and negative directions of the operation reaction force F R of the operation unit 10 sets a virtual spring coefficient of the positive and negative directions in accordance with the positive and negative directions of displacement X from the reference position X o of with the arrangements as, for the operator 18 is capable of operation while kantoku forces positive and negative direction is applied to the manipulator tip ends, considering the delicate force adjustment of the tip of the manipulator 20 it is possible to perform the operation. これによれば、マニピュレータ20による作業対象の破損を確実に防止することが可能となるため、簡便な取扱い操作が実現されると共に、安全性の向上が実現される。 According to this, it becomes possible to reliably prevent damage to the work object by the manipulator 20, simple handling operation while being realized, the improvement of safety is achieved.

なお、上記実施例では、基準位置X oより正及び負方向の所定の位置までを不感領域に設定したが、この不感領域を設けないで構成することも可能である。 In the above embodiment, although a more up to a predetermined position of the positive and negative direction reference position X o set in the dead zones, it is also possible to constitute without providing the dead region. この場合には、発振現象の防止が可能な程度の精度が要求される。 In this case, the degree of accuracy that can prevent oscillation phenomenon is required.

また、上記実施例で操作反力F Rを略比例するような特性に設定した場合で説明したが、これに限ることなく、 Although described in the case of setting the characteristic such that substantially proportional operation reaction force F R in the above embodiment, the present invention is not limited to this,
使用目的に応じて第6図に示すように、所定の領域以後の仮想的なばね係数を高めるように構成することも可能で、その他、2次関数、3次関数等の各種の特性が考えられる。 As shown in Figure 6 in accordance with the intended use, can also be configured to enhance the virtual spring coefficient of the predetermined region after other, a quadratic function, the various characteristics such as a cubic function considered It is.

さらに、上記実施例では、変位センサ21を設けて変位量を検出するように構成したが、これに限ることなく、 Furthermore, the above embodiment is configured to detect the amount of displacement by providing a displacement sensor 21 is not limited to this,
6自由度に対応する各駆動モータの回転角を積算して検出することも可能である。 It is also possible to detect by integrating the rotation angle of each drive motor corresponding to the six degrees of freedom.

また、上記実施例では、操作部10の力/トルクを力/ In the above embodiment, the force / torque of the operation unit 10 force /
トルクセンサ19を用いて検出したが、これに限ることなく、例えば6自由度に対応する各駆動モータの発生トルク量を積算して求めるように構成することも可能である。 Was detected using a torque sensor 19, but not limited to this, for example, 6 may be configured to determine by integrating the generated torque of the drive motor corresponding to the degree of freedom.

さらに、上記実施例では、作業体として並進3自由度、回転3自由度を制御するマニピュレータ20に適用した場合で説明したが、この制御方式に限ることなく、適用可能である。 Furthermore, in the above embodiment, three translational degrees of freedom as a working body, has been described in the case of applying to a manipulator 20 which controls the rotation three degrees of freedom, not limited to this control method is applicable. また、適用する作業体としても、マニピュレータに限ることなく、例えばクレーンの操作指令用としても適用可能である。 Further, even if the work member to be applied, not limited to the manipulator, for example is also applicable for the operation command of the crane.

よって、この発明は上記実施例に限ることなく、その他、この発明の要旨を逸脱しない範囲で種々の変形を実施し得ることは勿論のことである。 Accordingly, the invention is not limited to the above embodiments, and other, it is of course that may implement various modifications without departing from the scope of the invention.

[発明の効果] 以上詳述したように、この発明によれば、作業体先端部の力加減の調整を行ない得るようにして、簡便な取扱い操作を実現し得るようにした操作指令装置を提供することができる。 As described above in detail [Effect of the Invention] According to the present invention, so as to be subjected to adjustment of the force adjustment of the working body tip, provides an operation command apparatus that can realize convenient handling operations can do.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

第1図はこの発明の一実施例に係る操作指令装置を適用したマニピュレータシステムを示す図、第2図は第1図の操作部の詳細を示す図、第3図は第1図の制御系を示す回路構成図、第4図は第3図のモータ駆動制御部の詳細を示す回路構成図、第5図及び第6図は第3図の動作を説明するために示した特性図、第7図は従来の操作指令装置を示す図である。 Figure 1 is a diagram showing a manipulator system according to the operation command unit according to an embodiment of the present invention, FIG. 2 shows a detail of the operating unit of Figure 1, Figure 3 is a control system of Figure 1 circuit diagram showing, Figure 4 is the circuit diagram showing the details of the motor drive control unit of FIG. 3, FIG. 5 and FIG. 6 is a characteristic diagram showing for explaining the operation of Figure 3, the FIG. 7 is a diagram illustrating a conventional operation command device. 10……操作部、11…支持構体、12〜14……第1〜第3の並進機構、15〜17……第1〜第3の回転機構、18……操作者、19……力/トルクセンサ、20……マニピュレータ、21……変位センサ、22……操作反力設定部、23…… 10 ...... Operation unit, 11 ... support structure, 12 to 14 ...... first to third translation mechanism, 15-17 ...... first to third rotating mechanism, 18 ...... operator, 19 ...... force / torque sensor, 20 ...... manipulator 21 ...... displacement sensor, 22 ...... operation reaction force setting unit, 23 ......
演算部、24……先端力センサ、25,27……座標変換部、2 Calculation unit, 24 ...... tip force sensor, 25, 27 ...... coordinate conversion unit, 2
6,30……減算器、28……モータ駆動制御部、29……駆動機構部、31……基準位置座標部、32……乗算部、12a… 6,30 ...... subtractor, 28 ...... motor drive control unit, 29 ...... drive mechanism, 31 ...... reference position coordinate unit, 32 ...... multiplication unit, 12a ...
…駆動モータ。 ... drive motor.

Claims (2)

    (57)【特許請求の範囲】 (57) [the claims]
  1. 【請求項1】作業体に対して遠隔的に速度指令を出力して該作業体を駆動制御する操作自在な操作部と、 この操作部の操作軸の基準位置からの正及び負方向の変位を検出する変位検出手段と、 前記作業体に付与される正及び負方向の力を検出する力検出手段と、 前記操作部の操作反力を設定するものであって、前記力検出手段で検出される力が正方向の状態で、前記操作部の操作反力レベルを、負方向に比して正方向が剛のレベル特性に設定し、前記力検出手段で検出される力が負方向の状態で、前記操作部の操作反力を、正方向に比して負方向が剛のレベル特性に設定し、その各レベル特性に基づいて前記変位検出手段の検出値に対応した操作反力を生成し、前記操作部に付与する操作反力設定手段と を具備したことを特徴とする操作指 1. A remotely and operably operation unit for driving and controlling the work body and outputs a speed command, the positive and negative direction from the reference position of the operating shaft of the operating portion displaced relative to the working member a displacement detecting means for detecting a force detection means for detecting the positive and negative directions force applied to the working body, be one that sets the operation reaction force of the operating unit, detected by said force detecting means in the the force positive state, the operation reaction force level of the operating unit, the positive direction than in the negative direction is set to the level characteristic of rigid, force detected by said force detecting means is a negative direction state, the operation reaction force of the operating unit, and set the negative direction than in the positive direction to the level characteristic of rigid, the operation reaction force corresponding to the detected value of the displacement detecting means on the basis of their respective level characteristics generated, characterized by comprising an operation reaction force setting means to be applied to the operation section operation finger 令装置。 Decree apparatus.
  2. 【請求項2】前記操作反力設定手段は前記操作部の基準位置より正及び負方向の所定の位置までの領域で前記操作反力を零に設定してなることを特徴とする請求項1記載の操作指令装置。 2. A method according to claim wherein the actuation reaction force setting means, characterized by comprising setting to zero the operation reaction force in the region up to a predetermined position of the positive and negative direction from the reference position of the operating portion 1 operation command apparatus according.
JP10756289A 1989-04-28 1989-04-28 Operation command device Expired - Lifetime JP3088004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10756289A JP3088004B2 (en) 1989-04-28 1989-04-28 Operation command device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10756289A JP3088004B2 (en) 1989-04-28 1989-04-28 Operation command device
US07395721 US4950116A (en) 1988-08-18 1989-08-18 Manipulator controlling apparatus

Publications (2)

Publication Number Publication Date
JPH02292193A true JPH02292193A (en) 1990-12-03
JP3088004B2 true JP3088004B2 (en) 2000-09-18

Family

ID=14462319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10756289A Expired - Lifetime JP3088004B2 (en) 1989-04-28 1989-04-28 Operation command device

Country Status (1)

Country Link
JP (1) JP3088004B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011025367A (en) * 2009-07-27 2011-02-10 Ihi Corp Manual operation device and signal processing method therefor

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3504507B2 (en) 1998-09-17 2004-03-08 トヨタ自動車株式会社 Appropriate reaction force imparting type work assist device
JP3110403B2 (en) 1998-11-16 2000-11-20 技術研究組合医療福祉機器研究所 Control method and training method of the manipulator operation input of the master slave manipulator system
US8226675B2 (en) 2007-03-22 2012-07-24 Ethicon Endo-Surgery, Inc. Surgical instruments
US8911460B2 (en) 2007-03-22 2014-12-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8142461B2 (en) 2007-03-22 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical instruments
US8808319B2 (en) 2007-07-27 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical instruments
US8882791B2 (en) 2007-07-27 2014-11-11 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8523889B2 (en) 2007-07-27 2013-09-03 Ethicon Endo-Surgery, Inc. Ultrasonic end effectors with increased active length
US8430898B2 (en) 2007-07-31 2013-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8512365B2 (en) 2007-07-31 2013-08-20 Ethicon Endo-Surgery, Inc. Surgical instruments
EP2217157A2 (en) 2007-10-05 2010-08-18 Ethicon Endo-Surgery, Inc. Ergonomic surgical instruments
US8057498B2 (en) 2007-11-30 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US8058771B2 (en) 2008-08-06 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic device for cutting and coagulating with stepped output
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US8319400B2 (en) 2009-06-24 2012-11-27 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8663220B2 (en) 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US9168054B2 (en) 2009-10-09 2015-10-27 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
US8579928B2 (en) 2010-02-11 2013-11-12 Ethicon Endo-Surgery, Inc. Outer sheath and blade arrangements for ultrasonic surgical instruments
US8486096B2 (en) 2010-02-11 2013-07-16 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
US8951272B2 (en) 2010-02-11 2015-02-10 Ethicon Endo-Surgery, Inc. Seal arrangements for ultrasonically powered surgical instruments
US8961547B2 (en) 2010-02-11 2015-02-24 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with moving cutting implement
GB201008510D0 (en) 2010-05-21 2010-07-07 Ethicon Endo Surgery Inc Medical device
JP6000641B2 (en) 2011-08-04 2016-10-05 オリンパス株式会社 Manipulator system
JP6009840B2 (en) 2011-08-04 2016-10-19 オリンパス株式会社 Medical equipment
WO2013018861A1 (en) 2011-08-04 2013-02-07 オリンパス株式会社 Medical manipulator and method for controlling same
JP5936914B2 (en) * 2011-08-04 2016-06-22 オリンパス株式会社 An operation input device and a manipulator system including the same
JP5953058B2 (en) 2011-08-04 2016-07-13 オリンパス株式会社 Surgery support device and its attachment and detachment method
EP2740435A4 (en) 2011-08-04 2015-03-18 Olympus Corp Manipulator for medical use and surgery support device
JP6005950B2 (en) 2011-08-04 2016-10-12 オリンパス株式会社 Surgery support apparatus and a method of controlling the same
EP2740433B1 (en) 2011-08-04 2016-04-27 Olympus Corporation Surgical implement and medical treatment manipulator
JP6021484B2 (en) 2011-08-04 2016-11-09 オリンパス株式会社 Medical manipulator
JP5931497B2 (en) 2011-08-04 2016-06-08 オリンパス株式会社 Surgery support apparatus and method of assembly
JP6021353B2 (en) 2011-08-04 2016-11-09 オリンパス株式会社 Surgery support apparatus
JP6081061B2 (en) 2011-08-04 2017-02-15 オリンパス株式会社 Surgery support apparatus
JP5841451B2 (en) 2011-08-04 2016-01-13 オリンパス株式会社 Surgical instruments and a method of controlling the same
WO2013119545A1 (en) 2012-02-10 2013-08-15 Ethicon-Endo Surgery, Inc. Robotically controlled surgical instrument
US9724118B2 (en) 2012-04-09 2017-08-08 Ethicon Endo-Surgery, Llc Techniques for cutting and coagulating tissue for ultrasonic surgical instruments
US9226766B2 (en) 2012-04-09 2016-01-05 Ethicon Endo-Surgery, Inc. Serial communication protocol for medical device
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US9241731B2 (en) 2012-04-09 2016-01-26 Ethicon Endo-Surgery, Inc. Rotatable electrical connection for ultrasonic surgical instruments
US9237921B2 (en) 2012-04-09 2016-01-19 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9283045B2 (en) 2012-06-29 2016-03-15 Ethicon Endo-Surgery, Llc Surgical instruments with fluid management system
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US9241728B2 (en) 2013-03-15 2016-01-26 Ethicon Endo-Surgery, Inc. Surgical instrument with multiple clamping mechanisms

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829507B2 (en) * 1986-01-13 1996-03-27 株式会社小松製作所 Force sensing type Manipure - data

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011025367A (en) * 2009-07-27 2011-02-10 Ihi Corp Manual operation device and signal processing method therefor

Also Published As

Publication number Publication date Type
JPH02292193A (en) 1990-12-03 application

Similar Documents

Publication Publication Date Title
US4906907A (en) Robot system
US8060250B2 (en) Joint-space impedance control for tendon-driven manipulators
US5291113A (en) Servo coupled hand controllers
US4661032A (en) Bilateral master-slave manipulator control device
US20090069942A1 (en) Robot apparatus and method of controlling the same
US6212443B1 (en) Teaching unit for robots
US6430473B1 (en) Power assist apparatus and control method for same
Colgate et al. Nonholonomic haptic display
US5271290A (en) Actuator assembly
US4873476A (en) Robot control apparatus for controlling a manipulator through a robot arm having a plurality of axes
US6222338B1 (en) Method and apparatus for the direct teaching of automatic machines
US5214749A (en) Dynamic control of a robot with its center of mass decoupled from an end effector by a redundant linkage
US6216056B1 (en) Method of controlling force assisting device and control apparatus using the same
US4594671A (en) Velocity method of controlling industrial robot actuators
US20120130541A1 (en) Method and apparatus for robot teaching
US5347204A (en) Position dependent rate dampening in any active hand controller
US4218172A (en) Method of and arrangement for controlling manipulators and industrial robots
US4904152A (en) Industrial robot
US5021969A (en) Manipulator operating apparatus
Agrawal et al. Control of cable actuated devices using smooth backlash inverse
US5742138A (en) Control method for servo system with adjustable softness in rectangular coordinate system
US5834917A (en) Robot controller
Zhu et al. Motion/force/image control of a diagnostic ultrasound robot
US4950116A (en) Manipulator controlling apparatus
JPH0811071A (en) Controller for manipulator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070714

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080714

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 9