US20130189239A1 - Conjugated Factor VIII Molecules - Google Patents

Conjugated Factor VIII Molecules Download PDF

Info

Publication number
US20130189239A1
US20130189239A1 US12/597,473 US59747309A US2013189239A1 US 20130189239 A1 US20130189239 A1 US 20130189239A1 US 59747309 A US59747309 A US 59747309A US 2013189239 A1 US2013189239 A1 US 2013189239A1
Authority
US
United States
Prior art keywords
domain
factor viii
molecule
peg
fviii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/597,473
Other languages
English (en)
Inventor
Gert Bolt
Brian Berg Stidsen Vandahl
Lars Thim
Henning Ralf Stennicke
Thomas Dock Steenstrup
Shawn DeFrees
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novo Nordisk AS
Original Assignee
Novo Nordisk AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novo Nordisk AS filed Critical Novo Nordisk AS
Priority to US12/597,473 priority Critical patent/US20130189239A1/en
Assigned to NOVO NORDISK A/S reassignment NOVO NORDISK A/S ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DEFREES, SHAWN
Priority to US13/759,261 priority patent/US8536126B2/en
Assigned to NOVO NORDISK A/S reassignment NOVO NORDISK A/S ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STENNICKE, HENNING RALF, VANDAHL, BRIAN BERG STIDSEN, STEENSTRUP, THOMAS DOCK, THIM, LARS, BOLT, GERT
Publication of US20130189239A1 publication Critical patent/US20130189239A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/96Stabilising an enzyme by forming an adduct or a composition; Forming enzyme conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/36Blood coagulation or fibrinolysis factors
    • A61K38/37Factors VIII
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/548Phosphates or phosphonates, e.g. bone-seeking
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/745Blood coagulation or fibrinolysis factors
    • C07K14/755Factors VIII, e.g. factor VIII C (AHF), factor VIII Ag (VWF)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to conjugated coagulation Factor VIII molecules.
  • the present invention relates to conjugated Factor VIII molecules having a modified circulatory half life.
  • Haemophilia A is an inherited bleeding disorder caused by deficiency or dysfunction of coagulation Factor VIII (FVIII) activity.
  • the clinical manifestation is not on primary haemostasis—formation of the blood clot occurs normally—but the clot is unstable due to a lack of secondary thrombin formation.
  • the disease is treated by intravenous injection of coagulation Factor FVIII which is either isolated from blood or produced recombinantly.
  • the present invention relates to a B domain truncated Factor VIII molecule with a modified circulatory half life, said molecule being covalently conjugated with a hydrophilic polymer via an O-linked oligosaccharide in the truncated B domain, wherein Factor VIII activation results in removal of the covalently conjugated side group.
  • the present invention furthermore relates to methods for obtaining such molecules, use of such molecules and pharmaceutical compositions comprising such molecules.
  • conjugated Factor VIII molecule with modified circulatory half life, wherein the conjugated side group (e.g. hydrophilic polymer) is removed upon activation.
  • the molecules according to the invention are preferably homogenous in structure—at least with regard to position of the hydrophilic polymer in the truncated B-domain—and preferably have an advantageous safety profile.
  • relatively simple methods for obtaining such molecules are furthermore provided herein.
  • activated Factor VIII molecules according to the invention are similar to endogenous activated Factor VIII.
  • FVIII/Factor VIII is a large, complex glycoprotein that primarily is produced by hepatocytes.
  • FVIII consists of 2351 amino acids, including signal peptide, and contains several distinct domains, as defined by homology. There are three A-domains, a unique B-domain, and two C-domains. The domain order can be listed as NH2-A1-A2-B-A3-C1-C2-COOH.
  • FVIII circulates in plasma as two chains, separated at the B-A3 border. The chains are connected by bivalent metal ion-bindings.
  • the A1-A2-B chain is termed the heavy chain (HC) while the A3-C1-C2 is termed the light chain (LC).
  • Endogenous Factor VIII molecules circulate in vivo as a pool of molecules with B domains of various sizes. What probably occurs in vivo is a gradual enzymatic removal of the B domain resulting in a pool of molecules with B-domains of various sizes. It is generally believed that cleavage at position 740, by which the last part of the B-domain is removed, occurs in connection with thrombin activation. However, it cannot be ruled out that a Factor VIII variant in which e.g. the cleavage site at position 740 has been impaired may be active.
  • Vector VIII or “FVIII” as used herein refers to a human plasma glycoprotein that is a member of the intrinsic coagulation pathway and is essential to blood coagulation.
  • “Native FVIII” is the full length human FVIII molecule as shown in SEQ ID NO. 1 (amino acid 1-2332). The B-domain spans amino acids 741-1648 in SEQ ID NO 1.
  • SEQ ID NO 1 ATRRYYLGAVELSWDYMQSDLGELPVDARFPPRVPKSFPFNTSVVYKKTLFVEFTDHLFNIAKPRPP WMGLLGPTIQAEVYDTVVITLKNMASHPVSLHAVGVSYWKASEGAEYDDQTSQREKEDDKVFPGGS HTYVWQVLKENGPMASDPLCLTYSYLSHVDLVKDLNSGLIGALLVCREGSLAKEKTQTLHKFILLFAVF DEGKSWHSETKNSLMQDRDAASARAWPKMHTVNGYVNRSLPGLIGCHRKSVYWHVIGMGTTPEVH SIFLEGHTFLVRNHRQASLEISPITFLTAQTLLMDLGQFLLFCHISSHQHDGMEAYVKVDSCPEEPQLR MKNNEEAEDYDDDLTDSEMDVVRFDDDNSPSFIQIRSVAKKHPKTWVHYIAAEEEDWDYAPLVLAPD DRSYKSQYLNNGPQRIGRKYKKVRFMAYT
  • the Factor VIII molecules according to the present invention are B domain truncated Factor FVIII molecules wherein the remaining domains correspond to the sequence as set forth in amino acid no 1-740 and 1649-2332 in SEQ ID NO. 1. It follows that molecules according to the invention are recombinant molecules produced in transformed host cells, preferably of mammalian origin. However, the remaining domains (i.e. the three A-domains and the two C-domains) may differ slightly e.g. about 1%, 2%, 3%, 4% or 5% from the amino acid sequence as set forth in SEQ ID NO 1 (amino acids 1-740 and 1649-2332).
  • the Factor VIII molecules according to the invention comprise other post-translational modifications in e.g. the truncated B-domain and/or in one or more of the other domains of the molecules.
  • These other post-translational modifications may be in the form of various molecules conjugated to the Factor VIII molecule according to the invention such as e.g. polymeric compounds, peptidic compounds, fatty acid derived compounds, etc.
  • Factor VIII molecules according to the present invention regardless of whether they are modified outside the B domain or not, have other posttranslational modifications or not, all have Factor VIII activity, meaning the ability to function in the coagulation cascade in a manner functionally similar or equivalent to FVIII, induce the formation of FXa via interaction with FIXa on an activated platelet, and support the formation of a blood clot.
  • the activity can be assessed in vitro by techniques well known in the art such as e.g. clot analysis, endogenous thrombin potential analysis, etc.
  • Factor VIII molecules according to the present invention have FVIII activity being at least about 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, and 100% or even more than 100% of that of native human FVIII.
  • the B-domain in Factor VIII spans amino acids 741-1648 in SEQ ID NO 1.
  • the B-domain is cleaved at several different sites, generating large heterogeneity in circulating plasma FVIII molecules.
  • the exact function of the heavily glycosylated B-domain is unknown. What is known is that the domain is dispensable for FVIII activity in the coagulation cascade. This apparent lack of function is supported by the fact that B domain deleted/truncated FVIII appears to have in vivo properties identical to those seen for full length native FVIII. That being said there are indications that the B-domain may reduce the association with the cell membrane, at least under serum free conditions.
  • Endogenous full length FVIII is synthesized as a single-chain precursor molecule. Prior to secretion, the precursor is cleaved into the heavy chain and the light chain.
  • Recombinant B domain-deleted FVIII can be produced from two different strategies. Either the heavy chain without the B-domain and the light chain are synthesized individually as two different polypeptide chains (two-chain strategy) or the B-domain deleted FVIII is synthesized as a single precursor polypeptide chain (single-chain strategy) that is cleaved into the heavy and light chains in the same way as the full-length FVIII precursor.
  • the heavy and light chain moieties are normally separated by a linker.
  • the sequence of the linker is preferable derived from the FVIII B-domain.
  • the linker must comprise a recognition site for the protease that separates the B domain-deleted FVIII precursor polypeptide into the heavy and light chain.
  • amino acid 1644-1648 constitutes this recognition site.
  • the thrombin site leading to removal of the linker on activation of B domain-deleted FVIII is located in the heavy chain.
  • the size and amino acid sequence of the linker is unlikely to influence its removal from the remaining FVIII molecule by thrombin activation.
  • Deletion of the B domain is an advantage for production of FVIII. Nevertheless, parts of the B domain can be included in the linker without reducing the productivity.
  • the negative effect of the B domain on productivity has not been attributed to any specific size or sequence of the B domain.
  • the truncated B-domain may contain several O-glycosylation sites.
  • the molecule comprises only one, alternatively two, three or four O-linked oligosaccharides in the truncated B-domain.
  • the truncated B domain comprises only one potential O-glycosylation site and the hydrophilic polymer is covalently conjugated to this O-glycosylation site.
  • the O-linked oligosaccharides in the B-domain truncated molecules according to the invention may be attached to O-glycosylation sites that were either artificially created by recombinant means and/or by exposure of “hidden” O-glycosylation sites by truncation of the B-domain.
  • such molecules may be made by designing a B-domain trunctated Factor VIII amino acid sequence and subsequently subjecting the amino acid sequence to an in silico analysis predicting the probability of O-glycosylation sites in the truncated B-domain.
  • Suitable host cells for producing recombinant Factor VIII protein are preferably of mammalian origin in order to ensure that the molecule is glycosylated.
  • the cells are mammalian cells, more preferably an established mammalian cell line, including, without limitation, CHO (e.g., ATCC CCL 61), COS-1 (e.g., ATCC CRL 1650), baby hamster kidney (BHK), and HEK293 (e.g., ATCC CRL 1573; Graham et al., J. Gen. Virol. 36:59-72, 1977) cell lines.
  • a preferred BHK cell line is the tk-ts13 BHK cell line (Waechter and Baserga, Proc. Natl. Acad. Sci. USA 79:1106-1110, 1982), hereinafter referred to as BHK 570 cells.
  • the BHK 570 cell line is available from the American Type Culture Collection, 12301 Parklawn Dr., Rockville, Md. 20852, under ATCC accession number CRL 10314.
  • a tk-ts13 BHK cell line is also available from the ATCC under accession number CRL 1632.
  • a preferred CHO cell line is the CHO K1 cell line available from ATCC under accession number CCl61 as well as cell lines CHO-DXB11 and CHO-DG44.
  • Suitable cell lines include, without limitation, Rat Hep I (Rat hepatoma; ATCC CRL 1600), Rat Hep II (Rat hepatoma; ATCC CRL 1548), TCMK (ATCC CCL 139), Human lung (ATCC HB 8065), NCTC 1469 (ATCC CCL 9.1); DUKX cells (CHO cell line) (Urlaub and Chasin, Proc. Natl. Acad. Sci. USA 77:4216-4220, 1980) (DUKX cells also being referred to as DXB11 cells), and DG44 (CHO cell line) (Cell, 33: 405, 1983, and Somatic Cell and Molecular Genetics 12: 555, 1986).
  • the cells may be mutant or recombinant cells, such as, e.g., cells that express a qualitatively or quantitatively different spectrum of enzymes that catalyze post-translational modification of proteins (e.g., glycosylation enzymes such as glycosyl transferases and/or glycosidases, or processing enzymes such as propeptides) than the cell type from which they were derived.
  • DUKX cells CHO cell line
  • HEK293, COS Chinese Hamster Ovary (CHO) cells
  • Baby Hamster Kidney (BHK) and myeloma cells
  • Chinese Hamster Ovary (CHO) cells are preferred cells.
  • the inventors of the present invention have thus shown that it is possible to activate “hidden” O-glycosylation sites in the Factor VIII B-domain by truncating the B-domain. While not wishing to be bound by any theory, this phenomenon could be attributable to the tertiary structure of the molecule in the truncated B-domain being altered. “Hidden” O-glycosylation sites are thus “made accessible” to glycosylation in the truncated B-domain.
  • One advantage of this approach is the provision of recombinant molecules with an advantageous safety profile with respect to e.g. allergenicity.
  • Another advantage could be that it may represent a simpler approach of obtaining B-domain truncated variants with an O-linked oligosaccharide in the B-domain due to the inherent abundance of glycosylation sites in the B-domain as it has previously proven difficult to engineer artificial O-glycosylation sites in recombinant proteins.
  • the length of the B domain in the wt FVIII molecule is about 907 amino acids.
  • the length of the truncated B domain in molecules according to the present invention may vary from about 10 amino acids to about 700 acids, such as e.g. about 12-500 amino acids, 12-400 amino acids, 12-300 amino acids, 12-200 amino acids, 15-100 amino acids, 15-75 amino acids, 15-50 amino acids, 15-45 amino acids, 20-45 amino acids, 20-40 amino acids, or 20-30 amino acids.
  • the truncated B-domain may comprise fragments of the heavy chain and/or the light chain and/or an artificially introduced sequence that is not found in the wt FVIII molecule.
  • the terms “B-domain truncated” and “B-domain deleted” may be used interchangeably herein.
  • Molecules according to the present invention have a modified circulatory half life compared to the wild type Factor VIII molecule, preferably an increased circulatory half life.
  • Circulatory half life is preferably increased at least 10%, preferably at least 15%, preferably at least 20%, preferably at least 25%, preferably at least 30%, preferably at least 35%, preferably at least 40%, preferably at least 45%, preferably at least 50%, preferably at least 55%, preferably at least 60%, preferably at least 65%, preferably at least 70%, preferably at least 75%, preferably at least 80%, preferably at least 85%, preferably at least 90%, preferably at least 95%, preferably at least 100%, more preferably at least 125%, more preferably at least 150%, more preferably at least 175%, more preferably at least 200%, and most preferably at least 250% or 300%. Even more preferably, such molecules have a circulatory half life that is increased at least 400%, 500%, 600%, or even 700% relative to the circulatory half life of
  • the modifying group/hydrophilic polymer according to the present invention is preferably non-naturally occurring.
  • the “non-naturally occurring modifying group” is a polymeric modifying group, in which at least one polymeric moiety is non-naturally occurring.
  • the non-naturally occurring modifying group is a modified carbohydrate.
  • the locus of functionalization with the modifying group is selected such that it does not prevent the “modified sugar” from being added enzymatically to a polypeptide.
  • “Modified sugar” also refers to any glycosyl mimetic moiety that is functionalized with a modifying group and which is a substrate for a natural or modified enzyme, such as a glycosyltransferase.
  • the polymeric modifying group added to a polypeptide can alter a property of such polypeptide, for example, its bioavailability, biological activity or its half-life in the body.
  • Exemplary polymers according to the invention include water-soluble polymers that can be linear or branched and can include one or more independently selected polymeric moieties, such as poly(alkylene glycol) and derivatives thereof.
  • the polymeric modifying group according to the invention may include a water-soluble polymer, e.g. poly(ethylene glycol) and derivatives thereof (PEG, m-PEG), poly(propylene glycol) and derivatives thereof (PPG, m-PPG) and the like.
  • water-soluble refers to moieties that have some detectable degree of solubility in water. Methods to detect and/or quantify water solubility are well known in the art.
  • Exemplary water-soluble polymers according to the invention include peptides, saccharides, poly(ethers), poly(amines), poly(carboxylic acids) and the like. Peptides can have mixed sequences and be composed of a single amino acid, e.g., poly(lysine).
  • An exemplary polysaccharide is poly(sialic acid).
  • An exemplary poly(ether) is poly(ethylene glycol), e.g., m-PEG.
  • Poly(ethylene imine) is an exemplary polyamine
  • poly(acrylic) acid is a representative poly(carboxylic acid).
  • the polymer backbone of the water-soluble polymer according to the invention can be poly(ethylene glycol) (i.e. PEG).
  • PEG in connection with the present invention includes poly(ethylene glycol) in any of its forms, including alkoxy PEG, difunctional PEG, multiarmed PEG, forked PEG, branched PEG, pendent PEG (i.e. PEG or related polymers having one or more functional groups pendent to the polymer backbone), or PEG with degradable linkages therein.
  • the polymer backbone can be linear or branched.
  • Branched polymer backbones are generally known in the art.
  • a branched polymer has a central branch core moiety and a plurality of linear polymer chains linked to the central branch core.
  • PEG is commonly used in branched forms that can be prepared by addition of ethylene oxide to various polyols, such as glycerol, pentaerythritol and sorbitol.
  • the central branch moiety can also be derived from several amino acids, such as lysine or cysteine.
  • the branched poly(ethylene glycol) can be represented in general form as R(-PEG-OH) m in which R represents the core moiety, such as glycerol or pentaerythritol, and m represents the number of arms.
  • R represents the core moiety, such as glycerol or pentaerythritol
  • m represents the number of arms.
  • Multi-armed PEG molecules such as those described in U.S. Pat. No. 5,932,462, which is incorporated by reference herein in its entirety, can also be used as the polymer backbone.
  • FIG. 8 shows a representative branched PEG polymer of use in embodiments of the invention, referred to herein as “SA-glycerol-PEG.”
  • FIG. 8A shows an exemplary SA-glycerol-PEG component of CMP-SA-glycerol-PEG or of a SA-glycerol-PEG linked to a glycan or an amino acid of a polypeptide.
  • FIG. 8B shows the SA-glycerol-PEG moiety linked to a glycan or polypeptide through a Gal residue.
  • FIG. 8C shows the SA-glycerol-PEG moiety linked to a glycan or polypeptide through a Gal-GalNAc residue.
  • FIG. 8A shows an exemplary SA-glycerol-PEG component of CMP-SA-glycerol-PEG or of a SA-glycerol-PEG linked to a glycan or an amino acid of a polypeptide.
  • AA is threonine or serine.
  • AA is converted to an O-linked glycosylation site by deletion of the B-domain of the FVIII polypeptide.
  • the discussion regarding the molecular weight of the polymer in paragraph [0032] hereinbelow is generally applicable to the branched PEG shown in FIG. 8 .
  • the index “n” represents any integer providing a linear (and thus a branched) m-PEG of the desired molecular weight as discussed in paragraph [0032].
  • n is selected such that the linear m-PEG moiety is about 20 KDa to about 40 KDa, for example, about 20 KDa, about 30 KDa or about 40 KDa. Integers corresponding to these m-PEG molecular weights correspond to about 400 (e.g. about 455) to about 900 (e.g. about 910). Accordingly, “n” is selected to provide a branched PEG that is about 40 KDa to about 80 KDa, e.g., about 40 KDa, about 50 KDa, about 60 KDa, about 70 KDa, or about 80 KDa.
  • polymers are also suitable for the invention.
  • Polymer backbones that are non-peptidic and water-soluble, are particularly useful in the invention.
  • suitable polymers include, but are not limited to, other poly(alkylene glycols), such as poly(propylene glycol) (“PPG”), copolymers of ethylene glycol and propylene glycol and the like, poly(oxyethylated polyol), poly(olefinic alcohol), poly(vinylpyrrolidone), poly(hydroxypropylmethacrylamide), poly([alpha]-hydroxy acid), poly(vinyl alcohol), polyphosphazene, polyoxazoline, poly(N-acryloylmorpholine), such as described in U.S. Pat. No. 5,629,384, which is incorporated by reference herein in its entirety, as well as copolymers, terpolymers, and mixtures thereof.
  • PPG poly(propylene glycol)
  • PPG poly(propylene glycol)
  • each chain of the polymer backbone can vary, it is typically in the range of from about 100 Da to about 160,000 Da, such as e.g., from about 5,000 Da to about 100,000 Da. More specifically, the size of each conjugated hydrophilic polymer according to the present invention may vary from about 500 Da to about 80,000 Da, such as e.g. about 1000 Da to about 80,000 Da; about 2000 Da to about 70,000 Da; about 5000 to about 70,000 Da; about 5000 to about 60,000 Da; about 10,000 to about 70,000 Da; about 20,000 to about 60,000 Da; about 30,000 to about 60,000 Da; about 30,000 to about 50,000 Da; or about 30,000 to about 40,000 Da. It should be understood that these sizes represent estimates rather than exact measures.
  • the molecules according to the invention are conjugated with a heterogeneous population of hydrophilic polymers, such as e.g. PEG of a size of e.g. 10,000, 40,000, or 80,000 Da+/ ⁇ about 5000, about 4000, about 3000, about 2000, or about 1000 Da.
  • a heterogeneous population of hydrophilic polymers such as e.g. PEG of a size of e.g. 10,000, 40,000, or 80,000 Da+/ ⁇ about 5000, about 4000, about 3000, about 2000, or about 1000 Da.
  • N-glycans and O-glycans are attached to proteins by the cells producing the protein.
  • the cellular N-glycosylation machinery recognizes and glycosylates N-glycosylation signals (N-X-SIT motifs) in the amino acid chain, as the nascent protein is translocated from the ribosome to the endoplasmic reticulum (Kiely et al. 1976; Glabe et al. 1980).
  • O-glycans are attached to specific O-glycosylation sites in the amino acid chain, but the motifs triggering O-glycosylation are much more heterogeneous than the N-glycosylation signals, and our ability to predict O-glycosylation sites in amino acid sequences is still inadequate (Julenius et al. 2004).
  • the construction of artificial O-glycosylation sites it is thus associated with some uncertainty.
  • the general assumption is that the native FVIII molecule does not contain any O-glycosylation sites, and the skilled man would therefore expect that at least one artificial O-glycosylation site would have to be constructed and inserted into the B domain in connection with practicing the present invention.
  • the O-linked oligosaccharide in a truncated Factor VIII B domain may thus be covalently linked to a naturally occurring O-linked glycosylation sequence or an O-linked glycosylation sequence which has been artificially constructed by recombinant techniques.
  • the O-linked oligosaccharide is linked to a naturally occurring O-linked glycosylation sequence which is not exposed to glycosylation in the wild type Factor VIII molecule but is becoming accessible to O-glycosylation as a consequence of truncation of the B domain.
  • An example thereof is shown in the examples and in SEQ ID NO 2 (the truncated B-domain corresponds to amino acids 742-763). It is plausible that the “hidden” O-glycosylation site in SEQ ID NO 2 will also become glycosylated even if the B-domain is truncated at a somewhat different place, i.e. if the truncated B domain is somewhat shorter (e.g.
  • O-glycans can be modified and terminated with the addition of sialic acid residues relatively early in biosynthesis.
  • Certain sialyltransferase enzymes are capable of acting on GalNAc ⁇ -Ser/Thr, or early O-glycan core subtypes after Core 1 GalT action.
  • T antigen is associated with the presence of the Gal ⁇ 1-3GalNAc ⁇ -Ser/Thr disaccharide.
  • Production of these structures involves a competition among glycosyltransferases for the same substrate and thus thee expression levels and subcellular distributions of glycosyltransferases within the Golgi apparatus determines the structural outcome in O-glycan biosynthesis and diversification. As illustrated in FIG. 1 , only the Gal ⁇ 1-3GalNAc ⁇ -Ser/Thr disaccharide is amenable for glycoPEGylation.
  • the available amount of this structure may be greatly enhanced through treatment of the protein with sialidase or Corel GalT or a combination thereof.
  • sialidase or Corel GalT or a combination thereof.
  • the Sialic acid PEG is added to the native structure through an ⁇ 3 bond to the Gal ⁇ 1-3GalNAc ⁇ -Ser/Thr disaccharide of the target protein ( FIG. 1 ).
  • hydrophilic polymers can also be attached to O-linked oligosaccharides.
  • the basic requirement for enzymatically conjugating other hydrophilic polymers to FVIII via the O-glycan is the ability to couple them to the glycyl-Sialic acid derivative via the free amino group as disclosed in WO03031464. This may be achieved through a large variety of coupling chemistries known to those skilled in the art.
  • activated biocompatible polymer includes polyalkylene oxides such as without limitation polyethylene glycol (PEG), 2-(methacryloyloxy)ethyl phosphorylcholine (mPC) polymers (as described in WO03062290), dextrans, colominic acids or other carbohydrate based polymers, polymers of amino acids or of specific peptides sequences, biotin derivatives, polyvinyl alcohol (PVA), polycarboxylates, polyvinylpyrrolidone, polyethylene-co-maleic acid anhydride, polystyrene-co-malic acid anhydride, polyoxazoline, poly-acryloylmorpholine, heparin, albumin, celluloses, hydrolysates of chitosan, starches such as hydroxyethyl-starches and hydroxy propyl-starches, glycogen, agaroses and derivatives thereof, guar gum, pullulan, inulin, xanthan gum, carrageenan
  • a pharmaceutical composition is herein preferably meant to encompass compositions comprising Factor VIII molecules according to the present invention suitable for parenteral administration, such as e.g. ready-to-use sterile aqueous compositions or dry sterile compositions that can be reconstituted in e.g. water or an aqueous buffer.
  • the compositions according to the invention may comprise various pharmaceutically acceptable excipients, stabilizers, etc.
  • Additional ingredients in such compositions may include wetting agents, emulsifiers, antioxidants, bulking agents, tonicity modifiers, chelating agents, metal ions, oleaginous vehicles, proteins (e.g., human serum albumin, gelatine or proteins) and a zwitterion (e.g., an amino acid such as betaine, taurine, arginine, glycine, lysine and histidine).
  • proteins e.g., human serum albumin, gelatine or proteins
  • a zwitterion e.g., an amino acid such as betaine, taurine, arginine, glycine, lysine and histidine.
  • Such additional ingredients should not adversely affect the overall stability of the pharmaceutical formulation of the present invention.
  • Parenteral administration may be performed by subcutaneous, intramuscular, intraperitoneal or intravenous injection by means of a syringe, optionally a pen-like syringe.
  • parenteral administration can be performed by means of an infusion pump.
  • a composition which may be a solution or suspension for the administration of the FVIII compound in the form of a nasal or pulmonal spray.
  • the pharmaceutical compositions containing the FVIII compound of the invention may also be adapted to transdermal administration, e.g. by needle-free injection or from a patch, optionally an iontophoretic patch, or transmucosal, e.g. buccal, administration.
  • the present invention thus relates to a B-domain truncated Factor VIII molecule with a modified circulatory half life, said molecule being covalently conjugated with a hydrophilic polymer via an O-linked oligosaccharide in the truncated B domain, wherein Factor VIII activation (activation of the molecule) results in removal of the covalently conjugated hydrophilic polymer.
  • the hydrophilic polymer is PEG.
  • the size of the PEG polymer may vary from about 10,000 to about 160,000 Da; such as 10,000 to 80,000 Da, such as e.g. about 10,000; 15,000, 20,000; 25,000; 30,000; 35,000; 40,000; 45,000; 50,000; 55,000; 60,000; 65,000, 70,000; 75,000; or 80,000 Da.
  • the O-linked oligosaccharide is attached to an O-glycosylation site that is made by truncation of the B-domain and not by inserting an artificial O-glycosylation site that is not found in the wt FVIII molecule.
  • the molecule according to the present invention comprises the amino acid sequence as set forth in SEQ ID NO 2.
  • Such molecules have a unique feature in that the activated FVIII molecule is identical to the native active FVIII molecule. This feature appears to have advantageous properties in safety assessments.
  • the present invention also relates to pharmaceutical compositions comprising molecules according to the present invention.
  • the present invention furthermore relates to a method of obtaining a molecule according to the present invention, wherein said method comprises conjugating a B-domain truncated Factor VIII molecule with a hydrophilic polymer, such as e.g. a PEG group, via an O-linked oligosaccharide in the truncated B domain.
  • a hydrophilic polymer such as e.g. a PEG group
  • the present invention relates to a method of treatment of a haemophilic disease comprising administering to a patient in need thereof a therapeutically effective amount of a molecule according to the invention.
  • treatment refers to the medical therapy of any human or other animal subject in need thereof. Said subject is expected to have undergone physical examination by a medical practitioner, who has given a tentative or definitive diagnosis which would indicate that the use of said specific treatment is beneficial to the health of said human or other animal subject.
  • the timing and purpose of said treatment may vary from one individual to another, according to the status quo of the subject's health.
  • said treatment may be prophylactic, palliative, symptomatic and/or curative.
  • the present invention relates to use of a molecule according to the invention as a medicament as well as use of a molecule according to the invention for manufacture of a medicament for treatment of haemophilia.
  • the present invention relates to a method of engineering a B-domain truncated Factor VIII molecule according to the present invention, said method comprising (i) truncating the B-domain and optionally subjecting the amino acid sequence of this truncated Factor VIII molecule to an analysis identifying potential O-linked glycosylation sites, (ii) producing the molecule in a suitable host cell and (iii) selecting molecules having O-linked glycans in the truncated B-domain.
  • the size of the conjugated groups is sometimes referred to as “K”, which is herein meant to be equivalent to KDa (kilo Dalton).
  • FIG. 1 Schematic drawing of glycol PEGylation process of O-linked oligosaccharides. The figure does not represent an exhaustive list of possible ways to arrive at the products obtained in the examples.
  • FIG. 2 Ion-exchange chromatography of the reaction mixture on Source 15Q (A). SDS-PAGE with molecular markers (left) of collected fraction (B).
  • FIG. 3 Purification of the capped product on superdex 200 size-exclusion chromatography.
  • FIG. 4 Clotting activity of O-glycoPEGylated rFVIII using various aPTT reagents.
  • A shows the ration between the clotting activity and the chromogenic activity.
  • B shows the specific clotting activity.
  • FIG. 5 In vivo effects (time to occlusion) in FVIII KO mice of 40K-PEG-[O]-N8
  • FIG. 6 Flow diagram showing the process steps involved in production of glycoPEGylated Factor FVIII according to the invention.
  • FIG. 7 Schematic representation of a Factor VIII molecule according to the present invention produced in the Examples.
  • SEQ ID NO 2 An example of the amino acid sequence of a B-domain deleted Factor VIII molecule is given in SEQ ID NO 2.
  • This polypeptide may also be referred to as “N8”.
  • This molecule comprises a 21 amino acid residue linker sequence (SFSQNSRHP S QNPPVLKRHQR—the underlined S is the Serine residue with the O-glygan that is pegylated in Example 2).
  • Factor VIII molecules according to the present invention may in the Examples be referred to in various ways—but all references to Factor VIII molecules refer to Factor VIII molecules according to the invention, or alternatively Factor VIII molecules in the process of being converted to Factor VIII molecules according to the invention.
  • SEQ ID NO 2 ATRRYYLGAVELSWDYMQSDLGELPVDARFPPRVPKSFPFNTSVVYKKTLFVEFTDHLFNIAKPRPP WMGLLGPTIQAEVYDTVVITLKNMASHPVSLHAVGVSYWKASEGAEYDDQTSQREKEDDKVFPGGS HTYVWQVLKENGPMASDPLCLTYSYLSHVDLVKDLNSGLIGALLVCREGSLAKEKTQTLHKFILLFAVF DEGKSWHSETKNSLMQDRDAASARAWPKMHTVNGYVNRSLPGLIGCHRKSVYWHVIGMGTTPEVH SIFLEGHTFLVRNHRQASLEISPITFLTAQTLLMDLGQFLLFCHISSHQHDGMEAYVKVDSCPEEPQLR MKNNEEAEDYDDDLTDSEMDVVRFDDDNSPSFIQIRSVAKKHPKTWVHYIAAEEEDWDYAPLVLAPD DRSYKSQYLNNGPQRIGRKYKKVRFMAYT
  • a mammalian expression plasmid encoding B-domain deleted Factor VIII having an amino acid sequence as set forth in SEQ ID NO 2 was constructed.
  • the plasmid is encoding Factor VIII heavy chain comprising amino acid 1-740 of full length human Factor VIII and Factor VIII light chain comprising amino acid 1649-2332 of full length human Factor VIII.
  • the heavy and light chain sequences are connected by a 21 amino acid linker with the sequence of amino acid 741-750 and 1638-1648 of full length human Factor VIII.
  • Chinese hamster ovary (CHO) cells were transfected with the BDD Factor VIII coding plasmid and selected with the dihydrofolate reductase system eventually leading to a clonal suspension producer cell cultivated in animal component-free medium.
  • the first step in the process is the inoculation of a cell vial, from a working cell bank vial, into a chemically defined and animal component free growth medium. Initially after thawing, the cells are incubated in a T-flask. One or two days after thawing, the cells are transferred to a shaker flask, and the culture volume is expanded by successive dilutions in order to keep the cell density between 0.2-3.0 ⁇ 10 6 cells/ml. The next step is the transfer of the shaker flask culture into seed bioreactors. The culture volume is here further expanded before the final transfer to the production bioreactor. The same chemically defined and animal component free medium is used for all the inoculum expansion steps.
  • the medium is supplemented with components that increase the product concentration.
  • the cells are cultured in a repeated batch process with a cycle time of three days. At harvest, 80-90% of the culture volume is transferred to a harvest tank. The remaining culture fluid is then diluted with fresh medium, in order to obtain the initial cell density, and then a new growth period is initiated.
  • the harvest batch is clarified by centrifugation and filtration and transferred to a holding tank before initiation of the purification process.
  • a buffer is added to the cell free harvest in the holding tank to stabilise pH.
  • a four step purification procedure was used including a concentration step on a Capto MMC column, an immunoabsorbent chromatography step, an anionic exchange chromatography and finally a gelfiltration step.
  • the column was washed with 75 ml of buffer A followed by wash with 75 ml of buffer A containing 1.5 M NaCl.
  • F25 A monoclonal antibody against Factor VIII has been developed (Kjalke Eur J Biochem 234 773). By epitope mapping (results not shown) this antibody, F25, was found to recognise the far C-terminal sequence of the heavy chain from amino acid residue 725 to 740.
  • the F25 antibody was coupled to NHS-activated Sepharose 4 FF (GE Healthcare, Bio-Sciences AB, Uppsala, Sweden) at a density of 2.4 mg per ml of gel essentially as described by the manufacturer.
  • a column (1 ⁇ 10 cm) of Macro-Prep 25Q Support Bio-Rad Laboratories, Hercules, Calif., USA
  • the pool from the previous step was diluted 10 times with buffer A and pumped onto the column with a flow of 2 ml/min.
  • the column was washed with 85% buffer A/15% buffer B at a flow of 2 ml/min and Factor VIII was eluted with a linear gradient from 15% buffer B to 70% buffer B over 120 ml at a flow of 2 ml/min.
  • Fractions of 2 ml were collected and assayed for Factor VIII activity (CoA-test).
  • Factor VIII containing fractions were pooled and normally a pool volume of around 36 ml was obtained.
  • the cell line used for manufacture of N8 is a recombinant Chinese hamster ovary (CHO) cell line stably transfected with expression plasmid #814 F8-500 in pTSV7 consisting of the pTSV7 expression vector with an insert containing cDNA encoding the F8-500 protein.
  • N8 is herein meant to correspond to a protein having an amino acid sequence as listed in SEQ ID NO 2.
  • the F8-500 protein (N8) consists of the FVIII signal peptide (amino acids ⁇ 19 to ⁇ 1) followed by the FVIII heavy chain without the B domain (amino acids 1-740), a 21 amino acid linker (SFSQNSRHPSQNPPVLKRHQR), and the FVIII light chain (amino acids 1649-2332 of wild-type human FVIII).
  • the sequence of the 21 amino acid linker is derived from the FVIII B domain and consists of amino acids 741-750 and 1638-1648 of full length FVIII.
  • CHO cells were transfected with 814 F8-500 in pTSV7 and selected with the dihydrofolate reductase system eventually leading to a clonal suspension producer cell cultivated in animal component-free medium.
  • a production run is initiated by thawing a working cell bank vial and expanding the cells until transfer to a production bioreactor. The same chemically defined and animal component free medium is used for all the inoculum expansion steps. After transfer to the production bioreactor, the medium is supplemented with components that increase the product concentration.
  • the cells are cultured in a repeated batch process with a cycle time of three days. At harvest, 80-90% of the culture volume is transferred to a harvest tank.
  • the remaining culture fluid is then diluted with fresh medium, in order to obtain the initial cell density, and then a new growth period is initiated.
  • the harvest batch is clarified by centrifugation and filtration and transferred to a holding tank before initiation of the purification process.
  • a buffer is added to the cell free harvest in the holding tank to stabilize pH.
  • the recombinant Factor VIII molecules obtained in Example 1 are conjugated with polyethylenglycol (PEG) using the following procedure:
  • a buffer containing 50 mM MES, 50 mM CaCl2, 150 mM NaCl, 20% glycerol, pH 6.0 was found to be a suitable reaction buffer.
  • Reaction buffer composition Precipitate % Aggregate 10 mM Histidine, 260 mM Glycine, YES n.d. 1% Sucrose, 10 mM CaCl2 50 mM HEPES, 10 mM CaCl2, 150 mM NaCl, YES n.d. pH 7; 50 mM MES, 10 mM CaCl2, 150 mM NaCl, YES n.d.
  • Recombinant FVIII which had been purified as described above was concentrated in reaction buffer either by ion exchange on a Poros 50 HQ column using step elution, on a Sartorius Vivaspin (PES) filter, 10 kDa cut-off or on an Amicon 10 kDa MWCO PES filter to a concentration of 6-10 mg/mL.
  • the glycoPEGylation of FVIII was initiated by mixing Factor VIII (BDD) ( ⁇ 4.7 mg/mL final) with Sialidase ( A.
  • reaction buffer 50 mM MES, 50 mM CaCl2, 150 mM NaCl, 20% glycerol, 0.5 mM antipain, pH 6.0.
  • the reaction mixture was incubated at 32° C. until a conversion yield of ⁇ 20-30% of total.
  • the sample was diluted with Buffer A (25 mM Tris, 5 mM CaCl 2 , 20 mM NaCl, 20% glycerol, pH 7.5) and applied onto a Source 15Q column (1 cm id ⁇ 6 cm, 4.7 mL, 1 mL/min, 280 nm).
  • Buffer A 25 mM Tris, 5 mM CaCl 2 , 20 mM NaCl, 20% glycerol, pH 7.5
  • Buffer B 25 mM Tris, 5 mM CaCl 2 , 1 M NaCl, 20% glycerol, pH 7.5.
  • FIG. 2 shows ion-exchange chromatography of the reaction mixture on Source 15Q.
  • the pooled fraction of Factor VIII-SA-glycerol-PEG-40 kDa (1.0 mg/mL final) was mixed with CMP-SA (2,000 mol eq) and MBP-SBD-ST3Gal3 (400 mU/mL) in reaction buffer 50 mM MES, 20 mM CaCl2, 150 mM NaCl, 10 mM MnCl2, 20% glycerol, pH 6.0 and incubated at 32° C. for 11 hours.
  • the resulting capped, glycoPEGylated Factor VIII-SA-glycerol-PEG-40 kDa was separated from CMP-SA and ST3GalIII by gel-filtration on a Superdex 200 column (10 cm id ⁇ 300 mm; 280 nm) equilibrated with 50 mM MES, 50 mM CaCl2, 150 mM NaCl, 10% glycerol, pH 6.0; flow rate of 0.25 mL/min.
  • FIG. 3 shows purification of the capped product using Superdex 200 size-exclusion chromatography. The peak fraction was collected, aliquoted and subjected to subsequent analysis.
  • the purpose of the capping procedure is to reduce in vivo clearance of the conjugated Factor VIII molecule.
  • the activity of the O-glycoPEGylated rFVIII obtained in Example 2 was evaluated in a chromogenic FVIII assay using Coatest SP reagents (Chromogenix) as follows: rFVIII samples and calibrator (the 7th international FVIII standard from NIBSC) were diluted in Coatest assay buffer (50 mM Tris, 150 mM NaCl, 1% BSA, pH 7.3, with preservative). Fifty ⁇ l of samples, standards, and buffer negative control were added to 96-well microtiter plates (Nunc) in duplicates.
  • the Factor IXa/Factor X reagent, the phospholipid reagent and CaCl 2 from the Coatest SP kit were mixed 5:1:3 (vol:vol:vol) and 75 ⁇ l of this added to the wells. After 15 min incubation at room temperature 50 ⁇ l of the Factor Xa substrate S-2765/thrombin inhibitor I-2581 mix was added and the reactions incubated 10 min at room temperature before 25 ⁇ l 1 M citric acid, pH 3, was added. The absorbance at 415 nm was measured on a Spectramax microtiter plate reader (Molecular Devices) with absorbance at 620 nm used as reference wavelength.
  • the value for the negative control was subtracted from all samples and a calibration curve prepared by linear regression of the absorbance values plotted vs. FVIII concentration.
  • the specific activity was calculated by dividing the activity of the samples with the protein concentration determined by size exclusion HPLC by integrating the light chain peak in the HPLC chromatogram, i.e. the PEG-moiety was not included.
  • the data in table 2 demonstrate that the specific chromogenic activity was maintained for the O-glycoPEGylated rFVIII compounds, meaning that Factor VIII activity appear to be retained in the PEGylated variants.
  • rFVIII The activity of the O-glycoPEGylated rFVIII was further evaluated in FVIII clotting assay.
  • rFVIII samples were diluted in HBS/BSA (20 mM hepes, 150 mM NaCl, pH 7.4 with 1% BSA) to approximately 10 U/ml followed by 10-fold dilution in FVIII-deficient plasma containing VWF (Dade Behring).
  • the samples and a calibrated plasma standard HemosIL Calibration Plasma from Instrumentation Laboratory
  • the clotting time was measured on an ACL9000 instrument (Instrumentation laboratory) using the single factor program, where samples/standards were mixed with equal volumes of FVIII-deficient plasma with VWF (Dade Behring), calcium and aPTT reagents, and the clotting time measured.
  • reagents the following were used: Synthasil (HemosIL, Instrumentation Laboratory), Actin FS (Activated PTT Reagent, Dade Behring) Stago (STA® PTT-A, Stago), and dAPPTin (DAPPTIN®TC, Technoclone).
  • the activities of the samples were calculated based on a semi-log plot of clotting time versus concentration of the calibrator.
  • the clotting activity ( FIG. 4 ) of the O-glycoPEGyated rFVIII compounds was decreased to various extend depending on the PEG size and the aPTT reagents used.
  • Synthasil or dAPPTin as aPTT reagents resulted in a gradual decrease in clotting activity with PEG-size.
  • Stago's aPTT reagent a 50% lower specific clotting activity was observed for all three O-glycoPEGylated N8 compounds evaluated.
  • Actin FS was used as aPTT reagent a specific clotting activity around 10,000 IU/mg was maintained.
  • the data indicates that the aPTT assay is influenced by the presence of a PEG moiety, however, using a selected aPTT reagents e.g. Actin FS the specific clotting activity of rFVIII is not impaired upon O-glycoPEGylation.
  • aPTT reagents e.g. Actin FS the specific clotting activity of rFVIII is not impaired upon O-glycoPEGylation.
  • the co-factor activity of thrombin-activated rFVIII or PEG-rFVIII was characterized by determining the kinetic parameters of FIXa-catalyzed FX activation in the presence of phospholipids and thrombin-activated rFVIII or PEG-rFVIII.
  • FVIIIa activity assay FIXa-cofactor activity assay
  • reciprocal titrations of FIXa and FVIIIa against a fixed concentration (0.1 nM) of rFVIIIa or FIXa, respectively were performed to obtain apparent affinity of FIXa for rFVIIIa (K 1/2FIXa ) and functional FVIIIa concentration.
  • the Michaelis constant (k m ) and turn-over number (k cat ) of FX activation were obtained from titrations of FX against a fixed concentration of FIXa-FVIIIa complex.
  • FIXa-cofactor activity assays was carried out as follows: Thrombin-activated rFVIII and PEG-rFVIII variants were prepared freshly for each test by incubating rFVIII (usually 0.7 nM, 1 U/mL) with 5 nM human ⁇ -thrombin for exactly 30 seconds at 37° C.
  • the rate of FX activation was quantified by subsampling the activation reaction above into a prepared mixture of FIXa, phospholipid vesicles (Phospholipid TGT from Rossix [Molndal, Sweden]), hirudin, Pefabloc Xa and CaCl 2 ; FX activation was initiated by addition of FX and allowed to proceed for either 30 seconds or 60 seconds at 37° C. Activation was stopped by dilution of the FX activation reaction into ice cold buffer containing EDTA. Using a FXa specific chromogenic substrate, the concentration of FXa was quantified by reading absorbance at 405 nM in an ELISA reader.
  • a reference curve prepared using purified FXa was used to convert absorbance to FXa concentration.
  • the turn-over number of FIXa-rFVIIIa complexes assembled from activated rFVIII or PEG-rFVIII variants was used to convert the rate of FX activation to rFVIIIa concentration.
  • the rate of thrombin-catalyzed rFVIII activation was measured by quantifying the initial (0 to 3 min) formation of rFVIIIa in a mixture containing 0.7 nM rFVIII or PEG-rFVIII and 0.13 nM human thrombin. Formation of FVIIIa was linear in time. The rate of FVIIIa activation was expressed as moles rFVIIIa formed per minute per mole of rFVIII initially present (v/[rFVIII] 0 ).
  • O-linked glycoPEGylation of rFVIII did not affect the rate of thrombin-catalyzed rFVIII activation or the k m or k cat of FIXa-catalyzed activation of FX in the presence of activated rFVIII (see Table 3). Furthermore, O-linked glycoPEGylation did not affect the apparent K d of rFVIIIa-FIXa interaction (K 1/2FIXa ).
  • FIG. 4 shows clotting activity of O-glycoPEGylated rFVIII using various aPTT reagents. Data are shown as the ratio between the clotting activity and the chromogenic activity (A) or as the specific clotting activity (B). Mean and standard deviations of values from three independent experiments are shown.
  • BDD-FVIII BDD-FVIII-10K PEG (O-glycan, 0129-0000-1005), BDD-FVIII-40K PEG (O-glycan, 0129-0000-1003), BDD-FVIII-2 ⁇ 40K PEG (O and N-glycan 0129-0000-1008-1A), BDD-FVIII-80K PEG (N-glycan, 0129-0000-1012, O-glycan 0129-0000-1009).
  • FVIII KO mice Factor VIII knock out mice were bred at Taconic M&B, based on exon 16 KO in C57Bl/6 background. A mixture of male and female (app.1:1) with an approximate weight of 25 g and age range of 19-26 weeks were employed. The mice were not fully back-crossed. No FVIII is detected in this mouse strain.
  • mice were given single i.v. injections of 280 IU/kg in the tail vein with the compounds listed above. If a mouse was dosed peri-veneously, the mouse was exchanged with another mouse. After dosing, orbital plexus blood samples were collected from pre-dose until 64 hours after dosing using non-coated capillary glass tubes. Three samples were taken from each mouse, and 2, 3 or 4 samples were collected at each time point. Blood was stabilised in sodium citrate (9:1) and diluted in FVIII COA SP buffer (1:4) before centrifugation for 5 minutes at 4000 g. Plasma obtained from diluted blood was frozen at dry ice at kept at ⁇ 80° C. before quantitative analysis by means of FVIII chromogenic activity and/or FVIII antigen analysis.
  • the FVIII chromogenic activity was determined by the use of reagents from the Coatest SP kit (Chromogenix). Diluted plasma samples, calibrators (ILS calibration plasma) in Coatest SP-buffer, and buffer negative control (50 ⁇ l) were added to 96-well microtiter plates (Nunc) in duplicates.
  • the Factor IXa/Factor X reagent, the phospholipid reagent and CaCl2 from the Coatest SP kit were mixed 5:1:3 (vol:vol:vol) and 75 ⁇ l of this added to the wells.
  • the FVIII antigen assay was a commercial available ELISA kit from Diagnostica Stago (Asserachrom VIII:CAg) using two monoclonal antibodies directed against the light chain of human FVIII. Calibrators (dilutions of the compounds) or plasma samples were diluted at least 50-fold in coatest SP dilution buffer supplied by the kit were applied to the precoated wells and the ELISA performed according to the manufactures instructions. The values used for reporting the pharmacokinetic study are based on the standard curve made from the compounds themselves.
  • NCA non-compartmental methods
  • GlycoPEGylation of BDD-FVIII increased the T1 ⁇ 2 1.3-2.1 fold as compared to BDD-FVIII after i.v. administration of 2801 IU/kg to FVIII KO mice.
  • An increasing T1 ⁇ 2 was observed as the size of the PEG group was increased in the range of 10 KDa to 80 KDa PEG.
  • mice were anesthetized and placed on a heating pad (37° C.) to maintain body temperature.
  • the carotid artery was exposed and a flow-probe (0.5PSB Nanoprobe) that measures blood flow by ultrasound was placed around the artery.
  • the injury an iron-mediated chemical oxidation
  • the filter paper was removed after 3 min.
  • the artery was then washed three times with 0.9% NaCl and finally Surgilube (an acoustic coupler) was applied in order to displace air in the flow-probe and secure an optimised measurement of the blood flow.
  • mice treated with 40 KDa-PEG-[0]-N8 occlusion was observed 24 hours after dosing whereas only 67% of the mice treated with Advate occluded. After 72 hours occlusion was still seen in 63% of the mice treated with 40 KDa-PEG-[0]-N8, whereas no occlusion was observed 60 and 72 hours after administration of Advate.
  • the FeCl3 induced injury was made 5 min (acute effect), 24, 48, 60, and 72 hours after dosing 280 IU/kg 40 KDa-PEG-[O]-N8, 280 IU/kg Advate, or vehicle.
  • the blood flow (ml/min) was recorded for 25 min after removal of FeCl3, and subsequently the time to occlusion was determined.
  • Mean and SEM of 6-10 mice per group are shown. Time to occlusion between the different groups was compared using Kruskal-Wallis test including Dunn's post test. *: p ⁇ 0.05; **: p ⁇ 0.01.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Zoology (AREA)
  • Epidemiology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Diabetes (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
US12/597,473 2008-02-27 2009-02-26 Conjugated Factor VIII Molecules Abandoned US20130189239A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/597,473 US20130189239A1 (en) 2008-02-27 2009-02-26 Conjugated Factor VIII Molecules
US13/759,261 US8536126B2 (en) 2008-02-27 2013-02-05 Conjugated factor VIII molecules

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US3200608P 2008-02-27 2008-02-27
US12/597,473 US20130189239A1 (en) 2008-02-27 2009-02-26 Conjugated Factor VIII Molecules
PCT/US2009/035339 WO2009108806A1 (en) 2008-02-27 2009-02-26 Conjugated factor viii molecules

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US61032006 Continuation-In-Part 2008-02-27
PCT/US2009/035339 A-371-Of-International WO2009108806A1 (en) 2008-02-27 2009-02-26 Conjugated factor viii molecules

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/759,261 Continuation US8536126B2 (en) 2008-02-27 2013-02-05 Conjugated factor VIII molecules
US14/272,726 Continuation US9150848B2 (en) 2008-02-27 2014-05-08 Conjugated factor VIII molecules

Publications (1)

Publication Number Publication Date
US20130189239A1 true US20130189239A1 (en) 2013-07-25

Family

ID=42634664

Family Applications (4)

Application Number Title Priority Date Filing Date
US12/597,473 Abandoned US20130189239A1 (en) 2008-02-27 2009-02-26 Conjugated Factor VIII Molecules
US13/759,261 Active US8536126B2 (en) 2008-02-27 2013-02-05 Conjugated factor VIII molecules
US14/272,726 Active US9150848B2 (en) 2008-02-27 2014-05-08 Conjugated factor VIII molecules
US14/831,515 Abandoned US20160222086A1 (en) 2008-02-27 2015-08-20 Conjugated Factor VIII Molecules

Family Applications After (3)

Application Number Title Priority Date Filing Date
US13/759,261 Active US8536126B2 (en) 2008-02-27 2013-02-05 Conjugated factor VIII molecules
US14/272,726 Active US9150848B2 (en) 2008-02-27 2014-05-08 Conjugated factor VIII molecules
US14/831,515 Abandoned US20160222086A1 (en) 2008-02-27 2015-08-20 Conjugated Factor VIII Molecules

Country Status (16)

Country Link
US (4) US20130189239A1 (de)
EP (3) EP2257311B1 (de)
JP (3) JP5619630B2 (de)
KR (1) KR101582841B1 (de)
CN (3) CN103497247A (de)
AU (1) AU2009219232B2 (de)
CA (1) CA2715465C (de)
DK (1) DK2257311T3 (de)
ES (1) ES2476690T3 (de)
IL (1) IL207188A (de)
MX (1) MX2010009154A (de)
PL (1) PL2257311T3 (de)
RU (1) RU2573587C2 (de)
TW (1) TWI425953B (de)
WO (1) WO2009108806A1 (de)
ZA (1) ZA201005556B (de)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2101821B1 (de) 2006-12-15 2014-08-13 Baxter International Inc. Faktor-viia-(poly)sialsäurekonjugat mit verlängerter in-vivo-halbwertszeit
EP2417155B1 (de) * 2009-04-06 2013-06-19 Novo Nordisk A/S Gezielte fresetzung von faktor-viii-proteinen auf thrombozyten
US8809501B2 (en) 2009-07-27 2014-08-19 Baxter International Inc. Nucleophilic catalysts for oxime linkage
EP2459224B1 (de) 2009-07-27 2016-06-01 Baxalta GmbH Koagulationsproteinkonjugate
US8642737B2 (en) 2010-07-26 2014-02-04 Baxter International Inc. Nucleophilic catalysts for oxime linkage
SG10201401194VA (en) 2009-07-27 2014-07-30 Lipoxen Technologies Ltd Glycopolysialylation of non-blood coagulation proteins
NZ597600A (en) 2009-07-27 2014-05-30 Lipoxen Technologies Ltd Glycopolysialylation of non-blood coagulation proteins
EP4382170A2 (de) * 2009-12-06 2024-06-12 Bioverativ Therapeutics Inc. Chimäre und hybride faktor-viii-fc-polypeptide und verfahren zur verwendung davon
EP2536753B1 (de) * 2010-02-16 2017-12-20 Novo Nordisk A/S Faktor-VIII-Moleküle mit reduzierter VWF-Bindung
JP2013519699A (ja) * 2010-02-16 2013-05-30 ノヴォ ノルディスク アー/エス 因子viii融合タンパク質
EP2536752B1 (de) * 2010-02-16 2015-04-08 Novo Nordisk A/S Modifizierter, rekombinanter Faktor VIII
ES2582590T3 (es) 2010-02-16 2016-09-13 Novo Nordisk A/S Método de purificación
WO2012007324A2 (en) 2010-07-15 2012-01-19 Novo Nordisk A/S Stabilized factor viii variants
CN103209992A (zh) 2010-09-15 2013-07-17 诺沃—诺迪斯克有限公司 具有减少的细胞摄取的因子viii变体
WO2012038315A1 (en) 2010-09-22 2012-03-29 Novo Nordisk A/S Therapeutic factor viii antibodies
CA2821945A1 (en) 2010-12-16 2012-06-21 Novo Nordisk A/S Aqueous factor viii solution
NZ612320A (en) 2010-12-22 2015-06-26 Baxter Healthcare Sa Materials and methods for conjugating a water soluble fatty acid derivative to a protein
EP2680875B1 (de) 2011-03-02 2019-10-23 Novo Nordisk Health Care AG Gerinnungsfaktor-targeting auf tlt-1 auf aktivierten plättchen
EP2726496B1 (de) 2011-07-01 2018-04-04 F.Hoffmann-La Roche Ag Verfahren zum trennen von monomeren polypeptiden von aggregierten polypeptiden
IN2014CN02448A (de) 2011-09-23 2015-06-19 Novo Nordisk As
JP6072810B2 (ja) * 2011-10-18 2017-02-01 ツェー・エス・エル・ベーリング・ゲー・エム・ベー・ハー 第viii因子の生物学的利用能を改善するための硫酸化グリコサミノグリカンの使用
WO2013057171A1 (en) 2011-10-18 2013-04-25 Csl Behring Gmbh Combined use of a sulfated glycosaminoglycan and a hyaluronidase for improving the bioavailability of factor viii
EA033469B1 (ru) 2012-04-16 2019-10-31 Cantab Biopharmaceuticals Patents Ltd Подкожное введение конъюгатов факторов крови с полиэтиленгликолем
CN104411323A (zh) * 2012-04-24 2015-03-11 诺和诺德A/S(股份有限公司) 适用于治疗血友病的药物组合物
WO2013083858A1 (en) 2012-04-24 2013-06-13 Novo Nordisk A/S Compounds suitable for treatment of haemophilia
MX362275B (es) 2013-04-18 2019-01-10 Novo Nordisk As Co-agonista de peptido similar a glucagon tipo 1 (glp-1) receptor de glucagon de larga duracion, estables para uso medico.
AR101060A1 (es) * 2014-02-12 2016-11-23 Novo Nordisk As Conjugados de fviii
CN106536547A (zh) 2014-06-04 2017-03-22 诺和诺德股份有限公司 用于医疗用途的glp‑1/胰高血糖素受体共激动剂
KR102192494B1 (ko) 2014-08-04 2020-12-18 시에스엘 리미티드 인자 viii 제형
SG11201706659WA (en) 2015-03-06 2017-09-28 Csl Behring Recombinant Facility Ag Modified von willebrand factor having improved half-life
WO2016198521A1 (en) * 2015-06-10 2016-12-15 Novo Nordisk A/S Fviii fusion proteins
AU2016348658A1 (en) 2015-11-05 2018-04-12 Novo Nordisk A/S FVIII formulation
KR20180088727A (ko) * 2015-12-03 2018-08-06 박스알타 인코퍼레이티드 연장된 반감기 및 감소된 리간드-결합 특성을 가진 인자 viii
US11104718B2 (en) * 2016-11-16 2021-08-31 Bayer Healthcare Llc Red blood cell targeted factor VIII and method of using the same
KR20220029733A (ko) 2019-07-04 2022-03-08 체에스엘 베링 렝나우 아게 응고 인자 viii의 시험관내 안정성을 증가시키기 위한 절단된 폰 빌레브란트 인자 (vwf)
EP4058049A1 (de) 2019-11-11 2022-09-21 CSL Behring Lengnau AG Polypeptide zur induktion der toleranz gegen faktor viii

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008011633A2 (en) * 2006-07-21 2008-01-24 Neose Technologies, Inc. Glycosylation of peptides via o-linked glycosylation sequences
US20080070275A1 (en) * 2001-10-10 2008-03-20 Neose Technologies, Inc. Factor VIII: Remodeling and glycoconjugation of factor VIII

Family Cites Families (404)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1479268A (en) 1973-07-05 1977-07-13 Beecham Group Ltd Pharmaceutical compositions
US4179337A (en) 1973-07-20 1979-12-18 Davis Frank F Non-immunogenic polypeptides
GB1451798A (en) 1973-08-02 1976-10-06 Ici Ltd Prostanoic acid derivatives
CH596313A5 (de) 1975-05-30 1978-03-15 Battelle Memorial Institute
US4385260A (en) 1975-09-09 1983-05-24 Beckman Instruments, Inc. Bargraph display
US4414147A (en) 1981-04-17 1983-11-08 Massachusetts Institute Of Technology Methods of decreasing the hydrophobicity of fibroblast and other interferons
JPS57206622A (en) 1981-06-10 1982-12-18 Ajinomoto Co Inc Blood substitute
US4451566A (en) 1981-12-04 1984-05-29 Spencer Donald B Methods and apparatus for enzymatically producing ethanol
US4438253A (en) 1982-11-12 1984-03-20 American Cyanamid Company Poly(glycolic acid)/poly(alkylene glycol) block copolymers and method of manufacturing the same
DE3474632D1 (en) 1983-03-01 1988-11-24 Crc Ricerca Chim Pharmaceutical compositions containing the cytidine monophosphate of 5-acetamido-3,5-dideoxy-d-glycero-d-galactononulosaminic acid
DE3308806A1 (de) 1983-03-12 1984-09-13 Basf Ag, 6700 Ludwigshafen Fungizide mittel, substituierte glucopyranosylamine und verfahren zur bekaempfung von pilzen
JPS59172425A (ja) 1983-03-18 1984-09-29 Nippon Chemiphar Co Ltd 新規な血液凝固因子誘導体およびその製造法ならびにそれを含有する血液凝固促進剤
US4496689A (en) 1983-12-27 1985-01-29 Miles Laboratories, Inc. Covalently attached complex of alpha-1-proteinase inhibitor with a water soluble polymer
US4565653A (en) 1984-03-30 1986-01-21 Pfizer Inc. Acyltripeptide immunostimulants
US4879236A (en) 1984-05-16 1989-11-07 The Texas A&M University System Method for producing a recombinant baculovirus expression vector
US4970300A (en) 1985-02-01 1990-11-13 New York University Modified factor VIII
US4675414A (en) 1985-03-08 1987-06-23 The United States Of America As Represented By The Secretary Of The Navy Maleimidomethyl-carbonate polyethers
GR860984B (en) 1985-04-17 1986-08-18 Zymogenetics Inc Expression of factor vii and ix activities in mammalian cells
WO1987000056A1 (en) 1985-06-26 1987-01-15 Cetus Corporation Solubilization of proteins for pharmaceutical compositions using polymer conjugation
US5206344A (en) 1985-06-26 1993-04-27 Cetus Oncology Corporation Interleukin-2 muteins and polymer conjugation thereof
JPS6238172A (ja) 1985-08-12 1987-02-19 株式会社 高研 抗血栓性医用材料の製造方法
SE451849B (sv) 1985-12-11 1987-11-02 Svenska Sockerfabriks Ab Sett att syntetisera glykosidiska bindningar samt anvendning av pa detta sett erhallna produkter
IT1213029B (it) 1986-01-30 1989-12-07 Bracco Ind Chimica Spa Chelati di ioni metallici paramagnetici.
US4767702A (en) 1986-02-06 1988-08-30 Cohenford Menashi A Paper strip assay for neisseria species
US5272066A (en) 1986-03-07 1993-12-21 Massachusetts Institute Of Technology Synthetic method for enhancing glycoprotein stability
US4925796A (en) 1986-03-07 1990-05-15 Massachusetts Institute Of Technology Method for enhancing glycoprotein stability
JPS63502716A (ja) 1986-03-07 1988-10-13 マサチューセッツ・インステチュート・オブ・テクノロジー 糖タンパク安定性の強化方法
US4902505A (en) 1986-07-30 1990-02-20 Alkermes Chimeric peptides for neuropeptide delivery through the blood-brain barrier
IL82834A (en) 1987-06-09 1990-11-05 Yissum Res Dev Co Biodegradable polymeric materials based on polyether glycols,processes for the preparation thereof and surgical artiicles made therefrom
US4847325A (en) 1988-01-20 1989-07-11 Cetus Corporation Conjugation of polymer to colony stimulating factor-1
US5153265A (en) 1988-01-20 1992-10-06 Cetus Corporation Conjugation of polymer to colony stimulating factor-1
GB8810808D0 (en) 1988-05-06 1988-06-08 Wellcome Found Vectors
US5169933A (en) 1988-08-15 1992-12-08 Neorx Corporation Covalently-linked complexes and methods for enhanced cytotoxicity and imaging
US5874261A (en) 1988-09-02 1999-02-23 The Trustees Of The University Of Pennsylvania Method for the purification of glycosyltransferases
US5218092A (en) 1988-09-29 1993-06-08 Kyowa Hakko Kogyo Co., Ltd. Modified granulocyte-colony stimulating factor polypeptide with added carbohydrate chains
JPH0276894U (de) 1988-11-30 1990-06-13
US5104651A (en) 1988-12-16 1992-04-14 Amgen Inc. Stabilized hydrophobic protein formulations of g-csf
US5047335A (en) 1988-12-21 1991-09-10 The Regents Of The University Of Calif. Process for controlling intracellular glycosylation of proteins
US6166183A (en) 1992-11-30 2000-12-26 Kirin-Amgen, Inc. Chemically-modified G-CSF
ATE135370T1 (de) 1988-12-22 1996-03-15 Kirin Amgen Inc Chemisch modifizierte granulocytenkolonie erregender faktor
DE68929551T2 (de) 1988-12-23 2008-03-06 Genentech, Inc., South San Francisco Menschliche DNase
KR910700264A (ko) 1989-01-19 1991-03-14 로버트 에이. 아미테이지 소마토트로핀 유사물
JP3207416B2 (ja) 1989-01-31 2001-09-10 ファルマシア・アンド・アップジョン・カンパニー ソマトトロピン・アナログ類
US5194376A (en) 1989-02-28 1993-03-16 University Of Ottawa Baculovirus expression system capable of producing foreign gene proteins at high levels
US5059535A (en) 1989-04-12 1991-10-22 Chembiomed, Ltd. Process for the separation and purification of sialyl transferases
US5122614A (en) 1989-04-19 1992-06-16 Enzon, Inc. Active carbonates of polyalkylene oxides for modification of polypeptides
EP0470128B2 (de) 1989-04-19 2003-08-13 Enzon, Inc. Aktive karbonate von polyalkylenoxyden zur modifizierung von polypeptiden
US5324844A (en) 1989-04-19 1994-06-28 Enzon, Inc. Active carbonates of polyalkylene oxides for modification of polypeptides
US5166322A (en) 1989-04-21 1992-11-24 Genetics Institute Cysteine added variants of interleukin-3 and chemical modifications thereof
US5342940A (en) 1989-05-27 1994-08-30 Sumitomo Pharmaceuticals Company, Limited Polyethylene glycol derivatives, process for preparing the same
US5672683A (en) 1989-09-07 1997-09-30 Alkermes, Inc. Transferrin neuropharmaceutical agent fusion protein
US5977307A (en) 1989-09-07 1999-11-02 Alkermes, Inc. Transferrin receptor specific ligand-neuropharmaceutical agent fusion proteins
US5182107A (en) 1989-09-07 1993-01-26 Alkermes, Inc. Transferrin receptor specific antibody-neuropharmaceutical or diagnostic agent conjugates
US5154924A (en) 1989-09-07 1992-10-13 Alkermes, Inc. Transferrin receptor specific antibody-neuropharmaceutical agent conjugates
US5527527A (en) 1989-09-07 1996-06-18 Alkermes, Inc. Transferrin receptor specific antibody-neuropharmaceutical agent conjugates
US5032519A (en) 1989-10-24 1991-07-16 The Regents Of The Univ. Of California Method for producing secretable glycosyltransferases and other Golgi processing enzymes
US5312808A (en) 1989-11-22 1994-05-17 Enzon, Inc. Fractionation of polyalkylene oxide-conjugated hemoglobin solutions
IL96477A0 (en) 1989-12-01 1991-08-16 Amgen Inc Megakaryocyte production
SE465222C5 (sv) 1989-12-15 1998-02-10 Pharmacia & Upjohn Ab Ett rekombinant, humant faktor VIII-derivat och förfarande för dess framställning
US5324663A (en) 1990-02-14 1994-06-28 The Regents Of The University Of Michigan Methods and products for the synthesis of oligosaccharide structures on glycoproteins, glycolipids, or as free molecules, and for the isolation of cloned genetic sequences that determine these structures
US5595900A (en) 1990-02-14 1997-01-21 The Regents Of The University Of Michigan Methods and products for the synthesis of oligosaccharide structures on glycoproteins, glycolipids, or as free molecules, and for the isolation of cloned genetic sequences that determine these structures
DE4009630C2 (de) 1990-03-26 1995-09-28 Reinhard Prof Dr Dr Brossmer CMP-aktivierte fluoreszierende Sialinsäuren sowie Verfahren zu ihrer Herstellung
US5180674A (en) 1990-04-16 1993-01-19 The Trustees Of The University Of Pennsylvania Saccharide compositions, methods and apparatus for their synthesis
US5583042A (en) 1990-04-16 1996-12-10 Neose Pharmaceuticals, Inc. Apparatus for the synthesis of saccharide compositions
GB9107846D0 (en) 1990-04-30 1991-05-29 Ici Plc Polypeptides
US5951972A (en) 1990-05-04 1999-09-14 American Cyanamid Company Stabilization of somatotropins and other proteins by modification of cysteine residues
US5399345A (en) 1990-05-08 1995-03-21 Boehringer Mannheim, Gmbh Muteins of the granulocyte colony stimulating factor
US5219564A (en) 1990-07-06 1993-06-15 Enzon, Inc. Poly(alkylene oxide) amino acid copolymers and drug carriers and charged copolymers based thereon
CU22302A1 (es) 1990-09-07 1995-01-31 Cigb Secuencia nucleotidica codificante para una proteina de la membrana externa de neisseria meningitidis y uso de dicha proteina en preparados vacunales
DE59101397D1 (de) 1990-07-10 1994-05-19 Boehringer Ingelheim Int O-glycosyliertes ifn-alpha.
DE4028800A1 (de) 1990-09-11 1992-03-12 Behringwerke Ag Gentechnische sialylierung von glykoproteinen
US5529914A (en) 1990-10-15 1996-06-25 The Board Of Regents The Univeristy Of Texas System Gels for encapsulation of biological materials
US5410016A (en) 1990-10-15 1995-04-25 Board Of Regents, The University Of Texas System Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers
WO1992008790A1 (en) 1990-11-14 1992-05-29 Cargill, Incorporated Conjugates of poly(vinylsaccharide) with proteins for the stabilization of proteins
US5164374A (en) 1990-12-17 1992-11-17 Monsanto Company Use of oligosaccharides for treatment of arthritis
US5833982A (en) 1991-02-28 1998-11-10 Zymogenetics, Inc. Modified factor VII
US5788965A (en) 1991-02-28 1998-08-04 Novo Nordisk A/S Modified factor VII
US5861374A (en) 1991-02-28 1999-01-19 Novo Nordisk A/S Modified Factor VII
JP3459416B2 (ja) 1991-02-28 2003-10-20 ザイモジェネティクス,インコーポレイティド 修飾されたファクター▲vii▼
JPH06506217A (ja) 1991-03-18 1994-07-14 エンゾン,インコーポレーテッド ポリペプチドまたはグリコポリペプチドとポリマーとのヒドラジン含有結合体
CA2106301C (en) 1991-03-18 1999-04-06 Chi-Huey Wong Oligosaccharide enzyme substrates and inhibitors: method and compositions
US5278299A (en) 1991-03-18 1994-01-11 Scripps Clinic And Research Foundation Method and composition for synthesizing sialylated glycosyl compounds
US5212075A (en) 1991-04-15 1993-05-18 The Regents Of The University Of California Compositions and methods for introducing effectors to pathogens and cells
DE69231467T2 (de) 1991-05-10 2001-01-25 Genentech Inc Auswählen von agonisten und antagonisten von liganden
GB2256197B (en) 1991-05-31 1995-11-22 Ciba Geigy Ag Yeast as host for expression of heterologous glycosyl transferase enzymes
SE9201544L (sv) 1991-05-31 1992-12-01 Ciba Geigy Ag Saett att framstaella glykosyltransferaser
US5374655A (en) 1991-06-10 1994-12-20 Alberta Research Council Methods for the synthesis of monofucosylated oligosaccharides terminating in di-N-acetyllactosaminyl structures
US5352670A (en) 1991-06-10 1994-10-04 Alberta Research Council Methods for the enzymatic synthesis of alpha-sialylated oligosaccharide glycosides
KR950014915B1 (ko) 1991-06-19 1995-12-18 주식회사녹십자 탈시알로당단백-포함화합물
US5281698A (en) 1991-07-23 1994-01-25 Cetus Oncology Corporation Preparation of an activated polymer ester for protein conjugation
EP0863154A1 (de) 1991-10-12 1998-09-09 The Regents Of The University Of California Verwendung von Thiol-Redox-Proteinen zur Reduktion des intramolekularen Disulfid-Bindung bei Proteinen, zur Besserung der Qualität der Getreidenprodukte, des Teigs und der gebackenen Ware
US6319695B1 (en) 1991-10-15 2001-11-20 The Scripps Research Insitute Production of fucosylated carbohydrates by enzymatic fucosylation synthesis of sugar nucleotides; and in situ regeneration of GDP-fucose
EP0611306B1 (de) 1991-11-08 1998-07-08 Somatogen, Inc. Hämoglobine als arzneimittelabgabesystem
US5384249A (en) 1991-12-17 1995-01-24 Kyowa Hakko Kogyo Co., Ltd. α2→3 sialyltransferase
IT1260468B (it) 1992-01-29 1996-04-09 Metodo per mantenere l'attivita' di enzimi proteolitici modificati con polietilenglicole
US5858751A (en) 1992-03-09 1999-01-12 The Regents Of The University Of California Compositions and methods for producing sialyltransferases
DK0632831T3 (da) 1992-03-09 2003-03-24 Univ California Nukleinsyre, ekspressionsvektor og sammensætninger til identificering og syntese af rekombinante sialyltransferaser
US5962294A (en) 1992-03-09 1999-10-05 The Regents Of The University Of California Compositions and methods for the identification and synthesis of sialyltransferases
EP0586687A4 (en) 1992-03-25 1996-04-17 Univ New York Trans-sialidase and methods of use and making thereof
US6037452A (en) 1992-04-10 2000-03-14 Alpha Therapeutic Corporation Poly(alkylene oxide)-Factor VIII or Factor IX conjugate
JPH0686684A (ja) 1992-05-26 1994-03-29 Monsanto Co シアロ抱合体の合成
US5614184A (en) 1992-07-28 1997-03-25 New England Deaconess Hospital Recombinant human erythropoietin mutants and therapeutic methods employing them
EP0664710A4 (de) 1992-08-07 1998-09-30 Progenics Pharm Inc IMMUNOKONJUGATE BESTEHEND AUS EINEM NICHT-PEPTIDYLEN TEIL UND EINEM CD4-GAMMA2- ODER CD4-IgG2 TEIL, UND VERWENDUNGEN DAVON.
WO1994004193A1 (en) 1992-08-21 1994-03-03 Enzon, Inc. Novel attachment of polyalkylene oxides to bio-effecting substances
JP3979678B2 (ja) 1992-08-24 2007-09-19 サントリー株式会社 新規糖転移酵素及びそれをコードする遺伝子並びに該酵素の製造方法
WO1994005332A2 (en) 1992-09-01 1994-03-17 Berlex Laboratories, Inc. Glycolation of glycosylated macromolecules
US5308460A (en) 1992-10-30 1994-05-03 Glyko, Incorporated Rapid synthesis and analysis of carbohydrates
US6361977B1 (en) 1992-11-24 2002-03-26 S. Christopher Bauer Methods of using multivariant IL-3 hematopoiesis fusion protein
JP2845698B2 (ja) 1992-11-25 1999-01-13 オルガノ株式会社 復水循環系の復水に含まれる陰イオンの測定方法及び装置
NO934477L (no) 1992-12-09 1994-06-10 Ortho Pharma Corp PEG hydrazon- og PEG oksim-bindingdannende reagenser og proteinderivater derav
CA2110543A1 (en) 1992-12-09 1994-06-10 David E. Wright Peg hydrazone and peg oxime linkage forming reagents and protein derivatives thereof
NZ250375A (en) 1992-12-09 1995-07-26 Ortho Pharma Corp Peg hydrazone and peg oxime linkage forming reagents and protein derivatives
US5298643A (en) 1992-12-22 1994-03-29 Enzon, Inc. Aryl imidate activated polyalkylene oxides
AU6029594A (en) 1993-01-15 1994-08-15 Enzon, Inc. Factor viii - polymeric conjugates
US5349001A (en) 1993-01-19 1994-09-20 Enzon, Inc. Cyclic imide thione activated polyalkylene oxides
US5321095A (en) 1993-02-02 1994-06-14 Enzon, Inc. Azlactone activated polyalkylene oxides
US5202413A (en) 1993-02-16 1993-04-13 E. I. Du Pont De Nemours And Company Alternating (ABA)N polylactide block copolymers
US6180134B1 (en) 1993-03-23 2001-01-30 Sequus Pharmaceuticals, Inc. Enhanced ciruclation effector composition and method
JP3756946B2 (ja) 1993-03-29 2006-03-22 協和醗酵工業株式会社 α1,3−フコシルトランスフェラーゼ
US5374541A (en) 1993-05-04 1994-12-20 The Scripps Research Institute Combined use of β-galactosidase and sialyltransferase coupled with in situ regeneration of CMP-sialic acid for one pot synthesis of oligosaccharides
US5409817A (en) 1993-05-04 1995-04-25 Cytel, Inc. Use of trans-sialidase and sialyltransferase for synthesis of sialylα2→3βgalactosides
WO1994026760A1 (en) 1993-05-14 1994-11-24 Cytel Corporation SIALYL Lex ANALOGUES AS INHIBITORS OF CELLULAR ADHESION
EP0726318A1 (de) 1993-05-14 1996-08-14 The Upjohn Company Akzeptorpolypeptid für N-Acetylgalaktosaminyltransferase
JPH08510746A (ja) 1993-05-21 1996-11-12 ザイモジェネティクス,インコーポレイティド 改良型▲vii▼因子
WO1994028024A1 (en) 1993-06-01 1994-12-08 Enzon, Inc. Carbohydrate-modified polymer conjugates with erythropoietic activity
US5621039A (en) 1993-06-08 1997-04-15 Hallahan; Terrence W. Factor IX- polymeric conjugates
DE4325317C2 (de) 1993-07-29 1998-05-20 Univ Dresden Tech Verfahren zur radioaktiven Markierung von Immunglobulinen
ZA946122B (en) 1993-08-17 1995-03-20 Amgen Inc Erythropoietin analogs
JPH0770195A (ja) 1993-08-23 1995-03-14 Yutaka Mizushima 糖修飾インターフェロン
US6485930B1 (en) 1993-09-15 2002-11-26 The Scripps Research Institute Mannosyl transfer with regeneration of GDP-mannose
DE69432231T2 (de) 1993-09-22 2004-02-05 Ajinomoto Co., Inc. Peptide mit antithrombotischer aktivität und verfahren zu ihrer herstellung
US5874075A (en) 1993-10-06 1999-02-23 Amgen Inc. Stable protein: phospholipid compositions and methods
US5643575A (en) 1993-10-27 1997-07-01 Enzon, Inc. Non-antigenic branched polymer conjugates
US5919455A (en) 1993-10-27 1999-07-06 Enzon, Inc. Non-antigenic branched polymer conjugates
US5446090A (en) 1993-11-12 1995-08-29 Shearwater Polymers, Inc. Isolatable, water soluble, and hydrolytically stable active sulfones of poly(ethylene glycol) and related polymers for modification of surfaces and molecules
US5443953A (en) 1993-12-08 1995-08-22 Immunomedics, Inc. Preparation and use of immunoconjugates
US5369017A (en) 1994-02-04 1994-11-29 The Scripps Research Institute Process for solid phase glycopeptide synthesis
JP3516272B2 (ja) 1994-02-10 2004-04-05 株式会社成和化成 化粧品基材
US5605793A (en) 1994-02-17 1997-02-25 Affymax Technologies N.V. Methods for in vitro recombination
US5837458A (en) 1994-02-17 1998-11-17 Maxygen, Inc. Methods and compositions for cellular and metabolic engineering
US5492841A (en) 1994-02-18 1996-02-20 E. I. Du Pont De Nemours And Company Quaternary ammonium immunogenic conjugates and immunoassay reagents
ATE277640T1 (de) 1994-03-07 2004-10-15 Dow Chemical Co Bioaktive und/oder gezielte dendrimere-konjugate enthaltend genetisches material
IL113010A0 (en) 1994-03-31 1995-10-31 Pharmacia Ab Pharmaceutical formulation comprising factor VIII or factor ix with an activity of at least 200 IU/ml and an enhancer for improved subcutaneous intramuscular or intradermal administration
US5432059A (en) 1994-04-01 1995-07-11 Specialty Laboratories, Inc. Assay for glycosylation deficiency disorders
US5646113A (en) 1994-04-07 1997-07-08 Genentech, Inc. Treatment of partial growth hormone insensitivity syndrome
US5629384A (en) 1994-05-17 1997-05-13 Consiglio Nazionale Delle Ricerche Polymers of N-acryloylmorpholine activated at one end and conjugates with bioactive materials and surfaces
US5545553A (en) 1994-09-26 1996-08-13 The Rockefeller University Glycosyltransferases for biosynthesis of oligosaccharides, and genes encoding them
US6010871A (en) 1994-09-29 2000-01-04 Ajinomoto Co., Inc. Modification of peptide and protein
US5824784A (en) 1994-10-12 1998-10-20 Amgen Inc. N-terminally chemically modified protein compositions and methods
US5834251A (en) 1994-12-30 1998-11-10 Alko Group Ltd. Methods of modifying carbohydrate moieties
US5932462A (en) 1995-01-10 1999-08-03 Shearwater Polymers, Inc. Multiarmed, monofunctional, polymer for coupling to molecules and surfaces
IL116730A0 (en) 1995-01-13 1996-05-14 Amgen Inc Chemically modified interferon
US5728554A (en) 1995-04-11 1998-03-17 Cytel Corporation Enzymatic synthesis of glycosidic linkages
US6030815A (en) 1995-04-11 2000-02-29 Neose Technologies, Inc. Enzymatic synthesis of oligosaccharides
AU5445396A (en) 1995-04-11 1996-10-30 Cytel Corporation Improved enzymatic synthesis of oligosaccharides
US5876980A (en) 1995-04-11 1999-03-02 Cytel Corporation Enzymatic synthesis of oligosaccharides
US5922577A (en) 1995-04-11 1999-07-13 Cytel Corporation Enzymatic synthesis of glycosidic linkages
US5695760A (en) 1995-04-24 1997-12-09 Boehringer Inglehiem Pharmaceuticals, Inc. Modified anti-ICAM-1 antibodies and their use in the treatment of inflammation
AU5920096A (en) 1995-05-15 1996-11-29 Constantin A. Bona Carbohydrate-mediated coupling of peptides to immunoglobulins
US6015555A (en) 1995-05-19 2000-01-18 Alkermes, Inc. Transferrin receptor specific antibody-neuropharmaceutical or diagnostic agent conjugates
US5824864A (en) 1995-05-25 1998-10-20 Pioneer Hi-Bred International, Inc. Maize gene and protein for insect control
US5858752A (en) 1995-06-07 1999-01-12 The General Hospital Corporation Fucosyltransferase genes and uses thereof
US6251864B1 (en) 1995-06-07 2001-06-26 Glaxo Group Limited Peptides and compounds that bind to a receptor
US6127153A (en) 1995-06-07 2000-10-03 Neose Technologies, Inc. Method of transferring at least two saccharide units with a polyglycosyltransferase, a polyglycosyltransferase and gene encoding a polyglycosyltransferase
WO1996040731A1 (en) 1995-06-07 1996-12-19 Mount Sinai School Of Medicine Of The City University Of New York Pegylated modified proteins
US5672662A (en) 1995-07-07 1997-09-30 Shearwater Polymers, Inc. Poly(ethylene glycol) and related polymers monosubstituted with propionic or butanoic acids and functional derivatives thereof for biotechnical applications
WO1997005330A1 (en) 1995-07-27 1997-02-13 Cytec Technology Corp. Synthetic cationic polymers as promoters for asa sizing
US5770420A (en) 1995-09-08 1998-06-23 The Regents Of The University Of Michigan Methods and products for the synthesis of oligosaccharide structures on glycoproteins, glycolipids, or as free molecules, and for the isolation of cloned genetic sequences that determine these structures
DK1568772T3 (da) 1995-09-21 2010-10-18 Genentech Inc Varianter af humant væksthormon
SE9503380D0 (sv) 1995-09-29 1995-09-29 Pharmacia Ab Protein derivatives
WO1997021822A2 (en) 1995-12-12 1997-06-19 The University Of British Columbia Methods and compositions for synthesis of oligosaccharides using mutant glycosidase enzymes
US5716812A (en) 1995-12-12 1998-02-10 The University Of British Columbia Methods and compositions for synthesis of oligosaccharides, and the products formed thereby
CA2165041C (en) 1995-12-12 2005-07-05 The University Of British Columbia Methods and compositions for synthesis of oligosaccharides, and the products formed thereby
JP3065925B2 (ja) 1996-01-30 2000-07-17 日清製油株式会社 活性酸素種消去剤及び退色防止剤
JP2000507095A (ja) 1996-03-08 2000-06-13 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、ミシガン ネズミα(1,3)フコシルトランスフェラーゼFuc―TVII、それをコードするDNA、その製造法、それを認識する抗体、それを検出するためのイムノアッセイ、このようなDNAを含むプラスミド、およびこのようなプラスミドを含む細胞
WO1998005363A2 (en) 1996-08-02 1998-02-12 Ortho-Mcneil Pharmaceutical, Inc. Polypeptides having a single covalently bound n-terminal water-soluble polymer
EP0953354A4 (de) 1996-08-13 2002-10-23 Fujisawa Pharmaceutical Co Hämatopoietische stammzellen proliferierende wirkstoffe
US20020064546A1 (en) 1996-09-13 2002-05-30 J. Milton Harris Degradable poly(ethylene glycol) hydrogels with controlled half-life and precursors therefor
NZ335203A (en) 1996-10-10 2000-10-27 Neose Technologies Inc Carbohydrate, purification using ultrafiltration, reverse osmosis and nanofiltration
IL130823A (en) 1996-10-15 2005-12-18 Elan Pharm Inc Peptide-lipid conjugates, liposomes drug delivery
AU718382B2 (en) 1996-11-08 2000-04-13 Neose Technologies, Inc. Improved expression vectors
DK1015622T3 (da) 1997-01-16 2004-08-02 Neose Technologies Inc Praktisk sialylering in vitro af rekombinante glycoproteiner
AU5773798A (en) 1997-01-29 1998-08-18 Polymasc Pharmaceuticals Plc Pegylation process
DE19709787A1 (de) 1997-03-11 1998-09-17 Bayer Ag Oligosaccaride und deren Derivate sowie ein chemo-enzymatisches Verfahren zu deren Herstellung
US5945314A (en) 1997-03-31 1999-08-31 Abbott Laboratories Process for synthesizing oligosaccharides
JP4187277B2 (ja) 1997-04-30 2008-11-26 エンゾン ファーマシューティカルズ, インコーポレイテッド グリコシル化し得る抗原結合単鎖タンパク質、それらの生成および使用
JPH10307356A (ja) 1997-05-08 1998-11-17 Konica Corp ハロゲン化銀乳剤およびそれを用いたハロゲン化銀写真感光材料
US6183738B1 (en) 1997-05-12 2001-02-06 Phoenix Pharamacologics, Inc. Modified arginine deiminase
US6075134A (en) 1997-05-15 2000-06-13 The Regents Of The University Of California Glycoconjugates and methods
AU8005098A (en) 1997-06-06 1998-12-21 Governors Of The University Of Alberta, The Alpha1,3-fucosyltransferase of helicobacter pylori
ATE296315T1 (de) 1997-06-24 2005-06-15 Genentech Inc Galactosylierte glykoproteine enthaltende zusammensetzungen und verfahren zur deren herstellung
WO1999000150A2 (en) 1997-06-27 1999-01-07 Regents Of The University Of California Drug targeting of a peptide radiopharmaceutical through the primate blood-brain barrier in vivo with a monoclonal antibody to the human insulin receptor
US20030027257A1 (en) 1997-08-21 2003-02-06 University Technologies International, Inc. Sequences for improving the efficiency of secretion of non-secreted protein from mammalian and insect cells
WO1999013063A1 (en) 1997-09-09 1999-03-18 Nycomed Imaging As Factor vii fragments and analogs thereof and their use in the treatment of blood clottng disorders
ATE419009T1 (de) 1997-10-31 2009-01-15 Genentech Inc Methoden und zusammensetzungen bestehend aus glykoprotein-glykoformen
AU744303B2 (en) 1997-12-01 2002-02-21 Neose Technologies, Inc. Enzymatic synthesis of gangliosides
EP0924298A1 (de) 1997-12-18 1999-06-23 Stichting Instituut voor Dierhouderij en Diergezondheid (ID-DLO) Proteinexpression in Baculovirus-vektor Expressionsystemen
CA2316834C (en) 1998-01-07 2006-01-03 Shearwater Polymers, Inc. Degradable heterobifunctional poly(ethylene glycol) acrylates and gels and conjugates derived therefrom
AU2559799A (en) 1998-01-22 1999-08-09 Genentech Inc. Antibody fragment-polymer conjugates and humanized anti-il-8 monoclonal antibodies and uses of same
PT1061954E (pt) 1998-03-12 2004-10-29 Nektar Therapeutics Al Corp Derivados de poli(etileno glicol) com grupos reactivos proximos
AU758097B2 (en) 1998-03-25 2003-03-13 Sloan-Kettering Institute For Cancer Research Trimeric antigenic O-linked glycopeptide conjugates, methods of preparation and uses thereof
PT1071700E (pt) 1998-04-20 2010-04-23 Glycart Biotechnology Ag Modificação por glicosilação de anticorpos para melhorar a citotoxicidade celular dependente de anticorpos
AU760381B2 (en) 1998-04-28 2003-05-15 Laboratoires Serono Sa PEG-LHRH analog conjugates
US20030166525A1 (en) 1998-07-23 2003-09-04 Hoffmann James Arthur FSH Formulation
DE69930015T2 (de) 1998-10-16 2006-10-12 Biogen Idec Ma Inc., Cambridge Polymerkonjugate von interferon-beta-1a und deren verwendungen
US7304150B1 (en) 1998-10-23 2007-12-04 Amgen Inc. Methods and compositions for the prevention and treatment of anemia
US6660843B1 (en) * 1998-10-23 2003-12-09 Amgen Inc. Modified peptides as therapeutic agents
DE69936351T2 (de) 1998-10-30 2008-02-21 Novozymes A/S Glykosylierte proteine mit reduzierter allergenität
JP2002530071A (ja) 1998-11-13 2002-09-17 クラウセン、ヘンリク UDPガラクトース:β−N−アセチル−グルコサミンβ1,3ガラクトシルトランスフェラーゼ、β3Gal−T5
DE19852729A1 (de) 1998-11-16 2000-05-18 Werner Reutter Rekombinante Glycoproteine, Verfahren zu ihrer Herstellung, sie enthaltende Arzneimittel und ihre Verwendung
MXPA01004982A (es) 1998-11-18 2004-09-27 Neose Technologies Inc Manufactura de bajo costo de oligosacaridos.
US6465220B1 (en) 1998-12-21 2002-10-15 Glycozym Aps Glycosylation using GalNac-T4 transferase
ATE246202T1 (de) 1999-01-29 2003-08-15 Hoffmann La Roche Gcsf konjugate
US6503744B1 (en) 1999-02-01 2003-01-07 National Research Council Of Canada Campylobacter glycosyltransferases for biosynthesis of gangliosides and ganglioside mimics
US6949372B2 (en) 1999-03-02 2005-09-27 The Johns Hopkins University Engineering intracellular sialylation pathways
WO2000065087A1 (en) 1999-04-22 2000-11-02 Astrazeneca Ab Assay for detecting phospho-n-acetylmuramyl-pentapeptide translocase activity
PE20010288A1 (es) 1999-07-02 2001-03-07 Hoffmann La Roche Derivados de eritropoyetina
US6261805B1 (en) 1999-07-15 2001-07-17 Boyce Thompson Institute For Plant Research, Inc. Sialyiation of N-linked glycoproteins in the baculovirus expression vector system
WO2001005434A2 (en) 1999-07-20 2001-01-25 Amgen Inc. Hyaluronic acid-protein conjugates
US6642038B1 (en) 1999-09-14 2003-11-04 Genzyme Glycobiology Research Institute, Inc. GlcNAc phosphotransferase of the lysosomal targeting pathway
US6716626B1 (en) 1999-11-18 2004-04-06 Chiron Corporation Human FGF-21 nucleic acids
WO2001039788A2 (en) 1999-12-02 2001-06-07 Zymogenetics, Inc. Methods for targeting cells that express fibroblast growth receptor-3 or-2
US6348558B1 (en) 1999-12-10 2002-02-19 Shearwater Corporation Hydrolytically degradable polymers and hydrogels made therefrom
US6376604B2 (en) 1999-12-22 2002-04-23 Shearwater Corporation Method for the preparation of 1-benzotriazolylcarbonate esters of poly(ethylene glycol)
JP4593048B2 (ja) 1999-12-24 2010-12-08 協和発酵キリン株式会社 分岐型ポリアルキレングリコール類
WO2001049830A2 (en) 1999-12-30 2001-07-12 Maxygen Aps Improved lysosomal enzymes and lysosomal enzyme activators
US6555660B2 (en) 2000-01-10 2003-04-29 Maxygen Holdings Ltd. G-CSF conjugates
US6646110B2 (en) 2000-01-10 2003-11-11 Maxygen Holdings Ltd. G-CSF polypeptides and conjugates
ES2327606T3 (es) 2000-01-10 2009-11-02 Maxygen Holdings Ltd Conjugados de g-csf.
WO2001058493A1 (en) 2000-02-11 2001-08-16 Maxygen Aps Conjugates of follicle stimulating hormones
DE60138364D1 (de) 2000-02-11 2009-05-28 Bayer Healthcare Llc Gerinnungsfaktor vii oder viia konjugate
WO2001060411A1 (en) 2000-02-18 2001-08-23 Kanagawa Academy Of Science And Technology Pharmaceutical composition, reagent and method for intracerebral delivery of pharmaceutically active ingredient or labeling substance
US20010041683A1 (en) 2000-03-09 2001-11-15 Schmitz Harold H. Cocoa sphingolipids, cocoa extracts containing sphingolipids and methods of making and using same
AU2001281463A1 (en) 2000-03-16 2001-09-24 The Regents Of The University Of California Chemoselective ligation
US6586398B1 (en) 2000-04-07 2003-07-01 Amgen, Inc. Chemically modified novel erythropoietin stimulating protein compositions and methods
EP1282693B1 (de) 2000-05-03 2010-10-20 Novo Nordisk Health Care AG Varianten des menschlichen Koagulationsfaktors VII
US6905683B2 (en) 2000-05-03 2005-06-14 Novo Nordisk Healthcare A/G Human coagulation factor VII variants
US7338932B2 (en) 2000-05-11 2008-03-04 Glycozym Aps Methods of modulating functions of polypeptide GalNAc-transferases and of screening test substances to find agents herefor, pharmaceutical compositions comprising such agents and the use of such agents for preparing medicaments
WO2001088117A2 (en) 2000-05-12 2001-11-22 Neose Technologies, Inc. In vitro fucosylation recombinant glycopeptides
EP1525889A1 (de) 2000-05-15 2005-04-27 F. Hoffmann-La Roche Ag Flüssige Arzneizubereitung enthaltend ein Erythropoietinderivat
IL152804A0 (en) 2000-05-16 2003-06-24 Bolder Biotechnology Inc Methods for refolding proteins containing free cysteine residues
AU7684201A (en) 2000-06-28 2002-01-08 Glycofi Inc Methods for producing modified glycoproteins
AU2001267337A1 (en) 2000-06-30 2002-01-14 Maxygen Aps Peptide extended glycosylated polypeptides
US6423826B1 (en) 2000-06-30 2002-07-23 Regents Of The University Of Minnesota High molecular weight derivatives of vitamin K-dependent polypeptides
KR100396983B1 (ko) 2000-07-29 2003-09-02 이강춘 고반응성의 가지 달린 고분자 유도체 및 고분자와 단백질또는 펩타이드의 접합체
WO2002013873A2 (en) 2000-08-17 2002-02-21 Synapse Technologies, Inc. P97-active agent conjugates and their methods of use
AU2001283740A1 (en) 2000-08-17 2002-02-25 University Of British Columbia Chemotherapeutic agents conjugated to p97 and their methods of use in treating neurological tumours
BR0114374A (pt) 2000-10-02 2003-12-30 Novo Nordisk As Preparação compreendendo uma pluralidade de polipeptìdeos de fator vii, métodos para a determinação do padrão de glicoforma de fator vii e de polipeptìdeos relacionados com fator vii, e para a produção da dita preparação, formulação farmacêutica, métodos para o tratamento de uma sìndrome responsiva a fator vii, para a prevenção de sangramento indesejado, para a prevenção de coagulação sanguìnea indesejada, e para prevenção de reações mediadas por fator de tecido, e, uso da preparação
US20020142964A1 (en) 2000-11-02 2002-10-03 Nissen Torben Lauesgaard Single-chain polypeptides
EP1337549B1 (de) 2000-11-27 2006-04-05 Rmf Dictagene S.A. Verfahren zur rückfaltung von chemisch hergestellten polypeptiden
WO2002044196A1 (en) 2000-11-28 2002-06-06 University Of Massachusetts Methods and reagents for introducing a sulfhydryl group into the 5'-terminus of rna
MXPA03005406A (es) 2000-12-20 2003-09-25 Hoffmann La Roche Conjugados de eritropoyetina.
DE60144439D1 (de) 2000-12-20 2011-05-26 Hoffmann La Roche Konjugate von erythropoietin (epo) mit polyethylenglykol (peg)
US7892730B2 (en) 2000-12-22 2011-02-22 Sagres Discovery, Inc. Compositions and methods for cancer
US6531121B2 (en) 2000-12-29 2003-03-11 The Kenneth S. Warren Institute, Inc. Protection and enhancement of erythropoietin-responsive cells, tissues and organs
PA8536201A1 (es) 2000-12-29 2002-08-29 Kenneth S Warren Inst Inc Protección y mejoramiento de células, tejidos y órganos que responden a la eritropoyetina
SE0004932D0 (sv) 2000-12-31 2000-12-31 Apbiotech Ab A method for mixed mode adsorption and mixed mode adsorbents
ATE432288T1 (de) 2001-02-27 2009-06-15 Maxygen Aps Neue interferon-beta-ähnliche moleküle
PL371800A1 (en) 2001-03-22 2005-06-27 Novo Nordisk Health Care Ag Coagulation factor vii derivatives
US7235638B2 (en) 2001-03-22 2007-06-26 Novo Nordisk Healthcare A/G Coagulation factor VII derivatives
BR0209177A (pt) 2001-05-03 2004-10-05 Merck Patent Gmbh Anticorpo especìfico a tumor recombinante e uso do mesmo
US20020168323A1 (en) 2001-05-11 2002-11-14 Igor Gonda Optimization of the molecular properties and formulation of proteins delivered by inhalation
AU2002342653A1 (en) 2001-05-14 2002-11-25 The Gouvernment Of The United States Of America, Represented By The Secretary, Department Of Health Modified growth hormone
MXPA04000231A (es) 2001-07-11 2004-05-04 Maxygen Holdings Ltd Conjugados del factor de estimulacion de colonias de granulocitos.
KR100453877B1 (ko) 2001-07-26 2004-10-20 메덱스젠 주식회사 연쇄체화에 의한 면역 글로블린 융합 단백질의 제조 방법 및 이 방법에 의해 제조된 TNFR/Fc 융합 단백질, 상기 단백질을 코딩하는 DNA, 상기 DNA를 포함하는벡터, 및 상기 벡터에 의한 형질전환체
CA2455347A1 (en) 2001-08-01 2003-02-13 Neose Technologies, Inc. Neutral glycosphingolipids and glycosyl-sphingosines and methods for isolating the same
WO2003016469A2 (en) 2001-08-17 2003-02-27 Neose Technologies, Inc. Chemo-enzymatic synthesis of sialylated oligosaccharides
JP2005527467A (ja) 2001-08-29 2005-09-15 ネオーズ テクノロジーズ, インコーポレイテッド 新規な合成ガングリオシド誘導体およびその組成物
US6930086B2 (en) 2001-09-25 2005-08-16 Hoffmann-La Roche Inc. Diglycosylated erythropoietin
US7052868B2 (en) 2001-09-27 2006-05-30 Novo Nordisk Healthcare A/G Human coagulation factor VII polypeptides
US7795210B2 (en) 2001-10-10 2010-09-14 Novo Nordisk A/S Protein remodeling methods and proteins/peptides produced by the methods
US7125843B2 (en) 2001-10-19 2006-10-24 Neose Technologies, Inc. Glycoconjugates including more than one peptide
US7173003B2 (en) 2001-10-10 2007-02-06 Neose Technologies, Inc. Granulocyte colony stimulating factor: remodeling and glycoconjugation of G-CSF
US7399613B2 (en) 2001-10-10 2008-07-15 Neose Technologies, Inc. Sialic acid nucleotide sugars
US7297511B2 (en) 2001-10-10 2007-11-20 Neose Technologies, Inc. Interferon alpha: remodeling and glycoconjugation of interferon alpha
US7265084B2 (en) 2001-10-10 2007-09-04 Neose Technologies, Inc. Glycopegylation methods and proteins/peptides produced by the methods
US7696163B2 (en) 2001-10-10 2010-04-13 Novo Nordisk A/S Erythropoietin: remodeling and glycoconjugation of erythropoietin
US8008252B2 (en) 2001-10-10 2011-08-30 Novo Nordisk A/S Factor VII: remodeling and glycoconjugation of Factor VII
US7265085B2 (en) 2001-10-10 2007-09-04 Neose Technologies, Inc. Glycoconjugation methods and proteins/peptides produced by the methods
US7214660B2 (en) 2001-10-10 2007-05-08 Neose Technologies, Inc. Erythropoietin: remodeling and glycoconjugation of erythropoietin
US7439043B2 (en) 2001-10-10 2008-10-21 Neose Technologies, Inc. Galactosyl nucleotide sugars
US7226903B2 (en) 2001-10-10 2007-06-05 Neose Technologies, Inc. Interferon beta: remodeling and glycoconjugation of interferon beta
WO2004099231A2 (en) 2003-04-09 2004-11-18 Neose Technologies, Inc. Glycopegylation methods and proteins/peptides produced by the methods
EP2279755B1 (de) 2001-10-10 2014-02-26 ratiopharm GmbH Neumodulierung und Glykokonjugation von Fibroblasten-Wachstumsfaktor (FGF)
US7179617B2 (en) 2001-10-10 2007-02-20 Neose Technologies, Inc. Factor IX: remolding and glycoconjugation of Factor IX
US6784154B2 (en) 2001-11-01 2004-08-31 University Of Utah Research Foundation Method of use of erythropoietin to treat ischemic acute renal failure
DE60228492D1 (de) 2001-11-28 2008-10-02 Neose Technologies Inc Remodellierung von glycoproteinen unter verwendung von endoglycanasen
US7473680B2 (en) 2001-11-28 2009-01-06 Neose Technologies, Inc. Remodeling and glycoconjugation of peptides
CA2468230A1 (en) 2001-11-28 2003-06-05 Neose Technologies, Inc. Glycopeptide remodeling using amidases
EP1465933B1 (de) 2002-01-16 2007-08-29 Biocompatibles UK Limited Polymerkonjugate
US20060035224A1 (en) 2002-03-21 2006-02-16 Johansen Jack T Purification methods for oligonucleotides and their analogs
CA2485102A1 (en) 2002-05-03 2003-11-13 Neose Technologies, Inc. Recombinant glycosyltransferase fusion proteins
CN1671420A (zh) 2002-06-21 2005-09-21 诺和诺德医疗保健公司 Peg化因子ⅶ糖型
MXPA04012496A (es) 2002-06-21 2005-09-12 Novo Nordisk Healthcare Ag Glicoformos del factor vii pegilados.
DE10232916B4 (de) 2002-07-19 2008-08-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Charakterisieren eines Informationssignals
NZ538439A (en) 2002-07-23 2007-02-23 Neose Technologies Inc Synthesis of oligosaccharides, glycolipids, and glycoproteins using bacterial glycosyltransferases
CN1671722A (zh) 2002-08-01 2005-09-21 加拿大国家研究院 弯曲菌的聚糖和糖肽
KR101239242B1 (ko) 2002-08-02 2013-03-11 글락소스미스클라인 바이오로지칼즈 에스.에이. 항원 조합물을 포함하는 나이세리아 백신 조성물
KR20050083677A (ko) 2002-09-05 2005-08-26 더 제너럴 하스피탈 코포레이션 변형 아시알로 인터페론 및 그의 용도
WO2004022004A2 (en) 2002-09-06 2004-03-18 Bayer Pharmaceuticals Corporation Modified glp-1 receptor agonists and their pharmacological methods of use
CN1703421B (zh) 2002-09-20 2010-06-23 法玛西亚公司 降低peg化蛋白的聚集体水平的方法
EP1908782B1 (de) 2002-09-25 2010-01-06 Novo Nordisk Health Care AG Menschliche Koagulationsfaktor VII Polypeptide
US20060166874A1 (en) 2002-09-30 2006-07-27 Haaning Jesper M Fvii or fviia variants having increased clotting activity
US20040062748A1 (en) 2002-09-30 2004-04-01 Mountain View Pharmaceuticals, Inc. Polymer conjugates with decreased antigenicity, methods of preparation and uses thereof
NZ539415A (en) 2002-10-09 2008-12-24 Neose Technologies Inc Remodelling and glycoconjugation of erythropoietin
EP1558728B1 (de) 2002-11-08 2007-06-27 Glycozym ApS Verfahren zur identifizierung von die funktionen von polypeptid-galnac-transferasen modulierenden agentien, solche agentien umfassende pharmazeutische zusammensetzungen und verwendung solcher agentien zur herstellung von arzneimitteln
JP4412461B2 (ja) 2002-11-20 2010-02-10 日油株式会社 修飾された生体関連物質、その製造方法および中間体
US7459436B2 (en) 2002-11-22 2008-12-02 Hoffmann-La Roche Inc. Treatment of disturbances of iron distribution
US20050064540A1 (en) 2002-11-27 2005-03-24 Defrees Shawn Ph.D Glycoprotein remodeling using endoglycanases
EP1424344A1 (de) 2002-11-29 2004-06-02 Aventis Behring Gesellschaft mit beschränkter Haftung Modifizierte cDNA des Factors VIII und Derivate davon
DE60228460D1 (de) 2002-12-13 2008-10-02 Bioceuticals Arzneimittel Ag Verfahren zur Herstellung und Reinigung von Erythropoietin
RS20050502A (en) 2002-12-26 2007-08-03 Mountain View Pharmaceuticals Inc., Polymer conjugates of interferon- beta with enhanced biological potency
US7041635B2 (en) 2003-01-28 2006-05-09 In2Gen Co., Ltd. Factor VIII polypeptide
US8537814B2 (en) 2003-01-31 2013-09-17 Qwest Communications International Inc. Configurable network interface device and systems and methods for its use
EP1596887B1 (de) 2003-02-26 2022-03-23 Nektar Therapeutics Polymer-factor viii-konjugate
BRPI0408358A (pt) 2003-03-14 2006-03-21 Neose Technologies Inc polìmeros hidrossolúveis ramificados e seus conjugados
EP1603954A4 (de) 2003-03-18 2006-04-12 Neose Technologies Inc Aktivierte formen wasserlöslicher polymere
MXPA05009940A (es) 2003-03-19 2005-12-05 Lilly Co Eli Compuestos de glp-1 de enlace de glicol polietilenico.
US8791070B2 (en) 2003-04-09 2014-07-29 Novo Nordisk A/S Glycopegylated factor IX
EP1613261A4 (de) 2003-04-09 2011-01-26 Novo Nordisk As Intrazelluläre bildung von peptidkonjugaten
US7718363B2 (en) 2003-04-25 2010-05-18 The Kenneth S. Warren Institute, Inc. Tissue protective cytokine receptor complex and assays for identifying tissue protective compounds
DE602004031390D1 (de) 2003-05-06 2011-03-24 Syntonix Pharmaceuticals Inc Gerinnungsfaktor VII-Fc chimäre Proteine zur Behandlung von hämostatischen Krankheiten
TWI353991B (en) 2003-05-06 2011-12-11 Syntonix Pharmaceuticals Inc Immunoglobulin chimeric monomer-dimer hybrids
AU2004240553A1 (en) 2003-05-09 2004-12-02 Neose Technologies, Inc. Compositions and methods for the preparation of human growth hormone glycosylation mutants
WO2004101597A2 (en) 2003-05-13 2004-11-25 Frutarom Ltd. Methods for the reduction of disulfide bonds
US7074755B2 (en) 2003-05-17 2006-07-11 Centocor, Inc. Erythropoietin conjugate compounds with extended half-lives
EP1481985A1 (de) 2003-05-28 2004-12-01 Innogenetics N.V. Modifiziertes Hepatitis C Virus (HCV) NS3 Protein zur medizinischen Behandlung
GB0315457D0 (en) 2003-07-01 2003-08-06 Celltech R&D Ltd Biological products
WO2005012484A2 (en) 2003-07-25 2005-02-10 Neose Technologies, Inc. Antibody-toxin conjugates
US20060198819A1 (en) 2003-08-08 2006-09-07 Novo Nordisk Healthcare A/G Use of galactose oxidase for selective chemical conjugation of protractor molecules to proteins of therapeutic interest
US20080206182A1 (en) 2003-08-08 2008-08-28 Fresenius Kabi Deutschland Gmbh Conjugates of a Polymer and a Protein Linked by an Oxime Group
JP2007501811A (ja) 2003-08-08 2007-02-01 ノボ ノルディスク ヘルス ケア アクチェンゲゼルシャフト 治療的な関心対象のタンパク質に対する遅延分子の選択的な化学物質接合のためのガラクトースオキシダーゼの使用。
CN1882355A (zh) 2003-09-09 2006-12-20 沃伦药品公司 保持内源性促红细胞生成素组织保护活性的长效促红细胞生成素
US7524813B2 (en) 2003-10-10 2009-04-28 Novo Nordisk Health Care Ag Selectively conjugated peptides and methods of making the same
US20070254834A1 (en) 2003-11-24 2007-11-01 Defrees Shawn Glycopegylated Erythropoietin
US20080305992A1 (en) 2003-11-24 2008-12-11 Neose Technologies, Inc. Glycopegylated erythropoietin
US7842661B2 (en) 2003-11-24 2010-11-30 Novo Nordisk A/S Glycopegylated erythropoietin formulations
US8633157B2 (en) 2003-11-24 2014-01-21 Novo Nordisk A/S Glycopegylated erythropoietin
US20060040856A1 (en) 2003-12-03 2006-02-23 Neose Technologies, Inc. Glycopegylated factor IX
WO2005055950A2 (en) 2003-12-03 2005-06-23 Neose Technologies, Inc. Glycopegylated factor ix
US20080318850A1 (en) 2003-12-03 2008-12-25 Neose Technologies, Inc. Glycopegylated Factor Ix
EP1694351A2 (de) 2003-12-03 2006-08-30 Neose Technologies, Inc. Glycopegyliertes follikel-stimulierendes hormon
EP1694274B1 (de) 2003-12-03 2013-04-24 BioGeneriX AG Glykopegylierter Granulocyten-Kolonie-stimulierender Faktor
US7956032B2 (en) 2003-12-03 2011-06-07 Novo Nordisk A/S Glycopegylated granulocyte colony stimulating factor
CA2552892C (en) 2004-01-08 2014-08-05 Neose Technologies, Inc. O-linked glycosylation of peptides
US20080058245A1 (en) 2004-01-09 2008-03-06 Johnson Karl F Vectors for Recombinant Protein Expression in E. Coli
US20070105770A1 (en) 2004-01-21 2007-05-10 Novo Nordisk A/S Transglutaminase mediated conjugation of peptides
EP1720892B1 (de) 2004-01-26 2013-07-24 BioGeneriX AG Mit verzweigten Polymeren modifizierte Zucker und Nukleotide
DK2860251T3 (en) 2004-02-12 2018-06-06 Archemix Llc APTAPMER PHARMACEUTICALS USEFUL IN TREATMENT OF COMPLEMENT-RELATED DISEASES
WO2005091944A2 (en) 2004-03-17 2005-10-06 Eli Lilly And Company Glycol linked fgf-21 compounds
DE602005019038D1 (de) 2004-05-04 2010-03-11 Novo Nordisk Healthcare Ag O-verknüpfte glykoformen von faktor vii und verfahren zu deren herstellung
US20070037966A1 (en) 2004-05-04 2007-02-15 Novo Nordisk A/S Hydrophobic interaction chromatography purification of factor VII polypeptides
JP4251399B2 (ja) 2004-05-21 2009-04-08 独立行政法人産業技術総合研究所 O結合型糖鎖が付加されたペプチドのスクリーニング方法
US20080206810A1 (en) 2004-06-03 2008-08-28 Neose Technologies, Inc. Truncated St6galnaci Polypeptides and Nucleic Acids
WO2005121331A2 (en) 2004-06-03 2005-12-22 Neose Technologies, Inc. Truncated galnact2 polypeptides and nucleic acids
EP1771197A2 (de) 2004-06-30 2007-04-11 Egen Corporation Pegyliertes interferon-alpha-1b
JP2008505119A (ja) 2004-06-30 2008-02-21 ネクター セラピューティクス アラバマ,コーポレイション 高分子−第ix因子部分の抱合体
WO2006014466A2 (en) 2004-07-02 2006-02-09 The Kenneth S. Warren Institute, Inc. Novel carbamylated epo and method for its production
EP1771190A4 (de) 2004-07-02 2009-07-22 Kenneth S Warren Inst Inc Verfahren zur herstellung von vollständig carbamyliertem erythropoietin
WO2006010143A2 (en) 2004-07-13 2006-01-26 Neose Technologies, Inc. Branched peg remodeling and glycosylation of glucagon-like peptide-1 [glp-1]
WO2006020372A2 (en) 2004-07-23 2006-02-23 Neose Technologies, Inc. Enzymatic modification of glycopeptides
SE0401951D0 (sv) 2004-07-29 2004-07-29 Amersham Biosciences Ab Chromatography method
EP1778838A2 (de) 2004-08-02 2007-05-02 Novo Nordisk Health Care AG Konjugation von fvii
US20060024286A1 (en) 2004-08-02 2006-02-02 Paul Glidden Variants of tRNA synthetase fragments and uses thereof
BRPI0514396A2 (pt) 2004-08-17 2009-05-12 Csl Behring Gmbh polipeptìdeos dependentes de vitamina k modificada
US8268967B2 (en) 2004-09-10 2012-09-18 Novo Nordisk A/S Glycopegylated interferon α
US20080108557A1 (en) 2004-09-29 2008-05-08 Novo Nordisk Healthcare A/G Modified Proteins
EP1814573B1 (de) 2004-10-29 2016-03-09 ratiopharm GmbH Remodellierung und glykopegylierung von fibroblasten-wachstumsfaktor (fgf)
EP2371856B1 (de) * 2004-11-12 2022-05-18 Bayer HealthCare LLC Ortsgerichtete Modifizierung von FVIII
US20090054623A1 (en) 2004-12-17 2009-02-26 Neose Technologies, Inc. Lipo-Conjugation of Peptides
US8080391B2 (en) 2004-12-22 2011-12-20 Ambrx, Inc. Process of producing non-naturally encoded amino acid containing high conjugated to a water soluble polymer
JP2008526864A (ja) 2005-01-06 2008-07-24 ネオス テクノロジーズ インコーポレイテッド 糖断片を用いる糖結合
ES2449195T3 (es) 2005-01-10 2014-03-18 Ratiopharm Gmbh Factor estimulante de colonias de granulocitos glicopegilado
WO2006078645A2 (en) 2005-01-19 2006-07-27 Neose Technologies, Inc. Heterologous polypeptide expression using low multiplicity of infection of viruses
PA8660701A1 (es) 2005-02-04 2006-09-22 Pfizer Prod Inc Agonistas de pyy y sus usos
ATE527371T1 (de) 2005-03-24 2011-10-15 Biogenerix Ag Expression löslicher, aktiver, eukaryotischer glucosyltransferasen in prokaryotischen organismen
WO2006105426A2 (en) 2005-03-30 2006-10-05 Neose Technologies, Inc. Manufacturing process for the production of peptides grown in insect cell lines
US20080227691A1 (en) * 2005-04-01 2008-09-18 Novo Nordisk Health Care Ag Blood Coagulation FVIII Analogues
EP1871795A4 (de) 2005-04-08 2010-03-31 Biogenerix Ag Zusammensetzungen und verfahren zur herstellung von glycosylierungsmutanten eines proteaseresistenten menschlichen wachstumshormons
EP1888257A1 (de) 2005-05-05 2008-02-20 Pulmatrix, Inc. Ultraschallaerosolgenerator
AU2006245969B8 (en) 2005-05-11 2011-08-25 Eth Zurich Recombinant N-glycosylated proteins from procaryotic cells
US20080255026A1 (en) 2005-05-25 2008-10-16 Glycopegylated Factor 1X Glycopegylated Factor Ix
US20110003744A1 (en) 2005-05-25 2011-01-06 Novo Nordisk A/S Glycopegylated Erythropoietin Formulations
ES2553160T3 (es) 2005-06-17 2015-12-04 Novo Nordisk Health Care Ag Reducción y derivatización selectivas de proteínas Factor VII transformadas por ingeniería que comprenden al menos una cisteína no nativa
US20070105755A1 (en) 2005-10-26 2007-05-10 Neose Technologies, Inc. One pot desialylation and glycopegylation of therapeutic peptides
AU2006280932A1 (en) 2005-08-19 2007-02-22 Novo Nordisk A/S Glycopegylated factor VII and factor Vila
US20090055942A1 (en) 2005-09-14 2009-02-26 Novo Nordisk Healthcare A/G Human Coagulation Factor VII Polypeptides
US20090048440A1 (en) 2005-11-03 2009-02-19 Neose Technologies, Inc. Nucleotide Sugar Purification Using Membranes
DE202006020194U1 (de) 2006-03-01 2007-12-06 Bioceuticals Arzneimittel Ag G-CSF-Flüssigformulierung
US7683158B2 (en) 2006-03-31 2010-03-23 Baxter International Inc. Pegylated factor VIII
US7645860B2 (en) 2006-03-31 2010-01-12 Baxter Healthcare S.A. Factor VIII polymer conjugates
EP2029738A2 (de) 2006-05-24 2009-03-04 Novo Nordisk Health Care AG Faktor-ix-analoge mit verlängerter in-vivo-halbwertszeit
ITMI20061624A1 (it) 2006-08-11 2008-02-12 Bioker Srl Mono-coniugati sito-specifici di g-csf
ES2531934T3 (es) 2006-09-01 2015-03-20 Novo Nordisk Health Care Ag Glicoproteínas modificadas
WO2008057683A2 (en) 2006-10-03 2008-05-15 Novo Nordisk A/S Methods for the purification of polypeptide conjugates
DK2068907T3 (en) 2006-10-04 2018-01-15 Novo Nordisk As GLYCEROL BOND PEGYLED SUGAR AND GLYCOPE Peptides
US20080207487A1 (en) 2006-11-02 2008-08-28 Neose Technologies, Inc. Manufacturing process for the production of polypeptides expressed in insect cell-lines
KR20100016160A (ko) 2007-04-03 2010-02-12 바이오제너릭스 에이지 글리코페길화 g―csf를 이용하는 치료 방법
US20090053167A1 (en) 2007-05-14 2009-02-26 Neose Technologies, Inc. C-, S- and N-glycosylation of peptides
JP2010531135A (ja) * 2007-06-04 2010-09-24 ノボ ノルディスク アクティーゼルスカブ N−アセチルグルコサミニルトランスフェラーゼを使用したo結合型グリコシル化
WO2008154639A2 (en) 2007-06-12 2008-12-18 Neose Technologies, Inc. Improved process for the production of nucleotide sugars
US8207112B2 (en) 2007-08-29 2012-06-26 Biogenerix Ag Liquid formulation of G-CSF conjugate
CN102037004A (zh) 2008-01-08 2011-04-27 生物种属学股份公司 使用寡糖基转移酶的多肽的糖缀合
EP2417155B1 (de) * 2009-04-06 2013-06-19 Novo Nordisk A/S Gezielte fresetzung von faktor-viii-proteinen auf thrombozyten

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080070275A1 (en) * 2001-10-10 2008-03-20 Neose Technologies, Inc. Factor VIII: Remodeling and glycoconjugation of factor VIII
WO2008011633A2 (en) * 2006-07-21 2008-01-24 Neose Technologies, Inc. Glycosylation of peptides via o-linked glycosylation sequences

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Shearwater Corporation Catalog 2001 Polyethylene Glycol and Derivatives for Biomedical Applications, 2001 *
The Life Cycle of Coagulation Factor VIII in View of Its Structure and Function, Blood, Vol. 92, No. 11 (1998) *
Veronese & Pasut, PEGylation, successful approach to drug delivery, DDT, Volume 10, Number 21, November 2005 *

Also Published As

Publication number Publication date
JP5927237B2 (ja) 2016-06-01
KR20110008011A (ko) 2011-01-25
IL207188A0 (en) 2010-12-30
EP2257311B1 (de) 2014-04-16
CN101965200B (zh) 2013-06-19
CA2715465A1 (en) 2009-09-03
PL2257311T3 (pl) 2014-09-30
CN103497246A (zh) 2014-01-08
MX2010009154A (es) 2010-09-09
US20130137638A1 (en) 2013-05-30
EP2626079A2 (de) 2013-08-14
CN101965200A (zh) 2011-02-02
US20160222086A1 (en) 2016-08-04
TWI425953B (zh) 2014-02-11
EP2257311A1 (de) 2010-12-08
RU2010137743A (ru) 2012-04-10
TW200940096A (en) 2009-10-01
AU2009219232B2 (en) 2014-02-27
JP5619630B2 (ja) 2014-11-05
US9150848B2 (en) 2015-10-06
JP2014040440A (ja) 2014-03-06
EP2626079A3 (de) 2014-03-05
CN103497247A (zh) 2014-01-08
ES2476690T3 (es) 2014-07-15
JP2014221768A (ja) 2014-11-27
KR101582841B1 (ko) 2016-01-11
US8536126B2 (en) 2013-09-17
US20140242057A1 (en) 2014-08-28
CN103497246B (zh) 2016-08-10
ZA201005556B (en) 2011-09-28
EP2626080A3 (de) 2014-03-05
DK2257311T3 (da) 2014-06-30
JP5933503B2 (ja) 2016-06-08
CA2715465C (en) 2017-03-21
RU2573587C2 (ru) 2016-01-20
JP2011513327A (ja) 2011-04-28
WO2009108806A1 (en) 2009-09-03
EP2626080A2 (de) 2013-08-14
AU2009219232A1 (en) 2009-09-03
IL207188A (en) 2016-02-29

Similar Documents

Publication Publication Date Title
US9150848B2 (en) Conjugated factor VIII molecules
US20170020992A1 (en) Factor VIII Molecules with Reduced VWF Binding
US20160264645A1 (en) Stabilized Factor VIII Variants
AU2013204960B2 (en) Conjugated factor VII molecules
TWI535454B (zh) 共軛因子viii分子

Legal Events

Date Code Title Description
AS Assignment

Owner name: NOVO NORDISK A/S, DENMARK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DEFREES, SHAWN;REEL/FRAME:023999/0161

Effective date: 20100212

AS Assignment

Owner name: NOVO NORDISK A/S, DENMARK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BOLT, GERT;VANDAHL, BRIAN BERG STIDSEN;THIM, LARS;AND OTHERS;SIGNING DATES FROM 20130128 TO 20130130;REEL/FRAME:029761/0981

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION