JPH0546429Y2 - - Google Patents

Info

Publication number
JPH0546429Y2
JPH0546429Y2 JP6495290U JP6495290U JPH0546429Y2 JP H0546429 Y2 JPH0546429 Y2 JP H0546429Y2 JP 6495290 U JP6495290 U JP 6495290U JP 6495290 U JP6495290 U JP 6495290U JP H0546429 Y2 JPH0546429 Y2 JP H0546429Y2
Authority
JP
Japan
Prior art keywords
cutting
horn
tip
ultrasonic horn
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6495290U
Other languages
Japanese (ja)
Other versions
JPH0425707U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6495290U priority Critical patent/JPH0546429Y2/ja
Priority to AU76397/91A priority patent/AU630294B2/en
Priority to CA002042006A priority patent/CA2042006C/en
Priority to EP91304121A priority patent/EP0456470B1/en
Priority to DE69115981T priority patent/DE69115981T2/en
Priority to US07/698,229 priority patent/US5188102A/en
Publication of JPH0425707U publication Critical patent/JPH0425707U/ja
Application granted granted Critical
Publication of JPH0546429Y2 publication Critical patent/JPH0546429Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 《産業上の利用分野》 本考案は、超音波振動により生物組織を切削、
分離するための外科手術装置の超音波ホーンに関
するものである。
[Detailed description of the invention] <<Industrial application field>> This invention uses ultrasonic vibration to cut biological tissue.
The present invention relates to an ultrasonic horn of a surgical device for separation.

《従来の技術》 従来、生物組織、特に硬骨組織及び軟骨組織の
切断分離には外科用メスが用いられているが、切
断作業の効率が悪く、長時間を要し、手術者に多
大の労力がかかり、且つ切断分離に高度の技術を
必要とすると言う欠点があつた。
《Prior Art》 Traditionally, surgical scalpels have been used to cut and separate biological tissue, especially bone tissue and cartilage tissue, but the cutting operation is inefficient, takes a long time, and requires a lot of labor from the operator. This method has disadvantages in that it takes a lot of time and requires advanced technology for cutting and separation.

また、超音波を利用した外科手術用具も多数開
発されており、超音波振動源に接続された操作部
を超音波振動させ、接触した生物組織を破砕し、
吸引除去する為の外科手術用具(例えば特公昭47
−39197号公報)や、硬質及び軟質の生物組織の
切断分離用として開発された、超音波振動源に接
続されたのこぎり状の操作部分を有する外科用手
術用具などが知られている。しかし、振動方向に
対して垂直な平面の操作部を有した振動体が、軟
質の生物組織の表面層を超音波振動によつて破
砕、乳化、吸引除去する外科手術用具は、超音波
周波数の機械的振動によつて生物組織の表面層を
たたく作用で組織を破砕しているため、操作部を
生物組織に深くくい込ませて組織を切断分離する
作業は難しく、更に硬い生物組織を切断するには
不適当であつた。また、超音波振動するのこぎり
状の操作部分によつて生物組織を切断分離する外
科手術用具は、切断効率を向上させるために操作
部の形状を工夫しているが、切断に必要とされる
30〜50μm程度の操作部の振幅によつて、操作部
と切断される生物組織との間に摩擦熱が発生し、
操作部、例えば熱伝導性の優れたチタン合金の場
合でも数百度の表面温度に達し、切断されている
組織は炭化される。更に、刃形状等の肉厚の薄い
操作部は摩擦熱によつて劣化し、破断する恐れが
あつた。
In addition, many surgical tools have been developed that utilize ultrasonic waves, which vibrate the operation part connected to an ultrasonic vibration source to crush biological tissues that come into contact with it.
Surgical tools for suction removal (e.g.,
39197) and a surgical tool that has a saw-like operating part connected to an ultrasonic vibration source and has been developed for cutting and separating hard and soft biological tissue. However, surgical instruments that use ultrasonic vibrations to crush, emulsify, and suction remove the surface layer of soft biological tissue, in which a vibrating body has a plane operating part that is perpendicular to the vibration direction, do not operate at ultrasonic frequencies. Since the tissue is broken by hitting the surface layer of the biological tissue with mechanical vibration, it is difficult to insert the operation part deeply into the biological tissue to cut and separate the tissue, and it is difficult to cut the tissue even harder. was inappropriate. In addition, surgical instruments that cut and separate biological tissue with a saw-like operating part that vibrates ultrasonically have devised the shape of the operating part to improve cutting efficiency, but the shape of the operating part is devised to improve cutting efficiency.
Due to the amplitude of the operating part of about 30 to 50 μm, frictional heat is generated between the operating part and the biological tissue to be cut.
Even in the case of the operating part, for example, a titanium alloy with excellent thermal conductivity, the surface temperature reaches several hundred degrees, and the tissue being cut is carbonized. Furthermore, thin operating parts such as blade shapes deteriorate due to frictional heat and may break.

この他、従来のホーンでは作業部が大きく接触
面積が大き過ぎる為に、必要以上に生物組織を破
砕する問題もあつた。
In addition, conventional horns have a large working part and a contact area that is too large, which causes the problem of crushing biological tissues more than necessary.

《考案が解決しようとする課題》 本考案は、従来の外科手術用具のこのような問
題点を解決することを目的としたもので、ホーン
の発熱により生物組織を炭化させ、あるいはホー
ン自体を劣化させるという問題を解消すると共
に、細かい作業に適した形状の医療用超音波ホー
ンを提供しようとするものである。
《Problems to be solved by the invention》 The purpose of this invention is to solve these problems with conventional surgical tools. The purpose of this invention is to provide a medical ultrasonic horn having a shape suitable for detailed work while also solving the problem of overlapping.

《課題を解決するための手段》 即ち本考案は、超音波振動により生物組織を切
削、分離する外科手術装置の超音波ホーンであつ
て、該ホーンは先端近傍部に刃形状の切削部、及
び内部にイリゲーシヨン液通路を有し、該イリゲ
ーシヨン液通路は、ホーン先端部まで貫通し、も
しくは先端部近傍で止まつていて、前記切削部に
対して5°〜90°の角度を有すると共に、切削部の
根元側及び切削部に位置するそれぞれ1個又は複
数個のイリゲーシヨン噴出孔につながつているこ
とを特徴とする医療用超音波ホーンである。
<<Means for Solving the Problems>> That is, the present invention is an ultrasonic horn for a surgical device that cuts and separates biological tissue by ultrasonic vibration, and the horn has a blade-shaped cutting part near its tip, and It has an irrigation liquid passage inside, which penetrates to the tip of the horn or stops near the tip, has an angle of 5° to 90° with respect to the cutting part, and has an angle of 5° to 90° with respect to the cutting part. This medical ultrasonic horn is connected to one or more irrigation nozzles located at the root side of the section and at the cutting section, respectively.

以下、図面を参照して本考案を詳細に説明す
る。
Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は、本考案の一実施例となる医療用超音
波ホーンと、それを使用する装置の構成を示す図
である。超音波発振器1よりケーブル2を通つ
て、超音波振動源3に共振周波数の高周波電流が
送られ、超音波振動源3は機械的超音波振動をす
る。超音波振動源3としては磁歪型、電歪型のい
ずれも使用することができ、特にボルト締めのラ
ンジユバン型振動子が好ましく、駆動素子の数及
び直径は特に限定されているが、2〜8枚でφ3
〜φ20mmが好ましく、絶縁セラミツク・ワツシヤ
ーを使用した方が、装置全体が心臓付近の手術へ
の適用が可能となり好ましい。
FIG. 1 is a diagram showing the configuration of a medical ultrasonic horn and a device using the same, which is an embodiment of the present invention. A high frequency current at a resonant frequency is sent from the ultrasonic oscillator 1 through the cable 2 to the ultrasonic vibration source 3, and the ultrasonic vibration source 3 causes mechanical ultrasonic vibration. As the ultrasonic vibration source 3, either a magnetostrictive type or an electrostrictive type can be used, and a bolted Languevin type vibrator is particularly preferable, and the number and diameter of drive elements are particularly limited, but 2 to 8 φ3 piece
~φ20 mm is preferable, and it is preferable to use an insulating ceramic washer because the entire device can be applied to surgery near the heart.

超音波振動源3で発生した機械的超音波振動は
超音波ホーン4に伝播され、更に超音波ホーン4
の曲線形状部5によつて拡大されて超音波ホーン
4の先端近傍部6に伝播される。
The mechanical ultrasonic vibrations generated by the ultrasonic vibration source 3 are propagated to the ultrasonic horn 4, and further transmitted to the ultrasonic horn 4.
is expanded by the curved portion 5 and propagated to a portion 6 near the tip of the ultrasonic horn 4.

先端近傍部6は、第2図に示すように長軸18
の方向に平行な刃形状の切削部7と、切削部の振
動方向に対して45°〜90°の角度を有した円弧をな
す刃形状の切削部8とを有し、更に、切削部7に
は複数個の溝状の窪み10があり、切削部7,8
は生物組織と直接接触し、機械的超音波振動によ
つて生物組織を切断分離する。
The near-tip portion 6 has a long axis 18 as shown in FIG.
It has a cutting part 7 with a blade shape parallel to the direction of , and a cutting part 8 with a blade shape forming an arc having an angle of 45° to 90° with respect to the vibration direction of the cutting part. has a plurality of groove-shaped depressions 10, and the cutting parts 7, 8
comes into direct contact with biological tissue and cuts and separates the biological tissue using mechanical ultrasonic vibrations.

切削部7,8によつて切断分離する際は、フツ
トスイツチ12等のスイツチによつて、超音波発
振器1の起動と連動してローラーポンプ13が作
動し、生理食塩液14がイリゲーシヨンチユーブ
15及びイリゲーシヨン液通路16,17を通
り、第2図に示すように切削部7,8のイリゲー
シヨン噴出孔9,11より噴出され、切削部7,
8と生物組織、特に硬組織との間に霧状となつて
確実に侵入し、切削、切断時の超音波振動による
摩擦熱の発生を防ぎ、切断部付近の硬組織の温度
は、イリゲーシヨン液温が10〜25℃の時15〜30℃
程度に保たれる。更に、切削部7,8の超音波振
動により削り取られた硬組織の微細な粒子を切削
部より洗い流し、常に新しい硬組織表面を露出さ
せ、切断部の表面を平滑にすると共に、骨芽細胞
等に刺激を与えるので切断部の回復に好影響を与
える。
When cutting and separating by the cutting parts 7 and 8, the roller pump 13 is operated in conjunction with the activation of the ultrasonic oscillator 1 by a switch such as the foot switch 12, and the saline solution 14 is pumped into the irrigation tube 15. The liquid passes through the irrigation liquid passages 16 and 17 and is ejected from the irrigation jetting holes 9 and 11 of the cutting parts 7 and 8 as shown in FIG.
8 and biological tissues, especially hard tissues, in the form of a mist, which prevents the generation of frictional heat due to ultrasonic vibrations during cutting and cutting, and reduces the temperature of the hard tissues near the cut area. 15-30℃ when the temperature is 10-25℃
It is maintained at a certain level. Furthermore, the ultrasonic vibrations of the cutting parts 7 and 8 wash away the fine particles of the hard tissue removed from the cutting part, constantly exposing new hard tissue surfaces, smoothing the surface of the cutting part, and removing osteoblasts, etc. This has a positive effect on the recovery of the amputated area because it stimulates the body.

生理食塩液の量は、切断対象となる硬組織の硬
さ及び切削部7,8の超音波振動の振幅との関係
によつて決まるが、切削部7,8、超音波振動源
3の冷却も考慮して10〜50ml/minが好ましい。
噴出孔9の角度は5°〜90°が好ましく、この角度
によつて確実に切断部を冷却できる。またイリゲ
ーシヨン液通路17の内径に比して、イリゲーシ
ヨン噴出孔9,11,23の内径が同じかもしく
は小さい方が、冷却用の生理食塩液の噴出効率が
良くなるが、液噴出による術野の妨害がある場合
はイリゲーシヨン噴出孔11は省いてもよい。
The amount of physiological saline is determined by the relationship between the hardness of the hard tissue to be cut and the amplitude of the ultrasonic vibration of the cutting parts 7 and 8, but it is necessary to cool the cutting parts 7 and 8 and the ultrasonic vibration source 3. In consideration of this, the rate is preferably 10 to 50 ml/min.
The angle of the ejection hole 9 is preferably 5° to 90°, and this angle allows the cutting portion to be reliably cooled. Furthermore, if the inner diameter of the irrigation outlet holes 9, 11, and 23 is the same or smaller than the inner diameter of the irrigation fluid passage 17, the efficiency of squirting the physiological saline solution for cooling will be better. In case of interference, the irrigation nozzle 11 may be omitted.

また、溝状の窪み10は、側面から見た形状が
円弧形状、逆台形、長方形など種々の形状をとる
ことができ特に限定はされないが、角隅部のない
円弧形状等が好ましい。その場合、円弧寸法は切
削部7の厚み及び形状によつても異なるが、半径
0.3〜2.5mmの円弧で、窪み10の深さは0.1〜2
mm、好ましくは0.5〜1.5mmであり、窪み10のピ
ツチは1.5〜7mm、好ましくは2〜3mmである。
この円弧形状を有していることにより、100〜
300μm程度の高振幅においても破損することな
く、かつ切削部7が硬組織内に埋伏した場合で
も、硬組織と切削部7の接触抵抗が窪み10によ
つて軽減され、切断効率が窪みのない形状に比べ
て20〜30%向上できる。
Further, the groove-shaped recess 10 can have various shapes when viewed from the side, such as a circular arc shape, an inverted trapezoid, and a rectangle, and is not particularly limited, but a circular arc shape with no corners is preferable. In that case, the arc size varies depending on the thickness and shape of the cutting part 7, but the radius
The depth of the depression 10 is 0.1 to 2 with an arc of 0.3 to 2.5 mm.
mm, preferably 0.5 to 1.5 mm, and the pitch of the depressions 10 is 1.5 to 7 mm, preferably 2 to 3 mm.
By having this arc shape, 100 ~
There is no damage even at high amplitudes of about 300 μm, and even if the cutting part 7 is impacted in hard tissue, the contact resistance between the hard tissue and the cutting part 7 is reduced by the depressions 10, and the cutting efficiency is improved without making depressions. It can be improved by 20-30% compared to the shape.

また、硬組織を切断分離する際、切削部7,8
の刃形状が、軽く接触されているだけ機械的超音
波振動によつて硬組織表面より内部へ侵入するた
め、術者に対して操作を妨害するようなびびり振
動を与えることがなく、精密な作業が可能とな
る。更に硬組織内の骨膜等の弾性組織に対して
は、超音波振動の特性より、切削部7,8が接触
した程度では傷つけることがなく、安全に切削、
切断ができる。尚、硬組織の硬さ、厚み、切断時
間、硬組織内の軟部組織に対する安全性等の観点
からは、硬組織内に最初に侵入する切削部8は、
ホーン先端の振動方向に対して45°〜90°、好まし
くは60°〜90°の角度をなし、直線または円弧形状
を選択することができるが、望ましくは、半円弧
形とするのが良い。切削部7,8の刃形状の厚み
は0.1〜7mmで、特に0.2〜1.5mmが好ましい。
In addition, when cutting and separating hard tissue, the cutting parts 7 and 8
The blade shape penetrates into the inside of the hard tissue surface through mechanical ultrasonic vibrations when it is lightly touched, so it does not give the operator chatter vibrations that would interfere with the operation, allowing precise precision. Work becomes possible. Furthermore, due to the characteristics of ultrasonic vibration, elastic tissues such as periosteum within hard tissues will not be damaged by the contact of the cutting parts 7 and 8, and thus can be safely cut.
Can be cut. In addition, from the viewpoints of hardness, thickness, cutting time, safety for soft tissue within the hard tissue, etc., the cutting part 8 that first penetrates into the hard tissue is
It forms an angle of 45° to 90°, preferably 60° to 90°, with respect to the vibration direction of the tip of the horn, and can have a straight or circular arc shape, but preferably a semicircular arc shape. . The thickness of the blade shape of the cutting parts 7 and 8 is 0.1 to 7 mm, particularly preferably 0.2 to 1.5 mm.

曲線形状部5の曲線は、円弧形状、カテノイダ
ル曲線、エクスポネンシヤル曲線、テーパー形
状、フーリエ曲線等が好ましいが、特に限定はさ
れない。また、曲線形状部5の超音波振動源3側
の端部は、超音波振動の節または、節に近い位置
にあるのが好ましいが、特に限定はされない。
The curve of the curved portion 5 is preferably a circular arc shape, a catenoidal curve, an exponential curve, a tapered shape, a Fourier curve, etc., but is not particularly limited. Further, the end of the curved portion 5 on the side of the ultrasonic vibration source 3 is preferably located at a node of ultrasonic vibration or at a position close to the node, but is not particularly limited.

超音波ホーン4の材質は、チタン合金、ステン
レス合金、又はチタン合金とステンレス合金の複
合材が好ましく、切削部7,8にコーテイング等
の処理を施すことは特に限定はされないが、セラ
ミツク(例えば窒化ケイ素、ジルコニア)、窒化
チタン、炭化チタン等のコーテイングや、カニゼ
ン 処理は耐磨耗性に優れて良い。また、ホーン
4の切削部7,8を含む先端近傍部6の表面粗さ
は、切削時の磨耗や欠け等考慮して、0.2〜
12μm、好ましくは1.6〜8μmとするのが良い。
The material of the ultrasonic horn 4 is preferably a titanium alloy, a stainless steel alloy, or a composite material of a titanium alloy and a stainless steel alloy. Although there is no particular limitation on coating or other treatments applied to the cutting parts 7 and 8, ceramics (for example, nitrided Coatings such as silicon (silicone, zirconia), titanium nitride, titanium carbide, etc., and Kanigen treatment have excellent wear resistance. In addition, the surface roughness of the portion 6 near the tip of the horn 4 including the cutting portions 7 and 8 is 0.2~
The thickness is preferably 12 μm, preferably 1.6 to 8 μm.

次に第3図は、超音波ホーン4の先端近傍部6
が角度を有した実施例で、患部が深い位置にあつ
て術野が制限されているばあいの切断作業に好適
であり、先端近傍部6がホーン4の長軸18に対
してなす角度は0〜90°で、好ましくは10°〜30°で
ある。なお、切削部7,8は、長軸18と同一平
面内にあれば曲げる方向は限定されない。
Next, FIG. 3 shows a portion 6 near the tip of the ultrasonic horn 4.
This embodiment has an angle, and is suitable for cutting operations when the affected area is deep and the surgical field is limited. ~90°, preferably 10° to 30°. Note that the direction in which the cutting parts 7 and 8 are bent is not limited as long as they are in the same plane as the long axis 18.

第4図は、先端近傍部6を超音波ホーン4より
ネジ19,20で着脱できるように構成した一実
施例を示している。ネジ径は超音波振動及び接合
位置によつて左右されるが、好ましくは三角ネジ
でM3〜M6、ピツチ0.8〜1mmが良い。なお、ネ
ジ20の曲線形状部5側でホーン4を屈曲させた
り、第4図cのように切削部7付近に屈曲点22
を設けたりしても良く、切削部7,8と長軸18
が同一平面内にあれば良い。
FIG. 4 shows an embodiment in which the portion 6 near the tip can be attached to and detached from the ultrasonic horn 4 using screws 19 and 20. The diameter of the screw depends on the ultrasonic vibration and the joining position, but it is preferably a triangular screw with a diameter of M3 to M6 and a pitch of 0.8 to 1 mm. Note that the horn 4 may be bent on the side of the curved portion 5 of the screw 20, or a bending point 22 may be formed near the cutting portion 7 as shown in FIG. 4c.
The cutting parts 7, 8 and the long axis 18 may be provided.
It is good if they are in the same plane.

また、第2図〜第4図に示した各実施例では、
切削部7が超音波ホーン4の先端近傍部6の片側
のみに位置していたが、特に限定されるものでは
なく、両側もしくは、複数の振動方向に平行な刃
形状の切削部があつても良く、本考案の範疇に含
まれる。
Furthermore, in each of the embodiments shown in FIGS. 2 to 4,
Although the cutting part 7 is located only on one side of the tip vicinity part 6 of the ultrasonic horn 4, this is not particularly limited, and there may be a cutting part on both sides or in the shape of a blade parallel to a plurality of vibration directions. It is well within the scope of the present invention.

《考案の効果》 本考案に従うと、生物組織、特に骨の切断、カ
ルシウム塊等の付着物の分離等の作業を、従来の
外科手術用具に比べて技術の熟練を必要とせず、
かつ迅速に切断、分離ができ、また、切断面周辺
の細胞組織の摩擦熱による変質を防いで術後の治
療の促進を図り、更に術者が安全にかつ視野を妨
害されることなく精密な切断作業ができ、刃形状
部の応力集中分散形状による高振幅化、及び切断
効率の向上が実現でき、かつ長時間連続して高振
幅で使用でき、生物組織を切削、切断、分離する
外科手術装置の超音波ホーンとして好適である。
《Effects of the invention》 According to the invention, operations such as cutting biological tissues, especially bones, and separating deposits such as calcium lumps can be performed without requiring much technical skill compared to conventional surgical tools.
It also enables quick cutting and separation, prevents deterioration of tissue around the cut surface due to frictional heat, facilitates post-operative treatment, and allows the surgeon to perform precise cutting safely and without obstructing the field of view. A surgical procedure that cuts, cuts, and separates biological tissue by allowing cutting work, achieving high amplitude due to the stress concentration and dispersion shape of the blade shape, and improving cutting efficiency, and which can be used continuously at high amplitude for a long period of time. Suitable as an ultrasonic horn for the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例となる医療用超音波
ホーンとそれを使用する装置の構成を示す図であ
る。第2図は本考案による超音波ホーンの切削部
の一実施例を示す拡大立体図である。第3図及び
第4図は本考案による超音波ホーンの他の実施例
で、第3図は先端近傍部が屈曲した例、第4図は
先端近傍部を着脱型とした実施例を示した図であ
る。
FIG. 1 is a diagram showing the configuration of a medical ultrasonic horn and a device using the same, which is an embodiment of the present invention. FIG. 2 is an enlarged three-dimensional view showing an embodiment of the cutting part of the ultrasonic horn according to the present invention. Figures 3 and 4 show other embodiments of the ultrasonic horn according to the present invention; Figure 3 shows an example in which the portion near the tip is bent, and Figure 4 shows an example in which the portion near the tip is detachable. It is a diagram.

Claims (1)

【実用新案登録請求の範囲】 (1) 超音波振動により生物組織を切削、分離する
外科手術装置の超音波ホーンであつて、該ホー
ンは先端近傍部に刃形状の切削部、及び内部に
イリゲーシヨン液通路を有し、該イリゲーシヨ
ン液通路はホーン先端部まで貫通し、もしくは
先端部近傍で止まつていて、前記切削部に対し
て5°〜90°の角度を有すると共に、切削部の根
元側及び切削部に位置するそれぞれ1個または
複数個のイリゲーシヨン噴出孔につながつてい
ることを特徴とする医療用超音波ホーン。 (2) 刃形状の切削部に1個または複数個の溝状の
窪みを有することを特徴とする、請求項(1)記載
の医療用超音波ホーン。 (3) 請求項(1)もしくは請求項(2)記載の超音波ホー
ンの先端近傍部が、該ホーンの長軸方向に対し
て0〜90°の角度をなすように屈曲しているこ
とを特徴とする医療用超音波ホーン。 (4) 請求項(1),(2)もしくは請求項(3)のいずれかに
記載の超音波ホーンの先端近傍部の切削部が、
該ホーン先端の振動方向に平行な刃形状と、振
動方向に対して45°〜90°の角度を有する直線も
しくは円弧の刃形状とから構成されることを特
徴とする医療用超音波ホーン。
[Claims for Utility Model Registration] (1) An ultrasonic horn for a surgical device that cuts and separates biological tissue by ultrasonic vibration, the horn having a blade-shaped cutting part near its tip and an irrigation section inside. The irrigation liquid passage penetrates to the tip of the horn or stops near the tip, and has an angle of 5° to 90° with respect to the cutting part, and the irrigation liquid passage is on the root side of the cutting part. and a medical ultrasonic horn, each of which is connected to one or more irrigation nozzles located in the cutting section. (2) The medical ultrasonic horn according to claim (1), characterized in that the blade-shaped cutting portion has one or more groove-like depressions. (3) The vicinity of the tip of the ultrasonic horn according to claim (1) or claim (2) is bent at an angle of 0 to 90° with respect to the long axis direction of the horn. Features of the medical ultrasonic horn. (4) The cutting portion near the tip of the ultrasonic horn according to claim (1), (2) or claim (3) is
A medical ultrasonic horn comprising a blade shape parallel to the vibration direction at the tip of the horn, and a straight or arcuate blade shape having an angle of 45° to 90° with respect to the vibration direction.
JP6495290U 1990-05-11 1990-06-21 Expired - Lifetime JPH0546429Y2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP6495290U JPH0546429Y2 (en) 1990-06-21 1990-06-21
AU76397/91A AU630294B2 (en) 1990-05-11 1991-05-07 Surgical ultrasonic horn
CA002042006A CA2042006C (en) 1990-05-11 1991-05-07 Surgical ultrasonic horn
EP91304121A EP0456470B1 (en) 1990-05-11 1991-05-08 Surgical ultrasonic horn
DE69115981T DE69115981T2 (en) 1990-05-11 1991-05-08 Surgical ultrasound horn
US07/698,229 US5188102A (en) 1990-05-11 1991-05-10 Surgical ultrasonic horn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6495290U JPH0546429Y2 (en) 1990-06-21 1990-06-21

Publications (2)

Publication Number Publication Date
JPH0425707U JPH0425707U (en) 1992-02-28
JPH0546429Y2 true JPH0546429Y2 (en) 1993-12-06

Family

ID=31596347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6495290U Expired - Lifetime JPH0546429Y2 (en) 1990-05-11 1990-06-21

Country Status (1)

Country Link
JP (1) JPH0546429Y2 (en)

Families Citing this family (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11229472B2 (en) 2001-06-12 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with multiple magnetic position sensors
US8182501B2 (en) 2004-02-27 2012-05-22 Ethicon Endo-Surgery, Inc. Ultrasonic surgical shears and method for sealing a blood vessel using same
EP3162309B1 (en) 2004-10-08 2022-10-26 Ethicon LLC Ultrasonic surgical instrument
US20070191713A1 (en) 2005-10-14 2007-08-16 Eichmann Stephen E Ultrasonic device for cutting and coagulating
US7621930B2 (en) 2006-01-20 2009-11-24 Ethicon Endo-Surgery, Inc. Ultrasound medical instrument having a medical ultrasonic blade
US8911460B2 (en) 2007-03-22 2014-12-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8142461B2 (en) 2007-03-22 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical instruments
US8057498B2 (en) 2007-11-30 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US8226675B2 (en) 2007-03-22 2012-07-24 Ethicon Endo-Surgery, Inc. Surgical instruments
US20080234709A1 (en) * 2007-03-22 2008-09-25 Houser Kevin L Ultrasonic surgical instrument and cartilage and bone shaping blades therefor
US8882791B2 (en) 2007-07-27 2014-11-11 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8523889B2 (en) 2007-07-27 2013-09-03 Ethicon Endo-Surgery, Inc. Ultrasonic end effectors with increased active length
US8808319B2 (en) 2007-07-27 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical instruments
US8430898B2 (en) 2007-07-31 2013-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8512365B2 (en) 2007-07-31 2013-08-20 Ethicon Endo-Surgery, Inc. Surgical instruments
US9044261B2 (en) 2007-07-31 2015-06-02 Ethicon Endo-Surgery, Inc. Temperature controlled ultrasonic surgical instruments
EP2796102B1 (en) 2007-10-05 2018-03-14 Ethicon LLC Ergonomic surgical instruments
US10010339B2 (en) 2007-11-30 2018-07-03 Ethicon Llc Ultrasonic surgical blades
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US8319400B2 (en) 2009-06-24 2012-11-27 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8663220B2 (en) 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US9017326B2 (en) 2009-07-15 2015-04-28 Ethicon Endo-Surgery, Inc. Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments
US9050093B2 (en) 2009-10-09 2015-06-09 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
USRE47996E1 (en) 2009-10-09 2020-05-19 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US9168054B2 (en) 2009-10-09 2015-10-27 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
US8961547B2 (en) 2010-02-11 2015-02-24 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with moving cutting implement
US8579928B2 (en) 2010-02-11 2013-11-12 Ethicon Endo-Surgery, Inc. Outer sheath and blade arrangements for ultrasonic surgical instruments
US8951272B2 (en) 2010-02-11 2015-02-10 Ethicon Endo-Surgery, Inc. Seal arrangements for ultrasonically powered surgical instruments
US8486096B2 (en) 2010-02-11 2013-07-16 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
GB2480498A (en) 2010-05-21 2011-11-23 Ethicon Endo Surgery Inc Medical device comprising RF circuitry
US8795327B2 (en) 2010-07-22 2014-08-05 Ethicon Endo-Surgery, Inc. Electrosurgical instrument with separate closure and cutting members
US9192431B2 (en) 2010-07-23 2015-11-24 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US9259265B2 (en) 2011-07-22 2016-02-16 Ethicon Endo-Surgery, Llc Surgical instruments for tensioning tissue
JP6165780B2 (en) 2012-02-10 2017-07-19 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Robot-controlled surgical instrument
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US9237921B2 (en) 2012-04-09 2016-01-19 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9724118B2 (en) 2012-04-09 2017-08-08 Ethicon Endo-Surgery, Llc Techniques for cutting and coagulating tissue for ultrasonic surgical instruments
US9241731B2 (en) 2012-04-09 2016-01-26 Ethicon Endo-Surgery, Inc. Rotatable electrical connection for ultrasonic surgical instruments
US9226766B2 (en) 2012-04-09 2016-01-05 Ethicon Endo-Surgery, Inc. Serial communication protocol for medical device
US20140005705A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical instruments with articulating shafts
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US20140005702A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned transducers
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9492224B2 (en) 2012-09-28 2016-11-15 EthiconEndo-Surgery, LLC Multi-function bi-polar forceps
US10201365B2 (en) 2012-10-22 2019-02-12 Ethicon Llc Surgeon feedback sensing and display methods
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US20140135804A1 (en) 2012-11-15 2014-05-15 Ethicon Endo-Surgery, Inc. Ultrasonic and electrosurgical devices
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
US9241728B2 (en) 2013-03-15 2016-01-26 Ethicon Endo-Surgery, Inc. Surgical instrument with multiple clamping mechanisms
US9814514B2 (en) 2013-09-13 2017-11-14 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US9265926B2 (en) 2013-11-08 2016-02-23 Ethicon Endo-Surgery, Llc Electrosurgical devices
GB2521228A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
GB2521229A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
US9795436B2 (en) 2014-01-07 2017-10-24 Ethicon Llc Harvesting energy from a surgical generator
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US10092310B2 (en) 2014-03-27 2018-10-09 Ethicon Llc Electrosurgical devices
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US9913680B2 (en) 2014-04-15 2018-03-13 Ethicon Llc Software algorithms for electrosurgical instruments
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10245095B2 (en) 2015-02-06 2019-04-02 Ethicon Llc Electrosurgical instrument with rotation and articulation mechanisms
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10034684B2 (en) 2015-06-15 2018-07-31 Ethicon Llc Apparatus and method for dissecting and coagulating tissue
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US11141213B2 (en) 2015-06-30 2021-10-12 Cilag Gmbh International Surgical instrument with user adaptable techniques
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US10154852B2 (en) 2015-07-01 2018-12-18 Ethicon Llc Ultrasonic surgical blade with improved cutting and coagulation features
US11058475B2 (en) 2015-09-30 2021-07-13 Cilag Gmbh International Method and apparatus for selecting operations of a surgical instrument based on user intention
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US10842523B2 (en) 2016-01-15 2020-11-24 Ethicon Llc Modular battery powered handheld surgical instrument and methods therefor
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US10285723B2 (en) 2016-08-09 2019-05-14 Ethicon Llc Ultrasonic surgical blade with improved heel portion
USD847990S1 (en) 2016-08-16 2019-05-07 Ethicon Llc Surgical instrument
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US10828056B2 (en) 2016-08-25 2020-11-10 Ethicon Llc Ultrasonic transducer to waveguide acoustic coupling, connections, and configurations
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
JP7018212B2 (en) * 2018-01-29 2022-02-10 ベイジン エスエムティーピー テクノロジー カンパニー,リミテッド Minimally invasive ultrasonic bone blade head and minimally invasive ultrasonic bone power system
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11786294B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Control program for modular combination energy device
US20210196359A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical instruments with electrodes having energy focusing features
US20210196358A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical instrument with electrodes biasing support
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11950797B2 (en) 2019-12-30 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure

Also Published As

Publication number Publication date
JPH0425707U (en) 1992-02-28

Similar Documents

Publication Publication Date Title
JPH0546429Y2 (en)
US5205817A (en) Surgical instrument
US6443969B1 (en) Ultrasonic cutting blade with cooling
US5935143A (en) Ultrasonic knife
CA1264634A (en) Surgical instrument
CA2602485C (en) Ultrasonic wound debrider probe and method of use
US5674235A (en) Ultrasonic surgical cutting instrument
US20080058775A1 (en) Ultrasonic debrider probe and method of use
US20170209152A1 (en) Surgical saw blade
US20110125174A1 (en) Ultrasound surgical saw
JP2004525719A (en) High performance ultrasonic surgical suction tip
JP2500213B2 (en) Surgical tools
JPH0546428Y2 (en)
CA2389551C (en) Ultrasonic cutting blade with cooling
JP3179960B2 (en) Surgical tools
JPH0529696Y2 (en)
JPH0546427Y2 (en)
JPH0529701Y2 (en)
JPH0529697Y2 (en)
JPH0529700Y2 (en)
JP2508203Y2 (en) Medical ultrasonic horn
WO2009088390A1 (en) Ultrasonic debrider probe
JPH0694Y2 (en) Surgical tools
JPH0529699Y2 (en)
JPH0516860B2 (en)