WO2012066983A1 - Ultrasound transducer, ultrasound treatment tool, ultrasound treatment device, and method for assembling ultrasound transducer - Google Patents

Ultrasound transducer, ultrasound treatment tool, ultrasound treatment device, and method for assembling ultrasound transducer Download PDF

Info

Publication number
WO2012066983A1
WO2012066983A1 PCT/JP2011/075732 JP2011075732W WO2012066983A1 WO 2012066983 A1 WO2012066983 A1 WO 2012066983A1 JP 2011075732 W JP2011075732 W JP 2011075732W WO 2012066983 A1 WO2012066983 A1 WO 2012066983A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric element
ultrasonic transducer
ultrasonic
pressing
pressing portions
Prior art date
Application number
PCT/JP2011/075732
Other languages
French (fr)
Japanese (ja)
Inventor
之彦 沢田
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Publication of WO2012066983A1 publication Critical patent/WO2012066983A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic

Definitions

  • the present invention relates to an ultrasonic transducer for an ultrasonic treatment instrument for treating a biological tissue, an ultrasonic treatment instrument, an ultrasonic treatment apparatus, and a method for assembling an ultrasonic transducer for an ultrasonic treatment instrument for treating a biological tissue.
  • an ultrasonic transducer for an ultrasonic treatment instrument for treating a biological tissue an ultrasonic treatment instrument, an ultrasonic treatment apparatus, and a method for assembling an ultrasonic transducer for an ultrasonic treatment instrument for treating a biological tissue.
  • US Patent Application Publication No. 2009/0193898 discloses an ultrasonic transducer in which a shaft member that coincides with the axial direction of a vibration transmitting member is disposed so as to penetrate the center of a disk-shaped piezoelectric element.
  • U.S. Patent Application Publication No. 2009/0216157 discloses an ultrasonic treatment device (ultrasonic treatment device) having a procedure tool main body including an ultrasonic transducer and a flexible pipe portion. procedure tool) is disclosed.
  • the ultrasonic treatment instrument can be opposed to the biological tissue to be treated through the channel of the flexible tube of the endoscope.
  • Japanese Patent Application Laid-Open No. 2005-94552 discloses an ultrasonic vibrator in which a piezoelectric element is shrink-fitted to the frame body by applying heat to the frame body (resonator) on which the piezoelectric element is disposed.
  • the present invention provides an ultrasonic transducer, an ultrasonic treatment instrument, and an ultrasonic treatment apparatus for an ultrasonic treatment instrument for treating a living tissue, capable of stabilizing the vibration performance of ultrasonic vibration while reducing the overall size. And it aims at providing the assembly method of the ultrasonic transducer
  • An ultrasonic transducer for an ultrasonic treatment instrument for treating a biological tissue includes a piezoelectric element that generates ultrasonic vibration and the piezoelectric element from a side with respect to a central axis of a vibration transmitting member that contacts the biological tissue.
  • a frame having a mounting portion to which an element is mounted, and capable of transmitting a vibration generated by the piezoelectric element to the vibration transmitting member by applying a pressing force to the piezoelectric element in a state where the piezoelectric element is mounted on the mounting portion. And have.
  • FIG. 1A is a schematic plan view showing a state before a piezoelectric element is mounted on a frame of an ultrasonic transducer of the ultrasonic treatment apparatus according to the first embodiment.
  • FIG. 1B is a schematic plan view showing a state in which a piezoelectric element is attached to the frame of the ultrasonic transducer of the ultrasonic treatment apparatus according to the first embodiment.
  • FIG. 2 is a schematic longitudinal sectional view showing a part of the piezoelectric element disposed in the ultrasonic transducer of the ultrasonic treatment apparatus according to the first embodiment.
  • FIG. 3 is a schematic perspective view showing an ultrasonic treatment apparatus according to a first modification of the first embodiment.
  • FIG. 1A is a schematic plan view showing a state before a piezoelectric element is mounted on a frame of an ultrasonic transducer of the ultrasonic treatment apparatus according to the first embodiment.
  • FIG. 1B is a schematic plan view showing a state in which a piezoelectric element is attached
  • FIG. 4 is a schematic perspective view showing an ultrasonic treatment apparatus according to a second modification of the first embodiment.
  • FIG. 5A is a schematic perspective view illustrating a state before a piezoelectric element is attached to a frame of an ultrasonic transducer of the ultrasonic treatment apparatus according to the second embodiment.
  • FIG. 5B is a schematic perspective view showing a state in which an arm is extended in order to attach the piezoelectric element to the frame of the ultrasonic transducer of the ultrasonic treatment apparatus according to the second embodiment.
  • FIG. 5C is a schematic perspective view illustrating a state in which a piezoelectric element is attached to a frame of an ultrasonic transducer of the ultrasonic treatment apparatus according to the second embodiment.
  • FIG. 5A is a schematic perspective view illustrating a state before a piezoelectric element is attached to a frame of an ultrasonic transducer of the ultrasonic treatment apparatus according to the second embodiment.
  • FIG. 5B is a schematic perspective view showing
  • FIG. 6A is a schematic perspective view showing a state before a piezoelectric element is attached to a frame of an ultrasonic transducer of an ultrasonic treatment apparatus according to a first modification of the second embodiment.
  • FIG. 6B is a schematic perspective view showing a state in which an arm is extended in order to attach the piezoelectric element to the frame of the ultrasonic transducer of the ultrasonic treatment apparatus according to the first modification of the second embodiment.
  • FIG. 6C is a schematic perspective view showing a state in which a piezoelectric element is attached to a frame of an ultrasonic transducer of an ultrasonic treatment apparatus according to a first modification of the second embodiment.
  • FIG. 7A is a schematic perspective view showing a state in which a piezoelectric element is attached to a frame of an ultrasonic transducer of an ultrasonic treatment apparatus according to a second modification of the second embodiment.
  • FIG. 7B is a schematic plan view showing a state in which a piezoelectric element is attached to the frame of the ultrasonic transducer of the ultrasonic treatment apparatus according to the second modification of the second embodiment.
  • FIG. 7C is a schematic plan view showing a state in which a piezoelectric element is attached to the frame of the ultrasonic transducer of the ultrasonic treatment apparatus according to the second modification of the second embodiment.
  • FIG. 7A is a schematic perspective view showing a state in which a piezoelectric element is attached to a frame of an ultrasonic transducer of an ultrasonic treatment apparatus according to a second modification of the second embodiment.
  • FIG. 7B is a schematic plan view showing a state in which a piezoelectric element is attached to the frame of the
  • FIG. 7D is a schematic plan view showing a state in which a piezoelectric element is attached to a frame of an ultrasonic transducer of an ultrasonic treatment apparatus according to a second modification of the second embodiment.
  • FIG. 8A is a schematic perspective view showing a state before a piezoelectric element is attached to a frame of an ultrasonic transducer of an ultrasonic treatment apparatus according to a third modification of the second embodiment.
  • FIG. 8B is a schematic perspective view showing a state in which an arm is extended in order to attach the piezoelectric element to the frame of the ultrasonic transducer of the ultrasonic treatment apparatus according to the third modification of the second embodiment. .
  • FIG. 8A is a schematic perspective view showing a state before a piezoelectric element is attached to a frame of an ultrasonic transducer of an ultrasonic treatment apparatus according to a third modification of the second embodiment.
  • FIG. 8B is a schematic perspective view showing a state in which an arm is extended in order to
  • FIG. 8C shows a state in which the protrusion formed integrally with the arm is removed after the piezoelectric element is attached to the frame of the ultrasonic transducer of the ultrasonic treatment device according to the third modification of the second embodiment.
  • FIG. 9 is a schematic perspective view showing a state before the piezoelectric element is attached to the frame of the ultrasonic transducer of the ultrasonic treatment apparatus according to the fourth modification of the second embodiment.
  • FIG. 10A is a schematic plan view showing a state before a piezoelectric element is attached to the frame of the ultrasonic transducer of the ultrasonic treatment apparatus according to the third embodiment.
  • FIG. 10B is a schematic perspective view showing a state in which a piezoelectric element is attached to a frame of an ultrasonic transducer of the ultrasonic treatment apparatus according to the third embodiment.
  • FIG. 10C is a schematic perspective view showing a state in which a piezoelectric element is attached to a frame of an ultrasonic transducer of the ultrasonic treatment apparatus according to the third embodiment.
  • FIG. 11A is a schematic plan view showing a state before a piezoelectric element is attached to the frame of the ultrasonic transducer of the ultrasonic treatment apparatus according to the first modification of the third embodiment.
  • FIG. 11B is a schematic perspective view showing a state in which a piezoelectric element is attached to a frame of an ultrasonic transducer of an ultrasonic treatment apparatus according to a first modification of the third embodiment.
  • FIG. 11C is a schematic perspective view showing a state in which a piezoelectric element is attached to a frame of an ultrasonic transducer of an ultrasonic treatment apparatus according to a first modification of the third embodiment.
  • FIG. 12A is a schematic cross-sectional view showing a state in which a piezoelectric element is attached to a frame of an ultrasonic transducer of an ultrasonic treatment apparatus according to a second modification of the third embodiment.
  • FIG. 12B is a schematic cross-sectional view showing a state in which a piezoelectric element is attached to a frame of an ultrasonic transducer of an ultrasonic treatment apparatus according to a second modification of the third embodiment.
  • FIG. 12C is a schematic cross-sectional view showing a state in which a piezoelectric element is attached to the frame of the ultrasonic transducer of the ultrasonic treatment apparatus according to the second modification of the third embodiment.
  • FIG. 13A is a schematic diagram illustrating a state in which a pair of vibration transmission members of an ultrasonic treatment instrument having a pair of jaws according to the fourth embodiment are opened, and a living tissue is disposed between the vibration transmission members.
  • FIG. 13B is a schematic perspective view showing a state in which a pair of vibration transmission members of an ultrasonic treatment device having a pair of jaws according to the fourth embodiment are closed.
  • FIG. 14A is a schematic view showing basket forceps according to the fifth embodiment.
  • FIG. 14B is a schematic vertical cross-sectional view showing a state in which the tip of the basket forceps according to the fifth embodiment is enlarged.
  • FIG. 14C is a schematic view showing a state in which the basket of the basket forceps according to the fifth embodiment is disposed inside the duodenal bile duct through the duodenal papilla through the insertion portion of the endoscope.
  • an ultrasonic treatment device or an ultrasonic surgical device 10 includes an ultrasonic transducer 12 and vibration transmission. It has a vibration transmission member 14 and a horn 16.
  • the center axis C of the vibration transmitting member 14 and the horn 16 is disposed so as to coincide with the center axis of a piezoelectric element 24 described later of the ultrasonic transducer 12.
  • the ultrasonic transducer 12 and the horn 16 may be detachable with, for example, male and female screws, and the horn 16 and the vibration transmitting member 14 may be detachable with, for example, male and female screws.
  • the horn 16 may be integrated with the sound wave vibrator 12, or the horn 16 may be integrated with the vibration transmission member 14.
  • the ultrasonic transducer 12, the vibration transmission member 14, and the horn 16 may be integrated.
  • the ultrasonic vibrator 12 includes a frame body 22 and a piezoelectric element 24 that converts electric energy into ultrasonic vibration.
  • Various piezoelectric elements 24 can be used.
  • the piezoelectric element 24 may be a plate material or a laminate.
  • the piezoelectric element 24 of this embodiment is formed by laminating unit piezoelectric elements 26 made of rectangular PZT materials, for example, as a kind of piezoelectric ceramic so as to sandwich the electrodes 28a and 28b. .
  • the unit piezoelectric element 26 is laminated in the direction along the center axis C of the vibration transmitting member 14 of the ultrasonic transducer 12 and the horn 16 in a state where the piezoelectric element 24 is mounted on the frame body 22.
  • the electrodes 28a and 28b are connected to the power source 32 via lead wires 30a and 30b, respectively.
  • the cross section of the vibration transmission member 14 of the present embodiment is a rectangular shape such as a square
  • the cross section of the frame 22 of the horn 16 and the ultrasonic transducer 12 is a rectangular shape such as a rectangle. That is, the frame 22 of the ultrasonic transducer 12 is formed in a substantially plate shape whose width is larger than the thickness, including the piezoelectric element 24.
  • the thicknesses of the horn 16 and the frame 22 of the ultrasonic transducer 12 correspond to, for example, the length of one side of the cross section of the vibration transmitting member 14.
  • the proximal end side close to the horn 16 is rectangular, but it is also preferable that the distal end side separated from the horn 16 is circular.
  • the frame 22 includes first and second pressing portions 42 and 44 that are separated along the center axis C of the vibration transmitting member 14 and the horn 16.
  • the first and second pressing portions 42 and 44 have pressing surfaces 42 a and 44 a that are orthogonal to the central axis C of the vibration transmitting member 14.
  • the first and second pressing portions 42 and 44 are integrally formed by a connecting portion 46 formed in parallel to the central axis C of the vibration transmitting member 14.
  • the connecting portion 46 has a movement restricting surface 46a that is orthogonal to the pressing surfaces 42a and 44a of the first and second pressing portions 42 and 44 and restricts the piezoelectric element 24 from moving downward in FIG. 1B. .
  • a mounting portion 48 which is a space in which the piezoelectric element 24 is mounted and fixed, is formed by the pressing surfaces 42a and 44a of the first and second pressing portions 42 and 44 and the movement restricting surface 46a of the connecting portion 46.
  • the mounting portion 48 is a rectangular parallelepiped space formed by the first and second pressing portions 42 and 44 and the connecting portion 46, and on the side facing the movement restricting surface 46 a of the connecting portion 46.
  • An opening 48a is formed. That is, the mounting portion 48 has an opening 48 a in a direction intersecting with the central axis C of the vibration transmitting member 14. Therefore, the frame 22 of the ultrasonic transducer 12 according to this embodiment is formed in a substantially U shape so as to surround the mounting portion 48 by the first and second pressing portions 42 and 44 and the connecting portion 46. ing.
  • the back surface with respect to the movement control surface 46a among the connection parts 46 is the energy load surface 46b to which optical energy and mechanical energy are added so that it may mention later.
  • the piezoelectric element 24 is formed in the same shape as the mounting portion 48 of the frame body 22 so as to fit into the mounting portion 48 without any gap.
  • the ultrasonic transducer 12 is manufactured (assembled) as follows. First, in order to form the mounting part 48 in the frame 22, for example, a wire cutting process is performed on a plate material made of titanium alloy. In the wire cutting process, it is preferable not only to form the mounting portion 48 but also to prepare the outer shape of the frame body 22 before the mounting portion 48 is formed. In addition, when forming the external shape of the frame 22 and the mounting part 48, you may cut
  • the pressing surfaces 42a and 44a of the first and second pressing portions 42 and 44 of the mounting portion 48 are parallel to each other, and the first and second The pressing surfaces 42a and 44a of the pressing portions 42 and 44 are orthogonal to the movement restricting surface 46a.
  • the piezoelectric element 24 in which the stacking direction of the unit piezoelectric elements 26 is parallel to the central axis C of the vibration transmitting member 14 is opposed to the mounting portion 48 of the frame body 22.
  • the piezoelectric element 24 is inserted from the opening 48a of the mounting portion 48 toward the movement restricting surface 46a, and the piezoelectric element 24 is mounted (embedded) in the mounting portion 48 as shown in FIG. 1B.
  • the piezoelectric elements 24 are supported by the pressing surfaces 42a and 44a of the first and second pressing portions 42 and 44, and the piezoelectric elements 24 are supported by the movement restricting surface 46a.
  • the pressing surfaces 42a and 44a of the first and second pressing portions 42 and 44 are set by slightly setting the length of the piezoelectric element 24 so as to be press-fitted into the mounting portion 48 of the frame body 22. It is also possible to apply a pressure to the piezoelectric element 24. In this case, even if the frame body 22 is tilted with the piezoelectric element 24 mounted, the piezoelectric element 24 is fixed to the mounting portion 48 of the frame body 22, and the piezoelectric element 24 is fixed to the mounting portion 48. Is prevented from being displaced or dropped. In this case, it is possible to make the press-fitting operation easier by applying a force in the direction of expanding the frame 22 when the piezoelectric element 24 is inserted.
  • the laser beam (optical energy) LB is applied to the energy load surface 46 b on the opposite side of the movement restricting surface 46 a in the connecting portion 46. Is irradiated for a very short time (for example, several microseconds) to change the metal crystal of the energy load surface 46b or cause laser heating surface hardening (laserlassurface hardening). For this reason, the connecting portion 46 is permanently deformed or the residual stress increases, and the pressing force pressing the piezoelectric element 24 with the pressing surfaces 42a and 44a of the first and second pressing portions 42 and 44 increases. For this reason, the resonant frequency of the ultrasonic transducer
  • the connecting portion 46 of the frame 22 can be heated with a laser or the like and partially tempered to reduce the residual stress.
  • the pressing force for pressing the piezoelectric element 24 by the pressing surfaces 42a and 44a of the first and second pressing portions 42 and 44 can be reduced.
  • vibrator 12 can be lowered
  • the capacitance of the ultrasonic transducer 12 increases, and when the pressing force decreases, the capacitance decreases. For this reason, by monitoring the electrostatic capacitance of the ultrasonic transducer 12, it is possible to recognize the increase or decrease of the pressing force when adjusting the pressing force of the piezoelectric element 24 by the pressing surfaces 42a and 44a, and to specify the resonance frequency. it can.
  • the pressing force applied to the piezoelectric element 24 from the pressing portions 42 and 44 can be adjusted by adjusting the residual stress of the connecting portion 46 of the frame body 22.
  • the vibration characteristics of the ultrasonic transducer 12 having the piezoelectric element 24 can be easily adjusted.
  • the laser beam LB When the laser beam LB is irradiated onto the energy load surface 46b of the connecting portion 46, there is a distance from the energy load surface 46b of the connecting portion 46 to the movement restricting surface 46a, and the laser beam LB is irradiated for an extremely short time.
  • the heat generated by the laser beam LB is naturally cooled by the heat conduction of the connecting portion 46 and does not reach the movement restricting surface 46a.
  • the piezoelectric element 24 supported by the movement restricting surface 46a is not affected by the irradiation of the laser beam LB on the energy load surface 46b. Therefore, the laser light LB can prevent the piezoelectric element 24 from being thermally stimulated or shocked.
  • the piezoelectric element 24 is irradiated to a position close to the movement restricting surface 46a without giving thermal stimulation or impact. It becomes possible.
  • the ultrasonic transducer 12 forms a frame-shaped resonance body (frame body) indicated by reference numeral 22 using a metal material, and houses a piezoelectric element 24 in a part of the resonance body 22.
  • An element storage portion (mounting portion) indicated by reference numeral 48 is formed by the surfaces 42a and 44a. Then, after the piezoelectric element 24 is housed between the pair of surfaces 42a and 44a of the element storage portion 48 of the resonator 22, a part of the resonator 22 (the connecting portion 46) is deformed to deform the pair of surfaces 42a. 44a applies a pressing force to the piezoelectric element 24.
  • the ultrasonic transducer 12 of this embodiment is assembled in this way, the first and second pressing portions 42 and 44 do not apply force such as heat or impact to the piezoelectric element 24. It can be pressed and held. Since the ultrasonic transducer 12 can adjust the residual stress of the connecting portion 46 after the piezoelectric element 24 is mounted on the mounting portion 48, the ultrasonic transducer 12 having stable quality (vibration characteristics) is provided. can do.
  • the horn 16 and the vibration transmitting member 14 can be attached to such an ultrasonic transducer 12 and used for treatment of a living tissue.
  • the distal end of the vibration transmitting member 14 functions as a treatment portion (end effector).
  • the vibration generated by the piezoelectric element 24 is transmitted to the vibration transmitting member 14, and the end effector of the vibration transmitting member 14 that vibrates at high speed and the living tissue. Friction occurs between them. Since the living tissue becomes high temperature due to this friction, the ultrasonic treatment instrument 10 enables treatment such as coagulation of the living tissue, sealing of the blood vessel, cutting of the living tissue, and the like.
  • the movement restricting surface 46a is illustrated as a plane, but the structure is such that the piezoelectric element 24 is supported at several places, not limited to being a plane. May be.
  • the material was described as a titanium alloy, the various titanium alloys and aluminum alloys normally used for an ultrasonic transducer
  • the stacking direction may be a direction substantially orthogonal to the vibration direction of the ultrasonic transducer.
  • laser light is shown as a thermal energy source, the method is not limited to this, and the amount of heat to be supplied depending on the heat treatment conditions and the time required for supply can be determined based on the electron beam, white beam (white light), High frequency, etc. can also be selected. For example, a white beam is applicable if it is annealed.
  • a bolted Langevin type vibrator is known as a general ultrasonic vibrator.
  • this vibrator gives a pressing force to adjacent piezoelectric elements by bolt fastening. For this reason, it is necessary to secure a space such as a bolt or a tap in the piezoelectric element or the ultrasonic component member, and since the piezoelectric element is composed of a plurality of members, there is a limit to downsizing the vibrator.
  • the ultrasonic transducer 12 of the present embodiment only has the piezoelectric element 24 of the present embodiment mounted on the mounting portion 48, and does not require spaces such as bolts and taps, and the number of members is small. Therefore, the ultrasonic transducer 12 of the present embodiment can be reduced in size as compared with the case where a bolted Langevin type transducer is used.
  • the ultrasonic transducer 12 of the present embodiment is a bolt-clamped Langevin transducer.
  • a piezoelectric element 24 larger than the piezoelectric element can be used. For this reason, according to the present embodiment, it is possible to provide an ultrasonic transducer (ultrasonic vibration source) 12 capable of outputting powerful ultrasonic vibration while being further downsized.
  • FIG. 3 shows an ultrasonic treatment instrument 10 according to a first modification of the present embodiment.
  • the energy of the connecting portion 46 is used instead of irradiating the energy load surface 46b of the connecting portion 46 shown in FIG. 1B to the frame 22 of the ultrasonic transducer 12 with the laser beam LB (optical energy).
  • the energy of the connecting portion 46 is used.
  • energy is dynamically applied to the load surface 46b to plastically deform the energy load surface 46b.
  • the pressing surfaces 42a of the first and second pressing portions 42, 44 are formed by plastically deforming the energy load surface 46b of the connecting portion 46 and deforming it into a state indicated by reference numeral 46c in FIG.
  • the pressing force on the piezoelectric element 24 is increased by 44a.
  • This modification has an advantage that the adjustment range of the pressing force can be expanded. Needless to say, this modification and the embodiment shown in FIG. 1 can be used in combination. In this case, the adjustment range of the pressing force is widened and fine adjustment is possible. The same applies to the modifications and embodiments described below.
  • FIG. 4 shows an ultrasonic treatment instrument 10 according to a second modification of the present embodiment.
  • the cross section of the frame body 22 is rectangular.
  • the cross section of the frame body 22 is preferably cylindrical.
  • each unit piezoelectric element 26 (see FIG. 2) used for the piezoelectric element 24 is preferably formed in a disk shape, for example.
  • the horn 16 and the vibration transmission member 14 have also been described as having a rectangular cross section.
  • the cross section of the horn 16 and the vibration transmission member 14 is circular or cylindrical. It is preferable that
  • the frame 22 is formed as shown in FIG. 4, the ultrasonic transducer 12 of the ultrasonic treatment instrument 10 shown in FIG. 1B or the ultrasonic transducer of the ultrasonic treatment instrument 10 shown in FIG. Similarly to 12, the frame 22 can be deformed. For this reason, after the piezoelectric element 24 is mounted on the mounting portion 48, the pressing force by the pressing portions 42 and 44 on the piezoelectric element 24 can be adjusted.
  • the frame body 22 is fixed to the first and second pressing portions 62 and 64, one end at the first pressing portion 62, and the other end at the second pressing portion 64.
  • a pair of arms 66, 68 that is, in this embodiment, instead of the connecting portion 46 described in the first embodiment, a pair of arms 66 and 68 that similarly form the connecting portion are used.
  • the arms 66 and 68 are each formed in a substantially M shape.
  • the arms 66 and 68 have a path length along the shape of the arms 66 and 68 that is longer than the length (shortest length) connecting both ends of the arms 66 and 68, and the inside of the frame body 22. It is formed in a shape having convex portions (load portions) 66a and 68a on the side (the side close to the mounting portion 70 described later (the piezoelectric element 24 side)).
  • the first and second pressing portions 62 and 64 have pressing surfaces 62a and 64a formed to face each other in parallel. These pressing surfaces 62a and 64a form a mounting portion 70 that is a space in which the piezoelectric element 24 is disposed.
  • the mounting portion 70 has openings 70a and 70b at positions where interference with the pair of arms 66 and 68 is prevented. That is, the mounting portion 70 has openings 70 a and 70 b in a direction intersecting with the central axis C of the vibration transmitting member 14.
  • the ultrasonic transducer 12 is manufactured (assembled) as follows. First, in order to form the arms 66 and 68 and the mounting part 70 in the frame 22, for example, a wire cutting process is performed on a plate material of titanium alloy, for example. For example, since the frame 22 is processed by a wire cutting process, the pressing surfaces 62a and 64a of the first and second pressing portions 62 and 64 of the mounting portion 70 are parallel to each other.
  • interval of the parallel pressing surfaces 62a and 64a shown to FIG. 5A is still smaller than 1st Embodiment compared with the one side of the piezoelectric element 24 of the direction along the central axis C of the vibration transmission member 14.
  • FIG. Therefore, the piezoelectric element 24 cannot be press-fitted into the mounting portion 70 as it is. Therefore, when the piezoelectric element 24 is disposed in the mounting portion 70, a force F is applied from the inner side to the outer side, for example, on the convex portions 66a and 68a provided on the arms 66 and 68 shown in FIG. 5A, as shown in FIG. 5B.
  • interval of the press surfaces 62a and 64a is expanded.
  • the piezoelectric element 24 is inserted into one of the openings 70a and 70b of the mounting portion 70 from a position where the arms 66 and 68 do not exist (a position where interference between the arms 66 and 68 is prevented).
  • the force F applied to the arms 66 and 68 is removed.
  • the arms 66 and 68 shown in FIG. 5B are deformed so as to return to the original state (the state shown in FIG. 5A) as shown in FIG. 5C, and the piezoelectric element 24 is sandwiched between the pressing surfaces 62a and 64a.
  • the ultrasonic transducer 12 forms a frame-shaped resonator indicated by reference numeral 22 using a metal material, and stores a piezoelectric element 24 in the resonator 22 by a pair of surfaces 62a and 64a separated from each other. Is formed. Then, the piezoelectric element 24 is accommodated by deforming the resonator 22 to widen the distance between the pair of surfaces 62 a and 64 a of the element storage unit 70. Thereafter, when the deformation of the resonator 22 is restored, the distance between the pair of surfaces 62a and 64a is narrowed, and the piezoelectric element 24 is pressed and held by the pair of surfaces 62a and 64a.
  • the ultrasonic vibrator 12 is formed symmetrically with respect to the central axis C, the longitudinal vibration generated by the piezoelectric element 24 is reduced. The vibration can be transmitted to the vibration transmitting member 14 in a more stable state.
  • the shape of the arms 66 and 68 of the frame body 22 is shown as a substantially M shape. However, this is only an example, and the path length along the shape of the arms 66 and 68 extends between both ends of the arms 66 and 68. If the shape is longer than the tied length (shortest length) and has convex portions (load portions) 66a and 68a on the inner side of the frame 22, the functions shown in the present embodiment can be achieved. .
  • the pair of arms 66 and 68 is formed in a substantially U shape. That is, the arms 66 and 68 according to this modification have a path length along the shape of the arms 66 and 68 that is longer than the length (shortest length) connecting both ends of the arms 66 and 68 and the outside of the frame body 22. It is formed in a shape having convex portions (load portions) 66b and 68b on the side (the side separated from the mounting portion 70 described later (the side opposite to the piezoelectric element 24 side)).
  • the force F applied to the arms 66 and 68 in a state where the piezoelectric element 24 is mounted on the mounting portion 70 is removed.
  • the arms 66 and 68 shown in FIG. 6B are deformed so as to return to the original state (the state shown in FIG. 6A) as shown in FIG. 6C, and the piezoelectric element 24 is sandwiched between the pressing surfaces 62a and 64a.
  • the shape of the arms 66 and 68 of the frame body 22 is shown as a substantially U-shape, but this is only an example, and the path length along the shape of the arms 66 and 68 corresponds to the ends of the arms 66 and 68.
  • the function shown in this embodiment can be achieved as long as it is longer than the length of the ends and has the convex portions 66b and 68b on the outer side of the frame body 22.
  • FIGS. 7A and 7B Each of the pair of arms 66 and 68 shown in FIGS. 5A, 5C, 6A, and 6C is not extended in parallel to the axial direction of the central axis C of the vibration transmitting member 14, but is inclined. ing.
  • the pair of arms 66 and 68 both extend in parallel to the axial direction of the central axis C of the vibration transmitting member 14.
  • the arms 66 and 68 are pulled by applying a force F along the axial direction of the central axis C of the vibration transmitting member 14.
  • a force F is applied by pulling a portion bent in a substantially L shape of a connecting portion between the arms 66 and 68 and the first pressing portion 62 and a connecting portion between the arms 66 and 68 and the second pressing portion 64.
  • the space between the pressing surfaces 62 a and 64 a can be increased, so that the piezoelectric element 24 can be mounted on the mounting portion 70.
  • FIG. 7C is a further modification of the ultrasonic transducer 12 shown in FIGS. 7A and 7B.
  • the ultrasonic transducer 12 shown in FIG. 7B and the ultrasonic transducer 12 shown in FIG. 7C have different widths of the arms 66 and 68. That is, the width t1 of the arms 66 and 68 of the ultrasonic transducer 12 shown in FIG. 7B is larger than the width t2 of the arms 66 and 68 of the ultrasonic transducer 12 shown in FIG. 7C.
  • the arms 66 and 68 have a structure in which the pressing surfaces 62a and 64a of the first and second pressing portions 62 and 64 are maintained at a predetermined distance. If the same material having the same thickness and the same processing is used, The larger the widths 66 and 68, the greater the pressing force against the piezoelectric element 24. Therefore, the ultrasonic vibrator 12 shown in FIG. 7B has a higher resonance frequency than the ultrasonic vibrator 12 shown in FIG. 7C. Thus, for example, the resonance frequency of the ultrasonic transducer 12 can be adjusted by changing the widths of the arms 66 and 68.
  • the capacitance of the ultrasonic transducer 12 increases, and when the pressing force decreases, the capacitance decreases. For this reason, by monitoring the electrostatic capacitance of the ultrasonic transducer 12, it is possible to recognize the increase or decrease of the pressing force when adjusting the pressing force of the piezoelectric element 24 by the pressing surfaces 62a and 64a, and to specify the resonance frequency. it can.
  • the second pressing portion 64 when shape processing is performed to form a recess 64b that crushes a part of the second pressing portion 64, the second pressing portion 64 is plastically deformed. At this time, the pressing surface 64 a of the second pressing portion 64 can be moved toward the pressing surface 62 a of the first pressing portion 62. Therefore, the distance between the pressing surfaces 62a and 64a of the first and second pressing portions 62 and 64 can be reduced, and the pressing force against the piezoelectric element 24 can be increased. In addition, the ultrasonic transducer 12 shown in FIG. 7D can increase the resonance frequency.
  • a laser or the like is used while holding the ultrasonic transducer 12 so as to suppress deformation.
  • Heat treatment can be performed in a direction in which the elastic modulus of the frame body 22 is increased.
  • the resonance frequency of the ultrasonic transducer 12 after the heat treatment can be made higher than that before the heat treatment.
  • heat treatment is performed in a direction that lowers the elastic modulus by tempering a part of the frame body 22 using a laser or the like. be able to.
  • the resonance frequency of the ultrasonic transducer 12 after the heat treatment can be made lower than that before the heat treatment.
  • These heat treatments may be performed only on the arms 66 and 68.
  • the vibration characteristics of the ultrasonic vibrator 12 can be adjusted after the ultrasonic vibrator 12 is assembled.
  • the resonance frequency of the ultrasonic transducer 12 can be adjusted by the shape of the frame body 22 and the processing method.
  • protrusions (load portions) 72a and 72b protrude outward from the central axis C at the front and rear ends of the pair of arms 66 and 68 shown in FIG. 7A, respectively.
  • 72c, 72d are integrally formed.
  • a force F is applied to the protrusions 72a, 72b, 72c, 72d along the axial direction of the center axis C of the vibration transmitting member 14 to pull it. Therefore, the pair of arms 66 and 68 can be extended in the axial direction of the central axis C.
  • a force F may be applied to the connecting portion between the arms 66 and 68 and the first and second pressing portions 62 and 64, and the force F is applied to the protrusions 72a, 72b, 72c and 72d. Since the force F may be applied to both, the space between the pressing surfaces 62a and 64a can be more easily widened. For this reason, the piezoelectric element 24 can be arranged in the mounting portion 70 more easily than the case shown in FIG. 7A.
  • the protrusions 72a, 72b, 72c, 72d are removed by attaching the piezoelectric element 24 to the attachment portion 70 and then cutting the protrusions 72a, 72b, 72c, 72d. Further, the projections 72a, 72b, 72c, 72d are placed on the arms 66, 68, and the projections 72a, 72b, 72c, 72d are first and second jaws 152, 154 (FIG. 13A and FIG. 13B) may be used as an attachment portion for attachment.
  • the piezoelectric element 24 may be inserted into the mounting portion 70 by applying heat to the frame body 22 to cause linear expansion. As the frame 22 is cooled, a pressing force is applied to the piezoelectric element 24 by the pressing portions 62 and 64. In this case, if necessary, the piezoelectric element 24 may be polarized after the frame 22 is cooled (after the ultrasonic transducer 12 is assembled).
  • the frame 22 shown in FIGS. 5A to 8C is formed in a plate shape
  • the first and second pressing portions 62 and 64 of the present modification shown in FIG. 9 are both formed in a substantially cylindrical shape.
  • the pair of arms 66 and 68 are drawn so as to extend in parallel to the axial direction of the central axis C of the vibration transmitting member 14, they are formed like the arms shown in FIGS. 5C and 6C. It is also suitable.
  • FIG. 10A in the ultrasonic treatment instrument 10 of the present embodiment, the central axis C0 of the vibration transmitting member 14 and the central axis C1 of the mounting portion 88 where the piezoelectric element 24 is disposed are shifted from each other. .
  • the frame body 22 includes first and second pressing portions 82 and 84 and a connecting portion 86.
  • the first and second pressing portions 82 and 84 have pressing surfaces 82a and 84a that are parallel to each other.
  • the connecting portion 86 has a movement restricting surface 86a that is orthogonal to the pressing surfaces 82a and 84a of the first and second pressing portions 82 and 84 and restricts the piezoelectric element 24 from moving downward in FIG. 10A.
  • a mounting portion 88 which is a space in which the piezoelectric element 24 is mounted and fixed, is formed by the pressing surfaces 82a and 84a of the first and second pressing portions 82 and 84 and the movement restricting surface 86a of the connecting portion 86. ing.
  • An opening 88a is formed on the side of the connecting portion 86 that faces the movement restricting surface 86a. That is, the mounting portion 88 has an opening 88 a in a direction intersecting with the central axis C of the vibration transmitting member 14.
  • the back surface with respect to the movement control surface 86a among the connection parts 86 is the energy load surface 86b.
  • a mounting portion 88 which is a space in which the piezoelectric element 24 is mounted and fixed, is formed by the pressing surfaces 82a and 84a of the first and second pressing portions 82 and 84 and the movement restricting surface 86a of the connecting portion 86. ing. That is, the mounting portion 88 is a rectangular parallelepiped space formed by the first and second pressing portions 82 and 84 and the connecting portion 86, and on the side facing the movement restricting surface 86 a of the connecting portion 86. Opening 88a is formed.
  • the pressing surfaces 82a and 84a of the first and second pressing portions 82 and 84 are formed by plastically deforming the energy load surface 86b of the connecting portion 86 to form the recess 86c.
  • the pressing force against the piezoelectric element 24 can be increased and the piezoelectric element 24 can be fixed to the mounting portion 88.
  • the piezoelectric element 24 may be held between the pressing surfaces 82 a and 84 a of the first and second pressing portions 82 and 84. Since the recess 86 d is formed by plastic deformation of the connecting portion 86, the piezoelectric element 24 can be fixed to the mounting portion 88.
  • the frame body 22 of the ultrasonic treatment device 10 of the present modification has first and second mounting portions 102 and 104, and the first piezoelectric element 24a is provided on the first mounting portion 102.
  • the second piezoelectric element 24 b is disposed in the second mounting portion 104.
  • the center axis C0 of the vibration transmitting member 14 and the center axes C1 and C2 of the mounting portions 102 and 104 where the piezoelectric elements 24a and 24b are disposed are shifted from each other.
  • first and second mounting portions 102 and 104 are formed in the same manner as the mounting portion 88 shown in FIG. 10A, description thereof will be omitted. It is preferable to use the same first and second piezoelectric elements 24a and 24b.
  • the central axes C1 and C2 are symmetric with respect to the central axis C0 of the vibration transmitting member 14.
  • the first mounting portion 102 includes first and second pressing portions 112 and 114 in which the first piezoelectric element 24a is disposed.
  • the second mounting portion 104 includes first and second pressing portions 116 and 118 in which the second piezoelectric element 24b is disposed.
  • a column 120 formed coaxially with the vibration transmission member 14 is disposed between the first and second mounting portions 102 and 104. That is, the first pressing portions (ribs) 112 and 116 of the first and second mounting portions 102 and 104, and the second pressing portions (ribs) 114 and 118 of the first and second mounting portions 102 and 104, respectively. Are connected by a column 120.
  • the column 120 is irradiated with laser light LB (not shown) (see FIG. 1B) for a very short time, thereby changing the metal crystal of the column 120 or causing laser surface hardening. Therefore, a pressing force that presses the first piezoelectric element 24a between the first and second pressing portions 112 and 114 of the first mounting portion 102, and a first and second pressing force of the second mounting portion 104. The pressing force for pressing the second piezoelectric element 24b between the portions 116 and 118 increases.
  • first piezoelectric element 24 a can be fixed to the first mounting portion 102 and the second piezoelectric element 24 b can be fixed to the second mounting portion 104 by other methods.
  • shape processing is performed to form the recesses 112a and 116a in the first pressing portions 112 and 116, and the recesses 114a and 118a in the second pressing portions 114 and 118, respectively. That is, FIG. 11C is an example in which both the first and second pressing portions 112, 114, 116, and 118 are deformed.
  • the first piezoelectric element 24a is fixed to the first mounting portion 102 and the second piezoelectric element 24b is fixed to the second mounting portion 104. be able to.
  • a second modification of the third embodiment will be described with reference to FIGS. 12A to 12C.
  • a frame 22 having a cylindrical structure of first and second pressing portions 62 and 64 shown in FIG. 9 can be used.
  • the column 120 is preferably disposed on the central axis of the frame 22 having a cylindrical structure.
  • the mounting portions 102, 104 (, 106, 108) and the piezoelectric elements 24a, 24b (, 24c, 24d) of the frame 22 are, for example, as shown in FIGS. 12A to 12C, the first and second pressing surfaces 62a, 64a. It is preferable that the cross section in between is divided
  • the first and second mounting portions 102 and 104 are formed between the first and second pressing portions 62 and 64, and the first and second mounting portions 102 and 104 Between them, plate-like partition walls (ribs) 122 and 124 extending from the column 120 are formed.
  • the partition walls 122 and 124 are formed in the first and second mounting portions 102 and 104, the piezoelectric elements 24a and 24b are vibrated in a desired state such as the same phase or opposite phase. Can do.
  • first, second, and third mounting portions 102, 104, and 106 are formed between the first and second pressing portions 62 and 64, respectively.
  • plate-like partition walls ( Ribs) 122, 124, 126 are formed between the first and second mounting portions 102, 104, between the second and third mounting portions 104, 106, and between the third and first mounting portions 106, 102.
  • Each partition wall 122, 124, 126 extends from the column 120.
  • the piezoelectric elements 24a, 24b, 24c are in phase with each other.
  • the vibration transmitting member 14 can be vibrated to a desired state by giving a phase difference to each of them, or setting one of them to an opposite phase.
  • first to fourth mounting portions 102, 104, 106, 108 are formed between the first and second pressing portions 62, 64. Between the first and second mounting portions 102, 104, between the second and third mounting portions 104, 106, between the third and fourth mounting portions 106, 108, and between the fourth and first mounting portions. 108 and 102 are partitioned by plate-like partition walls (ribs) 122, 124, 126, and 128, respectively. Each partition wall 122, 124, 126, 128 extends from the column 120.
  • the piezoelectric elements 24a, 24b, 24c, and 24d are in phase with each other.
  • the vibration transmitting member 14 can be vibrated to a desired state, for example, by giving a phase difference to each of them, or setting one of them to an opposite phase.
  • the piezoelectric elements 24a, 24b are drawn in the same shape, but may not be the same shape.
  • the partition walls 122 and 124 are drawn as a single plate passing through the column 120, but it is also preferable that the column 120 be bent with a bent portion.
  • the position of the column 120 does not have to be at the center of the mounting portions 102 and 104 (, 106, 108), and may be at a position shifted from the center.
  • the ultrasonic treatment apparatus 150 As shown in FIGS. 13A and 13B, the ultrasonic treatment apparatus 150 according to the present embodiment is disposed on the first and second jaws 152 and 154 and the first and second jaws 152 and 154, respectively. And ultrasonic treatment instruments 156 and 158.
  • the ultrasonic treatment instrument 156 includes an ultrasonic transducer 162a, a vibration transmission member 164a, and a horn 166a.
  • the ultrasonic treatment instrument 158 includes an ultrasonic transducer 162b, a vibration transmission member 164b, and a horn 166b.
  • the ultrasonic treatment apparatus 10 (see FIGS. 8A to 8C) having protrusions 72a, 72b, 72c and 72d integrally with the arms 66 and 68 may be used.
  • the first jaw 152 is the lower side in FIGS. 13A and 13B
  • the second jaw 154 is the upper side of FIGS. 13A and 13B
  • the first and second jaws 152, 154 are pivoted by a pin 170. Has been.
  • the first jaw 152 is longer than the entire length of the ultrasonic treatment instrument 156 and has a substantially U-shaped cross section, that is, a space is formed between a pair of wall surfaces.
  • An ultrasonic treatment instrument 156 in which the ultrasonic transducer 162a, the horn 166a, and the vibration transmission member 164a are integrated is detachably fixed in the space between the pair of wall surfaces.
  • the tip of the first jaw 152 (distal end with respect to the pin 170) is provided with a non-slip 158 to prevent the living tissue LT from sliding relative to the tip of the first jaw 152. Yes.
  • the second jaw 154 detachably fixes an ultrasonic treatment instrument 158 in which an ultrasonic transducer 162b, a horn 166b, and a vibration transmission member 164b are integrated between a pair of wall surfaces.
  • the vibration transmission member 164 b of the ultrasonic treatment instrument 158 disposed on the second jaw 154 protrudes toward the distal end side with respect to the second jaw 154.
  • the end effectors of the vibration transmitting members 164a and 164b approach.
  • FIG. 13A when the first and second jaws 152 and 154 are opened, the end effectors of the vibration transmitting members 164a and 164b move away.
  • the opening and closing operations of the first and second jaws 152 and 154 can be performed using wires connected to the first and second jaws 152 and 154.
  • any of those described in the first to third embodiments may be used. Then, longitudinal vibrations having the same frequency and opposite phases may be applied to the two end effectors, or both longitudinal vibrations and lateral vibrations may be applied.
  • the ultrasonic treatment instruments 156 and 158 can be reduced in size, the ultrasonic treatment instruments 156 and 158 can be disposed directly on the jaws 152 and 154. Therefore, the structure of the ultrasonic treatment apparatus 150 as a whole can be simplified and reduced in weight. In addition, since energy is directly applied to the living tissue from the two end effectors, it is possible to ensure a sufficient temperature rise to treat the living tissue even if the gripping force between the jaws 152 and 154 is reduced.
  • the ultrasonic treatment tools 156 and 158 can be arranged at the tips of the jaws 152 and 154, the degree of freedom in designing the entire ultrasonic treatment apparatus 150 can be increased.
  • the degree of invasiveness to a patient can be reduced by the configuration of a therapeutic instrument that is easily introduced into a living tissue to be treated through the use of the device, and the fatigue during operation of the ultrasonic treatment apparatus 150 can be reduced by reducing the weight. .
  • the ultrasonic treatment apparatus 210 includes an endoscope 212, a basket forceps 214, and an ultrasonic treatment instrument 216.
  • the basket forceps 214 is connected to a flexible portion 222 having a channel 223, a handle 224 disposed at a proximal end portion of the flexible portion 222, and a handle 224 via a wire (not shown).
  • the basket 226 is formed of, for example, four wires 232 a, 232 b, 232 c, and 232 d, similar to a basket of general basket forceps, and can be housed inside the channel 223 or protrude from the tip of the channel 223. it can.
  • the ultrasonic treatment instrument 216 includes an ultrasonic transducer 242 and a vibration transmission member 244.
  • An ultrasonic transducer 242 is embedded at the distal end of the flexible portion 222, and the vibration transmitting member 244 protrudes from the distal end of the flexible portion 222.
  • the ultrasonic treatment tool 216 is arranged in parallel with the channel 223 of the flexible portion 222 of the basket forceps 214. Moreover, it is preferable that the ultrasonic treatment instrument 216 is movable along the axial direction of the flexible portion 222. If it does so, the distal end of the vibration transmission member 244 can be taken in and out with respect to the front-end
  • the endoscope 212 has an insertion portion 252 having a channel (not shown) in which a basket forceps 214 and a guide wire (not shown) are disposed.
  • the distal end portion of the insertion portion 252 of the endoscope 212 can be inserted so as to face the papilla of the duodenum.
  • a guide wire disposed through the channel of the insertion portion 252 of the endoscope 212 can be introduced into a calculus (biliary calculus) B in the bile duct in the duodenum.
  • the basket forceps 214 is introduced in a state where the basket 226 is housed in the flexible portion 222 along the guide wire disposed in the channel of the endoscope 212. And the front-end
  • the handle 224 is operated to cause the basket 226 of the basket forceps 214 to protrude from the tip of the flexible portion 222, and the calculus B is placed in the basket 226.
  • the handle 224 is operated to bring the calculus B closer to the tip of the flexible portion 222 with the basket 226.
  • the distal end of the vibration transmitting member 244 of the ultrasonic treatment instrument 216 is brought into contact with the calculus B.
  • the calculus B is tightened with the wires 232a, 232b, 232c, and 232d, so that ultrasonic vibration is transmitted from the vibration transmission member 244 to the calculus B in this state.
  • the rigidity balance of the calculus B can be broken. For this reason, the calculus B is easily crushed. That is, normally, the calculus B is crushed by the tightening force of the wires 232a, 232b, 232c, and 232d of the basket 226, but by further applying a force due to ultrasonic vibration to the calculus B with the ultrasonic treatment tool 216, it is easier. Stone B can be crushed.
  • the wires 232a, 232b, 232c, and 232d constituting the basket 226 are displaced from the vibration transmitting member 244 even when the vibration transmitting member 244 comes into contact with each other, so that the wires 232a, 232b, 232d, Vibration is prevented from being directly applied to 232c and 232d.
  • the patient can be treated without performing a laparotomy. And minimally invasive treatment.

Abstract

An ultrasound transducer (12) for an ultrasound treatment tool for treating living tissue has a piezoelectric element (24 (24a, 24b)) that generates ultrasonic vibrations, and a frame (22) capable of transmitting the vibrations generated by the piezoelectric element to a vibration-transmitting member (14). The frame has a mounting section (48) in which the piezoelectric element is mounted laterally with respect to the central axis (C) of the vibration-transmitting member which comes into contact with living tissue.

Description

超音波振動子、超音波処置具、超音波処置装置、及び、超音波振動子の組立方法Ultrasonic vibrator, ultrasonic treatment tool, ultrasonic treatment apparatus, and method of assembling ultrasonic vibrator
 この発明は、生体組織を処置する超音波処置具用の超音波振動子、超音波処置具、超音波処置装置、及び、生体組織を処置する超音波処置具用の超音波振動子の組立方法に関する。 The present invention relates to an ultrasonic transducer for an ultrasonic treatment instrument for treating a biological tissue, an ultrasonic treatment instrument, an ultrasonic treatment apparatus, and a method for assembling an ultrasonic transducer for an ultrasonic treatment instrument for treating a biological tissue. About.
 例えば米国特許出願公開第2009/0193898号明細書には、振動伝達部材の軸方向に一致する軸部材が円板状の圧電素子の中心を貫通するように配設された超音波振動子が開示されている。 
 例えば米国特許出願公開第2009/0216157号明細書には、超音波振動子を含む処置具本体(procedure tool main body)と、可撓管部(flexible pipe portion)とを有する超音波処置具(ultrasonic procedure tool)が開示されている。このため、内視鏡の可撓管のチャンネルを通して超音波処置具を処置対象の生体組織に対峙させることができる。 
 例えば特開2005-94552号公報には、圧電素子を配置した枠体(共振体)に熱を加えることによって、圧電素子を枠体に焼き嵌めした超音波振動子が開示されている。
For example, US Patent Application Publication No. 2009/0193898 discloses an ultrasonic transducer in which a shaft member that coincides with the axial direction of a vibration transmitting member is disposed so as to penetrate the center of a disk-shaped piezoelectric element. Has been.
For example, U.S. Patent Application Publication No. 2009/0216157 discloses an ultrasonic treatment device (ultrasonic treatment device) having a procedure tool main body including an ultrasonic transducer and a flexible pipe portion. procedure tool) is disclosed. For this reason, the ultrasonic treatment instrument can be opposed to the biological tissue to be treated through the channel of the flexible tube of the endoscope.
For example, Japanese Patent Application Laid-Open No. 2005-94552 discloses an ultrasonic vibrator in which a piezoelectric element is shrink-fitted to the frame body by applying heat to the frame body (resonator) on which the piezoelectric element is disposed.
 米国特許出願公開第2009/0216157号明細書には、どのような形状の超音波振動子を用いるのか明示されていないが、米国特許出願公開第2009/0216157号明細書の超音波振動子として、米国特許出願公開第2009/0193898号明細書に開示された超音波振動子を用いると、円板状の圧電素子の中心に軸部材が配設されるので、小型化には限界がある。 
 また、特開2005-94552号公報では、枠体に固定する際に枠体及び圧電素子に熱を加えることになる。このため、超音波振動子の共振周波数等の振動性能にバラツキが生じ易くなる。
Although it is not specified in US Patent Application Publication No. 2009/0216157 what kind of ultrasonic transducer is used, as an ultrasonic transducer of US Patent Application Publication No. 2009/0216157, When the ultrasonic transducer disclosed in US Patent Application Publication No. 2009/0193898 is used, the shaft member is disposed at the center of the disk-shaped piezoelectric element, so that there is a limit to downsizing.
In Japanese Patent Application Laid-Open No. 2005-94552, heat is applied to the frame body and the piezoelectric element when the frame body is fixed. For this reason, the vibration performance such as the resonance frequency of the ultrasonic vibrator is likely to vary.
 この発明は、全体として小型化を図りつつ超音波振動の振動性能を安定させることが可能な、生体組織を処置する超音波処置具用の超音波振動子、超音波処置具、超音波処置装置、及び、生体組織を処置する超音波処置具用の超音波振動子の組立方法を提供することを目的とする。 The present invention provides an ultrasonic transducer, an ultrasonic treatment instrument, and an ultrasonic treatment apparatus for an ultrasonic treatment instrument for treating a living tissue, capable of stabilizing the vibration performance of ultrasonic vibration while reducing the overall size. And it aims at providing the assembly method of the ultrasonic transducer | vibrator for ultrasonic treatment tools which treats a biological tissue.
 本発明の、生体組織を処置する超音波処置具用の超音波振動子は、超音波振動を発生する圧電素子と、生体組織に当接する振動伝達部材の中心軸に対して側方から前記圧電素子が装着される装着部を有し、前記装着部に前記圧電素子を装着した状態で前記圧電素子に押圧力を付与し前記圧電素子で発生させた振動を振動伝達部材に伝達可能な枠体とを有する。 An ultrasonic transducer for an ultrasonic treatment instrument for treating a biological tissue according to the present invention includes a piezoelectric element that generates ultrasonic vibration and the piezoelectric element from a side with respect to a central axis of a vibration transmitting member that contacts the biological tissue. A frame having a mounting portion to which an element is mounted, and capable of transmitting a vibration generated by the piezoelectric element to the vibration transmitting member by applying a pressing force to the piezoelectric element in a state where the piezoelectric element is mounted on the mounting portion. And have.
図1Aは、第1実施形態に係る超音波処置具の超音波振動子の枠体に圧電素子を装着する前の状態を示す概略的な平面図である。FIG. 1A is a schematic plan view showing a state before a piezoelectric element is mounted on a frame of an ultrasonic transducer of the ultrasonic treatment apparatus according to the first embodiment. 図1Bは、第1実施形態に係る超音波処置具の超音波振動子の枠体に圧電素子を装着した状態を示す概略的な平面図である。FIG. 1B is a schematic plan view showing a state in which a piezoelectric element is attached to the frame of the ultrasonic transducer of the ultrasonic treatment apparatus according to the first embodiment. 図2は、第1実施形態に係る超音波処置具の超音波振動子に配設される圧電素子の一部を示す概略的な縦断面図である。FIG. 2 is a schematic longitudinal sectional view showing a part of the piezoelectric element disposed in the ultrasonic transducer of the ultrasonic treatment apparatus according to the first embodiment. 図3は、第1実施形態の第1変形例に係る超音波処置具を示す概略的な斜視図である。FIG. 3 is a schematic perspective view showing an ultrasonic treatment apparatus according to a first modification of the first embodiment. 図4は、第1実施形態の第2変形例に係る超音波処置具を示す概略的な斜視図である。FIG. 4 is a schematic perspective view showing an ultrasonic treatment apparatus according to a second modification of the first embodiment. 図5Aは、第2実施形態に係る超音波処置具の超音波振動子の枠体に圧電素子を装着する前の状態を示す概略的な斜視図である。FIG. 5A is a schematic perspective view illustrating a state before a piezoelectric element is attached to a frame of an ultrasonic transducer of the ultrasonic treatment apparatus according to the second embodiment. 図5Bは、第2実施形態に係る超音波処置具の超音波振動子の枠体に圧電素子を装着するために、アームを延ばした状態を示す概略的な斜視図である。FIG. 5B is a schematic perspective view showing a state in which an arm is extended in order to attach the piezoelectric element to the frame of the ultrasonic transducer of the ultrasonic treatment apparatus according to the second embodiment. 図5Cは、第2実施形態に係る超音波処置具の超音波振動子の枠体に圧電素子を装着した状態を示す概略的な斜視図である。FIG. 5C is a schematic perspective view illustrating a state in which a piezoelectric element is attached to a frame of an ultrasonic transducer of the ultrasonic treatment apparatus according to the second embodiment. 図6Aは、第2実施形態の第1変形例に係る超音波処置具の超音波振動子の枠体に圧電素子を装着する前の状態を示す概略的な斜視図である。FIG. 6A is a schematic perspective view showing a state before a piezoelectric element is attached to a frame of an ultrasonic transducer of an ultrasonic treatment apparatus according to a first modification of the second embodiment. 図6Bは、第2実施形態の第1変形例に係る超音波処置具の超音波振動子の枠体に圧電素子を装着するために、アームを延ばした状態を示す概略的な斜視図である。FIG. 6B is a schematic perspective view showing a state in which an arm is extended in order to attach the piezoelectric element to the frame of the ultrasonic transducer of the ultrasonic treatment apparatus according to the first modification of the second embodiment. . 図6Cは、第2実施形態の第1変形例に係る超音波処置具の超音波振動子の枠体に圧電素子を装着した状態を示す概略的な斜視図である。FIG. 6C is a schematic perspective view showing a state in which a piezoelectric element is attached to a frame of an ultrasonic transducer of an ultrasonic treatment apparatus according to a first modification of the second embodiment. 図7Aは、第2実施形態の第2変形例に係る超音波処置具の超音波振動子の枠体に圧電素子を装着した状態を示す概略的な斜視図である。FIG. 7A is a schematic perspective view showing a state in which a piezoelectric element is attached to a frame of an ultrasonic transducer of an ultrasonic treatment apparatus according to a second modification of the second embodiment. 図7Bは、第2実施形態の第2変形例に係る超音波処置具の超音波振動子の枠体に圧電素子を装着した状態を示す概略的な平面図である。FIG. 7B is a schematic plan view showing a state in which a piezoelectric element is attached to the frame of the ultrasonic transducer of the ultrasonic treatment apparatus according to the second modification of the second embodiment. 図7Cは、第2実施形態の第2変形例に係る超音波処置具の超音波振動子の枠体に圧電素子を装着した状態を示す概略的な平面図である。FIG. 7C is a schematic plan view showing a state in which a piezoelectric element is attached to the frame of the ultrasonic transducer of the ultrasonic treatment apparatus according to the second modification of the second embodiment. 図7Dは、第2実施形態の第2変形例に係る超音波処置具の超音波振動子の枠体に圧電素子を装着した状態を示す概略的な平面図である。FIG. 7D is a schematic plan view showing a state in which a piezoelectric element is attached to a frame of an ultrasonic transducer of an ultrasonic treatment apparatus according to a second modification of the second embodiment. 図8Aは、第2実施形態の第3変形例に係る超音波処置具の超音波振動子の枠体に圧電素子を装着する前の状態を示す概略的な斜視図である。FIG. 8A is a schematic perspective view showing a state before a piezoelectric element is attached to a frame of an ultrasonic transducer of an ultrasonic treatment apparatus according to a third modification of the second embodiment. 図8Bは、第2実施形態の第3変形例に係る超音波処置具の超音波振動子の枠体に圧電素子を装着するために、アームを延ばした状態を示す概略的な斜視図である。FIG. 8B is a schematic perspective view showing a state in which an arm is extended in order to attach the piezoelectric element to the frame of the ultrasonic transducer of the ultrasonic treatment apparatus according to the third modification of the second embodiment. . 図8Cは、第2実施形態の第3変形例に係る超音波処置具の超音波振動子の枠体に圧電素子を装着した後、アームに一体的に形成された突起を除去した状態を示す概略的な斜視図である。FIG. 8C shows a state in which the protrusion formed integrally with the arm is removed after the piezoelectric element is attached to the frame of the ultrasonic transducer of the ultrasonic treatment device according to the third modification of the second embodiment. It is a schematic perspective view. 図9は、第2実施形態の第4変形例に係る超音波処置具の超音波振動子の枠体に圧電素子を装着する前の状態を示す概略的な斜視図である。FIG. 9 is a schematic perspective view showing a state before the piezoelectric element is attached to the frame of the ultrasonic transducer of the ultrasonic treatment apparatus according to the fourth modification of the second embodiment. 図10Aは、第3実施形態に係る超音波処置具の超音波振動子の枠体に圧電素子を装着する前の状態を示す概略的な平面図である。FIG. 10A is a schematic plan view showing a state before a piezoelectric element is attached to the frame of the ultrasonic transducer of the ultrasonic treatment apparatus according to the third embodiment. 図10Bは、第3実施形態に係る超音波処置具の超音波振動子の枠体に圧電素子を装着した状態を示す概略的な斜視図である。FIG. 10B is a schematic perspective view showing a state in which a piezoelectric element is attached to a frame of an ultrasonic transducer of the ultrasonic treatment apparatus according to the third embodiment. 図10Cは、第3実施形態に係る超音波処置具の超音波振動子の枠体に圧電素子を装着した状態を示す概略的な斜視図である。FIG. 10C is a schematic perspective view showing a state in which a piezoelectric element is attached to a frame of an ultrasonic transducer of the ultrasonic treatment apparatus according to the third embodiment. 図11Aは、第3実施形態の第1変形例に係る超音波処置具の超音波振動子の枠体に圧電素子を装着する前の状態を示す概略的な平面図である。FIG. 11A is a schematic plan view showing a state before a piezoelectric element is attached to the frame of the ultrasonic transducer of the ultrasonic treatment apparatus according to the first modification of the third embodiment. 図11Bは、第3実施形態の第1変形例に係る超音波処置具の超音波振動子の枠体に圧電素子を装着した状態を示す概略的な斜視図である。FIG. 11B is a schematic perspective view showing a state in which a piezoelectric element is attached to a frame of an ultrasonic transducer of an ultrasonic treatment apparatus according to a first modification of the third embodiment. 図11Cは、第3実施形態の第1変形例に係る超音波処置具の超音波振動子の枠体に圧電素子を装着した状態を示す概略的な斜視図である。FIG. 11C is a schematic perspective view showing a state in which a piezoelectric element is attached to a frame of an ultrasonic transducer of an ultrasonic treatment apparatus according to a first modification of the third embodiment. 図12Aは、第3実施形態の第2変形例に係る超音波処置具の超音波振動子の枠体に圧電素子を装着した状態を示す概略的な横断面図である。FIG. 12A is a schematic cross-sectional view showing a state in which a piezoelectric element is attached to a frame of an ultrasonic transducer of an ultrasonic treatment apparatus according to a second modification of the third embodiment. 図12Bは、第3実施形態の第2変形例に係る超音波処置具の超音波振動子の枠体に圧電素子を装着した状態を示す概略的な横断面図である。FIG. 12B is a schematic cross-sectional view showing a state in which a piezoelectric element is attached to a frame of an ultrasonic transducer of an ultrasonic treatment apparatus according to a second modification of the third embodiment. 図12Cは、第3実施形態の第2変形例に係る超音波処置具の超音波振動子の枠体に圧電素子を装着した状態を示す概略的な横断面図である。FIG. 12C is a schematic cross-sectional view showing a state in which a piezoelectric element is attached to the frame of the ultrasonic transducer of the ultrasonic treatment apparatus according to the second modification of the third embodiment. 図13Aは、第4実施形態に係る、1対のジョーを有する超音波処置具の1対の振動伝達部材同士を開いて、振動伝達部材同士の間に生体組織を配置した状態を示す概略的な斜視図である。FIG. 13A is a schematic diagram illustrating a state in which a pair of vibration transmission members of an ultrasonic treatment instrument having a pair of jaws according to the fourth embodiment are opened, and a living tissue is disposed between the vibration transmission members. FIG. 図13Bは、第4実施形態に係る、1対のジョーを有する超音波処置具の1対の振動伝達部材同士を閉じた状態を示す概略的な斜視図である。FIG. 13B is a schematic perspective view showing a state in which a pair of vibration transmission members of an ultrasonic treatment device having a pair of jaws according to the fourth embodiment are closed. 図14Aは、第5実施形態に係る、バスケット鉗子を示す概略図である。FIG. 14A is a schematic view showing basket forceps according to the fifth embodiment. 図14Bは、第5実施形態に係るバスケット鉗子の先端部を拡大した状態を示す概略的な縦断面図である。FIG. 14B is a schematic vertical cross-sectional view showing a state in which the tip of the basket forceps according to the fifth embodiment is enlarged. 図14Cは、第5実施形態に係るバスケット鉗子のバスケットを、内視鏡の挿入部を通して十二指腸の乳頭を通して十二指腸の胆管の内部に配置した状態を示す概略図である。FIG. 14C is a schematic view showing a state in which the basket of the basket forceps according to the fifth embodiment is disposed inside the duodenal bile duct through the duodenal papilla through the insertion portion of the endoscope.
 以下、図面を参照しながらこの発明を実施するための形態について説明する。 
 第1の実施の形態について図1Aから図2を用いて説明する。 
 図1A及び図1Bに示すように、この実施形態に係る超音波処置具(ultrasonic treatment device)又は超音波外科器具(ultrasonic surgical device)10は、超音波振動子(ultrasonic transducer)12と、振動伝達部材(vibration transmission member)14と、ホーン16とを有する。この実施形態では、振動伝達部材14及びホーン16の中心軸Cは、超音波振動子12の後述する圧電素子(piezoelectric element)24の中心軸に一致するように配置されている。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
A first embodiment will be described with reference to FIGS. 1A to 2.
As shown in FIGS. 1A and 1B, an ultrasonic treatment device or an ultrasonic surgical device 10 according to this embodiment includes an ultrasonic transducer 12 and vibration transmission. It has a vibration transmission member 14 and a horn 16. In this embodiment, the center axis C of the vibration transmitting member 14 and the horn 16 is disposed so as to coincide with the center axis of a piezoelectric element 24 described later of the ultrasonic transducer 12.
 なお、超音波振動子12とホーン16との間が例えば雌雄のネジにより着脱可能であり、ホーン16と振動伝達部材14との間が例えば雌雄のネジにより着脱可能であっても良いし、超音波振動子12にホーン16が一体化され、又は、振動伝達部材14にホーン16が一体化されていても良い。また、超音波振動子12に振動伝達部材14が着脱可能に直接接続、又は一体化される構造であっても良い。更には、超音波振動子12と振動伝達部材14とホーン16とが一体化されていても良い。 The ultrasonic transducer 12 and the horn 16 may be detachable with, for example, male and female screws, and the horn 16 and the vibration transmitting member 14 may be detachable with, for example, male and female screws. The horn 16 may be integrated with the sound wave vibrator 12, or the horn 16 may be integrated with the vibration transmission member 14. Moreover, the structure which the vibration transmission member 14 is directly connected to the ultrasonic transducer | vibrator 12 so that attachment or detachment is possible, or may be sufficient. Furthermore, the ultrasonic transducer 12, the vibration transmission member 14, and the horn 16 may be integrated.
 超音波振動子12は、枠体22と、電気エネルギを超音波振動に変換する圧電素子24とを有する。圧電素子24は種々のものを使用できる。圧電素子24は板材であっても良いし、積層体であっても良い。図2に示すように、この実施形態の圧電素子24は、例えば圧電セラミックスの一種としてそれぞれ矩形状のPZT材からなる単位圧電素子26が電極28a,28bを挟むように積層されて形成されている。単位圧電素子26の積層方向は、圧電素子24が枠体22に装着された状態で、超音波振動子12の振動伝達部材14及びホーン16の中心軸Cに沿っている。なお、電極28a,28bはそれぞれリード線30a,30bを介して電源32に接続されている。 The ultrasonic vibrator 12 includes a frame body 22 and a piezoelectric element 24 that converts electric energy into ultrasonic vibration. Various piezoelectric elements 24 can be used. The piezoelectric element 24 may be a plate material or a laminate. As shown in FIG. 2, the piezoelectric element 24 of this embodiment is formed by laminating unit piezoelectric elements 26 made of rectangular PZT materials, for example, as a kind of piezoelectric ceramic so as to sandwich the electrodes 28a and 28b. . The unit piezoelectric element 26 is laminated in the direction along the center axis C of the vibration transmitting member 14 of the ultrasonic transducer 12 and the horn 16 in a state where the piezoelectric element 24 is mounted on the frame body 22. The electrodes 28a and 28b are connected to the power source 32 via lead wires 30a and 30b, respectively.
 本実施形態の振動伝達部材14の横断面は例えば正方形等の矩形状であり、ホーン16及び超音波振動子12の枠体22の横断面は例えば長方形等の矩形状に形成されている。すなわち、超音波振動子12の枠体22は、圧電素子24を含めた状態で、その幅が厚さよりも大きい略板状に形成されている。そして、ホーン16及び超音波振動子12の枠体22の厚さは、例えば振動伝達部材14の横断面の一辺の長さに相当する。また、振動伝達部材14の横断面は、ホーン16に近接する基端側が矩形状であるが、ホーン16に対して離隔する先端側が円形状であることも好適である。 The cross section of the vibration transmission member 14 of the present embodiment is a rectangular shape such as a square, and the cross section of the frame 22 of the horn 16 and the ultrasonic transducer 12 is a rectangular shape such as a rectangle. That is, the frame 22 of the ultrasonic transducer 12 is formed in a substantially plate shape whose width is larger than the thickness, including the piezoelectric element 24. The thicknesses of the horn 16 and the frame 22 of the ultrasonic transducer 12 correspond to, for example, the length of one side of the cross section of the vibration transmitting member 14. Further, in the cross section of the vibration transmitting member 14, the proximal end side close to the horn 16 is rectangular, but it is also preferable that the distal end side separated from the horn 16 is circular.
 枠体22は、振動伝達部材14及びホーン16の中心軸Cに沿って離間した第1及び第2の押圧部42,44を有する。第1及び第2の押圧部42,44は振動伝達部材14の中心軸Cに対して直交する押圧面42a,44aを有する。第1及び第2の押圧部42,44は、振動伝達部材14の中心軸Cに対して平行に形成された連結部46によって一体的に形成されている。連結部46は第1及び第2の押圧部42,44の押圧面42a,44aに対して直交し、圧電素子24が図1B中の下側に移動するのを規制する移動規制面46aを有する。そして、第1及び第2の押圧部42,44の押圧面42a,44aと連結部46の移動規制面46aとによって、圧電素子24が装着されて固定される空間である装着部48が形成されている。すなわち、装着部48は、第1及び第2の押圧部42,44と連結部46とにより形成された直方体状の空間であり、連結部46の移動規制面46aに対して対向する側には、開口48aが形成されている。すなわち、装着部48は振動伝達部材14の中心軸Cに対して交差する方向に開口48aを有する。したがって、本実施形態に係る超音波振動子12の枠体22は、第1及び第2の押圧部42,44と連結部46とにより、装着部48を囲うように略U字状に形成されている。 The frame 22 includes first and second pressing portions 42 and 44 that are separated along the center axis C of the vibration transmitting member 14 and the horn 16. The first and second pressing portions 42 and 44 have pressing surfaces 42 a and 44 a that are orthogonal to the central axis C of the vibration transmitting member 14. The first and second pressing portions 42 and 44 are integrally formed by a connecting portion 46 formed in parallel to the central axis C of the vibration transmitting member 14. The connecting portion 46 has a movement restricting surface 46a that is orthogonal to the pressing surfaces 42a and 44a of the first and second pressing portions 42 and 44 and restricts the piezoelectric element 24 from moving downward in FIG. 1B. . A mounting portion 48, which is a space in which the piezoelectric element 24 is mounted and fixed, is formed by the pressing surfaces 42a and 44a of the first and second pressing portions 42 and 44 and the movement restricting surface 46a of the connecting portion 46. ing. That is, the mounting portion 48 is a rectangular parallelepiped space formed by the first and second pressing portions 42 and 44 and the connecting portion 46, and on the side facing the movement restricting surface 46 a of the connecting portion 46. An opening 48a is formed. That is, the mounting portion 48 has an opening 48 a in a direction intersecting with the central axis C of the vibration transmitting member 14. Therefore, the frame 22 of the ultrasonic transducer 12 according to this embodiment is formed in a substantially U shape so as to surround the mounting portion 48 by the first and second pressing portions 42 and 44 and the connecting portion 46. ing.
 なお、連結部46のうち、移動規制面46aに対する裏面は、後述するように、光学的なエネルギや力学的なエネルギが加えられるエネルギ負荷面46bである。 In addition, the back surface with respect to the movement control surface 46a among the connection parts 46 is the energy load surface 46b to which optical energy and mechanical energy are added so that it may mention later.
 また、圧電素子24は、装着部48に隙間なく嵌まるように、枠体22の装着部48と同形状に形成されている。 Also, the piezoelectric element 24 is formed in the same shape as the mounting portion 48 of the frame body 22 so as to fit into the mounting portion 48 without any gap.
 本実施形態に係る超音波振動子12は、以下のように作製(組み立て)する。 
 まず、枠体22に装着部48を形成するため、例えばチタン合金の板材に対してワイヤカットプロセスを行う。ワイヤカットプロセスは装着部48を形成するだけでなく、装着部48を形成する前に枠体22の外形を作製するのも好ましい。なお、枠体22の外形や装着部48を形成する場合、レーザ光により切断しても良いし、プレス加工・組成加工・機械加工で形成しても良い。
The ultrasonic transducer 12 according to this embodiment is manufactured (assembled) as follows.
First, in order to form the mounting part 48 in the frame 22, for example, a wire cutting process is performed on a plate material made of titanium alloy. In the wire cutting process, it is preferable not only to form the mounting portion 48 but also to prepare the outer shape of the frame body 22 before the mounting portion 48 is formed. In addition, when forming the external shape of the frame 22 and the mounting part 48, you may cut | disconnect with a laser beam, and may form by press work, composition processing, and machining.
 このように、例えばワイヤカットプロセスにより枠体22が加工されるので、装着部48の第1及び第2の押圧部42,44の押圧面42a,44aは互いに平行であり、第1及び第2の押圧部42,44の押圧面42a,44aは移動規制面46aに対してそれぞれ直交している。 Thus, since the frame 22 is processed by, for example, a wire cutting process, the pressing surfaces 42a and 44a of the first and second pressing portions 42 and 44 of the mounting portion 48 are parallel to each other, and the first and second The pressing surfaces 42a and 44a of the pressing portions 42 and 44 are orthogonal to the movement restricting surface 46a.
 図1Aに示すように、枠体22の装着部48に単位圧電素子26の積層方向を振動伝達部材14の中心軸Cと平行な状態に向けた圧電素子24を対峙させる。このとき、第1及び第2の押圧面42a,44aと、圧電素子24との少なくとも一方に接着剤を塗布することも好適である。そして、装着部48の開口48aから移動規制面46aに向かって圧電素子24を挿入し、図1Bに示すように、装着部48に圧電素子24を装着(埋設)する。このとき、第1及び第2の押圧部42,44の押圧面42a,44aで圧電素子24を支持するとともに、移動規制面46aで圧電素子24を支持する。この際に、圧電素子24の長さを枠体22の装着部48に対して圧入されるよう若干大きく設定することにより、第1及び第2の押圧部42,44の押圧面42a,44aは、圧電素子24に圧力を加えた状態にすることも可能である。この場合は、圧電素子24を装着した状態で枠体22を傾けたりしても、枠体22の装着部48に対して圧電素子24が固定状態にあり、装着部48に対して圧電素子24が位置ズレや脱落するのが防止される。この場合は圧電素子24の挿入時に、枠体22を広げる方向に力を加えることにより、圧入動作をより容易にすることが可能である。 As shown in FIG. 1A, the piezoelectric element 24 in which the stacking direction of the unit piezoelectric elements 26 is parallel to the central axis C of the vibration transmitting member 14 is opposed to the mounting portion 48 of the frame body 22. At this time, it is also preferable to apply an adhesive to at least one of the first and second pressing surfaces 42 a and 44 a and the piezoelectric element 24. Then, the piezoelectric element 24 is inserted from the opening 48a of the mounting portion 48 toward the movement restricting surface 46a, and the piezoelectric element 24 is mounted (embedded) in the mounting portion 48 as shown in FIG. 1B. At this time, the piezoelectric elements 24 are supported by the pressing surfaces 42a and 44a of the first and second pressing portions 42 and 44, and the piezoelectric elements 24 are supported by the movement restricting surface 46a. At this time, the pressing surfaces 42a and 44a of the first and second pressing portions 42 and 44 are set by slightly setting the length of the piezoelectric element 24 so as to be press-fitted into the mounting portion 48 of the frame body 22. It is also possible to apply a pressure to the piezoelectric element 24. In this case, even if the frame body 22 is tilted with the piezoelectric element 24 mounted, the piezoelectric element 24 is fixed to the mounting portion 48 of the frame body 22, and the piezoelectric element 24 is fixed to the mounting portion 48. Is prevented from being displaced or dropped. In this case, it is possible to make the press-fitting operation easier by applying a force in the direction of expanding the frame 22 when the piezoelectric element 24 is inserted.
 このように、枠体22の装着部48に圧電素子24が装着された状態で、連結部46のうち、移動規制面46aとは反対側のエネルギ負荷面46bにレーザ光(光学的エネルギ)LBを極短時間(例えば数マイクロ秒)照射し、エネルギ負荷面46bの金属結晶を変化させるか、あるいはレーザ加熱表面硬化(laser surface hardening)を引き起こす。このため、連結部46が恒久的に変形するか、あるいは残留応力が増大し、第1及び第2の押圧部42,44の押圧面42a,44aで圧電素子24を押圧する押圧力が増す。このため、超音波振動子12の共振周波数を上げることができる。すなわち、超音波振動の振動特性を調整できる。 Thus, in a state where the piezoelectric element 24 is mounted on the mounting portion 48 of the frame body 22, the laser beam (optical energy) LB is applied to the energy load surface 46 b on the opposite side of the movement restricting surface 46 a in the connecting portion 46. Is irradiated for a very short time (for example, several microseconds) to change the metal crystal of the energy load surface 46b or cause laser heating surface hardening (laserlassurface hardening). For this reason, the connecting portion 46 is permanently deformed or the residual stress increases, and the pressing force pressing the piezoelectric element 24 with the pressing surfaces 42a and 44a of the first and second pressing portions 42 and 44 increases. For this reason, the resonant frequency of the ultrasonic transducer | vibrator 12 can be raised. That is, the vibration characteristics of the ultrasonic vibration can be adjusted.
 一方、枠体22の連結部46をレーザ等で加熱して、部分的に焼き戻して残留応力を減少させることができる。この場合、第1及び第2の押圧部42,44の押圧面42a,44aで圧電素子24を押圧する押圧力を減少させることができる。このため、超音波振動子12の共振周波数を下げることができる。 On the other hand, the connecting portion 46 of the frame 22 can be heated with a laser or the like and partially tempered to reduce the residual stress. In this case, the pressing force for pressing the piezoelectric element 24 by the pressing surfaces 42a and 44a of the first and second pressing portions 42 and 44 can be reduced. For this reason, the resonant frequency of the ultrasonic transducer | vibrator 12 can be lowered | hung.
 なお、押圧面42a,44aで圧電素子24を押圧する押圧力が増大すると、超音波振動子12の静電容量が増大し、押圧力が減少すると、静電容量が減少する。このため、超音波振動子12の静電容量をモニタリングすることによって、押圧面42a,44aで圧電素子24を押圧力を調整する際の押圧力の増減を認識でき、共振周波数を特定することができる。 In addition, when the pressing force for pressing the piezoelectric element 24 with the pressing surfaces 42a and 44a increases, the capacitance of the ultrasonic transducer 12 increases, and when the pressing force decreases, the capacitance decreases. For this reason, by monitoring the electrostatic capacitance of the ultrasonic transducer 12, it is possible to recognize the increase or decrease of the pressing force when adjusting the pressing force of the piezoelectric element 24 by the pressing surfaces 42a and 44a, and to specify the resonance frequency. it can.
 以上説明したように、本実施形態では、枠体22の連結部46の残留応力を調整することによって、押圧部42,44から圧電素子24に負荷する押圧力を調整することができる。このように、連結部46の残留応力を調整することによって、圧電素子24を有する超音波振動子12の振動特性を容易に調整することができる。 As described above, in this embodiment, the pressing force applied to the piezoelectric element 24 from the pressing portions 42 and 44 can be adjusted by adjusting the residual stress of the connecting portion 46 of the frame body 22. Thus, by adjusting the residual stress of the connecting portion 46, the vibration characteristics of the ultrasonic transducer 12 having the piezoelectric element 24 can be easily adjusted.
 なお、レーザ光LBを連結部46のエネルギ負荷面46bに照射したとき、連結部46のエネルギ負荷面46bから移動規制面46aまで距離があり、レーザ光LBは極短時間の照射であるので照射したレーザ光LBにより生じる熱は連結部46の熱伝導により自然冷却され、移動規制面46aまで到達しない。このため、エネルギ負荷面46bへのレーザ光LBの照射によっては移動規制面46aに支持された圧電素子24は影響を受けない。したがって、レーザ光LBによっては、圧電素子24に熱刺激や衝撃を与えるのを防止できる。加えて、レーザ光LBの強度を低くするか、あるいは照射時間を短くすること・パルス照射することにより、圧電素子24に熱刺激や衝撃を与えずに移動規制面46aに近づいた箇所まで照射することが可能になる。 When the laser beam LB is irradiated onto the energy load surface 46b of the connecting portion 46, there is a distance from the energy load surface 46b of the connecting portion 46 to the movement restricting surface 46a, and the laser beam LB is irradiated for an extremely short time. The heat generated by the laser beam LB is naturally cooled by the heat conduction of the connecting portion 46 and does not reach the movement restricting surface 46a. For this reason, the piezoelectric element 24 supported by the movement restricting surface 46a is not affected by the irradiation of the laser beam LB on the energy load surface 46b. Therefore, the laser light LB can prevent the piezoelectric element 24 from being thermally stimulated or shocked. In addition, by reducing the intensity of the laser beam LB or shortening the irradiation time / pulse irradiation, the piezoelectric element 24 is irradiated to a position close to the movement restricting surface 46a without giving thermal stimulation or impact. It becomes possible.
 同様に、枠体22の連結部46をレーザ光を用いて焼き戻すことによっても、圧電素子24に熱刺激や衝撃を与えるのを防止できる。 Similarly, it is possible to prevent the piezoelectric element 24 from being thermally stimulated or shocked by tempering the connecting portion 46 of the frame 22 using laser light.
 本実施形態に係る超音波振動子12の構造及び組立法を別の観点から説明する。超音波振動子12は、金属材を用いて符号22で示す枠状の共振体(枠体)を構成し、その共振体22の一部に圧電素子24を収納する、互いに離れた1対の面42a,44aにより符号48で示す素子格納部(装着部)を形成している。そして、共振体22の素子格納部48の1対の面42a,44aの間に圧電素子24を収めた後、共振体22の一部(連結部46)を変形させることで1対の面42a,44aで圧電素子24に押圧力を与えている。 The structure and assembly method of the ultrasonic transducer 12 according to this embodiment will be described from another viewpoint. The ultrasonic transducer 12 forms a frame-shaped resonance body (frame body) indicated by reference numeral 22 using a metal material, and houses a piezoelectric element 24 in a part of the resonance body 22. An element storage portion (mounting portion) indicated by reference numeral 48 is formed by the surfaces 42a and 44a. Then, after the piezoelectric element 24 is housed between the pair of surfaces 42a and 44a of the element storage portion 48 of the resonator 22, a part of the resonator 22 (the connecting portion 46) is deformed to deform the pair of surfaces 42a. 44a applies a pressing force to the piezoelectric element 24.
 以上説明したように、本実施形態の超音波振動子12はこのように組み立てるので、圧電素子24には熱や衝撃等の力を加えずに、第1及び第2の押圧部42,44で押圧して保持することができる。この超音波振動子12は、連結部46の残留応力を、装着部48に圧電素子24を装着した後に調整することができるので、安定した品質(振動特性)を有する超音波振動子12を提供することができる。 As described above, since the ultrasonic transducer 12 of this embodiment is assembled in this way, the first and second pressing portions 42 and 44 do not apply force such as heat or impact to the piezoelectric element 24. It can be pressed and held. Since the ultrasonic transducer 12 can adjust the residual stress of the connecting portion 46 after the piezoelectric element 24 is mounted on the mounting portion 48, the ultrasonic transducer 12 having stable quality (vibration characteristics) is provided. can do.
 そして、このような超音波振動子12にホーン16や振動伝達部材14を取り付けて生体組織の処置に用いることができる。このとき、振動伝達部材14の遠位端は処置部(エンドエフェクタ)として機能する。この超音波処置具10を用いて生体組織を処置する場合、圧電素子24で発生させた振動を振動伝達部材14に伝達することで高速で振動する振動伝達部材14のエンドエフェクタと生体組織との間に摩擦が生じる。この摩擦により生体組織が高温になるので、超音波処置具10によって生体組織の凝固、血管の封止、生体組織の切断等の処置を可能にする。 Then, the horn 16 and the vibration transmitting member 14 can be attached to such an ultrasonic transducer 12 and used for treatment of a living tissue. At this time, the distal end of the vibration transmitting member 14 functions as a treatment portion (end effector). When a living tissue is treated using the ultrasonic treatment instrument 10, the vibration generated by the piezoelectric element 24 is transmitted to the vibration transmitting member 14, and the end effector of the vibration transmitting member 14 that vibrates at high speed and the living tissue. Friction occurs between them. Since the living tissue becomes high temperature due to this friction, the ultrasonic treatment instrument 10 enables treatment such as coagulation of the living tissue, sealing of the blood vessel, cutting of the living tissue, and the like.
 本実施形態では、図1A及び図1Bに示すように、移動規制面46aを平面として図示しているが、平面であることに限らず、圧電素子24を数箇所で支持するような構造であっても良い。またその材質をチタン合金として記載したが、超音波振動子に通常用いられる各種チタン合金やアルミ合金、ステンレスやニッケルクロム合金に代表される鉄系の合金なども使用可能である。 In the present embodiment, as shown in FIGS. 1A and 1B, the movement restricting surface 46a is illustrated as a plane, but the structure is such that the piezoelectric element 24 is supported at several places, not limited to being a plane. May be. Moreover, although the material was described as a titanium alloy, the various titanium alloys and aluminum alloys normally used for an ultrasonic transducer | vibrator, the iron-type alloy represented by stainless steel and nickel chromium alloy, etc. can also be used.
 また圧電素子24として複数の単位圧電素子を振動方向に積み重ねた形態として示したが、積層圧電体として知られる積み重ねた状態で製造される圧電素子を使用することも可能である。更に圧電素子に多く見られる横効果を用いることとしてもよいし、この横効果を効率的に発生させる目的で、積み重ねる方向を超音波振動子の振動方向と概略直交する方向としてもよい。 In addition, although a plurality of unit piezoelectric elements are shown as stacked in the vibration direction as the piezoelectric element 24, it is also possible to use a piezoelectric element manufactured in a stacked state known as a laminated piezoelectric body. Furthermore, the lateral effect often seen in the piezoelectric element may be used, and for the purpose of efficiently generating this lateral effect, the stacking direction may be a direction substantially orthogonal to the vibration direction of the ultrasonic transducer.
 同様に熱エネルギ源としてレーザ光を示したが、手法をこれに限定するものではなく、熱処理条件により供給すべき熱量や供給に要してよい時間から、電子ビーム・ホワイトビーム(白色光)・高周波・等も選定可能である。例えばホワイトビームは、焼鈍(annealing)であれば適用可能である。 Similarly, although laser light is shown as a thermal energy source, the method is not limited to this, and the amount of heat to be supplied depending on the heat treatment conditions and the time required for supply can be determined based on the electron beam, white beam (white light), High frequency, etc. can also be selected. For example, a white beam is applicable if it is annealed.
 ところで、超音波振動子として一般的なものに、ボルト締めランジュバン型振動子が知られている。しかし、この振動子は、隣接する圧電素子への押圧力をボルト締結により与えている。このため、圧電素子内部や超音波構成部材にボルトやタップ等のスペースの確保が必要であること、複数の部材から構成することから、振動子として小型化には限界がある。 By the way, a bolted Langevin type vibrator is known as a general ultrasonic vibrator. However, this vibrator gives a pressing force to adjacent piezoelectric elements by bolt fastening. For this reason, it is necessary to secure a space such as a bolt or a tap in the piezoelectric element or the ultrasonic component member, and since the piezoelectric element is composed of a plurality of members, there is a limit to downsizing the vibrator.
 一方、本実施形態の超音波振動子12は、本実施形態の圧電素子24を装着部48に装着するだけであり、ボルトやタップ等のスペースは必要でなく、部材数が少ない。したがって、本実施形態の超音波振動子12は、ボルト締めランジュバン型振動子を用いる場合に比べて小型化を図ることができる。また、本実施形態に係る超音波振動子12とボルト締めランジュバン型振動子とに同じスペースが与えられていると仮定した場合、本実施形態の超音波振動子12はボルト締めランジュバン型振動子の圧電素子よりも大きな圧電素子24を用いることができる。このため、本実施形態によれば、より小型化しつつ、強力な超音波振動を出力可能な超音波振動子(超音波振動源)12を提供できる。 On the other hand, the ultrasonic transducer 12 of the present embodiment only has the piezoelectric element 24 of the present embodiment mounted on the mounting portion 48, and does not require spaces such as bolts and taps, and the number of members is small. Therefore, the ultrasonic transducer 12 of the present embodiment can be reduced in size as compared with the case where a bolted Langevin type transducer is used. When it is assumed that the same space is provided for the ultrasonic transducer 12 and the bolt-clamped Langevin transducer according to the present embodiment, the ultrasonic transducer 12 of the present embodiment is a bolt-clamped Langevin transducer. A piezoelectric element 24 larger than the piezoelectric element can be used. For this reason, according to the present embodiment, it is possible to provide an ultrasonic transducer (ultrasonic vibration source) 12 capable of outputting powerful ultrasonic vibration while being further downsized.
 図3には本実施形態の第1変形例の超音波処置具10を示す。 
 本変形例は、超音波振動子12の枠体22に対して、図1Bに示す連結部46のエネルギ負荷面46bにレーザ光LB(光学的エネルギ)を照射する代わりに、連結部46のエネルギ負荷面46bに力学的にエネルギを加えてエネルギ負荷面46bを塑性変形させる例である。ここでは、連結部46のエネルギ負荷面46bを塑性変形させ、図3に符号46cで示す状態に変形させる形状加工を行うことにより、第1及び第2の押圧部42,44の押圧面42a,44aで圧電素子24に対する押圧力を増大させている。本変形例では、押圧力の調整範囲を広げられる利点がある。なお本変形例と図1に示す実施例を組み合わせ使用することが可能であることは言うまでもない。この場合、押圧力の調整範囲が広くなるとともに微調整も可能になる。これは以下に説明する変形例や実施形態でも同様である。
FIG. 3 shows an ultrasonic treatment instrument 10 according to a first modification of the present embodiment.
In this modification, instead of irradiating the energy load surface 46b of the connecting portion 46 shown in FIG. 1B to the frame 22 of the ultrasonic transducer 12 with the laser beam LB (optical energy), the energy of the connecting portion 46 is used. In this example, energy is dynamically applied to the load surface 46b to plastically deform the energy load surface 46b. Here, the pressing surfaces 42a of the first and second pressing portions 42, 44 are formed by plastically deforming the energy load surface 46b of the connecting portion 46 and deforming it into a state indicated by reference numeral 46c in FIG. The pressing force on the piezoelectric element 24 is increased by 44a. This modification has an advantage that the adjustment range of the pressing force can be expanded. Needless to say, this modification and the embodiment shown in FIG. 1 can be used in combination. In this case, the adjustment range of the pressing force is widened and fine adjustment is possible. The same applies to the modifications and embodiments described below.
 図4には本実施形態の第2変形例の超音波処置具10を示す。 
 上述した実施形態や変形例では枠体22の横断面が矩形状である場合について説明したが、図4に示すように、枠体22の横断面が円柱状等であることも好適である。この場合、圧電素子24に用いられる単位圧電素子26(図2参照)は例えばそれぞれ円板状に形成されていることが好ましい。 
 また、上述した実施形態や変形例ではホーン16及び振動伝達部材14も横断面が矩形状であると説明したが、この変形例ではホーン16及び振動伝達部材14の横断面が円形状又は円筒状であることが好ましい。
FIG. 4 shows an ultrasonic treatment instrument 10 according to a second modification of the present embodiment.
In the embodiment and the modification described above, the case where the cross section of the frame body 22 is rectangular has been described. However, as shown in FIG. 4, the cross section of the frame body 22 is preferably cylindrical. In this case, each unit piezoelectric element 26 (see FIG. 2) used for the piezoelectric element 24 is preferably formed in a disk shape, for example.
In the above-described embodiment and modification, the horn 16 and the vibration transmission member 14 have also been described as having a rectangular cross section. However, in this modification, the cross section of the horn 16 and the vibration transmission member 14 is circular or cylindrical. It is preferable that
 図4に示すように枠体22が形成されている場合であっても、図1Bに示す超音波処置具10の超音波振動子12や図3に示す超音波処置具10の超音波振動子12と同様に、枠体22を変形させることができる。このため、圧電素子24を装着部48に装着した後、圧電素子24への押圧部42,44による押圧力を調整することができる。 Even when the frame 22 is formed as shown in FIG. 4, the ultrasonic transducer 12 of the ultrasonic treatment instrument 10 shown in FIG. 1B or the ultrasonic transducer of the ultrasonic treatment instrument 10 shown in FIG. Similarly to 12, the frame 22 can be deformed. For this reason, after the piezoelectric element 24 is mounted on the mounting portion 48, the pressing force by the pressing portions 42 and 44 on the piezoelectric element 24 can be adjusted.
 次に、第2実施形態について図5Aから図5Cを用いて説明する。 
 図5Aから図5Cに示すように、枠体22は、第1及び第2の押圧部62,64と、第1の押圧部62に一端が、第2の押圧部64に他端がそれぞれ固定された1対のアーム66,68とを有する。すなわち、本実施形態では、第1実施形態で説明した連結部46の代わりに、同様に連結部を構成する1対のアーム66,68を用いる。なお、本実施形態では、アーム66,68はそれぞれ略M字状に形成されている。すなわち、本実施形態に係るアーム66,68はアーム66,68の形状に沿った経路長がアーム66,68の両端を結んだ長さ(最短長さ)よりも長く、且つ枠体22の内部側(後述する装着部70に近接する側(圧電素子24側))に凸部(負荷部)66a,68aを持つ形状に形成されている。
Next, a second embodiment will be described with reference to FIGS. 5A to 5C.
As shown in FIGS. 5A to 5C, the frame body 22 is fixed to the first and second pressing portions 62 and 64, one end at the first pressing portion 62, and the other end at the second pressing portion 64. And a pair of arms 66, 68. That is, in this embodiment, instead of the connecting portion 46 described in the first embodiment, a pair of arms 66 and 68 that similarly form the connecting portion are used. In the present embodiment, the arms 66 and 68 are each formed in a substantially M shape. In other words, the arms 66 and 68 according to the present embodiment have a path length along the shape of the arms 66 and 68 that is longer than the length (shortest length) connecting both ends of the arms 66 and 68, and the inside of the frame body 22. It is formed in a shape having convex portions (load portions) 66a and 68a on the side (the side close to the mounting portion 70 described later (the piezoelectric element 24 side)).
 第1及び第2の押圧部62,64は互いに平行に対向するように形成された押圧面62a,64aを有する。これら押圧面62a,64aは圧電素子24が配設される空間である装着部70を形成する。装着部70は、1対のアーム66,68に対する干渉を防止した位置に開口70a,70bを有する。すなわち、装着部70は振動伝達部材14の中心軸Cに対して交差する方向に開口70a,70bを有する。 The first and second pressing portions 62 and 64 have pressing surfaces 62a and 64a formed to face each other in parallel. These pressing surfaces 62a and 64a form a mounting portion 70 that is a space in which the piezoelectric element 24 is disposed. The mounting portion 70 has openings 70a and 70b at positions where interference with the pair of arms 66 and 68 is prevented. That is, the mounting portion 70 has openings 70 a and 70 b in a direction intersecting with the central axis C of the vibration transmitting member 14.
 本実施形態に係る超音波振動子12は、以下のように作製(組み立て)する。 
 まず、枠体22にアーム66,68及び装着部70を形成するため、例えばチタン合金の板材に対して例えばワイヤカットプロセスを行う。例えばワイヤカットプロセスにより枠体22が加工されるので、装着部70の第1及び第2の押圧部62,64の押圧面62a,64aは互いに平行である。
The ultrasonic transducer 12 according to this embodiment is manufactured (assembled) as follows.
First, in order to form the arms 66 and 68 and the mounting part 70 in the frame 22, for example, a wire cutting process is performed on a plate material of titanium alloy, for example. For example, since the frame 22 is processed by a wire cutting process, the pressing surfaces 62a and 64a of the first and second pressing portions 62 and 64 of the mounting portion 70 are parallel to each other.
 ところで、図5Aに示す平行な押圧面62a,64a同士の間隔は、振動伝達部材14の中心軸Cに沿った方向の圧電素子24の一辺と比較して、第1実施形態よりも更に小さい。このため、このままでは圧電素子24を装着部70に圧入することはできない。 
 そこで、圧電素子24を装着部70に配設する場合、図5Aに示すアーム66,68に設けられた例えば凸部66a,68aに内側から外側に向かって力Fを付与し、図5Bに示すように、押圧面62a,64a同士の間隔を広げる。なお、図5Aに示すアーム66,68の凸部66a,68aに内側から外側に向かって力Fを付与する場合、例えば各アーム66,68に図示しない治具を引っ掛けて中心軸Cに対して外側に向かって引っ張ることで、押圧面62a,64a同士の間隔を広げることができる。
By the way, the space | interval of the parallel pressing surfaces 62a and 64a shown to FIG. 5A is still smaller than 1st Embodiment compared with the one side of the piezoelectric element 24 of the direction along the central axis C of the vibration transmission member 14. FIG. Therefore, the piezoelectric element 24 cannot be press-fitted into the mounting portion 70 as it is.
Therefore, when the piezoelectric element 24 is disposed in the mounting portion 70, a force F is applied from the inner side to the outer side, for example, on the convex portions 66a and 68a provided on the arms 66 and 68 shown in FIG. 5A, as shown in FIG. 5B. Thus, the space | interval of the press surfaces 62a and 64a is expanded. 5A, when a force F is applied to the convex portions 66a and 68a of the arms 66 and 68 from the inner side toward the outer side, for example, a jig (not shown) is hooked on each of the arms 66 and 68 with respect to the central axis C. By pulling outward, the space between the pressing surfaces 62a and 64a can be increased.
 押圧面62a,64a同士の間隔を広げた状態で、アーム66,68が存在しない位置(アーム66,68の干渉を防止した位置)から圧電素子24を装着部70のいずれかの開口70a,70bから装着部70に配設し、アーム66,68に加えた力Fを除去する。そうすると、図5Bに示すアーム66,68が図5Cに示すように元の状態(図5Aに示す状態)に戻るように変形して、押圧面62a,64aで圧電素子24を挟み込む。 In a state where the space between the pressing surfaces 62a and 64a is widened, the piezoelectric element 24 is inserted into one of the openings 70a and 70b of the mounting portion 70 from a position where the arms 66 and 68 do not exist (a position where interference between the arms 66 and 68 is prevented). The force F applied to the arms 66 and 68 is removed. Then, the arms 66 and 68 shown in FIG. 5B are deformed so as to return to the original state (the state shown in FIG. 5A) as shown in FIG. 5C, and the piezoelectric element 24 is sandwiched between the pressing surfaces 62a and 64a.
 なお、本実施形態に係る超音波振動子12の構造及び組立法を別の観点から説明する。超音波振動子12は、金属材を用いて符号22で示す枠状の共振体を構成し、その共振体22に圧電素子24を収納する、互いに離れた1対の面62a,64aにより符号70で示す素子格納部を形成している。そして、共振体22を変形させて素子格納部70の1対の面62a,64a同士の間隔を広げて圧電素子24を収める。その後、共振体22の変形を元に戻すと、1対の面62a,64a同士の間隔が狭められて1対の面62a,64aで圧電素子24を押圧して保持している。 In addition, the structure and assembly method of the ultrasonic transducer | vibrator 12 which concern on this embodiment are demonstrated from another viewpoint. The ultrasonic transducer 12 forms a frame-shaped resonator indicated by reference numeral 22 using a metal material, and stores a piezoelectric element 24 in the resonator 22 by a pair of surfaces 62a and 64a separated from each other. Is formed. Then, the piezoelectric element 24 is accommodated by deforming the resonator 22 to widen the distance between the pair of surfaces 62 a and 64 a of the element storage unit 70. Thereafter, when the deformation of the resonator 22 is restored, the distance between the pair of surfaces 62a and 64a is narrowed, and the piezoelectric element 24 is pressed and held by the pair of surfaces 62a and 64a.
 この実施形態によれば、第1実施形態で説明したことに加えて、超音波振動子12が中心軸Cに対して左右対称に形成されているので、圧電素子24により発生させた縦振動をより安定させた状態で振動伝達部材14に伝達することができる。 According to this embodiment, in addition to the description in the first embodiment, since the ultrasonic vibrator 12 is formed symmetrically with respect to the central axis C, the longitudinal vibration generated by the piezoelectric element 24 is reduced. The vibration can be transmitted to the vibration transmitting member 14 in a more stable state.
 なお、この実施形態では枠体22のアーム66,68の形状を略M字として示したがこれは一例であって、アーム66,68の形状に沿った経路長がアーム66,68の両端を結んだ長さ(最短長さ)よりも長く、且つ枠体22の内部側に凸部(負荷部)66a,68aを持つ形であれば、本実施形態で示した機能を果たしうるものである。 In this embodiment, the shape of the arms 66 and 68 of the frame body 22 is shown as a substantially M shape. However, this is only an example, and the path length along the shape of the arms 66 and 68 extends between both ends of the arms 66 and 68. If the shape is longer than the tied length (shortest length) and has convex portions (load portions) 66a and 68a on the inner side of the frame 22, the functions shown in the present embodiment can be achieved. .
 次に、第2実施形態の第1変形例について図6Aから図6Cを用いて説明する。 
 本変形例では、1対のアーム66,68の形状を略U字状に形成した例である。すなわち、本変形例に係るアーム66,68はアーム66,68の形状に沿った経路長がアーム66,68の両端を結んだ長さ(最短長さ)よりも長く、且つ枠体22の外部側(後述する装着部70に離隔する側(圧電素子24側とは反対側))に凸部(負荷部)66b,68bを持つ形状に形成されている。
Next, a first modification of the second embodiment will be described with reference to FIGS. 6A to 6C.
In this modification, the pair of arms 66 and 68 is formed in a substantially U shape. That is, the arms 66 and 68 according to this modification have a path length along the shape of the arms 66 and 68 that is longer than the length (shortest length) connecting both ends of the arms 66 and 68 and the outside of the frame body 22. It is formed in a shape having convex portions (load portions) 66b and 68b on the side (the side separated from the mounting portion 70 described later (the side opposite to the piezoelectric element 24 side)).
 この場合、図6Aに示す押圧面62a,64a同士の間隔を広げる場合、図6Aに示すアーム66,68に設けられた凸部66b,68bに外側から内側(中心軸C)に向かって力Fを付与する。このため、図6Bに示すように、アーム66,68が真っ直ぐな状態に近づいて、押圧面62a,64a同士の間隔を広げることができる。 In this case, when the space between the pressing surfaces 62a and 64a shown in FIG. 6A is widened, a force F is applied to the convex portions 66b and 68b provided on the arms 66 and 68 shown in FIG. 6A from the outside toward the inside (center axis C). Is granted. For this reason, as shown to FIG. 6B, the arms 66 and 68 approach a straight state, and the space | interval of the pressing surfaces 62a and 64a can be expanded.
 そして、圧電素子24を装着部70に装着した状態でアーム66,68に加えた力Fを除去する。そうすると、図6Bに示すアーム66,68が図6Cに示すように元の状態(図6Aに示す状態)に戻るように変形して、押圧面62a,64aで圧電素子24を挟み込む。 Then, the force F applied to the arms 66 and 68 in a state where the piezoelectric element 24 is mounted on the mounting portion 70 is removed. Then, the arms 66 and 68 shown in FIG. 6B are deformed so as to return to the original state (the state shown in FIG. 6A) as shown in FIG. 6C, and the piezoelectric element 24 is sandwiched between the pressing surfaces 62a and 64a.
 この変形例によれば、図5Aに示すアーム66,68の凸部66a,68aに内側から外側に向かって力Fを加えるよりも、アーム66,68の凸部66b,68bに外側から内側に向かって力Fを加える方が容易であるので、組立性をより良好にすることができる。 According to this modification, rather than applying a force F from the inner side to the outer side on the convex portions 66a, 68a of the arms 66, 68 shown in FIG. 5A, the convex portions 66b, 68b of the arms 66, 68 are moved from the outer side to the inner side. Since it is easier to apply the force F in the direction, the assemblability can be improved.
 なお、この実施形態では枠体22のアーム66,68の形状を略U字として示したがこれは一例であって、アーム66,68の形状に沿った経路長がアーム66,68の両端を結んだ長さよりも長く、且つ枠体22の外部側に凸部66b,68bを持つ形であれば、本実施形態で示した機能を果たしうるものである。 In this embodiment, the shape of the arms 66 and 68 of the frame body 22 is shown as a substantially U-shape, but this is only an example, and the path length along the shape of the arms 66 and 68 corresponds to the ends of the arms 66 and 68. The function shown in this embodiment can be achieved as long as it is longer than the length of the ends and has the convex portions 66b and 68b on the outer side of the frame body 22.
 次に、第2実施形態の第2変形例について図7A及び図7Bを用いて説明する。 
 図5A、図5C、図6A及び図6Cに示す1対のアーム66,68はいずれも振動伝達部材14の中心軸Cの軸方向に対して平行に延出されているのではなく、傾けられている。本変形例では、図7A及び図7Bに示すように、1対のアーム66,68はいずれも振動伝達部材14の中心軸Cの軸方向に対して平行に延出されている。
Next, a second modification of the second embodiment will be described with reference to FIGS. 7A and 7B.
Each of the pair of arms 66 and 68 shown in FIGS. 5A, 5C, 6A, and 6C is not extended in parallel to the axial direction of the central axis C of the vibration transmitting member 14, but is inclined. ing. In this modification, as shown in FIGS. 7A and 7B, the pair of arms 66 and 68 both extend in parallel to the axial direction of the central axis C of the vibration transmitting member 14.
 装着部70に圧電素子24を配設する場合、アーム66,68を振動伝達部材14の中心軸Cの軸方向に沿って力Fを加えて引っ張る。この場合、アーム66,68と第1の押圧部62との連結部分、及び、アーム66,68と第2の押圧部64との連結部分の略L字状に屈曲した部分を引っ張って力Fを加える。そうすると、押圧面62a,64a同士の間隔を広げることができるので、圧電素子24を装着部70に装着することができる。 When the piezoelectric element 24 is disposed in the mounting portion 70, the arms 66 and 68 are pulled by applying a force F along the axial direction of the central axis C of the vibration transmitting member 14. In this case, a force F is applied by pulling a portion bent in a substantially L shape of a connecting portion between the arms 66 and 68 and the first pressing portion 62 and a connecting portion between the arms 66 and 68 and the second pressing portion 64. Add As a result, the space between the pressing surfaces 62 a and 64 a can be increased, so that the piezoelectric element 24 can be mounted on the mounting portion 70.
 この変形例は、アーム66,68の形状を図5Aや図6Aに示すアーム66,68よりも単純化しているので、例えばワイヤカットプロセスなどによる加工時間をより短時間化することができる。 In this modification, since the shapes of the arms 66 and 68 are simpler than those of the arms 66 and 68 shown in FIGS. 5A and 6A, for example, the processing time by a wire cutting process or the like can be further shortened.
 なお、図7Cは図7A及び図7Bに示す超音波振動子12の更なる変形例である。図7Bに示す超音波振動子12と、図7Cに示す超音波振動子12とは、アーム66,68の横幅が異なる。すなわち、図7Bに示す超音波振動子12のアーム66,68の幅t1は、図7Cに示す超音波振動子12のアーム66,68の幅t2よりも大きい。 7C is a further modification of the ultrasonic transducer 12 shown in FIGS. 7A and 7B. The ultrasonic transducer 12 shown in FIG. 7B and the ultrasonic transducer 12 shown in FIG. 7C have different widths of the arms 66 and 68. That is, the width t1 of the arms 66 and 68 of the ultrasonic transducer 12 shown in FIG. 7B is larger than the width t2 of the arms 66 and 68 of the ultrasonic transducer 12 shown in FIG. 7C.
 アーム66,68は第1及び第2の押圧部62,64の押圧面62a,64a同士を所定の距離に維持する構造であるが、同一厚さで同じ処理をした同じ素材を用いれば、アーム66,68の幅が大きい方が圧電素子24に対する押圧力は大きくなる。したがって、図7Bに示す超音波振動子12の方が、図7Cに示す超音波振動子12よりも共振周波数が高い。このように、例えばアーム66,68の幅を変更することによって、超音波振動子12の共振周波数を調整することができる。なお、アーム66,68の全部の幅を一定にする必要はなく、一部分の幅を小さくしたりしても同様の効果が得られる。また、アーム66,68の幅だけでなく、アーム66,68を含む枠体22の厚さを少なくとも部分的に調整することによっても超音波振動子12の共振周波数を調整することができる。 The arms 66 and 68 have a structure in which the pressing surfaces 62a and 64a of the first and second pressing portions 62 and 64 are maintained at a predetermined distance. If the same material having the same thickness and the same processing is used, The larger the widths 66 and 68, the greater the pressing force against the piezoelectric element 24. Therefore, the ultrasonic vibrator 12 shown in FIG. 7B has a higher resonance frequency than the ultrasonic vibrator 12 shown in FIG. 7C. Thus, for example, the resonance frequency of the ultrasonic transducer 12 can be adjusted by changing the widths of the arms 66 and 68. It is not necessary to make the entire width of the arms 66 and 68 constant, and the same effect can be obtained even if the width of a part of the arms 66 and 68 is reduced. Further, not only the width of the arms 66 and 68 but also the thickness of the frame 22 including the arms 66 and 68 can be adjusted at least partially to adjust the resonance frequency of the ultrasonic transducer 12.
 なお、押圧面62a,64aで圧電素子24を押圧する押圧力が増大すると超音波振動子12の静電容量が増大し、押圧力が減少すると静電容量が減少する。このため、超音波振動子12の静電容量をモニタリングすることによって、押圧面62a,64aで圧電素子24の押圧力を調整する際の押圧力の増減を認識でき、共振周波数を特定することができる。 In addition, when the pressing force that presses the piezoelectric element 24 with the pressing surfaces 62a and 64a increases, the capacitance of the ultrasonic transducer 12 increases, and when the pressing force decreases, the capacitance decreases. For this reason, by monitoring the electrostatic capacitance of the ultrasonic transducer 12, it is possible to recognize the increase or decrease of the pressing force when adjusting the pressing force of the piezoelectric element 24 by the pressing surfaces 62a and 64a, and to specify the resonance frequency. it can.
 図7Dに示すように、第2の押圧部64の一部を潰す凹部64bを形成する形状加工を行うと、第2の押圧部64が塑性変形する。このとき、第2の押圧部64の押圧面64aを第1の押圧部62の押圧面62aに向かって移動させることができる。このため、第1及び第2の押圧部62,64の押圧面62a,64a間の距離を小さくし、圧電素子24に対する押圧力を増大することができ、図7Bに示す超音波振動子12よりも図7Dに示す超音波振動子12の方が共振周波数を高くすることができる。 As shown in FIG. 7D, when shape processing is performed to form a recess 64b that crushes a part of the second pressing portion 64, the second pressing portion 64 is plastically deformed. At this time, the pressing surface 64 a of the second pressing portion 64 can be moved toward the pressing surface 62 a of the first pressing portion 62. Therefore, the distance between the pressing surfaces 62a and 64a of the first and second pressing portions 62 and 64 can be reduced, and the pressing force against the piezoelectric element 24 can be increased. In addition, the ultrasonic transducer 12 shown in FIG. 7D can increase the resonance frequency.
 なお、第2の押圧部64に凹部64bを形成し、又は、形成する代わりに、第1の押圧部62に同様の凹部を形成しても良い。 In addition, you may form the recessed part similar to the 1st press part 62 instead of forming the recessed part 64b in the 2nd press part 64, or forming.
 さらに、第1及び第2の押圧部62,64の押圧面62a,64a間の距離を小さくする方法として、超音波振動子12全体の変形を抑制するように保持しつつ、レーザ等を用いて枠体22の弾性率が高まる方向に熱処理することができる。このような熱処理をすると、熱処理前に比べて熱処理後の超音波振動子12の共振周波数をより高くすることができる。 Furthermore, as a method of reducing the distance between the pressing surfaces 62a and 64a of the first and second pressing portions 62 and 64, a laser or the like is used while holding the ultrasonic transducer 12 so as to suppress deformation. Heat treatment can be performed in a direction in which the elastic modulus of the frame body 22 is increased. When such heat treatment is performed, the resonance frequency of the ultrasonic transducer 12 after the heat treatment can be made higher than that before the heat treatment.
 第1及び第2の押圧部62,64の押圧面62a,64a間の距離を大きくする方法として、レーザ等を用いて枠体22の一部を焼き戻すことで弾性率を下げる方向に熱処理することができる。このような熱処理をすると、熱処理前に比べて熱処理後の超音波振動子12の共振周波数をより低くすることができる。 
 これらの熱処理は、アーム66,68のみについて行っても良い。
As a method of increasing the distance between the pressing surfaces 62a and 64a of the first and second pressing portions 62 and 64, heat treatment is performed in a direction that lowers the elastic modulus by tempering a part of the frame body 22 using a laser or the like. be able to. When such heat treatment is performed, the resonance frequency of the ultrasonic transducer 12 after the heat treatment can be made lower than that before the heat treatment.
These heat treatments may be performed only on the arms 66 and 68.
 したがって、超音波振動子12の振動特性を超音波振動子12として組み立てた後に調整することができる。このように、超音波振動子12の共振周波数は、枠体22の形状や処理方法によって、調整することができる。 Therefore, the vibration characteristics of the ultrasonic vibrator 12 can be adjusted after the ultrasonic vibrator 12 is assembled. Thus, the resonance frequency of the ultrasonic transducer 12 can be adjusted by the shape of the frame body 22 and the processing method.
 次に、第2実施形態の第3変形例について図8Aから図8Cを用いて説明する。 
 図8Aから図8Cに示す例は、図7Aに示す1対のアーム66,68の先端及び後端にそれぞれ中心軸Cに対して外側に向かって突出するように突起(負荷部)72a,72b,72c,72dを一体的に形成した例である。そして、突起72a,72b,72c,72dに対して振動伝達部材14の中心軸Cの軸方向に沿って力Fを加えて引っ張る。したがって、1対のアーム66,68を中心軸Cの軸方向に延ばすことができる。
Next, a third modification of the second embodiment will be described with reference to FIGS. 8A to 8C.
In the example shown in FIGS. 8A to 8C, protrusions (load portions) 72a and 72b protrude outward from the central axis C at the front and rear ends of the pair of arms 66 and 68 shown in FIG. 7A, respectively. , 72c, 72d are integrally formed. Then, a force F is applied to the protrusions 72a, 72b, 72c, 72d along the axial direction of the center axis C of the vibration transmitting member 14 to pull it. Therefore, the pair of arms 66 and 68 can be extended in the axial direction of the central axis C.
 この場合、図7Aに示すように、アーム66,68と第1及び第2の押圧部62,64との連結部分に力Fを加えても良く、突起72a,72b,72c,72dに力Fを加えても良く、両者に力Fを加えても良いので、押圧面62a,64a同士の間隔をより簡単に広げることができる。このため、図7Aに示す場合よりも容易に圧電素子24を装着部70に配置することができる。 In this case, as shown in FIG. 7A, a force F may be applied to the connecting portion between the arms 66 and 68 and the first and second pressing portions 62 and 64, and the force F is applied to the protrusions 72a, 72b, 72c and 72d. Since the force F may be applied to both, the space between the pressing surfaces 62a and 64a can be more easily widened. For this reason, the piezoelectric element 24 can be arranged in the mounting portion 70 more easily than the case shown in FIG. 7A.
 図8Cに示すように、装着部70に圧電素子24を装着した後、突起72a,72b,72c,72dを切断するなどして除去することも好ましい。また、突起72a,72b,72c,72dをアーム66,68に配設した状態にしておき、突起72a,72b,72c,72dを後述する第1及び第2のジョー152,154(図13A及び図13B参照)に取り付ける際の取付部として用いても良い。 As shown in FIG. 8C, it is also preferable to remove the protrusions 72a, 72b, 72c, 72d by attaching the piezoelectric element 24 to the attachment portion 70 and then cutting the protrusions 72a, 72b, 72c, 72d. Further, the projections 72a, 72b, 72c, 72d are placed on the arms 66, 68, and the projections 72a, 72b, 72c, 72d are first and second jaws 152, 154 (FIG. 13A and FIG. 13B) may be used as an attachment portion for attachment.
 突起72a,72b,72c,72dに力Fを加える代わりに、枠体22に熱を加えて線膨張させて、装着部70に圧電素子24を挿入しても良い。枠体22が冷却されるのに伴って押圧部62,64で圧電素子24に押圧力が加えられる。この場合、必要に応じて枠体22の冷却後(超音波振動子12の組立後)に圧電素子24を分極しても良い。 Instead of applying the force F to the protrusions 72 a, 72 b, 72 c, 72 d, the piezoelectric element 24 may be inserted into the mounting portion 70 by applying heat to the frame body 22 to cause linear expansion. As the frame 22 is cooled, a pressing force is applied to the piezoelectric element 24 by the pressing portions 62 and 64. In this case, if necessary, the piezoelectric element 24 may be polarized after the frame 22 is cooled (after the ultrasonic transducer 12 is assembled).
 次に、第2実施形態の第4変形例について図9を用いて説明する。 
 図5Aから図8Cに示す枠体22は板状に形成されているが、図9に示す本変形例の第1及び第2の押圧部62,64はともに略円柱状に形成されている。 
 なお、1対のアーム66,68は振動伝達部材14の中心軸Cの軸方向に対して平行に延出されているように描画したが、図5Cや図6Cに示すアームのように形成されていることも好適である。
Next, a fourth modification of the second embodiment will be described with reference to FIG.
Although the frame 22 shown in FIGS. 5A to 8C is formed in a plate shape, the first and second pressing portions 62 and 64 of the present modification shown in FIG. 9 are both formed in a substantially cylindrical shape.
Although the pair of arms 66 and 68 are drawn so as to extend in parallel to the axial direction of the central axis C of the vibration transmitting member 14, they are formed like the arms shown in FIGS. 5C and 6C. It is also suitable.
 次に、第3実施形態について図10Aから図10Cを用いて説明する。 
 図10Aに示すように、本実施形態の超音波処置具10は、振動伝達部材14の中心軸C0と、圧電素子24が配設される装着部88の中心軸C1とを、互いにずらしている。
Next, a third embodiment will be described with reference to FIGS. 10A to 10C.
As shown in FIG. 10A, in the ultrasonic treatment instrument 10 of the present embodiment, the central axis C0 of the vibration transmitting member 14 and the central axis C1 of the mounting portion 88 where the piezoelectric element 24 is disposed are shifted from each other. .
 枠体22は、第1及び第2の押圧部82,84と連結部86とを有する。第1及び第2の押圧部82,84は互いに平行な押圧面82a,84aを有する。連結部86は第1及び第2の押圧部82,84の押圧面82a,84aに対して直交し、圧電素子24が図10A中の下側に移動するのを規制する移動規制面86aを有する。そして、第1及び第2の押圧部82,84の押圧面82a,84aと連結部86の移動規制面86aとによって、圧電素子24が装着されて固定される空間である装着部88が形成されている。また、連結部86の移動規制面86aに対して対向する側には、開口88aが形成されている。すなわち、装着部88は振動伝達部材14の中心軸Cに対して交差する方向に開口88aを有する。なお、連結部86のうち、移動規制面86aに対する裏面は、エネルギ負荷面86bである。 The frame body 22 includes first and second pressing portions 82 and 84 and a connecting portion 86. The first and second pressing portions 82 and 84 have pressing surfaces 82a and 84a that are parallel to each other. The connecting portion 86 has a movement restricting surface 86a that is orthogonal to the pressing surfaces 82a and 84a of the first and second pressing portions 82 and 84 and restricts the piezoelectric element 24 from moving downward in FIG. 10A. . A mounting portion 88, which is a space in which the piezoelectric element 24 is mounted and fixed, is formed by the pressing surfaces 82a and 84a of the first and second pressing portions 82 and 84 and the movement restricting surface 86a of the connecting portion 86. ing. An opening 88a is formed on the side of the connecting portion 86 that faces the movement restricting surface 86a. That is, the mounting portion 88 has an opening 88 a in a direction intersecting with the central axis C of the vibration transmitting member 14. In addition, the back surface with respect to the movement control surface 86a among the connection parts 86 is the energy load surface 86b.
 そして、第1及び第2の押圧部82,84の押圧面82a,84aと連結部86の移動規制面86aとによって、圧電素子24が装着されて固定される空間である装着部88が形成されている。すなわち、装着部88は、第1及び第2の押圧部82,84と連結部86とにより形成された直方体状の空間であり、連結部86の移動規制面86aに対して対向する側には、開口88aが形成されている。 A mounting portion 88, which is a space in which the piezoelectric element 24 is mounted and fixed, is formed by the pressing surfaces 82a and 84a of the first and second pressing portions 82 and 84 and the movement restricting surface 86a of the connecting portion 86. ing. That is, the mounting portion 88 is a rectangular parallelepiped space formed by the first and second pressing portions 82 and 84 and the connecting portion 86, and on the side facing the movement restricting surface 86 a of the connecting portion 86. Opening 88a is formed.
 例えば、図10Bに示すように連結部86のエネルギ負荷面86bを塑性変形させて凹部86cを形成する形状加工を行うことによって、第1及び第2の押圧部82,84の押圧面82a,84aで圧電素子24に対する押圧力を増大して圧電素子24を装着部88に固定することができる。 For example, as shown in FIG. 10B, the pressing surfaces 82a and 84a of the first and second pressing portions 82 and 84 are formed by plastically deforming the energy load surface 86b of the connecting portion 86 to form the recess 86c. Thus, the pressing force against the piezoelectric element 24 can be increased and the piezoelectric element 24 can be fixed to the mounting portion 88.
 この状態で、圧電素子24を振動させると、振動伝達部材14の中心軸C0と圧電素子24の中心軸C1とをずらしているので、振動伝達部材14にねじり方向の力が加えられる。すなわち、振動伝達部材14の遠位端のエンドエフェクタは、曲げ振動する。 In this state, when the piezoelectric element 24 is vibrated, the center axis C0 of the vibration transmitting member 14 and the center axis C1 of the piezoelectric element 24 are shifted, so that a force in the torsional direction is applied to the vibration transmitting member 14. That is, the end effector at the distal end of the vibration transmitting member 14 is subjected to bending vibration.
 なお、図10Bに示す連結部86のエネルギ負荷面86bを塑性変形させて凹部86cを形成する代わりに、図10Cに示すように、例えば連結部86に凹部86dを形成する形状加工を行うことによって第1及び第2の押圧部82,84の押圧面82a,84a同士の間に圧電素子24を保持するようにしても良い。凹部86dは連結部86が塑性変形されることにより形成されているので、圧電素子24を装着部88に固定することができる。 Instead of plastically deforming the energy load surface 86b of the connecting portion 86 shown in FIG. 10B to form the concave portion 86c, as shown in FIG. 10C, for example, by performing shape processing for forming the concave portion 86d in the connecting portion 86. The piezoelectric element 24 may be held between the pressing surfaces 82 a and 84 a of the first and second pressing portions 82 and 84. Since the recess 86 d is formed by plastic deformation of the connecting portion 86, the piezoelectric element 24 can be fixed to the mounting portion 88.
 次に、第3実施形態の第1変形例について図11Aから図11Cを用いて説明する。 
 図11Aに示すように、本変形例の超音波処置具10の枠体22は、第1及び第2の装着部102,104を有し、第1の装着部102に第1の圧電素子24aが、第2の装着部104に第2の圧電素子24bが配設される。そして、この超音波処置具10は、振動伝達部材14の中心軸C0と、圧電素子24a,24bが配設される装着部102,104の中心軸C1,C2とを、互いにずらしている。第1及び第2の装着部102,104は図10Aに示す装着部88とそれぞれ同様に形成されているので、説明を省略する。第1及び第2の圧電素子24a,24bは同一のものを用いることが好ましい。 
 なお、中心軸C1,C2は振動伝達部材14の中心軸C0に対して対称の状態にある。
Next, a first modification of the third embodiment will be described with reference to FIGS. 11A to 11C.
As shown in FIG. 11A, the frame body 22 of the ultrasonic treatment device 10 of the present modification has first and second mounting portions 102 and 104, and the first piezoelectric element 24a is provided on the first mounting portion 102. However, the second piezoelectric element 24 b is disposed in the second mounting portion 104. In the ultrasonic treatment instrument 10, the center axis C0 of the vibration transmitting member 14 and the center axes C1 and C2 of the mounting portions 102 and 104 where the piezoelectric elements 24a and 24b are disposed are shifted from each other. Since the first and second mounting portions 102 and 104 are formed in the same manner as the mounting portion 88 shown in FIG. 10A, description thereof will be omitted. It is preferable to use the same first and second piezoelectric elements 24a and 24b.
The central axes C1 and C2 are symmetric with respect to the central axis C0 of the vibration transmitting member 14.
 第1の装着部102は、第1の圧電素子24aが配設される第1及び第2の押圧部112,114を有する。第2の装着部104は、第2の圧電素子24bが配設される第1及び第2の押圧部116,118を有する。第1及び第2の装着部102,104の間には、振動伝達部材14と同軸上に形成されたコラム120が配設されている。すなわち、第1及び第2の装着部102,104の第1の押圧部(リブ)112,116と、第1及び第2の装着部102,104の第2の押圧部(リブ)114,118とは、コラム120によって連結されている。 The first mounting portion 102 includes first and second pressing portions 112 and 114 in which the first piezoelectric element 24a is disposed. The second mounting portion 104 includes first and second pressing portions 116 and 118 in which the second piezoelectric element 24b is disposed. A column 120 formed coaxially with the vibration transmission member 14 is disposed between the first and second mounting portions 102 and 104. That is, the first pressing portions (ribs) 112 and 116 of the first and second mounting portions 102 and 104, and the second pressing portions (ribs) 114 and 118 of the first and second mounting portions 102 and 104, respectively. Are connected by a column 120.
 図11Bに示す第1の圧電素子24aを第1の装着部102に、第2の圧電素子24bを第2の装着部104に固定する場合について説明する。 
 例えばコラム120に図示しないレーザ光LB(図1B参照)を極短時間照射することによって、コラム120の金属結晶を変化させるか、あるいはレーザ加熱表面硬化(laser surface hardening)を引き起こす。このため、第1の装着部102の第1及び第2の押圧部112,114の間で第1の圧電素子24aを押圧する押圧力、第2の装着部104の第1及び第2の押圧部116,118の間で第2の圧電素子24bを押圧する押圧力がそれぞれ増す。
A case where the first piezoelectric element 24 a shown in FIG. 11B is fixed to the first mounting portion 102 and the second piezoelectric element 24 b is fixed to the second mounting portion 104 will be described.
For example, the column 120 is irradiated with laser light LB (not shown) (see FIG. 1B) for a very short time, thereby changing the metal crystal of the column 120 or causing laser surface hardening. Therefore, a pressing force that presses the first piezoelectric element 24a between the first and second pressing portions 112 and 114 of the first mounting portion 102, and a first and second pressing force of the second mounting portion 104. The pressing force for pressing the second piezoelectric element 24b between the portions 116 and 118 increases.
 また、他の方法によっても、第1の圧電素子24aを第1の装着部102に、第2の圧電素子24bを第2の装着部104に固定することができる。例えば、図11Cに示すように、第1の押圧部112,116にそれぞれ凹部112a,116aを、第2の押圧部114,118にそれぞれ凹部114a,118aを形成する形状加工を行う。すなわち、図11Cは、第1及び第2の押圧部112,114,116,118の両者を変形させた例である。これら凹部112a,114a,116a,118aは塑性変形により形成されているので、第1の圧電素子24aを第1の装着部102に、第2の圧電素子24bを第2の装着部104に固定することができる。 Also, the first piezoelectric element 24 a can be fixed to the first mounting portion 102 and the second piezoelectric element 24 b can be fixed to the second mounting portion 104 by other methods. For example, as shown in FIG. 11C, shape processing is performed to form the recesses 112a and 116a in the first pressing portions 112 and 116, and the recesses 114a and 118a in the second pressing portions 114 and 118, respectively. That is, FIG. 11C is an example in which both the first and second pressing portions 112, 114, 116, and 118 are deformed. Since these concave portions 112a, 114a, 116a, and 118a are formed by plastic deformation, the first piezoelectric element 24a is fixed to the first mounting portion 102 and the second piezoelectric element 24b is fixed to the second mounting portion 104. be able to.
 そして、第1及び第2の圧電素子24a,24bを同位相で駆動させると、縦振動を振動伝達部材14に伝達する。一方、第1及び第2の圧電素子24a,24bを逆位相で駆動させると、横振動を振動伝達部材14に伝達する。 Then, when the first and second piezoelectric elements 24 a and 24 b are driven in the same phase, longitudinal vibration is transmitted to the vibration transmitting member 14. On the other hand, when the first and second piezoelectric elements 24 a and 24 b are driven in opposite phases, the lateral vibration is transmitted to the vibration transmitting member 14.
 第3実施形態の第2変形例について、図12Aから図12Cを用いて説明する。 
 第3実施形態の超音波振動子12には、例えば図9に示す、第1及び第2の押圧部62,64がそれぞれ円柱状の構造の枠体22を用いることができる。このとき、コラム120は円柱状の構造の枠体22の中心軸上に配設されていることが好ましい。枠体22の装着部102,104(,106,108)や圧電素子24a,24b(,24c,24d)は例えば図12Aから図12Cに示すように、第1及び第2の押圧面62a,64a間の横断面が半円形状や扇形状など、枠体22により複数に分割されることが好ましい。
A second modification of the third embodiment will be described with reference to FIGS. 12A to 12C.
For the ultrasonic transducer 12 of the third embodiment, for example, a frame 22 having a cylindrical structure of first and second pressing portions 62 and 64 shown in FIG. 9 can be used. At this time, the column 120 is preferably disposed on the central axis of the frame 22 having a cylindrical structure. The mounting portions 102, 104 (, 106, 108) and the piezoelectric elements 24a, 24b (, 24c, 24d) of the frame 22 are, for example, as shown in FIGS. 12A to 12C, the first and second pressing surfaces 62a, 64a. It is preferable that the cross section in between is divided | segmented into plurality by the frame 22, such as a semicircle shape or a fan shape.
 例えば図12Aに示す状態では、第1及び第2の押圧部62,64の間には第1及び第2の装着部102,104が形成され、第1及び第2の装着部102,104の間には、コラム120から延出された板状の仕切り壁(リブ)122,124が形成されている。このように、第1及び第2の装着部102,104には仕切り壁122,124が形成されているので、圧電素子24a,24bを互いに同位相や逆位相等、所望の状態に振動させることができる。 For example, in the state shown in FIG. 12A, the first and second mounting portions 102 and 104 are formed between the first and second pressing portions 62 and 64, and the first and second mounting portions 102 and 104 Between them, plate-like partition walls (ribs) 122 and 124 extending from the column 120 are formed. Thus, since the partition walls 122 and 124 are formed in the first and second mounting portions 102 and 104, the piezoelectric elements 24a and 24b are vibrated in a desired state such as the same phase or opposite phase. Can do.
 図12Bに示す状態では、第1及び第2の押圧部62,64の間には第1、第2及び第3の装着部102,104,106が形成されている。第1及び第2の装着部102,104の間、第2及び第3の装着部104,106の間、第3及び第1の装着部106,102の間は、それぞれ板状の仕切り壁(リブ)122,124,126により仕切られている。各仕切り壁122,124,126はそれぞれコラム120から延出されている。このように、第1、第2及び第3の装着部102,104,106には仕切り壁122,124,126が形成されているので、圧電素子24a,24b,24cを互いに同位相にする、おのおのに位相差を持たせる、いずれかを逆位相にする等により、振動伝達部材14を所望の状態に振動させることができる。 In the state shown in FIG. 12B, first, second, and third mounting portions 102, 104, and 106 are formed between the first and second pressing portions 62 and 64, respectively. Between the first and second mounting portions 102, 104, between the second and third mounting portions 104, 106, and between the third and first mounting portions 106, 102, plate-like partition walls ( Ribs) 122, 124, 126. Each partition wall 122, 124, 126 extends from the column 120. Thus, since the partition walls 122, 124, 126 are formed in the first, second, and third mounting portions 102, 104, 106, the piezoelectric elements 24a, 24b, 24c are in phase with each other. The vibration transmitting member 14 can be vibrated to a desired state by giving a phase difference to each of them, or setting one of them to an opposite phase.
 図12Cに示す状態では、第1及び第2の押圧部62,64の間には第1から第4の装着部102,104,106,108が形成されている。第1及び第2の装着部102,104の間、第2及び第3の装着部104,106の間、第3及び第4の装着部106,108の間、第4及び第1の装着部108,102の間は、それぞれ板状の仕切り壁(リブ)122,124,126,128により仕切られている。各仕切り壁122,124,126,128はそれぞれコラム120から延出されている。このように、第1から第4の装着部102,104,106,108には仕切り壁122,124,126,128が形成されているので、圧電素子24a,24b,24c,24dを互いに同位相にする、おのおのに位相差を持たせる、いずれかを逆位相にしたりする等、振動伝達部材14を所望の状態に振動させることができる。 In the state shown in FIG. 12C, first to fourth mounting portions 102, 104, 106, 108 are formed between the first and second pressing portions 62, 64. Between the first and second mounting portions 102, 104, between the second and third mounting portions 104, 106, between the third and fourth mounting portions 106, 108, and between the fourth and first mounting portions. 108 and 102 are partitioned by plate-like partition walls (ribs) 122, 124, 126, and 128, respectively. Each partition wall 122, 124, 126, 128 extends from the column 120. Thus, since the partition walls 122, 124, 126, and 128 are formed in the first to fourth mounting portions 102, 104, 106, and 108, the piezoelectric elements 24a, 24b, 24c, and 24d are in phase with each other. The vibration transmitting member 14 can be vibrated to a desired state, for example, by giving a phase difference to each of them, or setting one of them to an opposite phase.
 なお、第3実施形態の第2変形例では図12Aから図12Cに示すように、圧電素子24a,24b(,24c,24d)が同一形状に描かれているが、同一形状でなくても良い。例えば図12Aに示す状態では、仕切り壁122,124がコラム120を通る一枚の板状として描かれているが、コラム120を屈曲部として曲げられていることも好適である。また、コラム120の位置は装着部102,104(,106,108)の中心にある必要はなく、中心からずれた位置にあっても良い。 In the second modification of the third embodiment, as shown in FIGS. 12A to 12C, the piezoelectric elements 24a, 24b (, 24c, 24d) are drawn in the same shape, but may not be the same shape. . For example, in the state shown in FIG. 12A, the partition walls 122 and 124 are drawn as a single plate passing through the column 120, but it is also preferable that the column 120 be bent with a bent portion. Further, the position of the column 120 does not have to be at the center of the mounting portions 102 and 104 (, 106, 108), and may be at a position shifted from the center.
 次に、第4実施形態について図13A及び図13Bを用いて説明する。 
 図13A及び図13Bに示すように、本実施形態に係る超音波処置装置150は、第1及び第2のジョー152,154と、第1及び第2のジョー152,154にそれぞれ配設される超音波処置具156,158とを有する。
Next, a fourth embodiment will be described with reference to FIGS. 13A and 13B.
As shown in FIGS. 13A and 13B, the ultrasonic treatment apparatus 150 according to the present embodiment is disposed on the first and second jaws 152 and 154 and the first and second jaws 152 and 154, respectively. And ultrasonic treatment instruments 156 and 158.
 超音波処置具156は、超音波振動子162aと、振動伝達部材164aと、ホーン166aとを有する。超音波処置具158は、超音波振動子162bと、振動伝達部材164bと、ホーン166bとを有する。なお、超音波処置具156,158には、突起72a,72b,72c,72dをアーム66,68に一体的に有する超音波処置具10(図8Aから図8C参照)を用いても良い。 The ultrasonic treatment instrument 156 includes an ultrasonic transducer 162a, a vibration transmission member 164a, and a horn 166a. The ultrasonic treatment instrument 158 includes an ultrasonic transducer 162b, a vibration transmission member 164b, and a horn 166b. As the ultrasonic treatment instruments 156 and 158, the ultrasonic treatment apparatus 10 (see FIGS. 8A to 8C) having protrusions 72a, 72b, 72c and 72d integrally with the arms 66 and 68 may be used.
 第1のジョー152は図13A及び図13B中の下側であり、第2のジョー154は図13A及び図13Bの上側にあり、第1及び第2のジョー152,154はピン170によって枢支されている。 The first jaw 152 is the lower side in FIGS. 13A and 13B, the second jaw 154 is the upper side of FIGS. 13A and 13B, and the first and second jaws 152, 154 are pivoted by a pin 170. Has been.
 第1のジョー152は超音波処置具156全体の長さよりも長く、横断面が略U字状に形成され、すなわち、1対の壁面の間に空間が形成されている。1対の壁面の間の空間には、超音波振動子162a、ホーン166a及び振動伝達部材164aを一体化した超音波処置具156を着脱可能に固定している。なお、第1のジョー152の先端部(ピン170に対する遠位端)には、生体組織LTが第1のジョー152の先端部に対して滑るのを防止するため、滑り止め158が形成されている。 The first jaw 152 is longer than the entire length of the ultrasonic treatment instrument 156 and has a substantially U-shaped cross section, that is, a space is formed between a pair of wall surfaces. An ultrasonic treatment instrument 156 in which the ultrasonic transducer 162a, the horn 166a, and the vibration transmission member 164a are integrated is detachably fixed in the space between the pair of wall surfaces. The tip of the first jaw 152 (distal end with respect to the pin 170) is provided with a non-slip 158 to prevent the living tissue LT from sliding relative to the tip of the first jaw 152. Yes.
 第2のジョー154は、1対の壁面の間に超音波振動子162b、ホーン166b及び振動伝達部材164bを一体化した超音波処置具158を着脱可能に固定している。本実施形態では、第2のジョー154に配設された超音波処置具158の振動伝達部材164bは、第2のジョー154に対して先端側に突出している。 The second jaw 154 detachably fixes an ultrasonic treatment instrument 158 in which an ultrasonic transducer 162b, a horn 166b, and a vibration transmission member 164b are integrated between a pair of wall surfaces. In the present embodiment, the vibration transmission member 164 b of the ultrasonic treatment instrument 158 disposed on the second jaw 154 protrudes toward the distal end side with respect to the second jaw 154.
 そして、図13Bに示すように、第1及び第2のジョー152,154を閉じたとき、振動伝達部材164a,164bのエンドエフェクタは近づく。図13Aに示すように、第1及び第2のジョー152,154を開いたとき、振動伝達部材164a,164bのエンドエフェクタは遠ざかる。このような第1及び第2のジョー152,154の開閉を行うことにより、生体組織LTを2つのエンドエフェクタ同士で把持することができる。なお、第1及び第2のジョー152,154の開閉操作は、第1及び第2のジョー152,154に接続されたワイヤ等を用いて行うことができる。 Then, as shown in FIG. 13B, when the first and second jaws 152 and 154 are closed, the end effectors of the vibration transmitting members 164a and 164b approach. As shown in FIG. 13A, when the first and second jaws 152 and 154 are opened, the end effectors of the vibration transmitting members 164a and 164b move away. By opening and closing the first and second jaws 152 and 154 as described above, the living tissue LT can be held between the two end effectors. The opening and closing operations of the first and second jaws 152 and 154 can be performed using wires connected to the first and second jaws 152 and 154.
 そして、超音波処置具156,158に用いる超音波振動子は、上述した第1から第3実施形態で説明したいずれを用いても良い。そして、2つのエンドエフェクタに同一周波数で逆位相の縦振動を印加しても良いし、縦振動と横振動との両者を印加しても良い。 And as the ultrasonic transducers used for the ultrasonic treatment instruments 156 and 158, any of those described in the first to third embodiments may be used. Then, longitudinal vibrations having the same frequency and opposite phases may be applied to the two end effectors, or both longitudinal vibrations and lateral vibrations may be applied.
 この実施形態によれば、超音波処置具156,158を小型化することができるので、ジョー152,154に直接超音波処置具156,158を配置することができる。したがって、超音波処置装置150全体として構造を簡略化、軽量化することができる。また、2つのエンドエフェクタから生体組織に直接エネルギを印加させるので、ジョー152,154間の把持力を減少させても生体組織を処置するのに十分な温度上昇を確保することができる。 According to this embodiment, since the ultrasonic treatment instruments 156 and 158 can be reduced in size, the ultrasonic treatment instruments 156 and 158 can be disposed directly on the jaws 152 and 154. Therefore, the structure of the ultrasonic treatment apparatus 150 as a whole can be simplified and reduced in weight. In addition, since energy is directly applied to the living tissue from the two end effectors, it is possible to ensure a sufficient temperature rise to treat the living tissue even if the gripping force between the jaws 152 and 154 is reduced.
 なお、ジョー152,154の先端に超音波処置具156,158を配置することができるので、超音波処置装置150全体の設計自由度を高められることから、図示しない内視鏡のチャンネルやトロッカー等を介して処置対象の生体組織に容易に導入する治療器具の構成などにより患者に対する侵襲度を低下させることや、軽量化することにより超音波処置装置150の操作時の疲労を低減することができる。 In addition, since the ultrasonic treatment tools 156 and 158 can be arranged at the tips of the jaws 152 and 154, the degree of freedom in designing the entire ultrasonic treatment apparatus 150 can be increased. The degree of invasiveness to a patient can be reduced by the configuration of a therapeutic instrument that is easily introduced into a living tissue to be treated through the use of the device, and the fatigue during operation of the ultrasonic treatment apparatus 150 can be reduced by reducing the weight. .
 次に、第5実施形態について図14Aから図14Cを用いて説明する。 
 図14Aから図14Cに示すように、本実施形態に係る超音波処置装置210は、内視鏡212と、バスケット鉗子214と、超音波処置具216とを有する。 
 図14Aに示すように、バスケット鉗子214は、チャンネル223を有する可撓部222と、可撓部222の基端部に配設されたハンドル224と、ハンドル224に図示しないワイヤを介して連結されたバスケット226と、図示しないワイヤの外周に配設されるチューブ228と、ハンドル224に着脱可能に接続された超音波放射ジェネレータ230とを有する。バスケット226は一般的なバスケット鉗子のバスケットと同様に、例えば4つのワイヤ232a,232b,232c,232dで形成され、チャンネル223の内部に収納することもできるし、チャンネル223の先端から突出させることもできる。
Next, a fifth embodiment will be described with reference to FIGS. 14A to 14C.
As shown in FIGS. 14A to 14C, the ultrasonic treatment apparatus 210 according to the present embodiment includes an endoscope 212, a basket forceps 214, and an ultrasonic treatment instrument 216.
As shown in FIG. 14A, the basket forceps 214 is connected to a flexible portion 222 having a channel 223, a handle 224 disposed at a proximal end portion of the flexible portion 222, and a handle 224 via a wire (not shown). Basket 226, tube 228 disposed on the outer periphery of the wire (not shown), and ultrasonic radiation generator 230 detachably connected to handle 224. The basket 226 is formed of, for example, four wires 232 a, 232 b, 232 c, and 232 d, similar to a basket of general basket forceps, and can be housed inside the channel 223 or protrude from the tip of the channel 223. it can.
 超音波処置具216は、超音波振動子242と振動伝達部材244とを有する。可撓部222の先端には、超音波振動子242が埋設され、振動伝達部材244が可撓部222の先端に対して突出している。なお、超音波処置具216はバスケット鉗子214の可撓部222のチャンネル223に並設されている。また、超音波処置具216は可撓部222の軸方向に沿って移動可能であることが好ましい。そうすると、可撓部222の先端に対して振動伝達部材244の遠位端を出し入れすることができる。 The ultrasonic treatment instrument 216 includes an ultrasonic transducer 242 and a vibration transmission member 244. An ultrasonic transducer 242 is embedded at the distal end of the flexible portion 222, and the vibration transmitting member 244 protrudes from the distal end of the flexible portion 222. The ultrasonic treatment tool 216 is arranged in parallel with the channel 223 of the flexible portion 222 of the basket forceps 214. Moreover, it is preferable that the ultrasonic treatment instrument 216 is movable along the axial direction of the flexible portion 222. If it does so, the distal end of the vibration transmission member 244 can be taken in and out with respect to the front-end | tip of the flexible part 222. FIG.
 内視鏡212は、バスケット鉗子214や図示しないガイドワイヤが配設される図示しないチャンネルを有する挿入部252を有する。この内視鏡212の挿入部252の先端部は、十二指腸の乳頭に対峙するように挿入することができる。内視鏡212の挿入部252のチャンネルを通して配設したガイドワイヤを、十二指腸内の胆管内の結石(胆石(biliary calculus))Bに導入することができる。 The endoscope 212 has an insertion portion 252 having a channel (not shown) in which a basket forceps 214 and a guide wire (not shown) are disposed. The distal end portion of the insertion portion 252 of the endoscope 212 can be inserted so as to face the papilla of the duodenum. A guide wire disposed through the channel of the insertion portion 252 of the endoscope 212 can be introduced into a calculus (biliary calculus) B in the bile duct in the duodenum.
 内視鏡212のチャンネル内に配設されたガイドワイヤに沿って、バスケット226を可撓部222に収納した状態でバスケット鉗子214を導入する。そして、ガイドワイヤによって、バスケット鉗子214の可撓部222の先端を結石Bに到達させる。 The basket forceps 214 is introduced in a state where the basket 226 is housed in the flexible portion 222 along the guide wire disposed in the channel of the endoscope 212. And the front-end | tip of the flexible part 222 of the basket forceps 214 is made to reach the calculus B with a guide wire.
 ハンドル224を操作して、バスケット鉗子214のバスケット226を可撓部222の先端から突出させ、バスケット226内に結石Bを配置する。この状態でハンドル224を操作して、バスケット226で結石Bを可撓部222の先端に近づける。超音波処置具216の振動伝達部材244の遠位端を結石Bに当接させる。バスケット226で結石Bを可撓部222の先端に近づけると、ワイヤ232a,232b,232c,232dで結石Bを締め付けることとなるので、この状態の結石Bに振動伝達部材244から超音波振動を伝達すると、結石Bの剛性バランスを崩すことができる。このため、結石Bは容易に砕石される。すなわち、通常、バスケット226のワイヤ232a,232b,232c,232dの締め付け力によって結石Bを砕石するが、さらに超音波処置具216で超音波振動による力を結石Bに負荷することで、より容易に結石Bを砕石できる。 The handle 224 is operated to cause the basket 226 of the basket forceps 214 to protrude from the tip of the flexible portion 222, and the calculus B is placed in the basket 226. In this state, the handle 224 is operated to bring the calculus B closer to the tip of the flexible portion 222 with the basket 226. The distal end of the vibration transmitting member 244 of the ultrasonic treatment instrument 216 is brought into contact with the calculus B. When the calculus B is brought close to the distal end of the flexible portion 222 with the basket 226, the calculus B is tightened with the wires 232a, 232b, 232c, and 232d, so that ultrasonic vibration is transmitted from the vibration transmission member 244 to the calculus B in this state. Then, the rigidity balance of the calculus B can be broken. For this reason, the calculus B is easily crushed. That is, normally, the calculus B is crushed by the tightening force of the wires 232a, 232b, 232c, and 232d of the basket 226, but by further applying a force due to ultrasonic vibration to the calculus B with the ultrasonic treatment tool 216, it is easier. Stone B can be crushed.
 なお、バスケット226を構成するワイヤ232a,232b,232c,232dは振動伝達部材244が当接しても、ワイヤ232a,232b,232c,232dが振動伝達部材244に対してズレるので、ワイヤ232a,232b,232c,232dには振動は直接印加されることが防止されている。 The wires 232a, 232b, 232c, and 232d constituting the basket 226 are displaced from the vibration transmitting member 244 even when the vibration transmitting member 244 comes into contact with each other, so that the wires 232a, 232b, 232d, Vibration is prevented from being directly applied to 232c and 232d.
 したがって、例えば炭酸カルシウム結石等、バスケット226だけではその結石Bを破砕し難い場合であっても、超音波処置具216の振動伝達部材244を用いることによって、開腹手術をすることなく、患者に対して低侵襲の治療を行うことができる。 Therefore, even if it is difficult to crush the calculus B using only the basket 226, such as calcium carbonate calculus, by using the vibration transmitting member 244 of the ultrasonic treatment instrument 216, the patient can be treated without performing a laparotomy. And minimally invasive treatment.
 これまで、いくつかの実施の形態について図面を参照しながら具体的に説明したが、この発明は、上述した実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で行なわれるすべての実施を含む。 Although several embodiments have been specifically described so far with reference to the drawings, the present invention is not limited to the above-described embodiments, and all the embodiments performed without departing from the gist of the present invention are described. Including implementation.
 C…中心軸、LB…レーザ光、10…超音波処置具(超音波外科器具)、12…超音波振動子、14…振動伝達部材、16…ホーン、22…枠体(共振体)、24…圧電素子、42…第1の押圧部、42a…押圧面、44…第2の押圧部、44a…押圧面、46…連結部、46a…移動規制面、46b…エネルギ負荷面、48…装着部(素子格納部)。 C ... central axis, LB ... laser beam, 10 ... ultrasonic treatment instrument (ultrasonic surgical instrument), 12 ... ultrasonic transducer, 14 ... vibration transmitting member, 16 ... horn, 22 ... frame (resonator), 24 ... Piezoelectric element, 42 ... first pressing part, 42a ... pressing surface, 44 ... second pressing part, 44a ... pressing surface, 46 ... connecting part, 46a ... movement restricting surface, 46b ... energy load surface, 48 ... mounting Part (element storage part).

Claims (24)

  1.  生体組織を処置する超音波処置具用の超音波振動子であって、
     超音波振動を発生する圧電素子と、
     生体組織に当接する振動伝達部材の中心軸に対して側方から前記圧電素子が装着される装着部を有し、前記装着部に前記圧電素子を装着した状態で前記圧電素子に押圧力を付与し前記圧電素子で発生させた振動を振動伝達部材に伝達可能な枠体と
     を具備する超音波振動子。
    An ultrasonic transducer for an ultrasonic treatment device for treating a living tissue,
    A piezoelectric element that generates ultrasonic vibrations;
    A mounting portion to which the piezoelectric element is mounted from the side with respect to the central axis of the vibration transmitting member that comes into contact with the living tissue, and a pressing force is applied to the piezoelectric element in a state where the piezoelectric element is mounted on the mounting portion. And a frame capable of transmitting the vibration generated by the piezoelectric element to a vibration transmitting member.
  2.  前記枠体は、前記装着部を囲う略U字状に形成されている、請求項1に記載の超音波振動子。 The ultrasonic transducer according to claim 1, wherein the frame is formed in a substantially U shape surrounding the mounting portion.
  3.  前記枠体の装着部は前記振動伝達部材の中心軸に対して交差する方向に開口を有する、請求項1に記載の超音波振動子。 The ultrasonic transducer according to claim 1, wherein the mounting portion of the frame body has an opening in a direction intersecting with a central axis of the vibration transmitting member.
  4.  前記振動伝達部材の中心軸は、前記圧電素子が前記枠体の装着部に配設された状態で前記圧電素子の中心軸に一致する、請求項3に記載の超音波振動子。 The ultrasonic transducer according to claim 3, wherein a center axis of the vibration transmitting member coincides with a center axis of the piezoelectric element in a state where the piezoelectric element is disposed in a mounting portion of the frame body.
  5.  前記枠体は、互いに対向し、前記装着部を形成する第1及び第2の押圧部を有する、請求項1に記載の超音波振動子。 The ultrasonic transducer according to claim 1, wherein the frame includes first and second pressing portions that face each other and form the mounting portion.
  6.  前記枠体は前記第1及び第2の押圧部を連結するアームを有する、請求項5に記載の超音波振動子。 The ultrasonic transducer according to claim 5, wherein the frame has an arm connecting the first and second pressing portions.
  7.  前記アームは一端が前記第1の押圧部に、他端が前記第2の押圧部に連結されているとともに、前記アームはアーム形状に沿った経路長がアーム両端を結んだ長さよりも長く、且つ前記枠体の前記装着部に近接する側に凸部を持つ形状に形成されている、請求項6に記載の超音波振動子。 The arm has one end connected to the first pressing portion and the other end connected to the second pressing portion, and the arm has a longer path length along the arm shape than the length connecting both ends of the arm, The ultrasonic transducer according to claim 6, wherein the ultrasonic transducer is formed in a shape having a convex portion on a side close to the mounting portion of the frame body.
  8.  前記アームは一端が前記第1の押圧部に、他端が前記第2の押圧部に連結されているとともに、前記アームはアーム形状に沿った経路長がアーム両端を結んだ長さよりも長く、且つ前記枠体の前記装着部に離隔する側に凸部を持つ形状に形成されている、請求項6に記載の超音波振動子。 The arm has one end connected to the first pressing portion and the other end connected to the second pressing portion, and the arm has a longer path length along the arm shape than the length connecting both ends of the arm, The ultrasonic transducer according to claim 6, wherein the ultrasonic transducer is formed in a shape having a convex portion on a side away from the mounting portion of the frame body.
  9.  前記アームには、前記第1及び第2の押圧部の間隔を接離させるために力をかける負荷部が設けられている、請求項6に記載の超音波振動子。 The ultrasonic transducer according to claim 6, wherein the arm is provided with a load portion that applies a force to bring a distance between the first and second pressing portions into and out of contact with each other.
  10.  前記第1及び第2の押圧部の少なくとも一方を変形させることにより前記第1及び第2の押圧部の間の距離を小さくした、請求項5に記載の超音波振動子。 The ultrasonic transducer according to claim 5, wherein a distance between the first and second pressing portions is reduced by deforming at least one of the first and second pressing portions.
  11.  前記圧電素子は前記振動伝達部材の中心軸上に配置されている、請求項1に記載の超音波振動子。 The ultrasonic transducer according to claim 1, wherein the piezoelectric element is disposed on a central axis of the vibration transmitting member.
  12.  前記圧電素子は前記振動伝達部材の中心軸に対してずれた位置に配置されている、請求項1に記載の超音波振動子。 The ultrasonic transducer according to claim 1, wherein the piezoelectric element is arranged at a position shifted from a center axis of the vibration transmitting member.
  13.  前記枠体は、前記装着部とは別にさらに装着部を有し、
     前記別の装着部には前記装着部に装着された圧電素子とは別の圧電素子が装着されている、請求項1に記載の超音波振動子。
    The frame body has a mounting part in addition to the mounting part,
    The ultrasonic transducer according to claim 1, wherein a piezoelectric element different from the piezoelectric element attached to the attachment part is attached to the separate attachment part.
  14.  前記圧電素子及び前記別の圧電素子は、前記振動伝達部材の中心軸に対する振動方向が互いに異なっている、請求項13に記載の超音波振動子。 14. The ultrasonic transducer according to claim 13, wherein the piezoelectric element and the another piezoelectric element have different vibration directions with respect to a central axis of the vibration transmitting member.
  15.  生体組織を処置する超音波処置具であって、
     請求項1に記載の超音波振動子と、
     前記超音波振動子の前記枠体に配設される振動伝達部材と
     を具備する超音波処置具。
    An ultrasonic treatment tool for treating living tissue,
    An ultrasonic transducer according to claim 1;
    An ultrasonic treatment instrument comprising: a vibration transmitting member disposed on the frame of the ultrasonic transducer.
  16.  前記枠体と前記振動伝達部材との間には、ホーンが配設されている、請求項15に記載の超音波処置具。 The ultrasonic treatment instrument according to claim 15, wherein a horn is disposed between the frame and the vibration transmitting member.
  17.  生体組織を処置する超音波処置装置であって、
     請求項15に記載の超音波処置具と、
     前記超音波処置具が組み込まれるジョーと
     を具備する超音波処置装置。
    An ultrasonic treatment apparatus for treating a living tissue,
    The ultrasonic treatment device according to claim 15,
    An ultrasonic treatment apparatus comprising: a jaw into which the ultrasonic treatment tool is incorporated.
  18.  生体組織を処置する超音波処置具用の超音波振動子の組立方法であって、
     中心軸に対して外れた側方から枠体の開口を通して1対の押圧部間に圧電素子を配置すること、
     前記圧電素子を前記1対の押圧部間で保持すること
     を具備する組立方法。
    An assembly method of an ultrasonic transducer for an ultrasonic treatment tool for treating a biological tissue,
    Disposing a piezoelectric element between the pair of pressing portions through the opening of the frame body from the side deviating from the central axis;
    An assembly method comprising: holding the piezoelectric element between the pair of pressing portions.
  19.  前記1対の押圧部間に圧電素子を配置する前に、前記1対の押圧部に力を加えて前記中心軸に沿った方向に前記1対の押圧部間の間隔を大きくすることを具備する、請求項18に記載の組立方法。 Before placing the piezoelectric element between the pair of pressing portions, applying a force to the pair of pressing portions to increase the distance between the pair of pressing portions in the direction along the central axis. The assembly method according to claim 18.
  20.  前記圧電素子を前記1対の押圧部間で保持した後に、前記1対の押圧部の少なくとも一方を互いに対して移動させて前記圧電素子を押圧することを具備する、請求項18に記載の組立方法。 19. The assembly according to claim 18, comprising: holding the piezoelectric element between the pair of pressing portions, and then moving at least one of the pair of pressing portions with respect to each other to press the piezoelectric element. Method.
  21.  前記1対の押圧部間で前記圧電素子を保持した後に、前記1対の押圧部を塑性変形させることを具備する、請求項18に記載の組立方法。 The assembly method according to claim 18, further comprising plastically deforming the pair of pressing portions after holding the piezoelectric element between the pair of pressing portions.
  22.  前記1対の押圧部を塑性変形させる際に前記枠体をレーザ照射して前記1対の押圧部の少なくとも一方を変形させることを具備する、請求項21に記載の組立方法。 The assembling method according to claim 21, further comprising: irradiating the frame with a laser to deform at least one of the pair of pressing portions when the pair of pressing portions are plastically deformed.
  23.  前記枠体を部分的に熱処理することにより、残留応力を増減することで、前記超音波振動子の振動状態を調整することを具備する、請求項18に記載の組立方法。 The assembly method according to claim 18, further comprising adjusting a vibration state of the ultrasonic vibrator by increasing or decreasing a residual stress by partially heat-treating the frame body.
  24.  前記枠体のうち1対の押圧部を連結する部材を組み立て中に形状加工あるいは熱処理することにより、前記超音波振動子の振動状態を調整することを具備する、請求項18に記載の組立方法。 The assembly method according to claim 18, further comprising adjusting a vibration state of the ultrasonic transducer by performing shape processing or heat treatment during assembly of a member that couples the pair of pressing portions of the frame. .
PCT/JP2011/075732 2010-11-15 2011-11-08 Ultrasound transducer, ultrasound treatment tool, ultrasound treatment device, and method for assembling ultrasound transducer WO2012066983A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US41351010P 2010-11-15 2010-11-15
US61/413,510 2010-11-15

Publications (1)

Publication Number Publication Date
WO2012066983A1 true WO2012066983A1 (en) 2012-05-24

Family

ID=46083917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075732 WO2012066983A1 (en) 2010-11-15 2011-11-08 Ultrasound transducer, ultrasound treatment tool, ultrasound treatment device, and method for assembling ultrasound transducer

Country Status (1)

Country Link
WO (1) WO2012066983A1 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012179102A (en) * 2011-02-28 2012-09-20 Fujifilm Corp Resonant transducer, method of producing the resonant transducer, and ultrasonic treatment tool including the resonant transducer
JP2015529140A (en) * 2012-09-19 2015-10-05 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Micromachined ultrasonic scalpel with embedded piezoelectric actuator
WO2018039515A1 (en) * 2016-08-25 2018-03-01 Ethicon Llc Ultrasonic transducer to waveguide acoustic coupling, connections, and configurations
US10433866B2 (en) 2007-11-30 2019-10-08 Ethicon Llc Ultrasonic surgical blades
US10441308B2 (en) 2007-11-30 2019-10-15 Ethicon Llc Ultrasonic surgical instrument blades
US10531910B2 (en) 2007-07-27 2020-01-14 Ethicon Llc Surgical instruments
US10537352B2 (en) 2004-10-08 2020-01-21 Ethicon Llc Tissue pads for use with surgical instruments
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
US10709906B2 (en) 2009-05-20 2020-07-14 Ethicon Llc Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US10722261B2 (en) 2007-03-22 2020-07-28 Ethicon Llc Surgical instruments
US10779848B2 (en) 2006-01-20 2020-09-22 Ethicon Llc Ultrasound medical instrument having a medical ultrasonic blade
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
US10828059B2 (en) 2007-10-05 2020-11-10 Ethicon Llc Ergonomic surgical instruments
US10828057B2 (en) 2007-03-22 2020-11-10 Ethicon Llc Ultrasonic surgical instruments
US10835768B2 (en) 2010-02-11 2020-11-17 Ethicon Llc Dual purpose surgical instrument for cutting and coagulating tissue
US10842580B2 (en) 2012-06-29 2020-11-24 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
US10856896B2 (en) 2005-10-14 2020-12-08 Ethicon Llc Ultrasonic device for cutting and coagulating
US10874418B2 (en) 2004-02-27 2020-12-29 Ethicon Llc Ultrasonic surgical shears and method for sealing a blood vessel using same
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US10966744B2 (en) 2016-07-12 2021-04-06 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US11033292B2 (en) 2013-12-16 2021-06-15 Cilag Gmbh International Medical device
USD924400S1 (en) 2016-08-16 2021-07-06 Cilag Gmbh International Surgical instrument
US11058447B2 (en) 2007-07-31 2021-07-13 Cilag Gmbh International Temperature controlled ultrasonic surgical instruments
US11272952B2 (en) 2013-03-14 2022-03-15 Cilag Gmbh International Mechanical fasteners for use with surgical energy devices
US11369402B2 (en) 2010-02-11 2022-06-28 Cilag Gmbh International Control systems for ultrasonically powered surgical instruments
US11553954B2 (en) 2015-06-30 2023-01-17 Cilag Gmbh International Translatable outer tube for sealing using shielded lap chole dissector
US11666784B2 (en) 2007-07-31 2023-06-06 Cilag Gmbh International Surgical instruments
US11690641B2 (en) 2007-07-27 2023-07-04 Cilag Gmbh International Ultrasonic end effectors with increased active length
US11877734B2 (en) 2007-07-31 2024-01-23 Cilag Gmbh International Ultrasonic surgical instruments

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63255677A (en) * 1987-04-13 1988-10-21 Matsushita Electric Works Ltd Ultrasonic vibrator
JPH08163696A (en) * 1994-12-06 1996-06-21 Aloka Co Ltd Ultrasonic vibrator
JP2005094552A (en) * 2003-09-19 2005-04-07 Olympus Corp Ultrasonic vibrator and its manufacturing method
US20080103418A1 (en) * 2000-04-12 2008-05-01 Wuchinich David G Longitudinal-torsional ultrasonic tissue dissection
JP2009189046A (en) * 2009-04-21 2009-08-20 Shinkawa Ltd Ultrasonic vibrator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63255677A (en) * 1987-04-13 1988-10-21 Matsushita Electric Works Ltd Ultrasonic vibrator
JPH08163696A (en) * 1994-12-06 1996-06-21 Aloka Co Ltd Ultrasonic vibrator
US20080103418A1 (en) * 2000-04-12 2008-05-01 Wuchinich David G Longitudinal-torsional ultrasonic tissue dissection
JP2005094552A (en) * 2003-09-19 2005-04-07 Olympus Corp Ultrasonic vibrator and its manufacturing method
JP2009189046A (en) * 2009-04-21 2009-08-20 Shinkawa Ltd Ultrasonic vibrator

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10874418B2 (en) 2004-02-27 2020-12-29 Ethicon Llc Ultrasonic surgical shears and method for sealing a blood vessel using same
US11730507B2 (en) 2004-02-27 2023-08-22 Cilag Gmbh International Ultrasonic surgical shears and method for sealing a blood vessel using same
US11006971B2 (en) 2004-10-08 2021-05-18 Ethicon Llc Actuation mechanism for use with an ultrasonic surgical instrument
US10537352B2 (en) 2004-10-08 2020-01-21 Ethicon Llc Tissue pads for use with surgical instruments
US10856896B2 (en) 2005-10-14 2020-12-08 Ethicon Llc Ultrasonic device for cutting and coagulating
US10779848B2 (en) 2006-01-20 2020-09-22 Ethicon Llc Ultrasound medical instrument having a medical ultrasonic blade
US10828057B2 (en) 2007-03-22 2020-11-10 Ethicon Llc Ultrasonic surgical instruments
US10722261B2 (en) 2007-03-22 2020-07-28 Ethicon Llc Surgical instruments
US11690641B2 (en) 2007-07-27 2023-07-04 Cilag Gmbh International Ultrasonic end effectors with increased active length
US10531910B2 (en) 2007-07-27 2020-01-14 Ethicon Llc Surgical instruments
US11607268B2 (en) 2007-07-27 2023-03-21 Cilag Gmbh International Surgical instruments
US11877734B2 (en) 2007-07-31 2024-01-23 Cilag Gmbh International Ultrasonic surgical instruments
US11058447B2 (en) 2007-07-31 2021-07-13 Cilag Gmbh International Temperature controlled ultrasonic surgical instruments
US11666784B2 (en) 2007-07-31 2023-06-06 Cilag Gmbh International Surgical instruments
US10828059B2 (en) 2007-10-05 2020-11-10 Ethicon Llc Ergonomic surgical instruments
US10433865B2 (en) 2007-11-30 2019-10-08 Ethicon Llc Ultrasonic surgical blades
US11690643B2 (en) 2007-11-30 2023-07-04 Cilag Gmbh International Ultrasonic surgical blades
US10463887B2 (en) 2007-11-30 2019-11-05 Ethicon Llc Ultrasonic surgical blades
US11439426B2 (en) 2007-11-30 2022-09-13 Cilag Gmbh International Ultrasonic surgical blades
US11266433B2 (en) 2007-11-30 2022-03-08 Cilag Gmbh International Ultrasonic surgical instrument blades
US11253288B2 (en) 2007-11-30 2022-02-22 Cilag Gmbh International Ultrasonic surgical instrument blades
US10441308B2 (en) 2007-11-30 2019-10-15 Ethicon Llc Ultrasonic surgical instrument blades
US10433866B2 (en) 2007-11-30 2019-10-08 Ethicon Llc Ultrasonic surgical blades
US11766276B2 (en) 2007-11-30 2023-09-26 Cilag Gmbh International Ultrasonic surgical blades
US10888347B2 (en) 2007-11-30 2021-01-12 Ethicon Llc Ultrasonic surgical blades
US10709906B2 (en) 2009-05-20 2020-07-14 Ethicon Llc Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US11369402B2 (en) 2010-02-11 2022-06-28 Cilag Gmbh International Control systems for ultrasonically powered surgical instruments
US10835768B2 (en) 2010-02-11 2020-11-17 Ethicon Llc Dual purpose surgical instrument for cutting and coagulating tissue
JP2012179102A (en) * 2011-02-28 2012-09-20 Fujifilm Corp Resonant transducer, method of producing the resonant transducer, and ultrasonic treatment tool including the resonant transducer
US10842580B2 (en) 2012-06-29 2020-11-24 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US11602371B2 (en) 2012-06-29 2023-03-14 Cilag Gmbh International Ultrasonic surgical instruments with control mechanisms
JP2015529140A (en) * 2012-09-19 2015-10-05 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Micromachined ultrasonic scalpel with embedded piezoelectric actuator
US11272952B2 (en) 2013-03-14 2022-03-15 Cilag Gmbh International Mechanical fasteners for use with surgical energy devices
US11033292B2 (en) 2013-12-16 2021-06-15 Cilag Gmbh International Medical device
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US11553954B2 (en) 2015-06-30 2023-01-17 Cilag Gmbh International Translatable outer tube for sealing using shielded lap chole dissector
US11883055B2 (en) 2016-07-12 2024-01-30 Cilag Gmbh International Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10966744B2 (en) 2016-07-12 2021-04-06 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
USD924400S1 (en) 2016-08-16 2021-07-06 Cilag Gmbh International Surgical instrument
EP3503821B1 (en) * 2016-08-25 2022-08-17 Ethicon LLC Electrical and thermal connections for ultrasonic transducer
US10828056B2 (en) 2016-08-25 2020-11-10 Ethicon Llc Ultrasonic transducer to waveguide acoustic coupling, connections, and configurations
US10779847B2 (en) 2016-08-25 2020-09-22 Ethicon Llc Ultrasonic transducer to waveguide joining
US10420580B2 (en) 2016-08-25 2019-09-24 Ethicon Llc Ultrasonic transducer for surgical instrument
CN110191683A (en) * 2016-08-25 2019-08-30 伊西康有限责任公司 Acoustics connection, connection and configuration of the ultrasonic transducer to waveguide
WO2018039515A1 (en) * 2016-08-25 2018-03-01 Ethicon Llc Ultrasonic transducer to waveguide acoustic coupling, connections, and configurations
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US11350959B2 (en) 2016-08-25 2022-06-07 Cilag Gmbh International Ultrasonic transducer techniques for ultrasonic surgical instrument
US11925378B2 (en) 2016-08-25 2024-03-12 Cilag Gmbh International Ultrasonic transducer for surgical instrument
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use

Similar Documents

Publication Publication Date Title
WO2012066983A1 (en) Ultrasound transducer, ultrasound treatment tool, ultrasound treatment device, and method for assembling ultrasound transducer
EP3503825B1 (en) Ultrasonic transducer to waveguide joining
JP6968865B2 (en) Ultrasound assembly for use with ultrasonic surgical instruments
US11832843B2 (en) Ultrasonic surgical instrument, associated surgical method and related manufacturing method
US6551337B1 (en) Ultrasonic medical device operating in a transverse mode
JP3999715B2 (en) Ultrasonic treatment device
EP2291129A2 (en) Ultrasonic transducer system
JP5153966B2 (en) Probe for treating biological tissue and method for operating ultrasonic probe
JP3651646B2 (en) Ultrasonic scalpel and ultrasonic scalpel device
WO2020152783A1 (en) Ultrasonic treatment tool and vibration transmission member
JPH0638804B2 (en) Surgical tools
BR112019003643B1 (en) ULTRASONIC SURGICAL INSTRUMENT
EP1500373A2 (en) Ultrasonic medical device operating in a transverse mode
Štimac ASSESSMENT OF TITANIUM WIRE AS AN ENDOSCOPIC SURGICAL TOOL

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11840767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11840767

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP