WO2020152783A1 - Ultrasonic treatment tool and vibration transmission member - Google Patents

Ultrasonic treatment tool and vibration transmission member Download PDF

Info

Publication number
WO2020152783A1
WO2020152783A1 PCT/JP2019/001890 JP2019001890W WO2020152783A1 WO 2020152783 A1 WO2020152783 A1 WO 2020152783A1 JP 2019001890 W JP2019001890 W JP 2019001890W WO 2020152783 A1 WO2020152783 A1 WO 2020152783A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
screw
ultrasonic
end side
tip
Prior art date
Application number
PCT/JP2019/001890
Other languages
French (fr)
Japanese (ja)
Inventor
雅也 戸田
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2019/001890 priority Critical patent/WO2020152783A1/en
Publication of WO2020152783A1 publication Critical patent/WO2020152783A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments

Definitions

  • the present invention relates to an ultrasonic treatment tool and a vibration transmission member.
  • an ultrasonic treatment instrument for treating living tissue by using ultrasonic vibration As an instrument for medical treatment, an ultrasonic treatment instrument for treating living tissue by using ultrasonic vibration is known.
  • the ultrasonic treatment instrument has a treatment portion at the tip of the vibration transmitting member.
  • the vibration transmission member is formed in a rod shape having a small diameter, and transmits the ultrasonic vibration generated by the vibration source from the proximal end side to the distal end side.
  • a coupling portion with a vibration source is provided at the base end of the vibration transmitting member.
  • This connecting portion is composed of a screw portion.
  • Patent Document 1 discloses a connection mechanism in which a screw portion provided on the base end side of a vibration transmission member is screwed with a screw portion provided on the tip end side of a vibration source.
  • Patent Document 2 as a connection mechanism using a tubular connecting member, a male screw provided on the vibration transmitting member and a male screw provided on the vibration source are screwed into a female screw provided on the connecting member. It is disclosed to match.
  • Patent Document 3 as another connection mechanism using a connecting member, a male screw provided on the vibration transmitting member and a female screw provided on the connecting member are screwed together to form a base end portion of the vibration transmitting member. It is disclosed that the tip end portion of the vibration source is sandwiched from both sides in the axial direction with the connecting member.
  • the vibration transmitting member of the ultrasonic treatment instrument is a component that can be replaced with a new one each time the treatment is performed, that is, a disposable item.
  • the vibration source is a recycled product. Therefore, the vibration source is continuously used even after the vibration transmitting member is replaced.
  • the present invention has been made in view of the above circumstances, and ultrasonic waves capable of suppressing damage to the vibration source side even when excessive torque acts when screwing the vibration transmitting member and the vibration source together.
  • An object is to provide a treatment tool and a vibration transmission member.
  • an ultrasonic treatment tool has a first screw portion formed at one end side thereof, and a vibration source for generating ultrasonic vibration, and the vibration source.
  • a vibration source for generating ultrasonic vibration
  • the vibration source has an abutting portion that abuts on the one end side of the above, and a second screw portion that is attached to the first screw portion of the vibration source at the base end portion, and the ultrasonic vibration from the vibration source is at the base end.
  • a vibration transmitting member for transmitting from the side to the tip side, the vibration transmitting member is configured to operate when the torque applied when the first screw portion and the second screw portion are screwed together is equal to or more than a predetermined value.
  • a rupture guide part that induces rupture so that the base end part of the vibration transmitting member is separated into a distal end side and a base end side before the screwed part of the first screw part and the second screw part is plastically deformed. , In the vicinity of the second screw portion.
  • the breakage guide portion is provided at a position deviating from a node position of ultrasonic vibration transmitted through the vibration transmission member.
  • the breakage guide portion is provided at or near an antinode position of ultrasonic vibrations transmitted by the vibration transmission member.
  • the fracture guide portion has a groove shape formed in the vibration transmitting member along a circumferential direction at a position closer to the tip end side than the second screw portion. ..
  • the second screw portion is a female screw
  • the breakage guide portion is at a position closer to the tip end side than the female screw, and is an outer peripheral portion of the vibration transmitting member.
  • a notch portion having a notch formed therein.
  • the second screw portion is a female screw
  • the breakage guide portion is inside the screw hole of the female screw, and is located on a tip side of the female screw.
  • the position includes a thin portion formed thinner than the female screw portion.
  • the contact portion is a bottom surface of a screw hole of the female screw, and the bottom surface of the screw hole is formed on a tip side of the first screw portion. Further, the fracture guide portion is provided at a position overlapping with the axial position where the bottom surface of the screw hole is provided, in surface contact with the tip surface of the vibration source.
  • the ultrasonic treatment instrument is a rod-shaped member having a male screw formed at one end side, a vibration source for generating ultrasonic vibration, and a contact portion abutting against the one end side of the vibration source at the base end. And a vibration transmitting member for transmitting ultrasonic vibration from the vibration generating source from the base end side to the tip side, a female screw screwed with the male screw of the vibration generating source, and an outer peripheral portion of the vibration transmitting member.
  • a cylindrical member having an inner peripheral portion fixed to, a holding member for holding a state in which the tip end surface of the vibration source and the abutting portion of the vibration transmitting member abut against each other, and
  • the torque that acts when the male screw and the female screw are screwed into the fixing portion that fixes the outer peripheral portion of the vibration transmitting member and the inner peripheral portion of the holding member is a predetermined value or more
  • the male A fracture guide portion is provided to guide the fracture of the fixing portion so that the vibration transmitting member is axially separated from the holding member before the threaded portion of the screw and the female screw is plastically deformed.
  • a vibration transmitting member has a distal end portion having a treatment portion, and a base end portion connected to a vibration generation source that generates ultrasonic vibrations, and the base end portion of the vibration generation source It has a contact part which abuts on a tip side, and a 2nd screw part which attaches to the 1st screw part formed in the above-mentioned vibration generating source, and the 1st screw part near the 2nd screw part.
  • the torque acting when screwing the second screw portion is a predetermined value or more
  • the base end portion is a tip before the screwing portion of the first screw portion and the second screw portion is plastically deformed.
  • a fracture guide portion that guides fracture is provided so as to be separated into the side and the base end side.
  • the breakage guide portion is provided at a position deviated from a node position of ultrasonic vibration transmitting the vibration transmitting member.
  • the breakage guide portion is provided at or near an antinode position of ultrasonic vibration transmitted through the vibration transmitting member.
  • the breakage guide portion has a groove shape formed along the circumferential direction at a position closer to the tip end portion than the second screw portion.
  • the second screw portion is a female screw
  • the breaking guide portion is located at a position closer to the tip portion than the female screw, and is an outer periphery of the base end portion.
  • a notch portion having a notch is formed in the portion.
  • the second screw portion is a female screw
  • the breaking guide portion is inside the screw hole of the female screw, and is closer to the tip portion than the female screw.
  • the thin-walled portion formed thinner than the female screw portion is included.
  • the contact portion is a bottom surface of a screw hole of the female screw, and the bottom surface of the screw hole is formed on a tip side of the first screw portion.
  • the fracture guide portion is provided in a position overlapping with the axial position where the bottom surface of the screw hole is provided, in surface contact with the tip surface of the vibration source.
  • the vibration transmitting member and the vibration generating source are fastened by screwing, if a torque larger than necessary is applied, the breakage guide portion of the vibration transmitting member is broken, so that the vibration generating source side is damaged. Can be suppressed.
  • FIG. 1 is a diagram showing an ultrasonic treatment device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the internal structure of the case of the ultrasonic treatment tool.
  • FIG. 3 is a diagram showing a state in which the ultrasonic probe is connected to the vibration source.
  • FIG. 4 is a cross-sectional view showing a state in which the ultrasonic probe and the vibration source are connected.
  • FIG. 5 is a cross-sectional view for explaining the structure on the proximal end side of the ultrasonic probe and the structure on the distal end side of the vibration source.
  • FIG. 6 is a diagram for explaining a separated state after the breakage guide portion is broken.
  • FIG. 7 is a diagram for explaining the state of the tip of the vibration source.
  • FIG. 1 is a diagram showing an ultrasonic treatment device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the internal structure of the case of the ultrasonic treatment
  • FIG. 8 is a cross-sectional view showing, as a modification of the first embodiment, a structure in which the contact portion of the ultrasonic probe is formed by the base end surface.
  • FIG. 9 is a cross-sectional view showing, as another modification of the first embodiment, a structure in which a fracture guide portion is formed inside a screw hole of a female screw.
  • FIG. 10 is a diagram showing a state in which the ultrasonic probe according to the second embodiment is connected to the vibration source.
  • FIG. 11 is a sectional view for explaining the connection structure between the ultrasonic probe and the vibration source according to the second embodiment.
  • FIG. 12 is a diagram showing a state in which the ultrasonic probe according to the third embodiment is connected to the vibration source.
  • FIG. 13 is a sectional view for explaining the connection structure between the ultrasonic probe and the vibration source according to the third embodiment.
  • FIG. 14 is a sectional view for explaining the connection structure between the ultrasonic probe and the vibration source according to the fourth embodiment.
  • FIG. 15 is an enlarged view of a part of the cross-sectional view shown in FIG.
  • FIG. 16 is a view showing a cutout portion having a round groove shape.
  • FIG. 17 is a diagram showing a V-shaped notch.
  • FIG. 18 is a diagram showing a case where the pin angles of the corners of the notch forming the rectangular groove are different.
  • FIG. 19 is a diagram showing the case where the pin angles of the corners are the same with respect to the notch forming the rectangular groove.
  • FIG. 1 is a diagram showing an ultrasonic treatment device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the internal structure of the case of the ultrasonic treatment tool.
  • FIG. 3 is a diagram showing a state in which the ultrasonic probe is connected to the vibration source.
  • one side in the direction along the longitudinal axis C (arrow C1 side) is described as the tip side, and the other side (arrow C2 side) is described as the base end side.
  • the ultrasonic treatment instrument 1 is a medical treatment instrument that treats a treatment target such as a living tissue using ultrasonic vibration. As shown in FIG. 1, the ultrasonic treatment tool 1 includes an ultrasonic probe 2, a sheath 3, a handle unit 4, and a transducer unit 5.
  • the ultrasonic probe 2 is a vibration transmission member that transmits ultrasonic vibration, and is formed in a rod shape with a small diameter.
  • the ultrasonic probe 2 is extended along the longitudinal axis C while being inserted into the sheath 3.
  • the sheath 3 is a cylindrical case member extending along the longitudinal axis C, and its proximal end side is connected to the distal end side of the handle unit 4.
  • the tip portion (hereinafter, probe tip portion) 2 a of the ultrasonic probe 2 projects from the tip portion of the sheath 3.
  • the probe tip portion 2a constitutes the treatment portion 7 together with the movable jaw 6.
  • the movable jaw 6 is a movable member attached to the tip of the sheath 3. By moving the movable jaw 6 so as to approach the probe tip portion 2a, it is possible to grasp the living tissue to be treated by the movable jaw 6 and the probe tip portion 2a. Further, as shown in FIGS. 2 and 3, the base end portion 2 b of the ultrasonic probe 2 is connected to the vibration source 51 of the vibrator unit 5.
  • the longitudinal axis C is a longitudinal axis defined by the tip 2a and the base 2b.
  • the handle unit 4 includes a case body 41, a fixed handle 42, and a movable handle 43.
  • the fixed handle 42 and the movable handle 43 are portions that an operator holds in a hand when performing a treatment.
  • the fixed handle 42 is formed integrally with the case body 41.
  • the movable handle 43 is rotatably attached to the case body 41. When the operator operates the movable handle 43 so as to approach the fixed handle 42, the distal end portion of the movable jaw 6 in the treatment portion 7 rotates so as to approach the probe distal end portion 2a.
  • the case body 41 is a case portion that is open on both sides of the longitudinal axis C.
  • the rotary knob 8 is attached to the tip end side, and the transducer unit 5 is attached to the base end side.
  • the handle unit 4 including the case body 41 is a disposable item.
  • the vibrator unit 5 is a reused product.
  • the handle unit 4 and the vibrator unit 5 are connected, by inserting the tip end side of the vibrator unit 5 into a mounting port formed on the base end side of the case body 41, the handle connecting portion of the vibrator case 52 is made into a case. It is fitted into the transducer connection portion of the main body 41.
  • the vibration source 51 of the vibrator unit 5 is connected to the ultrasonic probe 2 inside the case body 41.
  • the connecting portion 10 between the ultrasonic probe 2 and the vibration generating source 51 has a connection structure by screw fastening.
  • the rotating knob 8 is a member that rotates when the connecting portion 10 is screwed.
  • the torque of the rotating knob 8 acts on the ultrasonic probe 2 by rotating the rotating knob 8, and the vibration of the base end portion 2b of the ultrasonic probe 2 is generated.
  • the tip end side of the generation source 51 is screwed.
  • the rotation knob 8 attached to the case body 41 can rotate about the axis of the longitudinal axis C, and rotates integrally with the ultrasonic probe 2.
  • the ultrasonic probe 2 has a structure in which the rotary knob 8, the sheath 3, and the ultrasonic probe 2 are integrally rotatably connected.
  • the ultrasonic probe 2 is provided with a flange portion 2c.
  • the flange portion 2c is a portion to which the torque of the rotary knob 8 is input.
  • the vibrator unit 5 includes a vibration source 51 that generates ultrasonic vibration, and a vibrator case 52 that houses the vibration source 51 inside.
  • the vibration source 51 is assembled so as to rotate integrally with the vibrator case 52.
  • the vibrator case 52 is configured to be detachable from the case body 41. Further, the vibrator unit 5 is electrically connected to a power supply device (not shown) and a controller via a cable 53.
  • the vibration generation source 51 is a bolted Langevin type vibrator in which a plurality of ultrasonic vibrators 511 each composed of a ring-shaped piezoelectric element are bolted to a horn member 512 to be integrated.
  • the ultrasonic vibrator 511 is a piezoelectric element that converts an electric current into ultrasonic vibration. Electrical wires (lead wires for the vibrator) are connected to the ultrasonic vibrator 511, and the electric wires are electrically connected to the power supply device via the cable 53.
  • the horn member 512 has a tip end and a base end, and an ultrasonic transducer 511 is attached to the base end side.
  • the horn member 512 is formed with a columnar horn portion that has a cross-sectional area that gradually decreases from the base end side to the tip end side, as a portion for enlarging the amplitude of ultrasonic vibration.
  • a male screw 513 is provided on the tip side of the horn member 512.
  • the male screw 513 is a screw portion formed on the tip side of the vibration generation source 51, and is screwed with the female screw 21 formed on the base end portion 2b of the ultrasonic probe 2.
  • the tip side of the vibration source 51 is connected to the base side of the ultrasonic probe 2 by screwing.
  • the connecting portion 10 includes a screwed portion between the male screw 513 and the female screw 21.
  • the male screw 513 of the vibration source 51 is the first screw portion
  • the female screw 21 of the ultrasonic probe 2 is the second screw portion.
  • the horn member 512 having the male screw 513 is made of a material having high strength and low attenuation such as titanium alloy.
  • the ultrasonic probe 2 having the female screw 21 is made of a titanium alloy, an aluminum alloy, or the like, but is preferably made of a material having lower strength than the horn member 512.
  • a cutout portion 20 as a fracture guide portion is provided on the outer peripheral portion of the base end portion 2b of the ultrasonic probe 2.
  • the breakage inducing portion means that before the plastic deformation of the vibration source 51 side, when the torque acting when screwing the proximal end side of the ultrasonic probe 2 and the distal end side of the vibration generation source 51 is equal to or more than a predetermined value. This is a portion provided to cause breakage on the ultrasonic probe 2 side.
  • the fracture guide portion formed by the cutout portion 20 has a shape that guides the fracture of the base end portion 2b.
  • the tensile strength is represented by the product of Young's modulus and density.
  • the torque equal to or more than the predetermined value is a torque that is several times or more the torque required to properly tighten the female screw 21 and the male screw 513. It should be noted that this torque is a torque that acts in the rotation direction about the axis of the longitudinal axis C as the center of rotation.
  • the notch portion 20 is a portion in which the notch is cut along the circumferential direction on the outer peripheral portion of the ultrasonic probe 2. That is, the cutout portion 20 is an annular groove formed on the outer peripheral portion of the ultrasonic probe 2 on the base end side.
  • the notch 20 has a shape that lowers the tensile strength on the ultrasonic probe 2 side than that on the vibration source 51 side. Further, the axial position where the cutout portion 20 is provided becomes an antinode position of the vibration when the ultrasonic probe 2 transmits the ultrasonic vibration from the vibration source 51.
  • the stress concentration of ultrasonic vibration is smaller at the antinode position of ultrasonic vibration than at the node position of ultrasonic vibration.
  • the cutout portion 20 is preferably located outside the node position of vibration, preferably. It is provided at the vibration antinode position.
  • the breakage guide part may be arranged at a position deviating from the node position of the vibration when transmitting the ultrasonic vibration.
  • FIG. 4 is a cross-sectional view showing a state where the ultrasonic probe 2 and the vibration source 51 are connected.
  • FIG. 5 is a cross-sectional view for explaining the structure on the proximal end side of the ultrasonic probe 2 and the structure on the distal end side of the vibration source 51.
  • a female screw 21 as a second screw portion formed on the base end portion 2b of the ultrasonic probe 2 and a male screw 513 as a first screw portion formed on the distal end side of the vibration source 51. are screwed together.
  • the contact portion of the ultrasonic probe 2 makes surface contact with the tip surface 51 a of the vibration generating source 51. doing.
  • This contact portion is the bottom surface 22 of the screw hole that forms the female screw 21.
  • the bottom surface 22 is a plane formed on a plane orthogonal to the longitudinal axis C, and faces the base end side.
  • the tip surface 51a is an end surface located on the tip side of the male screw 513. Since the tip surface 51a abuts the bottom surface 22 of the ultrasonic probe 2 at the tip portion of the vibration generation source 51, stress (tightening force) required for tightening the screw is generated at the connecting portion 10.
  • the bottom surface 22, which is the contact portion, is provided at the antinode position D1 of the vibration when the ultrasonic vibration from the vibration source 51 is transmitted to the ultrasonic probe 2.
  • the cutout portion 20 which is the fracture guide portion is provided at or near the antinode position D1 of vibration.
  • the vicinity of the antinode position D1 refers to being within a range of 1/8 of the wavelength of ultrasonic vibration from the antinode position D1.
  • both the axial position where the cutout portion 20 that is the fracture guide portion is provided and the position where the bottom surface 22 that is the contact portion is provided are the antinode position D1 of vibration. That is, the axial position of the cutout portion 20 is a position overlapping the axial position of the bottom surface 22.
  • the axial position of the cutout portion 20 is a position apart from the incompletely threaded portion of the female screw 21. That is, the axial position at which the fracture guide portion is provided is a position closer to the proximal end side than the incompletely threaded portion of the female screw 21, and is a position near the female screw 21.
  • the fracture guide portion is located on the tip end side of the connecting portion 10.
  • the notch 20 breaks.
  • the ultrasonic probe 2 is divided into the distal end side and the proximal end side of the notch portion 20 due to the fracture of the fracture guide portion.
  • the female screw 21, which is the second screw portion, is included in the base end side portion after the fracture.
  • This base end side portion remains connected to the tip end side of the horn member 512. That is, after the breakage induction part is broken, the base end side portion (a part of the base end part 2b) of the ultrasonic probe 2 including the connecting part 10 remains connected to the tip end side of the vibration source 51.
  • FIG. 6 is a diagram for explaining the separated state after the breakage induction part breaks.
  • FIG. 7 is a diagram for explaining the state of the tip of the vibration source.
  • the female screw 21 of the ultrasonic probe 2 remains in a state of being screwed onto the tip side of the vibration source 51. ..
  • the remaining base end portion 2b becomes a cylindrical portion (remaining portion) including the female screw 21.
  • the tip surface 51a of the vibration source 51 is exposed on the tip side of the remaining portion. That is, the bottom surface 22 is prevented from hitting the tip surface 51a.
  • the screw fastening of the connecting portion 10 can be easily released, and the remaining portion of the ultrasonic probe 2 can be removed from the vibration generating source 51.
  • the breaking guide portion of the ultrasonic probe 2 is cut. It is possible to prevent the vibration source 51 on the reused product side from being damaged by breaking the notch 20. Further, after the fracture guide portion is fractured, the bottom surface 22 does not abut against the tip surface 51a, so that stress of screwing is eliminated at the connecting portion 10, and the fractured base end portion 2b can be easily removed from the vibration source 51.
  • the axial position of the cutout portion 20 is located within a range of 1/8 of the wavelength from the antinode position D1 of vibration.
  • the notch 20 is not limited to an annular groove that is continuous over the entire circumference, but may be a groove or a hole that is discontinuous in the circumference. In short, the notch 20 may have any shape as long as stress concentration due to the torque acting at the time of screw fastening easily occurs. Further, it is possible to set a desired amount of breaking force by adjusting the depth of the groove formed by the cutout portion 20.
  • the ultrasonic treatment tool 1 is not limited to the above-described treatment tool that uses only ultrasonic vibration, and may be a treatment tool that uses a high frequency in combination to perform treatment on a treatment target. In this case, the ultrasonic treatment instrument 1 can also treat the treatment target using only high frequencies. Alternatively, the ultrasonic treatment instrument 1 may be a treatment instrument that does not have the movable jaw 6 described above. That is, the treatment section 7 may be the ultrasonic treatment instrument 1 configured only by the probe tip section 2a.
  • the female screw 21 of the ultrasonic probe 2 and the male screw 513 of the vibration source 51 may be screw parts having a structure that can be rotated only in one direction. In this case, in order to remove the ultrasonic probe 2 from the vibration source 51, the ultrasonic probe 2 must be broken at the breaking guide portion on the ultrasonic probe 2 side. Therefore, it becomes possible to prevent a disposable product that has been used once from being used again by mistake.
  • FIG. 8 is a cross-sectional view showing, as a modification of the first embodiment, a structure in which the abutting portion of the ultrasonic probe 2 is constituted by the base end face 23.
  • the contact portion is the base end surface 23 of the ultrasonic probe 2.
  • the base end face 23 is an annular end face formed around the screw hole of the female screw 21 on the base end side, and abuts a shoulder portion 51 b provided on the tip end side of the vibration generation source 51.
  • the shoulder portion 51b is a portion formed to have a diameter larger than that of the male screw 513, and has an annular end surface facing the tip side.
  • the male screw 513 projects further toward the tip side than the shoulder portion 51b, and the tip surface 51a of the male screw 513 is not in contact with the ultrasonic probe 2.
  • the axial position where the base end face 23 and the shoulder portion 51b are in surface contact is the antinode position of vibration or the vicinity thereof.
  • the cutout portion 20 which is the fracture guide portion is formed at a position closer to the tip end side than the base end face 23 which is the contact portion.
  • the ultrasonic treatment instrument 1 may have a structure in which the axial position of the fracture guide portion and the axial position of the contact portion are different positions. In the example shown in FIG. 8, the axial position of the notch portion 20 is a position closer to the tip side than the female screw 21 (incomplete screw portion of the female screw 21).
  • FIG. 9 is a cross-sectional view showing, as another modification of the first embodiment, a structure in which the fracture guide portion is formed inside the screw hole of the female screw 21.
  • a thin portion 24 as a fracture guide portion is formed inside the screw hole of the female screw 21.
  • the thin portion 24 is a cylindrical portion at a position closer to the tip end side than the female screw 21 and thinner than the portion of the female screw 21.
  • the inner diameter of the thin portion 24 is formed to be larger than the diameter of the valley of the female screw 21.
  • the thin portion 24 shown in FIG. 9 is an annular groove extending along the circumferential direction inside the screw hole of the female screw 21.
  • the thin portion 24 is provided at an axial position overlapping the bottom surface 22 which is the contact portion, and is provided at a vibration antinode position. Comparing the transmission efficiency of ultrasonic vibration between this modification and the above-described first embodiment, the structure in which the notch 20 is provided in the outer peripheral portion of the ultrasonic probe 2 as in the first embodiment is more deformed. The vibration transmission efficiency is better than the structure in which the thin portion 24 is provided on the inner peripheral portion of the ultrasonic probe 2 as in the example.
  • FIG. 10 is a diagram showing a state in which the ultrasonic probe 2 according to the second embodiment is connected to the vibration source 51.
  • FIG. 11 is a sectional view for explaining the connection structure between the ultrasonic probe 2 and the vibration source 51 according to the second embodiment.
  • the description of the second embodiment the description of the same configuration as that of the first embodiment will be omitted, and the reference numerals will be cited.
  • the ultrasonic probe 2 is composed of two members, that is, the tip side piece 25 and the base end side piece 26. Is different.
  • the ultrasonic probe 2 transmits the ultrasonic vibration from the vibration source 51 from the proximal end piece 26 to the distal end piece 25 in a state where the distal end piece 25 and the proximal end piece 26 are integrated.
  • the tip side piece 25 is a rod-shaped member having a small diameter integrally formed with the tip portion 2 a that constitutes the treatment section 7.
  • a male screw 25 a formed on the base end side of the tip end side piece 25 is screwed with a female screw 26 a formed on the tip end side of the base end side piece 26.
  • the proximal piece 26 is a rod-shaped member having female threads formed on both axial ends, and is a vibration transmission member provided between the vibration source 51 and the distal piece 25.
  • the proximal end piece 26 is formed to have a larger diameter than the distal end piece 25 and extends along the longitudinal axis C.
  • a flange portion 2c is provided on the proximal piece 26.
  • the base end side portion of the base end side piece 26 constitutes the base end portion 2 b of the ultrasonic probe 2 and has the female screw 21.
  • the female screw 21 formed on the base end side of the base end side piece 26 is screwed with the male screw 513 of the vibration source 51.
  • the base end portion 2b of the base end side piece 26 is provided with a cutout portion 20 as a fracture guide portion and a bottom surface 22 which is an abutting portion. That is, in the second embodiment, the base end portion 2b of the base end side piece 26 is broken.
  • the cutout portion 20 is an annular groove formed near the female screw 21 of the base end side piece 26 and formed on the outer peripheral portion of the base end portion 2b.
  • the distal end piece 25 and the proximal end piece 26 are integrally rotated by rotating the rotary knob 8, and the female screw of the proximal end piece 26 is rotated. 21 is screwed onto the male screw 513 of the horn member 512.
  • the torque of the rotary knob 8 is input to the flange portion 2c of the base end side piece 26, a torque is applied between the vibration source 51 and the flange portion 2c, and when excessive torque is applied, where It will be damaged.
  • the notch 20 as the fracture guide portion is fractured on the proximal end side piece 26 side.
  • the proximal end portion 2b of the proximal end piece 26 is divided into the distal end side and the proximal end side of the cutout portion 20.
  • the male screw 25a on the proximal end side of the distal end side piece 25 and the female screw 26a on the distal end side of the proximal end side piece 26 are held in a screwed connection state.
  • the ultrasonic probe 2 has a structure including the two rod-shaped members, that is, the tip side piece 25 and the base side piece 26, the ultrasonic probe 2 and the vibration generation are generated.
  • the fracture guide portion on the ultrasonic probe 2 side is fractured.
  • the vibration source 51 on the reused product side can be protected.
  • FIG. 12 is a diagram showing a state in which the ultrasonic probe 2 according to the third embodiment is connected to the vibration source 51.
  • FIG. 13 is a cross-sectional view for explaining the connection structure between the ultrasonic probe 2 and the vibration source 51 according to the third embodiment.
  • the description of the third embodiment the description of the same components as those in the first embodiment will be omitted, and the reference numerals will be cited.
  • the holding member 9 connects the ultrasonic probe 2 and the vibration source 51.
  • the holding member 9 is a tubular member extending along the longitudinal axis C, and the ultrasonic probe 2 is inserted from the tip side and the vibration generation source 51 is inserted from the base end side. Inside the holding member 9, the base end face 2d of the ultrasonic probe 2 and the tip end face 51a of the vibration source 51 are in surface contact with each other.
  • the connection part 30, which is a part where the ultrasonic probe 2 and the vibration source 51 are connected, is configured by a connection structure via the holding member 9.
  • a first female screw 91 screwed with a male screw 513 on the tip side of the vibration source 51
  • a male screw 27 screwed with a male screw 27 on the base end side of the ultrasonic probe 2.
  • Two female screws 92 are provided.
  • the first female screw 91 is located closer to the base end side than the second female screw 92.
  • the male screw 27 is formed on the base end portion 2b of the ultrasonic probe 2.
  • the fixing portion that fixes the ultrasonic probe 2 and the holding member 9 is configured by the screw fastening structure in which the screw portions are screwed together. This fixing portion is provided at or near the antinode position of vibration.
  • the connecting portion 30 when an excessively large torque acts when connecting the ultrasonic probe 2 to the vibration source 51, the male screw 27 of the ultrasonic probe 2 and the second female screw 92 of the holding member 9 are connected.
  • the part where is screwed is broken. That is, when an unnecessarily large torque is applied to the connecting portion 30, the ultrasonic probe 2 and the ultrasonic probe 2 are coupled to each other before the male screw 513 of the vibration source 51 and the first female screw 91 of the holding member 9 are plastically deformed.
  • the fixed portion with the holding member 9 is broken. That is, the coupling part 30 is provided with a breakage guide part at the fixed part between the ultrasonic probe 2 and the holding member 9.
  • the portion where the male screw 27 on the ultrasonic probe 2 side and the second female screw 92 are screwed together is more shear load than the portion where the male screw 513 on the vibration source 51 side and the first female screw 91 are screwed together. It has a low durability against.
  • the screwed portion of the second female screw 92 and the male screw 27 is axially fractured before the screwed portion of the first female screw 91 and the male screw 513.
  • the screw fastening structure which is the fixing portion between the ultrasonic probe 2 and the holding member 9 is broken while the vibration generating source 51 is connected to the holding member 9 in a normal state, so that the reuse is possible.
  • the vibration source 51 on the product side can be protected.
  • the fixing portion of the holding member 9 and the ultrasonic probe 2 is not limited to the screw fastening structure of the second female screw 92 and the male screw 27 described above.
  • the outer peripheral portion of the ultrasonic probe 2 and the inner peripheral portion of the holding member 9 may be fixed by adhesion. In this case, by using an anaerobic adhesive as the adhesive, it is possible to realize a high-strength fixing portion and a reduction in assembly time.
  • the outer peripheral portion of the ultrasonic probe 2 and the inner peripheral portion of the holding member 9 may be joined by shrink fitting.
  • the holding member 9 is cast from a metal having a low melting point such as an aluminum alloy.
  • the material of the holding member 9 is deformed at a lower temperature than the material of the ultrasonic probe 2. Thereby, high adhesion can be obtained.
  • the material of the holding member 9 is softer than the material of the ultrasonic probe 2. As a result, the influence of temperature during assembly can be suppressed.
  • metal melting powder, laser powder metallurgy or the like is used. Thereby, a complicated shape can be formed.
  • the structure may be such that an outer peripheral portion of the ultrasonic probe 2 and an inner peripheral portion of the holding member 9 are fixed by using an auxiliary member such as a key or a pin.
  • FIG. 14 is a cross-sectional view for explaining the connection structure between the ultrasonic probe 2 and the vibration source 51 according to the fourth embodiment.
  • FIG. 15 is an enlarged view of a part of the cross-sectional view shown in FIG. In the description of the fourth embodiment, the description of the same components as those of the first embodiment will be omitted, and the reference numerals will be cited.
  • the ultrasonic probe 2 side has a male screw and the vibration source 51 side has a female screw.
  • the male screw 28 formed on the proximal end side of the ultrasonic probe 2 is screwed into the female screw 514 formed on the distal end side of the vibration source 51.
  • a cutout portion 20 serving as a fracture guide portion is provided on the outer peripheral portion of the ultrasonic probe 2 on the base end side.
  • the contact portion of the ultrasonic probe 2 is the shoulder portion 2e provided on the base end portion 2b.
  • the shoulder portion 2e is a portion formed to have a diameter larger than that of the male screw 28, and has an annular end surface facing the base end side.
  • the end face 51c on the tip side of the vibration generating source 51 abuts on the shoulder portion 2e as the abutting portion.
  • the end surface 51c is an annular surface formed around the screw hole of the female screw 514.
  • the position where the shoulder 2e and the end face 51c are in surface contact is the antinode position of vibration.
  • the cutout portion 20 serving as the breakage guide portion is provided near the antinode position of vibration at a position closer to the tip end side than the shoulder portion 2e.
  • the cutout portion 20 which is the fracture guide portion is fractured, a portion of the base end portion 2b of the ultrasonic probe 2 including the male screw 28 and the shoulder portion 2e and having a predetermined length from the shoulder portion 2e ( It becomes possible to leave a gripping part). That is, when a torque of a predetermined value or more is applied to the connecting portion 40, the notch portion 20 serving as the fracture guiding portion breaks before the threaded portion between the male screw 28 and the female screw 514 is plastically deformed.
  • the ultrasonic probe 2 even if the male screw 28 on the proximal end side of the ultrasonic probe 2 is screwed into the female screw 514 on the distal end side of the vibration source 51, the ultrasonic probe 2 It is possible for the side break induction part to break. Further, it is possible to include a gripping portion capable of rotating the male screw 28 in the releasing direction in a part of the ultrasonic probe 2 remaining on the side of the vibration source 51 after the breaking guide portion is broken. Accordingly, after the breakage guide portion is broken, the male screw 28 can be easily removed from the female screw 514 by rotating the grip portion.
  • the fracture guide portion is described as the cutout portion 20 or the thin portion 24, but the shape of the cutout portion 20 or the thin portion 24 is not particularly limited.
  • the groove-shaped fracture guide portion formed by the cutout portion 20 and the thin portion 24 may be formed in a part in the circumferential direction.
  • the groove shape of the cutout portion 20 is not limited to the rectangular shape, and may be, for example, a round groove such as the cutout portion 20A shown in FIG. 16 or a V groove such as the cutout portion 20B shown in FIG. Good.
  • the base end side corner portion 201 of the groove bottom portion (the corner portion on the arrow C2 side).
  • the tip side corner portion 202 (corner portion on the arrow C1 side) are preferably formed to have R (pin angle) with different curvatures.
  • the R (pin angle) of the tip side corner portion 202 is made larger than the R (pin angle) of the base end side corner portion 201, and the stress concentration portion is directed toward the base end side corner portion 201.
  • the ultrasonic probe 2 can be easily broken. If the base end side corner portion 203 and the tip end side corner portion 204 are formed with the same pin angle like the cutout portion 20D shown in FIG. 19, the stress is dispersed to both the corner portions. The amount of breaking force for breaking the breaking guide portion becomes higher than that of the notch portion 20C shown in FIG.
  • FIGS. 18 and 19 with respect to the base end portion 2b of the ultrasonic probe 2 having the female screw 21, the cross-sectional shapes of the cutout portion 20C and the cutout portion 20D are enlarged and schematically shown. Further, the broken line shown in the cross section of FIG. 18 and the broken line shown in the cross section of FIG. 19 represent the distribution of the applied stress.
  • the fracture guide portion is not limited to the shape such as the cutout portion 20 or the thin portion 24, and may be a portion where the material is altered to partially reduce the tensile strength.
  • it may be a fracture guide portion in which the strength of the ultrasonic probe 2 is partially reduced by annealing or quenching. Partly anneal the ultrasonic probe 2. As a result, the annealed portion is easily broken. Alternatively, the ultrasonic probe 2 is partially quenched. As a result, the boundary between the normal portion and the quenched portion is easily broken.

Abstract

An ultrasonic treatment tool 1 is provided with: a vibration generating source 51 for generating ultrasonic vibration, a first threaded part being formed at one end of the vibration generating source 51; and an ultrasonic probe 2 having, in a proximal-end part 2b thereof, a contacting part for impinging on one end side of the vibration generating source 51 and a second threaded part for assembling with the first threaded part of the vibration generating source 51, the ultrasonic probe 2 transmitting ultrasonic vibration from the vibration generating source 51 from the proximal-end side to the distal-end side; the ultrasonic probe 2 having, in the vicinity of the second threaded part, a notched part 20 as a breakage guide for guiding breakage so that the proximal-end part 2b of the ultrasonic probe 2 separates into a distal-end side and a proximal-end side before a screwing part of the first threaded part and the second threaded part undergoes plastic deformation when the torque applied when the first threaded part and the second threaded part are screwed together is equal to or greater than a predetermined value.

Description

超音波処置具および振動伝達部材Ultrasonic treatment tool and vibration transmission member
 本発明は、超音波処置具および振動伝達部材に関する。 The present invention relates to an ultrasonic treatment tool and a vibration transmission member.
 医療用処置具として、超音波振動を用いて生体組織に処置を行う超音波処置具が知られている。超音波処置具は振動伝達部材の先端部に処置部を有する。振動伝達部材は細径の棒状に形成され、振動発生源で発生した超音波振動を基端側から先端側へ向けて伝達する。振動伝達部材の基端部には振動発生源との連結部が設けられている。この連結部はネジ部により構成される。 As an instrument for medical treatment, an ultrasonic treatment instrument for treating living tissue by using ultrasonic vibration is known. The ultrasonic treatment instrument has a treatment portion at the tip of the vibration transmitting member. The vibration transmission member is formed in a rod shape having a small diameter, and transmits the ultrasonic vibration generated by the vibration source from the proximal end side to the distal end side. A coupling portion with a vibration source is provided at the base end of the vibration transmitting member. This connecting portion is composed of a screw portion.
 例えば、特許文献1には、振動伝達部材の基端側に設けられたネジ部が、振動発生源の先端側に設けられたネジ部と螺合する接続機構が開示されている。特許文献2には、筒状の連結部材を用いる接続機構として、振動伝達部材に設けられた雄ネジと、振動発生源に設けられた雄ネジとが、連結部材に設けられた雌ネジに螺合することが開示されている。また、特許文献3には、連結部材を用いる別の接続機構として、振動伝達部材に設けられた雄ネジと連結部材に設けられた雌ネジとが螺合して、振動伝達部材の基端部と連結部材とで振動発生源の先端部を軸方向両側から挟み込むことが開示されている。 For example, Patent Document 1 discloses a connection mechanism in which a screw portion provided on the base end side of a vibration transmission member is screwed with a screw portion provided on the tip end side of a vibration source. In Patent Document 2, as a connection mechanism using a tubular connecting member, a male screw provided on the vibration transmitting member and a male screw provided on the vibration source are screwed into a female screw provided on the connecting member. It is disclosed to match. Further, in Patent Document 3, as another connection mechanism using a connecting member, a male screw provided on the vibration transmitting member and a female screw provided on the connecting member are screwed together to form a base end portion of the vibration transmitting member. It is disclosed that the tip end portion of the vibration source is sandwiched from both sides in the axial direction with the connecting member.
特開平10-005238号公報JP, 10-005238, A 国際公開第2015/133006号公報International Publication No. 2015/133006 国際公開第2013/183713号公報International Publication No. 2013/183713
 ところで、超音波処置具の振動伝達部材は、処置のたびに新品に取り換えられる部品、すなわちディスポーザブル品である。一方、振動発生源は再利用品である。そのため、振動伝達部材を取り換えた後も振動発生源は継続して使用される。 By the way, the vibration transmitting member of the ultrasonic treatment instrument is a component that can be replaced with a new one each time the treatment is performed, that is, a disposable item. On the other hand, the vibration source is a recycled product. Therefore, the vibration source is continuously used even after the vibration transmitting member is replaced.
 しかしながら、上記の各特許文献に記載された構成では、振動伝達部材の取り換え時にネジ締結する際、必要以上に大きなトルクが作用すると、再利用品の振動発生源が破損するおそれがある。 However, in the configuration described in each of the above patent documents, when a screw is fastened when the vibration transmission member is replaced, if a torque larger than necessary acts, the vibration source of the reused product may be damaged.
 本発明は、上記事情に鑑みてなされたものであって、振動伝達部材と振動発生源とをネジ締めする際に過剰なトルクが作用しても振動発生源側が破損することを抑制できる超音波処置具および振動伝達部材を提供することを目的とする。 The present invention has been made in view of the above circumstances, and ultrasonic waves capable of suppressing damage to the vibration source side even when excessive torque acts when screwing the vibration transmitting member and the vibration source together. An object is to provide a treatment tool and a vibration transmission member.
 上述した課題を解決し、目的を達成するために、本発明に係る超音波処置具は、一端側に第1ネジ部が形成され、超音波振動を発生する振動発生源と、前記振動発生源の前記一端側に突き当たる当接部と、前記振動発生源の前記第1ネジ部に組み付く第2ネジ部と、を基端部に有し、前記振動発生源からの超音波振動を基端側から先端側へ伝達する振動伝達部材と、を備え、前記振動伝達部材は、前記第1ネジ部と前記第2ネジ部とを螺合する際に作用するトルクが所定値以上の場合に前記第1ネジ部と前記第2ネジ部との螺合部が塑性変形する前に当該振動伝達部材の前記基端部が先端側と基端側とに分離するように破断を誘導する破断誘導部、を前記第2ネジ部の近傍に有する。 In order to solve the above-mentioned problems and achieve the object, an ultrasonic treatment tool according to the present invention has a first screw portion formed at one end side thereof, and a vibration source for generating ultrasonic vibration, and the vibration source. Has an abutting portion that abuts on the one end side of the above, and a second screw portion that is attached to the first screw portion of the vibration source at the base end portion, and the ultrasonic vibration from the vibration source is at the base end. And a vibration transmitting member for transmitting from the side to the tip side, the vibration transmitting member is configured to operate when the torque applied when the first screw portion and the second screw portion are screwed together is equal to or more than a predetermined value. A rupture guide part that induces rupture so that the base end part of the vibration transmitting member is separated into a distal end side and a base end side before the screwed part of the first screw part and the second screw part is plastically deformed. , In the vicinity of the second screw portion.
 本発明に係る超音波処置具は、上記発明において、前記破断誘導部は、前記振動伝達部材を伝達する超音波振動の節位置から外れた位置に設けられている。 In the ultrasonic treatment instrument according to the present invention, in the above invention, the breakage guide portion is provided at a position deviating from a node position of ultrasonic vibration transmitted through the vibration transmission member.
 本発明に係る超音波処置具は、上記発明において、前記破断誘導部は、前記振動伝達部材を伝達する超音波振動の腹位置又はその近傍に設けられている。 In the ultrasonic treatment instrument according to the present invention, in the above invention, the breakage guide portion is provided at or near an antinode position of ultrasonic vibrations transmitted by the vibration transmission member.
 本発明に係る超音波処置具は、上記発明において、前記破断誘導部は、前記第2ネジ部よりも先端側の位置で、周方向に沿って前記振動伝達部材に形成された溝形状を有する。 In the ultrasonic treatment instrument according to the present invention, in the above invention, the fracture guide portion has a groove shape formed in the vibration transmitting member along a circumferential direction at a position closer to the tip end side than the second screw portion. ..
 本発明に係る超音波処置具は、上記発明において、前記第2ネジ部は、雌ネジであり、前記破断誘導部は、前記雌ネジよりも先端側の位置で、前記振動伝達部材の外周部に切欠きが形成された切欠き部を含む。 In the ultrasonic treatment instrument according to the present invention, in the above invention, the second screw portion is a female screw, and the breakage guide portion is at a position closer to the tip end side than the female screw, and is an outer peripheral portion of the vibration transmitting member. A notch portion having a notch formed therein.
 本発明に係る超音波処置具は、上記発明において、前記第2ネジ部は、雌ネジであり、前記破断誘導部は、前記雌ネジのネジ穴の内部に、前記雌ネジよりも先端側の位置で、前記雌ネジの部分よりも薄肉に形成された薄肉部を含む。 In the ultrasonic treatment instrument according to the present invention, in the above invention, the second screw portion is a female screw, and the breakage guide portion is inside the screw hole of the female screw, and is located on a tip side of the female screw. The position includes a thin portion formed thinner than the female screw portion.
 本発明に係る超音波処置具は、上記発明において、前記当接部は、前記雌ネジのネジ穴の底面であり、前記ネジ穴の底面は、前記第1ネジ部よりも先端側に形成された前記振動発生源の先端面と面接触し、前記破断誘導部は、前記ネジ穴の底面が設けられている軸方向位置と重なる位置に設けられている。 In the ultrasonic treatment instrument according to the present invention, in the above invention, the contact portion is a bottom surface of a screw hole of the female screw, and the bottom surface of the screw hole is formed on a tip side of the first screw portion. Further, the fracture guide portion is provided at a position overlapping with the axial position where the bottom surface of the screw hole is provided, in surface contact with the tip surface of the vibration source.
 本発明に係る超音波処置具は、一端側に雄ネジが形成され、超音波振動を発生する振動発生源と、前記振動発生源の前記一端側に突き当たる当接部を基端に有する棒状部材であり、前記振動発生源からの超音波振動を基端側から先端側へ伝達する振動伝達部材と、前記振動発生源の前記雄ネジと螺合する雌ネジと、前記振動伝達部材の外周部に固定される内周部とを有する筒状部材であり、内部で前記振動発生源の先端面と前記振動伝達部材の前記当接部とが突き当たる状態を保持する保持部材と、を備え、前記振動伝達部材の外周部と前記保持部材の内周部とを固定している固定部に、前記雄ネジと前記雌ネジとを螺合する際に作用するトルクが所定値以上の場合に前記雄ネジと前記雌ネジとの螺合部が塑性変形する前に前記振動伝達部材が前記保持部材から軸方向に分離するように前記固定部の破断を誘導する破断誘導部が設けられている。 The ultrasonic treatment instrument according to the present invention is a rod-shaped member having a male screw formed at one end side, a vibration source for generating ultrasonic vibration, and a contact portion abutting against the one end side of the vibration source at the base end. And a vibration transmitting member for transmitting ultrasonic vibration from the vibration generating source from the base end side to the tip side, a female screw screwed with the male screw of the vibration generating source, and an outer peripheral portion of the vibration transmitting member. A cylindrical member having an inner peripheral portion fixed to, a holding member for holding a state in which the tip end surface of the vibration source and the abutting portion of the vibration transmitting member abut against each other, and When the torque that acts when the male screw and the female screw are screwed into the fixing portion that fixes the outer peripheral portion of the vibration transmitting member and the inner peripheral portion of the holding member is a predetermined value or more, the male A fracture guide portion is provided to guide the fracture of the fixing portion so that the vibration transmitting member is axially separated from the holding member before the threaded portion of the screw and the female screw is plastically deformed.
 本発明に係る振動伝達部材は、処置部を有する先端部と、超音波振動を発生する振動発生源に連結される基端部と、を有し、前記基端部は、前記振動発生源の先端側と突き当たる当接部と、前記振動発生源に形成された第1ネジ部に組み付く第2ネジ部と、を有し、前記第2ネジ部の近傍には、前記第1ネジ部と前記第2ネジ部とを螺合する際に作用するトルクが所定値以上の場合に前記第1ネジ部と前記第2ネジ部との螺合部が塑性変形する前に前記基端部が先端側と基端側とに分離するように破断を誘導する破断誘導部が設けられている。 A vibration transmitting member according to the present invention has a distal end portion having a treatment portion, and a base end portion connected to a vibration generation source that generates ultrasonic vibrations, and the base end portion of the vibration generation source It has a contact part which abuts on a tip side, and a 2nd screw part which attaches to the 1st screw part formed in the above-mentioned vibration generating source, and the 1st screw part near the 2nd screw part. When the torque acting when screwing the second screw portion is a predetermined value or more, the base end portion is a tip before the screwing portion of the first screw portion and the second screw portion is plastically deformed. A fracture guide portion that guides fracture is provided so as to be separated into the side and the base end side.
 本発明に係る振動伝達部材は、上記発明において、前記破断誘導部は、前記振動伝達部材を伝達する超音波振動の節位置から外れた位置に設けられている。 In the vibration transmitting member according to the present invention, in the above invention, the breakage guide portion is provided at a position deviated from a node position of ultrasonic vibration transmitting the vibration transmitting member.
 本発明に係る振動伝達部材は、上記発明において、前記破断誘導部は、前記振動伝達部材を伝達する超音波振動の腹位置又はその近傍に設けられている。 In the vibration transmitting member according to the present invention, in the above invention, the breakage guide portion is provided at or near an antinode position of ultrasonic vibration transmitted through the vibration transmitting member.
 本発明に係る振動伝達部材は、上記発明において、前記破断誘導部は、前記第2ネジ部よりも前記先端部側の位置で、周方向に沿って形成された溝形状を有する。 In the vibration transmitting member according to the present invention, in the above invention, the breakage guide portion has a groove shape formed along the circumferential direction at a position closer to the tip end portion than the second screw portion.
 本発明に係る振動伝達部材は、上記発明において、前記第2ネジ部は、雌ネジであり、前記破断誘導部は、前記雌ネジよりも前記先端部側の位置で、前記基端部の外周部に切欠きが形成された切欠き部を含む。 In the vibration transmitting member according to the present invention, in the above invention, the second screw portion is a female screw, and the breaking guide portion is located at a position closer to the tip portion than the female screw, and is an outer periphery of the base end portion. A notch portion having a notch is formed in the portion.
 本発明に係る振動伝達部材は、上記発明において、前記第2ネジ部は、雌ネジであり、前記破断誘導部は、前記雌ネジのネジ穴の内部に、前記雌ネジよりも前記先端部側の位置で、前記雌ネジの部分よりも薄肉に形成された薄肉部を含む。 In the vibration transmitting member according to the present invention, in the above invention, the second screw portion is a female screw, and the breaking guide portion is inside the screw hole of the female screw, and is closer to the tip portion than the female screw. At the position of, the thin-walled portion formed thinner than the female screw portion is included.
 本発明に係る振動伝達部材は、上記発明において、前記当接部は、前記雌ネジのネジ穴の底面であり、前記ネジ穴の底面は、前記第1ネジ部よりも先端側に形成された前記振動発生源の先端面と面接触し、前記破断誘導部は、前記ネジ穴の底面が設けられている軸方向位置と重なる位置に設けられている。 In the vibration transmitting member according to the present invention, in the above invention, the contact portion is a bottom surface of a screw hole of the female screw, and the bottom surface of the screw hole is formed on a tip side of the first screw portion. The fracture guide portion is provided in a position overlapping with the axial position where the bottom surface of the screw hole is provided, in surface contact with the tip surface of the vibration source.
 本発明によれば、振動伝達部材と振動発生源とをネジ締めにより締結する際、必要以上に大きなトルクが作用した場合に、振動伝達部材の破断誘導部が破断するため、振動発生源側が破損することを抑制できる。 According to the present invention, when the vibration transmitting member and the vibration generating source are fastened by screwing, if a torque larger than necessary is applied, the breakage guide portion of the vibration transmitting member is broken, so that the vibration generating source side is damaged. Can be suppressed.
図1は、本発明の実施の形態1に係る超音波処置具を示す図である。FIG. 1 is a diagram showing an ultrasonic treatment device according to a first embodiment of the present invention. 図2は、超音波処置具のケース内部構造を示す断面図である。FIG. 2 is a cross-sectional view showing the internal structure of the case of the ultrasonic treatment tool. 図3は、超音波プローブが振動発生源に接続された状態を示す図である。FIG. 3 is a diagram showing a state in which the ultrasonic probe is connected to the vibration source. 図4は、超音波プローブと振動発生源とが接続している状態を示す断面図である。FIG. 4 is a cross-sectional view showing a state in which the ultrasonic probe and the vibration source are connected. 図5は、超音波プローブの基端側の構造と振動発生源の先端側の構造とを説明するための断面図である。FIG. 5 is a cross-sectional view for explaining the structure on the proximal end side of the ultrasonic probe and the structure on the distal end side of the vibration source. 図6は、破断誘導部が破断した後の分離状態を説明するための図である。FIG. 6 is a diagram for explaining a separated state after the breakage guide portion is broken. 図7は、振動発生源の先端側の状態を説明するための図である。FIG. 7 is a diagram for explaining the state of the tip of the vibration source. 図8は、実施の形態1の変形例として、超音波プローブの当接部が基端面により構成される構造を示す断面図である。FIG. 8 is a cross-sectional view showing, as a modification of the first embodiment, a structure in which the contact portion of the ultrasonic probe is formed by the base end surface. 図9は、実施の形態1の別の変形例として、破断誘導部が雌ネジのネジ穴の内部に形成された構造を示す断面図である。FIG. 9 is a cross-sectional view showing, as another modification of the first embodiment, a structure in which a fracture guide portion is formed inside a screw hole of a female screw. 図10は、実施の形態2における超音波プローブが振動発生源に接続された状態を示す図である。FIG. 10 is a diagram showing a state in which the ultrasonic probe according to the second embodiment is connected to the vibration source. 図11は、実施の形態2における超音波プローブと振動発生源との接続構造を説明するための断面図である。FIG. 11 is a sectional view for explaining the connection structure between the ultrasonic probe and the vibration source according to the second embodiment. 図12は、実施の形態3における超音波プローブが振動発生源に接続された状態を示す図である。FIG. 12 is a diagram showing a state in which the ultrasonic probe according to the third embodiment is connected to the vibration source. 図13は、実施の形態3における超音波プローブと振動発生源との接続構造を説明するための断面図である。FIG. 13 is a sectional view for explaining the connection structure between the ultrasonic probe and the vibration source according to the third embodiment. 図14は、実施の形態4における超音波プローブと振動発生源との接続構造を説明するための断面図である。FIG. 14 is a sectional view for explaining the connection structure between the ultrasonic probe and the vibration source according to the fourth embodiment. 図15は、図14に示す断面図の一部を拡大した図である。FIG. 15 is an enlarged view of a part of the cross-sectional view shown in FIG. 図16は、丸溝形状の切欠き部を示す図である。FIG. 16 is a view showing a cutout portion having a round groove shape. 図17は、V溝形状の切欠き部を示す図である。FIG. 17 is a diagram showing a V-shaped notch. 図18は、矩形状の溝を形成する切欠き部について角部のピン角が異なる場合を示す図である。FIG. 18 is a diagram showing a case where the pin angles of the corners of the notch forming the rectangular groove are different. 図19は、矩形状の溝を形成する切欠き部について角部のピン角が同じ場合を示す図である。FIG. 19 is a diagram showing the case where the pin angles of the corners are the same with respect to the notch forming the rectangular groove.
 以下、図面を参照して、本発明を実施するための形態(以下、実施の形態)について説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。さらに、図面はあくまでも模式的なものに過ぎない。 A mode for carrying out the present invention (hereinafter, an embodiment) will be described below with reference to the drawings. The present invention is not limited to the embodiments described below. Furthermore, the drawings are merely schematic.
(実施の形態1)
 図1は、本発明の実施の形態1に係る超音波処置具を示す図である。図2は、超音波処置具のケース内部構造を示す断面図である。図3は、超音波プローブが振動発生源に接続された状態を示す図である。なお、この説明では、長手軸Cに沿う方向の一方側(矢印C1側)を先端側、他方側(矢印C2側)を基端側と記載する。
(Embodiment 1)
FIG. 1 is a diagram showing an ultrasonic treatment device according to a first embodiment of the present invention. FIG. 2 is a cross-sectional view showing the internal structure of the case of the ultrasonic treatment tool. FIG. 3 is a diagram showing a state in which the ultrasonic probe is connected to the vibration source. In this description, one side in the direction along the longitudinal axis C (arrow C1 side) is described as the tip side, and the other side (arrow C2 side) is described as the base end side.
 超音波処置具1は、超音波振動を用いて生体組織等の処置対象を処置する医療用処置具である。図1に示すように、この超音波処置具1は、超音波プローブ2と、シース3と、ハンドルユニット4と、振動子ユニット5とを備える。 The ultrasonic treatment instrument 1 is a medical treatment instrument that treats a treatment target such as a living tissue using ultrasonic vibration. As shown in FIG. 1, the ultrasonic treatment tool 1 includes an ultrasonic probe 2, a sheath 3, a handle unit 4, and a transducer unit 5.
 超音波プローブ2は、超音波振動を伝達する振動伝達部材であり、細径の棒状に形成されている。図1に示す組立状態の超音波処置具1では、超音波プローブ2がシース3の内部に挿通された状態で長手軸Cに沿って延設される。シース3は、長手軸Cに沿って延びる円筒状のケース部材であり、その基端側がハンドルユニット4の先端側に連結されている。超音波プローブ2の先端部(以下、プローブ先端部)2aはシース3の先端部から突出している。このプローブ先端部2aは可動ジョー6と共に処置部7を構成する。可動ジョー6はシース3の先端部に取り付けられた可動部材である。可動ジョー6がプローブ先端部2aに近づくように動くことによって、可動ジョー6とプローブ先端部2aとによって処置対象の生体組織を把持することができる。また、図2および図3に示すように、超音波プローブ2の基端部2bは振動子ユニット5の振動発生源51と連結されている。超音波プローブ2と振動発生源51とが連結している部分である連結部10は、ハンドルユニット4の内部に配置される。なお、連結部10の詳細な構造は図4および図5を参照して後述する。また、長手軸Cは、先端部2aと基端部2bとによって規定される長手軸である。 The ultrasonic probe 2 is a vibration transmission member that transmits ultrasonic vibration, and is formed in a rod shape with a small diameter. In the ultrasonic treatment device 1 in the assembled state shown in FIG. 1, the ultrasonic probe 2 is extended along the longitudinal axis C while being inserted into the sheath 3. The sheath 3 is a cylindrical case member extending along the longitudinal axis C, and its proximal end side is connected to the distal end side of the handle unit 4. The tip portion (hereinafter, probe tip portion) 2 a of the ultrasonic probe 2 projects from the tip portion of the sheath 3. The probe tip portion 2a constitutes the treatment portion 7 together with the movable jaw 6. The movable jaw 6 is a movable member attached to the tip of the sheath 3. By moving the movable jaw 6 so as to approach the probe tip portion 2a, it is possible to grasp the living tissue to be treated by the movable jaw 6 and the probe tip portion 2a. Further, as shown in FIGS. 2 and 3, the base end portion 2 b of the ultrasonic probe 2 is connected to the vibration source 51 of the vibrator unit 5. The connecting portion 10, which is a portion where the ultrasonic probe 2 and the vibration source 51 are connected, is arranged inside the handle unit 4. The detailed structure of the connecting portion 10 will be described later with reference to FIGS. 4 and 5. The longitudinal axis C is a longitudinal axis defined by the tip 2a and the base 2b.
 ハンドルユニット4は、ケース本体41と、固定ハンドル42と、可動ハンドル43とを備える。固定ハンドル42および可動ハンドル43は、処置を行う際に術者が手に持つ部分である。固定ハンドル42はケース本体41と一体に形成される。可動ハンドル43はケース本体41に対して回動可能に取り付けられる。術者が可動ハンドル43を固定ハンドル42に近づけるように操作すると、処置部7では可動ジョー6の先端部がプローブ先端部2aに近づくように回動する。 The handle unit 4 includes a case body 41, a fixed handle 42, and a movable handle 43. The fixed handle 42 and the movable handle 43 are portions that an operator holds in a hand when performing a treatment. The fixed handle 42 is formed integrally with the case body 41. The movable handle 43 is rotatably attached to the case body 41. When the operator operates the movable handle 43 so as to approach the fixed handle 42, the distal end portion of the movable jaw 6 in the treatment portion 7 rotates so as to approach the probe distal end portion 2a.
 ケース本体41は、長手軸Cの両側が開口しているケース部であり、先端側に回転ノブ8が取り付けられ、基端側には振動子ユニット5が取り付けられる。このケース本体41を含むハンドルユニット4はディスポーザブル品である。一方、振動子ユニット5は再利用品である。ハンドルユニット4と振動子ユニット5との接続時、ケース本体41の基端側に形成された取付け口に振動子ユニット5の先端側を挿入することによって、振動子ケース52のハンドル接続部がケース本体41のトランスデューサー接続部に嵌め込まれる。そして、ケース本体41の内部で、振動子ユニット5の振動発生源51は超音波プローブ2と接続される。超音波プローブ2と振動発生源51との連結部10はネジ締結による接続構造を有する。回転ノブ8は連結部10をネジ締めする際に回転させる部材である。振動発生源51の先端側を超音波プローブ2に接続する際、回転ノブ8を回転することによって回転ノブ8のトルクが超音波プローブ2に作用し、超音波プローブ2の基端部2bと振動発生源51の先端側とをネジ締めする。この回転ノブ8はケース本体41に取り付けられた状態で、長手軸Cの軸心を回転中心として回転することが可能であり、超音波プローブ2と一体回転する。例えば、回転ノブ8とシース3と超音波プローブ2とが一体回転可能に連結された構造を有する。図3に示すように、超音波プローブ2にはフランジ部2cが設けられている。フランジ部2cは回転ノブ8のトルクが入力される部位である。超音波プローブ2の組付け時、回転ノブ8のトルクがシース3を介して超音波プローブ2のフランジ部2cに伝達されることによって、回転ノブ8と超音波プローブ2とが一体となって回転する。 The case body 41 is a case portion that is open on both sides of the longitudinal axis C. The rotary knob 8 is attached to the tip end side, and the transducer unit 5 is attached to the base end side. The handle unit 4 including the case body 41 is a disposable item. On the other hand, the vibrator unit 5 is a reused product. When the handle unit 4 and the vibrator unit 5 are connected, by inserting the tip end side of the vibrator unit 5 into a mounting port formed on the base end side of the case body 41, the handle connecting portion of the vibrator case 52 is made into a case. It is fitted into the transducer connection portion of the main body 41. The vibration source 51 of the vibrator unit 5 is connected to the ultrasonic probe 2 inside the case body 41. The connecting portion 10 between the ultrasonic probe 2 and the vibration generating source 51 has a connection structure by screw fastening. The rotating knob 8 is a member that rotates when the connecting portion 10 is screwed. When the tip side of the vibration source 51 is connected to the ultrasonic probe 2, the torque of the rotating knob 8 acts on the ultrasonic probe 2 by rotating the rotating knob 8, and the vibration of the base end portion 2b of the ultrasonic probe 2 is generated. The tip end side of the generation source 51 is screwed. The rotation knob 8 attached to the case body 41 can rotate about the axis of the longitudinal axis C, and rotates integrally with the ultrasonic probe 2. For example, it has a structure in which the rotary knob 8, the sheath 3, and the ultrasonic probe 2 are integrally rotatably connected. As shown in FIG. 3, the ultrasonic probe 2 is provided with a flange portion 2c. The flange portion 2c is a portion to which the torque of the rotary knob 8 is input. When the ultrasonic probe 2 is assembled, the torque of the rotating knob 8 is transmitted to the flange portion 2c of the ultrasonic probe 2 through the sheath 3, so that the rotating knob 8 and the ultrasonic probe 2 rotate together. To do.
 振動子ユニット5は、超音波振動を発生する振動発生源51と、内部に振動発生源51を収容する振動子ケース52とを備える。振動発生源51は振動子ケース52と一体となって回転するように組み付けられている。振動子ケース52はケース本体41と着脱可能に構成される。また、振動子ユニット5はケーブル53を介して図示しない電源装置やコントローラと電気的に接続される。 The vibrator unit 5 includes a vibration source 51 that generates ultrasonic vibration, and a vibrator case 52 that houses the vibration source 51 inside. The vibration source 51 is assembled so as to rotate integrally with the vibrator case 52. The vibrator case 52 is configured to be detachable from the case body 41. Further, the vibrator unit 5 is electrically connected to a power supply device (not shown) and a controller via a cable 53.
 振動発生源51は、リング状の圧電素子からなる複数の超音波振動子511をホーン部材512にボルト締結して一体化したボルト締めランジュバン型振動子である。超音波振動子511は電流を超音波振動に変換する圧電素子である。超音波振動子511には電気配線(振動子用リード線)が接続されており、この電気配線はケーブル53を介して電源装置と電気的に接続される。 The vibration generation source 51 is a bolted Langevin type vibrator in which a plurality of ultrasonic vibrators 511 each composed of a ring-shaped piezoelectric element are bolted to a horn member 512 to be integrated. The ultrasonic vibrator 511 is a piezoelectric element that converts an electric current into ultrasonic vibration. Electrical wires (lead wires for the vibrator) are connected to the ultrasonic vibrator 511, and the electric wires are electrically connected to the power supply device via the cable 53.
 ホーン部材512は、先端および基端を有し、基端側に超音波振動子511が取り付けられている。ホーン部材512には、超音波振動の振幅を拡大させる部位として、基端側から先端側に向けて断面積が徐々に小さくなる円柱状のホーン部が形成されている。超音波振動子511で発生した超音波振動がホーン部材512の先端側に向けて伝達する際、ホーン部よりも先端側では超音波振動の振幅が拡大される。また、ホーン部材512の先端側には、雄ネジ513が設けられている。 The horn member 512 has a tip end and a base end, and an ultrasonic transducer 511 is attached to the base end side. The horn member 512 is formed with a columnar horn portion that has a cross-sectional area that gradually decreases from the base end side to the tip end side, as a portion for enlarging the amplitude of ultrasonic vibration. When the ultrasonic vibration generated by the ultrasonic vibrator 511 is transmitted toward the tip side of the horn member 512, the amplitude of the ultrasonic vibration is expanded on the tip side of the horn portion. A male screw 513 is provided on the tip side of the horn member 512.
 雄ネジ513は、振動発生源51の先端側に形成されたネジ部であり、超音波プローブ2の基端部2bに形成された雌ネジ21と螺合する。振動発生源51の先端側は超音波プローブ2の基端側とネジ締結によって連結される。連結部10は雄ネジ513と雌ネジ21との螺合部を含む。振動発生源51の雄ネジ513は第1ネジ部であり、超音波プローブ2の雌ネジ21は第2ネジ部である。例えば、雄ネジ513を有するホーン部材512は、チタン合金等の高強度かつ低減衰の材料により構成される。雌ネジ21を有する超音波プローブ2は、チタン合金あるいはアルミ合金等で構成されるが、ホーン部材512よりも強度の低い材料である方が好ましい。 The male screw 513 is a screw portion formed on the tip side of the vibration generation source 51, and is screwed with the female screw 21 formed on the base end portion 2b of the ultrasonic probe 2. The tip side of the vibration source 51 is connected to the base side of the ultrasonic probe 2 by screwing. The connecting portion 10 includes a screwed portion between the male screw 513 and the female screw 21. The male screw 513 of the vibration source 51 is the first screw portion, and the female screw 21 of the ultrasonic probe 2 is the second screw portion. For example, the horn member 512 having the male screw 513 is made of a material having high strength and low attenuation such as titanium alloy. The ultrasonic probe 2 having the female screw 21 is made of a titanium alloy, an aluminum alloy, or the like, but is preferably made of a material having lower strength than the horn member 512.
 また、超音波プローブ2の基端部2bの外周部には、破断誘導部としての切欠き部20が設けられている。破断誘導部とは、超音波プローブ2の基端側と振動発生源51の先端側とをネジ締結する際に作用するトルクが所定値以上の場合に、振動発生源51側が塑性変形する前に超音波プローブ2側で破断を生じさせるために設けられた部位である。超音波プローブ2の組付け時、振動子ケース52を固定した状態(術者が手に持った状態)で、回転ノブ8を回転させると、振動発生源51と超音波プローブ2のフランジ部2cとの間にトルクが掛かかり、過剰なトルクが加わると、フランジ部2cと振動発生源51との間のどこかで破損することになる。この場合、連結部10に上記所定値を超えるトルクが作用すると、雄ネジ513と雌ネジ21との螺合部が塑性変形する前に基端部2bの破断誘導部が破断する。つまり、振動発生源51のホーン部材512が塑性変形せず、ホーン部材512の弾性限界よりも低い状態で超音波プローブ2側を破壊できるという目的で、切欠き部20によって超音波プローブ2の基端部2b側に引張強度の弱い部位(脆弱部)を構成する。この切欠き部20により構成された破断誘導部は、基端部2bの破断を誘導する形状を有する。引張強度はヤング率と密度との積で表される。例えば、所定値以上のトルクとは、雌ネジ21と雄ネジ513とを適切に締め付けるために必要なトルクに対して数倍以上の大きさのトルクである。なお、このトルクは、長手軸Cの軸心を回転中心する回転方向に作用するトルクである。 Further, a cutout portion 20 as a fracture guide portion is provided on the outer peripheral portion of the base end portion 2b of the ultrasonic probe 2. The breakage inducing portion means that before the plastic deformation of the vibration source 51 side, when the torque acting when screwing the proximal end side of the ultrasonic probe 2 and the distal end side of the vibration generation source 51 is equal to or more than a predetermined value. This is a portion provided to cause breakage on the ultrasonic probe 2 side. When the ultrasonic probe 2 is assembled, when the rotary knob 8 is rotated while the transducer case 52 is fixed (held by the operator), the vibration source 51 and the flange portion 2c of the ultrasonic probe 2 are rotated. If a torque is applied between and the excessive torque is applied, it will be broken somewhere between the flange portion 2c and the vibration generating source 51. In this case, when a torque exceeding the above-mentioned predetermined value acts on the connecting portion 10, the fracture guide portion of the base end portion 2b is fractured before the threaded portion of the male screw 513 and the female screw 21 is plastically deformed. That is, the horn member 512 of the vibration generation source 51 is not plastically deformed, and the ultrasonic probe 2 side can be broken in a state of being lower than the elastic limit of the horn member 512 for the purpose of breaking the base of the ultrasonic probe 2 by the notch portion 20. A portion having weak tensile strength (fragile portion) is formed on the end 2b side. The fracture guide portion formed by the cutout portion 20 has a shape that guides the fracture of the base end portion 2b. The tensile strength is represented by the product of Young's modulus and density. For example, the torque equal to or more than the predetermined value is a torque that is several times or more the torque required to properly tighten the female screw 21 and the male screw 513. It should be noted that this torque is a torque that acts in the rotation direction about the axis of the longitudinal axis C as the center of rotation.
 切欠き部20は、超音波プローブ2の外周部に、周方向に沿って全周に亘り切欠きが切られている部分である。すなわち、切欠き部20は超音波プローブ2の基端側の外周部に形成された環状の溝である。この切欠き部20は、超音波プローブ2側の引張強度を振動発生源51側よりも低下させる形状である。また、切欠き部20が設けられた軸方向位置は、振動発生源51からの超音波振動を超音波プローブ2が伝達するときに、振動の腹位置となる。超音波振動の腹位置では超音波振動の節位置よりも超音波振動の応力集中が小さい。超音波処置具1の使用中、超音波振動の伝達に起因する応力集中によって破断誘導部が破断しないようにするために、切欠き部20は、振動の節位置を外れた位置、好適には振動の腹位置に設けられる。要するに、破断誘導部は、超音波振動を伝達するときに、振動の節位置を外れた位置に配置されていればよい。 The notch portion 20 is a portion in which the notch is cut along the circumferential direction on the outer peripheral portion of the ultrasonic probe 2. That is, the cutout portion 20 is an annular groove formed on the outer peripheral portion of the ultrasonic probe 2 on the base end side. The notch 20 has a shape that lowers the tensile strength on the ultrasonic probe 2 side than that on the vibration source 51 side. Further, the axial position where the cutout portion 20 is provided becomes an antinode position of the vibration when the ultrasonic probe 2 transmits the ultrasonic vibration from the vibration source 51. The stress concentration of ultrasonic vibration is smaller at the antinode position of ultrasonic vibration than at the node position of ultrasonic vibration. During the use of the ultrasonic treatment tool 1, in order to prevent the breakage induction portion from breaking due to stress concentration due to transmission of ultrasonic vibration, the cutout portion 20 is preferably located outside the node position of vibration, preferably. It is provided at the vibration antinode position. In short, the breakage guide part may be arranged at a position deviating from the node position of the vibration when transmitting the ultrasonic vibration.
 ここで、図4および図5を参照して、連結部10の構造について説明する。図4は、超音波プローブ2と振動発生源51とが接続している状態を示す断面図である。図5は、超音波プローブ2の基端側の構造と振動発生源51の先端側の構造とを説明するための断面図である。 Here, the structure of the connecting portion 10 will be described with reference to FIGS. 4 and 5. FIG. 4 is a cross-sectional view showing a state where the ultrasonic probe 2 and the vibration source 51 are connected. FIG. 5 is a cross-sectional view for explaining the structure on the proximal end side of the ultrasonic probe 2 and the structure on the distal end side of the vibration source 51.
 連結部10では、超音波プローブ2の基端部2bに形成された第2ネジ部としての雌ネジ21と、振動発生源51の先端側に形成された第1ネジ部としての雄ネジ513とが螺合する。図4に示すように、超音波プローブ2が超音波振動を伝達可能に振動発生源51と連結された状態では、超音波プローブ2の当接部が振動発生源51の先端面51aと面接触している。この当接部は、雌ネジ21を形成するネジ穴の底面22である。底面22は長手軸Cに対して直交する平面上に形成された平面であり、基端側を向いている。先端面51aは雄ネジ513よりも先端側に位置する端面である。振動発生源51の先端部分で先端面51aが超音波プローブ2の底面22に突き当たっていることにより、連結部10でネジ締めに必要な応力(締め付け力)が発生する。この当接部である底面22は、振動発生源51からの超音波振動を超音波プローブ2に伝達するときに、振動の腹位置D1に設けられている。 In the connecting portion 10, a female screw 21 as a second screw portion formed on the base end portion 2b of the ultrasonic probe 2 and a male screw 513 as a first screw portion formed on the distal end side of the vibration source 51. Are screwed together. As shown in FIG. 4, when the ultrasonic probe 2 is connected to the vibration generating source 51 so as to be capable of transmitting ultrasonic vibration, the contact portion of the ultrasonic probe 2 makes surface contact with the tip surface 51 a of the vibration generating source 51. doing. This contact portion is the bottom surface 22 of the screw hole that forms the female screw 21. The bottom surface 22 is a plane formed on a plane orthogonal to the longitudinal axis C, and faces the base end side. The tip surface 51a is an end surface located on the tip side of the male screw 513. Since the tip surface 51a abuts the bottom surface 22 of the ultrasonic probe 2 at the tip portion of the vibration generation source 51, stress (tightening force) required for tightening the screw is generated at the connecting portion 10. The bottom surface 22, which is the contact portion, is provided at the antinode position D1 of the vibration when the ultrasonic vibration from the vibration source 51 is transmitted to the ultrasonic probe 2.
 また、破断誘導部である切欠き部20は、振動の腹位置D1又はその近傍に設けられている。腹位置D1の近傍とは、腹位置D1から超音波振動の波長の1/8の長さの範囲内のことをいう。実施の形態1では、破断誘導部である切欠き部20が設けられる軸方向位置と、当接部である底面22が設けられる位置とは、いずれも振動の腹位置D1である。すなわち、切欠き部20の軸方向位置は、底面22の軸方向位置と重なる位置となる。さらに、切欠き部20の軸方向位置は、雌ネジ21の不完全ネジ部から離れた位置となる。つまり、破断誘導部が設けられる軸方向位置は、雌ネジ21の不完全ネジ部よりも基端側の位置であって、雌ネジ21の近傍となる位置である。 Also, the cutout portion 20 which is the fracture guide portion is provided at or near the antinode position D1 of vibration. The vicinity of the antinode position D1 refers to being within a range of 1/8 of the wavelength of ultrasonic vibration from the antinode position D1. In the first embodiment, both the axial position where the cutout portion 20 that is the fracture guide portion is provided and the position where the bottom surface 22 that is the contact portion is provided are the antinode position D1 of vibration. That is, the axial position of the cutout portion 20 is a position overlapping the axial position of the bottom surface 22. Further, the axial position of the cutout portion 20 is a position apart from the incompletely threaded portion of the female screw 21. That is, the axial position at which the fracture guide portion is provided is a position closer to the proximal end side than the incompletely threaded portion of the female screw 21, and is a position near the female screw 21.
 そして、超音波プローブ2の基端側と振動発生源51の先端側とをネジ締結する際に、所定値以上のトルクが作用すると、連結部10よりも先端側に位置する破断誘導部である切欠き部20が破断する。破断誘導部が破断することによって、超音波プローブ2は切欠き部20の先端側と基端側とに分かれる。破断した後の基端側の部位には、第2ネジ部である雌ネジ21が含まれる。この基端側の部位は、ホーン部材512の先端側に連結された状態で残存することになる。つまり、破断誘導部の破断後は、連結部10を含む超音波プローブ2の基端側の部位(基端部2bの一部)が振動発生源51の先端側に接続したままとなる。 Then, when the base end side of the ultrasonic probe 2 and the tip end side of the vibration generation source 51 are screwed together, when a torque of a predetermined value or more acts, the fracture guide portion is located on the tip end side of the connecting portion 10. The notch 20 breaks. The ultrasonic probe 2 is divided into the distal end side and the proximal end side of the notch portion 20 due to the fracture of the fracture guide portion. The female screw 21, which is the second screw portion, is included in the base end side portion after the fracture. This base end side portion remains connected to the tip end side of the horn member 512. That is, after the breakage induction part is broken, the base end side portion (a part of the base end part 2b) of the ultrasonic probe 2 including the connecting part 10 remains connected to the tip end side of the vibration source 51.
 図6は、破断誘導部が破断した後の分離状態を説明するための図である。図7は、振動発生源の先端側の状態を説明するための図である。図6に示すように、超音波プローブ2側で破断誘導部である切欠き部20が破断すると、超音波プローブ2の雌ネジ21が振動発生源51の先端側に螺合した状態で残存する。この残存した基端部2bは雌ネジ21を含む筒状の部位(残存部)となる。図7に示すように、振動発生源51の先端面51aが残存部よりも先端側で露出した状態となる。つまり、底面22による先端面51aへの突き当たりがなくなる状態となる。そして、この状態で残存する雌ネジ21を解放方向に回転させることによって、連結部10のネジ締結を容易に解放でき、超音波プローブ2の残存部を振動発生源51から取り外すことができる。 FIG. 6 is a diagram for explaining the separated state after the breakage induction part breaks. FIG. 7 is a diagram for explaining the state of the tip of the vibration source. As shown in FIG. 6, when the cutout portion 20 which is the fracture guide portion is broken on the ultrasonic probe 2 side, the female screw 21 of the ultrasonic probe 2 remains in a state of being screwed onto the tip side of the vibration source 51. .. The remaining base end portion 2b becomes a cylindrical portion (remaining portion) including the female screw 21. As shown in FIG. 7, the tip surface 51a of the vibration source 51 is exposed on the tip side of the remaining portion. That is, the bottom surface 22 is prevented from hitting the tip surface 51a. Then, by rotating the female screw 21 remaining in this state in the releasing direction, the screw fastening of the connecting portion 10 can be easily released, and the remaining portion of the ultrasonic probe 2 can be removed from the vibration generating source 51.
 以上説明した通り、実施の形態1によれば、超音波プローブ2と振動発生源51とを接続する際に必要以上に大きなトルクが作用しても、超音波プローブ2の破断誘導部である切欠き部20が破断することにより、再利用品側の振動発生源51が破損することを抑制できる。また、破断誘導部が破断後、底面22による先端面51aへの突き当たりがなくなるので、連結部10でネジ締めの応力がなくなり、破断後の基端部2bを振動発生源51から容易に取り外せる。 As described above, according to the first embodiment, even if an excessively large torque is applied when connecting the ultrasonic probe 2 and the vibration generating source 51, the breaking guide portion of the ultrasonic probe 2 is cut. It is possible to prevent the vibration source 51 on the reused product side from being damaged by breaking the notch 20. Further, after the fracture guide portion is fractured, the bottom surface 22 does not abut against the tip surface 51a, so that stress of screwing is eliminated at the connecting portion 10, and the fractured base end portion 2b can be easily removed from the vibration source 51.
 なお、振動の腹位置D1の近傍に破断誘導部が設けられる場合とは、切欠き部20の軸方向位置が、振動の腹位置D1から波長の1/8の長さの範囲内に位置することを意味する。さらに、切欠き部20は周方向の全周に亘り連続した形状の環状溝に限らず、周方向に不連続に形成された溝や穴などであってもよい。要するに、切欠き部20は、ネジ締結の際に作用するトルクに起因する応力集中が生じやすい形状であればよい。また、切欠き部20により形成される溝の深さを調整することによって所望の破壊力量に設定することが可能である。 In the case where the fracture guide portion is provided near the antinode position D1 of vibration, the axial position of the cutout portion 20 is located within a range of 1/8 of the wavelength from the antinode position D1 of vibration. Means that. Furthermore, the notch 20 is not limited to an annular groove that is continuous over the entire circumference, but may be a groove or a hole that is discontinuous in the circumference. In short, the notch 20 may have any shape as long as stress concentration due to the torque acting at the time of screw fastening easily occurs. Further, it is possible to set a desired amount of breaking force by adjusting the depth of the groove formed by the cutout portion 20.
 また、超音波処置具1は、上述した超音波振動のみを用いる処置具に限らず、高周波を併用して処置対象の処置を行う処置具であってもよい。この場合、超音波処置具1は高周波のみを使用して処置対象の処置を行うことも可能である。あるいは、超音波処置具1は、上述した可動ジョー6を有さない処置具であってもよい。つまり、処置部7がプローブ先端部2aのみにより構成された超音波処置具1であってもよい。 The ultrasonic treatment tool 1 is not limited to the above-described treatment tool that uses only ultrasonic vibration, and may be a treatment tool that uses a high frequency in combination to perform treatment on a treatment target. In this case, the ultrasonic treatment instrument 1 can also treat the treatment target using only high frequencies. Alternatively, the ultrasonic treatment instrument 1 may be a treatment instrument that does not have the movable jaw 6 described above. That is, the treatment section 7 may be the ultrasonic treatment instrument 1 configured only by the probe tip section 2a.
 さらに、超音波プローブ2の雌ネジ21と、振動発生源51の雄ネジ513とは、一方向にしか回せない構造を有するネジ部であってもよい。この場合、超音波プローブ2を振動発生源51から取り外すためには、必ず超音波プローブ2側の破断誘導部で破断することになる。そのため、一度使用したディスポーザブル品を誤って再度使用しないようにすることが可能になる。 Further, the female screw 21 of the ultrasonic probe 2 and the male screw 513 of the vibration source 51 may be screw parts having a structure that can be rotated only in one direction. In this case, in order to remove the ultrasonic probe 2 from the vibration source 51, the ultrasonic probe 2 must be broken at the breaking guide portion on the ultrasonic probe 2 side. Therefore, it becomes possible to prevent a disposable product that has been used once from being used again by mistake.
(実施の形態1の変形例)
 図8は、実施の形態1の変形例として、超音波プローブ2の当接部が基端面23により構成される構造を示す断面図である。図8に示すように、変形例の構造では、当接部は、超音波プローブ2の基端面23である。基端面23は、基端側で雌ネジ21のネジ穴周りに形成された円環状の端面であり、振動発生源51の先端側に設けられた肩部51bと突き当たる。肩部51bは、雄ネジ513よりも大径に形成された部分であり、先端側を向く円環状の端面を有する。雄ネジ513は肩部51bよりも先端側に突出し、雄ネジ513の先端面51aは超音波プローブ2とは非接触である。そして、基端面23と肩部51bとが面接触する軸方向位置は、振動の腹位置又はその近傍となる。また、破断誘導部である切欠き部20は、当接部である基端面23よりも先端側の位置に形成される。このように、超音波処置具1は、破断誘導部の軸方向位置と当接部の軸方向位置とが異なる位置となる構造であってもよい。図8に示す例では、切欠き部20の軸方向位置は雌ネジ21(雌ネジ21の不完全ネジ部)よりも先端側の位置となる。
(Modification of Embodiment 1)
FIG. 8 is a cross-sectional view showing, as a modification of the first embodiment, a structure in which the abutting portion of the ultrasonic probe 2 is constituted by the base end face 23. As shown in FIG. 8, in the structure of the modification, the contact portion is the base end surface 23 of the ultrasonic probe 2. The base end face 23 is an annular end face formed around the screw hole of the female screw 21 on the base end side, and abuts a shoulder portion 51 b provided on the tip end side of the vibration generation source 51. The shoulder portion 51b is a portion formed to have a diameter larger than that of the male screw 513, and has an annular end surface facing the tip side. The male screw 513 projects further toward the tip side than the shoulder portion 51b, and the tip surface 51a of the male screw 513 is not in contact with the ultrasonic probe 2. The axial position where the base end face 23 and the shoulder portion 51b are in surface contact is the antinode position of vibration or the vicinity thereof. Further, the cutout portion 20 which is the fracture guide portion is formed at a position closer to the tip end side than the base end face 23 which is the contact portion. As described above, the ultrasonic treatment instrument 1 may have a structure in which the axial position of the fracture guide portion and the axial position of the contact portion are different positions. In the example shown in FIG. 8, the axial position of the notch portion 20 is a position closer to the tip side than the female screw 21 (incomplete screw portion of the female screw 21).
 図9は、実施の形態1の別の変形例として、破断誘導部が雌ネジ21のネジ穴の内部に形成された構造を示す断面図である。図9に示すように、別の変形例の構造では、雌ネジ21のネジ穴の内部に、破断誘導部としての薄肉部24が形成されている。薄肉部24は、雌ネジ21よりも先端側の位置で、雌ネジ21の部分よりも薄肉化された円筒状の部位である。薄肉部24の内径は雌ネジ21の谷の径よりも大径に形成される。図9に示す薄肉部24は、雌ネジ21のネジ穴の内部で周方向に沿って延びる円環状の溝である。また、薄肉部24は、当接部である底面22と重なる軸方向位置に設けられ、振動の腹位置に設けられる。この変形例と上述した実施の形態1とについて、超音波振動の伝達効率を比較すると、実施の形態1のように超音波プローブ2の外周部に切欠き部20を設けた構造のほうが、変形例のように超音波プローブ2の内周部に薄肉部24を設けた構造よりも振動の伝達効率が良い。 FIG. 9 is a cross-sectional view showing, as another modification of the first embodiment, a structure in which the fracture guide portion is formed inside the screw hole of the female screw 21. As shown in FIG. 9, in the structure of another modified example, a thin portion 24 as a fracture guide portion is formed inside the screw hole of the female screw 21. The thin portion 24 is a cylindrical portion at a position closer to the tip end side than the female screw 21 and thinner than the portion of the female screw 21. The inner diameter of the thin portion 24 is formed to be larger than the diameter of the valley of the female screw 21. The thin portion 24 shown in FIG. 9 is an annular groove extending along the circumferential direction inside the screw hole of the female screw 21. Further, the thin portion 24 is provided at an axial position overlapping the bottom surface 22 which is the contact portion, and is provided at a vibration antinode position. Comparing the transmission efficiency of ultrasonic vibration between this modification and the above-described first embodiment, the structure in which the notch 20 is provided in the outer peripheral portion of the ultrasonic probe 2 as in the first embodiment is more deformed. The vibration transmission efficiency is better than the structure in which the thin portion 24 is provided on the inner peripheral portion of the ultrasonic probe 2 as in the example.
(実施の形態2)
 次に、図10および図11を参照して、実施の形態2における超音波処置具1について説明する。図10は、実施の形態2における超音波プローブ2が振動発生源51に接続された状態を示す図である。図11は、実施の形態2における超音波プローブ2と振動発生源51との接続構造を説明するための断面図である。なお、実施の形態2の説明では、実施の形態1と同様の構成については説明を省略し、その参照符号を引用する。
(Embodiment 2)
Next, with reference to FIG. 10 and FIG. 11, the ultrasonic treatment device 1 according to the second embodiment will be described. FIG. 10 is a diagram showing a state in which the ultrasonic probe 2 according to the second embodiment is connected to the vibration source 51. FIG. 11 is a sectional view for explaining the connection structure between the ultrasonic probe 2 and the vibration source 51 according to the second embodiment. In the description of the second embodiment, the description of the same configuration as that of the first embodiment will be omitted, and the reference numerals will be cited.
 図10および図11に示すように、実施の形態2では、超音波プローブ2が先端側ピース25と基端側ピース26との二つの部材により構成される点で、実施の形態1とは構造が異なる。超音波プローブ2は、先端側ピース25と基端側ピース26とが一体化された状態で、振動発生源51からの超音波振動を基端側ピース26から先端側ピース25へと伝達する。 As shown in FIG. 10 and FIG. 11, in the second embodiment, the ultrasonic probe 2 is composed of two members, that is, the tip side piece 25 and the base end side piece 26. Is different. The ultrasonic probe 2 transmits the ultrasonic vibration from the vibration source 51 from the proximal end piece 26 to the distal end piece 25 in a state where the distal end piece 25 and the proximal end piece 26 are integrated.
 先端側ピース25は、処置部7を構成する先端部2aと一体成形された細径の棒状部材である。先端側ピース25は基端側に形成された雄ネジ25aが、基端側ピース26の先端側に形成された雌ネジ26aと螺合する。 The tip side piece 25 is a rod-shaped member having a small diameter integrally formed with the tip portion 2 a that constitutes the treatment section 7. A male screw 25 a formed on the base end side of the tip end side piece 25 is screwed with a female screw 26 a formed on the tip end side of the base end side piece 26.
 基端側ピース26は、軸方向の両端側に雌ネジが形成された棒状部材であり、振動発生源51と先端側ピース25との間に設けられた振動伝達部材である。この基端側ピース26は先端側ピース25よりも大径に形成され、長手軸Cに沿って延設される。そして、基端側ピース26にはフランジ部2cが設けられている。さらに、基端側ピース26の基端側の部分は超音波プローブ2の基端部2bを構成し、雌ネジ21を有する。連結部10では、基端側ピース26の基端側に形成された雌ネジ21が振動発生源51の雄ネジ513と螺合する。また、基端側ピース26の基端部2bには、破断誘導部としての切欠き部20と、当接部である底面22とが設けられる。つまり、実施の形態2では、基端側ピース26の基端部2bが破断する。この切欠き部20は基端側ピース26の雌ネジ21の近傍に位置し、基端部2bの外周部に形成された円環状の溝である。 The proximal piece 26 is a rod-shaped member having female threads formed on both axial ends, and is a vibration transmission member provided between the vibration source 51 and the distal piece 25. The proximal end piece 26 is formed to have a larger diameter than the distal end piece 25 and extends along the longitudinal axis C. A flange portion 2c is provided on the proximal piece 26. Further, the base end side portion of the base end side piece 26 constitutes the base end portion 2 b of the ultrasonic probe 2 and has the female screw 21. In the connecting portion 10, the female screw 21 formed on the base end side of the base end side piece 26 is screwed with the male screw 513 of the vibration source 51. Further, the base end portion 2b of the base end side piece 26 is provided with a cutout portion 20 as a fracture guide portion and a bottom surface 22 which is an abutting portion. That is, in the second embodiment, the base end portion 2b of the base end side piece 26 is broken. The cutout portion 20 is an annular groove formed near the female screw 21 of the base end side piece 26 and formed on the outer peripheral portion of the base end portion 2b.
 超音波プローブ2と振動発生源51とをネジ締めにより連結する際、回転ノブ8を回転することによって先端側ピース25と基端側ピース26とが一体回転し、基端側ピース26の雌ネジ21がホーン部材512の雄ネジ513に螺合する。その際、回転ノブ8のトルクが基端側ピース26のフランジ部2cに入力されると、振動発生源51とフランジ部2cとの間にトルクが掛かり、過剰なトルクが加わると、この間のどこかで破損する。この場合、雌ネジ21と雄ネジ513とを螺合する際に所定値以上のトルクが作用すると、基端側ピース26側で破断誘導部である切欠き部20が破断する。基端側ピース26の破断誘導部が破断した場合、基端側ピース26の基端部2bは切欠き部20の先端側と基端側とに分かれる。なお、破断誘導部が破断した際、先端側ピース25の基端側の雄ネジ25aと基端側ピース26の先端側の雌ネジ26aとは螺合した接続状態に保たれる。 When the ultrasonic probe 2 and the vibration source 51 are connected by screwing, the distal end piece 25 and the proximal end piece 26 are integrally rotated by rotating the rotary knob 8, and the female screw of the proximal end piece 26 is rotated. 21 is screwed onto the male screw 513 of the horn member 512. At that time, when the torque of the rotary knob 8 is input to the flange portion 2c of the base end side piece 26, a torque is applied between the vibration source 51 and the flange portion 2c, and when excessive torque is applied, where It will be damaged. In this case, when a torque of a predetermined value or more is applied when the female screw 21 and the male screw 513 are screwed together, the notch 20 as the fracture guide portion is fractured on the proximal end side piece 26 side. When the fracture guide portion of the proximal end piece 26 is fractured, the proximal end portion 2b of the proximal end piece 26 is divided into the distal end side and the proximal end side of the cutout portion 20. When the fracture guide portion is fractured, the male screw 25a on the proximal end side of the distal end side piece 25 and the female screw 26a on the distal end side of the proximal end side piece 26 are held in a screwed connection state.
 このように、実施の形態2によれば、超音波プローブ2が先端側ピース25と基端側ピース26との二つの棒状部材により構成された構造であっても、超音波プローブ2と振動発生源51とをネジ締めする際に過大なトルクが作用したときには、超音波プローブ2側の破断誘導部が破断する。これにより、再利用品側の振動発生源51を保護することができる。 As described above, according to the second embodiment, even if the ultrasonic probe 2 has a structure including the two rod-shaped members, that is, the tip side piece 25 and the base side piece 26, the ultrasonic probe 2 and the vibration generation are generated. When an excessive torque is applied when the source 51 and the screw are tightened, the fracture guide portion on the ultrasonic probe 2 side is fractured. As a result, the vibration source 51 on the reused product side can be protected.
(実施の形態3)
 次に、図12および図13を参照して、実施の形態3における超音波処置具1について説明する。図12は、実施の形態3における超音波プローブ2が振動発生源51に接続された状態を示す図である。図13は、実施の形態3における超音波プローブ2と振動発生源51との接続構造を説明するための断面図である。なお、実施の形態3の説明では、実施の形態1と同様の構成については説明を省略し、その参照符号を引用する。
(Embodiment 3)
Next, with reference to FIG. 12 and FIG. 13, an ultrasonic treatment instrument 1 according to the third embodiment will be described. FIG. 12 is a diagram showing a state in which the ultrasonic probe 2 according to the third embodiment is connected to the vibration source 51. FIG. 13 is a cross-sectional view for explaining the connection structure between the ultrasonic probe 2 and the vibration source 51 according to the third embodiment. In the description of the third embodiment, the description of the same components as those in the first embodiment will be omitted, and the reference numerals will be cited.
 図12および図13に示すように、実施の形態3では、実施の形態1とは異なり、保持部材9によって超音波プローブ2と振動発生源51とが接続される。保持部材9は、長手軸Cに沿って延びる筒状の部材であり、先端側から超音波プローブ2が挿入され、基端側から振動発生源51が挿入される。保持部材9の内部で超音波プローブ2の基端面2dと振動発生源51の先端面51aとが面接触する。 As shown in FIGS. 12 and 13, in the third embodiment, unlike the first embodiment, the holding member 9 connects the ultrasonic probe 2 and the vibration source 51. The holding member 9 is a tubular member extending along the longitudinal axis C, and the ultrasonic probe 2 is inserted from the tip side and the vibration generation source 51 is inserted from the base end side. Inside the holding member 9, the base end face 2d of the ultrasonic probe 2 and the tip end face 51a of the vibration source 51 are in surface contact with each other.
 超音波プローブ2と振動発生源51とが連結する部分である連結部30は、保持部材9を介する接続構造により構成される。この保持部材9の内周部には、振動発生源51の先端側の雄ネジ513と螺合する第1雌ネジ91と、超音波プローブ2の基端側の雄ネジ27と螺合する第2雌ネジ92とが設けられている。第1雌ネジ91は第2雌ネジ92よりも基端側に位置する。雄ネジ27は超音波プローブ2の基端部2bに形成されている。実施の形態3では、超音波プローブ2と保持部材9とを固定する固定部が、ネジ部同士が螺合するネジ締結構造により構成される。この固定部は、振動の腹位置又はその近傍に設けられる。 The connection part 30, which is a part where the ultrasonic probe 2 and the vibration source 51 are connected, is configured by a connection structure via the holding member 9. On the inner peripheral portion of the holding member 9, a first female screw 91 screwed with a male screw 513 on the tip side of the vibration source 51, and a male screw 27 screwed with a male screw 27 on the base end side of the ultrasonic probe 2. Two female screws 92 are provided. The first female screw 91 is located closer to the base end side than the second female screw 92. The male screw 27 is formed on the base end portion 2b of the ultrasonic probe 2. In the third embodiment, the fixing portion that fixes the ultrasonic probe 2 and the holding member 9 is configured by the screw fastening structure in which the screw portions are screwed together. This fixing portion is provided at or near the antinode position of vibration.
 そして、連結部30では、超音波プローブ2を振動発生源51に連結する際に必要以上に大きなトルクが作用した場合、超音波プローブ2の雄ネジ27と保持部材9の第2雌ネジ92とが螺合している箇所が破断する。すなわち、連結部30に必要以上に大きなトルクが作用すると、振動発生源51の雄ネジ513と保持部材9の第1雌ネジ91との螺合部が塑性変形する前に、超音波プローブ2と保持部材9との固定部が破断する。つまり、連結部30には、超音波プローブ2と保持部材9との固定部に破断誘導部が設けられている。例えば、超音波プローブ2側の雄ネジ27と第2雌ネジ92とが螺合する部分は、振動発生源51側の雄ネジ513と第1雌ネジ91とが螺合する部分よりもせん断荷重に対する耐久性が低く構成される。これにより、第1雌ネジ91と雄ネジ513との螺合部分よりも先に第2雌ネジ92と雄ネジ27との螺合部分が軸方向に破断する。このように、振動発生源51が保持部材9と正常な状態で連結されている状態のまま、超音波プローブ2と保持部材9との固定部であるネジ締結構造が破断することによって、再利用品側の振動発生源51を保護することができる。 Then, in the connecting portion 30, when an excessively large torque acts when connecting the ultrasonic probe 2 to the vibration source 51, the male screw 27 of the ultrasonic probe 2 and the second female screw 92 of the holding member 9 are connected. The part where is screwed is broken. That is, when an unnecessarily large torque is applied to the connecting portion 30, the ultrasonic probe 2 and the ultrasonic probe 2 are coupled to each other before the male screw 513 of the vibration source 51 and the first female screw 91 of the holding member 9 are plastically deformed. The fixed portion with the holding member 9 is broken. That is, the coupling part 30 is provided with a breakage guide part at the fixed part between the ultrasonic probe 2 and the holding member 9. For example, the portion where the male screw 27 on the ultrasonic probe 2 side and the second female screw 92 are screwed together is more shear load than the portion where the male screw 513 on the vibration source 51 side and the first female screw 91 are screwed together. It has a low durability against. As a result, the screwed portion of the second female screw 92 and the male screw 27 is axially fractured before the screwed portion of the first female screw 91 and the male screw 513. In this manner, the screw fastening structure, which is the fixing portion between the ultrasonic probe 2 and the holding member 9, is broken while the vibration generating source 51 is connected to the holding member 9 in a normal state, so that the reuse is possible. The vibration source 51 on the product side can be protected.
 このように、実施の形態3によれば、保持部材9を用いて超音波プローブ2と振動発生源51とを連結する構造であっても、ネジ締結の際に過大なトルクが作用した場合には、超音波プローブ2側が破断することによって振動発生源51側を保護することができる。 As described above, according to the third embodiment, even when the ultrasonic probe 2 and the vibration source 51 are connected by using the holding member 9, when an excessive torque is applied during screw fastening, Can protect the vibration source 51 side by breaking the ultrasonic probe 2 side.
(実施の形態3の変形例)
 保持部材9と超音波プローブ2との固定部は、上述した第2雌ネジ92と雄ネジ27とのネジ締結構造に限定されない。その固定部の一例として、接着によって、超音波プローブ2の外周部と保持部材9の内周部との間が固定されてもよい。この場合、接着剤としては嫌気性接着剤を用いることによって、高強度な固定部と組立時間の短縮とを実現できる。また、固定部の他の例として、焼き嵌めによって、超音波プローブ2の外周部と保持部材9の内周部とが接合されてもよい。この焼き嵌めの場合、介在部材なく接合できるので振動の伝達ロスを低減することができる。さらに、別の固定部として、レーザー溶接等の溶接や、ロウ付けや、一体成型や、HIP(熱間静水圧応力)や、CIP(冷間静水圧応力)や、3D直接形成などによって、超音波プローブ2と保持部材9とが固定されてもよい。溶接の場合、特に同種材料を高強度で接合できる。この溶接の場合には焼きなましを併用することが望ましい。ロウ付けの場合、超音波プローブ2と保持部材9とが異種材料であっても高強度で接合できる。一体成型の場合、保持部材9をアルミ合金等の融点が低い金属で鋳造する。これにより高い密着性を得られる。HIPの場合、保持部材9の材質を超音波プローブ2の材質よりも低温で変形するものとする。これにより、高い密着性を得られる。CIPの場合、保持部材9の材質を超音波プローブ2の材質よりも軟らかいものとする。これにより、組立時の温度影響を抑制できる。3D直接形成の場合には金属溶融粉やレーザー粉末冶金等による。これにより、複雑な形状を構成できる。あるいは、キーやピン等の補助部材を用いて超音波プローブ2の外周部と保持部材9の内周部とを固定する構造であってもよい。
(Modification of Embodiment 3)
The fixing portion of the holding member 9 and the ultrasonic probe 2 is not limited to the screw fastening structure of the second female screw 92 and the male screw 27 described above. As an example of the fixing portion, the outer peripheral portion of the ultrasonic probe 2 and the inner peripheral portion of the holding member 9 may be fixed by adhesion. In this case, by using an anaerobic adhesive as the adhesive, it is possible to realize a high-strength fixing portion and a reduction in assembly time. Further, as another example of the fixing portion, the outer peripheral portion of the ultrasonic probe 2 and the inner peripheral portion of the holding member 9 may be joined by shrink fitting. In the case of this shrink fitting, since it is possible to join without an intervening member, it is possible to reduce vibration transmission loss. Furthermore, as another fixing part, by welding such as laser welding, brazing, integral molding, HIP (hot isostatic stress), CIP (cold isostatic stress), 3D direct formation, etc. The sonic probe 2 and the holding member 9 may be fixed. In the case of welding, in particular, similar materials can be joined with high strength. In the case of this welding, it is desirable to use annealing together. In the case of brazing, even if the ultrasonic probe 2 and the holding member 9 are made of different materials, they can be joined with high strength. In the case of integral molding, the holding member 9 is cast from a metal having a low melting point such as an aluminum alloy. Thereby, high adhesion can be obtained. In the case of HIP, the material of the holding member 9 is deformed at a lower temperature than the material of the ultrasonic probe 2. Thereby, high adhesion can be obtained. In the case of CIP, the material of the holding member 9 is softer than the material of the ultrasonic probe 2. As a result, the influence of temperature during assembly can be suppressed. In the case of 3D direct formation, metal melting powder, laser powder metallurgy or the like is used. Thereby, a complicated shape can be formed. Alternatively, the structure may be such that an outer peripheral portion of the ultrasonic probe 2 and an inner peripheral portion of the holding member 9 are fixed by using an auxiliary member such as a key or a pin.
(実施の形態4)
 次に、図14および図15を参照して、実施の形態4における超音波処置具1を説明する。図14は、実施の形態4における超音波プローブ2と振動発生源51との接続構造を説明するための断面図である。図15は、図14に示す断面図の一部を拡大した図である。なお、実施の形態4の説明では、実施の形態1と同様の構成については説明を省略し、その参照符号を引用する。
(Embodiment 4)
Next, with reference to FIG. 14 and FIG. 15, the ultrasonic treatment device 1 according to the fourth embodiment will be described. FIG. 14 is a cross-sectional view for explaining the connection structure between the ultrasonic probe 2 and the vibration source 51 according to the fourth embodiment. FIG. 15 is an enlarged view of a part of the cross-sectional view shown in FIG. In the description of the fourth embodiment, the description of the same components as those of the first embodiment will be omitted, and the reference numerals will be cited.
 図14および図15に示すように、実施の形態4では、実施の形態1とは異なり、超音波プローブ2側が雄ネジ、振動発生源51側が雌ネジに構成される。連結部40では、超音波プローブ2の基端側に形成された雄ネジ28が、振動発生源51の先端側に形成された雌ネジ514に螺合する。また、超音波プローブ2の基端側の外周部には、破断誘導部としての切欠き部20が設けられている。この場合、超音波プローブ2の当接部は、基端部2bに設けられた肩部2eとなる。肩部2eは、雄ネジ28よりも大径に形成された部分であり、基端側を向く円環状の端面を有する。この当接部としての肩部2eに、振動発生源51の先端側の端面51cが突き当たる。端面51cは雌ネジ514のネジ穴の周りに形成された円環状の面である。肩部2eと端面51cとが面接触する位置は、振動の腹位置である。そして、破断誘導部である切欠き部20は、肩部2eよりも先端側の位置で、振動の腹位置近傍に設けられている。これにより、破断誘導部である切欠き部20が破断した際に、超音波プローブ2の基端部2bのうち雄ネジ28と肩部2eとを含み肩部2eから所定長さを有する部位(把持部分)を残すことが可能になる。つまり、連結部40に所定値以上のトルクが作用すると、雄ネジ28と雌ネジ514との螺合部が塑性変形する前に破断誘導部としての切欠き部20が破断する。 As shown in FIGS. 14 and 15, in the fourth embodiment, unlike the first embodiment, the ultrasonic probe 2 side has a male screw and the vibration source 51 side has a female screw. In the connecting portion 40, the male screw 28 formed on the proximal end side of the ultrasonic probe 2 is screwed into the female screw 514 formed on the distal end side of the vibration source 51. Further, a cutout portion 20 serving as a fracture guide portion is provided on the outer peripheral portion of the ultrasonic probe 2 on the base end side. In this case, the contact portion of the ultrasonic probe 2 is the shoulder portion 2e provided on the base end portion 2b. The shoulder portion 2e is a portion formed to have a diameter larger than that of the male screw 28, and has an annular end surface facing the base end side. The end face 51c on the tip side of the vibration generating source 51 abuts on the shoulder portion 2e as the abutting portion. The end surface 51c is an annular surface formed around the screw hole of the female screw 514. The position where the shoulder 2e and the end face 51c are in surface contact is the antinode position of vibration. The cutout portion 20 serving as the breakage guide portion is provided near the antinode position of vibration at a position closer to the tip end side than the shoulder portion 2e. Thereby, when the cutout portion 20 which is the fracture guide portion is fractured, a portion of the base end portion 2b of the ultrasonic probe 2 including the male screw 28 and the shoulder portion 2e and having a predetermined length from the shoulder portion 2e ( It becomes possible to leave a gripping part). That is, when a torque of a predetermined value or more is applied to the connecting portion 40, the notch portion 20 serving as the fracture guiding portion breaks before the threaded portion between the male screw 28 and the female screw 514 is plastically deformed.
 このように、実施の形態4によれば、超音波プローブ2の基端側の雄ネジ28が振動発生源51の先端側の雌ネジ514に螺合する構造であっても、超音波プローブ2側の破断誘導部が破断することが可能である。また、破断誘導部が破断した後に、振動発生源51側に残存する超音波プローブ2の一部に、雄ネジ28を解放方向へ回転可能な把持部分を含ませることが可能である。これにより、破断誘導部が破断後に、把持部分を回転させることで雄ネジ28を雌ネジ514から容易に取り外すことが可能である。 Thus, according to the fourth embodiment, even if the male screw 28 on the proximal end side of the ultrasonic probe 2 is screwed into the female screw 514 on the distal end side of the vibration source 51, the ultrasonic probe 2 It is possible for the side break induction part to break. Further, it is possible to include a gripping portion capable of rotating the male screw 28 in the releasing direction in a part of the ultrasonic probe 2 remaining on the side of the vibration source 51 after the breaking guide portion is broken. Accordingly, after the breakage guide portion is broken, the male screw 28 can be easily removed from the female screw 514 by rotating the grip portion.
(各実施の形態の変形例)
 上述した各実施の形態では、破断誘導部を切欠き部20や薄肉部24として説明したが、切欠き部20や薄肉部24の形状は特に限定されない。例えば、切欠き部20や薄肉部24により形成される溝形状の破断誘導部は、周方向の一部に形成されてもよい。また、切欠き部20の溝形状は矩形状に限らず、例えば、図16に示す切欠き部20Aのような丸溝や、図17に示す切欠き部20BのようなV溝であってもよい。
(Modification of each embodiment)
In each of the above-described embodiments, the fracture guide portion is described as the cutout portion 20 or the thin portion 24, but the shape of the cutout portion 20 or the thin portion 24 is not particularly limited. For example, the groove-shaped fracture guide portion formed by the cutout portion 20 and the thin portion 24 may be formed in a part in the circumferential direction. Further, the groove shape of the cutout portion 20 is not limited to the rectangular shape, and may be, for example, a round groove such as the cutout portion 20A shown in FIG. 16 or a V groove such as the cutout portion 20B shown in FIG. Good.
 さらに、上述した切欠き部20のように溝形状が矩形状である場合には、図18に示す切欠き部20Cのように、溝底部の基端側角部201(矢印C2側の角部)と先端側角部202(矢印C1側の角部)とは異なる曲率のR(ピン角)に形成されることが好ましい。切欠き部20Cでは、先端側角部202のR(ピン角)を基端側角部201のR(ピン角)よりも大きくし、応力集中部を基端側角部201の方にする。つまり、切欠き部20や切欠き部20Cのように矩形状の溝構造では、溝底部のうち相対的にピン角が小さい方の角部に応力が集中する。これにより、切欠き部20Cでは基端側と先端側とのうちの一方の角部(基端側角部201)が応力集中部となるため、破断誘導部を破断するための破壊力量を低くでき、超音波プローブ2側の破断が容易になる。仮に、図19に示す切欠き部20Dのように、基端側角部203と先端側角部204とが同じピン角に形成された場合には、応力が両方の角部へ分散してしまい、破断誘導部を破断するための破壊力量が図18に示す切欠き部20Cよりも高くなってしまう。なお、図18および図19には、雌ネジ21を有する超音波プローブ2の基端部2bについて、切欠き部20Cと切欠き部20Dの断面形状が拡大されて模式的に示されている。さらに、図18の断面部分に示された破線、および図19の断面部分に示された破線は、作用した応力の分布を表している。 Further, when the groove shape is rectangular like the cutout portion 20 described above, as in the cutout portion 20C shown in FIG. 18, the base end side corner portion 201 of the groove bottom portion (the corner portion on the arrow C2 side). ) And the tip side corner portion 202 (corner portion on the arrow C1 side) are preferably formed to have R (pin angle) with different curvatures. In the cutout portion 20C, the R (pin angle) of the tip side corner portion 202 is made larger than the R (pin angle) of the base end side corner portion 201, and the stress concentration portion is directed toward the base end side corner portion 201. That is, in the rectangular groove structure such as the cutout portion 20 and the cutout portion 20C, stress concentrates on the corner portion of the groove bottom portion having a relatively small pin angle. As a result, in the cutout portion 20C, one corner portion (base end side corner portion 201) of the base end side and the tip end side serves as the stress concentration portion, so that the breaking force amount for breaking the breaking guide portion is low. Therefore, the ultrasonic probe 2 can be easily broken. If the base end side corner portion 203 and the tip end side corner portion 204 are formed with the same pin angle like the cutout portion 20D shown in FIG. 19, the stress is dispersed to both the corner portions. The amount of breaking force for breaking the breaking guide portion becomes higher than that of the notch portion 20C shown in FIG. Note that, in FIGS. 18 and 19, with respect to the base end portion 2b of the ultrasonic probe 2 having the female screw 21, the cross-sectional shapes of the cutout portion 20C and the cutout portion 20D are enlarged and schematically shown. Further, the broken line shown in the cross section of FIG. 18 and the broken line shown in the cross section of FIG. 19 represent the distribution of the applied stress.
 さらに、破断誘導部は切欠き部20や薄肉部24のような形状に限らず、材料を変質させて部分的に引張強度を低下させた部位であってもよい。例えば、焼きなましや、焼き入れなどにより、超音波プローブ2の強度を部分的に低下させた破断誘導部であってもよい。超音波プローブ2を部分的に焼きなます。これにより、焼きなました部分は破断され易くなる。あるいは、超音波プローブ2を部分的に焼き入れる。これにより、通常部分と焼き入れ部分との境界が破断され易くなる。 Further, the fracture guide portion is not limited to the shape such as the cutout portion 20 or the thin portion 24, and may be a portion where the material is altered to partially reduce the tensile strength. For example, it may be a fracture guide portion in which the strength of the ultrasonic probe 2 is partially reduced by annealing or quenching. Partly anneal the ultrasonic probe 2. As a result, the annealed portion is easily broken. Alternatively, the ultrasonic probe 2 is partially quenched. As a result, the boundary between the normal portion and the quenched portion is easily broken.
 1 超音波処置具
 2 超音波プローブ
 2a プローブ先端部
 2b 基端部
 3 シース
 4 ハンドルユニット
 5 振動子ユニット
 6 可動ジョー
 7 処置部
 8 回転ノブ
 9 保持部材
 10 連結部
 20 切欠き部
 21 雌ネジ
 22 底面
 41 ケース本体
 42 固定ハンドル
 43 可動ハンドル
 51 振動発生源
 51a 先端面
 52 振動子ケース
 511 超音波振動子
 512 ホーン部材
 513 雄ネジ
DESCRIPTION OF SYMBOLS 1 Ultrasonic treatment tool 2 Ultrasonic probe 2a Probe tip part 2b Base end part 3 Sheath 4 Handle unit 5 Transducer unit 6 Movable jaw 7 Treatment part 8 Rotating knob 9 Holding member 10 Connecting part 20 Cutout part 21 Female screw 22 Bottom surface 41 Case Main Body 42 Fixed Handle 43 Movable Handle 51 Vibration Source 51a Tip Surface 52 Transducer Case 511 Ultrasonic Transducer 512 Horn Member 513 Male Screw

Claims (15)

  1.  一端側に第1ネジ部が形成され、超音波振動を発生する振動発生源と、
     前記振動発生源の前記一端側に突き当たる当接部と、前記振動発生源の前記第1ネジ部に組み付く第2ネジ部と、を基端部に有し、前記振動発生源からの超音波振動を基端側から先端側へ伝達する振動伝達部材と、
     を備え、
     前記振動伝達部材は、前記第1ネジ部と前記第2ネジ部とを螺合する際に作用するトルクが所定値以上の場合に前記第1ネジ部と前記第2ネジ部との螺合部が塑性変形する前に当該振動伝達部材の前記基端部が先端側と基端側とに分離するように破断を誘導する破断誘導部、を前記第2ネジ部の近傍に有する、
    超音波処置具。
    A first screw portion is formed on one end side, and a vibration source that generates ultrasonic vibrations,
    An ultrasonic wave from the vibration source has a contact portion that abuts against the one end side of the vibration source and a second screw portion that is assembled to the first screw portion of the vibration source at a base end portion. A vibration transmission member that transmits vibration from the base end side to the tip end side,
    Equipped with
    The vibration transmitting member is a screwing portion of the first screw portion and the second screw portion when the torque acting when screwing the first screw portion and the second screw portion is a predetermined value or more. Has a fracture guide portion for guiding fracture so that the base end portion of the vibration transmitting member separates into a tip end side and a base end side before being plastically deformed, near the second screw portion,
    Ultrasonic treatment tool.
  2.  前記破断誘導部は、前記振動伝達部材を伝達する超音波振動の節位置から外れた位置に設けられている、請求項1に記載の超音波処置具。 The ultrasonic treatment instrument according to claim 1, wherein the fracture guide portion is provided at a position deviated from a node position of ultrasonic vibrations transmitted by the vibration transmission member.
  3.  前記破断誘導部は、前記振動伝達部材を伝達する超音波振動の腹位置又はその近傍に設けられている、請求項1に記載の超音波処置具。 The ultrasonic treatment instrument according to claim 1, wherein the fracture guide portion is provided at or near an antinode position of ultrasonic vibration transmitted through the vibration transmission member.
  4.  前記破断誘導部は、前記第2ネジ部よりも先端側の位置で、周方向に沿って前記振動伝達部材に形成された溝形状を有する、請求項1に記載の超音波処置具。 The ultrasonic treatment instrument according to claim 1, wherein the fracture guide portion has a groove shape formed in the vibration transmitting member along the circumferential direction at a position closer to the tip side than the second screw portion.
  5.  前記第2ネジ部は、雌ネジであり、
     前記破断誘導部は、前記雌ネジよりも先端側の位置で、前記振動伝達部材の外周部に切欠きが形成された切欠き部を含む、請求項1に記載の超音波処置具。
    The second screw portion is a female screw,
    The ultrasonic treatment instrument according to claim 1, wherein the breakage guide portion includes a notch formed in a notch on an outer peripheral portion of the vibration transmitting member at a position closer to the tip side than the female screw.
  6.  前記第2ネジ部は、雌ネジであり、
     前記破断誘導部は、前記雌ネジのネジ穴の内部に、前記雌ネジよりも先端側の位置で、前記雌ネジの部分よりも薄肉に形成された薄肉部を含む、請求項1に記載の超音波処置具。
    The second screw portion is a female screw,
    The rupture guide portion includes a thin-walled portion formed inside the screw hole of the female screw at a position closer to the tip end than the female screw and thinner than a portion of the female screw. Ultrasonic treatment tool.
  7.  前記当接部は、前記雌ネジのネジ穴の底面であり、
     前記ネジ穴の底面は、前記第1ネジ部よりも先端側に形成された前記振動発生源の先端面と面接触し、
     前記破断誘導部は、前記ネジ穴の底面が設けられている軸方向位置と重なる位置に設けられている、請求項5に記載の超音波処置具。
    The contact portion is the bottom surface of the screw hole of the female screw,
    The bottom surface of the screw hole is in surface contact with the tip surface of the vibration source formed on the tip side of the first screw portion,
    The ultrasonic treatment instrument according to claim 5, wherein the fracture guide portion is provided at a position overlapping with an axial position where the bottom surface of the screw hole is provided.
  8.  一端側に雄ネジが形成され、超音波振動を発生する振動発生源と、
     前記振動発生源の前記一端側に突き当たる当接部を基端に有する棒状部材であり、前記振動発生源からの超音波振動を基端側から先端側へ伝達する振動伝達部材と、
     前記振動発生源の前記雄ネジと螺合する雌ネジと、前記振動伝達部材の外周部に固定される内周部とを有する筒状部材であり、内部で前記振動発生源の先端面と前記振動伝達部材の前記当接部とが突き当たる状態を保持する保持部材と、
     を備え、
     前記振動伝達部材の外周部と前記保持部材の内周部とを固定している固定部に、前記雄ネジと前記雌ネジとを螺合する際に作用するトルクが所定値以上の場合に前記雄ネジと前記雌ネジとの螺合部が塑性変形する前に前記振動伝達部材が前記保持部材から軸方向に分離するように前記固定部の破断を誘導する破断誘導部が設けられている、超音波処置具。
    A male screw is formed on one end side and a vibration source that generates ultrasonic vibration,
    A vibration-transmitting member for transmitting ultrasonic vibrations from the vibration source from the base side to the tip side, which is a rod-shaped member having a contact portion abutting against the one end side of the vibration generation source at the base end,
    A cylindrical member having a female screw that is screwed into the male screw of the vibration source and an inner peripheral portion that is fixed to the outer peripheral portion of the vibration transmission member. A holding member that holds a state in which the contact portion of the vibration transmission member abuts;
    Equipped with
    When the torque acting when the male screw and the female screw are screwed into the fixing portion that fixes the outer peripheral portion of the vibration transmitting member and the inner peripheral portion of the holding member is a predetermined value or more, A fracture guide portion is provided that guides the fracture of the fixing portion so that the vibration transmitting member is axially separated from the holding member before the threaded portion of the male screw and the female screw is plastically deformed. Ultrasonic treatment tool.
  9.  処置部を有する先端部と、
     超音波振動を発生する振動発生源に連結される基端部と、
     を有し、
     前記基端部は、
     前記振動発生源の先端側と突き当たる当接部と、
     前記振動発生源に形成された第1ネジ部に組み付く第2ネジ部と、を有し、
     前記第2ネジ部の近傍には、前記第1ネジ部と前記第2ネジ部とを螺合する際に作用するトルクが所定値以上の場合に前記第1ネジ部と前記第2ネジ部との螺合部が塑性変形する前に前記基端部が先端側と基端側とに分離するように破断を誘導する破断誘導部が設けられている、振動伝達部材。
    A tip portion having a treatment portion,
    A base end portion connected to a vibration source that generates ultrasonic vibration,
    Have
    The base end is
    An abutting portion that abuts against the tip side of the vibration source,
    A second screw portion attached to the first screw portion formed on the vibration source,
    In the vicinity of the second screw portion, the first screw portion and the second screw portion are provided when the torque that acts when the first screw portion and the second screw portion are screwed together is a predetermined value or more. The vibration transmission member is provided with a fracture guide portion for inducing fracture so that the base end portion is separated into a tip end side and a base end side before the screwed portion of the is plastically deformed.
  10.  前記破断誘導部は、前記振動伝達部材を伝達する超音波振動の節位置から外れた位置に設けられている、請求項9に記載の振動伝達部材。 The vibration transmission member according to claim 9, wherein the breakage guide portion is provided at a position deviated from a node position of ultrasonic vibration transmitted through the vibration transmission member.
  11.  前記破断誘導部は、前記振動伝達部材を伝達する超音波振動の腹位置又はその近傍に設けられている、請求項9に記載の振動伝達部材。 The vibration transmission member according to claim 9, wherein the breakage induction portion is provided at or near an antinode position of ultrasonic vibration transmitted through the vibration transmission member.
  12.  前記破断誘導部は、前記第2ネジ部よりも前記先端部側の位置で、周方向に沿って形成された溝形状を有する、請求項9に記載の振動伝達部材。 The vibration transmitting member according to claim 9, wherein the breakage guide portion has a groove shape formed along the circumferential direction at a position closer to the tip end portion than the second screw portion.
  13.  前記第2ネジ部は、雌ネジであり、
     前記破断誘導部は、前記雌ネジよりも前記先端部側の位置で、前記基端部の外周部に切欠きが形成された切欠き部を含む、請求項9に記載の振動伝達部材。
    The second screw portion is a female screw,
    10. The vibration transmitting member according to claim 9, wherein the fracture guide portion includes a notch formed in a notch on an outer peripheral portion of the base end portion at a position closer to the tip end portion than the female screw.
  14.  前記第2ネジ部は、雌ネジであり、
     前記破断誘導部は、前記雌ネジのネジ穴の内部に、前記雌ネジよりも前記先端部側の位置で、前記雌ネジの部分よりも薄肉に形成された薄肉部を含む、請求項9に記載の振動伝達部材。
    The second screw portion is a female screw,
    The breakage guide portion includes a thin-walled portion formed inside the screw hole of the female screw at a position closer to the tip portion than the female screw and thinner than a portion of the female screw. The vibration transmission member described.
  15.  前記当接部は、前記雌ネジのネジ穴の底面であり、
     前記ネジ穴の底面は、前記第1ネジ部よりも先端側に形成された前記振動発生源の先端面と面接触し、
     前記破断誘導部は、前記ネジ穴の底面が設けられている軸方向位置と重なる位置に設けられている、請求項13に記載の振動伝達部材。
    The contact portion is the bottom surface of the screw hole of the female screw,
    The bottom surface of the screw hole is in surface contact with the tip surface of the vibration source formed on the tip side of the first screw portion,
    The vibration transmitting member according to claim 13, wherein the fracture guide portion is provided at a position overlapping with an axial position where the bottom surface of the screw hole is provided.
PCT/JP2019/001890 2019-01-22 2019-01-22 Ultrasonic treatment tool and vibration transmission member WO2020152783A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/001890 WO2020152783A1 (en) 2019-01-22 2019-01-22 Ultrasonic treatment tool and vibration transmission member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/001890 WO2020152783A1 (en) 2019-01-22 2019-01-22 Ultrasonic treatment tool and vibration transmission member

Publications (1)

Publication Number Publication Date
WO2020152783A1 true WO2020152783A1 (en) 2020-07-30

Family

ID=71736277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001890 WO2020152783A1 (en) 2019-01-22 2019-01-22 Ultrasonic treatment tool and vibration transmission member

Country Status (1)

Country Link
WO (1) WO2020152783A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023084653A1 (en) * 2021-11-10 2023-05-19 オリンパスメディカルシステムズ株式会社 Fastening member, method for manufacturing ultrasonic treatment tool, and ultrasonic treatment tool

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133006A1 (en) * 2014-03-03 2015-09-11 オリンパス株式会社 Ultrasound instrument and probe
JP2017508482A (en) * 2013-11-22 2017-03-30 エシコン・エンド−サージェリィ・エルエルシーEthicon Endo−Surgery, LLC Method and mechanism for joining together components of an ultrasonic surgical instrument
JP2017523895A (en) * 2014-08-05 2017-08-24 メダルティス・ホールディング・アクチェンゲゼルシャフトMedartis Holding Ag Screw with insertion post

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017508482A (en) * 2013-11-22 2017-03-30 エシコン・エンド−サージェリィ・エルエルシーEthicon Endo−Surgery, LLC Method and mechanism for joining together components of an ultrasonic surgical instrument
WO2015133006A1 (en) * 2014-03-03 2015-09-11 オリンパス株式会社 Ultrasound instrument and probe
JP2017523895A (en) * 2014-08-05 2017-08-24 メダルティス・ホールディング・アクチェンゲゼルシャフトMedartis Holding Ag Screw with insertion post

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023084653A1 (en) * 2021-11-10 2023-05-19 オリンパスメディカルシステムズ株式会社 Fastening member, method for manufacturing ultrasonic treatment tool, and ultrasonic treatment tool

Similar Documents

Publication Publication Date Title
US10779847B2 (en) Ultrasonic transducer to waveguide joining
US5156143A (en) Ultrasonic percussion device
JP6326275B2 (en) Ultrasonic transducer and ultrasonic medical device
JP5587300B2 (en) Ultrasound tissue dissection instrument
US5993458A (en) Method of ultrasonically embedding bone anchors
US6425906B1 (en) Ultrasonic cutting tool
WO2012066983A1 (en) Ultrasound transducer, ultrasound treatment tool, ultrasound treatment device, and method for assembling ultrasound transducer
US5649935A (en) Ultrasonic percussion device
JPH0670938A (en) Ultrasonic processing device
JP2002301086A (en) Mounting method of each part of ultrasonic blade or waveguide
JP5153966B2 (en) Probe for treating biological tissue and method for operating ultrasonic probe
WO2020152783A1 (en) Ultrasonic treatment tool and vibration transmission member
JP2010167084A (en) Ultrasonic surgical apparatus
CN109845292B (en) Ultrasonic transducer and ultrasonic treatment system
JP6192886B1 (en) Vibration transmitting member, ultrasonic treatment instrument, and vibrator unit
JP6980813B2 (en) Vibration transmission member and ultrasonic treatment tool
JP2002058679A (en) Ultrasonic treating instrument
WO2016051486A1 (en) Ultrasonic vibrator and ultrasonic medical apparatus
WO2023084653A1 (en) Fastening member, method for manufacturing ultrasonic treatment tool, and ultrasonic treatment tool
WO2023084661A1 (en) Ultrasonic treatment tool, and manufacturing method for ultrasonic treatment tool
JP2532780B2 (en) Ultrasonic therapy equipment
WO2022185414A1 (en) Ultrasonic treatment tool and vibration transmission member
JPH0298345A (en) Ultrasonic processing device
CN115813493A (en) Ultrasonic surgical instrument, system, transducer and transducer assembly method
BR112019003643B1 (en) ULTRASONIC SURGICAL INSTRUMENT

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP