US20110087001A1 - Polymers of ethylene oxide and carbon dioxide - Google Patents

Polymers of ethylene oxide and carbon dioxide Download PDF

Info

Publication number
US20110087001A1
US20110087001A1 US12/990,202 US99020209A US2011087001A1 US 20110087001 A1 US20110087001 A1 US 20110087001A1 US 99020209 A US99020209 A US 99020209A US 2011087001 A1 US2011087001 A1 US 2011087001A1
Authority
US
United States
Prior art keywords
optionally substituted
certain embodiments
hydrogen
independently
metal complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/990,202
Other languages
English (en)
Inventor
Geoffrey W. Coates
Scott Allen
Tsuyoshi Ando
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cornell University
Original Assignee
Cornell University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cornell University filed Critical Cornell University
Priority to US12/990,202 priority Critical patent/US20110087001A1/en
Publication of US20110087001A1 publication Critical patent/US20110087001A1/en
Assigned to CORNELL UNIVERSITY reassignment CORNELL UNIVERSITY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COATES, GEOFFREY W., ANDO, TSUYOSHI, ALLEN, SCOTT
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/32General preparatory processes using carbon dioxide
    • C08G64/34General preparatory processes using carbon dioxide and cyclic ethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/06Cobalt compounds
    • C07F15/065Cobalt compounds without a metal-carbon linkage
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/02Aliphatic polycarbonates
    • C08G64/0208Aliphatic polycarbonates saturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/18Block or graft polymers
    • C08G64/183Block or graft polymers containing polyether sequences

Definitions

  • Poly(ethylene carbonate) is a flexible, biocompatible, and biodegradable material with high gas barrier properties, particularly for O 2 . It is made via the ring opening polymerization of ethylene carbonate (EC) or by the copolymerization of ethylene oxide (EO) and CO 2 . Ring opening polymerization of EC initiated by KOH or Sn(OAc) 2 at high temperature leads to poly(ethylene oxide-co-ether carbonate) rather than PEC. The high reaction temperatures required for this route cause the elimination of CO 2 during polymerization. The alternating copolymerization of epoxides and CO 2 to form polycarbonates was originally discovered by Inoue in 1969.
  • the present disclosure provides, in part, methods of synthesizing poly(ethylene carbonate) polymers from the reaction of ethylene oxide (EO) and carbon dioxide (CO 2 ) in the presence of a metal complex.
  • the present disclosure also provides novel metal complexes.
  • the inventors have found that N,N′-bis(salicydene)-1,2-cyclohexyldiamine (salcy) metal complexes are effective in this polymerization reaction, and particularly in providing poly(ethylene carbonate) polymers with low ether content.
  • the metal complexes as described herein are of the formula (I):
  • M is a metal selected from zinc, cobalt, chromium, aluminum, titanium, ruthenium or manganese;
  • X is absent or is a nucleophilic ligand
  • each instance of R 1 , R 2 , and R 3 is, independently, selected from hydrogen, halogen, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl, and optionally substituted heteroaryl, or R 1 and R 2 , or R 2 and R 3 , are joined to form an optionally substituted aryl or optionally substituted heteroaryl ring; and
  • Ring A forms an optionally substituted 5- to 6-membered ring.
  • the present disclosure provides a method of synthesizing a poly(ethylene carbonate) polymer, wherein the polymer is made up of Y, and optionally Z, and wherein the percentage of Y is greater than the percentage of Z,
  • the method comprising reacting ethylene oxide and carbon dioxide in the presence of a metal complex.
  • the above method comprises a metal complex of formula (I), as described above and herein.
  • Certain compounds of the present disclosure can comprise one or more asymmetric centers, and thus can exist in various isomeric forms, e.g., stereoisomers and/or diastereomers.
  • inventive compounds and compositions thereof may be in the form of an individual enantiomer, diastereomer or geometric isomer, or may be in the form of a mixture of stereoisomers.
  • the compounds of the disclosure are enantiopure compounds. In certain other embodiments, mixtures of stereoisomers or diastereomers are provided.
  • certain compounds, as described herein may have one or more double bonds that can exist as either the Z or E isomer, unless otherwise indicated.
  • the disclosure additionally encompasses the compounds as individual isomers substantially free of other isomers and alternatively, as mixtures of various isomers, e.g., racemic mixtures of stereoisomers.
  • this disclosure also encompasses pharmaceutically acceptable derivatives of these compounds and compositions comprising one or more compounds.
  • a particular enantiomer may, in some embodiments be provided substantially free of the opposite enantiomer, and may also be referred to as “optically enriched.”
  • “Optically-enriched,” as used herein, means that the compound is made up of a significantly greater proportion of one enantiomer. In certain embodiments the compound is made up of at least about 90% by weight of a preferred enantiomer. In other embodiments the compound is made up of at least about 95%, 98%, or 99% by weight of a preferred enantiomer.
  • Preferred enantiomers may be isolated from racemic mixtures by any method known to those skilled in the art, including chiral high pressure liquid chromatography (HPLC) and the formation and crystallization of chiral salts or prepared by asymmetric syntheses.
  • HPLC high pressure liquid chromatography
  • Jacques, et al. Enantiomers, Racemates and Resolutions (Wiley Interscience, New York, 1981); Wilen, S. H., et al., Tetrahedron 33:2725 (1977); Eliel, E. L. Stereochemistry of Carbon Compounds (McGraw-Hill, NY, 1962); Wilen, S. H. Tables of Resolving Agents and Optical Resolutions p. 268 (E. L. Eliel, Ed., Univ. of Notre Dame Press, Notre Dame, Ind. 1972).
  • halo and “halogen” as used herein refer to an atom selected from fluorine (fluoro, —F), chlorine (chloro, —Cl), bromine (bromo, —Br), and iodine (iodo, —I).
  • aliphatic or “aliphatic group”, as used herein, denotes a hydrocarbon moiety that may be straight-chain (i.e., unbranched), branched, or cyclic (including fused, bridging, and spiro-fused polycyclic) and may be completely saturated or may contain one or more units of unsaturation, but which is not aromatic. Unless otherwise specified, aliphatic groups contain 1-12 carbon atoms. In certain embodiments, aliphatic groups contain 1-8 carbon atoms. In certain embodiments, aliphatic groups contain 1-6 carbon atoms.
  • aliphatic groups contain 1-5 carbon atoms, in some embodiments, aliphatic groups contain 1-4 carbon atoms, in yet other embodiments aliphatic groups contain 1-3 carbon atoms, and in yet other embodiments aliphatic groups contain 1-2 carbon atoms.
  • Suitable aliphatic groups include, but are not limited to, linear or branched, alkyl, alkenyl, and alkynyl groups, and hybrids thereof such as (cycloalkyl)alkyl, (cycloalkenyl)alkyl or (cycloalkyl)alkenyl.
  • cycloaliphatic refers to a saturated or partially unsaturated cyclic aliphatic monocyclic or bicyclic ring systems, as described herein, having from 3 to 12 members, wherein the aliphatic ring system is optionally substituted as defined above and described herein.
  • Cycloaliphatic groups include, without limitation, cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptyl, cycloheptenyl, cyclooctyl, cyclooctenyl, and cyclooctadienyl.
  • the cycloalkyl has 3-6 carbons.
  • cycloaliphatic also include aliphatic rings that are fused to one or more aromatic or nonaromatic rings, such as decahydronaphthyl or tetrahydronaphthyl, where the radical or point of attachment is on the aliphatic ring.
  • alkyl refers to saturated, straight- or branched-chain hydrocarbon radicals derived from an aliphatic moiety containing between one and six carbon atoms by removal of a single hydrogen atom. Unless otherwise specified, alkyl groups contain 1-12 carbon atoms. In certain embodiments, alkyl groups contain 1-8 carbon atoms. In certain embodiments, alkyl groups contain 1-6 carbon atoms. In some embodiments, alkyl groups contain 1-5 carbon atoms, in some embodiments, alkyl groups contain 1-4 carbon atoms, in yet other embodiments alkyl groups contain 1-3 carbon atoms, and in yet other embodiments alkyl groups contain 1-2 carbon atoms.
  • alkyl radicals include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, iso-butyl, sec-butyl, sec-pentyl, iso-pentyl, tert-butyl, n-pentyl, neopentyl, n-hexyl, sec-hexyl, n-heptyl, n-octyl, n-decyl, n-undecyl, dodecyl, and the like.
  • alkenyl denotes a monovalent group derived from a straight- or branched-chain aliphatic moiety having at least one carbon-carbon double bond by the removal of a single hydrogen atom. Unless otherwise specified, alkenyl groups contain 2-12 carbon atoms. In certain embodiments, alkenyl groups contain 2-8 carbon atoms. In certain embodiments, alkenyl groups contain 2-6 carbon atoms. In some embodiments, alkenyl groups contain 2-5 carbon atoms, in some embodiments, alkenyl groups contain 2-4 carbon atoms, in yet other embodiments alkenyl groups contain 2-3 carbon atoms, and in yet other embodiments alkenyl groups contain 2 carbon atoms. Alkenyl groups include, for example, ethenyl, propenyl, butenyl, 1-methyl-2-buten-1-yl, and the like.
  • alkynyl refers to a monovalent group derived from a straight- or branched-chain aliphatic moiety having at least one carbon-carbon triple bond by the removal of a single hydrogen atom. Unless otherwise specified, alkynyl groups contain 2-12 carbon atoms. In certain embodiments, alkynyl groups contain 2-8 carbon atoms. In certain embodiments, alkynyl groups contain 2-6 carbon atoms.
  • alkynyl groups contain 2-5 carbon atoms, in some embodiments, alkynyl groups contain 2-4 carbon atoms, in yet other embodiments alkynyl groups contain 2-3 carbon atoms, and in yet other embodiments alkynyl groups contain 2 carbon atoms.
  • Representative alkynyl groups include, but are not limited to, ethynyl, 2-propynyl (propargyl), 1-propynyl, and the like.
  • aryl used alone or as part of a larger moiety as in “aralkyl”, “aralkoxy”, or “aryloxyalkyl”, refers to monocyclic and polycyclic ring systems having a total of five to 20 ring members, wherein at least one ring in the system is aromatic and wherein each ring in the system contains three to twelve ring members.
  • aryl may be used interchangeably with the term “aryl ring”.
  • aryl refers to an aromatic ring system which includes, but is not limited to, phenyl, biphenyl, naphthyl, anthracyl and the like, which may bear one or more substituents.
  • aryl is a group in which an aromatic ring is fused to one or more additional rings, such as benzofuranyl, indanyl, phthalimidyl, naphthimidyl, phenantriidinyl, or tetrahydronaphthyl, and the like.
  • heteroatom refers to nitrogen, oxygen, or sulfur, and includes any oxidized form of nitrogen or sulfur, and any quaternized form of a basic nitrogen.
  • Heteroaryl groups include, without limitation, thienyl, furanyl, pyrrolyl, imidazolyl, pyrazolyl, triazolyl, tetrazolyl, oxazolyl, isoxazolyl, oxadiazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, indolizinyl, purinyl, naphthyridinyl, benzofuranyl and pteridinyl.
  • heteroaryl and “heteroar-”, as used herein, also include groups in which a heteroaromatic ring is fused to one or more aryl, cycloaliphatic, or heterocyclyl rings, where the radical or point of attachment is on the heteroaromatic ring.
  • Nonlimiting examples include indolyl, isoindolyl, benzothienyl, benzofuranyl, dibenzofuranyl, indazolyl, benzimidazolyl, benzthiazolyl, quinolyl, isoquinolyl, cinnolinyl, phthalazinyl, quinazolinyl, quinoxalinyl, 4H-quinolizinyl, carbazolyl, acridinyl, phenazinyl, phenothiazinyl, phenoxazinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, and pyrido[2,3-b]-1,4-oxazin-3(4H)-one.
  • heteroaryl group may be mono- or bicyclic.
  • heteroaryl may be used interchangeably with the terms “heteroaryl ring”, “heteroaryl group”, or “heteroaromatic”, any of which terms include rings that are optionally substituted.
  • heteroarylkyl refers to an alkyl group substituted by a heteroaryl, wherein the alkyl and heteroaryl portions independently are optionally substituted.
  • heterocycle As used herein, the terms “heterocycle”, “heterocyclyl”, “heterocyclic radical”, and “heterocyclic ring” are used interchangeably and refer to a stable 5- to 7-membered monocyclic or 7-14-membered bicyclic heterocyclic moiety that is either saturated or partially unsaturated, and having, in addition to carbon atoms, one or more, preferably one to four, heteroatoms, as defined above.
  • nitrogen includes a substituted nitrogen.
  • the nitrogen may be N (as in 3,4-dihydro-2H-pyrrolyl), NH (as in pyrrolidinyl), or + NR (as in N-substituted pyrrolidinyl).
  • a heterocyclic ring can be attached to its pendant group at any heteroatom or carbon atom that results in a stable structure and any of the ring atoms can be optionally substituted.
  • saturated or partially unsaturated heterocyclic radicals include, without limitation, tetrahydrofuranyl, tetrahydrothienyl, pyrrolidinyl, pyrrolidonyl, piperidinyl, pyrrolinyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, decahydroquinolinyl, oxazolidinyl, piperazinyl, dioxanyl, dioxolanyl, diazepinyl, oxazepinyl, thiazepinyl, morpholinyl, and quinuclidinyl.
  • heterocycle refers to an alkyl group substituted by a heterocyclyl, wherein the alkyl and heterocyclyl portions independently are optionally substituted.
  • partially unsaturated refers to a ring moiety that includes at least one double or triple bond.
  • partially unsaturated is intended to encompass rings having multiple sites of unsaturation, but is not intended to include aryl or heteroaryl moieties, as herein defined.
  • compounds of the disclosure may contain “optionally substituted” moieties.
  • substituted whether preceded by the term “optionally” or not, means that one or more hydrogens of the designated moiety are replaced with a suitable substituent.
  • an “optionally substituted” group may have a suitable substituent at each substitutable position of the group, and when more than one position in any given structure may be substituted with more than one substituent selected from a specified group, the substituent may be either the same or different at every position.
  • Combinations of substituents envisioned by this disclosure are preferably those that result in the formation of stable or chemically feasible compounds.
  • stable refers to compounds that are not substantially altered when subjected to conditions to allow for their production, detection, and, in certain embodiments, their recovery, purification, and use for one or more of the purposes disclosed herein.
  • Suitable monovalent substituents on a substitutable carbon atom of an “optionally substituted” group are independently halogen; —(CH 2 ) 0-4 R ⁇ ; —(CH 2 ) 0-4 OR ⁇ ; —O—(CH 2 ) 0-4 C(O)OR ⁇ ; —(CH 2 ) 0-4 CH(OR ⁇ ) 2 ; —(CH 2 ) 0-4 SR ⁇ ; —(CH 2 ) 0-4 Ph, which may be substituted with R ⁇ ; —(CH 2 ) 0-4 O(CH 2 ) 0-1 Ph which may be substituted with R ⁇ ; —CH ⁇ CHPh, which may be substituted with R ⁇ ; —NO 2 ; —CN; —N 3 ; —(CH 2 ) 0-4 N(R ⁇ ) 2 ; —(CH 2 ) 0-4 N(R ⁇ )C(O)R ⁇ ; —
  • Suitable monovalent substituents on R ⁇ are independently halogen, —(CH 2 ) 0-2 R ⁇ , —(haloR ⁇ ), —(CH 2 ) 0-2 OH, —(CH 2 ) 0-2 OR ⁇ , —(CH 2 ) 0-2 CH(OR ⁇ ) 2 ; —O(haloR ⁇ ), —CN, —N 3 , —(CH 2 ) 0-2 C(O)R ⁇ , —(CH 2 ) 0-2 C(O)OH, —(CH 2 ) 0-2 C(O)OR ⁇ , —(CH 2 ) 0-4 C(O)N(R ⁇ ) 2 ; —(CH 2 ) 0-2 SR ⁇ , —(CH 2 ) 0-2 SH, —(CH 2 ) 0-2 NH
  • Suitable divalent substituents on a saturated carbon atom of an “optionally substituted” group include the following: ⁇ O, ⁇ S, ⁇ NNR* 2 , ⁇ NNHC(O)R*, ⁇ NNHC(O)OR*, ⁇ NNHS(O) 2 R*, ⁇ NR*, ⁇ NOR*, ⁇ O(C(R* 2 )) 2-3 O—, or —S(C(R* 2 )) 2-3 S—, wherein each independent occurrence of R* is selected from hydrogen, C 1-6 aliphatic which may be substituted as defined below, or an unsubstituted 5-6-membered saturated, partially unsaturated, or aryl ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
  • Suitable divalent substituents that are bound to vicinal substitutable carbons of an “optionally substituted” group include: —O(CR* 2 ) 2-3 O—, wherein each independent occurrence of R* is selected from hydrogen, C 1-6 aliphatic which may be substituted as defined below, or an unsubstituted 5-6-membered saturated, partially unsaturated, or aryl ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
  • Suitable substituents on the aliphatic group of R* include halogen, —R ⁇ , —(haloR ⁇ ), —OH, —OR ⁇ , —O(haloR ⁇ ), —CN, —C(O)OH, —C(O)OR ⁇ , —NH 2 , —NHR ⁇ , —NR ⁇ 2 , or —NO 2 , wherein each R ⁇ is unsubstituted or where preceded by “halo” is substituted only with one or more halogens, and is independently C 1-4 aliphatic, —CH 2 Ph, —O(CH 2 ) 0-1 Ph, or a 5-6-membered saturated, partially unsaturated, or aryl ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
  • Suitable substituents on a substitutable nitrogen of an “optionally substituted” group include —R ⁇ , —NR ⁇ 2 , —C(O)R ⁇ , —C(O)OR ⁇ , —C(O)C(O)R ⁇ , —C(O)CH 2 C(O)R ⁇ , —S(O) 2 R ⁇ , —S(O) 2 NR ⁇ 2 , —C(S)NR ⁇ 2 , —C(NH)NR ⁇ 2 , or —N(R ⁇ )S(O) 2 R ⁇ ; wherein each R ⁇ is independently hydrogen, C 1-6 aliphatic which may be substituted as defined below, unsubstituted —OPh, or an unsubstituted 5-6-membered saturated, partially unsaturated, or aryl ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or, notwithstanding the definition above, two independent occurrence
  • Suitable substituents on the aliphatic group of R ⁇ are independently halogen, —R ⁇ , —(haloR ⁇ ), —OH, —OR ⁇ , —O(haloR ⁇ ), —CN, —C(O)OH, —C(O)OR ⁇ , —NH 2 , —NHR ⁇ , —NR ⁇ 2 , or —NO 2 , wherein each R ⁇ is unsubstituted or where preceded by “halo” is substituted only with one or more halogens, and is independently C 1-4 aliphatic, —CH 2 Ph, —O(CH 2 ) 0-1 Ph, or a 5-6-membered saturated, partially unsaturated, or aryl ring having 0-4 heteroatoms independently selected from nitrogen, oxygen, or sulfur.
  • tautomer includes two or more interconvertable compounds resulting from at least one formal migration of a hydrogen atom and at least one change in valency (e.g., a single bond to a double bond, a triple bond to a single bond, or vice versa).
  • the exact ratio of the tautomers depends on several factors, including temperature, solvent, and pH. Tautomerizations (i.e., the reaction providing a tautomeric pair) may catalyzed by acid or base.
  • Exemplary tautomerizations include keto-to-enol; amide-to-imide; lactam-to-lactim; enamine-to-imine; and enamine-to-(a different) enamine tautomerizations.
  • isomers includes any and all geometric isomers and stereoisomers.
  • “isomers” include cis- and trans-isomers, E- and Z-isomers, R- and S-enantiomers, diastereomers, (D)-isomers, (L)-isomers, racemic mixtures thereof, and other mixtures thereof, as falling within the scope of the disclosure.
  • an isomer/enantiomer may, in some embodiments, be provided substantially free of the corresponding enantiomer, and may also be referred to as “optically enriched.”
  • “Optically-enriched,” as used herein, means that the compound is made up of a significantly greater proportion of one enantiomer.
  • the compound of the present disclosure is made up of at least about 90% by weight of a preferred enantiomer. In other embodiments the compound is made up of at least about 95%, 98%, or 99% by weight of a preferred enantiomer.
  • Preferred enantiomers may be isolated from racemic mixtures by any method known to those skilled in the art, including chiral high pressure liquid chromatography (HPLC) and the formation and crystallization of chiral salts or prepared by asymmetric syntheses. See, for example, Jacques, et al., Enantiomers, Racemates and Resolutions (Wiley Interscience, New York, 1981); Wilen, S.
  • polymorph refers to a crystalline inventive compound existing in more than one crystalline form/structure. When polymorphism exists as a result of difference in crystal packing it is called packing polymorphism. Polymorphism can also result from the existence of different conformers of the same molecule in conformational polymorphism. In pseudopolymorphism the different crystal types are the result of hydration or solvation.
  • FIGS. 1A-1B 1 H NMR spectra (300 MHz) of PEC obtained by catalyst 1 ( FIG. 1A ) and 4 ( FIG. 1B ) in conjunction with [PPN]Cl.
  • FIG. 2 1 H NMR spectra of PEC and PEO.
  • FIG. 3 (Salcy)CoOBzF 5 induced ethylene oxide (EO) polymerization in the presence of PPNCl.
  • the catalytic activity is strongly dependant on the PPNCl/Co ratio.
  • FIGS. 4A-4B TGA ( FIG. 4A ) and DSC ( FIG. 4B ) analyses of PEO-b-PEC.
  • the present disclosure provides methods of synthesizing poly(ethylene carbonate) compositions from ethylene oxide and carbon dioxide in the presence of a metal complex.
  • the poly(ethylene carbonate) polymer is an alternating polymer.
  • the poly(ethylene carbonate) polymer is a tapered co-polymer of polyethylene oxide and polyethylene carbonate.
  • the poly(ethylene carbonate) polymer is a block co-polymer of polyethylene oxide and polyethylene carbonate.
  • poly(ethylene carbonate) polymers of the present disclosure encompass poly(ethylene carbonate) (PEC), as well as polymers which comprise poly(ethylene carbonate), such as, for example, polyethylene oxide-co-polyethylene carbonate.
  • the present disclosure also provides novel metal complexes of the formula (I) as is described in detail below.
  • the metal complex is of the formula (I):
  • M is a metal selected from zinc, cobalt, chromium, aluminum, titanium, ruthenium and manganese;
  • X is absent or is a nucleophilic ligand
  • each instance of R 1 , R 2 , and R 3 is, independently, selected from hydrogen, halogen, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl, and optionally substituted heteroaryl, or R 1 and R 2 , or R 2 and R 3 , are joined to form an optionally substituted aryl or optionally substituted heteroaryl ring; and
  • Ring A forms an optionally substituted 5- to 6-membered ring.
  • the metal is aluminum. In certain embodiments, the metal is chromium. In certain embodiments, the metal is zinc. In certain embodiments, the metal is titanium. In certain embodiments, the metal is ruthenium. In certain embodiments, the metal is manganese. In certain embodiments, the metal is cobalt. In certain embodiments, wherein the metal is cobalt, the cobalt has a valency of +3 (i.e., Co(III)).
  • the metal complex is a metal catalyst.
  • X is absent.
  • X is a nucleophilic ligand.
  • Exemplary nucleophilic ligands include, but are not limited to, —OR x , —SR X , —O(C ⁇ O)R x , —O(C ⁇ O)OR x , —O(C ⁇ O)N(R x ) 2 , —N(R x )(C ⁇ O)R x , —NC, —CN, halo (e.g., —Br, —I, —Cl), —N 3 , —O(SO 2 )R x and —OPR x 3 , wherein each R x is, independently, selected from hydrogen, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl and optionally substituted heteroaryl.
  • X is —O(C ⁇ O)R x , wherein R x is selected from optionally substituted aliphatic, fluorinated aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl, fluorinated aryl, and optionally substituted heteroaryl.
  • X is —O(C ⁇ O)R x , wherein R x is optionally substituted aliphatic. In certain embodiments, X is —O(C ⁇ O)R x , wherein R x is optionally substituted alkyl and fluoroalkyl. In certain embodiments, X is —O(C ⁇ O)CH 3 or —O(C ⁇ O)CF 3 .
  • X is —O(C ⁇ O)R x , wherein R x is optionally substituted aryl, fluoroaryl, or heteroaryl. In certain embodiments, X is —O(C ⁇ O)R x , wherein R x is optionally substituted aryl. In certain embodiments, X is —O(C ⁇ O)R x , wherein R x is optionally substituted phenyl. In certain embodiments, X is —O(C ⁇ O)C 6 H 5 or —O(C ⁇ O)C 6 F 5 .
  • X is —OR x , wherein R x is selected from optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl, and optionally substituted heteroaryl.
  • X is —OR x , wherein R x is optionally substituted aryl. In certain embodiments, X is —OR x , wherein R x is optionally substituted phenyl. In certain embodiments, X is —OC 6 H 5 or —OC 6 H 2 (2,4-NO 2 ).
  • X is halo. In certain embodiments, X is —Br. In certain embodiments, X is —Cl. In certain embodiments, X is —I.
  • X is —O(SO 2 )R x . In certain embodiments X is —OTs. In certain embodiments X is —OSO 2 Me, In certain embodiments X is —OSO 2 CF 3 .
  • X is —N 3 .
  • X is —NC
  • X is —CN.
  • Ring A forms an optionally substituted 5-membered ring. In certain embodiments, Ring A forms an optionally substituted cyclopentyl ring. In certain embodiments, Ring A forms an optionally substituted 5-membered aryl ring.
  • Ring A forms an optionally substituted 6-membered ring. In certain embodiments, Ring A forms an optionally substituted cyclohexyl ring. In certain embodiments, Ring A forms an optionally substituted 6-membered aryl ring.
  • the metal complex of formula (I) may be considered in two portions: a Northern Hemisphere comprising the imine nitrogen atoms and Ring A, and Southern Hemisphere, comprising the rest of the metal complex.
  • the Northern Hemisphere of the metal complex is of the formula (i-a):
  • Ring A forms an optionally substituted 5- to 6-membered ring.
  • Ring A forms an optionally substituted 6-membered ring of the formula (i-b):
  • R 4A , R 4B , R 5A , R 5B , and R 6A , R 6B are, independently, selected from hydrogen, halogen, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl, optionally substituted heteroaryl, and/or, R 4A and R 4B , and/or R 5A and R 5B , and/or and R 6A and R 6B are optionally joined to form an oxo ( ⁇ O) group, an oxime ( ⁇ NOR a ) group, an imine ( ⁇ NN(R a ) 2 ) group, an alkenyl ( ⁇ C(R b ) 2 ) group, and/or a 3- to 6-membered spirocyclic ring, wherein each instance of R a and R b is, independently, hydrogen or optionally substituted aliphatic, wherein optionally two R a groups or two R b groups are joined to form a 3- to 6-membered ring
  • R 4A , R 4B , R 5A , R 5B , R 6A , and R 6B are, independently, selected from hydrogen, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl, and optionally substituted heteroaryl. In certain embodiments, R 4A , R 4B , R 5A , R 5B , R 6A , and R 6B are, independently, selected from hydrogen and optionally substituted aliphatic. In certain embodiments, R 4A , R 4B , R 5A , R 5B , R 6A , and R 6B are, independently, selected from hydrogen and optionally substituted heteroaliphatic.
  • R 4A , R 4B , R 5A , R 5B , R 6A , and R 6B are independently, selected from hydrogen and optionally substituted aryl. In certain embodiments, R 4A , R 4B , R 5A , R 5B , R 6A , and R 6B are, independently, selected from hydrogen and optionally substituted heteroaryl. In certain embodiments, two or more of R 4A , R 4B , R 5A , R 5B , R 6A , and R 6B , are joined to form one or more aliphatic, heteroaliphatic, aromatic, or heteroaromatic rings having 3 to 8 total ring atoms.
  • each of R 4A , R 4B , R 5A , R 5B , R 6A , and R 6B are hydrogen.
  • Ring A forms a 6-membered ring of the formula:
  • Ring A forms an optionally substituted 6-membered ring of the formula (i-c):
  • R 5A and R 5B are, independently, selected from hydrogen, halogen, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl, optionally substituted heteroaryl, and/or, R 5A and R 5B are optionally joined to form an oxo ( ⁇ O) group, an oxime ( ⁇ NOR a ) group, an imine ( ⁇ NN(R a ) 2 ) group, an alkenyl ( ⁇ C(R b ) 2 ) group, and/or a 3- to 6-membered spirocyclic ring, wherein each instance of R a and R b is, independently, hydrogen or optionally substituted aliphatic, wherein optionally two R a groups or two R b groups are joined to form a 5- to 6-membered ring;
  • each instance of R 12 is selected from hydrogen, halogen, —OR c , —OC( ⁇ O)R c , —OC( ⁇ O)OR c , —OC( ⁇ O)N(R d ) 2 , —OSO 2 R d , —C( ⁇ O)OR c , —C( ⁇ O)N(R d ) 2 , —CN, —CNO, —NCO, —N 3 , —NO2, —N(Rd) 2 , —N(R d )C( ⁇ O)R c , —N(R d )C( ⁇ O)OR c , —N(R d )SO 2 R d , —SO 2 R d , —SOR d , —SO 2 N(R d ) 2 , optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl, optionally substituted heteroaryl,
  • c 0 to 4.
  • R 5A and R 5B are, independently, selected from hydrogen and optionally substituted aliphatic. In certain embodiments, R 5A and R 5B are, independently, selected from hydrogen and optionally substituted heteroaliphatic. In certain embodiments, R 5A and R 5B are, independently, selected from hydrogen and optionally substituted aryl. In certain embodiments, R 5A and R 5B are, independently, selected from hydrogen and optionally substituted heteroaryl.
  • each R 5A and R 5B is hydrogen.
  • c is 0 to 2. In certain embodiments, c is 0 to 1. In certain embodiments, c is 0. In certain embodiments, c is 1.
  • each instance of R 12 is, independently, selected from hydrogen and optionally substituted aliphatic. In certain embodiments, each instance of R 12 is, independently, selected from hydrogen and optionally substituted heteroaliphatic. In certain embodiments, each instance of R 12 is, independently, selected from hydrogen and optionally substituted aryl. In certain embodiments, each instance of R 12 is, independently, selected from hydrogen and optionally substituted heteroaryl.
  • each instance of R 12 is hydrogen.
  • Ring A forms an optionally substituted 5-membered ring of the formula (i-d):
  • R 4A , R 4B , R 5A , and R 5B are, independently, selected from hydrogen, halogen, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl, optionally substituted heteroaryl, and/or, R 4A and R 4B and/or R 5A and R 5B are optionally joined to form an oxo ( ⁇ O) group, an oxime ( ⁇ NOR a ) group, an imine ( ⁇ NN(R a ) 2 ) group, an alkenyl ( ⁇ C(R b ) 2 ) group, and/or a 3- to 6-membered spirocyclic ring, wherein each instance of R a and R b is, independently, hydrogen or optionally substituted aliphatic, wherein optionally two R a groups or two R b groups are joined to form a 5- to 6-membered ring.
  • R 4A , R 4B , R 5A , and R 5B are, independently, selected from hydrogen, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl, optionally substituted heteroaryl, or wherein one of R 4A , R 4B , R 5A , and R 5B and one of R 4A , R 4B , R 5A , and R 5B are optionally joined to form a 3- to 7-membered ring.
  • R 4A , R 4B , R 5A , and R 5B are, independently, selected from hydrogen and optionally substituted aliphatic. In certain embodiments, R 4A , R 4B , R 5A , and R 5B are, independently, selected from hydrogen and optionally substituted heteroaliphatic. In certain embodiments, R 4A , R 4B , R 5A , and R 5B are, independently, selected from hydrogen and optionally substituted aryl. In certain embodiments, R 4A , R 4B , R 5A , and R 5B are, independently, selected from hydrogen and optionally substituted heteroaryl.
  • one of R 4A , R 4B , R 5A , and R 5B and one of R 4A , R 4B , R 5A , and R 5B are optionally joined to form a 3- to 6-membered ring.
  • each instance of R 4A , R 4B , R 5A , and R 5B is hydrogen.
  • Ring A forms a 5-membered ring of the formula:
  • Ring A forms an optionally substituted 5-membered ring of the formula (i-f):
  • R 4A , R 5A , R 13A , R 13B , R 14A , R 14B , R 15A , R 15B , R 16A , R 16B are, independently, selected from hydrogen, halogen, —OR c , —OC( ⁇ O)R c , —OC( ⁇ O)OR c , —OC( ⁇ O)N(R d ) 2 , —OSO 2 R d , —C( ⁇ O)OR c , —C( ⁇ O)N(R d ) 2 , —CN, —CNO, —NCO, —N 3 , —NO2, —N(Rd)2, —N(R d )C( ⁇ O)OR c , —N(R d )C( ⁇ O)R c , —N(R d )SO 2 R d , —SO 2 R d , —SO 2 R d , —S
  • R 4A , R 5A , R 13A , R 13B , R 14A , R 14B , R 15A , R 15B , R 16A , R 16B are, independently, selected from hydrogen, halogen, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl, optionally substituted heteroaryl. In certain embodiments, R 4A , R 5A , R 13A , R 13B , R 14A , R 14B , R 15A , R 15B , R 16A , R 16B are independently, selected from hydrogen and optionally substituted aliphatic.
  • R 4A , R 5A , R 13A , R 13B , R 14A , R 14B , R 15A , R 15B , R 16A , R 16B are, independently, selected from hydrogen and optionally substituted heteroaliphatic. In certain embodiments, R 4A , R 5A , R 13A , R 13B , R 14A , R 14B , R 15A , R 15B , R 16A , R 16B are, independently, selected from hydrogen and optionally substituted aryl.
  • R 4A , R 5A , R 13A , R 13B , R 14A , R 14B , R 15A , R 15B , R 16A , R 16B are independently, selected from hydrogen and optionally substituted heteroaryl.
  • each of R 4A , R 5A , R 13A , R 13B , R 14A , R 14B , R 15A , R 15B , R 16A , R 16B is hydrogen.
  • Ring A forms an optionally substituted 5-membered ring of the formula (i-g):
  • Ring A forms an optionally substituted 5-membered ring of any of the formulae (i-h) to (i-k):
  • R 4A , R 5A , R 13A , R 13B , R 14A , R 14B , R 15A , R 15B , R 16A , R 16B are, independently, selected from hydrogen, halogen, —OR c , —OC( ⁇ O)R c , —OC( ⁇ O)OR c , OC( ⁇ O)N(R d ) 2 , —OSO 2 R d , —C( ⁇ O)OR c , —C( ⁇ O)N(R d ) 2 , —CN, —CNO, —NCO, —N 3 , —NO2, —N(Rd)2, —N(R d )C( ⁇ O)OR c , —N(R d )C( ⁇ O)R c , —N(R d )SO 2 R d , —SO 2 R d , —SO 2 R d , —SOR
  • Ring A forms an optionally substituted 5-membered ring of any of the formulae (i-l) to (i-o):
  • Ring A forms an optionally substituted 5-membered ring of the formula (i-p):
  • each instance of R 17 is, independently, selected from hydrogen, halogen, —OR c , —OC( ⁇ O)R c , —OC( ⁇ O)OR c , —OC( ⁇ O)N(R d ) 2 , —OSO 2 R d , —C( ⁇ O)OR c , —C( ⁇ O)N(R d ) 2 , —CN, —CNO, —NCO, —N 3 , —NO 2 , —N(R d ) 2 , —N(R d )C( ⁇ O)OR c , —N(R d )C( ⁇ O)R c , —N(R d )SO 2 R d , —SO 2 R d , —SO 2 R d , —SOR d , —SO 2 N(R d ) 2 , optionally substituted aliphatic, optionally substituted heteroaliphatic,
  • d 0 to 4.
  • d is 0 to 2. In certain embodiments, d is 0 to 1. In certain embodiments, d is 0. In certain embodiments, d is 1.
  • each instance of R 17 is, independently, selected from hydrogen, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl, and optionally substituted heteroaryl. In certain embodiments, each instance of R 17 is, independently, selected from hydrogen and optionally substituted aliphatic. In certain embodiments, each instance of R 17 is, independently, selected from hydrogen and optionally substituted heteroaliphatic. In certain embodiments, each instance of R 17 is, independently, selected from hydrogen and optionally substituted aryl. In certain embodiments, each instance of R 17 is, independently, selected from hydrogen and optionally substituted heteroaryl.
  • each instance of R 17 is hydrogen.
  • Ring A forms an optionally substituted 5-membered ring of the formula (i-q):
  • each instance of R 1 , R 2 , and R 3 is, independently, selected from hydrogen, halogen, —OR c , —OC( ⁇ O)R c , —OC( ⁇ O)OR c , —OC( ⁇ O)N(R d ) 2 , —OSO 2 R d , —C( ⁇ O)OR c , —C( ⁇ O)N(R d ) 2 , —CN, —CNO, —NCO, —N 3 , —NO 2 , —N(R d ) 2 , —N(R d )C( ⁇ O)OR c , —N(R d )C( ⁇ O)R c , —N(R d )SO 2 R d , —SO 2 R d , —SO 2 R d , —SOR d , —SO 2 N(R d ) 2 , optionally substituted aliphatic,
  • R 1 is hydrogen, halogen, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl, or optionally substituted heteroaryl. In certain embodiments, each instance of R 1 is hydrogen. In certain embodiments, each instance of R 1 is halogen. In certain embodiments, each instance of R 1 is optionally substituted aliphatic. In certain embodiments, each instance of R 1 is optionally substituted heteroaliphatic. In certain embodiments, each instance of R 1 is optionally substituted aryl. In certain embodiments, each instance of R 1 is optionally substituted heteroaryl.
  • each instance of R 2 is hydrogen, halogen, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl, or optionally substituted heteroaryl. In certain embodiments, each instance of R 2 is hydrogen. In certain embodiments, each instance of R 2 is halogen. In certain embodiments, each instance of R 2 is optionally substituted aliphatic. In certain embodiments, each instance of R 2 is optionally substituted heteroaliphatic. In certain embodiments, each instance of R 2 is optionally substituted aryl. In certain embodiments, each instance of R 2 is optionally substituted heteroaryl.
  • each instance of R 3 is hydrogen, halogen, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl, or optionally substituted heteroaryl. In certain embodiments, each instance of R 3 is hydrogen. In certain embodiments, each instance of R 3 is halogen. In certain embodiments, each instance of R 3 is optionally substituted aliphatic. In certain embodiments, each instance of R 3 is optionally substituted heteroaliphatic. In certain embodiments, each instance of R 3 is optionally substituted aryl. In certain embodiments, each instance of R 3 is optionally substituted heteroaryl.
  • R 1 and R 2 are joined to form an optionally substituted aryl or optionally substituted heteroaryl ring. In certain embodiments, R 1 and R 2 are joined to form an optionally substituted aryl ring. In certain embodiments, R 1 and R 2 are joined to form an optionally substituted heteroaryl ring.
  • R 2 and R 3 are joined to form an optionally substituted aryl or optionally substituted heteroaryl ring. In certain embodiments, R 2 and R 3 are joined to form an optionally substituted aryl ring. In certain embodiments, R 2 and R 3 are joined to form an optionally substituted heteroaryl ring.
  • each instance of R 1 , R 2 , and R 3 is, independently, selected from hydrogen, optionally substituted aliphatic, and/or any of R 1 and R 2 , and/or any of R 2 and R 3 , are joined to form an optionally substituted aryl or optionally substituted heteroaryl ring.
  • each instance of R 1 , R 2 , and R 3 is, independently, selected from hydrogen and/or any of R 1 and R 2 are joined to form an optionally substituted aryl or optionally substituted heteroaryl ring.
  • each instance of R 1 , R 2 , and R 3 is, independently, selected from hydrogen and/or any of R 2 and R 3 , are joined to form an optionally substituted aryl or optionally substituted heteroaryl ring.
  • each instance of R 1 , R 2 , and R 3 is, independently, selected from hydrogen and optionally substituted aliphatic. In certain embodiments, each instance of R 1 , R 2 , and R 3 is, independently, selected from hydrogen and optionally substituted heteroaliphatic. In certain embodiments, each instance of R 1 , R 2 , and R 3 is, independently, selected from hydrogen and optionally substituted aryl. In certain embodiments, each instance of R 1 , R 2 , and R 3 is, independently, selected from hydrogen and optionally substituted heteroaryl.
  • each instance of R 1 , R 2 , and R 3 is hydrogen. In certain embodiments, each instance of R 1 and R 3 is hydrogen. In certain embodiments, each instance of R 2 and R 3 is hydrogen. In certain embodiments, each instance of R 1 and R 2 is hydrogen. In certain embodiments, each instance of R 1 is hydrogen. In certain embodiments, each instance of R 2 is hydrogen. In certain embodiments, each instance of R 3 is hydrogen.
  • the Southern Hemisphere of the metal complex is of the formula (ii-b):
  • each instance of R 11 is, independently, selected from hydrogen, halogen, —OR c , —OC( ⁇ O)R c , —OC( ⁇ O)OR c , —OC( ⁇ O)N(R d ) 2 , —OSO 2 R d , —C( ⁇ O)OR c , —C( ⁇ O)N(R d ) 2 , —CN, —CNO, —NCO, —N 3 , —NO 2 , —N(R d ) 2 , —N(R d )C( ⁇ O)OR c , —N(R d )C( ⁇ O)R c , —N(R d )SO 2 R d , —SO 2 R d , —SO 2 R d , —SOR d , —SO 2 N(R d ) 2 , optionally substituted aliphatic, optionally substituted heteroaliphatic,
  • b 0 to 5.
  • b is 0 to 2. In certain embodiments, b is 0 to 1. In certain embodiments, b is 0. In certain embodiments, b is 1.
  • each instance of R 11 is, independently, selected from hydrogen, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl, and optionally substituted heteroaryl, and/or two R 11 groups adjacent to each other are joined to form an optionally substituted 5- to 6-membered ring.
  • each instance of R 11 is, independently, selected from hydrogen and optionally substituted aliphatic.
  • each instance of R 11 is, independently, selected from hydrogen, optionally substituted heteroaliphatic.
  • each instance of R 11 is, independently, selected from hydrogen, optionally substituted aryl.
  • each instance of R 11 is, independently, selected from hydrogen, optionally substituted heteroaryl.
  • each instance of R 11 is hydrogen.
  • the Southern Hemisphere of the metal complex is of the formula (ii-c):
  • M, X, R 1 , R 2 and R 3 are, as defined above and herein;
  • R 7 , R 8 , R 9 , and R 10 are, independently, selected from hydrogen, halogen, —OR c , —OC( ⁇ O)R c , —OC( ⁇ O)OR c , —OC( ⁇ O)N(R d ) 2 , —OSO 2 R d , —C( ⁇ O)OR c , —C( ⁇ O)N(R d ) 2 , —CN, —CNO, —NCO, —N 3 , —NO 2 , —N(R d ) 2 , —N(R d )C( ⁇ O)OR c , —N(R d )C( ⁇ O)R c , —N(R d )SO 2 R d , —SO 2 R d , —SO 2 R d , —SOR d , —SO 2 N(R d ) 2 , optionally substituted aliphatic
  • R 7 , R 8 , R 9 , and R 10 are, independently, selected from hydrogen, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl, and optionally substituted heteroaryl, and/or two groups selected from R 7 , R 8 , R 9 , and R 10 adjacent to each other are joined to form an optionally substituted 5- to 7-membered ring.
  • R 7 , R 8 , R 9 , and R 10 are, independently, selected from hydrogen and optionally substituted aliphatic.
  • R 7 , R 8 , R 9 , and R 10 are, independently, selected from hydrogen and optionally substituted heteroaliphatic.
  • R 7 , R 8 , R 9 , and R 10 are, independently, selected from hydrogen and optionally substituted aryl. In certain embodiments, R 7 , R 8 , R 9 , and R 10 are, independently, selected from hydrogen and optionally substituted heteroaryl.
  • R 7 , R 8 , R 9 , and R 10 are, independently, selected from hydrogen and optionally substituted aryl. In certain embodiments, R 7 , R 8 , R 9 , and R 10 are, independently, selected from hydrogen and optionally substituted phenyl.
  • R 7 , R 8 , R 9 , and R 10 are, independently, selected from hydrogen and optionally substituted C 1-10 aliphatic. In certain embodiments, R 7 , R 8 , R 9 , and R 10 are, independently, selected from hydrogen and optionally substituted C 1-10 alkyl.
  • R 7 , R 8 , R 9 , and R 10 are, independently, selected from hydrogen and methyl, trichloromethyl, trifluoromethyl, ethyl, n-propyl, isopropyl, t-butyl, sec-butyl, iso-butyl, n-pentyl, neopentyl, amyl, trityl, adamantyl, thexyl, benzyl and cumyl.
  • each of R 7 , R 8 , R 9 , and R 10 are hydrogen. In certain embodiments, each of R 8 and R 10 are hydrogen. In certain embodiments, R 8 is hydrogen. In certain embodiments, R 10 is hydrogen.
  • the Southern Hemisphere of the metal complex is of the formula (ii-d):
  • M, X, R 1 , R 2 , R 3 , R 7 and R 9 are, as defined above and herein.
  • the Southern Hemisphere of the metal complex is of the formula (ii-dd):
  • M, X, R 3 , R 7 and R 9 are, as defined above and herein.
  • each occurrence of R 3 is, independently, selected from hydrogen, halogen, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl, and optionally substituted heteroaryl. In certain embodiments, each occurrence of R 3 is hydrogen.
  • each occurrence of R 7 and R 9 is independently selected from hydrogen, optionally substituted aliphatic, optionally substituted heteroaliphatic, optionally substituted aryl, and optionally substituted heteroaryl.
  • each occurrence of R 7 and R 9 is independently selected from hydrogen, optionally substituted aliphatic and optionally substituted aryl.
  • each occurrence of R 7 is the same. In certain embodiments, each occurrence of R 9 is the same. In certain embodiments, each occurrence of R 7 is the same and each occurrence of R 9 is the same. In certain embodiments, R 7 and R 9 are different.
  • each occurrence of R 7 and R 9 is independently selected from hydrogen and optionally substituted C 1-12 aliphatic. In certain embodiments, each occurrence of R 7 and R 9 is independently selected from hydrogen and optionally substituted C 1-12 alkyl. In certain embodiments, each occurrence of R 7 and R 9 is independently selected from hydrogen, methyl, trichloromethyl, trifluoromethyl, ethyl, n-propyl, isopropyl, t-butyl, sec-butyl, iso-butyl, n-pentyl, neopentyl, amyl, trityl, adamantyl, thexyl, benzyl and cumyl.
  • R 7 is hydrogen. In some embodiments R 7 is methyl. In some embodiments R 7 is trichloromethyl. In some embodiments R 7 is trifluoromethyl. In some embodiments R 7 is ethyl. In some embodiments R 7 is n-propyl. In some embodiments R 7 is isopropyl. In some embodiments R 7 is t-butyl. In some embodiments R 7 is sec-butyl. In some embodiments R 7 is iso-butyl. In some embodiments R 7 is n-pentyl. In some embodiments R 7 is neopentyl. In some embodiments R 7 is amyl. In some embodiments R 7 is trityl. In some embodiments R 7 is adamantyl. In some embodiments R 7 is thexyl. In some embodiments R 7 is benzyl. In some embodiments R 7 is cumyl.
  • R 9 is hydrogen. In some embodiments R 9 is methyl. In some embodiments R 9 is trichloromethyl. In some embodiments R 9 is trifluoromethyl. In some embodiments R 9 is ethyl. In some embodiments R 9 is n-propyl. In some embodiments R 9 is isopropyl. In some embodiments R 9 is t-butyl. In some embodiments R 9 is sec-butyl. In some embodiments R 9 is iso-butyl. In some embodiments R 9 is n-pentyl. In some embodiments R 9 is neopentyl. In some embodiments R 9 is amyl. In some embodiments R 9 is trityl. In some embodiments R 9 is adamantyl. In some embodiments R 9 is thexyl. In some embodiments R 9 is benzyl. In some embodiments R 9 is cumyl.
  • each occurrence of R 7 and R 9 is independently selected from hydrogen and optionally substituted aryl. In certain embodiments, each occurrence of R 7 and R 9 is independently selected from hydrogen and optionally substituted phenyl.
  • the relative sizes of the R 7 and R 9 groups influence the rate and selectivity of the polymerization reactions catalyzed by the metal complexes
  • the group R 7 is larger than the group R 9 .
  • the group R 9 is larger than the group R 7 .
  • the relative size of a group can be determined from the van der Waals surface and/or molecular volume as calculated for that group.
  • the van der Waals surface is a closed surface, and hence, it contains volume. This volume is called the molecular volume, or van der Waals volume, and is usually given in ⁇ 3 .
  • the straightforward way of calculating molecular volume on the computer is by numerical integration, i.e., by surrounding the van der Waals envelope with a grid of small bricks and summing up the bricks whose centers are within the van der Waals envelope of the molecule (i.e., are within a van der Waals radius from atom nucleus) (see, for example, Whitley, “Van der Waals surface graphs and molecular shape,” Journal of Mathematical Chemistry (1998) 23:377-397).
  • the relative size of a group can also be measured from the “A-value” for a given group.
  • the A-value is a measure of the effective size of a given group.
  • the “A-value” refers to the conformational energies ( ⁇ G 0 values) as determined for a substituted cyclohexane and the relative axial-equatorial disposition of the substituent (see Table 1, provided below, and pages 695-697 of Eliel and Wilen, Chapter 11 entitled “Configuration and Confirmation of Cyclic Molecules” of Stereochemistry of Organic Compounds , John Wiley & Sons, Inc., New York: 1994, incorporated herein by reference). More detailed tabulations have been compiled by Hirsch, “Table of Conformational Energy”, Top.
  • the molecular volume of group R 7 is larger than the molecular volume of group R 9 .
  • the molecular volume of R 7 is at least 1.2 times greater than the molecular volume of R 9 .
  • the molecular volume of R 7 is at least 1.5 times greater than the molecular volume of R 9 .
  • the molecular volume of R 7 is at least 1.8 times greater than the molecular volume of R 9 .
  • the molecular volume of R 7 is at least 2 times greater than the molecular volume of R 9 .
  • the molecular volume of R 7 is at least 2.5 times greater than the molecular volume of R 9 .
  • the molecular volume of R 7 is at least 3 times greater than the molecular volume of R 9 .
  • the molecular volume of group R 9 is larger than the molecular volume of group R 7 . In certain embodiments, the molecular volume of R 9 is at least 1.2 times greater than the molecular volume of R 7 . In certain embodiments, the molecular volume of R 9 is at least 1.5 times greater than the molecular volume of R 7 . In certain embodiments, the molecular volume of R 9 is at least 1.8 times greater than the molecular volume of R 7 . In certain embodiments, the molecular volume of R 9 is at least 2 times greater than the molecular volume of R 7 . In certain embodiments, the molecular volume of R 9 is at least 2.5 times greater than the molecular volume of R 7 . In certain embodiments, the molecular volume of R 9 is at least 3 times greater than the molecular volume of R 7 .
  • the molecular volume of R 7 is greater than the molecular volume of R 9 .
  • the A-value of R 7 is at least 1.2 times greater than the A value of R 9 .
  • the A-value of R 7 is at least 1.5 times greater than the A value of R 9 .
  • the A-value of R 7 is at least 1.8 times greater than the A value of R 9 .
  • the A-value of R 7 is at least 2 times greater than the A value of R 9 .
  • the A-value of R 7 is at least 2.5 times greater than the A value of R 9 .
  • the A-value of R 7 is at least 3 times greater than the A value of R 9 .
  • the A-value of R 9 is greater than the A-value of R 7 . In certain embodiments, the A-value of R 9 is at least 1.2 times greater than the A value of R 7 . In certain embodiments, the A-value of R 9 is at least 1.5 times greater than the A value of R 7 . In certain embodiments, the A-value of R 9 is at least 1.8 times greater than the A value of R 7 . In certain embodiments, the A-value of R 9 is at least 2 times greater than the A value of R 7 . In certain embodiments, the A-value of R 9 is at least 2.5 times greater than the A value of R 7 . In certain embodiments, the A-value of R 9 is at least 3 times greater than the A value of R 7 .
  • the A-value of R 7 is greater than about 2.5 kcal/mol. In certain embodiments, the A-value of R 7 is greater than about 3 kcal/mol. In certain embodiments, the A-value of R 7 is greater than about 3.5 kcal/mol. In certain embodiments, the A-value of R 7 is greater than about 4 kcal/mol.
  • the A-value of R 9 is greater than about 2.5 kcal/mol. In certain embodiments, the A-value of R 9 is greater than about 3 kcal/mol. In certain embodiments, the A-value of R 9 is greater than about 3.5 kcal/mol. In certain embodiments, the A-value of R 9 is greater than about 4 kcal/mol.
  • the A-value of R 9 is between about 0 to about 2.5 kcal/mol. In certain embodiments, the A-value of R 9 is between about 0 to about 3 kcal/mol. In certain embodiments, the A-value of R 9 is between about 0 to about 3.5 kcal/mol. In certain embodiments, the A-value of R 9 is between about 0 to about 4 kcal/mol.
  • the A-value of R 7 is between about 0 to about 2.5 kcal/mol. In certain embodiments, the A-value of R 7 is between about 0 to about 3 kcal/mol. In certain embodiments, the A-value of R 7 is between about 0 to about 3.5 kcal/mol. In certain embodiments, the A-value of R 7 is between about 0 to about 4 kcal/mol.
  • the Southern Hemisphere of the metal complex is of the formula (ii-e):
  • M, X, R 1 , R 2 , R 3 , R 7 , R 8 , R 9 , and R 10 are, as defined above and herein.
  • M is a metal selected from cobalt and chromium. In certain embodiments, M is cobalt. In certain embodiments, M is cobalt (III).
  • R 7 is not —C(CH 3 ) 2 Ph. In certain embodiments, R 7 is not —[C(CH 3 ) 2 CH 2 CH 2 N(Bu) 3 ] + . In certain embodiments, R 7 is not —CH(CH 2 CH 3 )C 6 H 5 . In certain embodiments, R 7 is not —C(CH 3 ) 2 CH 2 C(CH 3 ) 3 . In certain embodiments, R 7 is not —CH(C 6 H 5 )CHCH 2 . In certain embodiments, R 7 is not —C(CH 3 ) 2 CH 2 CH 3 . In certain embodiments, R 7 is not 1-methyl-cyclohexyl. In certain embodiments, R 7 is not cyclohexyl.
  • R 9 is not —C(CH 3 ) 2 C 6 H 5 . In certain embodiments, R 9 is not —[C(CH 3 ) 2 CH 2 CH 2 N(Bu) 3 ] + . In certain embodiments, R 9 is not —C(CH 3 ) 2 CH 2 C(CH 3 ) 3 . In certain embodiments, R 9 is not —C(CH 3 ) 3 . In certain embodiments, R 9 is not —C(CH 3 ) 2 CH 2 CH 3 . In certain embodiments, R 9 is not —CH 3 . In certain embodiments, R 9 is not hydrogen.
  • R 9 when R 7 is —C(CH 3 ) 2 Ph, R 9 is other than —C(CH 3 ) 2 Ph. In some embodiments, when R 7 is —[C(CH 3 ) 2 CH 2 CH 2 N(Bu) 3 ] + , R 9 is other than —[C(CH 3 ) 2 CH 2 CH 2 N(Bu) 3 ] + . In some embodiments, when R 7 is —CH(CH 2 CH 3 )C 6 H 5 , R 9 is other than hydrogen. In some embodiments, when R 7 is —C(CH 3 ) 2 CH 2 C(CH 3 ) 3 , R 9 is other than —C(CH 3 ) 2 CH 2 C(CH 3 ) 3 .
  • R 9 when R 7 is —CH(C 6 H 5 )CHCH 2 , R 9 is other than —C(CH 3 ) 3 . In some embodiments, when R 7 is —C(CH 3 ) 2 CH 2 CH 3 , R 9 is other than —C(CH 3 ) 3 . In some embodiments, when R 7 is —C(CH 3 ) 2 CH 2 CH 3 , R 9 is other than —C(CH 3 ) 2 CH 2 CH 3 . In some embodiments, when R 7 is 1-methyl-cyclohexyl, R 9 is other than —C(CH 3 ) 3 .
  • R 9 when R 7 is 1-methyl-cyclohexyl, R 9 is other than —C(CH 3 ) 2 CH 2 CH 3 . In some embodiments, when R 7 is cyclohexyl, R 9 is other than —CH 3 .
  • the Southern Hemisphere is not selected from:
  • the present disclosure provides a metal complex of the formula (I-a):
  • M, X, R 1 , R 2 , R 3 , R 4A , R 4B , R 5A , R 5B , R 6A , and R 6B are as defined above and herein.
  • the present disclosure provides a metal complex of the formula (I-b):
  • the present disclosure provides a metal complex of the formula (I-c):
  • M, X, R 1 , R 2 , R 3 , R 5A , R 5B , R 12 and c are as defined above and herein.
  • the present disclosure provides a metal complex of the formula (I-d):
  • M, X, R 1 , R 2 , R 3 , R 4A , R 4B , R 5A , and R 5B are as defined above and herein.
  • the present disclosure provides a metal complex of the formula (I-e):
  • M, X, R 1 , R 2 , R 3 , R 4A , R 5A , R 13A , R 13B , R 14A , R 14B , R 15A , R 15B , R 16A , R 16B are as defined above and herein.
  • the present disclosure provides a metal complex of any one of the formulae (I-f) to (I-i):
  • M, X, R 1 , R 2 , R 3 , R 4A , R 5A , R 13A , R 13B , R 14A , R 14B , R 15A , R 15B , R 16A , R 16B are as defined above and herein.
  • a particular enantiomer may, in some embodiments be provided substantially free of the corresponding enantiomer, and may also be referred to as “optically enriched.”
  • “Optically-enriched,” as used herein, means that the compound is made up of a significantly greater proportion of one enantiomer. In certain embodiments the compound is made up of at least about 90% by weight of a preferred enantiomer. In other embodiments the compound is made up of at least about 95%, 98%, or 99% by weight of a preferred enantiomer.
  • the present disclosure provides an optically enriched metal complex of any one of the formulae (I-f) to (I-i). In certain embodiments, the present disclosure provides an optically enriched metal complex of formula (I-f). In certain embodiments, the present disclosure provides an optically enriched metal complex of formula (I-g). In certain embodiments, the present disclosure provides an optically enriched metal complex of formula (I-h). In certain embodiments, the present disclosure provides an optically enriched metal complex of formula (I-i).
  • the present disclosure provides a metal complex of the formula (I-j):
  • the present disclosure provides a metal complex of any one of the formulae (I-k) to (I-n):
  • the present disclosure provides an optically enriched metal complex of any one of the formulae (I-k) to (I-n). In certain embodiments, the present disclosure provides an optically enriched metal complex of formula (I-k). In certain embodiments, the present disclosure provides an optically enriched metal complex of formula (I-l). In certain embodiments, the present disclosure provides an optically enriched metal complex of formula (I-m). In certain embodiments, the present disclosure provides an optically enriched metal complex of formula (I-n).
  • the present disclosure provides a metal complex of the formula (I-o):
  • the present disclosure provides a metal complex of the formula (I-p):
  • the present disclosure provides a metal complex of the formula (I-q):
  • the present disclosure provides a metal complex of the formula (I-r):
  • the present disclosure provides a metal complex of the formula (I-s):
  • the present disclosure provides a metal complex of the formula (I-t):
  • the present disclosure provides a metal complex of the formula (I-u):
  • M, X, R 1 , R 2 , R 3 , R 4A , R 5A , R 7 , R 8 , R 9 , R 10 , R 13A , R 13B , R 14A , R 14B , R 15A , R 15B , R 16A , R 16B are as defined above and herein.
  • the present disclosure provides a metal complex of the formula (I-v):
  • M, X, R 1 , R 2 , R 3 , R 7 , R 8 , R 9 and R 10 are as defined above and herein.
  • the present disclosure provides a metal complex of the formula (I-w):
  • M, X, R 1 , R 2 , R 3 , R 4A , R 5A , R 7 , R 9 , R 13A , R 13B , R 14A , R 14B , R 15A , R 15B , R 16A , R 16B are as defined above and herein.
  • the present disclosure provides a metal complex of the formula (I-x):
  • M, X, R 1 , R 2 , R 3 , R 7 and R 9 are as defined above and herein.
  • the present disclosure provides a metal complex of the formula (I-y):
  • M, X, R 4A , R 5A , R 7 , R 8 , R 9 , R 10 , R 13A , R 13B , R 14A , R 14B , R 15A , R 15B , R 16A , R 16B are as defined above and herein.
  • the present disclosure provides a metal complex of the formula (I-z):
  • M, X, R 4A , R 5A , R 7 , R 9 , R 13A , R 13B , R 14A , R 14B , R 15A , R 15B , R 16A , R 16B are as defined above and herein.
  • the present disclosure provides a metal complex of the formula (I-aa):
  • the present disclosure provides a metal complex of the formulae (I-bb) to (I-ee):
  • the present disclosure provides an optically enriched metal complex of any one of the formulae (I-bb) to (I-ee). In certain embodiments, the present disclosure provides an optically enriched metal complex of formula (I-bb). In certain embodiments, the present disclosure provides an optically enriched metal complex of formula (I-cc). In certain embodiments, the present disclosure provides an optically enriched metal complex of formula (I-dd). In certain embodiments, the present disclosure provides an optically enriched metal complex of formula (I-ee).
  • the present disclosure provides a metal complex of the formula (I-ff):
  • the present disclosure provides a metal complex of the formula (I-gg):
  • M, X, R 1 , R 2 , R 3 , R 7 , R 8 , R 9 and R 10 are as defined above and herein.
  • the present disclosure provides a metal complex of the formula (I-hh):
  • the present disclosure provides a metal complex of the formula (I-ii):
  • M, X, R 1 , R 2 , R 3 , R 7 and R 9 are as defined above and herein.
  • the present disclosure provides a metal complex of the formula (I-jj):
  • the present disclosure provides a metal complex of the formula (I-kk):
  • the present disclosure provides a metal complex of the formula (I-ll):
  • the present disclosure provides a metal complex of the formula (I-mm):
  • the present disclosure provides a metal complex of the formula (I-nn):
  • the present disclosure provides a metal complex of the formula (I-oo):
  • M, X, R 7 , R 9 , R 4A , R 4B , R 5A , R 5B , and R 6A , R 6B are as defined above and herein.
  • the metal complex is selected from any one of the following, wherein X is absent or is a nucleophilic ligand:
  • the metal complex is selected from any one of the following, wherein X is absent or is a nucleophilic ligand:
  • the metal complex has the following structure, wherein X is absent or is a nucleophilic ligand:
  • the metal complex has the following structure, wherein X is absent or is a nucleophilic ligand:
  • the metal complex has the following structure, wherein X is absent or is a nucleophilic ligand:
  • the metal complex has the following structure, wherein X is absent or is a nucleophilic ligand:
  • the metal complex has the following structure, wherein X is absent or is a nucleophilic ligand:
  • X is absent.
  • X is —O(C ⁇ O)C 6 F 5 (i.e., —OBzF 5 ). In certain embodiments, X is —OC( ⁇ O)CH 3 . In certain embodiments, X is —OC( ⁇ O)CF 3 . In certain embodiments, X is —NC. In certain embodiments, X is —Cl. In certain embodiments, X is —Br. In certain embodiments, X is N 3 .
  • the metal complex is a cobalt (Co) complex selected from any of the following structures:
  • the metal complex is a cobalt (Co) complex selected from any of the following structures:
  • the metal complex is a cobalt (Co) complex having the following structure:
  • the metal complex is a cobalt (Co) complex having the following structure:
  • the metal complex is a cobalt (Co) complex having the following structure:
  • the metal complex is a cobalt (Co) complex having the following structure:
  • the metal complex is a cobalt (Co) complex having the following structure:
  • poly(ethylene carbonate) polymers are provided via polymerization of ethylene oxide (EO) and carbon dioxide (CO 2 ) in the presence of a metal complex, and encompass encompasses poly(ethylene carbonate) (PEC), as well as polymers which comprise poly(ethylene carbonate), such as, for example, polyethylene oxide-co-polyethylene carbonate.
  • EO ethylene oxide
  • CO 2 carbon dioxide
  • PEC poly(ethylene carbonate)
  • the present disclosure provide a method of synthesizing a poly(ethylene carbonate) polymer, wherein the polymer is made up of Y, and optionally Z, and wherein the percentage of Y is greater than the percentage of Z,
  • the method comprising reacting ethylene oxide and carbon dioxide in the presence of a metal complex.
  • the polymer has greater than about 85 percent of Y. In certain embodiments, the polymer has greater than about 90% of Y. In certain embodiments, the polymer has greater than about 95% of Y. In certain embodiments, the polymer has greater than about 99% of Y. In certain embodiments, the polymer is substantially all Y and is substantially free of Z.
  • the polymer is an alternating polymer of ethylene oxide and carbon dioxide (e.g., with regular alternating units of ethylene oxide and carbon dioxide).
  • the polymer is substantially all Y and is substantially free of Z
  • the polymer an alternating polymer of the formula:
  • P is an integer of between about 10 and about 15,000, inclusive, and each F and G are, independently, a suitable terminating group.
  • F is hydrogen. In certain embodiments F is a hydroxyl-protecting group. In certain embodiments F is an acyl group. In certain embodiments F is a silyl group. In certain embodiments, G is X, where X is as described above. In certain embodiments, G is a hydroxyl group.
  • P is an integer of between about 10,000 to about 15,000, inclusive. In certain embodiments, P is an integer of between about 12,000 to about 15,000, inclusive.
  • the metal complex is a zinc, cobalt, chromium, aluminum, titanium, ruthenium or manganese complex.
  • the metal complex is an aluminum complex.
  • the metal complex is a chromium complex.
  • the complex metal is zinc complex.
  • the metal complex is a titanium complex.
  • the metal complex is a ruthenium complex.
  • the metal complex is a manganese complex.
  • the metal complex is cobalt complex. In certain embodiments, wherein the metal complex is a cobalt complex, the cobalt metal has a valency of +3 (i.e., Co(III)).
  • the metal complex is any of the above described metal complexes of the formula (I), or subsets thereof.
  • the present disclosure provides a method of synthesizing a poly(ethylene carbonate) polymer, the method comprising the step of reacting ethylene oxide with carbon dioxide in the presence of a cobalt complex of any of the above described metal complexes of the formula (I), or a subset thereof, wherein M is cobalt.
  • any of the above methods further comprise a co-catalyst.
  • the co-catalyst is a Lewis base.
  • exemplary Lewis bases include, but are not limited to: N-methylimidazole (N-MeIm), dimethylaminopyridine (DMAP), 1,4-diazabicyclo[2.2.2]octane (DABCO), triethyl amine, and diisopropyl ethyl amine.
  • the co-catalyst is the ammonium salt bis(triphenylphosphoranylidene)ammonium chloride ([PPN]Cl).
  • the anion of the salt co-catalyst has the same structure as the ligand X of the above described metal complexes of the formula (I), or subsets thereof, wherein X is a nucleophilic ligand.
  • the co-catalyst is ([PPN]X) or (n-Bu) 4 NX.
  • any of the above methods comprise a ratio of about 500:1 to about 500,000:1 of ethylene oxide to metal complex. In certain embodiments, any of the above methods comprise a ratio of about 500:1 to about 100,000:1 of ethylene oxide to metal complex. In certain embodiments, any of the above methods comprise a ratio of about 500:1 to about 50,000:1 of ethylene oxide to metal complex. In certain embodiments, any of the above methods comprise a ratio of about 500:1 to about 5,000:1 of ethylene oxide to metal complex. In certain embodiments, any of the above methods comprise a ratio of about 500:1 to about 1,000:1 of ethylene oxide to metal complex.
  • any of the above methods comprise ethylene oxide present in amounts between about 0.5 M to about 20 M. In certain embodiments, ethylene oxide is present in amounts between about 0.5 M to about 2 M. In certain embodiments, ethylene oxide is present in amounts between about 2 M to about 5 M. In certain embodiments, ethylene oxide is present in amounts between about 5 M to about 20 M. In certain embodiments, ethylene oxide is present in an amount of about 20 M. In certain embodiments, liquid ethylene oxide comprises the reaction solvent.
  • CO 2 is present at a pressure of between about 30 psi to about 800 psi. In certain embodiments, CO 2 is present at a pressure of between about 30 psi to about 500 psi. In certain embodiments, CO 2 is present at a pressure of between about 30 psi to about 400 psi. In certain embodiments, CO 2 is present at a pressure of between about 30 psi to about 300 psi. In certain embodiments, CO 2 is present at a pressure of between about 30 psi to about 200 psi. In certain embodiments, CO 2 is present at a pressure of between about 30 psi to about 100 psi.
  • CO 2 is present at a pressure of between about 30 psi to about 80 psi. In certain embodiments, CO 2 is present at a pressure of about 30 psi. In certain embodiments, CO 2 is present at a pressure of about 50 psi. In certain embodiments, CO 2 is present at a pressure of about 100 psi. In certain embodiments, the CO 2 is supercritical.
  • any of the above methods comprise the reaction to be conducted at a temperature of between about 0° C. to about 100° C. In certain embodiments, the reaction is conducted at a temperature of between about 23° C. to about 100° C. In certain embodiments, the reaction to be conducted at a temperature of between about 23° C. to about 80° C. In certain embodiments, the reaction to be conducted at a temperature of between about 23° C. to about 50° C. In certain embodiments, the reaction to be conducted at a temperature of about 23° C.
  • reaction step of any of the above methods does not further comprise a solvent.
  • the reaction step of any of the above methods does further comprise one or more solvents.
  • the solvent is an organic solvent.
  • the solvent is an organic ether.
  • the solvent is an aromatic hydrocarbon.
  • the solvent is a ketone.
  • suitable solvents include, but are not limited to: Methylene Chloride, Chloroform, 1,2-Dichloroethane, Propylene Carbonate, Acetonitrile, Dimethylformamide, N-Methyl-2-pyrrolidone, Dimethyl Sulfoxide, Nitromethane, Caprolactone, 1,4-Dioxane, and 1,3-Dioxane.
  • suitable solvents include, but are not limited to: Methyl Acetate, Ethyl Acetate, Acetone, Methyl Ethyl Ketone, Propylene Oxide, Tretrahydrofuran, Monoglyme Triglyme, Propionitrile, 1-Nitropropane, Cyclohexanone.
  • the reaction step of any of the above methods produces ethylene carbonate (EC) as a by-product in amounts of less than about 20%. In certain embodiments, ethylene carbonate (EC) is produced as a by-product in amounts of less than about 15%. In certain embodiments, ethylene carbonate (EC) is produced as a by-product in amounts of less than about 10%. In certain embodiments, ethylene carbonate (EC) is produced as a by-product in amounts of less than about 5%. In certain embodiments, ethylene carbonate (EC) is produced as a by-product in amounts of less than about 1%. In certain embodiments, the reaction does not produce any detectable by-products (e.g., as detectable by 1 H-NMR and/or liquid chromatography (LC)).
  • LC liquid chromatography
  • the poly(ethylene carbonate) polymer is a co-polymer of units “Y” and “Z”:
  • the poly(ethylene carbonate) polymer is a tapered co-polymer of units Y and Z (e.g., wherein the incorporation of Z increases or decreases along the length of a given polymer chain.):
  • the poly(ethylene carbonate) polymer is a block co-polymer of homopolymer units of Y and Z; the union of the homopolymer subunits may require an intermediate non-repeating subunit, known as a junction block.
  • Block copolymers with two or three distinct blocks are called diblock copolymers and triblock copolymers, respectively.
  • the tapered or block co-polymer of poly(ethylene carbonate) is of the formula:
  • each instance of P and Q are, independently, an integer of between about 10 to about 10,000, inclusive, and wherein R is an integer ranging from about 1 to about 20,
  • each F and G are, independently, suitable terminating groups, as described above and herein.
  • the present disclosure provides a method of making a poly(ethylene carbonate) block co-polymer, comprising the steps of (i) providing a polyethylene oxide (PEO) polymer, and (ii) reacting the polyethylene oxide polymer with ethylene oxide and carbon dioxide in the presence of a metal complex.
  • the metal complex is a metal complex of formula (I), or any subset thereof.
  • the polyethylene oxide polymer of step (i) is provided by reacting ethylene oxide in the presence of a metal complex.
  • the metal complex is a metal complex of formula (I), or any subset thereof.
  • block copolymer compositions may be produced by varying or removing the CO 2 pressure during part of the polymerization process.
  • the catalyst When the CO2 pressure is low or non-existent, the catalyst will produce polymer having a higher degree of ether linkages than when the CO2 pressure is high.
  • the polymerization may be initiated with any of the metal complexes described above at a relatively high CO 2 pressure (for example, higher than 100 psi, higher than about 200 psi, or higher than about 400 psi). These conditions will produce polymer having a predominance of carbonate linkages.
  • the CO 2 pressure is lowered (for example to less than 100 psi, less than 50 psi, or to atmospheric pressure) or is removed completely. These conditions result in new block with more ether bonds being incorporated into the growing polymer chains.
  • the above described process can optionally be repeated one or more times to build diblock, triblock or multiblock polymers. Additionally, several different CO 2 pressure levels can be used in the process to produce polymers with several different block types.
  • the CO 2 pressure is initially low and is then increased.
  • the CO 2 pressure is varied periodically.
  • the CO 2 pressure is varied smoothly over time to form tapered polyether co polycarbonate polymer compositions or blocks with a tapered copolymeric structure.
  • FIG. 1A The 1 H NMR spectrum of the polymer produced by 1/[PPN]Cl is shown in FIG. 1A .
  • shifts were also observed which correspond to ether linkages (b, c, d), indicating that the copolymerization under these conditions is not perfectly alternating.
  • Ether incorporation is problematic because it negatively affects the gas barrier properties. Despite many changes in the reaction conditions, we were unable to completely suppress ether incorporation using catalyst 1.
  • the catalyst structure was optimized by varying ligand substituents.
  • Several catalysts were prepared by changing R 7 and/or R 9 (Scheme 1), and screened for EO/CO 2 copolymerization (Table 3).
  • Catalysts 1-10 were active for the copolymerization and their activities were influenced by the substituents R 7 and R 9 .
  • tent-butyl groups at R 7 and R 9 (1) the copolymerization proceeded rapidly to give 47% EO conversion in 1 hour with a high turnover frequency (TOF) (entry 1). After 1 hour, the copolymerization solution was very viscous, preventing the dissolution of CO 2 and effectively stopping the polymerization.
  • TOF high turnover frequency
  • Copolymerizations were also performed by filling CO 2 into the solution of EO, Co catalyst, and cocatalyst (PPNCl) under 30-400 psi at room temperature to give poly(ethylene carbonate) (PEC).
  • the catalystic activities were higher than those of other catalyst to give ca. 100 g-polymer/g-catalyst.h (for catalyst 1).
  • the catalytic activities were compared among the catalysts 2, 8, 9 (Table 4). It proved that the more bulky substituent in the catalyst, the less active.
  • Table 5 shows the effect of CO 2 pressure to catalytic activity of catalyst 1. The activity increased with the pressure at low pressure. However, it had a maximum about 200 psi.
  • the obtained polymers mainly consist of carbonate linkage but have some amount of ether linkage, which depended on the reaction conditions (catalyst concentration, CO 2 pressure, and reaction temperature) and substituents of the catalyst (see FIGS. 1 and 2 ).
  • the most active catalyst 1 had the least carbonate linkage and the least active catalyst 2 had the highest carbonate linkage.
  • the catalyst 2 produced almost perfect PEC.
  • the effect of the catalyst concentration to the carbonate linkage were also shown in Table 5. It showed that the carbonate linkage increased by decreasing the catalyst concentration.
  • the CO 2 pressure also affected the carbonate linkage. Opposite to expected, the carbonate linkage decreased by increasing the pressure as shown in Table 6.
  • Catalyst 15 has also been found to be effective to provide a poly(ethylene carbonate-co-ethylene oxide) polymer.
  • PEO-b-PEC The one-pot PEO-b-PEC synthesis was then examined.
  • PEO was polymerized in a glass autoclave first, and then the reaction solution was pressurized with CO 2 to undergo EO/CO 2 copolymerization.
  • This polymer consists of hard segment (PEO)/soft segment (PEC), and is thus considered to have a new function (see FIGS. 4A-4B depicting the TGA and DSC analyses of PEO-b-PEC).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Epoxy Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
US12/990,202 2008-05-09 2009-05-06 Polymers of ethylene oxide and carbon dioxide Abandoned US20110087001A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/990,202 US20110087001A1 (en) 2008-05-09 2009-05-06 Polymers of ethylene oxide and carbon dioxide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US5206108P 2008-05-09 2008-05-09
US12/990,202 US20110087001A1 (en) 2008-05-09 2009-05-06 Polymers of ethylene oxide and carbon dioxide
PCT/US2009/042926 WO2009137540A1 (en) 2008-05-09 2009-05-06 Polymers of ethylene oxide and carbon dioxide

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/042926 A-371-Of-International WO2009137540A1 (en) 2008-05-09 2009-05-06 Polymers of ethylene oxide and carbon dioxide

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/915,320 Continuation US20140066591A1 (en) 2008-05-09 2013-06-11 Polymers of ethylene oxide and carbon dioxide

Publications (1)

Publication Number Publication Date
US20110087001A1 true US20110087001A1 (en) 2011-04-14

Family

ID=40785587

Family Applications (4)

Application Number Title Priority Date Filing Date
US12/990,202 Abandoned US20110087001A1 (en) 2008-05-09 2009-05-06 Polymers of ethylene oxide and carbon dioxide
US13/915,320 Abandoned US20140066591A1 (en) 2008-05-09 2013-06-11 Polymers of ethylene oxide and carbon dioxide
US14/627,733 Active US10214614B2 (en) 2008-05-09 2015-02-20 Copolymerization of ethylene oxide and carbon dioxide
US16/206,266 Abandoned US20190202982A1 (en) 2008-05-09 2018-11-30 Copolymerization of ethylene oxide and carbon dioxide

Family Applications After (3)

Application Number Title Priority Date Filing Date
US13/915,320 Abandoned US20140066591A1 (en) 2008-05-09 2013-06-11 Polymers of ethylene oxide and carbon dioxide
US14/627,733 Active US10214614B2 (en) 2008-05-09 2015-02-20 Copolymerization of ethylene oxide and carbon dioxide
US16/206,266 Abandoned US20190202982A1 (en) 2008-05-09 2018-11-30 Copolymerization of ethylene oxide and carbon dioxide

Country Status (8)

Country Link
US (4) US20110087001A1 (pl)
EP (1) EP2285864B1 (pl)
JP (2) JP5665734B2 (pl)
CN (2) CN104193980B (pl)
BR (1) BRPI0911886B1 (pl)
ES (1) ES2625322T3 (pl)
PL (1) PL2285864T3 (pl)
WO (1) WO2009137540A1 (pl)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110230580A1 (en) * 2008-09-08 2011-09-22 Novomer, Inc Polycarbonate polyol compositions and methods
US8575245B2 (en) 2008-12-23 2013-11-05 Novomer, Inc. Tunable polymer compositions
EP2664641A1 (en) 2012-05-18 2013-11-20 Petkim Petrokimya Holding Anonim Sirekti Method for producing polyethylene carbonate with metal salts
EP2711385A1 (en) 2012-03-12 2014-03-26 Petkim Petrokimya Holding Anonim Sirekti Process for preparing poly(ether carbonate)
US9951096B2 (en) 2008-08-22 2018-04-24 Saudi Aramco Technologies Company Catalysts and methods for polymer synthesis
US10214614B2 (en) 2008-05-09 2019-02-26 Cornell University Copolymerization of ethylene oxide and carbon dioxide
US10376868B2 (en) 2015-02-17 2019-08-13 Lg Chem, Ltd. Linear inorganic coordination polymer, metal complex compound, and metal nanostructure and catalyst composition comprising the same
WO2021154780A1 (en) * 2020-01-31 2021-08-05 Dow Global Technologies Llc Alkylene oxide polymerization using aluminum compounds and cyclic amidines

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0807607D0 (en) 2008-04-25 2008-06-04 Imp Innovations Ltd Catalyst
US8252891B2 (en) 2008-09-17 2012-08-28 Novomer, Inc. Purification of polycarbonates
US8580911B2 (en) 2008-11-01 2013-11-12 Novomer, Inc. Polycarbonate block copolymers
JP2011153186A (ja) * 2010-01-26 2011-08-11 Univ Of Tokyo コバルト−ケトイミナト錯体、および当該錯体を用いたポリカルボナートの製造方法
JP2011153181A (ja) * 2010-01-26 2011-08-11 Keio Gijuku コバルト−ケトイミナト錯体、および当該錯体を用いたポリカルボナートの製造方法
KR101503745B1 (ko) * 2010-02-25 2015-03-19 에스케이이노베이션 주식회사 나이트레이트 음이온의 이산화탄소/에폭사이드 공중합 촉매 시스템
KR101486483B1 (ko) * 2010-04-13 2015-01-27 에스케이이노베이션 주식회사 폴리(알킬렌 카보네이트)와 다양한 고분자와의 블록 또는 그라프트 공중합체
CN103228137B (zh) 2010-09-22 2018-11-27 沙特阿美技术公司 取代的水杨醛衍生物的合成
ES2765030T3 (es) 2010-11-23 2020-06-05 Saudi Aramco Tech Co Composiciones de poli(poliol de carbonato)
US20130337204A1 (en) 2010-11-23 2013-12-19 Dsm Ip Assets B.V. Polycarbonate polyol compositions
KR20200096694A (ko) 2011-07-25 2020-08-12 사우디 아람코 테크놀로지스 컴퍼니 폴리우레탄에 이용하기 위한 지방족 폴리카보네이트
GB201115565D0 (en) * 2011-09-08 2011-10-26 Imp Innovations Ltd Method of synthesising polycarbonates in the presence of a bimetallic catalyst and a chain transfer agent
WO2013096602A1 (en) 2011-12-20 2013-06-27 Novomer, Inc. Methods for polymer synthesis
EP2855558B1 (en) 2012-05-24 2018-12-26 Saudi Aramco Technologies Company Polymerization system for the copolymerization of co2 and epoxides and related method
JP6313305B2 (ja) 2012-08-24 2018-04-18 サウジ アラムコ テクノロジーズ カンパニー 金属錯体
EP2917257B1 (en) 2012-11-07 2019-09-11 Saudi Aramco Technologies Company High strength polyurethane foam compositions and methods
KR101654149B1 (ko) * 2013-03-11 2016-09-05 주식회사 엘지화학 착화합물과 그 제조방법 및 이를 이용한 폴리카보네이트의 제조방법
GB201308978D0 (en) 2013-05-17 2013-07-03 Imp Innovations Ltd Method for producing polymers and block copolymers
KR101640557B1 (ko) * 2013-06-05 2016-07-18 주식회사 엘지화학 폴리카보네이트의 제조방법
KR101702040B1 (ko) * 2013-09-10 2017-02-02 주식회사 엘지화학 폴리카보네이트의 제조방법
JP6847843B2 (ja) * 2015-02-13 2021-03-24 ノボマー, インコーポレイテッド ポリプロピオラクトンの生成のためのプロセスおよびシステム
GB201514506D0 (en) 2015-08-14 2015-09-30 Imp Innovations Ltd Multi-block copolymers
GB201515350D0 (en) 2015-08-28 2015-10-14 Econic Technologies Ltd Method for preparing polyols
KR20190078592A (ko) 2016-10-18 2019-07-04 렙솔, 에스.에이. 폐기물 원료로부터의 새로운 고분자량 중합체
WO2020028606A1 (en) 2018-08-02 2020-02-06 Saudi Aramco Technologies Company Sustainable polymer compositions and methods
CN110054766B (zh) * 2019-05-22 2021-08-17 河南省科学院化学研究所有限公司 一种利用氯化亚锡配合物催化制备脂肪族共聚碳酸酯多元醇的方法
US20220002469A1 (en) 2020-06-24 2022-01-06 Saudi Aramco Technologies Company Polyol compositions and methods
US20230026948A1 (en) 2021-06-23 2023-01-26 Saudi Aramco Technologies Company Polyol compositions and methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US684961A (en) * 1901-02-25 1901-10-22 Christian Louis Vonderahe Bicycle-rest.
US5266283A (en) * 1990-05-11 1993-11-30 Bend Research, Inc. Sterically hindered, regenerable Schiff base complexes, solutions thereof and process using the same
US7268204B2 (en) * 2005-03-29 2007-09-11 Basf Corporation Complex of a multimetal cyanide compound and methods of forming polyethercarbonate polyols
US7304172B2 (en) * 2004-10-08 2007-12-04 Cornell Research Foundation, Inc. Polycarbonates made using highly selective catalysts

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438397A (en) 1977-08-31 1979-03-22 Hidetoshi Tsuchida Copolymerization catalyst consisting of carbon dioxide and oxirane compoud
US5637739A (en) 1990-03-21 1997-06-10 Research Corporation Technologies, Inc. Chiral catalysts and catalytic epoxidation catalyzed thereby
JPH07247351A (ja) 1994-03-10 1995-09-26 Mitsubishi Gas Chem Co Inc ポリカーボネートの製造方法
US5665890A (en) 1995-03-14 1997-09-09 President And Fellows Of Harvard College Stereoselective ring opening reactions
JP2798905B2 (ja) 1995-11-29 1998-09-17 日本酸素株式会社 コバルトシッフ塩基錯体及び酸素分離用錯体溶液並びに酸素分離方法
JPH09235377A (ja) 1996-03-01 1997-09-09 Kanegafuchi Chem Ind Co Ltd シロキサン系共重合体の製造方法
JPH09235376A (ja) 1996-03-01 1997-09-09 Kanegafuchi Chem Ind Co Ltd シロキサン系共重合体の製造方法
JPH09235362A (ja) 1996-03-01 1997-09-09 Kanegafuchi Chem Ind Co Ltd ポリエステルおよびポリエステルカーボネートの製造方法
JPH09235364A (ja) 1996-03-01 1997-09-09 Kanegafuchi Chem Ind Co Ltd ポリエステルおよびポリエステルカーボネートの製造方法
EP0803532A1 (en) 1996-04-23 1997-10-29 PAC Polymers Inc. Oxygen-barrier articles
AU3813997A (en) 1996-07-26 1998-02-20 Princeton University Catalytic oxygenation of hydrocarbons by metalloporphyrin and metallosalen complexes
DE19710158A1 (de) 1997-03-12 1998-09-17 Buna Sow Leuna Olefinverb Gmbh Polyzinkcarboxylat-Katalysatoren zur Herstellung von Polyalkylencarbonaten
TW420693B (en) 1997-04-25 2001-02-01 Mitsui Chemicals Inc Olefin polymerization catalysts, transition metal compounds, and <alpha>-olefin/conjugated diene copolymers
DE19737547A1 (de) 1997-08-28 1999-03-04 Buna Sow Leuna Olefinverb Gmbh Katalysatorsystem zur Herstellung von Polyalkylencarbonaten
US6130340A (en) 1998-01-13 2000-10-10 President And Fellows Of Harvard College Asymmetric cycloaddition reactions
US6521561B1 (en) 1998-05-01 2003-02-18 President And Fellows Of Harvard College Main-group metal based asymmetric catalysts and applications thereof
KR100342659B1 (en) 2000-12-15 2002-07-04 Rstech Co Ltd Chiral polymer salene catalyst and process for preparing chiral compounds from racemic epoxide using the same
AUPR413401A0 (en) 2001-04-02 2001-05-03 Luminis Pty Limited Cyclopropanation process
ES2217245T3 (es) 2001-06-27 2004-11-01 Rs Tech Corp. Nuevo catalizador saleno quiral y metodos de obtencion de compuestos quirales a partir de epoxidos racemicos utilizando el nuevo catalizador.
US6639087B2 (en) 2001-08-22 2003-10-28 Rhodia Pharma Solutions Inc. Kinetic resolution method
DE10147712A1 (de) * 2001-09-27 2003-04-17 Basf Ag Verfahren zur Herstellung aliphatischer Polycarbonate
DE10235316A1 (de) 2002-08-01 2004-02-12 Basf Ag Katalysator und Verfahren zur Carbonylierung von Oxiranen
KR100724550B1 (ko) 2004-12-16 2007-06-04 주식회사 엘지화학 이중 금속 아연 착화합물과 이를 촉매로 사용한폴리카보네이트의 제조 방법
JP4590284B2 (ja) * 2005-03-01 2010-12-01 学校法人東京理科大学 ポリカーボネートの製造方法
WO2006099162A2 (en) 2005-03-14 2006-09-21 Georgia Tech Research Corporation Polymeric salen compounds and methods thereof
CN100384909C (zh) * 2006-01-20 2008-04-30 大连理工大学 一种呈交替结构的聚碳酸酯材料
JP5095954B2 (ja) 2006-05-09 2012-12-12 住友精化株式会社 有機亜鉛触媒およびそれを用いたポリアルキレンカーボネートの製造方法
WO2008094222A2 (en) 2006-10-06 2008-08-07 Trustees Of Princeton Porphyrin catalysts and methods of use thereof
CN100484984C (zh) 2007-02-12 2009-05-06 江苏中科金龙化工股份有限公司 双金属催化剂及其制备方法与用途
CN100494248C (zh) * 2007-03-21 2009-06-03 大连理工大学 用于合成聚碳酸酯的双功能催化剂
GB0708016D0 (en) 2007-04-25 2007-06-06 Univ Newcastle Synthesis of cyclic carbonates
ES2517870T3 (es) 2007-05-04 2014-11-04 Sk Innovation Co., Ltd. Procedimiento de producción de policarbonatos y complejo de coordinación usado para el mismo
WO2008150033A1 (ja) 2007-06-08 2008-12-11 The University Of Tokyo エポキシドと二酸化炭素との立体選択的交互共重合
JP2009215529A (ja) * 2008-02-14 2009-09-24 Keio Gijuku ポリカーボネート樹脂の製造方法
EP2096132A1 (en) 2008-02-26 2009-09-02 Total Petrochemicals Research Feluy Monomers issued from renewable resources and process for polymerising them
CN102015732A (zh) 2008-03-07 2011-04-13 泰恩河畔纽卡斯尔大学 环状碳酸酯的合成
EP2285864B1 (en) 2008-05-09 2017-02-22 Cornell University Polymers of ethylene oxide and carbon dioxide
CA2727959A1 (en) 2008-07-30 2010-02-04 Sk Energy, Co., Ltd. Novel coordination complexes and process of producing polycarbonate by copolymerization of carbon dioxide and epoxide using the same as catalyst
CN102164987B (zh) 2008-08-22 2015-07-08 诺沃梅尔公司 用于合成聚合物的催化剂和方法
PL2337809T5 (pl) 2008-09-08 2024-03-04 Saudi Aramco Technologies Company Kompozycje poliwęglanowego poliolu i sposoby
US8252891B2 (en) 2008-09-17 2012-08-28 Novomer, Inc. Purification of polycarbonates
CN101367924B (zh) 2008-09-28 2011-04-27 中国科学院广州化学研究所 一种低温热分解材料及其制备方法和应用
CA2639870A1 (en) 2008-09-29 2010-03-29 Nova Chemicals Corporation Trimerization
KR101503745B1 (ko) 2010-02-25 2015-03-19 에스케이이노베이션 주식회사 나이트레이트 음이온의 이산화탄소/에폭사이드 공중합 촉매 시스템
GB201115565D0 (en) 2011-09-08 2011-10-26 Imp Innovations Ltd Method of synthesising polycarbonates in the presence of a bimetallic catalyst and a chain transfer agent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US684961A (en) * 1901-02-25 1901-10-22 Christian Louis Vonderahe Bicycle-rest.
US5266283A (en) * 1990-05-11 1993-11-30 Bend Research, Inc. Sterically hindered, regenerable Schiff base complexes, solutions thereof and process using the same
US7304172B2 (en) * 2004-10-08 2007-12-04 Cornell Research Foundation, Inc. Polycarbonates made using highly selective catalysts
US20080108499A1 (en) * 2004-10-08 2008-05-08 Cornell Research Foundation Inc. Polycarbonates made using highly selective catalysts
US7268204B2 (en) * 2005-03-29 2007-09-11 Basf Corporation Complex of a multimetal cyanide compound and methods of forming polyethercarbonate polyols

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10214614B2 (en) 2008-05-09 2019-02-26 Cornell University Copolymerization of ethylene oxide and carbon dioxide
US9951096B2 (en) 2008-08-22 2018-04-24 Saudi Aramco Technologies Company Catalysts and methods for polymer synthesis
US10662211B2 (en) 2008-08-22 2020-05-26 Saurdi Aramco Technologies Company Catalysts and methods for polymer synthesis
US10301426B2 (en) 2008-09-08 2019-05-28 Saudi Aramco Technologies Company Polycarbonate polyol compositions and methods
US8247520B2 (en) 2008-09-08 2012-08-21 Novomer, Inc. Polycarbonate polyol compositions and methods
US8604155B2 (en) 2008-09-08 2013-12-10 Novomer, Inc. Polycarbonate polyol compositions and methods
US11535706B2 (en) 2008-09-08 2022-12-27 Saudi Aramco Technologies Company Polycarbonate polyol compositions and methods
US8921508B2 (en) 2008-09-08 2014-12-30 Novomer, Inc. Polycarbonate polyol compositions and methods
US9376531B2 (en) 2008-09-08 2016-06-28 Novomer, Inc. Polycarbonate polyol compositions and methods
US9809678B2 (en) 2008-09-08 2017-11-07 Saudi Aramco Technologies Company Polycarbonate polyol compositions and methods
US10836859B2 (en) 2008-09-08 2020-11-17 Saudi Aramco Technologies Company Polycarbonate polyol compositions and methods
US8470956B2 (en) 2008-09-08 2013-06-25 Novomer, Inc. Polycarbonate polyol compositions and methods
US20110230580A1 (en) * 2008-09-08 2011-09-22 Novomer, Inc Polycarbonate polyol compositions and methods
US8575245B2 (en) 2008-12-23 2013-11-05 Novomer, Inc. Tunable polymer compositions
EP2711385A1 (en) 2012-03-12 2014-03-26 Petkim Petrokimya Holding Anonim Sirekti Process for preparing poly(ether carbonate)
EP2664641A1 (en) 2012-05-18 2013-11-20 Petkim Petrokimya Holding Anonim Sirekti Method for producing polyethylene carbonate with metal salts
US10376868B2 (en) 2015-02-17 2019-08-13 Lg Chem, Ltd. Linear inorganic coordination polymer, metal complex compound, and metal nanostructure and catalyst composition comprising the same
WO2021154780A1 (en) * 2020-01-31 2021-08-05 Dow Global Technologies Llc Alkylene oxide polymerization using aluminum compounds and cyclic amidines

Also Published As

Publication number Publication date
JP2011520013A (ja) 2011-07-14
WO2009137540A1 (en) 2009-11-12
US20140066591A1 (en) 2014-03-06
JP5665734B2 (ja) 2015-02-04
BRPI0911886B1 (pt) 2019-09-24
US10214614B2 (en) 2019-02-26
CN102015826A (zh) 2011-04-13
PL2285864T3 (pl) 2017-07-31
JP2014139324A (ja) 2014-07-31
CN104193980A (zh) 2014-12-10
JP6097245B2 (ja) 2017-03-15
ES2625322T3 (es) 2017-07-19
CN104193980B (zh) 2018-11-13
US20190202982A1 (en) 2019-07-04
EP2285864A1 (en) 2011-02-23
EP2285864B1 (en) 2017-02-22
BRPI0911886A2 (pt) 2015-10-13
US20150353680A1 (en) 2015-12-10

Similar Documents

Publication Publication Date Title
US20190202982A1 (en) Copolymerization of ethylene oxide and carbon dioxide
US10479861B2 (en) Catalytic carbonylation catalysts and methods
US9868816B2 (en) Aliphatic polycarbonate quench method
US9593203B2 (en) Metal complexes
Li et al. A non‐phosgene process to homopolycarbonate and copolycarbonates of isosorbide using dimethyl carbonate: Synthesis, characterization, and properties
US20220177645A1 (en) End-group isomerization of poly(alkylene carbonate) polymers
WO2011163133A1 (en) Aliphatic polycarbonates
US20100311941A1 (en) Copolymerization of epoxides and cyclic anhydrides
CA2795125A1 (en) Block and graft copolymers of poly (alkylene carbonate) and various polymers
US8710283B2 (en) Isoselective polymerization of epoxides
JP2010536993A5 (pl)
US9738760B2 (en) Aliphatic polycarbonate compositions and methods
KR101702040B1 (ko) 폴리카보네이트의 제조방법
JPS6379863A (ja) 窒素含有ビスフェノ−ル組成物
Wilson Coupling of CO_ (2) and CS_ (2) with Novel Oxiranes: Polycarbonate vs. Cyclic Carbonate Production

Legal Events

Date Code Title Description
AS Assignment

Owner name: CORNELL UNIVERSITY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:COATES, GEOFFREY W.;ALLEN, SCOTT;ANDO, TSUYOSHI;SIGNING DATES FROM 20100125 TO 20100224;REEL/FRAME:027943/0478

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION