US20130261221A1 - Elastomer Formulations - Google Patents

Elastomer Formulations Download PDF

Info

Publication number
US20130261221A1
US20130261221A1 US13/992,848 US201113992848A US2013261221A1 US 20130261221 A1 US20130261221 A1 US 20130261221A1 US 201113992848 A US201113992848 A US 201113992848A US 2013261221 A1 US2013261221 A1 US 2013261221A1
Authority
US
United States
Prior art keywords
elastomer
nanotubes
mixture
carbon nanotubes
discrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/992,848
Other languages
English (en)
Inventor
Clive P. Bosnyak
Kurt W. Swogger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Molecular Rebar Design LLC
Original Assignee
Styron Europe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46244132&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20130261221(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from PCT/US2011/041078 external-priority patent/WO2011163129A2/en
Application filed by Styron Europe GmbH filed Critical Styron Europe GmbH
Priority to US13/992,848 priority Critical patent/US20130261221A1/en
Assigned to STYRON EUROPE GMBH reassignment STYRON EUROPE GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BOSNYAK, CLIVE P., SWOGGER, KURT W.
Publication of US20130261221A1 publication Critical patent/US20130261221A1/en
Assigned to MOLECULAR REBAR DESIGN, LLC reassignment MOLECULAR REBAR DESIGN, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STYRON EUROPE GMBH
Assigned to BLACK DIAMOND STRUCTURES, LLC reassignment BLACK DIAMOND STRUCTURES, LLC LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: MOLECULAR REBAR DESIGN, LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • C08L9/08Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/166Preparation in liquid phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6905Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a colloid or an emulsion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6949Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0069Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
    • A61K49/0076Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form dispersion, suspension, e.g. particles in a liquid, colloid, emulsion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/12Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules
    • A61K51/1217Dispersions, suspensions, colloids, emulsions, e.g. perfluorinated emulsion, sols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/12Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules
    • A61K51/1275Fibers, textiles, slabbs, or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C1/00Treatment of rubber latex
    • C08C1/14Coagulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/2053Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the additives only being premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/08Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • C08L21/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/10Latex
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/002Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2307/00Characterised by the use of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/06Copolymers with styrene
    • C08J2309/08Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2321/00Characterised by the use of unspecified rubbers
    • C08J2321/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2407/00Characterised by the use of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2409/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2409/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2409/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2409/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2409/06Copolymers with styrene
    • C08J2409/08Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2491/00Characterised by the use of oils, fats or waxes; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2491/00Characterised by the use of oils, fats or waxes; Derivatives thereof
    • C08J2491/06Waxes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber

Definitions

  • the present invention is directed to novel compositions and methods for producing elastomer composite blends and elastomer materials with discrete carbon nanotubes.
  • Carbon nanotubes can be classified by number of walls in the tube, single-wall, double wall and multiwall. Each wall of a carbon nanotube can be further classified into chiral or non-chiral forms. Carbon nanotubes are currently manufactured as agglomerated nanotube balls or bundles.
  • carbon nanotubes also known as carbon nanotube fibres
  • carbon nanotubes As a reinforcing agent in elastomer composites.
  • utilization of carbon nanotubes in these applications has been hampered by the general inability to reliably produce discrete or individualized carbon nanotubes.
  • performance enhancement of carbon nanotubes as composites in elastomers the carbon nanotubes need to be separated.
  • exfoliated, debundled, disentangled or discrete nanotubes All of these terms intended to describe individual nanotubes, i.e. nanotubes that are separated from other nanotubes.
  • carbon nanotubes may be shortened extensively by aggressive oxidative means and then dispersed as individual nanotubes in dilute solution. These tubes, however, are too short for use as reinforcing materials, especially in high strength composite materials.
  • nanotubes can be used advantageously in elastomeric compositions, if the nanotubes are sufficiently separated.
  • carbon nanotubes are sufficiently separated for use in elastomeric compositions, if at least 70% of all nanotubes in the composition have an aspect ratio of more than 10. Such nanotubes are considered discrete nanotubes in the sense of the present invention.
  • the present invention relates to compositions comprising a liquid phase and dispersed discrete nanotubes. Lattices obtained by mixing such compositions with elastomers are also considered in the present invention.
  • the present invention relates to mixtures comprising elastomers and discrete nanotubes and in a third aspect, the present invention relates to cured elastomers containing discrete nanotubes.
  • the present invention relates to compositions comprising a plurality of discrete carbon nanotubes having an aspect ratio of at least 10, preferably at least 40.
  • the aspect ratio is preferably between 10 to 500, such as 25 to 500 or 40 to 500. Most preferred is an aspect ratio of 60 to 200.
  • Discrete nanotubes in the embodiments according to the present invention amount to at least 70% of all nanotubes.
  • the discrete nanotubes amount to at least 80 or even 90 most preferably 95% or 99% or more.
  • These percentages can be determined by centrifugation or microscopy. If determined by centrifugation, it is convenient to use the weight fraction, i.e. percent based on weight of all nanotubes. In case of using centrifugation it may be more convenient to use the volume fraction, i.e. volume percent passed on volume of all nanotubes. However, as the volume fraction and the weight fraction is the same, either basis can be used, while the result is the same.
  • the aspect ratio as used in the present invention is the ratio of the length to the diameter of a nanotube or in case nanotubes are agglomerated, the aspect ratio is the ratio of the length to the diameter of the entire agglomerate.
  • the aspect ratio is determined as the average length divided by the average diameter.
  • the average is the arithmetic average.
  • the maximum aspect ratio for a given tube length is reached when each tube is fully separated from another.
  • a bundle of carbon nanotubes has an effective aspect ratio in composites of the average length of the bundle divided by the bundle diameter.
  • One suitable method to measure the diameters of the separated and agglomerated carbon nanotubes is scanning electron microscopy (SEM).
  • SEM scanning electron microscopy
  • the carbon nanotubes are deposited on a carbon tape and an image is taken at a suitable magnification such as 100,000 to 200,000 ⁇ .
  • An example for such a micrograph is shown in FIG. 1 .
  • Cords are constructed across the entire micrograph and the tube diameters are measured from those tubes intercepting the cords. At least 20 determinations are made.
  • a histogram can be constructed showing the diameter of the nanotubes on the x-axis and the number of nanotubes with the respective diameter on the y-axis.
  • An example of such a histogram is shown in FIG. 2 .
  • the average diameter was calculated as 13.9 nm with a standard deviation of 3.5 nm.
  • the lengths of the tubes can also be measured using SEM.
  • a dilute solution (1 ⁇ 10 ⁇ 6 g/ml) of carbon nanotubes is made in water containing a surfactant (e.g. dodecylbenzene sulfonic acid or a salt thereof).
  • a drop of the dilute solution is placed on a carbon tape and dried.
  • An image is taken under the conditions set forth above.
  • the lengths are then measured for a sufficient number of nanotubes so as to obtain a measurement representative of the average. In practice, 5 to 10, preferably 20 or more measurements are taken. In the example of FIG. 3 , seven complete tubes have been measured.
  • the average length of the measured separated carbon nanotubes in this example is 776 nm with a standard deviation of 300 nm. As a result, the aspect ratio in this case is (776 nm/13.9 nm) 56.
  • the nanotube fibers according to the present invention may be further functionalized.
  • Functionalized carbon nanotubes of the present invention generally refer to the chemical modification of any of the carbon nanotube types described hereinabove. Such modifications can involve the nanotube ends, sidewalls, or both. Chemical modifications may include, but are not limited to covalent bonding, ionic bonding, chemisorption, intercalation, surfactant interactions, polymer wrapping, cutting, solvation, and combinations thereof. In some embodiments, the carbon nanotubes may be functionalized before, during and after being separated.
  • the carbon nanotubes may be single wall, double wall or multi wall carbon nanotubes.
  • the carbon nanotubes may be partially oxidised. Specifically, they may be oxidised to an oxidation level of from about 2.5 weight percent to about 15 weight percent, preferably from about 3 to 15 or more preferably from about 5 weight percent to about 10 weight percent based on the total weight of the discrete nanotubes.
  • the oxidation level is defined as the amount by weight of oxygenated species covalently bound to the carbon nanotube.
  • the degree of oxidation can be determined thermogravimetrically.
  • the thermogravimetric method for the determination of the percent weight of oxygenated species on the carbon nanotube involves taking about 5 mg of the dried oxidized carbon nanotube and heating at 5° C./minute from room temperature to 1000 degrees centigrade in a dry nitrogen atmosphere. The percentage weight loss from 200 to 600 degrees centigrade is taken as the percent weight loss of oxygenated species.
  • the oxygenated species can also be quantified using Fourier transform infra-red spectroscopy, FTIR, particularly in the wavelength range 1730-1680 cm ⁇ 1 .
  • the carbon nanotube can be functionalized with oxidation species comprising of carboxylic acid or derivative carbonyl containing.
  • the derivative carbonyl species can include ketones, further derivative species are quaternary amines, amides, esters, acryl halogens, monovalent metal salts and the like.
  • As-made carbon nanotubes using metal catalysts such as iron, aluminium or cobalt can retain a significant amount of the catalyst associated or entrapped within the carbon nanotube, as much as five weight percent or more. These residual metals can be deleterious in such applications as electronic devices because of enhanced corrosion or can interfere with the vulcanization process in curing elastomer composites. Furthermore, these divalent or multivalent metal ions can associate with carboxylic acid groups on the carbon nanotube and interfere with the discretization of the carbon nanotubes in subsequent dispersion processes.
  • the oxidized nanotubes preferably comprise a residual metal concentration of less than about 10,000 parts per million (ppm) and preferably less than about 1,000 parts per million. The metals can be conveniently determined using energy dispersive X-ray, EDX.
  • the present invention relates to compositions comprising the above described carbon nanotubes and a liquid phase.
  • the liquid phase may be aqueous or organic.
  • concentration ranges of the discrete carbon nanotubes in the liquid phase are from 0.1 to 5% by weight, preferably 0.5 to 3% by weight and most preferably 1 to 2% by weight.
  • composition may further comprise at least one surfactant or dispersing aid.
  • surfactants used for dispersing carbon nanotubes in aqueous solution include, for example, sodium dodecyl sulfate, sodium dodecyl benzene sulfonate, polyethers, especially block polyethers, or cetyltrimethyl ammonium bromide.
  • the above composition comprising carbon nanotubes and a liquid phase can be used for mixing with an elastomer, such as a latex dispersion.
  • an elastomer such as a latex dispersion.
  • the weight ratio of carbon nanotubes to the elastomer is within the range of 0.01:0.99 to 0.3:0.7.
  • the elastomer in the sense of the present invention includes rubber polymers that may be subjected to curing.
  • the elastomer can be a natural or a synthetic elastomer selected from the group consisting of, but not limited to, natural rubbers, polyisobutylene, polybutadiene and styrene-butadiene rubber, butyl rubber, polyisoprene, styrene-isoprene rubbers, ethylene propylenediene rubbers, silicones, polyurethanes, polyester-polyethers, hydrogenated and non-hydrogenated nitrile rubbers, halogen modified elastomers, fluoro-elastomers, and combinations thereof.
  • the composition contains nanotubes as described above that are not entangled as a mass and are uniformly dispersed in the elastomer.
  • elastomers such as polybutadiene, styrene-butadiene rubber and nitrile rubbers
  • an organic solvent capable of dissolving the elastomer so as to form a dispersion of discrete nanotubes in a liquid phase.
  • the liquid phase comprises the organic solvent and the elastomer.
  • concentrations of dispersed carbon nanotubes are preferably in the range 0.1 to 30% by weight of the mixture.
  • Solvents useful for dissolution of the elastomers include hydrocarbons such as cyclohexane and n-heptane, aromatic solvents such as toluene and xylene, and polar solvents including N,N-dimethylformamide and N-methyl-2-pyrrolidone.
  • composition and latex may be obtained by a process comprising the following steps:
  • the carbon nanotube fibers comprise from about 0.1 to about 30, preferably 1 to 30, 10 to 25 or 15 to 20 weight percent of the fiber/elastomer composite of (g).
  • the agitation in step (d) may comprise sonication.
  • carbon nanotube fiber/elastomer composite wherein the carbon nanotube fibers are discrete fibers and comnrise from about 10 to about 20 weight percent fibers and wherein the elastomer comprises a styrene copolymer rubber.
  • Isolation in step (g) may mean coagulation or evaporation of the solvent.
  • the method for obtaining individually dispersed carbon nanotubes in rubbers and/or elastomers comprises the steps of:
  • the carbon nanotubes preferably comprise less than or equal to about 30 percent by weight of the solution, at various desired levels such as 20 or 10 percent and a most preferred level of less than or equal to 2 percent by weight of the solution.
  • the coagulation step in the above methods comprises mixing with acetone.
  • the coagulation step comprises drying the mixture.
  • the coagulation step comprises adding at least one acid to the mixture at a pH less than or equal to about 4.5 together with at least one monovalent inorganic salt.
  • Another aspect of this invention are coagulating methods/agents that enable the carbon nanotube to be non-ordered on the surface of the elastomer latex particle and together are substantially removable from the liquid mixture.
  • a further aspect of this invention is a method to reduce or remove surfactants in the latex/carbon nanotube fiber composite system with organic molecules of high water solubility such as acetone, denatured alcohol, ethyl alcohol, methanol, acetic acid, tetrahydrofuran.
  • Another aspect of this invention is to select coagulating methods that retain surfactant in the latex/carbon nanotube fiber material which includes coagulating methods such as sulfuric acid and inorganic monovalent element salt mixtures, acetic acid and monovalent element salt mixtures, formic acid and inorganic monovalent element salt mixtures, air drying, air spraying, steam stripping and high speed mechanical agitation.
  • coagulating methods such as sulfuric acid and inorganic monovalent element salt mixtures, acetic acid and monovalent element salt mixtures, formic acid and inorganic monovalent element salt mixtures, air drying, air spraying, steam stripping and high speed mechanical agitation.
  • the present invention excludes salts, acetone and/or other organic solvents in the coagulation addition step.
  • the carbon nanotube dispersion and the aqueous elastomer dispersion or dispersions are blended together.
  • the pH of the resulting dispersion blend should be greater than 8 and preferably greater than 10.
  • the pH can be increased as required using bases such as sodium or ammonium hydroxide, most preferably sodium hydroxide.
  • a flocculent such as casein, polyamide, polyacrylamide, polyethyleneimine, cation modified starch, dicyanodiamide-formaldehyde condensation product, or, most preferably, cationic polyamine.
  • an acid such as acetic acid, hydrochloric acid, most preferably sulfuric acid whilst agitating.
  • the above steps in the preferred embodiment may be undertaken at room or elevated temperatures, preferably in the range of 60 to 80° C.
  • the advantage of this process is that it is salt free and specifically excludes the acetone/organic solvent step which is more costly on capital than the process described here well as reducing waste scream management to a purely aqueous, low salinity, waste water stream.
  • the embodiment also limits the amount of salt derived ash in the composite.
  • the isolated mixture may have a divalent or multivalent metal ion content of less than about 20,000 parts per million, preferably less than about 10,000 parts per million and most preferably less than about 1,000 parts per million.
  • the invention also relates to a nanotubes/elastomer composite further comprising of filer or fillers such as carbon black and/or silica.
  • the molded film comprising the composition may have a tensile modulus at 5 percent strain of at least about 12 MPa.
  • the composition comprising of carbon black, and wherein a molded film comprising the composition may have a tear property of at least about 0.8 MPa.
  • the invention also relates to a carbon nanotube/elastomer composition comprising a filler, and where in a molded film comprising the composition has a tensile modulus at 5% strain of at least 8 MPa.
  • Yet another aspect of the invention is an individually dispersed carbon nanotube/rubber or carbon nanotube elastomer concentrate comprising free lowing particles or a bale.
  • the concentrate preferably contains a concentration of less than 20,000 parts per million of a divalent or multivalent metal salt.
  • agglomerations of carbon nanotubes should be avoided as much as possible.
  • agglomerates that comprise less than 1 percent by weight of the concentrate and wherein the carbon nanotube agglomerates comprise more than 10 microns in diameter can be tolerated.
  • the elastomer nanotube fiber composition particularly materials may be made from elastomers commonly called either natural or synthetic rubber or rubber compounds (with the addition of filers such as carbon or silica) includes wherein the nanotube surface modifier or surfactant is chemically or physically (or both) bonded to the elastomer and/or the isolated fibers or the filler in the compounds.
  • the nanotube surface modifier or surfactant is chemically or physically (or both) bonded to the elastomer and/or the isolated fibers or the filler in the compounds.
  • oleylamine (1-amino-9-octadecene) can be reacted with carbon nanotubes containing carboxylic groups to give the amide.
  • the vinyl containing polymer can be covalently bonded to the amide functionality of the carbon nanotube.
  • the elastomer/carbon nanotube concentrate may be dispersed first into another elastomer or thermoplastic polymer to a uniform consistency before addition of other additives such as other fi unit and additives, including carbon black, silica, graphene, oils and antioxidants.
  • Antioxidants can be selected from benzimidazole, bisphenol, dihydrocholine, diphenylamine, monophenol, naphthylamine, p-phenylne diamine and derivatives thereof.
  • Typical primary antioxidants are hindered phenolics such as 2,6-di-t-butylhydroxytoluene and hindered aromatic amines such as N,N′-dialkyldiphenylamines.
  • secondary antioxidants are organic phosphites esters such as tris(nonyl-phenol) phosphite and sulfides or thioesters.
  • additives, and possibly others such as plasticizing oils and optionally surfactants can be added to the dispersion of discrete carbon nanotubes and/or latex.
  • plasticizing oils and optionally surfactants can be added to the dispersion of discrete carbon nanotubes and/or latex.
  • these additives can be added to the coagulated elastomer carbon nanotube crumb, for example via spraying or added during melt mixing of the elastomer or elastomers and discrete carbon nanotubes.
  • Another embodiment of this invention is a method of mixing carbon nanotubes and at least one first elastomer so as to obtain a master batch.
  • Said master batch of carbon nanotubes may then be first melt mixed with a further elastomer, which may be either the same or different from the first elastomer, at a temperature from about 20 to about 200° C., subsequently then additional elastomers, fillers, and additives are added and melt mixed further, to produce a composition suitable for vulcanization.
  • a solvent can be added to facilitate mixing which can be removed before, during or after the at least one first elastomer, wherein a master batch of carbon nanotubes is first mixed with the elastomer, or after all ingredients are added and mixed. Normally the mixing time does not exceed one hour and a time in the range from 2 to 30 minutes is usually adequate. The temperature is usually between 20° C. and 200° C.
  • the mixing is suitably carried out in a blending apparatus, e.g. an internal mixer such as a Banbury mixer, or a Haake or Brabender miniature internal mixer.
  • a two roll mill mixer also provides a good dispersion of the carbon-nanotubes as well as of the other optional additives within the elastomer.
  • An extruder also provides good mixing, and permits shorter mixing times. It is possible to carry out the mixing in one or more stages, and the mixing can be done in different apparatus, for example one stage in an internal mixer and one stage in an extruder. However, it should be taken care that no unwanted pre-crosslinking (scorch) occurs during the mixing stage.
  • a mixture of master batches using different rubbers may be added to blends of different rubbers used in the rubber compound such that each rubber has a master batch that is compatible so that the individually dispersed nanotubes are distributed whether uniformly or non-uniformly in each rubber domain. This is sometimes necessary so that blends of rubbers used in the rubber compound will have carbon nanotubes in each rubber component.
  • the invention in another aspect, relates to a formulation in the form of a molded or fabricated article, such as a tire, a gum chafer, a tire sidewall, a tire tread or casing, a hose, a belt, a seal, an automotive anti-vibration part, a windshield wiper blade, and a tank track pad, wheel, bushings or backer plate components.
  • a formulation in the form of a molded or fabricated article such as a tire, a gum chafer, a tire sidewall, a tire tread or casing, a hose, a belt, a seal, an automotive anti-vibration part, a windshield wiper blade, and a tank track pad, wheel, bushings or backer plate components.
  • Preferred embodiments are tires for industrial, commercial, off-road and passenger car applications. They are typically made from rubber (both synthetic and natural) with reinforcing fillers (typically carbon black and silica). The fillers are added to improve the overall mechanical properties. Incorp
  • the reduction in reinforcing fillers as compared to the addition of discrete Nanotubes that may be achieved is greater than 1:1 and is most preferably above 2:1.
  • the amount of reinforcing fillers used in traditional tire treads without discrete nanotubes is typically in the range of 30 to 150 phr, preferably between 50 and 90 phr total filler.
  • the tire has a tread wherein the concentration of discrete nanotubes is in the range of 0.7 vol. % and 30 vol. % and a concentration of reinforcing filler in the range of 0 to 30 vol. %.
  • the separated carbon nanotube fibers of this invention impart significant strength and stiffness to the materials.
  • These new elastomer nanotube filler materials can improve the frictional, adhesive, cohesive, noise and vibration, rolling resistance, tear, wear, fatigue and crack resistance, hysteresis, large strain effects (Mullins effect), small strain effects (Payne effect) and oscillation or frequency properties and swelling resistance to oil of the elastomers and elastomer compounds.
  • This change in properties will be beneficial for applications such as tires or other fabricated rubber or rubber compounded parts. It will also have further benefits in terms of sustainability such as lower emissions in overall tire manufacturing, better fuel economy due to enhanced properties, and less tires in the landfills due to extended tire lifetimes.
  • a carbon nanotube/elastomer composite according to the invention exhibits improved resistance to creep under load and a slower rate of strain recovery after load by at least 10% compared to similar elastomer composites without discrete carbon nanotubes.
  • the invention thus meets the need for improved green strength in profile extrusions of rubber goods such as grooved belts, wiper blades, and improved dimensional tolerances in moulded goods.
  • green strength is the resistance to deformation after exiting the die and before significant crosslinking has occurred to retain the shape.
  • a measure of green strength is the resistance to flow under load, i.e. creep. Creep is determined by applying a constant load to a specimen and measuring the deformation with time. In molded rubber goods, particularly with complex shapes, it is desirable to maintain good dimensional tolerances.
  • the present invention allows improved dimensional tolerances due to less strain recovery upon release of the mold pressure.
  • the compounding and vulcanization may be performed as known to any artisan (see e.g. Encyclopedia of Polymer Science and Engineering, Vol. 4, p. 66 et seq. (Compounding) and Vol. 17, p. 666 et seq. (Vulcanization)). Typically such vulcanization is performed at a temperature in the range of from 100 to 200° C., preferably 130 to 180° C.
  • the preparation of a polymer vulcanizate comprises subjecting the inventive composition to a vulcanization during fabrication and/or form fixing such as injection or extrusion molding.
  • the viscous solution is transferred to a filter with a 5 micron filter mesh and much of the acid mixture removed by filtering using a 100 psi pressure.
  • the filter cake is washed one time with four liters of deionized water followed by one wash of four liters of an ammonium hydroxide solution at pH greater than 9 and then two more washes with four liters of deionized water.
  • the resultant pH of the final wash is 4.5.
  • a small sample of the filter cake is dried in vacuum at 100° C. for four hours and a thermogravimetric analysis taken as described previously.
  • the amount of oxidized species on the fiber is 8 percent weight and the average aspect ratio as determined by scanning electron microscopy is 60.
  • the discrete oxidized carbon nanotubes (CNT) obtained in Example 1 are added in wet form to water to form a concentration by weight of 1 percent and the pH is adjusted to 9 using ammonium hydroxide.
  • Sodium dodecylbenzene sulfonic acid and is added at a concentration 1.25 times the mass of oxidized carbon nanotubes.
  • the solution is sonicated while stirring until the CNT's are fully dispersed in the solution.
  • a ⁇ log 10 (I o /I) wherein A ⁇ is the absorbance at wavelength ⁇ , I o is the intensity of the light before entering the sample and I is the intensity of the light after passing through the sample) for a concentration of 2.5 ⁇ 10 ⁇ 5 g CNT/ml (compared to the same composition without nanotubes)
  • the discrete oxidized carbon nanotubes (CNT) in wet form are added to water to form a concentration by weight of 1 percent and the pH is adjusted to 9 using ammonium hydroxide.
  • Sodium dodecylbenzene sulfonic acid and is added at a concentration 1.25 times the mass of oxidized carbon nanotubes.
  • the solution is sonicated while stirring until the CNT are fully dispersed in the solution.
  • Full dispersion of individual tubes is defined when the UV absorption at 500 mm is above 1.2 absorption units for a concentration of 2.5 ⁇ 10 ⁇ 5 g CNT/ml.
  • Latex SBR LPF 5356 (Goodyear Rubber Company) with a solids SBR concentration of 70.2% (by weight) was added to the CNT solution such that the solids ratio is 10 parts CNT for 90 parts SBR by weight.
  • Latex SBR LPF 5356 Goodyear Rubber Company
  • a solids SBR concentration of 70.2% (by weight) was added to the CNT dispersion of Example 2 such that the solids ratio is 10 parts CNT for 90 parts ESBR by weight.
  • An SBR concentrate is melt mixed with additional SBR (Lanxess VSL-5052-OHM) to give a final CNT concentration of 2 percent weight in a Brabender mixer by the following procedure.
  • the temperature of the barrel is set to 115° C.
  • the SBR and master batch are introduced into the barrel at a speed of 20-30 rpm.
  • the speed is then increased to 50 rpm.
  • Barrel temperature should reach 125° C.
  • the speed is decreased to 5 rpm and the temperature controller is turned off.
  • the speed is increased to 50 rpm.
  • the cure package is added and mixing continues for 5 minutes.
  • the cure package consists of sulfur 3.5 parts per hundred resin, phr, tetrabutylbenzothiozolsulfonamide 0.75 phr, diphenyl-guanidine 0.5 phr, stearic acid 1.5 phr, N-(1,3 Dimethylbutyl) N′-phenyl-p-phenyldiamine 2 phr and zinc oxide 3 phr.
  • a comparative 1 is made as above with the exception that no SBR concentrate is added.
  • the mixture is then cured under the following procedure using a compression molder.
  • the platten temperature is set to 160° C., the curing overall time to 20 minutes and the water cooling time to 5 minutes.
  • a mass of 40.6 g of rubber sample is cut into small 1 ⁇ 4′′ pieces and placed in the center of mold window such that it forms a square, occupying 2 ⁇ 3 of the space.
  • Foil sheets are used between sample and compression plates. Mold release is only used on the mold frame.
  • the sample is compressed with pressure less than 10 psi for 2 minutes. Then, the pressure is increased to 25 tons and kept constant for the remaining curing cycle.
  • the films are tested in tension at 25° C. using a tensile tester with an initial strain rate of 1 ⁇ 10 ⁇ 2 area of the specimen. Strain is defined as the distance traversed by the crosshead of the instrument divided by the initial distance between the grips. The 100% modulus is that value of tensile stress at 100% strain.
  • the films are also tested for work done to completely tear the specimen by introducing a razor edge notch of dimension one half width and perpendicular to the length of the specimen to a tensile specimen.
  • Another aspect of this invention is a preferred method of mixing that results in improved properties wherein the master batch of carbon nanotubes is first melt mixed with another elastomer then additional rubbers, fillers and additives are added and melt mixed further to produce a composition suitable for vulcanization. Following is an example of preferred mixing
  • a comparative example 5 is produced using 3 phr carbon nanotubes of this invention, and carbon black filled rubber system consisting of 3 melt passes.
  • the first pass was to mix the rubber components 60 phr styrene butadiene, SBR Lanxess VSI,-5025-OHM and 40 phr Natural Rubber CB 60 grade, and an SBR-carbon nanotubes master batch containing 10 weight percent carbon nanotubes at about 160° C.
  • the second pass was to mix into the first pass products 50 phr carbon black, type N330, 5 phr processing oil Sundex 8125, 1 phr antioxidant 6 PPD Santoflex, 3 phr zinc oxide and 3 phr stearic acid at about 160° C.
  • the third pass was to mix in the sulfur curing compounds 1.5 phr sulfur and 1.3 phr TBBS at about 110° C. Each pass was performed with a 511 factor of 75% using a Brabender mixer.
  • Example 5 is produced as follows. The improved mixing approach is the same as the control except the first pass is mixing the SBR with the carbon nanotubes master batch for 5 minutes at about 170° C. and followed by adding the natural rubber at about 160° C. and melt mixing for a further 5 minutes.
  • the results of testing the materials after curing for 8 minutes at about 160° C. are provided in Table 2.
  • the tear initiation and total tear energy are determined from tear specimen ASTM D624-C.
  • the above table 2 shows that the example of the invention (pre-diluted master batch with specific mixing) obtains improved tensile stress at break at over 1.7 MPa, improved tear initiation energy at over 0.7 MPa and including improved total tear energy at over 0.8 MPa versus the comparative example comprising different mixing techniques, proving the utility and inventiveness of the compositions of the invention.
  • One benefit of the present invention is an improved green strength for profile extrusion of rubber goods. This can be illustrated as follows:
  • a styrene-butadiene rubber (Lanxess 5025) was mixed with a master batch of latex emulsion SBR (Styron 1500) and 15% wt oxidized carbon nanotubes in a Haake Lab mixer at 150 C for 10 minutes to give a composition containing 3 phr carbon nanotube (example A).
  • a disc was made by compression molding at 110° C. of dimensions 4 mm thick and diameter 1.25 cm. Using a DMA Q 800 a load of 0.05 MPa was placed on the disc at 28° C. and the strain in compression determined as a function of time for 10 minutes. The specimen was then unloaded and the strain recovery recorded for a further 20 minutes.
  • table 1 is recorded the applied stress for 10 minutes, the peak strain recorded at the end of 10 minutes and the percentage of strain recovered on unloading and after 20 minutes.
  • a high carbon nanotube master batch was used to make a carbon black-filled passenger tread formulation based on SSBR.
  • the composition is set forth in Table 4:
  • the components were compounded in a 1.2-1 Banbury lab mixer (Farrel F270) whereby the temperature in the first pass was 65° C. and in the final pass 50° C. After the final pass, the test pieces are formed and cured.
  • HCF-ESBR masterbatch was used for making an off-road truck tread (OTR) formulation.
  • OTR off-road truck tread
  • the following components were compounded in a 1.2-1 Banbury lab mixer (Farrel F270):
  • a truck tire tread was made from the following components:
  • a composition comprising a plurality of discrete carbon nanotube fibers having an aspect ratio of from about 25 to about 500, and at least one natural or synthetic elastomer, and optionally at least one filler.
  • the composition of embodiment 1 wherein at least 70 percent, preferably at least 80 percent, by weight of the nanotube fibers are fully exfoliated.
  • the composition of embodiments 1 or 2 wherein the nanotube fibers are further functionalized.
  • the composition of embodiments 1 to 3 wherein the carbon nanotube fibers comprise an oxidation level from about 3 weight percent to about 15 weight percent.
  • the composition of embodiments 1 to 4 wherein the carbon nanotube fibers comprise from about 1 weight percent to about 30 weight percent of the composition. 6.
  • the composition of embodiments 1 to 5 in the form of free flowing particles. 7.
  • composition of embodiments 1 to 6 further comprising at least one surfactant or dispersing aid.
  • the natural or synthetic elastomer is selected from the group consisting of natural rubbers, polyisobutylene, polybutadiene and styrene-butadiene, butyl rubber, polyisoprene, ethylene propylene diene rubbers and hydrogenated and non-hydrogenated nitrile rubbers, polyurethanes, polyethers, silicones, halogen modified elastomers, especially chloroprene and fluoroelastomers and combinations thereof.
  • a process to form a carbon nanotube fiber/elastomer composite comprising the steps of: (a) selecting discrete carbon nanotube fibers having an aspect ratio of from 25 to 500, (b) blending the fibers with a liquid to form a liquid/fiber mixture, (c) optionally adjusting the pH to a desired level, (d) agitating the mixture to a degree sufficient to disperse the fibers to form a dispersed fiber mixture, (e) optionally combining the dispersed fiber mixture with at least one surfactant, (f) combining the dispersed fiber mixture with at least one elastomer at a temperature sufficient to incorporate the dispersed fiber mixture to form a carbon nanotube fiber/elastomer composite/liquid mixture, (g) isolating the resulting carbon nanotube fiber/elastomer composite from the liquid.
  • elastomer is selected from the group consisting of natural rubbers, polyisobutylene, polybutadiene and styrene-butadiene rubber, ethylene propylene diene rubbers, butyl rubber, polyisoprene and hydrogenated and non-hydrogenated nitrile rubbers, polyurethanes, polyethers, halogen containing elastomers and fluoroelastomers and combinations thereof 15.
  • the composition of embodiments 1 to 9 further comprising sufficient natural or synthetic elastomer to form a formulation comprising from about 0.1 to about 25 weight percent carbon nanotube fibers. 16.
  • composition of embodiments 1 to 9 and 15 in the form of a molded or fabricated article, such as a tire, a hose, a belt, a seal, a wiper blade, an anti-vibration part, and a tank track. 17.
  • the composition of embodiments 1 to 9 and 15 to 16 further comprising carbon black and/or silica and wherein a molded film comprising the composition has a tensile modulus at 5% strain and 25 degrees C. of at least about 12 MPa.
  • the composition of embodiments 1 to 9 and 15 to 17 further comprising carbon black and/or silica, and wherein a molded film comprising the composition has a tear property at 25 degrees C. of at least about 0.8 MPa. 19.
  • composition of embodiments 1 to 9 and 15 to 18 further comprising filer, and wherein a moulded Elm comprising the composition has a tensile modulus at 5% strain and 25 degrees C. of at least about 8 MPa.
  • a carbon nanotube fiber/elastomer composite wherein the carbon nanotube fibers are discrete ibers and comprise from about 10 to about 20 weight percent fibers and wherein the elastomer comprises a styrene copolymer rubber.
  • a method for obtaining individually dispersed carbon nanotubes in rubbers and/or elastomers comprising (a) forming a solution of exfoliated carbon nanotubes at pH greater than or equal to about 7, (b) adding the solution to a rubber or elastomer latex to form a mixture at pH greater than or equal to about 7, (c) coagulating the mixture to form a concentrate, (d) optionally incorporating other fillers into the concentrate, and (e) melt-mixing said concentrate into rubbers and/or elastomers to form elastomeric composites. 22. The method of embodiment 21 wherein the carbon nanotubes comprise less than or equal to about 2% wt of the solution. 23.
  • the coagulation step (c) comprises mixing with organic molecules of high water solubility such as acetone, denatured alcohol, ethyl alcohol, methanol, acetic acid, tetrahydrofuran that partially or wholly removes surfactants form the latex/carbon nanotube fiber concentrate.
  • organic molecules of high water solubility such as acetone, denatured alcohol, ethyl alcohol, methanol, acetic acid, tetrahydrofuran that partially or wholly removes surfactants form the latex/carbon nanotube fiber concentrate.
  • the coagulation step (c) comprises drying, steam stripping or mechanical agitation of the mixture to fully retain surfactants from the latex/carbon nanotube fiber concentrate.
  • the coagulation step (c) comprises adding a polymeric coagulating agent, preferably polyethylene oxide.
  • the coagulation step (c) comprises adding at least one acid to the mixture at pH less than or equal to about 4.5 together with at least one monovalent inorganic salt to retain surfactants from the latex/carbon nanotube fiber concentrate.
  • the mixture or concentrate has a divalent or multivalent metal ion content of less than about 20,000 parts per million.
  • the mixture or concentrate has a divalent or multivalent metal ion content of less than about 10,000 parts per million.
  • a composite comprising the concentrate of embodiments 31 or 32.
  • 34. A method of dispersing the individually dispersed carbon nanotube/rubber or carbon nanotube/elastomer concentrate into an elastomer by first melt mixing the elastomer and concentrate to a uniform consistency before addition of other fillers and oils.
  • 35. The composition of embodiment 5 comprising a mixture of natural and synthetic elastomers such that each elastomer is compatible with at least one of the elastomers such that the nanotubes are individually dispersed in the mixture of elastomer(s).
  • 36. The composition of embodiment 35 wherein at least one of the elastomers does not comprise nanotubes. 37.
  • a composition comprising one first elastomer and nanotubes, another different second elastomer and nanotubes, and yet another third elastomer which does not comprise nanotubes. 38.
  • a process to increase cure rate of a composition comprising at least one natural or synthetic elastomer and carbon nanotubes, comprising selecting discrete carbon nanotubes to form the cured composition, wherein the cured composition has at least a 25 percent curing rate increase over the curing rate obtained for a cured elastomer not comprising carbon nanotubes.
  • composition of (A) elastomers, fillers and discrete carbon nanotubes wherein to maintain or increase stiffness or hardness as compared to (B) a composition not containing discrete carbon nanotubes, wherein composition (A) has less filler content than (B).
  • composition (A) has less filler content than (B).
  • 40. A composition of embodiment 39 wherein 1 ⁇ parts per hundred elastomer discrete carbon nanotube of composition (A) replaces 5 ⁇ parts per hundred elastomer or more of the non-carbon nanotube filler of composition (B), where x is 0.1-15. 17.
  • a method of mixing carbon nanotubes and at least one first elastomer wherein a master batch of carbon nanotubes is first melt mixed with the elastomer, either the same or different from the first elastomer, at a temperature from about 20 to about 200° C. subsequently then additional elastomers, fillers, and additives are added and melt mixed further, to produce a composition suitable for vulcanization.
  • a method of mixing carbon nanotubes and at least one first elastomer wherein a master batch of carbon nanotubes is first mixed with the elastomer, either the same or different from the first elastomer, at a temperature from about 20 to about 200° C. and in the presence of at least one solvent, subsequently and optionally additional elastomers, filers and additives are added and mixed further, followed by solvent removal to produce a composition suitable for vulcanization.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Tires In General (AREA)
US13/992,848 2010-12-14 2011-12-12 Elastomer Formulations Abandoned US20130261221A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/992,848 US20130261221A1 (en) 2010-12-14 2011-12-12 Elastomer Formulations

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US42303310P 2010-12-14 2010-12-14
PCT/US2011/041078 WO2011163129A2 (en) 2010-06-22 2011-06-20 Modified carbon nanotubes, methods for production thereof and products obtained therefrom
USPCT/US2011/041078 2011-06-20
PCT/EP2011/072426 WO2012080159A1 (en) 2010-12-14 2011-12-12 Improved elastomer formulations
US13/992,848 US20130261221A1 (en) 2010-12-14 2011-12-12 Elastomer Formulations

Publications (1)

Publication Number Publication Date
US20130261221A1 true US20130261221A1 (en) 2013-10-03

Family

ID=46244132

Family Applications (6)

Application Number Title Priority Date Filing Date
US13/993,206 Active US9212273B2 (en) 2010-12-14 2011-12-12 Elastomer formulations
US13/992,848 Abandoned US20130261221A1 (en) 2010-12-14 2011-12-12 Elastomer Formulations
US14/924,246 Active US9353240B2 (en) 2010-12-14 2015-10-27 Elastomer formulations comprising discrete carbon nanotube fibers
US15/166,931 Active US9422413B1 (en) 2010-12-14 2016-05-27 Elastomer formulations comprising discrete carbon nanotube fibers
US15/225,215 Active US9493626B1 (en) 2010-12-14 2016-08-01 Dispersions comprising discrete carbon nanotube fibers
US15/288,553 Active US9636649B2 (en) 2010-12-14 2016-10-07 Dispersions comprising discrete carbon nanotube fibers

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/993,206 Active US9212273B2 (en) 2010-12-14 2011-12-12 Elastomer formulations

Family Applications After (4)

Application Number Title Priority Date Filing Date
US14/924,246 Active US9353240B2 (en) 2010-12-14 2015-10-27 Elastomer formulations comprising discrete carbon nanotube fibers
US15/166,931 Active US9422413B1 (en) 2010-12-14 2016-05-27 Elastomer formulations comprising discrete carbon nanotube fibers
US15/225,215 Active US9493626B1 (en) 2010-12-14 2016-08-01 Dispersions comprising discrete carbon nanotube fibers
US15/288,553 Active US9636649B2 (en) 2010-12-14 2016-10-07 Dispersions comprising discrete carbon nanotube fibers

Country Status (9)

Country Link
US (6) US9212273B2 (ja)
EP (3) EP2651819A1 (ja)
JP (4) JP5902193B2 (ja)
KR (3) KR101905210B1 (ja)
CN (4) CN103313935A (ja)
CA (1) CA2834697A1 (ja)
SG (3) SG190926A1 (ja)
TW (3) TWI586733B (ja)
WO (3) WO2012080158A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150151971A1 (en) * 2012-08-23 2015-06-04 Director General, Defence Research & Development Organisation Process for synthesizing hybride bifunctionalized multiwalled carbon nanotubes and applications thereof
US20150361241A1 (en) * 2013-02-08 2015-12-17 University Of Louisville Research Foundation, Inc. Stimuli-responsive polymer composites
US9663640B2 (en) 2013-12-19 2017-05-30 Soucy Techno Inc. Rubber compositions and uses thereof
US9840611B2 (en) 2013-10-18 2017-12-12 Soucy Techno Inc. Rubber compositions and uses thereof
US9879131B2 (en) 2012-08-31 2018-01-30 Soucy Techno Inc. Rubber compositions and uses thereof
US20180065414A1 (en) * 2016-09-02 2018-03-08 Razor Usa Llc Airless tire
US10096428B2 (en) 2011-08-29 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing positive electrode active material for lithium ion battery
US20180362725A1 (en) * 2017-06-14 2018-12-20 Taiwan Carbon Nano Technology Corporation Manufacturing method for elastic composite material
USD882490S1 (en) 2016-09-02 2020-04-28 Razor Usa Llc Airless tire
US10759979B2 (en) 2017-02-22 2020-09-01 Lg Chem, Ltd. Adhesive composition
CN111727123A (zh) * 2018-01-12 2020-09-29 米其林集团总公司 具有解聚碳纳米管的橡胶组合物
CN115850886A (zh) * 2022-11-30 2023-03-28 上海熹贾精密技术有限公司 一种高性能氟橡胶混炼胶及其应用

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA201590308A1 (ru) * 2012-08-02 2015-05-29 Амрил Аг Природный каучук, содержащий наноуглерод
DE102013203194A1 (de) * 2013-02-27 2014-08-28 Robert Bosch Gmbh Dispersionsbeschichtetes Wischgummi
KR101748064B1 (ko) * 2013-03-14 2017-06-15 유발 거슨 회전 성능이 강화된 mems 힌지
WO2014151614A1 (en) * 2013-03-15 2014-09-25 Molecular Rebar Design, Llc Composition comprising discrete carbon nanotubes
DE102013103759A1 (de) * 2013-04-15 2014-10-16 Contitech Mgw Gmbh Kautschukmischung und Schlauch enthaltend die Kautschukmischung
KR20150016852A (ko) * 2013-08-05 2015-02-13 제일모직주식회사 탄소나노튜브 분산액 및 이의 제조방법
CN105473652A (zh) * 2013-08-30 2016-04-06 阿米利尔股份公司 改进的天然橡胶组合物
WO2015059936A1 (ja) * 2013-10-24 2015-04-30 日本ゼオン株式会社 ラテックス組成物およびその製造方法、並びに、複合材料および導電性成形体
WO2015095123A1 (en) * 2013-12-19 2015-06-25 3M Innovative Properties Company Multilayer composite article
CN103660808A (zh) * 2013-12-22 2014-03-26 北京化工大学 耐磨导热轮胎子口护胶结构
GB2530526B (en) * 2014-09-25 2017-02-08 Amril Ag Styrene-butadiene rubber (SBR)-CNT filled masterbatch
CN104558699B (zh) * 2015-01-06 2017-09-22 苏州大学 一种弹性导电胶体、制备方法及其应用
CN104987606A (zh) * 2015-06-12 2015-10-21 安徽绿龙光电科技有限公司 Led灯泡用橡胶密封垫的生产配方
CN105131242A (zh) * 2015-08-21 2015-12-09 安徽天堂唯高塑业科技有限公司 一种不吸汗方向盘保护层护套料及其制备方法
CN105037828A (zh) * 2015-08-28 2015-11-11 苏州国泰科技发展有限公司 一种耐拉伸轮胎橡胶材料及其制备方法
KR101703626B1 (ko) * 2015-10-13 2017-02-07 현대자동차 주식회사 타이어 트레드용 고무 조성물, 이의 제조방법, 및 이를 이용하여 제조한 타이어
JP6607046B2 (ja) * 2016-01-08 2019-11-20 住友ゴム工業株式会社 空気入りタイヤ
CN105694069A (zh) * 2016-02-19 2016-06-22 太仓冠联高分子材料有限公司 纳米碳管均匀分散及弱剪切加工方法
CN108779260A (zh) * 2016-03-24 2018-11-09 索尔维特殊聚合物意大利有限公司 氟弹性体组合物
DE102016205557A1 (de) * 2016-04-04 2017-10-05 Contitech Mgw Gmbh Polymermischung und Schlauch, insbesondere Ladeluftschlauch, enthaltend die Polymermischung
CA3020462C (en) * 2016-04-07 2023-01-17 Molecular Rebar Design, Llc Discrete carbon nanotubes with targeted oxidation levels and formulations thereof
US20190047325A1 (en) * 2016-06-29 2019-02-14 Exxonmobil Chemical Patents Inc. Graft Copolymers for Dispersing Graphene and Graphite
KR101846707B1 (ko) * 2016-09-13 2018-04-06 현대자동차주식회사 진동절연성이 향상된 방진고무 조성물 및 방진고무
NL2017677B1 (en) * 2016-10-26 2018-05-18 Beugen J Van Beheer Bv Inflatable stopper
JP6824020B2 (ja) 2016-12-20 2021-02-03 Toyo Tire株式会社 ゴムマスターバッチおよびその製造方法、当該ゴムマスターバッチから得られるゴム組成物
KR101761266B1 (ko) * 2017-01-23 2017-07-25 (주)씨엔티솔루션 고내구성 골프공 코어용 복합소재 마스터배치 및 그 제조방법
US10239992B2 (en) 2017-03-01 2019-03-26 International Business Machines Corporation Carbon black modified polyesters
TWI611912B (zh) * 2017-03-23 2018-01-21 台灣奈米碳素股份有限公司 彈性物質強化用複合材料及其製造方法
DE102017208137A1 (de) * 2017-05-15 2018-11-15 Continental Reifen Deutschland Gmbh Schwefelvernetzte Kautschukmischung für Fahrzeugreifen enthaltend carbon nanotubes (CNT), Fahrzeugreifen, der die schwefelvernetzte Kautschukmischung aufweist, sowie Verfahren zur Herstellung der schwefelvernetzten Kautschukmischung enthaltend CNT
JP6984191B2 (ja) * 2017-06-20 2021-12-17 住友金属鉱山株式会社 ニッケル高圧浸出残渣の固液分離方法
JP6984269B2 (ja) * 2017-09-19 2021-12-17 三菱ケミカル株式会社 カーボンナノチューブ/カーボンブラック/ゴム複合体及びその製造方法
CN111527138B (zh) * 2017-10-11 2022-08-05 钢筋分子设计有限责任公司 离散碳纳米管和干液体浓缩物及其配制剂
KR102524930B1 (ko) * 2017-10-11 2023-04-26 몰레큘라 레바 디자인 엘엘씨 표적화된 산화 수준을 갖는 이산 탄소 나노튜브 및 그의 제제를 사용한 차폐 제제
US11976178B2 (en) 2017-10-24 2024-05-07 The Boeing Company Compositions with coated carbon fibers and methods for manufacturing compositions with coated carbon fibers
CN109455694B (zh) * 2018-12-10 2020-11-03 深圳烯湾科技有限公司 改性碳纳米管阵列、碳纳米管纤维及其制备方法和应用
EP3894471B1 (en) * 2018-12-11 2023-05-17 Pirelli Tyre S.p.A. Tyre and elastomeric compound for tyre, comprising cross-linked phenolic resins
WO2020184675A1 (ja) * 2019-03-13 2020-09-17 横浜ゴム株式会社 タイヤ用ゴム組成物およびそれを用いた空気入りタイヤ
JP7307584B2 (ja) * 2019-04-26 2023-07-12 Tpr株式会社 ウェットマスターバッチおよびこれを含む炭素繊維補強ゴム複合材
WO2021034455A1 (en) 2019-08-19 2021-02-25 Molecular Rebar Design, Llc Process to control a corrosion layer
US20210155780A1 (en) 2019-11-22 2021-05-27 The Goodyear Tire & Rubber Company Pneumatic tire and rubber composition including surface-functionalized carbon nanotubes
US20210388187A1 (en) * 2020-06-11 2021-12-16 The Goodyear Tire & Rubber Company Pneumatic tire and rubber composition including surface-functionalized carbon nanotubes in combination with tetrazine modified elastomer
WO2022183049A1 (en) * 2021-02-26 2022-09-01 Molecular Rebar Design, Llc Dispersions comprising high surface area nanotubes and discrete carbon nanotubes
KR20230160855A (ko) * 2021-03-25 2023-11-24 몰레큘라 레바 디자인 엘엘씨 이산 탄소 나노튜브를 포함하는 적층 제조를 위한 분산액
WO2023281527A1 (en) * 2021-07-05 2023-01-12 Tvs Srichakra Limited Elastomeric tire nanocomposite with polymer coated carbon nanotubes and method thereof
WO2023137147A1 (en) * 2022-01-13 2023-07-20 Nanocomp Technologies, Inc. Polyetheralkanol amine dispersants for nanotube materials
KR20240001599A (ko) * 2022-06-27 2024-01-03 주식회사 불스원 젤이 결합되어 경추를 탄탄하게 받쳐주고 숙면에 도움을 주는 기능성 베개
WO2024035559A1 (en) * 2022-08-09 2024-02-15 ExxonMobil Technology and Engineering Company Solvents for carbon nanotube dispersions

Family Cites Families (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2187146A (en) * 1936-10-24 1940-01-16 Du Pont Process of coagulation
US3884606A (en) 1971-10-01 1975-05-20 Dow Chemical Co Apparatus for multilayer coextrusion of sheet or film
KR100364095B1 (ko) 1999-06-15 2002-12-12 일진나노텍 주식회사 탄소나노튜브의 대량 정제 방법
ATE514804T1 (de) 1999-07-21 2011-07-15 Hyperion Catalysis Int Verfahren zur oxidation von mehrwandigen kohlenstoffnanoröhren
JP4697829B2 (ja) * 2001-03-15 2011-06-08 ポリマテック株式会社 カーボンナノチューブ複合成形体及びその製造方法
US6872681B2 (en) * 2001-05-18 2005-03-29 Hyperion Catalysis International, Inc. Modification of nanotubes oxidation with peroxygen compounds
FR2826646B1 (fr) 2001-06-28 2004-05-21 Toulouse Inst Nat Polytech Procede de fabrication selective de nanotubes de carbone ordonne en lit fluidise
KR100592527B1 (ko) * 2002-01-17 2006-06-23 (주)케이에이치 케미컬 탄소나노튜브를 강화제로 포함하는 고무 조성물 및 이의제조방법
US20030144415A1 (en) * 2002-01-29 2003-07-31 Dsm N.V. Process for the preparation of a thermoplastic elastomer comprising a partially vulcanized rubber concentrate
JP3537811B2 (ja) 2002-03-29 2004-06-14 独立行政法人 科学技術振興機構 単層カーボンナノチューブの製造方法
JP4227786B2 (ja) * 2002-09-10 2009-02-18 住友ゴム工業株式会社 導電性ローラおよび該導電性ローラの製造方法
JP2004210830A (ja) * 2002-12-27 2004-07-29 Jsr Corp エラストマー組成物およびその製造方法
US20100098877A1 (en) 2003-03-07 2010-04-22 Cooper Christopher H Large scale manufacturing of nanostructured material
PL1626799T3 (pl) 2003-04-30 2010-09-30 Univ Drexel Mieszaniny polimerów żelujące w podwyższonej temperaturze, do stosowania w materiałach biokompatybilnych
WO2004106420A2 (en) 2003-05-22 2004-12-09 Zyvex Corporation Nanocomposites and method for production
WO2005014708A1 (en) 2003-06-23 2005-02-17 William Marsh Rice University Elastomers reinforced with carbon nanotubes
US7169329B2 (en) 2003-07-07 2007-01-30 The Research Foundation Of State University Of New York Carbon nanotube adducts and methods of making the same
JP4960702B2 (ja) 2003-09-18 2012-06-27 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション 高性能エネルギー蓄積装置
JP4868490B2 (ja) 2004-01-06 2012-02-01 国立大学法人京都大学 カーボンナノチューブの精製方法
WO2005113434A1 (en) 2004-03-25 2005-12-01 William Marsh Rice University Functionalization of carbon nanotubes in acidic media
US7611628B1 (en) 2004-05-13 2009-11-03 University Of Kentucky Research Foundation Aligned nanotubule membranes
JP2008500933A (ja) 2004-05-14 2008-01-17 ソニー ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング カーボンナノチューブと金属炭酸塩とを具備する複合材料
JP2005334594A (ja) 2004-05-27 2005-12-08 I-Com:Kk カーボンナノチューブ突起を有する薬剤投与パッチ
US20090317710A1 (en) 2008-06-20 2009-12-24 Mysticmd, Inc. Anode, cathode, grid and current collector material for reduced weight battery and process for production thereof
WO2006096203A2 (en) * 2004-08-02 2006-09-14 University Of Houston Carbon nanotube reinforced polymer nanocomposites
CA2584433A1 (en) * 2004-10-22 2006-12-21 Hyperion Catalysis International, Inc. Improved ozonolysis of carbon nanotubes
US7879388B2 (en) 2004-10-28 2011-02-01 The Regents Of The University Of Michigan Methods for production and use of synthetic hydroxyapatite and fluorapatite nanorods, and superstructures assembled from the same
FR2880353B1 (fr) * 2005-01-05 2008-05-23 Arkema Sa Utilisation de nanotubes de carbone pour la fabrication d'une composition organique conductrice et applications d'une telle composition
JP2006240901A (ja) 2005-03-01 2006-09-14 Bussan Nanotech Research Institute Inc 反応性カーボンナノチューブ、高分子被覆カーボンナノチューブ、およびこれらの製造方法
CA2600922C (en) 2005-03-04 2013-06-04 Northwestern University Separation of carbon nanotubes in density gradients
CN1304473C (zh) * 2005-03-18 2007-03-14 清华大学 添加碳纳米管的天然橡胶液体浆料及其制备方法
US20060286456A1 (en) 2005-06-20 2006-12-21 Zhiguo Fu Nano-lithium-ion batteries and methos for manufacturing nano-lithium-ion batteries
FR2887554B1 (fr) * 2005-06-24 2008-04-18 Arkema Sa Materiaux polymeres contenant des nanotubes de carbone, leur procede de preparation a partir de pre-melange avec un agent de dispersion
KR100682952B1 (ko) * 2005-08-31 2007-02-15 삼성전자주식회사 나노탄성 메모리 소자 및 그 제조 방법
KR20080069691A (ko) 2005-11-16 2008-07-28 하이페리온 커탤리시스 인터내셔널 인코포레이티드 단일벽 및 다중벽 탄소나노튜브의 혼합 구조
WO2008066507A2 (en) 2005-11-22 2008-06-05 Mcgill University Nanotube devices for targeted delivery of therapeutic molecules
JPWO2007063984A1 (ja) * 2005-12-01 2009-05-07 小島プレス工業株式会社 繊維状ナノカーボンを含有する導通部材およびそれを用いた接点装置
DK1984442T3 (da) * 2006-02-14 2010-07-26 Arkema France Hybrid-kraftpåvirkningsmodifikatorer og fremgangsmåde til fremstilling af disse
US20080090951A1 (en) 2006-03-31 2008-04-17 Nano-Proprietary, Inc. Dispersion by Microfluidic Process
US20070244263A1 (en) 2006-04-13 2007-10-18 Burrowes Thomas G Elastomeric composition for transmission belt
EP1845124A1 (en) * 2006-04-14 2007-10-17 Arkema France Conductive carbon nanotube-polymer composite
EP2007830A1 (en) 2006-04-19 2008-12-31 The Provost, Fellows And Scholars Of The College Of The Holy And Undivided Trinity Of Queen Elizabeth Near Dublin Modified organoclays
US7771695B2 (en) 2006-07-21 2010-08-10 International Business Machines Corporation Complexes of carbon nanotubes and fullerenes with molecular-clips and use thereof
JP4290713B2 (ja) 2006-07-25 2009-07-08 森永乳業株式会社 豆腐ピューレを含有するホイップクリーム
US8648132B2 (en) 2007-02-07 2014-02-11 Naturalnano, Inc. Nanocomposite method of manufacture
WO2008153609A1 (en) 2007-02-07 2008-12-18 Seldon Technologies, Inc. Methods for the production of aligned carbon nanotubes and nanostructured material containing the same
KR20080082811A (ko) 2007-03-09 2008-09-12 성균관대학교산학협력단 카본나노튜브 함유 투명 전극 및 그의 제조방법
JP5417690B2 (ja) * 2007-03-23 2014-02-19 日油株式会社 疎水性の熱可塑性樹脂組成物
FR2916364B1 (fr) * 2007-05-22 2009-10-23 Arkema France Procede de preparation de pre-composites a base de nanotubes notamment de carbone
US20080290007A1 (en) 2007-05-24 2008-11-27 National Institute Of Standards And Technology Centrifugal length separation of carbon nanotubes
JP2009029899A (ja) * 2007-07-26 2009-02-12 Toyo Tire & Rubber Co Ltd ゴム−充填剤複合体の製造方法
US20090038858A1 (en) 2007-08-06 2009-02-12 Smith International, Inc. Use of nanosized particulates and fibers in elastomer seals for improved performance metrics for roller cone bits
US8540922B2 (en) 2007-08-27 2013-09-24 Hewlett-Packard Development Company, L.P. Laser patterning of a carbon nanotube layer
FR2921391B1 (fr) * 2007-09-24 2010-08-13 Arkema France Procede de preparation de materiaux composites
JP2009079185A (ja) * 2007-09-27 2009-04-16 Nissin Kogyo Co Ltd 炭素繊維複合材料及びその製造方法
US20090171768A1 (en) 2007-12-26 2009-07-02 Arjun Chopra Method and system for incentive based tie-in transaction
JP4973569B2 (ja) * 2008-03-28 2012-07-11 株式会社豊田中央研究所 繊維状炭素系材料絶縁物、それを含む樹脂複合材、および繊維状炭素系材料絶縁物の製造方法
KR100991731B1 (ko) 2008-04-11 2010-11-03 한국과학기술원 탄소나노튜브 패치, 그 제조 방법, 및 그 사용 방법
JP5179979B2 (ja) * 2008-04-16 2013-04-10 日信工業株式会社 カーボンナノファイバー及びその製造方法、カーボンナノファイバーを用いた炭素繊維複合材料の製造方法及び炭素繊維複合材料
JP5146371B2 (ja) * 2008-07-11 2013-02-20 株式会社豊田中央研究所 カーボンナノ複合体、それを含む分散液及び樹脂組成物、並びにカーボンナノ複合体の製造方法
WO2010008014A1 (ja) * 2008-07-18 2010-01-21 国立大学法人 北海道大学 カーボンナノ前駆体、その製造方法、カーボンナノ複合体およびその製造方法
WO2010007705A1 (ja) 2008-07-18 2010-01-21 株式会社イノアック技術研究所 一次元構造体とゼロ次元構造体との複合化のためのプロセス及びその複合物
EP2472656A3 (en) * 2008-08-15 2013-02-20 Massachusetts Institute of Technology Layer-by-layer assemblies of carbon-based nanostructures and their applications in energy storage and generation devices
FR2937324B1 (fr) * 2008-10-22 2012-03-16 Arkema France Procede de preparation d'un materiau composite a base de nanotubes, notamment de carbone
EP3021389B1 (en) 2008-11-18 2018-07-11 Johnson Controls Technology Company Electrical power storage devices
KR101748190B1 (ko) * 2008-12-19 2017-06-16 몰레큘라 레바 디자인 엘엘씨 박리된 탄소 나노튜브, 이의 제조 방법 및 이로부터 수득된 제품
CN102292114A (zh) 2009-01-27 2011-12-21 加州理工学院 通过具有从装置表面突出的排列的碳纳米管的纳米增强的装置促进的药物递送和物质传递
JP5482194B2 (ja) * 2009-03-31 2014-04-23 東レ株式会社 カーボンナノチューブ水性分散液、導電性複合体およびその製造方法
US8852064B2 (en) * 2009-04-14 2014-10-07 Xerox Corporation Reduced feed roll wear using carbon nanotube additives in rubbers
WO2011075489A1 (en) 2009-12-18 2011-06-23 Designed Nanotubes, LLC High performance energy storage and collection devices containing exfoliated microtubules and spatially controlled attached nanoscale particles and layers
CN101831090B (zh) * 2010-04-02 2011-12-21 南京理工大学 含碳纳米管的高性能天然橡胶硫化胶及其制备方法
EP2585402A2 (en) 2010-06-22 2013-05-01 Designed Nanotubes, LLC Modified carbon nanotubes, methods for production thereof and products obtained therefrom
US8460711B2 (en) 2010-08-30 2013-06-11 Fatemeh Atyabi Poly(citric acid) functionalized carbon nanotube drug delivery system
JP2012133959A (ja) 2010-12-21 2012-07-12 Furukawa Battery Co Ltd:The 鉛蓄電池用複合キャパシタ負極板及び鉛蓄電池
CA2839318A1 (en) 2011-06-23 2012-12-27 Molecular Rebar Design, Llc Nanoplate-nanotube composites, methods for production thereof and products obtained therefrom
WO2013011516A1 (en) 2011-07-20 2013-01-24 Vulcan Automotive Industries Ltd Funcionalized carbon nanotube composite for use in lead acid battery
US8764681B2 (en) 2011-12-14 2014-07-01 California Institute Of Technology Sharp tip carbon nanotube microneedle devices and their fabrication
WO2015103214A1 (en) 2013-12-30 2015-07-09 Molecular Rebar Design, Llc Transdermal patches with discrete carbon nanotubes
WO2015127332A1 (en) 2014-02-21 2015-08-27 Molecular Rebar Design, Llc Payload molecule delivery using functionalized discrete carbon nanotubes

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Goyanes et al. , "Carboxylation treatment of multiwalled carbon nanotubes monitored by infrared and ultraviolet spectroscopies and scanning probe microscopy", Diamond & Related Materials, Vol. 16, 2007, pages 412-417 *
Machine Translation of FR 2887554 *
Nanocyl, Nanocyl NC3100 Series Product Information Sheet, http://www.nanocyl.com/en/Products-Solutions/Products/Research-Grades/Thin-Multi-Wall-Carbon-Nanotubes, May 29, 2012 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10096428B2 (en) 2011-08-29 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing positive electrode active material for lithium ion battery
US10155664B2 (en) * 2012-08-23 2018-12-18 Director General, Defense Research & Development Organisation Process for synthesizing hybrid bifunctionalized multiwalled carbon nanotubes and applications thereof
US20150151971A1 (en) * 2012-08-23 2015-06-04 Director General, Defence Research & Development Organisation Process for synthesizing hybride bifunctionalized multiwalled carbon nanotubes and applications thereof
US9879131B2 (en) 2012-08-31 2018-01-30 Soucy Techno Inc. Rubber compositions and uses thereof
US10072129B2 (en) * 2013-02-08 2018-09-11 University Of Louisville Research Foundation, Inc. Stimuli-responsive polymer composites
US20150361241A1 (en) * 2013-02-08 2015-12-17 University Of Louisville Research Foundation, Inc. Stimuli-responsive polymer composites
US9840611B2 (en) 2013-10-18 2017-12-12 Soucy Techno Inc. Rubber compositions and uses thereof
US9663640B2 (en) 2013-12-19 2017-05-30 Soucy Techno Inc. Rubber compositions and uses thereof
US20180065414A1 (en) * 2016-09-02 2018-03-08 Razor Usa Llc Airless tire
USD882490S1 (en) 2016-09-02 2020-04-28 Razor Usa Llc Airless tire
US10759979B2 (en) 2017-02-22 2020-09-01 Lg Chem, Ltd. Adhesive composition
US20180362725A1 (en) * 2017-06-14 2018-12-20 Taiwan Carbon Nano Technology Corporation Manufacturing method for elastic composite material
CN111727123A (zh) * 2018-01-12 2020-09-29 米其林集团总公司 具有解聚碳纳米管的橡胶组合物
CN111836731A (zh) * 2018-01-12 2020-10-27 米其林集团总公司 具有解聚碳纳米管的橡胶组合物
CN115850886A (zh) * 2022-11-30 2023-03-28 上海熹贾精密技术有限公司 一种高性能氟橡胶混炼胶及其应用

Also Published As

Publication number Publication date
CA2834697A1 (en) 2012-06-21
TWI586733B (zh) 2017-06-11
JP2014501290A (ja) 2014-01-20
JP2016145363A (ja) 2016-08-12
CN103459313A (zh) 2013-12-18
JP6169973B2 (ja) 2017-07-26
CN106883476A (zh) 2017-06-23
JP2014505125A (ja) 2014-02-27
EP2651819A1 (en) 2013-10-23
KR101784544B1 (ko) 2017-10-11
EP2651821A1 (en) 2013-10-23
KR20140045309A (ko) 2014-04-16
KR101898303B1 (ko) 2018-09-12
WO2012080158A1 (en) 2012-06-21
EP2651820A1 (en) 2013-10-23
US9353240B2 (en) 2016-05-31
US20170050158A1 (en) 2017-02-23
JP5902193B2 (ja) 2016-04-13
WO2012080159A1 (en) 2012-06-21
TW201233719A (en) 2012-08-16
US20130281612A1 (en) 2013-10-24
CN103313935A (zh) 2013-09-18
US20160339125A1 (en) 2016-11-24
US20160108202A1 (en) 2016-04-21
TW201237085A (en) 2012-09-16
KR101905210B1 (ko) 2018-10-05
KR20130125381A (ko) 2013-11-18
US9212273B2 (en) 2015-12-15
US9636649B2 (en) 2017-05-02
US9493626B1 (en) 2016-11-15
SG190751A1 (en) 2013-07-31
CN103313934A (zh) 2013-09-18
JP6314165B2 (ja) 2018-04-18
US9422413B1 (en) 2016-08-23
SG190926A1 (en) 2013-07-31
JP2018003030A (ja) 2018-01-11
KR20130125380A (ko) 2013-11-18
SG10201600280YA (en) 2016-02-26
TW201237082A (en) 2012-09-16
WO2012080160A1 (en) 2012-06-21

Similar Documents

Publication Publication Date Title
US9212273B2 (en) Elastomer formulations
EP3197941A1 (en) Styrene-butadiene rubber (sbr)-nanocarbon filled masterbatches and uses thereof
WO2022125683A1 (en) Methods of preparing a composite comprising never-dried natural rubber and filler
JP6651333B2 (ja) ウェットマスターバッチの製造方法及びタイヤの製造方法
WO2022125675A1 (en) Methods of preparing a composite having elastomer and filler
JP5860660B2 (ja) シリカ・天然ゴム複合体及びその製造方法、ゴム組成物及び空気入りタイヤ
WO2022125677A1 (en) Method of preparing a compound having elastomer and filler
WO2023107991A1 (en) Methods of preparing a composite having resins

Legal Events

Date Code Title Description
AS Assignment

Owner name: STYRON EUROPE GMBH, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOSNYAK, CLIVE P.;SWOGGER, KURT W.;SIGNING DATES FROM 20130531 TO 20130604;REEL/FRAME:030578/0434

AS Assignment

Owner name: MOLECULAR REBAR DESIGN, LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:STYRON EUROPE GMBH;REEL/FRAME:034087/0982

Effective date: 20140820

AS Assignment

Owner name: BLACK DIAMOND STRUCTURES, LLC, TEXAS

Free format text: LICENSE;ASSIGNOR:MOLECULAR REBAR DESIGN, LLC;REEL/FRAME:034426/0861

Effective date: 20141208

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION