US20100178272A1 - Structure and use of 5'phosphate oligonucleotides - Google Patents

Structure and use of 5'phosphate oligonucleotides Download PDF

Info

Publication number
US20100178272A1
US20100178272A1 US12/376,812 US37681207A US2010178272A1 US 20100178272 A1 US20100178272 A1 US 20100178272A1 US 37681207 A US37681207 A US 37681207A US 2010178272 A1 US2010178272 A1 US 2010178272A1
Authority
US
United States
Prior art keywords
oligonucleotide
rna
ifn
precursor
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/376,812
Other languages
English (en)
Inventor
Gunther Hartmann
Veit Hornung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Klinische Pharmakologie
Original Assignee
Klinische Pharmakologie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38875059&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20100178272(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from EP06021271A external-priority patent/EP1920775B1/en
Application filed by Klinische Pharmakologie filed Critical Klinische Pharmakologie
Publication of US20100178272A1 publication Critical patent/US20100178272A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7115Nucleic acids or oligonucleotides having modified bases, i.e. other than adenine, guanine, cytosine, uracil or thymine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/117Nucleic acids having immunomodulatory properties, e.g. containing CpG-motifs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/17Immunomodulatory nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • C12N2310/335Modified T or U
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/34Spatial arrangement of the modifications
    • C12N2310/346Spatial arrangement of the modifications having a combination of backbone and sugar modifications
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to the field of immunotherapy and drug discovery.
  • the present invention provides oligonucleotides which are capable of inducing an anti-viral or an anti-bacterial response, in particular, the production of type I IFN, IL-18 and/or IL-1 ⁇ , and their in vitro as well as therapeutic uses.
  • the vertebrate immune system established different ways to detect invading pathogens based on certain characteristics of their microbial nucleic acids. Detection of microbial nucleic acids alerts the immune system to mount the appropriate type of immune response that is required for the defense against the respective type of pathogen detected. Detection of viral nucleic acids leads to the production of type I interferon (IFN) including IFN- ⁇ and IFN- ⁇ , the key cytokines for anti-viral defense.
  • IFN type I interferon
  • IFN- ⁇ was the first type of interferon to be identified and commercialized; it is widely used clinically in the treatment of a variety of tumors (e.g., hairy cell leukemia, cutaneous T cell leukemia, chronic myeloid leukemia, non-Hodgkin's lymphoma, AIDS-related Kaposi's sarcoma, malignant melanoma, multiple myeloma, renal cell carcinoma, bladder cell carcinoma, colon carcinoma, cervical dysplasia) and viral diseases (e.g., chronic hepatitis B, chronic hepatitis C).
  • tumors e.g., hairy cell leukemia, cutaneous T cell leukemia, chronic myeloid leukemia, non-Hodgkin's lymphoma, AIDS-related Kaposi's sarcoma, malignant melanoma, multiple myeloma, renal cell carcinoma, bladder cell carcinoma, colon carcinoma, cervical dysplasia
  • viral diseases e.g., chronic he
  • IFN- ⁇ is currently administrated systematically and causes a broad spectrum of side effects (e.g. fatigue, flu-like symptoms, diarrhea). Most alarmingly, IFN- ⁇ causes a decrease in bone marrow function which leads to increased susceptibility to life-threatening infections, anemia and bleeding problems. Therefore, there is a need for ways of providing IFN- ⁇ in a more localized (i.e., target-specific) matter to reduce the occurrence of side effects.
  • Receptor-mediated detection of pathogen-derived nucleic acids assists in protecting the host genome from invading foreign genetic material.
  • a new picture is evolving in which the ability of biological systems to detect viral nucleic acids via protein receptor-nucleic acid ligand interactions is crucial for maintaining the integrity of the genome and for survival.
  • RIG-1 retinoic-acid-inducible protein I
  • CARDs caspase-recruitment domains
  • DExD/H-box helicase domain M. Yoneyama at al., Nat Immunol 5, 730 (July, 2004)
  • RIG-1-mediated recognition of a specific set of RNA viruses flaviviridae, paramyxoviridae, orthomyxoviridae and rhabdoviridae
  • TLR Toll-like receptor
  • TLR3, TLR7, TLR8 and TLR9 are located in the endosomal membrane.
  • TLRs are mainly expressed on certain defined immune cell subsets (i.e. TLR9 restricted to PDC and B cells), RIG-I and MDA-5 are expressed in both immune and non-immune cells (H. Kato et al., Immunity 23, 19 (July, 2005)).
  • IPS-1 relays the signal to the kinases TBK1 and IKK-i, which phosphorylate interferon-regulatory factor-3 (IRF-3) and IRF-7, transcription factors essential for the expression of type-I interferons.
  • IRF-3 interferon-regulatory factor-3
  • IRF-7 interferon-regulatory factor-7
  • the ligand for TLR3 is long dsRNA such as poly(I:C) (L. Alexopoulou, et al., Nature 413, 732 (Oct. 18, 2001)), for TLR7 ssRNA (S. S. Diebold et al., Science 303, 1529 (Mar. 5, 2004); F. Heil et al., Science 303, 1526 (Mar. 5, 2004)) and short dsRNA with certain sequence motifs (i.e., the immunostimulatory RNA, is RNA) (V. Homung et al., Nat Med 11, 263 (March, 2005)), and for TLR9CpG DNA (A. M. Krieg et al., Nature 374, 546 (Apr. 6, 1995); H. Hemmi et al., Nature 408, 740 (Dec. 7, 2000)).
  • poly(I:C) Long dsRNA
  • TLR7 ssRNA S. S. Diebold et al.,
  • RNA was proposed to be the ligand for MDA-5 and RIG-I (M. Yoneyama et al., Nat Immunol 5, 730 (July, 2004); H. Kato et al., Nature 441, 101 (Apr. 9, 2006); S. Rothenfusser et al., J Immunol 175, 5260 (Oct. 15, 2005)).
  • a synthetic mimic of long dsRNA is poly(I:C).
  • Recent data showed that poly(I:C) is a ligand for MDA-5, while it is not recognized by RIG-I (H. Kato et al., Nature 441, 101 (Apr. 9, 2006)).
  • long dsRNA was found to activate RIG-I but not MDA-5 (H. Kato et al., Nature 441, 101 (Apr. 9, 2006)). This discrepancy of long dsRNA and poly(I:C) activity suggests that there is more to cytoplasmic RNA recognition than long dsRNA.
  • the in vitro transcribed siRNAs induced IFN production and consequently, cell death, in a non-sequence-dependent and non-target cell-specific manner.
  • the lack of sequence- and cell-specificity severely limits, if not precludes, the use of such in vitro transcribed siRNAs for therapeutic purposes.
  • Such polynucleotides/oligonucleotides can be advantageously used for the treatment of diseases and disorders such as viral infection and tumor without harming bystander (i.e., healthy, non-infected or non-diseased) cells.
  • the present invention provides an oligonucleotide or a precursor thereof which is capable of inducing an anti-viral, anti-bacterial, and/or anti-tumor response in a vertebrate cell and their in vitro and in vivo, in particular, medical, uses.
  • the present invention further provides a method for preparing an oligonucleotide which is capable of inducing an anti-viral, anti-bacterial, and/or anti-tumor response in a vertebrate cell.
  • the present invention also provides a method for preparing an oligonucleotide which lacks the capability of inducing an anti-viral, anti-bacterial, and/or anti-tumor response in a vertebrate cell.
  • FIG. 1 In vitro transcribed RNA induces a potent IFN- ⁇ response in human monocytes
  • pBluescript KS was used to generate DNA templates of various lengths for in vitro transcription (lower panel). In vitro transcribed RNAs were analyzed on a 4% denaturing agarose gel prior to transfection. Subsequently in vitro generated RNAs were transfected in purified PDC and monocytes plated in 96-well plate. 24 hours after transfection supernatants were analyzed for IFN- ⁇ production. Data of two independent donors were summarized and are depicted as mean values ⁇ SEM.
  • RNA oligonucleotides were generated ranging from 27 to 9 nucleotides by gradually shortening a 27-mer oligonucleotide from the 3′ end in steps of three nucleotides.
  • Purified monocytes were transfected with the respective oligonucleotides and IFN- ⁇ production was analyzes 24 hours after stimulation. Data of five independent donors were normalized to the IFN- ⁇ induction level of the 27 nucleotides oligonucleotide (5876 ⁇ 1785 pg/ml) and summarized as mean values ⁇ SEM.
  • FIG. 2 5′ phosphorylated, but not synthetic RNA oligonucleotides are potent inducers of IFN- ⁇ in human monocytes
  • RNA9.2s (200 ng) was transfected into purified monocytes or PDCs.
  • CpG-A (3 ⁇ g/ml) and R848 (10 ⁇ M) were included as positive control stimuli for TLR9- or TLR7-mediated IFN- ⁇ induction in PDC.
  • Data of two (monocytes) or three (PDCs) independent donors were summarized and are depicted as mean values ⁇ SEM.
  • C Calf intestine alkaline phosphatase
  • FIG. 3 7-methyl-guanosine capping and eukaryotic-specific base modifications abolish IFN- ⁇ induction via 5′triphosphate RNA
  • RNA molecules of various length 27 nucleotides-302 nucleotides derived from pBKS as a template (see Table 1B) were transcribed in the presence of the cap analogue N-7 methyl GpppG (m7G capped RNA) or using standard NTPs (uncapped RNA).
  • Purified monocytes were transfected with either m7G capped or uncapped RNAs (200 ng each) and IFN- ⁇ production was assessed 24 hours after stimulation.
  • data of two independent donors were normalized to the uncapped RNA value and summarized as mean values ⁇ SEM.
  • the absolute values for the respective RNA transcripts were 1401, 2351, 91, 797 and 2590 pg/ml, respectively.
  • Tri-GFPs and tri-GFPa were synthesized via in vitro transcription in the presence of either uridine-5′-triphosphate, pseudouridine-5′-triphosphate ( ⁇ ), 2-thiouridine-5′-triphosphate (s2U) (all B) or 2′-O-methyluridine-5′-triphosphate (C). Subsequently purified monocytes and PDCs were transfected with the respective oligonucleotides and IFN- ⁇ production was assessed 24 hours after stimulation. For each RNA transcript, data of two (B) or three (C) independent donors were normalized to the value of the RNA oligonucleotide transcribed in the presence of uridine-5′-triphosphate and summarized as mean values ⁇ SEM.
  • FIG. 4 Triphosphate-mediated IFN- ⁇ induction requires RIG-I but not MDA5
  • HEK 293 cells were transfected with either RIG-I full, RIG-IC, RIG-I K270A or the corresponding empty vector (all 200 ng each) in the presence of pIFN-beta-Luc (300 ng) and pSV-beta Galactosidase (400 ng).
  • poly I:C synthetic RNA9.2s, tri-GFPs or tri-GFPa (all 200 ng) were included. 24 hours after transfection pIFN-beta-Luc reporter activity was assessed. Data from one representative experiment out of three were normalized to the empty vector condition and are depicted as mean values of duplicates ⁇ SEM.
  • MEFs from mice devoid of either RIG-I or MDA5 or respective wild type MEFs were transfected with tri-GFPs or tri-GFPds.
  • MEFs were infected with EMCV at a M.O.I. of 1. 24 hours after stimulation supernatants were collected and assayed for IFN- ⁇ production. Data from one representative experiment out of three are depicted.
  • HEK 293 cells were transfected with either RIG-I full or RIG-IC (200 ng each) and T7 RNA polymerase or the transcriptionally defective point mutant T7 RNA polymerase D812N (300 ng each) in the presence of pIFN-beta-Luc (300 ng) and pSV-beta Galactosidase (400 ng).
  • RIG-I full or RIG-IC 200 ng each
  • T7 RNA polymerase the transcriptionally defective point mutant T7 RNA polymerase D812N (300 ng each) in the presence of pIFN-beta-Luc (300 ng) and pSV-beta Galactosidase (400 ng).
  • X8dt vector based on the pBKS backbone without T7 RNA polymerase promoter
  • pBKS all 300 ng
  • HEK 293 cells were transfected with decreasing doses of T7RNA polymerase in the presence of either RIG-I full or RIG-IC (200 ng) with nothing or pBKS (300 ng), while pIFN-beta-Luc (300 ng) and pSV-beta Galactosidase (400 ng) were included. 24 hours after transfection pIFN-beta-Luc reporter activity was assessed. Data from one representative experiment out of three were normalized to the RIG-IC/pBKS/17 RNA polymerase (300 ng) condition and are depicted as mean values of duplicates ⁇ SEM.
  • FIG. 5 Viral RNA induces IFN-induction via RIG-I depending on its 5′ end phosphorylation status
  • HEK 293T cells were either mock-transfected with PEI, or with 1 ⁇ g total RNA isolated from non-infected BSR cells or total RNA isolated from BSR cells infected with RV L16 or RV ⁇ PLP.
  • RNA isolated from gradient-purified virions (RV L16) or CIAP-treated RNA from purified virions was used to stimulate HEK 293T cells.
  • RV L16 gradient-purified virions
  • CIAP-treated RNA from purified virions was used to stimulate HEK 293T cells.
  • an in vitro transcribed RNA oligonucleotide corresponding to the 5′ terminal leader sequence (58 nt) of the RV SAD L16 cRNA was used to stimulate HEK 293T cells.
  • FIG. 6 Triphosphate RNA directly binds to RIG-I
  • HEK 293 cells were transiently transfected with full length RIG-I, RIG-I CARD2 or RIG-I ⁇ HELIc. 36 hours after transfection cells were lysed and co-incubated with the indicated RNA oligonucleotides (0.375 ⁇ g; lower right panel) for two hours at 4° C. Next, streptavidin-agarose-beads were added for an additional period of one hour. Beads were collected by centrifugation and washed four consecutive times. After all washing steps, supernatants were collected and after four washes streptavidin-agarose beads were collected by centrifugation and boiled in Laemmli buffer.
  • RIG-IC was immunoprecipitated using Flag-agarose-beads and subsequently eluted via Flag-peptide.
  • the depicted RNA oligonucleotides were added to purified RIG-IC and subsequently co-incubated with streptavidin-agarose beads. If indicated, RNase T1 was used to remove the 5′ portion of the oligonucleotide containing the triphosphate group. Beads were washed four consecutive times and the first supernatant and the bead-bound fraction were analyzed by western blotting. One representative experiment out of three is shown.
  • FIG. 7 No difference in uptake of synthetic and triphosphate RNA oligonucleotides in monocytes
  • RNA oligonucleotides of the sequence 9.2s were chemically labeled with Alexa 647 fluorophores, resulting in a base:dye ratio of 81 and 71 respectively.
  • Subsequently purified monocytes were transfected with labeled RNA oligonucleotides (all 50 ng). Two hours after transfection cells were harvested and vigorously washed with 10 mM EDTA in PBS twice. Uptake of the fluorescently labeled oligonucleotides were assessed by flow cytometry. Untreated monocytes were used to set the threshold level for positive cells. Data from two independent donors were summarized and are depicted as mean values t SEM.
  • FIG. 8 Only guanosine triphosphate, but not guanosine diphosphate, guanosine monophosphate or guanosine initiated RNA oligonucleotides induce a potent IFN- ⁇ response in human monocytes
  • RNA oligonucleotides were generated via in vitro transcription in the presence of ATP, CTP and UTP and either only guanosine, guanosine-5′-monophosphate, guanosine-5′-diphosphate or guanosine-5′-triphosphate. Subsequently purified monocytes were transfected with the respective RNA oligonucleotides (all 200 ng) and IFN- ⁇ production was analyzed 24 hours after stimulation. Data from two independent donors were summarized and are depicted as mean values ⁇ SEM.
  • FIG. 9 Prokaryotic RNA, but not eukaryotic RNA induces IFN- ⁇ production in monocytes
  • RNA was isolated from E. coli bacteria strain DH10B and human PBMC. Subsequently monocytes were transfected with E. coli RNA, PBMC RNA, synthetic 9.2s RNA or in vitro transcribed 9.2s (all 200 ng). In addition LPS (100 ng/ml) was added either exogenously or combined with cationic lipid complexed synthetic 9.2s RNA to stimulate monocytes. IFN- ⁇ production was analyzed 24 hours after stimulation. Data from two independent donors were summarized and are depicted as mean values ⁇ SEM.
  • FIG. 10 3′ overhangs of double stranded triphosphate RNA oligonucleotides do not impact on the immunostimulatory activity
  • Purified monocytes were transfected with either tri-27+2s, tri-27+2a, tri-27+0s, tri-27+0a or the respective double stranded oligonucleotides (all 200 ng). IFN- ⁇ production was analyzed 24 hours after stimulation. Data from three independent donors were summarized and are depicted as mean values ⁇ SEM.
  • FIG. 11 Triphosphate RNA-mediated IFN- ⁇ induction is independent of endosomal maturation and of TLR7
  • Murine MDC were generated from bone marrow cells from either TLR7 knock out mice (TLR7 ⁇ / ⁇ ) or respective control animals (TLR7 +/ ⁇ ). Subsequently BM-MDC were transfected with 200 ng tri-GFPs or stimulated with either R848 (10 ⁇ M), CpG-B (3 ⁇ g/ml), CpG-A (3 ⁇ g/ml) or poly I:C (25 ⁇ g/ml). 24 hours after incubation supernatants were analyzed for IFN- ⁇ and IP-10 production. One representative experiment (mean of duplicates ⁇ SEM) out of three is depicted.
  • FIG. 12 5′ adenosine-initiated triphosphate transcripts are superior to 5′ guanosine initiated transcripts in terms of IFN- ⁇ induction
  • RNA9.2-0A Purified monocytes were transfected with either RNA9.2-0A, RNA9.2s-1G or RNA9.2s-5A (all 200 ng) and IFN- ⁇ production was analyzed 24 hours after stimulation. Data from two independent donors were summarized and are depicted as mean values ⁇ SEM.
  • RNA transcripts derived from either the A ⁇ 16.5-35n or the G ⁇ 1)6.5-35n template were transfected into purified monocytes and IFN- ⁇ induction was assessed 24 hours after transfection. Data from three independent donors were summarized and are depicted as mean values ⁇ SEM.
  • FIG. 13 5′ sequence of adenosine-initiated 5′-triphosphate RNA oligonucleotides dictates IFN- ⁇ inducing activity.
  • FIG. 14 Prokaryotic RNA, but not in vitro transcribed RNA induces IFN- ⁇ in human monocytes after 5′ dephosphorylation.
  • Tri-GFPa was prepared via in vitro transcription (A), and in addition total RNA was isolated from E. coli bacteria strain DH10B (B). Subsequently the respective RNA preparations were treated with CIAP to dephosphorylate the 5′ end and transfected into purified monocytes (200 ng of RNA). IFN- ⁇ production was analyzed 24 hours after stimulation. Data from two independent donors are depicted.
  • FIG. 15 Combining potent immunostimulatory functions with efficient gene-silencing activity in one RNA-molecule
  • B16 cells were seeded in 24-well plates. At a confluency of 50%, B16 cells were transfected with the selected chemically synthesized siRNAs (anti-Bcl-2 2.1, anti-Bcl-2 2.2 and anti-Bcl-2 2.3) at 1.2 ⁇ g/well (100 ⁇ mol) using Lipofectamine 2000 (2.0 ⁇ l). 48 hours after transfection protein expression of murine Bcl-2 was analyzed by Western-Blot. Subsequently, the siRNA anti-Bcl-2 2.2 (OH-2.2) was in vitro transcribed (termed 3p-2.2) and tested for its ability to induce gene-silencing. Control siRNA and 3p-GC, a non-specific double-stranded 3p-RNA, served as negative control. One representative experiment of four is shown.
  • B16 cells were seeded in 24-well plates and transfected with the indicated expression plasmids using high molecular weight PEI or Lipofectamine 2000. 24 cells were stimulated with poly(I:C) (200 ng/well), 3p-2.2 (200 ng/well) and OH-2.2 (200 ng/well). IRF3-5D served as positive control. 16 h after transfection cells were analyzed for luciferase activity with a microplate luminometer (LUMIstar, BMGLabtechnologies). Data are shown as means ⁇ SEM of three independent experiments (*P ⁇ 0.05 between 3p-2.2, OH-2.2 and poly(I:C); t-test).
  • B16 cells were seeded in 24-well plates and co-transfected with synthetic siRNAs (10 ⁇ mol) and the indicated expression plasmids (200 ng) as described. 24 hours after transfection the cells were stimulated with 3p-2.2 for 16 hours. Data are shown as means ⁇ SEM of three independent experiments (*P ⁇ 0.05 between control siRNA (siCO)+3p-2.2 versus RIG-I siRNA (siRIG-I)+3p-2.2; t-test).
  • B16 cells were transfected with the indicated expression plasmids for 24 hours and stimulated with 3p-2.2 for 16 hours. Data are shown as means ⁇ SEM of two independent experiments (*P ⁇ 0.05, NS3-4A*+3p-2.2 versus NS3-4A+3p-2.2; t-test).
  • FIG. 16 Transfection of 3p-2.2 directly triggers Cardif-independent apoptosis in tumor cells, but not in primary cells
  • Murine B16 cells were seeded in 24-well plates and transfected with 3p-2.2 (1.2 ⁇ g/well), OH-2.2 (1.2 ⁇ g/well) and Control-siRNA (1.2 ⁇ g/well) using Lipofectamine (2.0 ⁇ l). 24 hours after transfection cells were analyzed by flow cytometry for apoptosis by gating on Annexin-V positive cells. Annexin-V positive and PI-positive cells (late apoptotic or dead cells) were excluded.
  • Murine B16 cells were seeded in 24-well plates and transfected with pNS3-4A and pNS3-4A* for 24 h. Then cells were washed and stimulated for 24 hours with 3p-2.2 and the number of apoptotic cells was determined by FACS-analysis. Data are shown as means ⁇ SEM of two independent experiments.
  • B16 cells were incubated with control siRNA, 3p-2.2 and poly(I:C) for 24 hours and assessed for caspase-1 activity via immunoblotting. ⁇ -Tublin served as loading control. One representative experiment of three is shown.
  • FIG. 17 IFN- ⁇ Production by 3p-2.2 requires TLR7 in pDCs and RIG-I in cDCs and is limited to certain immune cell subsets
  • GMCSF-derived cDCs of Wild-type, RIG-1-deficient (a), MDA5-deficient (b) and TLR7-deficient (c) mice and Flt3-L-derived pDCs of TLR7-deficient mice (d) were transfected with 200 ng of 3p-2.2, dsDNA (Sigma; dAdT), poly(I:C) (Sigma) complexed to Lipofectamine 2000 and CpG-A 2216 (3 ⁇ g/ml) in 96 well plates. After 24 h, IFN- ⁇ was measured in the supernatants by ELISA. Data are expressed as the mean ⁇ SEM of two independent experiments.
  • B cells, NK cells and CD 8 T cells were purified from spleens of wild-type mice using magnetic cell sorting and stimulated with 200 ng of 3p-2.2. Sorted pDCs from Flt3-L induced bone marrow cultures and GMCSF-derived cDCs stimulated with 3p-2.2 served as positive control. Data are expressed as the mean ⁇ SEM of two independent experiments.
  • FIG. 18 Encapsulated 3p-2.2 leads to systemic immune activation in vivo
  • C57BU6 mice were injected with 200 ⁇ l containing 3p-2.2 or OH-2.2 (50 ⁇ g/Mouse) complexed with jetPEITM. Subsequently, the complexes were injected in the retro-orbital vein. Serum was collected after 6 hours unless indicated otherwise. Whole blood was obtained by tail clipping at the indicated time points. Cytokine levels of IFN- ⁇ (a), IL-12p40 (b) and IFN- ⁇ (c) were determined by ELISA. CpG1826 served as a positive control. Data are shown as means ⁇ SEM of 6 independent experiments; P** ⁇ 0.01 or P* ⁇ 0.05.
  • mice C57BU6 and TLR7 ⁇ / ⁇ mice were injected intravenously with 3p-2.2 and OH-2.2 (50 ⁇ g) complexed to jetPEITM (Biomol). After 6 hours, mice were sacrificed and serum was analyzed for IFN- ⁇ (d), IL-12p40 (e) and IFN- ⁇ (f) production by ELISA. Data are shown as means ⁇ SEM of 2 independent experiments.
  • FIG. 19 Dose-dependent activation of immune cell subsets by 3p-2.2 in vivo
  • C57BU6 mice were injected with 200 ⁇ l of 3p-2.2 (25-, 50- or 75 ⁇ g/mouse) complexed with jetPEITM into the retro-orbital vein. Serum was collected after 6 h unless indicated otherwise.
  • FIG. 20 3p-2.2 stimulation leads to increased IFN- ⁇ serum-levels for less than two days and induces moderate thrombocytopenia and leukopenia in vivo.
  • FIG. 21 Delivery of encapsulated 3p-2.2 results in reduction of experimentally induced B16 melanoma lung metastases
  • FIG. 22 Mechanisms of tumor reduction by 3p-2.2
  • FIG. 23 Induction of apoptosis in lung metastases by 3p-2.2 in vivo
  • mice Groups of 5 C57BL/6 mice were injected intravenously with 4 ⁇ 10 5 B16 melanoma cells to experimentally induce lung metastases. Mice were treated intravenously on day 3, 6 and 9 with 50 ⁇ g of PolyA (a), 50 ⁇ g of 3p-2.2 (b) or 50 ⁇ g of CpG1826 (c). PolyA-treated animals served as the control group. On day 14, samples of lungs were obtained when mice were sacrificed. Tissue specimens were fixed in absolute ethanol and embedded in paraffin. Apoptosis was detected by the transferase-mediated dUTP nick end-labeling (TUNEL) method according to the manufacturer's instructions. One representative experiment of 5 is shown.
  • TUNEL transferase-mediated dUTP nick end-labeling
  • FIG. 24 Inosine content increases the IFN- ⁇ inducing activity of 3pRNA.
  • FIG. 25 IFN- ⁇ -inducing activity of synthetic single-stranded 5′ triphosphate RNA.
  • PBMC peripheral blood mononuclear cells
  • PBMC peripheral blood mononuclear cells
  • AS complementary antisense strand
  • CpG2331 was used as a positive and chloroquine-sensitive control for IFN- ⁇ induction in PBMC.
  • TLRs contribute to recognition of viral nucleic acids, but their proper function seems largely dispensable for effective antiviral defense (A. Krug et al., Immunity 21, 107 (July, 2004); K. Tabeta et al., Proc Natl Acad Sci USA 101, 3516 (Mar. 9, 2004); T. Delale et al., J Immunol 175, 6723 (Nov. 15, 2005); K. Yang et al., Immunity 23, 465 (November, 2005)). It was not until recently that it became clear that the two cytoplasmic helicases, MDA-5 and RIG-I (M. Yoneyama et al., Nat Immuno/ 5, 730 (July, 2004)), are essential for controlling viral infection.
  • RNA with a triphosphate group at the 5′ end and an optimal minimal length of 19 nucleotides as a specific ligand for RIG-I. Both exogenous 5′ triphosphate RNA transfected into a cell and endogenously formed 5′ triphosphate RNA activated RIG-I. Genomic RNA prepared from a negative strand RNA virus and RNA prepared from virus-infected cells, but not RNA from non-infected cells, triggered a potent IFN- ⁇ response in a 5′ triphosphate-dependent manner. Binding studies of RIG-1 and 5′ triphosphate RNA revealed a direct molecular interaction.
  • Uncapped, unmodified 5′ triphosphate RNA is the first well-defined molecular structure of viral nucleic acids that is detected by eukaryotic cells. Since viruses due to their lifecycle are composed of the same molecular constituents as their host cells, namely protein and nucleic acid, such defined molecular structures that allow discrimination of viral and self RNA are expected to be rare and the presence of such has been questioned. In this regard, viruses are different from bacteria that contain a variety of molecules such as endotoxin which are absent in eukaryotes and which are easily recognized with high confidence by TLRs such as TLR4 located in the cytoplasmic membrane.
  • TLRs such as TLR4 located in the cytoplasmic membrane.
  • RNA transcripts are initially generated as 5′ triphosphate RNAs
  • cytosol of eukaryotic cells most if not all self RNA species do not carry a free 5′ triphosphate end.
  • RNA is further processed. This holds true for RNA transcripts of all three RNA polymerases in eukaryotes.
  • Polymerase I transcribes a large polycistronic precursor ribosomal RNA (rRNA) which contains the sequences for the mature rRNAs (18, 5.8S, 25-28S rRNA), two external transcribed spacers and two internal transcribed spacers.
  • rRNA ribosomal RNA
  • This primary transcript is subjected to many endo- and exonucleolytic-processing steps to produce the mature rRNAs.
  • the net result of this maturing process is a monophosphate group at the 5′ end of all polymerase I transcribed rRNAs (M. Fromont-Racine et al., Gene 313, 17 (Aug. 14, 2003)).
  • mRNAs messenger RNAs
  • snRNAs small nuclear RNAs
  • mRNAs messenger RNAs
  • snRNAs small nuclear RNAs
  • capping A. J. Shatkin, J. L. Manley, Nat Struct Biol 7, 838 (October, 2000)
  • RNAs transfer RNAs
  • rRNA 5S transfer RNAs
  • U6 RNA transfer RNAs
  • tRNAs transfer RNAs
  • rRNA 5S small RNAs
  • U6 RNA transfer RNAs
  • tRNAs transfer RNAs
  • rRNA 5S small RNAs
  • U6 RNA transfer RNAs
  • tRNAs transfer RNAs
  • rRNA 5S small RNAs
  • U6 RNA transfer RNAs
  • mpppG ⁇ -monomethylphosphate
  • eukaryotic RNA posttranscriptionally undergoes significant modification of its nucleosides and its ribose backbone.
  • pseudouridinylation is one of the most common posttranscriptional modifications of RNA that appears to be universal among rRNAs and small stable RNAs such as splicing small nuclear RNAs (snRNAs), tRNAs, and small nucleolar RNAs (snoRNAs).
  • snRNAs small nuclear RNAs
  • tRNAs small nucleolar RNAs
  • snoRNAs small nucleolar RNAs
  • the frequency and location of pseudouridinilated nucleotides vary phylogenetically. Intriguingly, eukaryotes contain far more nucleoside modifications within their RNA species than prokaryotes.
  • RNA Human ribosomal RNA for example, the major constituent of cellular RNA, contains ten times more pseudouridine ( ⁇ ) and 25 times more 2′-O-methylated nucleosides than E. coli rRNA (J. Rozenski et al. Nucleic acids research 27, 196 (Jan. 1, 1999)). The same applies for eukaryotic tRNAs, the most heavily modified subgroup of RNA with up to 25% of modified nucleosides.
  • the host machinery that carries out nucleoside modifications and 2′-O-methylation of the ribose backbone is located in the nucleolus and consists of RNA-protein complexes containing snoRNAs and several associated proteins (i.e., snoRNPs) (W. A. Decatur, M. J. Foumier, J. Biol. Chem. 278, 695 (Jan. 3, 2003)).
  • RNA viruses do not replicate in the nucleus and modification is tightly confined to the sequence and structure of their target, extensive modification of viral RNA seems unlikely.
  • RNA post-transcriptional modifications of eukaryotic RNA such as 5′ processing or capping as well as nucleoside modifications or ribose backbone methylation provide the molecular basis for the distinction of self RNA generated in the nucleus from viral RNA of cytoplasmic origin.
  • RNA viruses infecting eukaryotic cells also commonly contain 7-methyl guanosine cap-structures at their 5′′ends and poly(A) tails at their 3′′ends (Y. Furuichi, A. J. Shatkin, Adv Virus Res 55, 135 (2000)).
  • Some viruses make use of the host transcription machinery to acquire caps and poly(A) tails.
  • RNA viruses that do not rely on the host transcriptional machinery produce their own capping enzymes or utilize other mechanisms such as snatching the 5′-terminal regions of host mRNAs.
  • viral RNA synthesis leads to transient cytoplasmic RNA intermediates with an uncapped 5′′triphosphate end.
  • RdRp viral RNA-dependent RNA polymerases
  • NSV Segmented negative strand RNA virus
  • NSV with a nonsegmented genome (Order Mononegavirales), including the Paramyxoviruses and Rhabdoviruses, initiate both replication and transcription de novo leading to 5′ triphosphate RNA in the cytosol.
  • Both the full length replication products, vRNA and cRNA, and a short leader RNA which is abundantly synthesized during initiation of transcription maintain their 5′ triphosphate (R. J. Colonno, A. K. Banerjee, Cell 15, 93 (1978)), while the virus-encoded mRNA transcripts are further modified at their 5′ ends by capping and cap methylation.
  • RNAs are permanently enclosed within nucleoprotein (N) to form a linear, helical nucleoprotein-RNA complex (RNP) in which the RNA is not accessible to even small cellular molecules such as RNases.
  • N nucleoprotein
  • RNP helical nucleoprotein-RNA complex
  • leader RNA has been reported to be encapsulated by N (Blumberg D M & Kolakofsky D, J Virol. 1981 November; 40(2):568-76; Blumberg B M et al. Cell 1981 March; 23(3):837-45).
  • NSV stocks that contain defective interfering (DI) particle RNAs are potent inducers of IFN (Strahle L. et al. 2006, Virology 351(1):101-11). Dls only contain the terminal promoters for replication and provide plentiful 5′ triphosphate ends under conditions of reduced expression of helper virus proteins.
  • viruses in the Picornavirus-like supergroup use a RdRp which exclusively employs a protein as a primer for both positive and negative strand RNA production: this protein primer is part of the precursor RdRp and is cleaved off as elongation of the initial complex occurs, to become a 5′-genome-linked protein, usually known as viral genome-linked protein (VPg) (Y. F. Lee, et al., Proc Natl Acad Sci USA 74, 59 (January, 1977)).
  • VPg viral genome-linked protein
  • RIG-I is expected to be involved in the detection of Flaviviridae and NSV but not picornaviruses, which was confirmed in a recent study (H. Kato et al., Nature 441, 101 (Apr. 9, 2006)).
  • long double-stranded RNA was believed to be the only defined nucleic acid structure that occurs during viral infection but is absent in normal cells.
  • the notion that the long double-stranded RNA mimic poly(I:C) induces type I IFNs dates back to the early days of type I IFN research (M. Absher, W. R. Stinebring, Nature 223, 715 (Aug. 16, 1969)).
  • Double-stranded RNA-dependent protein kinase (PKR) was thought to be involved in IFN- ⁇ induction (S. D. Der, A. S. Lau, Proc Natl Aced Sci USA 92, 8841 (Sep.
  • TLR3 was found to be activated during viral infection (in the case of CMV) (K. Tabeta et al., Proc Natl Acad Sci USA 101, 3516 (Mar. 9, 2004)), but was not required for viral clearance (in the case of RSV) (B. D. Rudd et al., J Immunol 176, 1937 (Feb. 1, 2006)).
  • TLR3 so far is the only receptor that leads to the production of type I IFN upon binding of the natural long dsRNA molecule, but the contribution of TLR3 to type I IFN induction and viral clearance in vivo seems to be weak.
  • dsRNA intermediate dsRNA in the cytoplasm.
  • a recent study confirms the formation of intermediate dsRNA for positive strand RNA viruses, dsRNA viruses and DNA viruses but not NSV (F. Weber, et al., J Virol 80, 5059 (May, 2006)).
  • formation of endogenous dsRNA occurs physiologically in eukaryotic cells.
  • dsRNA is present in the form of micro RNAs (miRNA) and precursor-miRNAs.
  • Precursor-miRNA are 70-nucleotide dsRNA stem-loop structures that are constantly exported from the nucleus into the cytosol to be further processed into 22 nucleotides miRNAs which posttranscriptionally regulate a large number of target genes (B. R. Cullen, Mol Cell 16, 861 (Dec. 22, 2004)). Therefore, dsRNA is present in normal healthy eukaryotic cells without inducing an type I IFN response. Therefore, dsRNA in the cytoplasm per se is not virus-specific.
  • RIG-I is the receptor for blunt end short dsRNA is based on experiments using RIG-I overexpressing cells and using RIG-I specific siRNA (short dsRNA with two nucleotides 3′ overhangs) on top of stimulation with blunt end short dsRNA. RIG-I deficient cells were not examined in this study.
  • PDC plasmacytoid dendritic cell
  • PDC contribute to early antiviral immune responses, while the major antiviral activity is based on cytoplasmic recognition of the virus via RIG-I and/or MDA-5.
  • PDC and TLR-mediated virus recognition may play a more critical role.
  • PDC serve as sentinels for viral particles before it comes to viral replication in virus-infected cells, and may serve as a backup strategy if the virus escapes RIG-I and/or MDA-5 recognition.
  • the potency of the 5′ triphosphate RNA specific antiviral response is illustrated by the finding of the present inventors that human primary monocytes produce large amounts of IFN- ⁇ upon stimulation with 5′ triphosphate RNA. Unlike in mice (S. S. Diebold et al., Nature 424, 324 (Jul. 17, 2003)), human myeloid cells have not been shown previously to produce considerable amounts of IFN- ⁇ upon stimulation with nucleic acids. With 5′ triphosphate RNA, now for the first time a molecule is available which is a real mimic of viral infection of cells and consequently is capable of inducing IFN- ⁇ in any cell type including immune cells that normally do not make IFN- ⁇ , non-immune cells and tumor cells.
  • 5′ triphosphate RNA has the potential to mimic attenuated replicating viruses with respect to their potent stimulation of immunity. In this respect, 5′ triphosphate RNA seems to be the perfect biologically dead molecule which can be used in the development of vaccines, therapeutic vaccines, or immunotherapies for the prevention and/or treatment of established diseases such as chronic viral infection and tumors.
  • 5′ triphosphate RNA induces not only type I IFN production in tumor cells, but also apoptosis of tumor cells. Tumor cells are more susceptible than non-tumor cells to apoptosis induced by 5′ triphosphate RNA. Therefore, 5′ triphosphate RNA is an ideal candidate for tumor therapy.
  • 5′ triphosphate RNAs were routinely generated by in vitro transcription using bacteriophage RNA polymerases, such as T7, T3, and SP6, which inevitably start the transcripts with a 5′ G (Maitra U et al. (1980) PNAS 77(7):3908-3911; Stump W T & Hall K B (1993) Nucleic Acids Research 21(23):5480-5484).
  • T7, T3, and SP6 bacteriophage RNA polymerases
  • 5′ G Maintra U et al. (1980) PNAS 77(7):3908-3911; Stump W T & Hall K B (1993) Nucleic Acids Research 21(23):5480-5484.
  • the present inventors found that 5′ triphosphate RNAs which start with a 5′ A are more potent at inducing a type I IFN response.
  • the present inventors found that the 5′ sequence of the 5′ triphosphate RNA affects its potency. In contrast, the 3′sequence of a 5′ triphosphate RNA had little impact as short 5′ triphosphate RNA oligonucleotides with poly A, poly U, poly C or poly G at the 3′ end had similar activity.
  • the present inventors found that the type I IFN-inducing activity of a 5′ triphosphate RNA increases with an increasing inosine content.
  • long 5′ triphosphate RNA showed different levels of activity. This may be explained by secondary structure formation of long RNA molecules that could affect accessibility of the 5′ triphosphate end for RIG-I.
  • the present invention provides the use, in particular, therapeutic use of an oligonucleotide/polynucleotide bearing at least one free, uncapped phosphate group at the 5′ end (i.e, a 5′ phosphate olignucleotide/polynucleotide).
  • the in vitro transcribed single-stranded RNA and single-stranded viral RNA are likely to contain double-stranded structure due to the looping back of the 3′ end or other intra- or inter-molecular double-strand formation, which accounts for their ability to induce type I IFN in the absence of an antisense (i.e., complementary) strand.
  • a single-stranded 5′ phosphate RNA in particular, a 5′ triphosphate RNA, whose sequence is complementary to a tissue- or cell-specific RNA can be chemically synthesized and introduced into cells, tissues, organs or whole organisms in vitro, in vivo or ex vivo.
  • tissue- or cell-specific RNA is an mRNA of a disease/disorder-related gene.
  • the single-stranded 5′ phosphate RNA remains single-stranded and is incapable of being recognized by RIG-I or inducing type I IFN.
  • the single-stranded 5′ phosphate RNA binds the mRNA of the disease/disorder-related gene, forms a double-stranded structure which is recognized by RIG-I, leading to type I IFN production.
  • miRNAs are single-stranded molecules about 21-23 nucleotides in length having a hairpin or stem-loop structure; they are partially complementary to mRNAs of genes and regulate the expression of said genes. miRNAs are expressed in a tissue-, cell- and/or developmental stage-specific manner and are known to be associated with certain diseases/disorders such as cancer and heart disease.
  • type I IFN response which is normally cytotoxic to cells, is only induced in diseased cells but not in healthy bystander cells, leading to the effective eradication of diseased cells without harming any healthy bystander cells.
  • the single-stranded 5′ phosphate RNA useful in the present invention can possesses gene silencing activity.
  • the single-stranded 5′ triphosphate RNA useful in the present invention does not need to possess any gene silencing activity. So long as the single-stranded 5′ phosphate RNA is capable of binding the target endogenous RNA, i.e., has sequence complementarity to the target endogenous RNA, it is useful in inducing type I IFN in a target cell-specific manner. Under certain circumstances, it may be desirable to use a single-stranded 5′ phosphate RNA with gene silencing activity.
  • an antisense RNA against an oncogene in tumor cells may be desirable to use to induce type I IFN production and to reduce the proliferative potential of the tumor cells at the same time.
  • a 5′ triphosphate oligonucleotide Since certain structural features are required for a 5′ triphosphate oligonucleotide to be an effective ligand for RIG-I and thus effective in inducing type I IFN, IL-18 and/or IL-1 ⁇ , it is possible to inhibit RIG-I activation and the induction of type I IFN, IL-18 and/or IL-1 ⁇ by using, for example, chemically modified 5′ triphosphate RNA, high concentrations of 5′ triphosphate RNA which is too short for optimal signaling, high concentrations of 5′ triphosphate RNA in which the double-stranded section is too short for optimal signaling, high concentration of single-stranded 5′ triphosphate RNA which lacks sequence complementarity to any cellular mRNA in a target cell.
  • Such oligonucleotides has inhibitory effect on the induction of type I IFN, IL-18 and/or IL-1 ⁇ either by binding RIG-I without initiating signaling or by diluting out 5′ triphosphate RNA which is capable of inducing said cytokines.
  • Such inhibitory 5′ triphosphate oligonucleotides may be useful in the treatment of diseases or conditions which are associated with elevated levels of type I IFN, IL-18 and/or IL-1.
  • the diseases include, but are not limited to, autoimmune diseases, such as rheumatoid arthritis and gout, and inflammatory diseases.
  • bacterial RNA is very potent in inducing a type I IFN response. Similar to in vitro transcribed RNA and viral RNA, bacterial RNA contains a 5′ triphosphate and lacks the eukaryotic cell-specific modifications. Even more surprisingly, it was found that the IFN-inducing activity of bacterial RNA is not entirely attributable to the presence of the 5′ triphosphate, as is the case with in vitro transcribed RNA. Therefore, in addition to 5′ triphosphate, bacterial RNA contains further molecular features which are responsible for its ability to be recognized by eukaryotic cells and to induce type I IFN production.
  • compositions which are capable of inducing an anti-viral response and/or an anti-bacterial response and are useful for the treatment of diseases such as viral infections, bacterial infections, (in particular, intracellular bacterial infections), tumors, allergy, autoimmune diseases and immunodeficiencies.
  • Bacterial RNA is advantageous over attenuated virus and viral RNA as a therapeutic agent because of its safety profile. Whereas attenuated virus may cause viral infection and disease and viral RNA may integrate into the eukaryotic genome causing unwanted genetic alteration, bacterial RNA is inert and does not cause any undesirable diseases or conditions.
  • bacterial RNA can be produced in large quantities at very low cost. Therefore, it is a lot more economical to use bacterial RNA as a therapeutic agent than attenuated virus, viral RNA, or in vitro transcribed RNA.
  • oligonucleotide refers to a polynucleotide formed from a plurality of linked nucleoside units; “oligonucleotide” and “polynucleotide” are used synonymously.
  • oligonucleotides can be obtained from existing nucleic acid sources, including genomic or cDNA, but are preferably produced by synthetic methods including chemical synthesis, in vitro and in vivo transcription.
  • each nucleoside unit includes a heterocyclic base and a pentofuranosyl, trehalose, arabinose, 2′-deoxy-2′-substituted arabinose, 2′-O-substituted arabinose or hexose sugar group.
  • the nucleoside residues can be coupled to each other by any of the numerous known internucleoside linkages.
  • internucleoside linkages include, without limitation, phosphodiester, phosphorothioate, phosphorodithioate, pyrophosphate, alkylphosphonate, alkylphosphonothioate, phosphotriester, phosphoramidate, siloxane, carbonate, carboalkoxy, acetamidate, carbamate, morpholino, borano, thioether, bridged phosphoramidate, bridged methylene phosphonate, bridged phosphorothioate, and sulfone internucleoside linkages.
  • oligonucleotide also encompasses polynucleosides having one or more stereospecific internucleoside linkage (e.g., (R p )- or (S p )-phosphorothioate, alkylphosphonate, or phosphotriester linkages).
  • stereospecific internucleoside linkage e.g., (R p )- or (S p )-phosphorothioate, alkylphosphonate, or phosphotriester linkages.
  • the oligonucleotides of the invention can include naturally occurring nucleosides, modified nucleosides, or mixtures thereof.
  • modified nucleoside is a nucleoside that includes a modified heterocyclic base, a modified sugar moiety, or a combination thereof.
  • the modified nucleoside is a non-natural pyrimidine or purine nucleoside.
  • the modified nucleoside is a 2′-substituted ribonucleoside, an arabinonucleoside or a 2′-deoxy-2′-substituted-arabinoside.
  • 2′-substituted ribonucleoside or “2′-substituted arabinoside” includes ribonucleosides or arabinonucleoside in which the hydroxyl group at the 2′ position of the pentose moiety is substituted to produce a 2′-substituted or 2′-O-substituted ribonucleoside.
  • substitution is with a lower alkyl group containing 1-6 saturated or unsaturated carbon atoms, or with an aryl group having 6-10 carbon atoms, wherein such alkyl, or aryl group may be unsubstituted or may be substituted, e.g., with halo, hydroxy, trifluoromethyl, cyano, nitro, acyl, acyloxy, alkoxy, carboxyl, carboalkoxy, or amino groups.
  • 2′-O-substituted ribonucleosides or 2′-O-substituted-arabinosides include, without limitation, 2′-O-methylribonucleosides or 2′-O-methylarabinosides and 2′-O-methoxyethylribonucleosides or 2′-O-methoxyethylarabinosides.
  • 2′-substituted ribonucleoside or “2′-substituted arabinoside” also includes ribonucleosides or arabinonucleosides in which the 2′-hydroxyl group is replaced with a lower alkyl group containing 1-6 saturated or unsaturated carbon atoms, or with an amino or halo group.
  • Examples of such 2′-substituted ribonucleosides or 2′-substituted arabinosides include, without limitation, 2′-amino, 2′-fluoro, 2′-allyl, and 2′-propargyl ribonucleosides or arabinosides.
  • oligonucleotide includes hybrid and chimeric oligonucleotides.
  • a “chimeric oligonucleotide” is an oligonucleotide having more than one type of internucleoside linkage.
  • One preferred example of such a chimeric oligonucleotide is a chimeric oligonucleotide comprising a phosphorothioate, phosphodiester or phosphorodithioate region and non-ionic linkages such as alkylphosphonate or alkylphosphonothioate linkages (see e.g., U.S. Pat. Nos. 5,635,377 and 5,366,878).
  • hybrid oligonucleotide is an oligonucleotide having more than one type of nucleoside.
  • One preferred example of such a hybrid oligonucleotide comprises a ribonucleotide or 2′-substituted ribonucleotide region, and a deoxyribonucleotide region (see, e.g., U.S. Pat. Nos. 5,652,355, 6,346,614 and 6,143,881).
  • RNA oligonucleotides discussed herein include otherwise unmodified RNA as well as RNA which have been modified (e.g., to improve efficacy), and polymers of nucleoside surrogates.
  • Unmodified RNA refers to a molecule in which the components of the nucleic acid, namely sugars, bases, and phosphate moieties, are the same or essentially the same as that which occur in nature, preferably as occur naturally in the human body.
  • the art has referred to rare or unusual, but naturally occurring, RNAs as modified RNAs, see, e.g., Limbacho et al. 1994, Nucleic Acids Res 22: 2183-2196.
  • Such rare or unusual RNAs often termed modified RNAs (apparently because these are typically the result of a post-transcriptional modification) are within the term unmodified RNA, as used herein.
  • Modified RNA refers to a molecule in which one or more of the components of the nucleic acid, namely sugars, bases, and phosphate moieties, are different from that which occurs in nature, preferably different from that which occurs in the human body. While they are referred to as modified “RNAs,” they will of course, because of the modification, include molecules which are not RNAs.
  • Nucleoside surrogates are molecules in which the ribophosphate backbone is replaced with a non-ribophosphate construct that allows the bases to the presented in the correct spatial relationship such that hybridization is substantially similar to what is seen with a ribophosphate backbone, e.g., non-charged mimics of the ribophosphate backbone.
  • RNA oligonucleotide of the invention can be single-stranded (ssRNA), double-stranded (dsRNA), or partially double-stranded (partially dsRNA).
  • a single-stranded RNA oligonucleotide may contain self-complementary sequences and forms a hairpin.
  • the self-complementary sequence may be a palindromic sequence.
  • a double-stranded RNA oligonucleotide may have one- or two-nucleotide overhang at the 5′ or 3′ end of one or both strands.
  • a partially double-stranded RNA oligonucleotide may comprise two strands of the same or different length(s), wherein at least one of the strands contains nucleotides outside the complementary sequence.
  • Example 1 5′-AAAA GUUCAAAGCUC AAAA-3′ 3′- CAAGUUUCGAG -5′
  • Example 2 5′-UCAAAGUCA AAAGCUCAAAGUUGAAA GUUUAAA-3′ 3′-GACUUGAAAA UUUCAGUUUUCGAGUUU AAGUUGAAAACUCG-5′
  • Example 3 5′-UCAAAGUCA AAAGCUCAAAGUUGAAA -3′ 3′- UUUCAGUUUUCGAGUUU AAGUUGAAAACUCG-5′
  • the length of a single-stranded RNA oligonucleotide is the number of nucleotides contained in the oligonucleotide.
  • the length of the oligonucleotide is the length of the individual strands.
  • a partially double-stranded oligonucleotide can have two lengths.
  • an oligonucleotide can include, for example, 2′-modified ribose units and/or phosphorothioate linkage(s) and/or pyrophosphate linkage(s).
  • 2′ hydroxyl group (OH) can be modified or replaced with a number of different “oxy” or “deoxy” substituents.
  • OR e.g., R ⁇ H, alkyl, cycloalkyl, aryl, a
  • MOE methoxyethyl group
  • Preferred substitutents are 2′-methoxyethyl, 2′-OCH3, 2′-O-allyl, 2′-C— allyl, and 2′-fluoro.
  • the 2′ modifications can be used in combination with one or more phosphate linker modifications (e.g., phosphorothioate).
  • phosphate linker modifications e.g., phosphorothioate
  • chimeric oligonucleotides are those that contain two or more different modifications.
  • oligonucleotide agent can be further modified by including a 3′ cationic group, or by inverting the nucleoside at the 3′-terminus with a 3′-3′ linkage.
  • the 3′-terminus can be blocked with an aminoalkyl group, e.g., a 3′ C5-aminoalkyl dT.
  • Other 3′ conjugates can inhibit 3′-5′ exonucleolytic cleavage.
  • a 3′ conjugate such as naproxen or ibuprofen
  • Even small alkyl chains, aryl groups, or heterocyclic conjugates or modified sugars can block 3′-5′-exonucleases.
  • 5′ conjugates can inhibit 5′-3′ exonucleolytic cleavage.
  • a 5′ conjugate such as naproxen or ibuprofen
  • Even small alkyl chains, aryl groups, or heterocyclic conjugates or modified sugars can block 5′-3′-exonucleases.
  • Single-stranded RNA oligonucleotides which contain self-complementary sequences and form a hairpin structure have enhanced nuclease resistance compared to single-stranded oligonucleotides which do not.
  • RNA oligonucleotides of the present invention also include those with tethered ligands.
  • the properties of a RNA oligonucleotide, including its pharmacological properties, can be influenced and tailored by the introduction of ligands, e.g. tethered ligands.
  • the ligands may be coupled, covalently or non-covalently, preferably covalently, either directly or indirectly via an intervening tether, to the RNA oligonucleotide.
  • the ligand is attached to the oligonucleotide via an intervening tether.
  • a ligand alters the distribution, targeting or lifetime of a RNA oligonucleotide into which it is incorporated.
  • a ligand provides an enhanced affinity for a selected target, e.g., molecule, cell or cell type, a cellular or organ compartment, tissue, organ or region of the body.
  • Preferred ligands can improve transport, hybridization, and specificity properties and may also improve nuclease resistance of the resultant natural or modified oligoribonucleotide, or a polymeric molecule comprising any combination of monomers described herein and/or natural or modified ribonucleotides.
  • Ligands may include agents that allow for the specific targeting of the oligonucleotide; diagnostic compounds or reporter groups which allow for the monitoring of oligonucletotide distribution; cross-linking agents; nuclease-resistance conferring moieties; and natural or unusual nucleobases.
  • Lipophilic moleculeses include lipophilic moleculeses, lipids, lectins, steroids (e.g., uvaol, hecigenin, diosgenin), terpenes (e.g., triterpenes, e.g., sarsasapogenin, Friedelin, epifriedelanol derivatized lithocholic acid), vitamins, carbohydrates (e.g., a dextran, pullulan, chitin, chitosan, inulin, cyclodextrin or hyaluronic acid), proteins, protein binding agents, integrin targeting molecules, polycationics, peptides, polyamines, and peptide mimics.
  • steroids e.g., uvaol, hecigenin, diosgenin
  • terpenes e.g., triterpenes, e.g., sarsasapogenin, Friedelin, epifriedelan
  • the ligand may be a naturally occurring or recombinant or synthetic molecule, such as a synthetic polymer, e.g., a synthetic poly amino acid.
  • poly amino acids include, without limitation, poly L-lysine, poly L-aspartic acid, poly L-glutamic acid, styrene-maleic acid anhydride copolymer, poly(L-lactide-co-glycolied) copolymer, divinyl ether-maleic anhydride copolymer, N-(2-hydroxypropyl)methacrylamide copolymer (HMPA), polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyurethane, poly(2-ethylacrylic acid), N-isopropylacrylamide polymers, or polyphosphazine.
  • poly amino acids include, without limitation, poly L-lysine, poly L-aspartic acid, poly L-glutamic acid, styrene-maleic acid anhydride copoly
  • polyamines include: polyethylenimine, poly lysine, spermine, spermidine, polyamine, pseudopeptide-polyamine, peptidomimetic polyamine, dendrimer polyamine, arginine, amidine, protamine, cationic moieties, e.g., cationic lipid, cationic porphyrin, quaternary salt of a polyamine, or an alpha helical peptide.
  • Ligands can also include targeting groups, e.g., a cell or tissue targeting agent, e.g., a thyrotropin, melanotropin, surfactant protein A, Mucin carbohydrate, a glycosylated polyaminoacid, transferrin, bisphosphonate, polyglutamate, polyaspartate, or an RGD peptide or RGD peptide mimetic.
  • a cell or tissue targeting agent e.g., a thyrotropin, melanotropin, surfactant protein A, Mucin carbohydrate, a glycosylated polyaminoacid, transferrin, bisphosphonate, polyglutamate, polyaspartate, or an RGD peptide or RGD peptide mimetic.
  • Ligands can be proteins, e.g., glycoproteins, lipoproteins, e.g. low density lipoprotein (LDL), or albumins, e.g. human serum albumin (HSA), or peptides, e.g., molecules having a specific affinity for a co-ligand, or antibodies e.g., an antibody, that binds to a specified cell type such as a cancer cell, endothelial cell, or bone cell.
  • Ligands may also include hormones and hormone receptors.
  • the ligand can be, for example, a lipopolysaccharide, an activator of p38 MAP kinase, or an activator of NF- ⁇ B.
  • the ligand can be a substance, e.g., a drug, which can increase the uptake of the oligonucleotide agent into the cell, for example, by disrupting the cell's cytoskeleton, e.g., by disrupting the cell's microtubules, microfilaments, and/or intermediate filaments.
  • the drug can be, for example, taxon, vincristine, vinblastine, cytochalasin, nocodazole, japlakinolide, latrunculin A, phalloidin, swinholide A, indanocine, or myoservin.
  • the ligand is a lipid or lipid-based molecule.
  • a lipid or lipid-based molecule preferably binds a serum protein, e.g., human serum albumin (HSA).
  • HSA binding ligand allows for distribution of the conjugate to a target tissue, e.g., liver tissue, including parenchymal cells of the liver.
  • Other molecules that can bind HSA can also be used as ligands. For example, neproxin or aspirin can be used.
  • a lipid or lipid-based ligand can (a) increase resistance to degradation of the conjugate, (b) increase targeting or transport into a target cell or cell membrane, and/or (c) can be used to adjust binding to a serum protein, e.g., HSA.
  • a serum protein e.g., HSA.
  • a lipid based ligand can be used to modulate the binding of the conjugate to a target tissue. For example, a lipid or lipid-based ligand that binds to HSA more strongly will be less likely to be targeted to the kidney and therefore less likely to be cleared from the body. A lipid or lipid-based ligand that binds to HSA less strongly can be used to target the conjugate to the kidney.
  • the ligand is a moiety, e.g., a vitamin or nutrient, which is taken up by a target cell, e.g., a proliferating cell.
  • a target cell e.g., a proliferating cell.
  • vitamins include vitamin A, E, and K.
  • Other exemplary vitamins include the B vitamins, e.g., folic acid, B12, riboflavin, biotin, pyridoxal or other vitamins or nutrients taken up by cancer cells.
  • the ligand is a cell-permeation agent, preferably a helical cell-permeation agent.
  • the agent is amphipathic.
  • An exemplary agent is a peptide such as tat or antennapedia. If the agent is a peptide, it can be modified, including a peptidylmimetic, invertomers, non-peptide or pseudo-peptide linkages, and use of D-amino acids.
  • the helical agent is preferably an alpha-helical agent, which preferably has a lipophilic and a lipophobic phase.
  • the ligand is an antibody or a fragment thereof which is specific for a moiety present in a cell to be targeted.
  • the moiety may be a protein, a carbohydrate structure, a polynucleotide, or a combination thereof.
  • the moiety may be secreted, associated with the plasma membrane (e.g., on the extracellular or intracellular surface), cytosolic, associated with intracellular organelles (e.g., ER, Golgi complex, mitochondria, endosome, lysosome, secretory vesicle) or nuclear.
  • the antibody may be monoclonal or polyclonal.
  • the antibody may be chemeric or humanized.
  • the antibody may be a single chain antibody.
  • the antibody fragment may be a Fab fragment, a F(ab′) 2 fragment, or any fragments that retain the antigen-binding specificity of the intact antibody.
  • immunostimulatory activity refers to the capability of an agent, such as a molecule or a composition, to induce an immune response.
  • the immunostimulatory activity refers to the type I IFN-inducing activity, in particular, the IFN- ⁇ -inducing activity.
  • inducing an immune response means initiating or causing an increase in one or more of B-cell activation, T-cell activation, natural killer cell activation, activation of antigen presenting cells (e.g., B cells, dendritic cells, monocytes and macrophages), cytokine production, chemokine production, specific cell surface marker expression, in particular, expression of co-stimulatory molecules.
  • antigen presenting cells e.g., B cells, dendritic cells, monocytes and macrophages
  • cytokine production e.g., cytokine production
  • chemokine production e.g., specific cell surface marker expression
  • such an immune response involves the production of type I IFN (IFN- ⁇ and/or IFN- ⁇ ), in particular, IFN- ⁇ , in cells such as PDC (plasmacytoid dendritic cells) and/or monocytes.
  • type I IFN inducing activity includes IFN- ⁇ -inducing activity and/or IFN- ⁇ inducing activity.
  • IFN- ⁇ -inducing activity refers to the capability of an agent, such as a molecule or composition, to induce IFN- ⁇ production from a cell capable of producing IFN- ⁇ .
  • Cells capable of producing IFN- ⁇ include, but are not limited to, peripheral blood mononuclear cells (PBMC) (e.g., B cells, dendritic cells (myeloid dendritic cells and plasmacytoid dendritic cells), macrophages, monocytes, natural killer cells, granulocytes), endothelial cells, and cell lines.
  • PBMC peripheral blood mononuclear cells
  • IFN- ⁇ -inducing activity refers to the capability of an agent, such as a molecule or composition, to induce IFN- ⁇ production from a cell capable of producing IFN- ⁇ .
  • agent such as a molecule or composition
  • Any somatic cells such as PBMC, myeloid dendritic cells, monocytes, PDC, fibroblasts, are capable of producing IFN- ⁇ .
  • anti-viral response refers to the response by a cell, tissue or organism upon infection by a virus with the purpose of eliminating or incapacitating the virus.
  • Typical anti-viral responses include, but are not limited to, type I IFN, MIP1-a, MCP, RANTES, IL-8, IL-6, IP-10, and IFN- ⁇ production.
  • An anti-bacterial response is the response by a cell, tissue or organism upon infection by a bacterium with the purpose of eliminating or incapacitating the bacterium.
  • Typical anti-bacterial responses include, but are not limited to, T cell or NK cell-mediated elimination of the infected cell by either receptor-mediated apoptosis or cytokine-mediated apoptosis via TNF or TRAIL, macrophage or monocytes phagocytosis.
  • Immune cells include, but are not limited to, peripheral blood mononuclear cells (PBMC), plasmacytoid dendritic cells (PDC), myeloid dendritic cells (MDC), B cells, macrophages, monocytes, natural killer cells, NKT cells, CD4+ T cells, CD8+ T cells, granulocytes.
  • Non-immune cells include, among others, tumor cells, epithelial cells, endothelial cells, and fibroblasts.
  • disorder/disease-related gene refers to a gene that is expressed or overexpressed in a disease/disorder and that is not expressed or expressed in reduced amount in normal healthy cells.
  • a mutant CF gene is expressed in cystic fibrosis patient but not in an individual without cystic fibrosis; ErbB2 (or Her2) is overexpressed in breast cancer cells compared to normal breast cells; a viral gene or a virally-induced host gene is expressed in infected cells but not in uninfected cells.
  • the gene product of the disorder/disease-related gene is referred to herein as the “disorder/disease-related antigen”.
  • a “disorder/disease-related RNA” refers to an RNA molecule that is present or present in an elevated level in a diseased cell and that is not present or present in reduced level in a normal healthy cell.
  • a disorder/disease-related RNA may be an mRNA, a miRNA, or other non-coding RNA such as rRNA or tRNA.
  • mammal includes, without limitation, rats, mice, cats, dogs, horses, sheep, cattle, cows, pigs, rabbits, non-human primates, and humans.
  • the present invention provides an oligonucleotide capable of inducing an anti-viral response, in particular, type I IFN production, wherein the oligonucleotide comprises a at least one, preferably at least two, and more preferably at least three phosphate groups at the 5′ end, wherein the phosphate group is free of any cap structure or modification, wherein the oligonucleotide comprises at least 1, preferably at least 2, 3, 4, 5, more preferably at least 6, 7, 8, 9, 10, 11, even more preferably at least 12, 13, 14, 15, 16, 17, most preferably at least 18, 19, 20, 21 ribonucleotide(s) at the 5′ end, and wherein the oligonucleotide is at least 12, preferably at least 18, more preferably at least 19, even more preferably at least 20, and most preferably at least 21 nucleotides in length.
  • the oligonucleotide of the invention may be single-stranded, single-stranded containing a self-complementary sequence which can form a hairpin structure, double-stranded, or partially double-stranded.
  • the length of the oligonucleotide is the length of a single-strand.
  • the length of the oligonucleotide is the length of the longer strand. Therefore, the oligonucleotide of the present invention include partially double-stranded oligonucleotides wherein at least one of the strands is at least 12, 18, 19, 20 or 21 nucleotides in length.
  • the at least 1 ribonucleotide at the 5′ end comprises the at least one 5′ phosphate group in the form of a monophosphate, a diphosphate or a triphosphate.
  • at least one of the strands comprises at least one 5′ phosphate group.
  • the number of phosphate groups may be the same or may be different on the two strands. Therefore, the oligonucleotide of the invention may comprise 1, 2, 3, 4, 5, or 6 5′ phosphate groups in the form of monophosphate, diphosphate and/or triphosphate.
  • the at least 1 ribonucleotide at the 5′ end which comprises the at least one 5′ phosphate can be on either the long or the short strand, wherein at least the long strand is at least 12, 18, 19, 20, or 21 nucleotides in length.
  • the at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 ribonucleotides at the 5′ end are on the same strand.
  • the oligonucleotide comprises at least one group selected from a monophosphate and a diphosphate at the 5′ end, wherein the monophosphate and/or diphophate is free of any cap or modification.
  • the first ribonucleotide at the 5′ end of the oligonucleotide comprises a ribonucleotide selected from A, U, C and G.
  • the first ribonucleotide at the 5′ end of the oligonucleotide comprise a ribonucleotide selected from A, C and U.
  • the first ribonucleotide at the 5′ end of the oligonucleotide comprise a ribonucleotide selected from A and C.
  • the first ribonucleotide at the 5′ end comprises an adenine (A).
  • the sequence of the first 4 nucleotides at the 5′ end of the oligonucleotide is selected from: AAGU, AAAG, AUGG, AUUA, AACG, AUGA, AGUU, AUUG, AACA, AGAA, AGCA, AACU, AUCG, AGGA, AUCA, AUGC, AGUA, AAGC, AACC, AGGU, AAAC, AUGU, ACUG, ACGA, ACAG, AAGG, ACAU, ACGC, AAAU, ACGG, AUUC, AGUG, ACAA, AUCC, AGUC, wherein all sequences are in the 5′->3′ direction.
  • the sequence of the first 4 nucleotides at the 5′ end of the oligonucleotide is selected from: AAGU, AAAG, AUGG, AUUA, AACG, AUGA, AGUU, AUUG, AACA, AGAA, AGCA, AACU, AUCG, AGGA, AUCA, AUGC, AGUA, AAGC, AACC, wherein all sequences are in the 5′->3′ direction.
  • sequence of the first 4 nucleotides at the 5′ end of the oligonucleotide is selected from: AAGU, AAAG, AUGG, AUUA, AACG, AUGA, AGUU, AUUG, AACA, wherein all sequences are in the 5′->3′ direction.
  • the sequence of the first 4 nucleotides at the 5′ end of the oligonucleotide is selected from: AAGU, AAAG, AUGG, AUUA, wherein all sequences are in the 5′->3′ direction.
  • the first nucleotide of the above-listed 5′ 4-nucleotide sequences is a U, C or G instead of A.
  • the oligonucleotide comprises at least 1, 2, 3, 4, 5, preferably at least 6, 7, 8, 9, 10, more preferably at least 11, 12, 13, 14, 15, even more preferably at least 16, 17, 18, 19, 20, and most preferably at least 21, 22, 23, 24, 25 inosine (I).
  • at least 1, 2, 3, 4, 5%, preferably at least 10, 15, 20, 25, 30, more preferably at least 35, 40, 45, 50, 55, 60%, even more preferably at least 70, 80, or 90% of the adenosine (A) and/or guanosine (G) in the oligonucleotide is replaced with inosine (I).
  • the oligonucleotide of the invention may be a RNA oligonucleotide, or a chimeric RNA-DNA oligonucleotide.
  • a chimeric RNA-DNA oligonucleotide comprises both ribonucleotides and deoxyribonucleotides.
  • the ribonucleotides and the deoxyribonucleotides may be on the same strand, or may be on different strands.
  • the oligonucleotide (RNA or chimeric RNA-DNA) comprises a phosphorothioate backbone.
  • at least 1, preferably at least 2, more preferably at least 3, even more preferably at least 4 nucleotides are phosphorothioate.
  • the oligonucleotide of the invention does not contain any modifications such as pseudouridine, 2-thiouridine, 2′-Fluorine-dNTP, 2′-O-methylated NTP, in particular 2′-fluorine-dCTP, 2′-fluorine-dUTP, 2′-O-methylated CTP, 2′-O-methylated UTP.
  • the oligonucleotide has gene silencing activity.
  • the oligonucleotide is active in RNA interference (RNAi), or is an RNAi molecule.
  • RNAi RNA interference
  • the RNAi molecule may be a siRNA (small interfering RNA, double-stranded), shRNA (small hairpin RNA, single-stranded with a hairpin structure) or miRNA (microRNA, single-stranded with a hairpin structure).
  • the RNA oligonucleotide is a single-stranded RNA oligonucleotide which does not contain any sequence which is capable of forming any intramolecular or intermolecular double-stranded structure with itself under physiological condition, in particular, physiological condition inside a cell, and the nucleotide sequence of the ssRNA is complementary to a RNA in a target cell.
  • the RNA is expressed in a tissue-, cell- and/or developmental stage-specific manner.
  • the RNA is a disease/disorder-related RNA.
  • the disease/disorder-related RNA is an mRNA of a disease/disorder-related gene.
  • the disease/disorder-related RNA is a miRNA.
  • the disease/disorder-related RNA may be a endogenous cellular RNA, a viral RNA, a RNA from an invading microorganism or organism such as a bacterium, a fungus, or a parasite.
  • the degree of complementarity is preferably at least 50%, 60%, 70%, more preferably at least 75%, 80%, 85%, 90%, even more preferably at least 95%, 96%, 97%, 98%, 99%, and most preferably 100%.
  • degree of complementarity between two oligonucleotides/polynucleotides refers to the percentage of complementary bases in the overlapping region of the two oligonucleotides. Two bases are complementary to each other if they can form a base pair via hydrogen bonding. Base pairs include both Waston-Crick base pairs and wobble base pairs.
  • Waston-Crick base pairs include A-T, C-G, A-U; wobble base pairs include G-U, I-U, I-A, I-C.
  • the degree of complementarily can be determined by a skilled person using any known methods in the art, either manually or automatically by various engines such as BLAST.
  • ATCG has 100% complementarity to CGAT and CGATGG, and 75% complementarity to CGTT and CGTTGG.
  • complementarity between the oligonucleotide of the present invention and the target RNA in the target cell exists over the entire length of the oligonucleotide.
  • Physiological condition refers to parameters such as the ionic strength, osmolarity, salt concentration, pH, temperature that are normally found inside a cell, i.e., in the cytosol.
  • the cell may be in vivo, in vitro or ex vivo.
  • the cell may be a healthy or normal cell or a diseased or abnormal cell.
  • a diseased or abnormal cell may be, for example, a cell infected by bacteria or viruses, a tumor cell, an autoimmune cell, a cell having an inflammatory response.
  • Physiological condition refers to the conditions inside or outside a cell in vivo, in vitro or ex vivo. Physiological conditions may be found in an living organism, tissue, or cell or may be obtained artificially in a laboratory.
  • An example of a physiological condition is 150 ⁇ 50 mM NaCl, pH 7.4 ⁇ 0.8, and 20 ⁇ 20° C.
  • RNA oligonucleotide contains any double-stranded structure can be readily determined by a skilled person using known methods in the art.
  • a spectrometer may be used to measure double-stranded versus single-stranded absorption spectra while increasing the temperature.
  • the number of basepairing within the double-stranded structure is at least 6, 7, 8, 9, preferably at least 10, 11, 12, 13, 14, 15, more preferably at least 16, 17, 18, 19, 20, 21, even more preferably at least 22, 23, 24, 25.
  • Base pairs include both Waston-Crick basepairs and wobble basepairs.
  • Waston-Crick basepairs include A-T, C-G, A-U; wobble basepairs include G-U, I-U, I-A, I-C.
  • the ssRNA oligonucleotide may be generated by chemical synthesis.
  • the ssRNA oligonucleotide does not have any gene-silencing activity.
  • the ssRNA oligonucleotide has gene-silencing activity.
  • the present invention also provides precursors of the oligonucleotide of the invention.
  • the “precursor of the oligonucleotide” of the invention refers to any molecule which can be processed to generate the oligonucleotide of the invention.
  • the precursors of the oligonucleotide of the invention include, but are not limited to, DNA or RNA molecules which can serve as templates for the synthesis of the RNA oligonucleotides of the invention, RNA or RNA-DNA chimeric molecules which can be enzymatically cleaved to produce the oligonucleotides of the invention.
  • the oligonucleotide or precursor thereof of the invention may also contain motifs or molecular signatures which are recognized by TLRs.
  • long dsRNA (longer than 30 bases) bearing a 5′ phosphate can serve as a ligand for both RIG-I and TLR3.
  • a chimeric RNA-DNA oligonucleotide comprising a ssRNA bearing a 5′ phosphate and a ssDNA containing CpG can serve as a ligand for both RIG-I and TLR9.
  • ssRNA or dsRNA bearing a 5′ phosphate and defined sequence motifs S. S. Diebold et al., Science 303, 1529 (March 5, 2004); F.
  • the oligonucleotide or precursor thereof of the invention comprises at least one, preferably at least two, more preferably at least three, even more preferably at least four, even more preferably at least five, and most preferably at least six, of the 4-nucleotide (4 mer) motifs selected from the group consisting of:
  • GUUC GUUC
  • nucleotide sequences of the motifs are 5′ ⁇ 3′, wherein the oligonucleotide or precursor thereof is between 12 and 64, preferably between 12 and 50, more preferably between 14 and 40, even more preferably between 16 and 36, and most preferably between 18 and 25 nucleotides in length.
  • the 4 mer motifs are selected from the group consisting of No. 1-19, No. 1-18, No. 1-17, No. 1-16, preferably, No. 1-15, No. 1-14, No. 1-13, No. 1-12, more preferably, No. 1-11, No. 1-10, No. 1-9, No. 1-8, No. 1-7, even more preferably, No. 1-6, No. 1-5, No. 1-4, No. 1-3, most preferably, No. 1-2 of the 4 mer motifs.
  • the oligonucleotide or precursor thereof of the invention may comprise one or more copies of the same 4 mer motif, or one or more copies of different 4 mer motifs.
  • the oligonucleotide or a precursor thereof of the invention comprises at least one, preferably at least two, more preferably at least three, even more preferably at least four, even more preferably at least five, and most preferably at least six, of the 4-nucleotide (4 mer) motifs selected from the group consisting of:
  • UCGU (No. 1) GUUG, (No. 2) UGGU, (No. 3) UGGC, (No. 4) GGUA, (No. 5) UGAU, (No. 6) UGCU, (No. 7) UUGC, (No. 8) UUGU, (No. 9) UAGU, (No. 10) GGUU, (No. 11) GUUU, (No. 12) UGUG, (No. 13) GUGU, (No. 14) UGCC, (No. 15) GUAU, (No. 16) GUGC, (No. 17) UGUA, (No. 18) UGUC, (No. 19) CUGU, (No. 20) UGAC, (No.
  • the 4 mer motifs are selected from the group consisting of No. 1-11, preferably No. 1-10, No. 1-9, No. 1-8, more preferably No. 1-7, No. 1-6, No. 1-5, No. 1-4, even more preferably No. 1-3, No. 1-2 of the above-listed 4 mer motifs, most preferably, the 4 mer motif is UCGU.
  • the oligonucleotide or precursor thereof of the invention may comprise one or more copies of the same 4 mer motif, or one or more copies of different 4 mer motifs.
  • the oligonucleotide or the precursor thereof of the invention can be used to generate a large amount of type I IFN, in particular, IFN- ⁇ , IL-18 and/or IL-1 ⁇ in vitro and/or in vivo.
  • Said cytokines can be generated at high quantities from different cellular sources, including both immune and non-immune cells, from different species of vertebrates.
  • the oligonucleotide and precursor thereof of the invention may be prepared by synthetic methods including, but not limited to, chemical synthesis, in vitro transcription and in vivo transcription.
  • polymerases including, but not limited to, bacteriophage polymerase such as T7 polymerase, T3 polymerase, SP6 polymerase, viral polymerases, and E. coli RNA polymerase may be used.
  • In vivo transcription may be achieved in virally infected cells, or bacteria that are either non-infected or infected with a phage.
  • the oligonucleotides or precursor thereof, in particular, the RNA oligonucleotides, of the invention may be covalently or non-covalently linked to one or more lipophilic groups which enhance the stability and/or the activity and/or facilitate the delivery of the oligonucleotides or precursor thereof.
  • lipophilic or “lipophilic group” broadly refers to any compound or chemical moiety having an affinity for lipids. Lipophilic groups encompass compounds of many different types, including those having aromatic, aliphatic or alicyclic characteristics, and combinations thereof.
  • the lipophilic group is an aliphatic, alicyclic, or polyalicyclic substance, such as a steroid (e.g., sterol) or a branched aliphatic hydrocarbon.
  • the lipophilic group generally comprises a hydrocarbon chain, which may be cyclic or acyclic.
  • the hydrocarbon chain may comprise various substituents and/or at least one heteroatom, such as an oxygen atom.
  • Such lipophilic aliphatic moieties include, without limitation, saturated or unsatarated fatty acids, waxes (e.g., monohydric alcohol esters of fatty acids and fatty diamides), terpenes (e.g., the C 10 terpenes, C 15 sesquiterpenes, C 20 diterpenes, C 30 triterpenes, and C 40 tetraterpenes), and other polyalicyclic hydrocarbons.
  • waxes e.g., monohydric alcohol esters of fatty acids and fatty diamides
  • terpenes e.g., the C 10 terpenes, C 15 sesquiterpenes, C 20 diterpenes, C 30 triterpenes, and C 40 tetraterpenes
  • terpenes e.g., the C 10 terpenes, C 15 sesquiterpenes, C 20 diterpenes, C 30 triterpenes, and C 40
  • the lipophilic group may be attached by any method known in the art, including via a functional grouping present in or introduced into the RNA oligonucleotide, such as a hydroxy group (e.g., —CO—CH 2 —OH). Conjugation of the RNA oligonucleotide and the lipophilic group may occur, for example, through formation of an ether or a carboxylic or carbamoyl ester linkage between the hydroxy and an alkyl group R—, an alkanoyl group RCO— or a substituted carbamoyl group KNHCO—.
  • a functional grouping present in or introduced into the RNA oligonucleotide such as a hydroxy group (e.g., —CO—CH 2 —OH). Conjugation of the RNA oligonucleotide and the lipophilic group may occur, for example, through formation of an ether or a carboxylic or carbamoyl ester linkage between the hydroxy and an
  • the alkyl group R may be cyclic (e.g., cyclohexyl) or acyclic (e.g., straight-chained or branched; and saturated or unsaturated).
  • Alkyl group R may be a butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl or octadecyl group, or the like.
  • the lipophilic group is conjugated to the 5′-hydroxyl group of the terminal nucleotide.
  • the liphophilic group is 12-hydroxydodeconoic acid bisdecylamide.
  • the lipophilic group is a steroid, such as sterol.
  • Steroids are polycyclic compounds containing a perhydro-1,2-cyclopentanophenanthrene ring system.
  • Steroids include, without limitation, bile acids (e.g., cholic acid, deoxycholic acid and dehydrocholic acid), cortisone, digoxigenin, testosterone, cholesterol and cationic steroids, such as cortisone.
  • the lipophilic group is cholesterol or a derivative thereof.
  • a “cholesterol derivative” refers to a compound derived from cholesterol, for example by substitution, addition or removal of substituents.
  • the steroid may be attached to the RNA oligonucleotide by any method known in the art.
  • the liphophilic group is cholesteryl (6-hydroxyhexyl) carbamate.
  • the lipophilic group is an aromatic moiety.
  • aromatic refers broadly to mono- and polyaromatic hydrocarbons.
  • Aromatic groups include, without limitation, C 6 -C 14 aryl moieties comprising one to three aromatic rings, which may be optionally substituted; “aralkyl” or “arylalkyl” groups comprising an aryl group covalently linked to an alkyl group, either of which may independently be optionally substituted or unsubstituted; and “heteroaryl” groups.
  • heteroaryl refers to groups having 5 to 14 ring atoms, preferably 5, 6, 9, or 10 ring atoms; having 6, 10, or 14 ⁇ electrons shared in a cyclic array; and having, in addition to carbon atoms, between one and about three heteroatoms selected from the group consisting of nitrogen (N), oxygen (O), and sulfur (S).
  • a “substituted” alkyl, cycloalkyl, aryl, heteroaryl, or heterocyclic group is one having between one and about four, preferably between one and about three, more preferably one or two, non-hydrogen substituents.
  • Suitable substituents include, without limitation, halo, hydroxy, nitro, haloalkyl, alkyl, alkaryl, aryl, aralkyl, alkoxy, aryloxy, amino, acylamino, alkylcarbamoyl, arylcarbamoyl, aminoalkyl, alkoxycarbonyl, carboxy, hydroxyalkyl, alkanesulfonyl, arenesulfonyl, alkanesulfonamido, arenesulfonamido, aralkylsulfonamido, alkylcarbonyl, acyloxy, cyano, and ureido groups.
  • the lipophilic group can be covalently linked directly or indirectly via a linker to the oligonucleotide or precursor thereof.
  • the covalent linkage may or may not comprise a phosphodiester group.
  • the linker may be of various lengths. The preferred lengths of the linker are known to those skilled in the art and may be determined experimentally.
  • the lipophilic group is covalently linked to the 3′ end of at least one strand of the oligonucleotide or precursor thereof.
  • the oligonucleotide or precursor thereof of the invention may be coupled to a solid support.
  • a solid support include, but are not limited to, silicon wafers, synthetic polymer support such as polystyrene, polypropylene, polyglycidylmethacrylate, substituted polystyrene (e.g., aminated or carboxylated polystyrene, polyacrlamides, polyamides, polyvinylchlorides, etc.), glass, agarose, nitrocellulose, nylon and gelatin nanoparticles.
  • Solid support may enhance the stability and the activity of the oligonucleotide, especially short oligonucleotides less than 16 nucleotides in length.
  • the present invention also provides an oligonucleotide conjugate which is capable of inducing an anti-viral response, in particular, type I IFN production, comprising an oligonucleotide of the invention and an antigen conjugated to the oligonucleotide.
  • the antigen is conjugated to the oligonucleotide at a position other than its 5′ end which carries the 5′ triphosphate.
  • the antigen produces a vaccine effect.
  • the antigen is preferably selected from disease/disorder-related antigens.
  • the disorder may be, for example, a cancer, an immune disorder, a metabolic disorder, or an infection.
  • the antigen may be a protein, a polypeptide, a peptide, a carbohydrate, or a combination thereof.
  • the oligonucleotide of the invention may be covalently linked to the antigen, or it is otherwise operatively associated with the antigen.
  • the term “operatively associated with” refers to any association that maintains the activity of both the oligonucleotide and the antigen. Non-limiting examples of such operative associations include being part of the same liposome or other such delivery vehicle or reagent.
  • such covalent linkage preferably is at any position on the oligonucleotide that does not interfere with the capability of the oligonucleotide to induce an anti-viral response.
  • the present invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising one or more of the oligonucleotide(s) or a precursor thereof described above and a pharmaceutically acceptable carrier.
  • the present invention also provides a pharmaceutical composition comprising bacterial RNA and a pharmaceutically acceptable carrier.
  • bacterial RNA refers to any RNA species isolated from a bacterium, including, but not limited to, total RNA, mRNA, ribosomal RNA, phage RNA, miRNA, structural RNA, and enzymatic RNA.
  • Bacterial RNA may be endogenous to a bacterium, or may be derived from exogenous DNA that has been introduced into the bacterium.
  • Bacterial RNA can be of any length.
  • Bacterial RNA preparations may contain a single RNA species with a single nucleotide sequence, a single RNA species with more than one nucleotide sequences, or multiple RNA species with more than one nucleotide sequences.
  • Bacterial RNA may comprise any type of nucleotides and bases known in the field, including naturally occurring nucleotides and nucleotides converted inside the cell, such as inosine triphosphate and inosine, any known modifications to the backbone and bases, and a monophosphate, a diphosphate, or a triphosphate group at the 5′ end.
  • Bacterial RNA may be single-stranded or double-stranded.
  • Bacterial RNA may comprise a heteroduplex of RNA and DNA.
  • Bacterial RNA may be composed of a mixture of RNAs isolated from different types of bacteria.
  • the bacterial RNA does not have a nucleotide sequence that is more than 50%, 60%, 70%, 80%, 85%, 90%, 95%, or 99% complementary or that is 100% to a eukaryotic gene coding sequence.
  • the bacterial RNA preferably does not have any gene-silencing or RNA interference (RNAi) activity.
  • A is complementary to T
  • G is complementary to C
  • 5′-AG-3′ is complementary to 5′-CT-3′.
  • the degree of complementarity between two nucleotide sequences is the percentage of complementary bases in the overlapping region of the two nucleotide sequences.
  • the degree of complement arily can be determined manually or automatically by various engines such as BLAST.
  • ATCG has 100% complementarity to CGAT and CGATGG, and 75% complementarity to CGTT and CGTTGG.
  • BLAST program can be determined by the BLAST program.
  • the pharmaceutical composition of the invention further comprises an agent which facilitates the delivery of the oligonucleotide or the precursor thereof or the bacterial RNA into a cell, in particular, into the cytosol of the cell.
  • the delivery agent is a complexation agent which forms a complex with the oligonucleotide or the precursor thereof and facilitates the delivery of the oligonucleotide or precursor thereof into cells.
  • the complexation agent is a polymer, preferably a cationic polymer.
  • the complexation agent is a cationic lipid.
  • the complexation agent is polyethylenimine (PEI) (K. Wu et al., Brain Research 1008(2):284-287 (May 22, 2004); B. Urban-Klein et al. Gene Therapy 12(5):461-466 (2005)). Additional examples of complexation agent include, but are not limited to, collagen derivatives (Y. Minakuchi et al.
  • PEI Polyethylenimine
  • in vivo-jetPEITM which is a linear PEI developed by PolyPlus-transfection for effective and reproducible delivery of anionic oligonucleotides with low toxicity in vivo.
  • the preferred in vivo routes of administration include, but are not limited to, intravenous, intracerebral and intraperitoneal routes.
  • Virosomes are reconstituted viral envelopes which are prepared from membrane-enveloped viruses, in particular influenza virus, by solubilization of the viral membrane with a suitable detergent, removal of the nucleocapsids by ultracentrifugation and reconstitution of the viral envelope through extraction of the detergent.
  • virosomes contain viral lipids and viral glycoproteins (such as hemagglutinin (HA) and neuraminidase (NA) in the case of influenza virosomes), resemble the native virus particles in size and morphology and retain the target specificity and the fusogenic activity of the native viral particles.
  • SNALPs stand for Stable-Nucleic-Acid-Lipid Particles and contain a lipid bilayer comprised of a mixture of cationic and fusogenic lipid coated with diffusible polyethylene glycol (PEG).
  • PEG polyethylene glycol
  • ISCOMATRIX® is made from saponin, cholesterol and phospholipids under defined conditions and forms cage like structures typically 40 nm in diameter. ISCOMATRIX® has the duel capability of facilitating cargo (e.g., antigen) delivery and stimulating the immune system, both the cellular and humoral immune response.
  • cargo e.g., antigen
  • the delivery agent is a virus, preferably a replication-deficient virus.
  • the oligonucleotide described in the invention is contained in a viral capsule.
  • the precursor of the oligonucleotide described in the invention is comprised in a viral vector which is contained in a viral capsule.
  • the viral particle contains an enzyme or a nucleic acid encoding the enzyme required for the processing of the precursor into the oligonucleotide described in the invention.
  • the virus comprising the precursor is administered in conjunction with the enzyme or the nucleic acid encoding the enzyme required for the processing of the precursor into the oligonucleotide described in the invention.
  • Suitable viruses include, but are not limited to, polymyxoviruses which target upper respiratory tract epithelia and other cells, hepatitis B virus which targets liver cells, influenza virus which targets epithelial cells and other cells, adenoviruses which targets a number of different cell types, papilloma viruses which targets epithelial and squamous cells, herpes virus which targets neurons, retroviruses such as HIV which targets CD4 + T cells and dendritic cells and other cells, and modified Vaccinia Ankara which targets a variety of cells. Viruses may be selected based on their target specificity.
  • the virus is an oncolytic virus.
  • Oncolytic viruses target tumor cells and cause the lysis of the infected tumor cells.
  • oncolytic viruses include, but are not limited to, naturally occurring wild-type Newcastle disease virus (A. Phuangsab et al. Cancer Lett 172:27-36 (2001)), attenuated strains of reovirus (M C Coffey et al. Science 282:1332-1334 (1998)) and vesicular stomatitis virus (VSV) (D F Stojdl et al.
  • HSV-1 herpes simplex virus type 1
  • adenovirus adenovirus
  • poxvirus adenovirus
  • measles virus Chiocca E A Nat Rev Cancer 2:938-950 (2002); Russell S J Cancer Gene Ther 9:961-966 (2002); H J Zeh, D L Bartlett Cancer Gene Ther 9:1001-1012 (2002)).
  • the oligonucleotide or precursor thereof described in the invention or bacterial RNA can be delivered into cells via physical means such as electroporation, shock wave administration (Tschoep K et al., J Mol Med 2001; 79:306-13), ultrasound triggered transfection, and gene gun delivery with gold particles.
  • the pharmaceutical composition of the invention may further comprises another agent such as an agent that stabilizes the oligonucleotide or precursor thereof or bacterial RNA, in particular, RNA oligonucleotide, e.g., a protein that complexes with the oligonucleotide agent to form an iRNP.
  • RNA oligonucleotide e.g., a protein that complexes with the oligonucleotide agent to form an iRNP.
  • Still other agents include chelators, e.g., EDTA (e.g., to remove divalent cations such as Mg 2+ ), salts, RNAse inhibitors (e.g., a broad specificity RNAse inhibitor such as RNAsin) and so forth.
  • a formulated composition can assume a variety of states.
  • the composition is at least partially crystalline, uniformly crystalline, and/or anhydrous (e.g., less than 80, 50, 30, 20, or 10% water).
  • the oligonucleotide agent is in an aqueous phase, e.g., in a solution that includes water, this form being the preferred form for administration via inhalation.
  • the aqueous phase or the crystalline compositions can be incorporated into a delivery vehicle, e.g., a liposome (particularly for the aqueous phase), or a particle (e.g., a microparticle as can be appropriate for a crystalline composition).
  • a delivery vehicle e.g., a liposome (particularly for the aqueous phase), or a particle (e.g., a microparticle as can be appropriate for a crystalline composition).
  • the oligonucleotide composition is formulated in a manner that is compatible with the intended method of administration.
  • compositions encompassed by the invention may be administered by any means known in the art including, but not limited to, oral or parenteral routes, including intravenous, intramuscular, intraperitoneal, subcutaneous, transdermal, airway (aerosol), ocular, rectal, vaginal, and topical (including buccal and sublingual) administration.
  • oral or parenteral routes including intravenous, intramuscular, intraperitoneal, subcutaneous, transdermal, airway (aerosol), ocular, rectal, vaginal, and topical (including buccal and sublingual) administration.
  • the pharmaceutical compositions are administered by intravenous or intraparenteral infusion or injection.
  • the pharmaceutical compositions can also be administered intraparenchymally, intrathecally, and/or by stereotactic injection.
  • the oligonucleotide or the precursor thereof described in the invention or bacterial RNA will generally be provided in the form of tablets or capsules, as a powder or granules, or as an aqueous solution or suspension.
  • Tablets for oral use may include the active ingredients mixed with pharmaceutically acceptable excipients such as inert diluents, disintegrating agents, binding agents, lubricating agents, sweetening agents, flavoring agents, coloring agents and preservatives.
  • suitable inert diluents include sodium and calcium carbonate, sodium and calcium phosphate, and lactose, while corn starch and alginic acid are suitable disintegrating agents.
  • Binding agents may include starch and gelatin, while the lubricating agent, if present, will generally be magnesium stearate, stearic acid or talc.
  • the tablets may be coated with a material such as glyceryl monostearate or glyceryl distearate, to delay absorption in the gastrointestinal tract.
  • Capsules for oral use include hard gelatin capsules in which the active ingredient is mixed with a solid diluent, and soft gelatin capsules wherein the active ingredient is mixed with water or an oil such as peanut oil, liquid paraffin or olive oil.
  • compositions of the invention will generally be provided in sterile aqueous solutions or suspensions, buffered to an appropriate pH and isotonicity.
  • Suitable aqueous vehicles include Ringers solution and isotonic sodium chloride.
  • Aqueous suspensions according to the invention may include suspending agents such as cellulose derivatives, sodium alginate, polyvinyl-pyrrolidone and gum tragacanth, and a wetting agent such as lecithin.
  • Suitable preservatives for aqueous suspensions include ethyl and n-propyl p-hydroxybenzoate.
  • the pharmaceutical compositions can also include encapsulated formulations to protect the oligonucleotide or precursor thereof or bacterial RNA against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems.
  • encapsulated formulations to protect the oligonucleotide or precursor thereof or bacterial RNA against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems.
  • Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art.
  • the materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc.
  • Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art
  • a suitable dose of an oligonucleotide or precursor thereof or bacterial RNA will be in the range of 0.001 to 500 milligrams per kilogram body weight of the recipient per day (e.g., about 1 microgram per kilogram to about 500 milligrams per kilogram, about 100 micrograms per kilogram to about 100 milligrams per kilogram, about 1 milligrams per kilogram to about 75 milligrams per kilogram, about 10 micrograms per kilogram to about 50 milligrams per kilogram, or about 1 microgram per kilogram to about 50 micrograms per kilogram).
  • the pharmaceutical composition may be administered once per day, or the oligonucleotide or precursor thereof or bacterial RNA may be administered as two, three, four, five, six or more sub-doses at appropriate intervals throughout the day. In that case, the oligonucleotide or precursor thereof or bacterial RNA contained in each sub-dose must be correspondingly smaller in order to achieve the total daily dosage.
  • the dosage unit can also be compounded for delivery over several days, e.g., using a conventional sustained release formulation which provides sustained release of the oligonucleotide agent or bacterial RNA over a several day period. Sustained release formulations are well known in the art. In this embodiment, the dosage unit contains a corresponding multiple of the daily dose.
  • treatment of a subject with a therapeutically effective amount of a composition can include a single treatment or a series of treatments.
  • Estimates of effective dosages and in vivo half-lives for the individual oligonucleotide or precursor thereof described in the invention or bacterial RNA can be made using conventional methodologies or on the basis of in vivo testing using an appropriate animal model.
  • Toxicity and therapeutic efficacy of the oligonucleotide or precursor thereof or bacterial RNA and the pharmaceutical composition of the invention can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population).
  • the dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50.
  • Oligonucleotide agents or bacterial RNA that exhibit high therapeutic indices are preferred.
  • the data obtained from cell culture assays and animal studies can be used in formulating a range of dosage for use in humans.
  • the dosages of compositions of the invention are preferably within a range of circulating concentrations that include the ED50 with little or no toxicity.
  • the dosage may vary within this range depending upon the dosage form employed and the route of administration utilized.
  • the therapeutically effective dose can be estimated initially from cell culture assays.
  • a dose may be formulated in animal models to achieve a circulating plasma concentration range of the oligonucleotide agent or bacterial RNA that includes the IC50 (i.e., the concentration of the test oligonucleotide agent which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography.
  • the administering physician can adjust the amount and timing of the administration of the pharmaceutical composition of the invention on the basis of results observed using standard measures of efficacy known in the art or described herein.
  • the pharmaceutical composition of the invention can be used to generate a large amount of type I IFN, in particular, IFN- ⁇ , IL-18 and/or IL-1 ⁇ , in vitro and/or in vivo.
  • type I IFN in particular, IFN- ⁇ , IL-18 and/or IL-1 ⁇
  • the type I IFN can be generated at high quantities from different cellular sources, including both immune and non-immune cells, from different species of vertebrates.
  • the pharmaceutical composition of the invention can be used for preventing and/or treating a disease and/or disorder in a vertebrate animal, in particular, a mammal, in medical and/or veterinary practice.
  • the disease and/or disorder include, but are not limited to infections, tumor, allergy, multiple sclerosis, and immune disorders.
  • the present invention provides a combined preparation comprising an oligonucleotide or a precursor thereof described in the invention or a bacterial RNA and a pharmaceutially active agent, wherein the oligonucleotide or a precursor thereof or the bacterial RNA and the agent are for simultaneous, separate or sequential administration.
  • the pharmaceutically active agents include, but are not limited to, immunostimulatory RNA oligonucleotides, immunostimulatory DNA oligonucleotides, cytokines, chemokines, growth factors, antibiotics, anti-angiogenic factors, chemotherapeutic agents, anti-viral agents, anti-bacterial agents, anti-fungal agents, anti-parasitic agents, antibodies and gene silencing agents.
  • the combined preparation of the invention may comprise one or more pharmaceutically active agent(s).
  • the more than one pharmaceutically active agents maybe of the same or different category as exemplified above.
  • the combined preparation comprises an oligonucleotide or a precursor thereof described in the invention or a bacterial RNA and an immunostimulatory agent, wherein the oligonucleotide or a precursor thereof or the bacterial RNA and the agent are for simultaneous, separate or sequential administration.
  • the combined preparation further comprises an anti-viral and/or anti-tumor agent.
  • the combined preparation comprises an oligonucleotide or a precursor thereof described in the invention or a bacterial RNA and an anti-viral and/or anti-bacterial and/or anti-tumor agent, wherein the oligonucleotide or a precursor thereof or the bacterial RNA and the agent are for simultaneous, separate or sequential administration.
  • the combined preparation further comprises an immunostimulatory agent.
  • oligonucleotide or a precursor thereof described in the invention or the bacterial RNA and the pharmaceutically active agent may be comprised in the same or in separate compositions.
  • the separate compositions may be administered simultaneously or sequentially.
  • the combined preparation of the present invention may further comprise retinoic acid and/or type I IFN.
  • Retinoic acid and/or type I IFN are known to upregulate RIG-I expression in most cell types, including for example endothelial cells, epithelial cells, fibroblasts, immune cells and tumor cells.
  • An immunostimulatory agent is an agent, such as a molecule or a composition, which is capable of inducing an immune response.
  • Immunogstiumatory agents include, but are not limited to, immunostimulatory RNA oligonucleotides such as those capable of inducing IFN- ⁇ or IL-12 (Heil F et al. 2004, Science 303: 1526-1529; Sioud M et al. 2005, J Mol Biol 348: 1079-1090; Homung V et al. 2005, Nat Med 11: 263-270; Judge A D et al. 2005, Nat Biotechnol 2005. 23: 457-462; Sugiyama et al.
  • the immunostimulatory agent is capable of inducing an anti-viral response, such as type I IFN, MIP1-a, MCP, RANTES, IL-8, and IL-6 production.
  • An anti-viral agent is an agent that is useful in the prevention and the treatment of a viral infection.
  • Anti-viral agents include, but are not limited to nucleoside analogs (such as aciclovir, ganciclovir, ribavirin, lamivudin, etc.), protease inhibitors (such as ritonavir etc), cytotoxic agents (such as taxols, carboplatins, cyclophosphamide, methotrexate, azathiprine, 5-fluoruracil, etc.)
  • the immunostimulatory agent is capable of inducing an anti-bacterial response, such as type I and/or type II IFN production.
  • An anti-bacterial agent is an agent that is useful in the prevention and the treatment of a bacterial infection, in particular, intracellular bacterial infection.
  • Anti-bacterial agents include, but are not limited to, Aminoglycosides, Carbapenems, Cephalosporins, Glycopeptides, Macrolides, Monobactam, Penicillins, Polypeptides, Quinolones, Sulfonamides, Tetracyclines.
  • An anti-tumor agent is an agent that is useful in the prevention and the treatment of tumor or cancer.
  • Anti-tumor agents include, but are not limited to chemotherapeutic agents (such as cisplatin, doxorubicin, taxols, carboplatins, cyclophosphamide, methotrexate, azathiprine, 5-fluoruracil, etc.), anti-angiogenic factors (such as vasostatin and anti-VEGF antibody), and other anti-cancer agents such as Herceptin®, Rituxan®, Gleevec®, and Iressa®.
  • chemotherapeutic agents such as cisplatin, doxorubicin, taxols, carboplatins, cyclophosphamide, methotrexate, azathiprine, 5-fluoruracil, etc.
  • anti-angiogenic factors such as vasostatin and anti-VEGF antibody
  • other anti-cancer agents such as Herceptin
  • a gene silencing agent is an agent that is capable of downregulating the expression of a gene.
  • the gene may encode a protein, a rRNA, a tRNA, or a miRNA.
  • Examples of a gene siclencing agent include, but are not limited to, an antisense RNA, a RNAi molecule (such as siRNA, shRNA, miRNA), and an antagomir (which is a cholesterol-conjugated ssRNA that is complementary to an miRNA).
  • the combined preparation of the invention further comprises an oligonucleotide delivery agent as described previously.
  • the oligonucleotide or precursor thereof or the bacterial RNA may be delivered by physical means as described previously.
  • the present invention provides a pharmaceutical package comprising the pharmaceutical composition or the combined preparation of the invention and an instruction for use.
  • the present application provides the use of the oligonucleotide or precursor thereof described in the invention or a bacterial RNA for the preparation of a pharmaceutical composition for inducing an anti-viral response, in particular, type I IFN production, IL-18 production, and/or IL-1 ⁇ production, in a vertebrate animal, in particular, a mammal.
  • An anti-viral response is the response by a cell, tissue or organism upon infection by a virus with the purpose of eliminating or incapacitating the virus.
  • Typical anti-viral responses include, but are not limited to, type I IFN, MIP1-a, MCP, RANTES, IL-8, IL-6, IP-10, and IFN- ⁇ production.
  • An anti-viral response in particular, type I IFN, IL-18, and/or IL-1 ⁇ production, may be induced in immune cells or non-immune cells.
  • Immune cells include, but are not limited to, peripheral blood mononuclear cells (PBMC), plasmacytoid dendritric cells (PDC), myeloid dendritic cells (MDC), B cells, CD4+ T cells, CD8+ T cells, macrophages, monocytes, natural killer cells, NKT cells, granulocytes.
  • Non-immune cells include, but are not limited to, fibroblasts, endothelial cells, epithelial cells and tumor cells.
  • the induction of an anti-viral response may aid the prevention and treatment of various disorders and/or diseases such as tumor, infections, and immune disorders.
  • the RNA oligonucleotide is a single-stranded RNA oligonucleotide which does not contain any sequence which is capable of forming any intramolecular or intermolecular double-stranded structure with itself under physiological condition, in particular, physiological condition inside a cell, and the nucleotide sequence of the ssRNA is complementary to a viral RNA or a cellular RNA induced by the virus in a virally infected cell.
  • the degree of complementarity is preferably at least 50%, 60%, 70%, more preferably at least 75%, 80%, 85%, 90%, even more preferably at least 95%, 96%, 97%, 98%, 99%, and most preferably 100%.
  • the ssRNA olignucleotide has gene silencing activity. In another embodiment, the ssRNA olignucleotide lacks gene silencing activity.
  • the ssRNA oligonucleotide and its complementary strand are delivered separately into cells, preferably in a target cell-specific manner.
  • RNA oligonucleotide comprising one or more modifications selected from pseudouridine, 2-thiouridine, 2′-Fluorine-dNTP, 2′-O-methylated NTP, in particular 2′-fluorine-dCTP, 2′-fluorine-dUTP, 2′-O-methylated CTP, 2′-O-methylated UTP and having a nucleotide sequence which is complementary to a RNA oligonucleotide described in the present invention may be used to inactivate the RNA oligonucleotide and to halt the anti-viral response.
  • the pharmaceutical composition further comprises a delivery agent as described previously.
  • the oligonucleotide or precursor thereof or bacterial RNA may also be delivered by physical means as described previously.
  • the pharmaceutical composition further comprises another agent such as an agent that stabilizes the oligonucleotide or precursor thereof or bacterial RNA as described previously.
  • the oligonucleotide or precursor thereof described in the invention or the bacterial RNA is used in combination with at least one agent selected from an immunostimulatory agent which is capable of inducing an anti-viral response, an anti-viral agent and a gene silencing agent.
  • the oligonucleotide or precursor thereof described in the invention or the bacterial RNA is used in combination with retinoic acid and/or type I IFN.
  • Vertebrate animals include, but are not limited to, fish, amphibians, birds, and mammals. Mammals include, but are not limited to, rats, mice, cats, dogs, horses, sheep, cattle, cows, pigs, rabbits, non-human primates, and humans. In a preferred embodiment, the mammal is human.
  • the present application provides the use of the oligonucleotide or precursor thereof described in the invention or a bacterial RNA for the preparation of a pharmaceutical composition for inducing an anti-bacterial response, in particular, a response against intracellular bacteria, in a vertebrate animal, in particular, a mammal.
  • Intracellular bacteria include, but are not limited to, mycobacteria (tuberculosis), chlamydia, mycoplasma, listeria , and facultative intracellular bacteria such as staphylococcus aureus.
  • An anti-bacterial response is the response by a cell, tissue or organism upon infection by a bacterium with the purpose of eliminating or incapacitating the bacterium.
  • Typical anti-bacterial responses include, but are not limited to, T cell or NK cell-mediated elimination of the infected cell by either receptor-mediated apoptosis or cytokine-mediated apoptosis via TNF or TRAIL, macrophage or monocytes phagocytosis.
  • the anti-bacterial response comprises type I IFN, type II IFN, IL-18 and/or IL-1 ⁇ production.
  • Immune cells include, but are not limited to, peripheral blood mononuclear cells (PBMC), plasmacytoid dendritric cells (PDC), myeloid dendritic cells (MDC), B cells, macrophages, monocytes, natural killer cells, NKT cells, CD4+ T cells, CD8+ T cells, granulocytes.
  • Non-immune cells include, among others, tumor cells, epithelial cells, endothelial cells, and fibroblasts.
  • the induction of an anti-bacterial response may aid the prevention and treatment of various disorders and/or diseases such as tumor, infections, and immune disorders.
  • the RNA oligonucleotide is a single-stranded RNA oligonucleotide which does not contain any sequence which is capable of forming any intramolecular or intermolecular double-stranded structure with itself under physiological condition, in particular, physiological condition inside a cell, and the nucleotide sequence of the ssRNA is complementary to a bacterial RNA or a cellular RNA induced by the bacteria in a bacteria-infected cell.
  • the degree of complementarity is preferably at least 50%, 60%, 70%, more preferably at least 75%, 80%, 85%, 90%, even more preferably at least 95%, 96%, 97%, 98%, 99%, and most preferably 100%.
  • the ssRNA olignucleotide has gene silencing activity. In another embodiment, the ssRNA olignucleotide lacks gene silencing activity.
  • the ssRNA oligonucleotide and its complementary strand are delivered separately into cells, preferably in a target cell-specific manner.
  • RNA oligonucleotide comprising one or more modifications selected from pseudouridine, 2-thiouridine, 2′-Fluorine-dNTP, 2′-O-methylated NTP, in particular 2′-fluorine-dCTP, 2′-fluorine-dUTP, 2′-O-methylated CTP, 2′-O-methylated UTP and having a nucleotide sequence which is complementary to a RNA oligonucleotide described in the present invention may be used to inactivate the RNA oligonucleotide and to halt the anti-bacterial response.
  • the pharmaceutical composition further comprises a delivery agent as described previously.
  • the oligonucleotide or precursor thereof or bacterial RNA may also be delivered by physical means as described previously.
  • the pharmaceutical composition further comprises another agent such as an agent that stabilizes the oligonucleotide or precursor thereof or bacterial RNA as described previously.
  • the oligonucleotide or precursor thereof described in the invention or the bacterial RNA is used in combination with at least one agent selected from an immunostimulatory agent which is capable of inducing an anti-bacterial response, an anti-bacterial agent and a gene silencing agent.
  • the oligonucleotide or precursor thereof described in the invention or the bacterial RNA is used in combination with retinoic acid and/or type I IFN.
  • Vertebrate animals include, but are not limited to, fish, amphibians, birds, and mammals.
  • Mammals include, but are not limited to, rats, mice, cats, dogs, horses, sheep, cattle, cows, pigs, rabbits, non-human primates, and humans. In a preferred embodiment, the mammal is human.
  • the present application provides the use of the oligonucleotide or precursor thereof described in the invention or a bacterial RNA for the preparation of a pharmaceutical composition for inducing apoptosis in vitro and in vivo, in particular, in a vertebrate animal, in particular, in a mammal.
  • the apoptosis is induced in tumor cells.
  • the induction of apoptosis may be therapeutically beneficial to individuals having diseases/disorders caused by over-proliferation and/or compromised apoptosis of cells, for example, tumor.
  • the present application provides the use of the oligonucleotide or precursor thereof described in the invention or a bacterial RNA for the preparation of a pharmaceutical composition for inducing an anti-tumor response in a vertebrate animal, in particular, a mammal.
  • the tumor may be benign or malignant.
  • the anti-tumor response comprises type I IFN induction and/or tumor cell apoptosis.
  • the RNA oligonucleotide is a single-stranded RNA oligonucleotide which does not contain any sequence which is capable of forming any intramolecular or intermolecular double-stranded structure with itself under physiological condition, in particular, physiological condition inside a cell, and the nucleotide sequence of the ssRNA is complementary to a tumor-specific RNA.
  • the tumor-specific RNA may be an mRNA of a tumor-specific antigen.
  • the tumor-specific RNA may be an miRNA.
  • the degree of complementarity is preferably at least 50%, 60%, 70%, more preferably at least 75%, 80%, 85%, 90%, even more preferably at least 95%, 96%, 97%, 98%, 99%, and most preferably 100%.
  • the ssRNA olignucleotide has gene silencing activity. In another embodiment, the ssRNA olignucleotide lacks gene silencing activity.
  • the ssRNA oligonucleotide and its complementary strand are delivered separately into cells, preferably in a target cell-specific manner.
  • RNA oligonucleotide comprising one or more modifications selected from pseudouridine, 2-thiouridine, 2′-Fluorine-dNTP, 2′-O-methylated NTP, in particular 2′-fluorine-dCTP, 2′-fluorine-dUTP, 2′-O-methylated CTP, 2′-O-methylated UTP and having a nucleotide sequence which is complementary to a RNA oligonucleotide described in the present invention may be used to inactivate the RNA oligonucleotide and to halt the anti-tumor response.
  • the present invention provides the use of the oligonucleotide or precursor thereof described in the invention or a bacterial RNA for the preparation of a pharmaceutical composition for preventing and/or treating a disease and/or disorder in a vertebrate animal, in particular, a mammal, in medical and/or veterinary practice.
  • the disease and/or disorder include, but are not limited to infections, tumor, allergy, multiple sclerosis, and immune disorders.
  • Infections include, but are not limited to, viral infections, bacterial infections, anthrax, parasitic infections, fungal infections and prion infection.
  • Viral infections include, but are not limited to, infection by hepatitis C, hepatitis B, herpes simplex virus (HSV), HIV-AIDS, poliovirus, encephalomyocarditis virus (EMCV) and smallpox virus.
  • HSV herpes simplex virus
  • HIV-AIDS HIV-AIDS
  • poliovirus HIV-AIDS
  • EMCV encephalomyocarditis virus
  • smallpox virus smallpox virus.
  • (+) strand RNA viruses which can be targeted for inhibition include, without limitation, picornaviruses, caliciviruses, nodaviruses, coronaviruses, arteriviruses, flaviviruses, and togaviruses.
  • picornaviruses examples include enterovirus (poliovirus 1), rhinovirus (human rhinovirus 1A), hepatovirus (hepatitis A virus), cardiovirus (encephalomyocarditis virus), aphthovirus (foot-and-mouth disease virus 0), and parechovirus (human echovirus 22).
  • caliciviruses include vesiculovirus (swine vesicular exanthema virus), lagovirus (rabbit hemorrhagic disease virus), “Norwalk-like viruses” (Norwalk virus), “Sapporo-like viruses” (Sapporo virus), and “hepatitis E-like viruses” (hepatitis E virus).
  • Betanodavirus (striped jack nervous necrosis virus) is the representative nodavirus.
  • Coronaviruses include coronavirus (avian infections bronchitis virus) and torovirus (Berne virus).
  • Arterivirus (equine arteritis virus) is the representative arteriviridus.
  • Togavirises include alphavirus (Sindbis virus) and rubivirus (Rubella virus).
  • the flaviviruses include flavivirus (Yellow fever virus), pestivirus (bovine diarrhea virus), and hepacivirus (hepatitis C virus).
  • the viral infections are selected from chronic hepatitis B, chronic hepatitis C, HIV infection, RSV infection, HSV infection, VSV infection, CMV infection, and influenza infection.
  • the infection to be prevented and/or treated is upper respiratory tract infections caused by viruses and/or bacteria. In another embodiment, the infection to be prevented and/or treated is bird flu.
  • Bacterial infections include, but are not limited to, streptococci, staphylococci, E. coli , pseudomonas.
  • bacterial infection is intracellular bacterial infection.
  • Intracellular bacterial infection refers to infection by intracellular bacteria such as mycobacteria (tuberculosis), chlamydia, mycoplasma, listeria , and facultative intracellular bacteria such as staphylococcus aureus.
  • Parasitic infections include, but are not limited to, worm infections, in particular, intestinal worm infection.
  • Tumors include both benign and malignant tumors (i.e., cancer).
  • Cancers include, but are not limited to biliary tract cancer, brain cancer, breast cancer, cervical cancer, choriocarcinoma, colon cancer, endometrial cancer, esophageal cancer, gastric cancer, intraepithelial neoplasm, leukemia, lymphoma, liver cancer, lung cancer, melanoma, myelomas, neuroblastoma, oral cancer, ovarian cancer, pancreatic cancer, prostate cancer, rectal cancer, sarcoma, skin cancer, testicular cancer, thyroid cancer and renal cancer.
  • cancers are selected from hairy cell leukemia, chronic myelogenous leukemia, cutaneous T-cell leukemia, chronic myeloid leukemia, non-Hodgkin's lymphoma, multiple myeloma, follicular lymphoma, malignant melanoma, squamous cell carcinoma, renal cell carcinoma, prostate carcinoma, bladder cell carcinoma, breast carcinoma, ovarian carcinoma, non-small cell lung cancer, small cell lung cancer, hepatocellular carcinoma, basaliom, colon carcinoma, cervical dysplasia, and Kaposi's sarcoma (AIDS-related and non-AIDS related).
  • Allergies include, but are not limited to, respiratory allergies, contact allergies and food allergies.
  • Immune disorders include, but are not limited to, autoimmune diseases, immunodeficiency, and immunosuppression.
  • Autoimmune diseases include, but are not limited to, diabetes mellitus, arthritis (including rheumatoid arthritis, juvenile rheumatoid arthritis, osteoarthritis, psoriatic arthritis), multiple sclerosis, encephalomyelitis, myasthenia gravis, systemic lupus erythematosis, automimmune thyroiditis, dermatitis (including atopic dermatitis and eczematous dermatitis), psoriasis, Sjogren's Syndrome, Crohn's disease, aphthous ulcer, ulceris, conjunctivitis, keratoconjunctivitis, ulcerative colitis, asthma, allergic asthma, cutaneous lupus erythematosus, scleroderma, vaginitis, proctitis, drug eruptions, leprosy reversal reactions, erythema nodosum leprosum, autoimmune uveitis, allergic ence
  • Immunodeficiencies include, but are not limited to, spontaneous immunodeficiency, acquired immunodeficiency (including AIDS), drug-induced immunodeficiency (such as that induced by immunosuppressants used in transplantation and chemotherapeutic agents used for treating cancer), immunosuppression caused by chronic hemodialysis, trauma or surgical procedures.
  • Immunosuppression includes, but is not limited to, bone marrow suppression by cytotoxic chemotherapy.
  • the pharmaceutical composition is a tumor vaccine.
  • the oligonucleotide or precursor thereof described in the invention or the bacterial RNA may induce tumor cell apoptosis through binding to RIG-I, induce type I IFN, IL-18 and/or IL-1 ⁇ production by the tumor cells, directly and/or indirectly activate effector cells of innate immunity such as NK cells, NKT cells, and ⁇ T cells, and/or directly and/or indirectly inactivate suppressor T cells, thereby leading to tumor cell growth inhibition and/or destruction.
  • Tumor cells which have been stimulated with an RIG-I ligand such as the oligonucleotide or precursor thereof described in the present invention or a bacterial RNA, may also be used as a tumor vaccine.
  • the RNA oligonucleotide is a single-stranded RNA oligonucleotide which does not contain any sequence which is capable of forming any intramolecular or intermolecular double-stranded structure with itself under physiological condition, in particular, physiological condition inside a cell, and the nucleotide sequence of the ssRNA is complementary to a disease/disorder-related RNA.
  • the disease/disorder-related RNA is an mRNA of a disease/disorder-related gene. In another embodiment, the disease/disorder-related RNA is a miRNA.
  • the disease/disorder-related RNA may be a endogenous cellular RNA, a viral RNA, a RNA from an invading microorganism or organism such as a bacterium, a fungus, or a parasite.
  • the degree of complementarity is preferably at least 50%, 60%, 70%, more preferably at least 75%, 80%, 85%, 90%, even more preferably at least 95%, 96%, 97%, 98%, 99%, and most preferably 100%.
  • the ssRNA olignucleotide has gene silencing activity. In another embodiment, the ssRNA olignucleotide lacks gene silencing activity.
  • RNA oligonucleotide comprising one or more modifications selected from pseudouridine, 2-thiouridine, 2′-Fluorine-dNTP, 2′-O-methylated NTP, in particular 2′-fluorine-dCTP, 2′-fluorine-dUTP, 2′-O-methylated CTP, 2′-O-methylated UTP and having a nucleotide sequence which is complementary to ssRNA oligonucleotide may be used to inactivate the ssRNA oligonucleotide and to halt type I IFN induction.
  • the oligonucleotide or precursor thereof described in the invention or the bacterial RNA is used in combination with one or more pharmaceutically active agents such as immunostimulatory agents, anti-viral agents, antibiotics, anti-fungal agents, anti-parasitic agents, anti-tumor agents, cytokines, chemokines, growth factors, anti-angiogenic factors, chemotherapeutic agents, antibodies and gene silencing agents.
  • pharmaceutically active agents such as immunostimulatory agents, anti-viral agents, antibiotics, anti-fungal agents, anti-parasitic agents, anti-tumor agents, cytokines, chemokines, growth factors, anti-angiogenic factors, chemotherapeutic agents, antibodies and gene silencing agents.
  • pharmaceutically active agents such as immunostimulatory agents, anti-viral agents, antibiotics, anti-fungal agents, anti-parasitic agents, anti-tumor agents, cytokines, chemokines, growth factors, anti-angiogenic factors, chemotherapeut
  • the oligonucleotide or precursor thereof described in the invention or the bacterial RNA is used in combination with an anti-viral vaccine or an anti-bacterial vaccine or an anti-tumor vaccine, wherein the vaccine can be prophylactic and/or therapeutic.
  • the pharmaceutical composition is for use in combination with one or more prophylactic or therapeutic treatments of diseases and/or disorders such as infection, tumor, multiple sclerosis, and immunodeficiency.
  • treatments of cancer include, but are not limited to, surgery, chemotherapy, radiation therapy, neoadjuvant therapy, thermoablation, and cryoablation.
  • the oligonucleotide or precursor thereof described in the present invention or a bacterial RNA is used in combination with retinoic acid and/or type I IFN.
  • Retinoic acid and/or type I IFN are known to upregulate RIG-I expression in most cell types, including for example endothelial cells, epithelial cells, fibroblasts, immune cells and tumor cells.
  • the pharmaceutical composition further comprises a delivery agent as described previously.
  • the oligonucleotide or precursor thereof or bacterial RNA may also be delivered by physical means as described previously.
  • the pharmaceutical composition further comprises another agent such as an agent that stabilizes the oligonucleotide or precursor thereof or bacterial RNA as described previously.
  • the pharmaceutical composition may be formulated for oral, nasal, ocular, parenteral (including intraveneous, intradermal, intramuscular, intraperitoneal, and subcutaneous), rectal, vaginal or topical (including buccal and sublingual) administration.
  • the pharmaceutical composition is for prophylactic local (e.g., mucosa, skin) or systemic use.
  • a spray i.e., aerosol
  • a spray preparation may be used to strengthen the antiviral capability of the nasal and the pulmonary mucosa.
  • Vertebrate animals include, but are not limited to, fish, amphibians, birds, and mammals.
  • Mammals include, but are not limited to, rats, mice, cats, dogs, horses, sheep, cattle, cows, pigs, rabbits, non-human primates, and humans. In a preferred embodiment, the mammal is human.
  • the prevent invention provides the use of the oligonucleotide or precursor thereof described in the invention or a bacterial RNA in combination with at least one antigen for the preparation of a vaccine for inducing an immune response against the at least one antigen in a vertebrate animal, in particular, a mammal.
  • the at least one antigen may be a protein, a polypeptide, a peptide, a carbohydrate, a nucleic acid, or a combination thereof.
  • the at least one antigen is preferably a disease/disorder-associated antigen, against which the generation of an immune response is beneficial for the prevention and/or treatment of the disease/disorder.
  • the oligonucleotide or precursor thereof or the bacterial RNA may be covalently linked to or non-covalently complexed with the at least one antigen.
  • the oligonucleotide or precursor thereof or the bacterial RNA is covalently linked to the at least one antigen.
  • both the oligonucleotide or precursor thereof or the bacterial RNA which is anionic and the protein or peptide antigen which is rendered anionic by N- or C-terminal extension of glutamic acid residues are complexed with cationic polymers.
  • phosphothioates which are incorporated into the oligonucleotide or precursor thereof or the bacterial RNA to increase nuclease resistance complexes with cysteine residues added to the N-terminal of antigenic protein or peptide.
  • the at least one antigen can be encoded by a vector, in particular, a viral vector, which also comprises the oligonucleotide or precursor thereof.
  • the at least one antigen can be a part of a virosome which encapsulates the oligonucleotide or precursor thereof or the bacterial RNA.
  • oligonucleotide or precursor thereof or the bacterial RNA and the at least one antigen may also be comprised in separate compositions which are administered simultaneously.
  • the vaccine further comprises a delivery agent as described previously.
  • the oligonucleotide or precursor thereof or the bacterial RNA may also be delivered by physical means as described previously.
  • the pharmaceutical composition further comprises another agent such as an agent that stabilizes the oligonucleotide or precursor thereof or the bacterial RNA as described previously.
  • Vertebrate animals include, but are not limited to, fish, amphibians, birds, and mammals.
  • Mammals include, but are not limited to, rats, mice, cats, dogs, horses, sheep, cattle, cows, pigs, rabbits, non-human primates, and humans. In a preferred embodiment, the mammal is human.
  • the present invention provides an in vitro method for stimulating an anti-viral response and/or an anti-bacterial response in a cell, comprising the steps of:
  • the anti-viral response or the anti-bacterial response comprises type I IFN, in particular, IFN- ⁇ production, type II IFN production, IL-18 production, and/or IL-1 ⁇ production.
  • the cells include, but are not limited to, primary immune cells, primary non-immune cells, and cell lines.
  • Immune cells include, but are not limited to, peripheral blood mononuclear cells (PBMC), plasmacytoid dendritric cells (PDC), myeloid dendritic cells (MDC), B cells, macrophages, monocytes, natural killer cells, granulocytes, CD4+ T cells, CD8+ T cells, NKT cells.
  • Non-immune cells include, but are not limited to, fibroblasts, endothelial cells, and epithelial cells.
  • Cell lines include those that endogenously express RIG-I and/or components of the inflammasome and those containing exogenous DNA which directs the expression of RIG-I and/or components of the inflammasome.
  • the present invention provides an in vitro method for stimulating the production of a Th1 cytokine in a cell, comprising the steps of:
  • the cell expresses RIG-I and/or components of the inflammasome.
  • the Th1 cytokine is IL-18 or IL-1 ⁇ .
  • the cells include, but are not limited to, immune cells and non-immune cells.
  • Immune cells include, but are not limited to, peripheral blood mononuclear cells (PBMC), plasmacytoid dendritric cells (PDC), myeloid dendritic cells (MDC), B cells, macrophages, monocytes, natural killer cells, granulocytes, CD4+ T cells, CD8+ T cells, NKT cells.
  • the cell is a macrophage.
  • Non-immune cells include, but are not limited to fibroblasts, endothelial cells, and epithelial cells.
  • the present invention provides a method for preparing an oligonucleotide capable of inducing an anti-viral and/or anti-bacterial response, comprising the steps of:
  • the oligonucleotide may be single-stranded, single-stranded comprising a sequence capable of forming a double-stranded structure, or double-stranded.
  • the double-stranded structure may be formed inside a cell by the oligonucleotide itself either intramolcularly or intramolecularly or between a single-stranded oligonucloetide and a RNA molecule of the cell, such as a mRNA or miRNA, which comprises a sequence complementary to the oligonucleotide.
  • the degree of complementarity is preferably at least 50%, 60%, 70%, more preferably at least 75%, 80%, 85%, 90%, even more preferably at least 95%, 96%, 97%, 98%, 99%, and most preferably 100%.
  • the degree of complementarity can be determined by a skilled person using known methods in the art, such as BLAST.
  • the number of basepairing within the double-stranded structure is at least 6, 7, 8, 9, preferably at least 10, 11, 12, 13, 14, 15, more preferably at least 16, 17, 18, 19, 20, 21, even more preferably at least 22, 23, 24, 25.
  • Basepairs include both Waston-Crick basepairs and wobble basepairs.
  • Waston-Crick basepairs include A-T, C-G, A-U; wobble basepairs include G-U, I-U, I-A, I-C.
  • One or more of the following steps may be incorporated into the method for preparing an oligonucleotide capable of inducing an anti-viral and/or anti-bacterial response of the present invention to further enhance the anti-viral and/or anti-bacterial response-inducing activity of the oligonucleotide:
  • the anti-viral response or the anti-bacterial response comprises type I IFN, in particular, IFN- ⁇ production, type II IFN production, IL-18 production, and/or IL-1 ⁇ production.
  • the present invention also provides a method for preparing an oligonucleotide free of any anti-viral response-inducing activity and anti-bacterial response-inducing activity, comprising one or more of the following steps:
  • Nucleotide sequence capable of forming double-stranded structure inside a cell includes those which allow the formation of a double-stranded structure within the same oligonucleotide (i.e., intramolecular), between two of the same oligonucleotides (i.e., intermolecular), or between an oligonucleotide and a RNA (e.g., mRNA, miRNA) in a target cell.
  • RNA e.g., mRNA, miRNA
  • the anti-viral response or the anti-bacterial response comprises type I IFN, in particular, IFN- ⁇ production, type II IFN production, IL-18 production, and/or IL-1 ⁇ production.
  • the present invention provides a method for preparing an RNA for use in gene therapy, comprising the step of eliminating 5′ monophosphate, diphosphate or triphosphate from an RNA and/or incorporating modified nucleotides such as pseudouridine, 2-thiouridine, 2′-Fluorine-dNTPs-2′-O-methylated NTPs, preferably 2′-fluorine-dCTP, 2′-fluorine-dUTP, 2′-O-methylated CTP, 2′-O-methylated UTP, into the RNA.
  • the RNA prepared according to the method of the invention lacks immunostimulatory activity and/or capability of inducing an anti-viral response and is therefore suitable for gene transfer in vertebrate cells.
  • RNA useful in gene therapy include those that upregulate or downregulate the expression/translation of a gene of interest.
  • the RNA encodes a protein of interest, the expression of which is of therapeutic value (e.g., a tumor suppressor; the cystic fibrosis protein).
  • the RNA interferes with the expression of a protein of interest, the downregulation of which is of therapeutic value (e.g., an oncogene).
  • the RNA may be an antisense RNA, an siRNA, an shRNA or a miRNA.
  • oligonucleotide or precursor thereof described in the present invention or the bacterial RNA may be extended to other RIG-I ligands.
  • Human PBMC were prepared from whole blood donated by young healthy donors by Ficoll-Hypaque density gradient centrifugation (Biochrom, Berlin, Germany).
  • PDC were isolated by MACS using the blood dendritic cell Ag (BCDA)-4 dendritic cell isolation kit from Miltenyi Biotec (Bergisch-Gladbach, Germany). Briefly, PDC were labelled with anti-BDCA-4 Ab coupled to colloidal paramagnetic microbeads and passed through a magnetic separation column twice (LS column, then MS column; Miltenyi Biotec). The purity of isolated PDC (lineage-negative, MHC-II-positive and CD123-positive cells) was above 95%.
  • monocytes were depleted by MACS (LD column; Miltenyi Biotec) and then monocytes were isolated using the monocyte isolation kit II (Miltenyi Biotec).
  • Murine bone marrow-derived conventional dendritic cells were generated by incubating pooled bone marrow cells in the presence of murine GM-CSF (10 ng/ml; R&D Systems, Minneapolis, Minn.). After 7 days, these cultures typically contained more than 90% cDC (CD11c+, CD11b+, B220 ⁇ ). Viability was above 95%, as determined by trypan blue exclusion.
  • HEK 293 cells human embryonic kidney
  • Vero African green monkey kidney
  • HEK 293T human embryonic kidney
  • BSR cells were propagated in Glasgow minimal essential medium supplemented with 10% newborn calf serum, phosphate broth, amino acids and antibiotics.
  • mice TLR7, RIG-I and MDA5 deficient mice have been previously described (Hemmi H et al. Nat. Immunol. 3:196, February, 2002; Kato H et al., Immunity 23:19, July, 2005; Kato H et al. Nature 441(7089):101-105, Apr. 9, 2006).
  • Female wildtype C57BU6 mice were purchased from Harlan-Winkelmann (Borchen, Germany). Mice were 6-12 weeks of age at the onset of experiments. Animal studies were approved by the local regulatory agency (Reg michmaschine von Oberbayem, Kunststoff, Germany).
  • Human IFN- ⁇ was assessed in cell culture supernatants using the IFN- ⁇ module set (Bender MedSystems, Graz, Austria).
  • the murine IP-10 ELISA was from Biosource (Solingen, Germany), the murine IFN- ⁇ ELISA was from PBL Biomedical Laboratories (Piscataway, USA). All ELISA procedures were performed, according to manufacturers' recommendations.
  • Murine IFN- ⁇ was measured according to the following protocol: monoclonal rat anti-mouse IFN- ⁇ (clone RMMA-1) was used as the capture Ab, and polyclonal rabbit anti-mouse IFN- ⁇ serum for detection (both PBL Biomedical Laboratories) together with HRP-conjugated donkey anti-rabbit IgG as the secondary reagent (Jackson ImmunoResearch Laboratories). Mouse rIFN-A (PBL Biomedical Laboratories) was used as the standard (IFN- ⁇ concentration in IU/ml).
  • RNA oligonucleotides were purchased from Eurogentec (Leiden, Belgium). In vitro transcribed RNAs were synthesized using the Silencer siRNA construction Kit (Ambion, Huntingdon, UK) or according to the following protocol: Using partially overlapping single stranded DNA oligonucleotides, a double-stranded DNA template was constructed using Exo Klenow (Fermentas). The 2500 nucleotides transcript ( FIG. 1 ) was generated using the control template of the Opti mRNA Kit (Curevac, Tübingen, Germany).
  • Templates larger than 40 by were constructed via PCR using the pBluescript KS as a template (for a detailed list of all in vitro transcription templates see table 1).
  • the obtained templates contained a T7 RNA polymerase consensus promoter followed by the sequence of interest to be transcribed. 20 pmol of the DNA template were incubated with 30 U T7 RNA polymerase, 40 U RNase inhibitor, 0.3 U yeast inorganic pyrophosphatase in a buffer containing 40 mM Tris-HCl pH 8.0, 10 mM DTT, 2 mM spermidine-HCl (Sigma) and 20 mM MgCl 2 . Capped RNA was transcribed using the Opti mRNA Kit (Curevac).
  • uridine-5′-triphosphate was replaced by either pseudouridine-5′-triphosphate or 2-thiouridine-5′-triphosphate (both TriLink, San Diego, USA) during the in vitro transcription reaction.
  • pseudouridine-5′-triphosphate both TriLink, San Diego, USA
  • 2-thiouridine-5′-triphosphate both TriLink, San Diego, USA
  • T7 R&DNATM Polymerase was used for the incorporation of 2′-O-methylated UTP (Trilink).
  • This polymerase has single-base active-site mutations that allow the incorporation of NTPs with 2′-substituents such as 2′-O-methyl.
  • In vitro transcription was carried out overnight at 37° C.
  • RNAs were purified using the Roche high pure RNA isolation kit (Roche Applied Science, Mannheim, Germany) with the following modifications: Binding buffer was 2.0 M guanidine thiocyanate in 70% ethanol and wash buffer was substituted by 100 mM NaCl, 4.5 mM EDTA, 10 mM Tris HCl in 70% ethanol. After elution, excess salts and NTPs were removed by passing the RNAs through a Mini Quick SpinTM Oligo Column (Roche). Size and integrity of RNAs was checked via gel electrophoresis.
  • DNA oligonucleotides for the generation of in vitro transcription templates SEQ ID Corr. No. Name Sequence strand 84 AF6.5-35n 5′-CAGTAATACGACTCACTATTAGGGAA 1 GCGGGCA-3′ 82 GF6.5-35n 5′-CAGTAATACGACTCACTATAGGGGAA 1 GCGGGCA-3′ 101 RNA9.2s-0A 5′-TTGAAGGACAGGTTAAGCTAATAGTG 2 AGTCG-3′ 80 RNA9.2s-1G 5′-ATTGAAGGACAGGTTAAGCTATAGTG 3 AGTCGTA-3′ 97 RNA9.2s-5A 5′-GGTAATTGAAGGACAGGTTAATAGTG 2 AGTCG-3′ 92 tri-09-mer 5′-GGGATCCCCTATAGTGAGTCGTA-3′ 3 98 tri-12-mer 5′-GGGTTCATCCCCTATAGTGAGTCGT 3 A-3′ 90 tri-15-mer 5′-GGGAAGTTCATCCCC
  • RNA from E. coli strain DH10B and human PBMC was isolated using Trizol® reagent (Invitrogen, Düsseldorf, Germany) according to the manufacturer's protocol.
  • CIAP treatment was performed the following way: 10 ⁇ g in vitro transcribed RNA, 15 ⁇ g cellular RNA or 1.5 ⁇ g viral RNA was treated with 30 U of calf intestine alkaline phosphatase (CIAP) (Stratagene, La Jolla, USA) for 3 hours at 37° C. in a buffer containing 50 mM Tris-HCl, 0.1 mM EDTA in the presence of 10 U of RNase inhibitor (RNAguardTM; Amersham-Biosciences). Following CIAP treatment, the RNA was cleaned up using the RNeasy Mini kit.
  • HEK 293 cells were transfected using high molecular weight (25 kDa) polyethylenimine (PEI; Sigma, 40.872-7). At a confluency of 80-90%, cells were transfected with a PEI:DNA ratio of 1.5:1.
  • PEI polyethylenimine
  • cytoplasmic extract was transferred into microcentrifuge tubes and cleared further by centrifugation at 2.000 g for ten minutes and further centrifugation for 30 minutes at 20.000 g to obtain the cytoplasmic extract.
  • concentration of KCl of the extract was subsequently raised to 100 mM by addition of 2 M KCl and glycerol was added to a percentage of 10%.
  • cytoplasmic extracts were incubated in FLAG M2 agarose beads (Sigma). FLAG M2 agarose beads were washed once with 0.1 M glycine (pH 3.5) and equilibrated by washing with 1 M Tris-HCl (pH 8.0).
  • the beads were then resuspended in buffer C (0.1 M KCl, 5 mM MgCl2, 10% glycerol, 10% Tween20, 10 mM ⁇ -mercaptoethanol, 0.2 mM PMSF, and 20 mM Tris-HCl [pH 8.0]) and incubated with cytoplasmic extracts for four hours at 4° C. with rotation.
  • the beads were collected and washed twice in wash buffer (300 mM NaCl, 5 mM MgCl2, 50 mM Tris-HCl [pH 7.5]) supplemented with 0.1% NP40.
  • Affinity-bound complexes were then eluted by shaking the beads in 0.2 ⁇ g/ml 3 ⁇ FLAG peptide (Sigma) in wash buffer for two hours at 10° C. and after centrifugation the eluate was collected.
  • HEK 293 cells 12-16 hours prior to transfection, HEK 293 cells were seeded in 48-well plates. At a confluency of 80%, HEK 293 cells were transfected using PEI with 300 ng of a reporter plasmid (pIFN ⁇ -luc), 500 ng of a normalisation plasmid (expressing Rous sarcoma virus ⁇ -galactosidase) and the indicated expression plasmids giving a total of 1.5 ⁇ g DNA/well. 24 hours after transfection culture medium was aspirated and the cells washed once in 0.5 ml PBS containing 10 mM EDTA.
  • a reporter plasmid pIFN ⁇ -luc
  • luciferase lysis buffer (10% glycerol, 1% Triton-X, 2 mM EDTA, 25 mM TrisHCl [pH 7.8], 2 mM DTT). 20 ⁇ l of each sample were mixed with 20 ⁇ l of Luciferase Detection Reagent (Promega) and analyzed for luciferase activity with a microplate luminometer (LUMIstar, BMGLabtechnologies).
  • the cells were transfected using Lipofectamine 2000 (Invitrogen) with 400 ng of a reporter plasmid encoding firefly luciferase (p125-Luc) and 2 ng of a plasmid encoding CMV-controlled renilla luciferase (pRL-CMV, Promega) for normalization along with 400 ng of empty vector of RIG-expressing plasmids when indicated. 6 hours after DNA transfection the cells were either infected or transfected with the indicated amounts of RNA using PEI. 48 hours after DNA transfection the cell extracts were prepared and assayed in the Dual Luciferase Reporter System (Promega). Luciferase activity was measured in a Luminometer (Berthold) according to the supplier's instructions.
  • RIG-I CARD2 was kindly provided by S. Rothenfusser.
  • p125-Luc, RIG-I full, RIG-IC, RIG-I K270A and the empty control vector were kindly provided by T. Fujita (M. Yoneyama et al., Nat Immunol 5, 730 (July, 2004)).
  • RIG-I ⁇ Helicase_C was constructed from RIG-I full via loop out PCR using the following PCR primer pair: 5′-ACTGAGTTTAGGATTTCCTTCAATCC-3′,5′-GGTAGCAAGTGCTTCCTTCTGA-3′.
  • T7 D812N was constructed from pSC6-T7-NEO via site directed mutagenesis using the following PCR primer pair: 5′-GCACTGATTCACGCCTCCTTCGGTACC-3′,5′-GGTACCGAAGGAGGCGTGAATCAGTGC-3′. RIG-I ⁇ Helicase_C and 17 RNA D812N were confirmed by sequencing.
  • Recombinant RV SAD L16 (Schnell M J et al., 1994, EMBO J. 13(18):4195-4203) was used as wt RV.
  • RPMI 1640 Biochrom
  • FCS Invitrogen Life Technologies
  • 3 mM L-glutamine 0.01 M HEPES
  • 100 U/ml penicillin and 100 ⁇ g/ml streptomycin
  • PAN Sigma-Aldrich
  • Dulbecco's modified Eagle's medium PAN, Aidenbach, Germany
  • FCS fetal calf serum
  • 3 mM L-glutamine 100 U/ml penicillin and 100 ⁇ g/ml streptomycin was used.
  • CpG ODNs (Coley Pharmaceutical Group) show small letters, phosphorothioate (PT) linkage and capital letters, phosphodiester (PD) linkage 3′ of the base; CpG-A-ODN 2216 (5′-ggGGGACGATCGTCgggggG-3′), CpG-B ODN 1826 (5′-TCCATGACGTTCCTGACGTT-3′).
  • Polyinosinic:polycytidylic acid (poly(I:C)) was purchased from Sigma-Aldrich.
  • IL-2 receptor- ⁇ chain-specific mAb TM ⁇ 1 and mAb RmCD8-2 were used as described (kind gift of Ralph Mocikat, GSF-Institut für Molekulare Immunologie, Kunststoff, Germany).
  • Recombinant murine IFN ⁇ was purchased at Europa Bioproducts LTD.
  • In vivo-jetPEITM (#201-50) was purchased at Biomol GmbH (Hamburg, Germany).
  • RNA oligonucleotides were purchased from Eurogentec (Leiden, Belgium) or MWG-BIOTECH AG (Ebersberg, Germany) (for a detailed list of all chemically synthesized RNA oligonucleotides see Table 3).
  • In vitro transcribed RNAs were synthesized according to the manufacturers instruction's using the megashort script kit (Ambion, Huntingdon, UK) (for a detailed list of all in vitro transcription templates see Table 4).
  • the obtained templates contained a T7 RNA Polymerase consensus promoter followed by the sequence of interest to be transcribed.
  • RNA templates of the sense and anti-sense strands were transcribed for 6 hours in separate reactions. An extra G was added to both the sense and the anti-sense strands in order to transcribe with T7 RNA polymerase. The reactions were then mixed and the combined reaction was incubated overnight at 37° C.
  • the DNA template was digested using DNAse-I (Ambion) and subsequently RNAs were purified using phenol:chloroform extraction and alcohol precipitation. After elution, excess salts and NTPs were removed by passing the RNAs through a Mini Quick SpinTM Oligo Column (Roche). Integrity of RNAs was checked via gel electrophoresis.
  • Flt3-Ligand Flt3-Ligand (Flt3-L) induced mixed cultures of murine myeloid and plasmacytoid dendritic cells were grown as described (3).
  • Plasmacytoid DC from FLT-3 ligand induced bone marrow cultures were sorted with 8220 microbeads (Miltenyi Biotec).
  • Conventional dendritic cells cDCs were generated by incubating pooled bone marrow cells in the presence of murine GM-CSF (10 ng/ml; R&D Systems, Minneapolis, Minn.). After 7 days, these cultures typically contained more than 80% cDC (CD11c+, CD11b+, 6220 ⁇ ).
  • B cells were isolated from spleens of wild-type mice by MACS using the mouse B cell isolation kit and CD19 microbeads (Milteny Biotec). Untouched NK cells and CD 8 T cells were sorted from spleens using the NK cell isolation and the CD8 T Cell Isolation Kit (Mileny Biotec). Viability of all cells was above 95%, as determined by trypan blue exclusion and purity was >90% as analyzed by FACS.
  • Murine primary cells were cultivated in RPMI (PAN, Aidenbach, Germany) supplemented with 10% fetal calf serum (FCS), 4 mM L-glutamine and 10-5 M mercaptoethanol.
  • Murine B16 cells were a kind gift of Thomas Tüting and cultivated in Dulbecco's modified Eagle's medium (PAN, Aidenbach, Germany) supplemented with 10% fetal calf serum (FCS), 2 mM L-glutamine, 100 U/ml penicillin and 100 ⁇ g/ml streptomycin.
  • FCS fetal calf serum
  • RNAs were transfected with Lipofectamine 2000 according to the manufacturer's protocol (Invitrogen). If not indicated otherwise, we transfected 200 ng of nucleic acid with 0.5 ⁇ l of Lipofectamine. After 24 h the supernatants were collected for analysis of cytokine secretion by enzyme-linked immunosorbent assay (ELISA), and cells were harvested for flow cytometric analysis.
  • ELISA enzyme-linked immunosorbent assay
  • murine IFN- ⁇ was measured according to the following protocol: monoclonal rat anti-mouse IFN- ⁇ (clone RMMA-1) was used as the capture Ab, and polyclonal rabbit anti-mouse IFN- ⁇ serum for detection (both PBL Biomedical Laboratories) together with HRP-conjugated donkey anti-rabbit IgG as the secondary reagent (Jackson ImmunoResearch Laboratories). Mouse rIFN- ⁇ (PBL Biomedical Laboratories) was used as the standard (IFN- ⁇ concentration in IU/ml).
  • B16 cells were seeded in 24-well plates. At a confluency of 70%, B16 cells were transfected using PEI with 200 ng of a reporter plasmid (pIFN ⁇ -luc DAM/DCM), 200 ng of a normalisation plasmid (expressing Renilla -Luc) and the indicated expression plasmids giving a total of 1.5 ⁇ g DNA/well. B16 cells were transfected using high molecular weight (25 kDa) polyethylenimine (PEI; Sigma, 40.872-7) with a PEI:DNA ratio of 1.5:1.
  • PEI high molecular weight polyethylenimine
  • Lipofectamine 2000 (Invitrogen) for cotransfection of synthetic siRNAs with the indicated expression plasmids according to the manufacturer's protocol. 16 hours after transfection culture medium was aspirated, the cells were washed once in 0.5′′ ml PBS and then stimulated with different ligands for the indicated time points. The supernatant was collected and the cells were washed again in 0.5 ml PBS containing 10 mM EDTA. Then cells were lysed in 100 ⁇ l of Promega lysis buffer (Promega, #1531).
  • IFN- ⁇ -Luc reporter plasmids wild-type pPME-myc NS3-4A (NS3-4A), pPME-myc MutNS3-4A (NS3-4A; containing an inactivating Serin 139 to Ala mutation) were kindly provided by T. Maniatis and J. Chen.
  • RIG-I full, RIG-IC, RIG-I K270A and the empty control vector were kindly provided by T. Fujita (Yoneyama M et al. (2004) Nat. Immunol. 5(7):730-737).
  • the renilla -luciferase transfection efficiency vector (phRLTK) was purchased from Promega.
  • Adherent and supernatant cells were analyzed by staining with FITC-labelled Annexin-V (Roche) and propidium iodide (BD Biosciences). Annexin-V staining was performed according to the manufacturers instructions. Propidium iodide was added to a final concentration of 0.5 mg/ml and cells were analyzed by flow cytometry and CellQuest software (Becton Dickinson, Heidelberg, Germany).
  • mice were injected intravenously with FITC labelled RNA (100 ⁇ g) complexed to jetPEI (Biomol). After 6 h mice were sacrificed and the desired organs were analysed for uptake of the RNA complexes. Briefly, sections of metastatic lungs or non-diseased lungs were transferred on microscope slides and fixed in acetone for 10 min. Nuclear counterstaining was performed using TOPRO-3 (Molecular Probes). Washing steps were done in Tris-buffered saline and cells were mounted in Vectarshield Mounting Medium (Vector Laboratories). Cells were then analysed using a Zeiss LSM510 confocal mircroscope (Carl Zeiss, Germany) equipped with 488 nm-Argon and 633 nm-Helium-Neon lasers.
  • TOPRO-3 Molecular Probes
  • mice were established as described (Kato et al. (2006) Nature 441:101; Akira S et al. (2004) C R Biol. 327(6):581-9). IFNAR-deficient mice were a kind gift of Ulrich Kalinke.
  • Female C57BU6 mice were purchased from Harlan-Winkelmann (Borchen, Germany). Mice were 6-12 weeks of age at the onset of experiments. Animal studies were approved by the local regulatory agency (Reg michmaschine von Oberbayern, Kunststoff, Germany).
  • mice For the induction of lung metastases we injected 4 ⁇ 10 5 B16 melanoma cells into the tail vein of the indicated mice. On day 3, 6 and 9 we injected the mice with 200 ⁇ l containing nucleic acids (50 ⁇ g each) with prior jetPEI-complexation as described. Subsequently, the complexes were injected in the retro-orbital vein. 14 days after challenge the number of macroscopically visible melanoma metastases on the surface of the lungs was counted with the help of a dissecting microscope or, in case of massive tumor load, lung weight was determined. Depletion of NK cells and CD8 T cells was performed as described ⁇ Adam, 2005 #49; Mocikat, 2003 #50 ⁇ .
  • TM ⁇ 1 mAb was given intraperitoneally 4 days (1 mg) before and 2 (0.2 mg) and 14 (0.1 mg) days after tumor challenge.
  • the mAb RmCD8-2 was injected intraperitoneally one (0.5 mg) and four days (0.1 mg) before and 4 (0.1 mg) and 14 (0.1 mg) days after tumor inoculation. Experiments were done in groups of four to five mice and repeated two to four times.
  • TUNEL transferase-mediated dUTP nick end-labeling
  • IFN- ⁇ production in the human immune system is thought to be largely confined to PDC. IFN- ⁇ production in human primary monocytes has not been reported so far. As demonstrated in previous studies (V. Homung et al., J Immunol 168, 4531 (May 1, 2002); I. B. Bekeredjian-Ding et al., J Immunol 174, 4043 (Apr. 1, 2005)), monocytes express TLR2, TLR4, TLR8 and TLR8 but no TLR3, TLR7 or TLR9, and produce IL-6 in response to TLR2/6- TLR4- and TLR8-ligands but not to TLR3-, TLR7- or TLR9-ligands (I. B.
  • RNA transcripts were transfected in monocytes and PDC and IFN- ⁇ production was assessed by ELISA.
  • the present inventors found that a 2500-nucleotide long RNA molecule, but not the TLR9 ligand CpG-A ODN 2216 or the TLR7/8 ligand R848, stimulated a strong IFN- ⁇ response in primary human monocytes ( FIG. 1A ).
  • RNA oligonucleotides ranging from 27 to 9 nucleotides were generated by the gradual shortening (in steps of three nucleotides) of a 27-mer oligonucleotide from the 3′ end.
  • RNA oligonucleoties 27, 24 and 21 nucleotides in length were potent inducers of IFN- ⁇ in monocytes, a sharp drop of activity was observed for shorter sequences ( FIG. 1C ). This suggested that in vitro transcribed RNA had to have a minimal length of 21 bases to induce IFN- ⁇ in monocytes.
  • RNA oligonucleotides were generated in which the 3′ sequence (21 nucleotides) was either a poly G (tri-poly G), a poly A (tri-poly A), a poly C (tri-poly C) or a poly U (tri-poly U) homopolymer.
  • the ten bases at the 5′ end were identical for these oligonucleotides. All four RNA oligonucleotides turned out to be equally potent in terms of IFN- ⁇ induction in monocytes ( FIG. 1D ).
  • RNA generated by 17 RNA polymerase contains an uncapped triphosphate group at the 5′ end of the RNA molecule.
  • IFN- ⁇ induction by a synthetic and an in vitro transcribed version of an immunostimulatory ssRNA oligonucleotide 9.2s was compared. is RNA9.2s was identified as a potent stimulus for IFN- ⁇ production in PDC in previous studies (V. Hornung et al., Nat Med 11, 263 (March, 2005)).
  • RNA9.2s Only the in vitro transcribed version of is RNA9.2s, but not synthetic is RNA9.2s, strongly induced IFN- ⁇ production in monocytes ( FIG. 2A upper panel). This difference in IFN- ⁇ inducing activity was not due to different transfection efficiency ( FIG. 7 ). In contrast to monocytes, PDC produced IFN- ⁇ in response to both in vitro transcribed and synthetic is RNA9.2s ( FIG. 2A lower panel).
  • RNA generated to contain a guanosine-5′-diphosphate, a guanosine-5′-monophosphate or a guanosine-5′-hydroxyl did not induce IFN- ⁇ in monocytes ( FIG. 8 ).
  • 7′methyl-guanosine is attached to the 5′ triphosphate of a nascent mRNA transcript by a process called capping.
  • Capping improves the stability of eukaryotic RNA against nucleases and enhances binding of ribosomal proteins to mRNA.
  • Capped RNA can be generated via in vitro transcription by including a synthetic cap analog, N-7 methyl GpppG, in the in vitro transcription reaction. Since both N-7 methyl GpppG and GTP (typically in a 4:1 mixture of N-7 methyl GpppG:GTP) need to be present during in vitro transcription and both are incorporated by 17 RNA polymerase, approximately 80% of all transcripts are capped after in vitro transcription.
  • RNA of different lengths transcribed in the presence of the synthetic cap analog which contained approximately 20% uncapped and 80% capped RNA, was much less active at inducing IFN- ⁇ production in monocytes when compared to uncapped in vitro transcribed RNA (100% uncapped) ( FIG. 3A ).
  • eukaryotic RNA undergoes several other posttranscriptional maturation steps including the modification of various nucleosides of the RNA transcript and the methylation of the backbone ribose at the 2′-hydroxyl position.
  • nucleoside modifications that are abundant in matured eukaryotic, but not in prokaryotic or viral RNA can lead to the complete abrogation of a RNA-triggered inflammatory response mediated via the TLR-system (K. Kariko, et al. Immunity 23, 165 (March, 2005).
  • RNA oligonucleotides were generated via in vitro transcription with various NTPs substituted with the respective nucleoside- or ribose-modified NTPs.
  • LPS Lipopolysaccharide alone or in combination with synthetic RNA did not contribute to IFN- ⁇ production in monocytes ( FIG. 9 ).
  • Structural features like the presence of a two-nucleotide 3′ overhang in a 5′ triphosphate RNA duplex, as it occurs in natural cleavage products of the endonuclease dicer, did not interfere with the immunostimulatory activity of the 5′ triphosphate RNA oligonucleotides ( FIG. 10 ).
  • TLR3, TLR7, TLR8 and TLR9 are known to detect nucleic acids.
  • a number of studies suggest that single-stranded RNA is recognized via TLR7 and TLR8, both located in the endosomal membrane. Similar to CpG-DNA, recognition of single-stranded RNA by TLR7/8 can be blocked by chloroquine, which inhibits endosomal maturation.
  • the present inventors found that in PBMC, increasing concentrations of chloroquine inhibited IFN- ⁇ induction by CpG-A but not by 5′triphosphate RNA ( FIG. 12A ); furthermore, chloroquine did not affect 5′ triphosphate RNA induced IFN- ⁇ production in isolated monocytes ( FIG. 12B ). CpG-A is inactive in monocytes with and without chloroquine due to the lack of TLR9 ( FIG. 12B ).
  • RIG-I and MDA-5 are cytoplasmic proteins involved in the recognition of RNA viruses (H. Kato et al., Nature 441, 101 (Apr. 9, 2006)); both RIG-I and MDA-5 are thought to be involved in dsRNA recognition. Although 5′ triphosphate RNA in the present invention was active as ssRNA, it remained to be determined whether RIG-I or MDA-5 are involved in 5′ triphosphate recognition.
  • HEK 293 cells expressing the reporter luciferase under the control of the IFN- ⁇ promoter were used instead of monocytes.
  • HEK 293 cells transiently transfected with RIG-I did not respond to poly(I:C) or synthetic is RNA (RNA9.2s) ( FIG. 4A ).
  • RNA9.2s synthetic is RNA
  • tri-GFPs and tri-GFPa single-stranded 5′ triphosphate RNA strongly activated reporter expression in RIG-I expressing HEK 293 cells.
  • FIG. 4C no template and X8dT
  • FIG. 4C pBKS
  • T7 RNA polymerase was expressed at lower levels, a complete template-dependent type I IFN induction could be seen ( FIG. 4D ; 100 ng T7 RNA polymerase).
  • RIG-I Directly Detects Genomic Triphosphate RNA from a Mammalian Negative Strand RNA Virus
  • RNA transcription yields abundant amounts of short (approximately 60 nt) 5′ triphosphate RNAs, known as leader RNAs, which are templated by the 3′ end of vRNA (S. P. Whelan, et al. Current topics in microbiology and immunology 283, 61 (2004)).
  • Wildtype RV encodes a potent antagonist of IFN induction, the phosphoprotein P, and therefore does not induce considerable IFN expression upon infection of epithelial cells.
  • a RV mutant genetically engineered to express little P is an efficient inducer of IFN (K. Brzozka, et al. Journal of virology 79, 7673 (June, 2005); K. Brzozka, et al. Journal of virology 80, 2675 (March, 2006)).
  • Vero cells were infected with the IFN-inducing RV, SAD ⁇ PLP, in the absence or presence of transfected RIG-I or RIG-IC (a dominant negative truncation mutant of RIG-I).
  • SAD ⁇ PLP infection triggered a potent IFN-response which could be further enhanced by the overexpression of RIG-I and strongly suppressed by RIG-IC ( FIG. 5A ).
  • RIG-I is required for the initiation of an IFN-response upon RV infection, as has been observed for other NSV, VSV and Flu (H. Kato et al., Nature 441, 101 (Apr. 9, 2006)).
  • RNA of NSV and of NSV-infected cells is not considered infectious and does not allow the initiation of a replicative cycle.
  • RNA from virions was isolated and assessed for its capability of inducing type I IFN expression.
  • Transfection of 200 ng of purified RV RNA effectively stimulated type I IFN induction in HEK 293T cells and dephosphorylation of the genomic RV RNA completely abrogated the IFN response.
  • An in vitro transcribed ssRNA corresponding to the 58-nucleotide long RV leader RNA confirmed recognition of and potent type I IFN induction by viral ssRNA.
  • RIG-I is required for the recognition of 5′ triphosphate RNA provides no evidence that RIG-I is the receptor for 5′ triphosphate RNA.
  • in vitro binding assays was carried out to test the ability of 5′ triphosphate RNA to pull down RIG-I or RIG-IC, the RNA binding domain of RIG-I.
  • RNA oligonucleotides with 3′ terminal biotin tags were generated and incubated with whole cell lysate from HEK 293 cells overexpressing full length RIG-I, RIG-I CARD2 (the second CARD of RIG-I) or RIG-I ⁇ Helicase_C (RIG-I devoid of the predicted helicase superfamily c-terminal domain). Subsequently streptavidin beads were used to pull down the biotin tags on the 5′ triphosphate RNA oligonucleotides.
  • biotinylated 5′ triphosphate oligonucleotide (tri-G-AC-U-Bio) was able to immunoprecipitate full length RIG-I ( FIG. 6A , third panel, middle part), it was not very effective at pulling down truncated versions of RIG-I, CARD2 and RIG-I ⁇ Helicase_C ( FIG. 6A , third panel left an right part).
  • Unbiotinylated control RNA oligonucleotide (tri-G-AC-U) did not immunoprecipitate RIG-I.
  • Purified RIG-IC was also efficiently pulled down by 5′ triphosphate RNA oligonucleotides ( FIG. 6B , second lane). If the initial 5′ triphosphate group of the RNA oligonucleotide was enzymatically removed prior to incubation with RIG-I, no co-precipitation was seen ( FIG. 6B , fourth lane).
  • RIG-I is the direct receptor responsible for the recognition of 5′ triphosphate RNA.
  • 5′ Adenosine Triphosphate RNA Oligonucleotides are Superior to 5′ Guanosine Triphosphate RNA Oligonucleotides in Inducing IFN- ⁇ Production
  • RNA9.2s (RNA9.2s-0A) was used as a reference oligonucleotide since it starts with a 5′ adenosine.
  • RNA9.2s-0A (5′ ATP)
  • RNA9.2s-1G (5′ GTP)
  • RNA9.2s-1G 5′ GTP
  • the latter showed a reduction of approximately 25% in IFN- ⁇ induction ( FIG. 12 , upper panel).
  • RNA9.2s-5A Another 19-mer oligonucleotide could be transcribed which initiated with a 5′ adenosine (RNA9.2s-5A).
  • RNA9.2s-5A paralleled RNA9.2-0A in terms of IFN- ⁇ induction.
  • RNA transcripts initiated with a 5′ adenosine are more potent in terms of IFN- ⁇ induction than those initiated with a 5′ guanosine.
  • the 5′ 4-nucleotide sequences which confer the highest IFN- ⁇ -inducing activity include AAGU, AAAG, AUGG, AUUA, AACG, AUGA, AGUU, AUUG, AACA, AGAA, AGCA, AACU, AUCG; AGGA, AUCA, AUGC, AGUA, AAGC, AACC, AGGU, AAAC, AUGU, ACUG, ACGA, ACAG, AAGG, ACAU, ACGC, AAAU, ACGG, AUUC, AGUG, ACAA, AUCC, AGUC.
  • total bacterial RNA is capable of inducing IFN- ⁇ production from monocytes.
  • RNA was isolated from E. coli bacteria strain DH10B, either treated or not treated with CIAP to dephosphorylate the 5′ end, and subsequently transfected into purified monocytes (200 ng of RNA). IFN- ⁇ production was analyzed 24 hours after stimulation.
  • Tri-GFPa was prepared via in vitro transcription, either treated or not treated with CIAP to dephosphorylate the 5′ end, and subsequently transfected into purified monocytes (200 ng of RNA). IFN- ⁇ production was analyzed 24 hours after stimulation.
  • 5′ triphosphate is only one of the molecular features which are responsible for the ability of bacterial RNA to induce IFN- ⁇ .
  • RNA Sequences SEQ ID No. Name Type Sequence 5′ ⁇ 3 103 Murine Bcl-2 RNA AUGCCUUUGUGGAACUAUA 2.1 sense 104 Murine Bcl-2 RNA UAUAGUUCCACAAAGGCAU 2.1 antisense 105 Murine Bcl-2 RNA GCAUGCGACCUCUGUUUGA 2.2 sense 106 Murine Bcl-2 RNA UCAAACAGAGGUCGCAUGC 2.2 Anti-sense 107 Murine Bcl-2 RNA GGAUGACUGAGUACCUGAA 2.3 sense 108 Murine Bcl-2 RNA UUCAGGUACUCAGUCAUCC 2.3 Anti-sense 109 Poly-A RNA AAAAAAAAAAAAAAAAA 175 Murine RIG-I RNA GAAGCGUCUUCUAAUAAUU Sense 176 Murine RIG-I RNA AAUUAUUAGAAGACGCUUC Anti-sense 177 Control RNA UUCUCCGAACGUGUCACGU
  • anti-Bcl-2.2 was in vitro transcribed thus bearing 5′ triphosphates (now termed 3p-2.2; for a detailed list of all in vitro transcription templates see Table 4).
  • 3p-2.2 was tested for its ability to reduce Bcl-2 expression ( FIG. 15 a ).
  • Transfection of B16 cells with 3p-2.2 siRNA also resulted in an efficient downregulation of Bcl-2.
  • this specific reduction of Bcl-2 was not observed with a nonspecific 3p-siRNA (3p-GC) or a synthetic control siRNA.
  • a synthetic siRNA targeting mouse RIG-I significantly reduced the 3p-2.2-dependent IFN- ⁇ promoter activation ( FIG. 15 d ;*P ⁇ 0.05 between control siRNA (siCO)+3p-2.2 and RIG-I siRNA (siRIG-1)+3p-2.2), demonstrating a clear role for RIG-I in 3p-2.2-induced signaling.
  • NS3-4A is a multifunctional serine protease of hepatitis C virus (HCV) which is capable of specifically cleaving and thereby inactivating Cardif (Chen Z et al. (2007) J. Virol. 81(2):964-76; Meylan E et al (2005) Nature 437(7062):1167-72).
  • HCV hepatitis C virus
  • Expression of NS3-4A in B16 cells greatly reduced IFN- ⁇ promoter activation by 3p-2.2, whereas expression of the inactive form NS3-4A* had no effect on IFN- ⁇ promoter activation ( FIG. 15 e ; *P ⁇ 0.05, NS3-4A*+3p-2.2 versus NS3-4A+3p-2.2).
  • B16 cells were analyzed for an apoptotic phenotype by Annexin-V and propidium iodide staining. 24 h after transfection, a significant increase in the number of apoptotic cells was observed with 3p-2.2 (14%) compared to the control siRNA (1.06%) ( FIG. 16 a ). In all experiments performed, approximately 15% (15.62% ⁇ 1.01; mean % ⁇ SEM) of B16 cells treated with 3p-2.2 were positive for Annexin-V; the number of apoptotic cells was approximately 4-fold lower in cells treated with control siRNAs ( FIG. 16 b; 2.93% ⁇ 1.12). Treatment with OH-2.2 also increased the number of apoptotic cells (5.63% ⁇ 0.66), however to a significantly less extent than 3p-2.2 ( FIG. 16 b ).
  • RNA viruses including Newcastle disease virus (NDV), Sendai virus (SeV) and vesicular stomatitis virus (VSV)
  • NDV Newcastle disease virus
  • SeV Sendai virus
  • VSV vesicular stomatitis virus
  • pDCs plasmacytoid DCs preferentially use TLR7, but not RIG-I, for the recognition of viruses such as NDV, leading to the induction of Type I IFNs.
  • FIG. 17 a , b, c IFN- ⁇ production by 3p-2.2-stimulated cDCs from RIG-1-deficient mice was completely abrogated ( FIG. 17 a ).
  • IFN- ⁇ production by 3p-2.2-stimulated cDCs from MDA5-deficient FIG. 17 b ; Wild-type versus MDA5 ⁇ / ⁇ : 2509 ⁇ 96 versus 2333 ⁇ 178; ⁇ g/ml ⁇ SEM) and TLR7-deficient ( FIG.
  • B cells, NK cells and CD8 T cells responded weakly to stimulation with 3p-2.2 by low IFN- ⁇ -production (cDCs 2357 ⁇ 437; pDCs 3036 ⁇ 354; NK cells 94 ⁇ 2.07, B cells and CD8 T cells 0; U/ml ⁇ SEM).
  • mice To gain insights into the biological relevance of 3p-2.2-mediated responses in vivo, we challenged mice with 3p-2.2 complexed to jetPEITM and measured serum cytokines including IFN- ⁇ , IL-12p40 and IFN- ⁇ ( FIG. 18 a , b, c). After 6 h, 3p-2.2 induced significantly higher levels of IFN- ⁇ than CpG 1826 or OH-2.2 ( FIG. 18 a ; P** ⁇ 0 . 01 between 3p-2.2 and OH-2.2, CpG 1826, jetPEITM and PBS). Both 3p-2.2 and OH-2.2 induced significant IL-12p40 production ( FIG. 18 b ; P** ⁇ 0 .
  • 3p-2.2 induced high level of IFN- ⁇ production in vivo ( FIG. 18 c ; P** ⁇ 0 . 01 between 3p-2.2 and OH-2.2; P′ ⁇ 0.05 between 3p-2.2 and jetPEITM and PBS).
  • IFN- ⁇ In contrast, production of IFN- ⁇ , IL-12p40 and IFN- ⁇ was severely impaired in TLR7-deficient mice after stimulation with OH-2.2 (IFN- ⁇ : Wild-type versus TLR7 ⁇ / ⁇ , 207 ⁇ 100 versus 0; IL-12p40: 1444 ⁇ 19 versus 553 ⁇ 147; IFN- ⁇ : 926 ⁇ 30 versus 107 ⁇ 35). Additionally, intravenous administration of 3p-2.2 in wild-type mice enhanced production of serum cytokines in a dose-dependent way ( FIG. 19 a ).
  • 3p-2.2 In further characterize the immunostimulatory potential of 3p-2.2 in vivo, we sacrificed wild-type mice 48 h after injection of 3p-2.2, isolated the spleen cells and analyzed surface expression of costimulatory molecules on distinct immune cell subsets by flow cytometry. As shown in FIGS. 19 b and 19 c, 3p-2.2 not only activated myeloid and plasmacytoid dendritic cells as reflected by increased CD69 and CD86 expression in a dose-dependent manner, but also upregulated CD69 expression on NK cells, CD4+ and CD8+ T cells in vivo.
  • mice were first challenged intravenously with B16 melanoma cells and subsequently treated with PolyA, OH-2.2, 3p-GC or 3p-2.2 according to the schedule depicted in FIG. 21 a .
  • PolyA (a nonstimulatory 19-mer RNA molecule; Table 3) complexed to jetPEITM served as the negative control.
  • CpG 1826 complexed to jetPEITM served as the positive control.
  • mice were sacrificed, and lungs were excised. Then lung metastases were counted using a dissecting microscope or, in case of massive tumor burden, weighed to determine tumor mass.
  • mice treated with OH-2.2 showed a non-significant reduction of lung metastases compared with the PolyA-treated control group ( FIG. 21 b ).
  • treatment with 3p-2.2 led to reduction of lung metastases in a significant percentage of mice compared to the OH-2,2- and PolyA-treated groups (P** ⁇ 0.01 between 3p-2.2 and PolyA, OH-2.2).
  • CpG 1826 was able to promote a significant reduction of lung metastases, but to a lesser extent than 3p-2.2.
  • siRNA In contrast, upon PEI complexation, intact siRNA was detected in high amounts in several tissues including liver and spleen (data not shown). Considerable amounts of FITC-labeled siRNA were detected in lungs of healthy mice, but to a lower extent in lung metastases of diseased mice ( FIG. 21 c , lower panel, +PEI).
  • HBV progeny decreased by >95% at day 6 post-transfection.
  • HBeAg levels were reduced by about 40%, HBsAg levels by about 50%. The same results were obtained with HBV-infected human hepatocytes.
  • alanin aminotransferase (ALT) levels remained in the normal range, reflecting the absence of cytoxicity of the RIG-1-ligands.
  • INF- ⁇ and 2′-5′-OAS were strongly induced after 3 h, which highly likely accounted for a 60% reduction of HBV RNA at d6 in comparison to mock-treated mice.
  • HBV viremia and HBeAg levels were about 50%, and HBsAg levels about 15% reduced at d6.
  • siRNA, shRNA or antisense RNA may be designed to target the region of the HBV genome spanning nucleotides 2656-3182 to be used as an anti-viral agent.
  • nucleotides 1272-3183 of the HBV genome may be targeted.
  • Inosin is a nucleoside, which is composed of hypoxanthin and ribose. Under certain circumstances, inosin is present in RNA instead of adenosin.
  • ADAR adenosine deaminase acting on RNA
  • desaminates adenosin to inosin Palladino M J et al. (2000) Cell 102(4): 437-49.
  • An important function of ADAR is the posttranscriptional modification of mRNA (Gerber A P and Keller W (2001) Trends Biochem Sci 26(6): 376-84).
  • adenosine in dsRNA is deaminated by ADAR to become inosin (Bass B L and Weintraub H (1988) Cell 55(6): 1089-98).
  • ADAR Weintraub H (1988) Cell 55(6): 1089-98.
  • adenins could be replaced by inosin, resulting in I:U and I:C basepairing.
  • dsRNA fragments (A and B, both derived from Taylor virus, plasmid pEL39: fragment A positions 4473 to 5006 and 4499 to 5034; fragment B positions 10953 to 519 and 26 to 548) were prepared by in vitro transcription.
  • 60% of the guanosin content was replaced by inosin during in vitro transcription.
  • Human monocytes produce IFN- ⁇ only upon stimulation of cytosolic receptors but not TLRs.
  • Purified human primary monocytes were transfected with dsRNA. After 18 hours, IFN- ⁇ was determined in the supernatants by ELISA. We found that the presence of inosin increased the activity of both A and B fragments to induce IFN- ⁇ in human monocytes ( FIG. 24A ). With inosin, the activity of the fragments A and B both were higher than the activity of poly(I:C).
  • both RIG-I and MDA-5 are expected to contribute to the biological activity. Therefore we tested the IFN- ⁇ -inducing activity of dsRNA fragments in bone marrow dendritic cells from MDA-5 ⁇ / ⁇ mice. In dendritic cells derived from MDA-5 ⁇ / ⁇ mice, the IFN- ⁇ inducing activity was increased by more than 4-fold when 60% of the guanosins were replaced by inosin ( FIG. 24B ). These data provide clear evidence that the RIG-1-stimulating activity of 5′ triphosphate RNA is strongly increased if the RNA contains inosin.
  • RNA generated by in vitro transcription the length and base composition at the 3′ end is not chemically defined.
  • the 3′ end may fold back and allow the polymerase to generate partially double-stranded RNA.
  • synthetic 5′ triphosphate RNAs (Table 6) were prepared as described (Ludwig J (1981) Acta Biochim Biophys Acad Sci Hung. 16:131-3). By using such synthetic 5′ triphosphate RNA, uncontrolled elongation of the 3′ end resulting in double-strand formation is excluded.
  • RNA9.2 (Homung V et al. (2005) Nat Med 11(3):263-70) generated by in vitro transcription was used a positive control (IVT2-3PRNA).
  • CpG2331 is a TLR9 ligand.
  • PBMC 400,000 cells per well
  • Lipofectamin 0.5 ⁇ l, 0.2 ⁇ g oligonucleotide
  • Hybridization of complementary strands was performed by heating 4 ⁇ g total RNA in 20 ⁇ l of buffer (final 50 mM Tris/HCl pH7.5 100 mM NaCl) up to 70° C. followed by cooling down to 40° C.
  • Chloroquine was used to block TLR-mediated nucleic acid recognition (2.5 ⁇ g/ml).
  • IFN- ⁇ hIFN- ⁇
  • the control without 5′ triphosphate did not induce and IFN- ⁇ .
  • the TLR9 ligand CpG2331 also induced IFN- ⁇ which was sensitive to chloroquine.
  • the activity of the 5′ triphosphate oligonucleotides was not reduced by chloroquine, confirming that IFN- ⁇ induction was independent of TLRs.
  • HepG2-H1.3 cells and primary human hepatocytes are infected with HBV at a MOI of 100 or mock infected.
  • 3 days after infection chemically synthesized single-stranded RNAs bearing 5′ triphosphate and having the nucleotide sequence of the antisense strand of HBV1.1, 1.2, 1.3 and HCV control (Table 5) are transfected into HBV-infected and mock infected cells.
  • the induction of IFN- ⁇ is determined by ELISA and the extend of HBV infection is determined by the number of HBV-infected cells, HBeAg levels and HBsAg levels 6 days after transfection.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Transplantation (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Pulmonology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
US12/376,812 2006-08-08 2007-08-08 Structure and use of 5'phosphate oligonucleotides Abandoned US20100178272A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP06016578 2006-08-08
EP06016578.4 2006-08-08
EP06021271.9 2006-10-10
EP06021271A EP1920775B1 (en) 2006-10-10 2006-10-10 5'Triphosphate oligonucleotide induces anti-viral response
PCT/EP2007/007024 WO2008017473A2 (en) 2006-08-08 2007-08-08 Structure and use of 5' phosphate oligonucleotides

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/007024 A-371-Of-International WO2008017473A2 (en) 2006-08-08 2007-08-08 Structure and use of 5' phosphate oligonucleotides

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/466,747 Division US9381208B2 (en) 2006-08-08 2012-05-08 Structure and use of 5′ phosphate oligonucleotides

Publications (1)

Publication Number Publication Date
US20100178272A1 true US20100178272A1 (en) 2010-07-15

Family

ID=38875059

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/376,812 Abandoned US20100178272A1 (en) 2006-08-08 2007-08-08 Structure and use of 5'phosphate oligonucleotides
US13/466,747 Active US9381208B2 (en) 2006-08-08 2012-05-08 Structure and use of 5′ phosphate oligonucleotides
US14/936,375 Active US10238682B2 (en) 2006-08-08 2015-11-09 Structure and use of 5′ phosphate oligonucleotides

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/466,747 Active US9381208B2 (en) 2006-08-08 2012-05-08 Structure and use of 5′ phosphate oligonucleotides
US14/936,375 Active US10238682B2 (en) 2006-08-08 2015-11-09 Structure and use of 5′ phosphate oligonucleotides

Country Status (14)

Country Link
US (3) US20100178272A1 (lt)
EP (3) EP4082551A1 (lt)
JP (6) JP2010500011A (lt)
AU (1) AU2007283022B2 (lt)
CA (1) CA2660232C (lt)
CY (1) CY1119608T1 (lt)
DK (1) DK2056845T3 (lt)
ES (2) ES2911034T3 (lt)
HU (1) HUE037173T2 (lt)
LT (1) LT2056845T (lt)
PL (1) PL2056845T3 (lt)
PT (1) PT2056845T (lt)
SI (1) SI2056845T1 (lt)
WO (1) WO2008017473A2 (lt)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120009130A1 (en) * 2010-05-06 2012-01-12 Nanoaxis Viral Therapy and Prophylaxis Using Nanotechnology Delivery Techniques
WO2013116482A1 (en) * 2012-01-31 2013-08-08 Shanghai Raas Blood Products Co., Ltd. Process of afod and afcc and manufacturing and purification processes of proteins
US20140186398A1 (en) * 2011-07-18 2014-07-03 Icahn School Of Medicine At Mount Sinai BACTERIAL RNAs AS VACCINE ADJUVANTS
US9381208B2 (en) 2006-08-08 2016-07-05 Rheinische Friedrich-Wilhelms-Universität Structure and use of 5′ phosphate oligonucleotides
US9399658B2 (en) 2011-03-28 2016-07-26 Rheinische Friedrich-Wilhelms-Universität Bonn Purification of triphosphorylated oligonucleotides using capture tags
US9649366B2 (en) 2007-09-19 2017-05-16 Kieu Hoang Manufacturing and purification processes of Complex protein found in Fraction IV to make a separated Apo, Transferrin, and Alpha 1 Antitrypsin (A1AT) or a combined Transferrin/Apo/Human Albumin/A1AT and all new found proteins
US9738680B2 (en) 2008-05-21 2017-08-22 Rheinische Friedrich-Wilhelms-Universität Bonn 5′ triphosphate oligonucleotide with blunt end and uses thereof
US10059943B2 (en) 2012-09-27 2018-08-28 Rheinische Friedrich-Wilhelms-Universität Bonn RIG-I ligands and methods for producing them
US10077439B2 (en) * 2013-03-15 2018-09-18 Modernatx, Inc. Removal of DNA fragments in mRNA production process
US10138507B2 (en) 2013-03-15 2018-11-27 Modernatx, Inc. Manufacturing methods for production of RNA transcripts
US10286086B2 (en) 2014-06-19 2019-05-14 Modernatx, Inc. Alternative nucleic acid molecules and uses thereof
US10407683B2 (en) 2014-07-16 2019-09-10 Modernatx, Inc. Circular polynucleotides
US10590161B2 (en) 2013-03-15 2020-03-17 Modernatx, Inc. Ion exchange purification of mRNA
US20200102565A1 (en) * 2013-09-16 2020-04-02 St. Jude Children's Research Hospital, Inc. Methods for overcoming glucocorticoid resistance and for determining glucocorticoid resistance potential in cancer
US10898574B2 (en) 2011-03-31 2021-01-26 Modernatx, Inc. Delivery and formulation of engineered nucleic acids
US11027025B2 (en) 2013-07-11 2021-06-08 Modernatx, Inc. Compositions comprising synthetic polynucleotides encoding CRISPR related proteins and synthetic sgRNAs and methods of use
US11377470B2 (en) 2013-03-15 2022-07-05 Modernatx, Inc. Ribonucleic acid purification
US11434486B2 (en) 2015-09-17 2022-09-06 Modernatx, Inc. Polynucleotides containing a morpholino linker
WO2023168352A1 (en) 2022-03-03 2023-09-07 Yale University Humanized 3e10 antibodies, variants, and antigen binding fragments thereof
US12109274B2 (en) 2015-09-17 2024-10-08 Modernatx, Inc. Polynucleotides containing a stabilizing tail region

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2338499A1 (en) 2006-10-10 2011-06-29 Gunther Hartmann 5' triphosphate oligonucleotide induces anti-viral response
CN101424640B (zh) 2007-11-02 2012-07-25 江苏命码生物科技有限公司 血清中微小核糖核酸的检测方法和用于检测的试剂盒、生物芯片及其制作和应用方法
JP2017006144A (ja) * 2008-05-21 2017-01-12 ライニッシュ フリードリッヒ−ウィルヘルムズ−ユニバーシタット ボン 平滑末端を有する5’三リン酸オリゴヌクレオチドおよびその使用
EP2123757B1 (en) 2008-05-21 2012-10-31 Hartmann, Gunther, Prof. Dr. 5` triphosphate oligonucleotide with blunt end and uses thereof
WO2010002851A1 (en) * 2008-06-30 2010-01-07 Alnylam Pharmaceuticals, Inc. Silencing and rig-1 activation by dual function oligonucleotides
WO2010085665A2 (en) 2009-01-23 2010-07-29 Cedars-Sinai Medical Center Targeted delivery system
AU2010225129A1 (en) 2009-03-17 2010-09-23 Gunther Hartmann TLR7 ligand and uses thereof
EP2506879A4 (en) * 2009-12-01 2014-03-19 Protiva Biotherapeutics Inc PREPARATIONS OF SNALP CONTAINING ANTIOXIDANTS
WO2011106104A2 (en) * 2010-02-26 2011-09-01 Memorial Sloan-Kettering Cancer Center Methods and compositions for the detection and treatment of cancer involving mirnas and mirna inhibitors and targets
WO2011114346A1 (en) 2010-03-18 2011-09-22 Chetan Balar Chitin and related compounds for use in treating bacterial and viral infections
CN101892241B (zh) * 2010-07-09 2013-01-09 电子科技大学 一种草鱼白细胞介素1β基因和蛋白及其重组表达方法
CN107973833A (zh) * 2010-08-30 2018-05-01 斯普林银行医药公司 作为治疗剂的寡核苷酸类似物的设计
CN103703141B (zh) * 2011-04-08 2016-08-17 伯乐实验室公司 具有降低的非特异性活性的pcr反应混合物
EP2773760B2 (en) 2011-10-31 2020-11-04 RiboxX GmbH Double-stranded rna for immunostimulation
WO2013097965A1 (en) 2011-12-30 2013-07-04 Riboxx Gmbh Triphosphate-containing double-stranded rna for immunostimulation
WO2014124433A1 (en) * 2013-02-11 2014-08-14 Oregon Health & Science University 5'-triphosphate oligoribonucleotides
KR102160389B1 (ko) 2013-08-05 2020-09-28 트위스트 바이오사이언스 코포레이션 드 노보 합성된 유전자 라이브러리
AU2014368776A1 (en) 2013-12-16 2016-07-28 Riboxx Gmbh Double-stranded polyC:poly(G/I) RNA for immunostimulation and cancer treatment
JP2015142566A (ja) * 2013-12-26 2015-08-06 国立大学法人 鹿児島大学 養魚用飼料
US9670489B2 (en) * 2014-07-14 2017-06-06 Kaohsiung Medical University Method for treating and/or preventing myopia
WO2016011324A2 (en) 2014-07-18 2016-01-21 Oregon Health & Science University 5'-triphosphate oligoribonucleotides
WO2016126882A1 (en) 2015-02-04 2016-08-11 Twist Bioscience Corporation Methods and devices for de novo oligonucleic acid assembly
WO2016126987A1 (en) * 2015-02-04 2016-08-11 Twist Bioscience Corporation Compositions and methods for synthetic gene assembly
US9981239B2 (en) 2015-04-21 2018-05-29 Twist Bioscience Corporation Devices and methods for oligonucleic acid library synthesis
EP3350314A4 (en) 2015-09-18 2019-02-06 Twist Bioscience Corporation BANKS OF OLIGONUCLEIC ACID VARIANTS AND SYNTHESIS THEREOF
KR20180058772A (ko) 2015-09-22 2018-06-01 트위스트 바이오사이언스 코포레이션 핵산 합성을 위한 가요성 기판
WO2017065405A1 (ko) 2015-10-15 2017-04-20 한국과학기술원 Rna 올리고뉴클레오티드를 포함하는 항바이러스제
KR101899057B1 (ko) * 2015-10-15 2018-09-14 한국과학기술원 Rna 올리고뉴클레오티드를 포함하는 암 치료용 약학 조성물
WO2017065369A1 (ko) 2015-10-15 2017-04-20 한국과학기술원 Rna 올리고뉴클레오티드 및 이를 포함하는 면역 활성제
KR101881502B1 (ko) 2015-10-15 2018-07-25 한국과학기술원 Rna 올리고뉴클레오티드를 포함하는 항바이러스제
KR101842679B1 (ko) 2015-10-15 2018-03-28 한국과학기술원 Rna 올리고뉴클레오티드 및 이를 포함하는 면역 활성제
CN115920796A (zh) 2015-12-01 2023-04-07 特韦斯特生物科学公司 功能化表面及其制备
CA3034769A1 (en) 2016-08-22 2018-03-01 Twist Bioscience Corporation De novo synthesized nucleic acid libraries
US10417457B2 (en) 2016-09-21 2019-09-17 Twist Bioscience Corporation Nucleic acid based data storage
GB2573069A (en) 2016-12-16 2019-10-23 Twist Bioscience Corp Variant libraries of the immunological synapse and synthesis thereof
CA3054303A1 (en) 2017-02-22 2018-08-30 Twist Bioscience Corporation Nucleic acid based data storage
US10894959B2 (en) 2017-03-15 2021-01-19 Twist Bioscience Corporation Variant libraries of the immunological synapse and synthesis thereof
WO2018172546A1 (en) 2017-03-24 2018-09-27 Rigontec Gmbh Method for designing rig-i ligands
BR112019021520A2 (pt) 2017-04-14 2020-08-04 Tollnine, Inc. oligonucleotídeo, composto, polinucleotídeo imunomodulador, composição, conjugado, método para modular um receptor, método de tratamento de um tumor, método de tratamento de câncer, método para tratar um tumor, método de prevenção de câncer, método para induzir uma resposta imune
WO2018231864A1 (en) 2017-06-12 2018-12-20 Twist Bioscience Corporation Methods for seamless nucleic acid assembly
AU2018284227B2 (en) 2017-06-12 2024-05-02 Twist Bioscience Corporation Methods for seamless nucleic acid assembly
CN111566125A (zh) 2017-09-11 2020-08-21 特韦斯特生物科学公司 Gpcr结合蛋白及其合成
GB2583590A (en) 2017-10-20 2020-11-04 Twist Bioscience Corp Heated nanowells for polynucleotide synthesis
AU2019205269A1 (en) 2018-01-04 2020-07-30 Twist Bioscience Corporation DNA-based digital information storage
RU2020128838A (ru) * 2018-02-02 2022-03-03 Юниверсити Оф Вашингтон Композиции и способы для индуцирования передачи сигнала белка, содержащего трехсторонний мотив, 16 (trim16)
AU2019255370B2 (en) 2018-04-19 2023-11-02 Checkmate Pharmaceuticals, Inc. Synthetic RIG-I-like receptor agonists
CN112639130B (zh) 2018-05-18 2024-08-09 特韦斯特生物科学公司 用于核酸杂交的多核苷酸、试剂和方法
CA3115294A1 (en) * 2018-10-09 2020-04-16 Yale University Rig-i agonists and methods of using same
JP2022522668A (ja) 2019-02-26 2022-04-20 ツイスト バイオサイエンス コーポレーション 抗体を最適化するための変異体核酸ライブラリ
WO2020176678A1 (en) 2019-02-26 2020-09-03 Twist Bioscience Corporation Variant nucleic acid libraries for glp1 receptor
WO2020225779A1 (en) * 2019-05-09 2020-11-12 Istituto Pasteur Italia - Fondazione Cenci Bolognetti Rig-i agonists for cancer treatment and immunotherapy
CA3144644A1 (en) 2019-06-21 2020-12-24 Twist Bioscience Corporation Barcode-based nucleic acid sequence assembly
EP3990635A1 (en) 2019-06-27 2022-05-04 Rigontec GmbH Design method for optimized rig-i ligands
AU2020328855A1 (en) 2019-08-14 2022-03-03 CureVac SE RNA combinations and compositions with decreased immunostimulatory properties
AU2020356471A1 (en) 2019-09-23 2022-04-21 Twist Bioscience Corporation Variant nucleic acid libraries for CRTH2
US11920136B2 (en) 2020-02-28 2024-03-05 Tallac Therapeutics, Inc. Transglutaminase-mediated conjugation
EP3909612A1 (en) 2020-05-12 2021-11-17 Life Science Inkubator Betriebs GmbH & Co. KG Composition of nanoparticles
EP4271392A1 (en) * 2020-12-30 2023-11-08 Transcode Therapeutics, Inc. Template directed immunomodulation for cancer therapy
IL309662A (en) 2021-07-02 2024-02-01 Univ Yale Compositions and methods for treating cancer
EP4395832A1 (en) 2021-08-31 2024-07-10 Yale University Compositions and methods for treating cancers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344323B1 (en) * 1998-09-16 2002-02-05 Vitagenix, Inc. Compositions and methods for inhibiting cox-2 expression and treating cox-2 associated disorders by using cox-2 antisense oligonucleotides
US20050222060A1 (en) * 2002-03-15 2005-10-06 Bot Adrian L Compositions and methods to initiate or enhance antibody and major-histocompatibility class I or class II-restricted t cell responses by using immunomodulatory, non-coding rna motifs
US20060178334A1 (en) * 2005-02-04 2006-08-10 City Of Hope Double-stranded and single-stranded RNA molecules with 5 ' triphosphates and their use for inducing interferon

Family Cites Families (218)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3534017A (en) 1967-03-14 1970-10-13 Kyowa Hakko Kogyo Kk Process for the preparation of nucleoside-5'-diphosphates and triphosphates and mono- and oligo-nucleotidyl-nucleoside-5'-diphosphates and triphosphates
US4210746A (en) 1978-08-10 1980-07-01 National Research Development Corporation Nucleotide inhibitor of protein synthesis
US4285605A (en) 1979-07-02 1981-08-25 International Business Machines Corporation Escapement mechanism and backspace mechanism for a moving paper carriage typewriter having dual pitch capability
FR2471785A1 (fr) 1979-12-21 1981-06-26 Fabre Sa Pierre Preparations immunostimulantes a base d'arn ribosomaux et procede de preparation des arn
DE3023787A1 (de) 1980-06-25 1982-01-21 Studiengesellschaft Kohle mbH, 4330 Mülheim Verfahren zur erhoehung der inkorporation und der expression von genetischem material in die kerne von intakten zellen mit hilfe von liposomen
EP0081099A3 (en) 1981-12-04 1983-08-10 Sloan-Kettering Institute For Cancer Research Capped oligonucleotide anti-viral agents
US4522811A (en) 1982-07-08 1985-06-11 Syntex (U.S.A.) Inc. Serial injection of muramyldipeptides and liposomes enhances the anti-infective activity of muramyldipeptides
US5194428A (en) 1986-05-23 1993-03-16 Worcester Foundation For Experimental Biology Inhibition of influenza virus replication by oligonucleotide phosphorothioates
US5264423A (en) 1987-03-25 1993-11-23 The United States Of America As Represented By The Department Of Health And Human Services Inhibitors for replication of retroviruses and for the expression of oncogene products
JPH04501052A (ja) 1988-02-26 1992-02-27 ザ・ウスター・フアウンデーシヨン・フオー・バイオメデイカル・リサーチ 外来性オリゴヌクレオチドによるhtlv―3の抑制
JP2976436B2 (ja) 1988-04-27 1999-11-10 味の素株式会社 新規オリゴリボヌクレオチド誘導体及び抗ウイルス剤への使用
DE68929361T2 (de) 1988-04-27 2002-06-20 Isis Pharmaceuticals, Inc. Oligoribonukleotid-Derivate und Verwendung davon als Antiviral Arzneimittel
DE3907562A1 (de) 1989-03-09 1990-09-13 Bayer Ag Antisense-oligonukleotide zur inhibierung der transaktivatorzielsequenz (tar) und der synthese des transaktivatorproteins (tat) aus hiv-1 und deren verwendung
EP0472648A4 (en) 1989-05-18 1992-09-16 Microprobe Corporation Crosslinking oligonucleotides
US5134066A (en) 1989-08-29 1992-07-28 Monsanto Company Improved probes using nucleosides containing 3-dezauracil analogs
EP0800830A3 (en) 1989-11-03 1999-03-17 Vanderbilt University Method of in vivo delivery of functioning foreign genes
US5149797A (en) 1990-02-15 1992-09-22 The Worcester Foundation For Experimental Biology Method of site-specific alteration of rna and production of encoded polypeptides
BR9106258A (pt) 1990-03-21 1993-04-06 Isis Pharmaceuticals Inc Processos para modular a expressao de um gene,para tratar uma doenca,um animal ou uma infeccao e para interferir com a funcao ou replicacao de um virus e oligonucleotideo ou analogo de oligonucleotideo
US5292875A (en) 1990-04-20 1994-03-08 Lynx Therapeutics, Inc. Method of synthesizing sulfurized oligonucleotide analogs
US5166195A (en) 1990-05-11 1992-11-24 Isis Pharmaceuticals, Inc. Antisense inhibitors of the human immunodeficiency virus phosphorothioate oligonucleotides
IL99069A (en) 1990-08-09 1998-08-16 Genta Inc Methyphosphonate oligonucleotides associated with psoralen
HUT69956A (en) 1990-08-14 1995-09-28 Isis Pharmaceuticals Inc Methode for inhibition of influenza virus by antiseuse oligonucleotides
US5271941A (en) 1990-11-02 1993-12-21 Cho Chung Yoon S Antisense oligonucleotides of human regulatory subunit RI.sub.α of cAMP-dependent protein kinases
AU661490B2 (en) 1991-03-27 1995-07-27 Research Corporation Technologies, Inc. Single-stranded circular oligonucleotides
DE4110085A1 (de) 1991-03-27 1992-10-01 Boehringer Ingelheim Int 2'-o-alkyl-oligoribonukleotide, verfahren zu deren herstellung und deren verwendung als antisense-oligonukleotide
US5646267A (en) 1991-08-05 1997-07-08 Polish Academy Of Sciences Method of making oligonucleotides and oligonucleotide analogs using phospholanes and enantiomerically resolved phospholane analogues
US7119184B2 (en) 1991-08-12 2006-10-10 Isis Pharmaceuticals, Inc. Oligonucleotides having A-DNA form and B-DNA form conformational geometry
US6369209B1 (en) 1999-05-03 2002-04-09 Isis Pharmaceuticals, Inc. Oligonucleotides having A-DNA form and B-DNA form conformational geometry
ATE221127T1 (de) 1991-10-15 2002-08-15 Isis Pharmaceuticals Inc Über chirale phosphoratome gebundene oligonukleotide
NZ244820A (en) 1991-10-25 1994-01-26 Isis Pharmaceuticals Inc Oligonucleotide inhibitor of epstein-barr virus.
FR2685346B1 (fr) 1991-12-18 1994-02-11 Cis Bio International Procede de preparation d'arn double-brin, et ses applications.
US5644048A (en) 1992-01-10 1997-07-01 Isis Pharmaceuticals, Inc. Process for preparing phosphorothioate oligonucleotides
AU687736B2 (en) 1992-05-11 1998-03-05 Ribozyme Pharmaceuticals, Inc. Method and reagent for inhibiting viral replication
US5606049A (en) 1992-06-03 1997-02-25 Genta Incorporated Method of preparing 2'-O-methyl cytidine monomers useful in oligomer synthesis
US6346614B1 (en) 1992-07-23 2002-02-12 Hybridon, Inc. Hybrid oligonucleotide phosphorothioates
DE69333842T2 (de) 1992-07-23 2006-04-27 Isis Pharmaceuticals, Inc., Carlsbad Neue 2'-O-Alkyl-Nukleoside und -Phosphoramidite, Verfahren zu ihrer Herstellung und ihre Verwendungen
US5652355A (en) 1992-07-23 1997-07-29 Worcester Foundation For Experimental Biology Hybrid oligonucleotide phosphorothioates
TW244371B (lt) 1992-07-23 1995-04-01 Tri Clover Inc
IL108206A0 (en) 1993-01-06 1994-04-12 Univ Johns Hopkins Oligomers having improved stability at acid ph
EP0677056B1 (en) 1993-01-25 1996-05-22 HYBRIDON, Inc. Oligonucleotide alkylphosphonates and alkylphosphonothioates
AU6632094A (en) 1993-04-19 1994-11-08 Gilead Sciences, Inc. Enhanced triple-helix and double-helix formation with oligomers containing modified purines
FR2705099B1 (fr) 1993-05-12 1995-08-04 Centre Nat Rech Scient Oligonucléotides phosphorothioates triesters et procédé de préparation.
JPH09500787A (ja) 1993-07-19 1997-01-28 ジェン−プローブ・インコーポレイテッド 蛋白生産、細胞増殖および/または感染症病原体の増殖に対するオリゴヌクレオチド阻害の促進
JPH0799976A (ja) 1993-09-30 1995-04-18 Takeda Chem Ind Ltd 修飾オリゴヌクレオチド
US5801235A (en) 1994-05-25 1998-09-01 Hybridon, Inc. Oligonucleotides with anti-cytomegalovirus activity
WO1995032719A1 (en) 1994-05-27 1995-12-07 Hybridon, Inc. Use of oligonucleotide phosphorothioate for depleting complement and for reducing blood pressure
US5866699A (en) 1994-07-18 1999-02-02 Hybridon, Inc. Oligonucleotides with anti-MDR-1 gene activity
DE69521517T2 (de) 1994-09-07 2002-04-18 Hybridon, Inc. Prodrug-oligonukleotide
GB2293088B (en) 1994-09-16 1998-02-04 Alliedsignal Ltd Guide loop height adjustment for vehicle passenger seat belts
US5591721A (en) 1994-10-25 1997-01-07 Hybridon, Inc. Method of down-regulating gene expression
JPH08154687A (ja) 1994-12-12 1996-06-18 Yamanouchi Pharmaceut Co Ltd アンチセンスオリゴヌクレオチド及び抗ウイルス剤
AU4412096A (en) 1994-12-13 1996-07-03 Ribozyme Pharmaceuticals, Inc. Method and reagent for treatment of arthritic conditions, induction of graft tolerance and reversal of immune responses
AU4514696A (en) 1994-12-22 1996-07-10 Hybridon, Inc. Synthesis of stereospecific oligonucleotide phosphorothioates
US6111095A (en) * 1995-06-07 2000-08-29 Merck & Co., Inc. Capped synthetic RNA, analogs, and aptamers
GB9511720D0 (en) * 1995-06-09 1995-08-02 Isis Innovation Oligonucleotide phosphorylation method and products
US20040234999A1 (en) 1996-04-02 2004-11-25 Farrar Gwenyth Jane Genetic suppression and replacement
US6127535A (en) 1997-11-05 2000-10-03 Ribozyme Pharmaceuticals, Inc. Nucleoside triphosphates and their incorporation into oligonucleotides
EP1626086A2 (en) 1998-04-20 2006-02-15 Ribozyme Pharmaceuticals, Inc. Double-stranded nucleic acid molecules with novel chemical compositions capable of modulating gene expression
EP1073732A2 (en) 1998-04-29 2001-02-07 Ribozyme Pharmaceuticals, Inc. Nucleoside triphosphates and their incorporation into ribozymes
EP1493818A3 (en) 1998-04-29 2006-02-15 Ribozyme Pharmaceuticals, Inc. Nucleoside triphosphates and their incorporation into ribozymes
US6562798B1 (en) 1998-06-05 2003-05-13 Dynavax Technologies Corp. Immunostimulatory oligonucleotides with modified bases and methods of use thereof
WO2001016312A2 (en) 1999-08-31 2001-03-08 Ribozyme Pharmaceuticals, Inc. Nucleic acid based modulators of gene expression
EP1220684B2 (en) 1999-09-27 2010-07-14 Coley Pharmaceutical Group, Inc. Methods related to immunostimulatory nucleic acid-induced interferon
US20020028784A1 (en) * 2000-03-10 2002-03-07 Nest Gary Van Methods of preventing and treating viral infections using immunomodulatory polynucleotide sequences
DE10013600A1 (de) 2000-03-18 2002-01-10 Aventis Res & Tech Gmbh & Co Reaktive Monomere für die Oligonucleotid- und Polynucleotidsynthese, modifizierte Oligonucleotide und Polynucleotiden und ein Verfahren zu deren Herstellung
US6686461B1 (en) 2000-03-22 2004-02-03 Solulink Bioscience, Inc. Triphosphate oligonucleotide modification reagents and uses thereof
EP1247815A3 (en) 2001-03-25 2003-01-29 Exiqon A/S Modified oligonucleotides and uses thereof
WO2003008432A1 (en) 2001-07-16 2003-01-30 Isis Pharmaceuticals, Inc. Process for the preparation of alpha modified nucleoside triphosphates and compounds therefrom
AU2002329667A1 (en) 2001-07-30 2003-02-17 Uta Griesenbach Specific inhibition of gene expression by small double stranded rnas
FR2832154B1 (fr) 2001-11-09 2007-03-16 Centre Nat Rech Scient Oligonucleotides inhibiteurs et leur utilisation pour reprimer specifiquement un gene
US20030203868A1 (en) 2002-02-06 2003-10-30 Bushman Frederic D. Inhibition of pathogen replication by RNA interference
JP2005525358A (ja) 2002-02-28 2005-08-25 ビオタ インコーポレーティッド ヌクレオチド模倣体およびそのプロドラッグ
ES2734652T3 (es) 2002-04-04 2019-12-11 Zoetis Belgium S A Oligorribonucleótidos inmunoestimulantes que contienen G y U
ES2397060T3 (es) 2002-04-18 2013-03-04 Opko Pharmaceuticals, Llc Medios y métodos para la modulación específica de genes diana en el ojo
KR20050026384A (ko) 2002-04-26 2005-03-15 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 RNAi효과를 가지는 스템 루프 형 RNA 분자 발현 시스템
CA2388049A1 (en) 2002-05-30 2003-11-30 Immunotech S.A. Immunostimulatory oligonucleotides and uses thereof
US7700758B2 (en) 2002-08-12 2010-04-20 New England Biolabs, Inc. Methods and compositions relating to gene silencing
US7109316B2 (en) 2002-08-23 2006-09-19 Ce Healthcare Bio-Sciences Corp. Oligonucleotide tagged nucleoside triphosphates (OTNTPs) for genetic analysis
US20110098200A1 (en) 2002-09-04 2011-04-28 Johnson & Johnson Research Pty Ltd Methods using dsdna to mediate rna interference (rnai)
DE60335636D1 (de) 2002-09-11 2011-02-17 Genentech Inc Zusammensetzungen und verfahren für die tumordiagnose und behandlung
US7250496B2 (en) 2002-11-14 2007-07-31 Rosetta Genomics Ltd. Bioinformatically detectable group of novel regulatory genes and uses thereof
DK2284266T3 (da) 2002-11-14 2014-01-13 Thermo Fisher Scient Biosciences Inc sIRNA-MOLEKYLE MOD TP53
US7696334B1 (en) 2002-12-05 2010-04-13 Rosetta Genomics, Ltd. Bioinformatically detectable human herpesvirus 5 regulatory gene
US7217807B2 (en) 2002-11-26 2007-05-15 Rosetta Genomics Ltd Bioinformatically detectable group of novel HIV regulatory genes and uses thereof
US20130130231A1 (en) 2002-11-26 2013-05-23 Isaac Bentwich Bioinformatically detectable group of novel viral regulatory genes and uses thereof
CA2511907A1 (en) 2003-01-06 2004-07-22 Wyeth Compositions and methods for diagnosing and treating colon cancers
WO2004074441A2 (en) 2003-02-19 2004-09-02 Government Of The United States Of America Represented By The Secretary Department Of Health And Human Services Amplification or overexpression of mll septin-like fusion (msf) and septin9 and methods related thereto
CN1176937C (zh) 2003-02-21 2004-11-24 复旦大学附属中山医院 一种双链rna及其用途
US20040261149A1 (en) 2003-02-24 2004-12-23 Fauquet Claude M. siRNA-mediated inhibition of gene expression in plant cells
US7381410B2 (en) 2003-03-12 2008-06-03 Vasgene Therapeutics, Inc. Polypeptide compounds for inhibiting angiogenesis and tumor growth
JP2006521111A (ja) 2003-03-12 2006-09-21 バスジーン セラピューティクス, インコーポレイテッド 血管形成及び腫瘍増殖阻害用ポリペプチド化合物及びその応用
CA2519860C (en) 2003-03-21 2018-01-16 Santaris Pharma A/S Short interfering rna (sirna) analogues
US20040220130A1 (en) 2003-03-24 2004-11-04 Robbins Paul D. Compact synthetic expression vector comprising double-stranded DNA molecules and methods of use thereof
US8969543B2 (en) 2003-04-03 2015-03-03 Bioneer Corporation SiRNA-hydrophilic polymer conjugates for intracellular delivery of siRNA and method thereof
US20050042641A1 (en) 2003-05-27 2005-02-24 Cold Spring Harbor Laboratory In vivo high throughput selection of RNAi probes
WO2004106517A1 (en) 2003-06-03 2004-12-09 Benitec Australia Limited Double-stranded nucleic acid
EP1637597A4 (en) 2003-06-06 2006-07-19 Dainippon Sumitomo Pharma Co NUCLEIC INFUSION PROCESS
WO2005001055A2 (en) 2003-06-11 2005-01-06 Hybridon, Inc. Stabilized immunomodulatory oligonucleotides
FR2857013B1 (fr) 2003-07-02 2005-09-30 Commissariat Energie Atomique Petits arn interferents specifiques des sous-unites alpha, alpha prime et beta de la proteine kinase ck2 et leurs applications
JP4842821B2 (ja) * 2003-09-15 2011-12-21 プロチバ バイオセラピューティクス インコーポレイティッド ポリエチレングリコール修飾脂質化合物およびその使用
WO2005076979A2 (en) 2004-02-06 2005-08-25 Wyeth Diagnosis and therapeutics for cancer
US20050182005A1 (en) 2004-02-13 2005-08-18 Tuschl Thomas H. Anti-microRNA oligonucleotide molecules
US20070265220A1 (en) 2004-03-15 2007-11-15 City Of Hope Methods and compositions for the specific inhibition of gene expression by double-stranded RNA
CA2559955C (en) 2004-03-15 2016-02-16 City Of Hope Methods and compositions for the specific inhibition of gene expression by double-stranded rna
US7674778B2 (en) * 2004-04-30 2010-03-09 Alnylam Pharmaceuticals Oligonucleotides comprising a conjugate group linked through a C5-modified pyrimidine
US20060035815A1 (en) 2004-05-04 2006-02-16 Nastech Pharmaceutical Company Inc. Pharmaceutical compositions for delivery of ribonucleic acid to a cell
MXPA06012605A (es) 2004-05-04 2006-12-15 Nastech Pharm Co Composiciones y metodos para mejorar el suministro de acidos nucleicos en celulas y para modificar la expresion de genes objetivo en celulas.
US20070218079A1 (en) 2004-05-12 2007-09-20 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V. Method to induce rnai in prokaryotic organisms
AU2005259799A1 (en) 2004-07-02 2006-01-12 Protiva Biotherapeutics, Inc. Immunostimulatory siRNA molecules and uses therefor
JPWO2006016574A1 (ja) 2004-08-12 2008-05-01 国立大学法人 熊本大学 RNAiを利用した抗腫瘍剤
ATE505540T1 (de) 2004-11-16 2011-04-15 Qiagen Gmbh Genabschaltung (gene silencing) durch hybride sens-dna und antisens-rna konstrukte, gekoppelt an ein peptid zur erleichterten aufnahme in zellen
EP1819365B1 (en) 2004-12-09 2014-07-02 Alnylam Pharmaceuticals Inc. Compositions and methods for inducing an immune response in a mammal and methods of avoiding an immune response to oligonucleotide agents such as short interfering RNAs
EP1838144B1 (en) 2005-01-07 2016-08-31 Oregon State University Method to trigger rna interference
WO2006078646A2 (en) 2005-01-18 2006-07-27 Caltagirone Gaetano T A class of supramolecular drug molecules and methods of identification and use thereof
EP1857119B1 (en) 2005-02-07 2011-11-23 Takeda Pharmaceutical Company Limited Screening for a compound promoting binding between fbl2 and amyloid precursor protein or its c-terminal fragments alpha and beta
JP4645234B2 (ja) 2005-03-03 2011-03-09 和光純薬工業株式会社 架橋剤、それを用いた架橋方法、遺伝子発現調節方法および遺伝子機能調査方法
TWI335352B (en) 2005-03-31 2011-01-01 Calando Pharmaceuticals Inc Inhibitors of ribonucleotide reductase subunit 2 and uses thereof
EP1877065A4 (en) 2005-04-12 2010-12-22 Intradigm Corp COMPOSITION OF INTERFERENT RNA THERAPEUTIC AGENTS (RNAi) AND METHODS FOR TREATING CANCER AND OTHER NEOVASCULARIZATION DISEASES
US7893244B2 (en) 2005-04-12 2011-02-22 Intradigm Corporation Composition and methods of RNAi therapeutics for treatment of cancer and other neovascularization diseases
US20070066521A1 (en) 2005-04-13 2007-03-22 Fauquet Claude M Short RNA-binding proteins
WO2006119643A1 (en) 2005-05-12 2006-11-16 Replicor Inc. Anti-ocular angiogenesis molecules and their uses
WO2006122409A1 (en) 2005-05-16 2006-11-23 Replicor Inc. Antimicrobial molecules and their uses
EP1888749B1 (en) * 2005-06-01 2014-10-15 Polyplus Transfection Oligonucleotides for rna interference and biological applications thereof
WO2006130949A1 (en) 2005-06-08 2006-12-14 Replicor Inc. Anti amyloid-related disease molecules and their uses
CA2614531C (en) 2005-07-07 2015-06-16 Avraham Hochberg Nucleic acid agents for downregulating h19, and methods of using same
AU2006280600B2 (en) 2005-08-17 2012-01-19 Bioneer Corporation Sirna-hydrophilic polymer conjugates for intracellular delivery of siRNA and method thereof
WO2007030619A2 (en) 2005-09-08 2007-03-15 Nastech Pharmaceutical Company Inc. Pharmaceutical compositions for delivery of ribonucleic acid to a cell
EP1764108A1 (en) 2005-09-14 2007-03-21 Gunther Hartmann Compositions comprising immunostimulatory RNA oligonucleotides and methods for producing said RNA oligonucleotides
EP1764107A1 (en) 2005-09-14 2007-03-21 Gunther Hartmann Compositions comprising immunostimulatory RNA oligonucleotides and methods for producing said RNA oligonucleotides
US8076068B2 (en) 2005-09-14 2011-12-13 Gunther Hartmann Method for determining immunostimulatory activity of RNA oligonucleotides
WO2007038788A2 (en) 2005-09-29 2007-04-05 The Cleveland Clinic Foundation Small interfering rnas as non-specific drugs
JP5336853B2 (ja) 2005-11-02 2013-11-06 プロチバ バイオセラピューティクス インコーポレイティッド 修飾siRNA分子およびその使用法
EP2641970B1 (en) 2005-11-17 2014-12-24 Board of Regents, The University of Texas System Modulation of gene expression by oligomers targeted to chromosomal DNA
JP2009519339A (ja) 2005-12-12 2009-05-14 ザ ユニバーシティ オブ ノース カロライナ アット チャペル ヒル 筋細胞増殖及び分化を調節するマイクロrna
US8058252B2 (en) 2005-12-30 2011-11-15 Institut Gustave Roussy Use of inhibitors of scinderin and/or ephrin-A1 for treating tumors
EP2004141A2 (en) 2006-03-17 2008-12-24 Novosom AG An efficient method for loading amphoteric liposomes with nucleic acid active substances
JP5761911B2 (ja) 2006-04-07 2015-08-12 イデラ ファーマシューティカルズ インコーポレイテッドIdera Pharmaceuticals, Inc. Tlr7およびtlr8に対する安定化免疫調節rna(simra)化合物
ATE502122T1 (de) 2006-06-01 2011-04-15 Trilink Biotechnologies Chemisch modifizierte oligonukleotidprimer zur nukleinsäureamplifikation
EP2046954A2 (en) 2006-07-31 2009-04-15 Curevac GmbH NUCLEIC ACID OF FORMULA (I): GIXmGn, OR (II): CIXmCn, IN PARTICULAR AS AN IMMUNE-STIMULATING AGENT/ADJUVANT
EP4082551A1 (en) 2006-08-08 2022-11-02 Rheinische Friedrich-Wilhelms-Universität Bonn Structure and use of 5' phosphate oligonucleotides
CA2665403C (en) 2006-10-04 2015-06-23 Institut National De La Sante Et De La Recherche Medicale (Inserm) Compositions comprising a sirna and lipidic 4,5-disubstituted 2-deoxystreptamine ring aminoglycoside derivatives and uses thereof
EP2338499A1 (en) 2006-10-10 2011-06-29 Gunther Hartmann 5' triphosphate oligonucleotide induces anti-viral response
WO2008045576A2 (en) 2006-10-12 2008-04-17 Yijia Liu Compositions and methods of rnai therapeutics for treatment of cancer and other neovascularization diseases
WO2008131807A2 (en) 2007-05-01 2008-11-06 Santaris Pharma A/S Splice switching oligomers for tnf superfamily receptors and their use in treatment of disease
CN101190944A (zh) 2006-12-01 2008-06-04 北京诺赛基因组研究中心有限公司 人类新细胞因子及其用途
US20110038849A1 (en) 2006-12-21 2011-02-17 Intradigm Corporation Inhibitory polynucleotide compositions and methods for treating cancer
US20130005028A1 (en) 2006-12-21 2013-01-03 Smith Larry R Activation of RIG-I Pathway
EP2111449B1 (en) 2007-01-16 2012-03-07 Yissum Research Development Company of the Hebrew University of Jerusalem H19 silencing nucleic acid agents for treating rheumatoid arthritis
US9249423B2 (en) 2007-02-02 2016-02-02 Yale University Method of de-differentiating and re-differentiating somatic cells using RNA
WO2008099396A1 (en) 2007-02-15 2008-08-21 Yissum Research Development Company Of The Hebrew University Of Jerusalem Use of h19-silencing nucleic acid agents for treating restenosis
US20110091974A1 (en) 2007-02-19 2011-04-21 Kyoto University Conductive Substrate and Method for Introducing Nucleic Acid
MY173854A (en) 2007-03-13 2020-02-25 Malaysian Palm Oil Board Expression regulatory elements
US7880063B2 (en) 2007-04-06 2011-02-01 Stine Seed Farm, Inc. Soybean cultivar 6342078
AU2008236566A1 (en) 2007-04-09 2008-10-16 Chimeros, Inc. Self-assembling nanoparticle drug delivery system
CN101088565A (zh) 2007-04-17 2007-12-19 华东师范大学 miRNA-34a的用途
WO2008134593A1 (en) 2007-04-25 2008-11-06 President And Fellows Of Harvard College Molecular circuits
US9109012B2 (en) 2007-05-29 2015-08-18 Nature Technology Corporation Vectors and method for genetic immunization
RU2010107199A (ru) 2007-07-31 2011-09-10 Дзе Джонс Хопкинс Юниверсити (Us) Конъюгат полипептид-нуклеиновая кислота для иммунопрофилактики или иммунотерапии для неопластических или инфекционных нарушений
US8367815B2 (en) 2007-08-28 2013-02-05 California Institute Of Technology Modular polynucleotides for ligand-controlled regulatory systems
WO2009038707A2 (en) 2007-09-17 2009-03-26 Ludwig Institute For Cancer Research , Ltd. Cancer-testis gene silencing agents and uses thereof
EP2388270A3 (en) 2007-10-11 2012-04-25 The Hospital For Sick Children Modulation of SIRPa - CD47 interaction for increasing human hematopoietic stem cell engraftment and compounds therefor
WO2009051659A2 (en) 2007-10-12 2009-04-23 Intradigm Corporation Therapeutic sirna molecules for reducing vegfr1 expression in vitro and in vivo
DE102007052114B4 (de) 2007-10-30 2011-01-05 T2Cure Gmbh Verfahren zur Modulation der Funktion, des Wachstums oder der Differenzierung einer Zelle
US20110152346A1 (en) 2007-11-05 2011-06-23 Baltic Technology Development Ltd. Use of Oligonucleotides with Modified Bases in Hybridization of Nucleic Acids
US8735567B2 (en) 2007-11-06 2014-05-27 Patrick Y. Lu Multi-targeted RNAi therapeutics for scarless wound healing of skin
DK2207787T3 (en) 2007-11-06 2015-02-09 Adiutide Pharmaceuticals Gmbh Immunostimulatory oligoribonukleotidanaloger containing modified oligofosfatenheder
US8575121B2 (en) 2007-11-12 2013-11-05 The United States of America as represented by the Secetary of the Department of Health and Human Services Therapeutic applications of p53 isoforms in regenerative medicine, aging and cancer
HUE026591T2 (hu) 2007-11-29 2016-06-28 Molecular Health Gmbh Szövetvédõ eritropoietin receptor (nepor) és alkalmazási eljárásai
US8357501B2 (en) 2007-11-29 2013-01-22 Molecular Health Gmbh Tissue protective erythropoietin receptor (NEPOR) and methods of use
GB0725321D0 (en) 2007-12-31 2008-02-06 Syntaxin Ltd Delivery vehicles
WO2009095226A2 (en) 2008-01-31 2009-08-06 Curevac Gmbh Nucleic acids of formula (i) (nuglxmgnnv)a and derivatives thereof as an immunostimulating agent/adjuvant
EP2123757B1 (en) 2008-05-21 2012-10-31 Hartmann, Gunther, Prof. Dr. 5` triphosphate oligonucleotide with blunt end and uses thereof
JP5689413B2 (ja) 2008-05-21 2015-03-25 ライニッシュ フリードリッヒ−ウィルヘルムズ−ユニバーシタット ボン 平滑末端を有する5’三リン酸オリゴヌクレオチドおよびその使用
CA2635187A1 (en) 2008-06-05 2009-12-05 The Royal Institution For The Advancement Of Learning/Mcgill University Oligonucleotide duplexes and uses thereof
US20110152352A1 (en) 2008-06-10 2011-06-23 Tufts University Smad proteins control drosha-mediated mirna maturation
CN101632833B (zh) 2008-07-25 2013-11-06 上海市计划生育科学研究所 一种前列腺癌相关的基因及其用途
EP2344514A2 (en) 2008-09-02 2011-07-20 Alnylam Pharmaceuticals Inc. Synthetic methods and derivatives of triphosphate oligonucleotides
WO2011028218A1 (en) 2009-09-02 2011-03-10 Alnylam Pharmaceuticals, Inc. Process for triphosphate oligonucleotide synthesis
WO2010042755A2 (en) 2008-10-08 2010-04-15 Chimeros Inc. Chimeric therapeutics, compositions, and methods for using same
WO2010042751A2 (en) 2008-10-08 2010-04-15 Chimeros Inc. Chimeric therapeutics, compositions, and methods for using same
WO2010042749A2 (en) 2008-10-08 2010-04-15 Chimeros Inc. Chimeric therapeutics, compositions, and methods for using same
WO2010042742A2 (en) 2008-10-08 2010-04-15 Chimeros Inc. Chimeric therapeutics, compositions, and methods for using same
WO2010047216A1 (ja) 2008-10-23 2010-04-29 国立大学法人 東京大学 microRNAの機能阻害法
WO2010062502A1 (en) 2008-11-03 2010-06-03 University Of Utah Research Foundation Carriers for the delivery of nucleic acids to cells and methods of use thereof
EP2401405A4 (en) 2009-02-26 2013-10-16 Univ Ohio State Res Found MICROARN IN NON-SMOKERS AND METHODS AND RELATED MATERIALS
US8987222B2 (en) 2009-04-08 2015-03-24 University Of Massachusetts Single nucleotide polymorphism (SNP) targeting therapies for the treatment of huntington'S disease
WO2010120874A2 (en) 2009-04-14 2010-10-21 Chimeros, Inc. Chimeric therapeutics, compositions, and methods for using same
US20100323018A1 (en) 2009-06-17 2010-12-23 Massachusetts Institute Of Technology Branched DNA/RNA monomers and uses thereof
EP2277508B1 (en) 2009-07-09 2012-04-25 Marina Biotech, Inc. Emulation of lipoprotein structures
US9238811B2 (en) 2009-07-14 2016-01-19 Northeastern University siRNA phospholipid conjugate
US20140018354A9 (en) 2009-07-23 2014-01-16 Nathaniel Moorman Inhibitors of mtor kinase as anti-viral agents
EP2327783A1 (en) 2009-11-27 2011-06-01 Universitätsklinikum Freiburg Pharmaceutical composition comprising miRNA-100 and its use in the modulation of blood vessel growth
DE202009015670U1 (de) 2009-11-30 2011-04-14 Mcairlaid's Vliesstoffe Gmbh & Co. Kg Absorptionskörper zur Auflage auf Wunden
US20110247091A1 (en) 2010-03-26 2011-10-06 The Governors Of The University Of Alberta Transgenic Cells and Chickens Expressing RIG-I
WO2011133559A2 (en) 2010-04-19 2011-10-27 University Of Georgia Research Foundation, Inc. Alpha tubulin acetyltransferase
EP2385120A1 (en) 2010-05-04 2011-11-09 Justus-Liebig- Universitat Giessen Use of anti-miRNA antisense oligonucleotides for the treatment of pulmonary hypertension
WO2011140285A2 (en) 2010-05-04 2011-11-10 Sirnaomics, Inc. Combinations of tgfbeta and cox-2 inhibitors and methods for their therapeutic application
DE102010020880A1 (de) 2010-05-18 2011-11-24 Wabco Gmbh Überströmventil und Drucklufteinrichtung für Kraftfahrzeuge
CN101974529B (zh) 2010-09-21 2013-04-03 南京大学(苏州)高新技术研究院 含自由三磷酸基团的TGF-β特异性siRNA及其应用
WO2012056440A1 (en) 2010-10-28 2012-05-03 Nanodoc Ltd. COMPOSITIONS AND METHODS FOR ACTIVATING EXPRESSION BY A SPECIFIC ENDOGENOUS miRNA
WO2012056441A1 (en) 2010-10-28 2012-05-03 Nanodoc Ltd. Compositions and methods for specific cleavage of exogenous rna in a cell
CN102475892A (zh) 2010-11-22 2012-05-30 大连创达技术交易市场有限公司 作为制备抗癌药物的反义miRNA-210的用途
AU2011353233B2 (en) 2010-12-30 2016-02-11 Samyang Holdings Corporation Carrier for negatively charged drugs comprising a cationic lipid and a preparation method thereof
US8461224B2 (en) 2011-03-04 2013-06-11 National Health Research Institutes Single monomer derived linear-like copolymer comprising polyethylenimine and poly(ethylene glycol) for nucleic acid delivery
US20140212503A1 (en) 2011-03-17 2014-07-31 Hyukjin Lee Delivery system
EP2508530A1 (en) 2011-03-28 2012-10-10 Rheinische Friedrich-Wilhelms-Universität Bonn Purification of triphosphorylated oligonucleotides using capture tags
US20150024488A1 (en) 2011-07-04 2015-01-22 Commonwealth Scientific And Industrial Research Organisation Nucleic acid complex
EP2551354A1 (en) 2011-07-25 2013-01-30 Universität Heidelberg Functionalization of RNA oligonucleotides
US20130189367A1 (en) 2011-07-29 2013-07-25 University Of Washington Through Its Center For Commercialization Nanovectors for targeted gene silencing and cytotoxic effect in cancer cells
US9579394B2 (en) 2011-08-08 2017-02-28 Universitaet Regensburg Polyanion nanocomplexes for therapeutic applications
EP2765982A1 (de) 2011-10-11 2014-08-20 Hans Kosak Dimethylsulfoxid als lösungsmittel für nukleinsäuren
EP2765983A1 (de) 2011-10-11 2014-08-20 Hans Kosak Zusammensetzung zur einbringung von nukleinsäuren in zellen
EP2773760B2 (en) 2011-10-31 2020-11-04 RiboxX GmbH Double-stranded rna for immunostimulation
EP2780455B1 (en) 2011-11-17 2017-07-05 The U.S.A. as represented by the Secretary, Department of Health and Human Services Auto-recognizing therapeutic rna/dna chimeric nanoparticles (np)
WO2013153082A1 (en) 2012-04-10 2013-10-17 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for the treatment of nonalcoholic steatohepatitis
US20130302252A1 (en) 2012-05-11 2013-11-14 University Of Washington Through Its Center For Commercialization Polyarginine-coated magnetic nanovector and methods of use thereof
EP2712870A1 (en) 2012-09-27 2014-04-02 Rheinische Friedrich-Wilhelms-Universität Bonn Novel RIG-I ligands and methods for producing them
WO2014124433A1 (en) 2013-02-11 2014-08-14 Oregon Health & Science University 5'-triphosphate oligoribonucleotides

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344323B1 (en) * 1998-09-16 2002-02-05 Vitagenix, Inc. Compositions and methods for inhibiting cox-2 expression and treating cox-2 associated disorders by using cox-2 antisense oligonucleotides
US20050222060A1 (en) * 2002-03-15 2005-10-06 Bot Adrian L Compositions and methods to initiate or enhance antibody and major-histocompatibility class I or class II-restricted t cell responses by using immunomodulatory, non-coding rna motifs
US20060178334A1 (en) * 2005-02-04 2006-08-10 City Of Hope Double-stranded and single-stranded RNA molecules with 5 ' triphosphates and their use for inducing interferon

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9381208B2 (en) 2006-08-08 2016-07-05 Rheinische Friedrich-Wilhelms-Universität Structure and use of 5′ phosphate oligonucleotides
US10238682B2 (en) 2006-08-08 2019-03-26 Rheinische Friedrich-Wilhelms-Universität Bonn Structure and use of 5′ phosphate oligonucleotides
US9649366B2 (en) 2007-09-19 2017-05-16 Kieu Hoang Manufacturing and purification processes of Complex protein found in Fraction IV to make a separated Apo, Transferrin, and Alpha 1 Antitrypsin (A1AT) or a combined Transferrin/Apo/Human Albumin/A1AT and all new found proteins
US9738680B2 (en) 2008-05-21 2017-08-22 Rheinische Friedrich-Wilhelms-Universität Bonn 5′ triphosphate oligonucleotide with blunt end and uses thereof
US10036021B2 (en) 2008-05-21 2018-07-31 Rheinische Friedrich-Wilhelms-Universität Bonn 5′ triphosphate oligonucleotide with blunt end and uses thereof
US10196638B2 (en) 2008-05-21 2019-02-05 Rheinische Friedrich-Wilhelms-Universität Bonn 5′ triphosphate oligonucleotide with blunt end and uses thereof
US20120009130A1 (en) * 2010-05-06 2012-01-12 Nanoaxis Viral Therapy and Prophylaxis Using Nanotechnology Delivery Techniques
US9399658B2 (en) 2011-03-28 2016-07-26 Rheinische Friedrich-Wilhelms-Universität Bonn Purification of triphosphorylated oligonucleotides using capture tags
US9896689B2 (en) 2011-03-28 2018-02-20 Rheinische Friedrich-Wilhelms-Universität Bonn Purification of triphosphorylated oligonucleotides using capture tags
US11911474B2 (en) 2011-03-31 2024-02-27 Modernatx, Inc. Delivery and formulation of engineered nucleic acids
US10898574B2 (en) 2011-03-31 2021-01-26 Modernatx, Inc. Delivery and formulation of engineered nucleic acids
US20140186398A1 (en) * 2011-07-18 2014-07-03 Icahn School Of Medicine At Mount Sinai BACTERIAL RNAs AS VACCINE ADJUVANTS
US9844592B2 (en) * 2011-07-18 2017-12-19 Icahn School Of Medicine At Mount Sinai Bacterial RNAs as vaccine adjuvants
US10588964B2 (en) 2011-07-18 2020-03-17 Cornell University Bacterial RNAs as vaccine adjuvants
WO2013116482A1 (en) * 2012-01-31 2013-08-08 Shanghai Raas Blood Products Co., Ltd. Process of afod and afcc and manufacturing and purification processes of proteins
US11142763B2 (en) 2012-09-27 2021-10-12 Rheinische Friedrich-Wilhelms-Universität Bonn RIG-I ligands and methods for producing them
US10072262B2 (en) 2012-09-27 2018-09-11 Rheinische Friedrich-Wilhelms-Universität Bonn RIG-I ligands and methods for producing them
US10059943B2 (en) 2012-09-27 2018-08-28 Rheinische Friedrich-Wilhelms-Universität Bonn RIG-I ligands and methods for producing them
US11845772B2 (en) 2013-03-15 2023-12-19 Modernatx, Inc. Ribonucleic acid purification
US11377470B2 (en) 2013-03-15 2022-07-05 Modernatx, Inc. Ribonucleic acid purification
US10138507B2 (en) 2013-03-15 2018-11-27 Modernatx, Inc. Manufacturing methods for production of RNA transcripts
US10858647B2 (en) 2013-03-15 2020-12-08 Modernatx, Inc. Removal of DNA fragments in mRNA production process
US10077439B2 (en) * 2013-03-15 2018-09-18 Modernatx, Inc. Removal of DNA fragments in mRNA production process
US10590161B2 (en) 2013-03-15 2020-03-17 Modernatx, Inc. Ion exchange purification of mRNA
US11027025B2 (en) 2013-07-11 2021-06-08 Modernatx, Inc. Compositions comprising synthetic polynucleotides encoding CRISPR related proteins and synthetic sgRNAs and methods of use
US20200102565A1 (en) * 2013-09-16 2020-04-02 St. Jude Children's Research Hospital, Inc. Methods for overcoming glucocorticoid resistance and for determining glucocorticoid resistance potential in cancer
US11946053B2 (en) * 2013-09-16 2024-04-02 St. Jude Children's Research Hospital, Inc. Methods for overcoming glucocorticoid resistance and for determining glucocorticoid resistance potential in cancer
US10286086B2 (en) 2014-06-19 2019-05-14 Modernatx, Inc. Alternative nucleic acid molecules and uses thereof
US10407683B2 (en) 2014-07-16 2019-09-10 Modernatx, Inc. Circular polynucleotides
US11434486B2 (en) 2015-09-17 2022-09-06 Modernatx, Inc. Polynucleotides containing a morpholino linker
US12071620B2 (en) 2015-09-17 2024-08-27 Modernatx, Inc. Polynucleotides containing a morpholino linker
US12109274B2 (en) 2015-09-17 2024-10-08 Modernatx, Inc. Polynucleotides containing a stabilizing tail region
WO2023168352A1 (en) 2022-03-03 2023-09-07 Yale University Humanized 3e10 antibodies, variants, and antigen binding fragments thereof

Also Published As

Publication number Publication date
CY1119608T1 (el) 2018-04-04
DK2056845T3 (da) 2017-11-27
ES2647452T3 (es) 2017-12-21
WO2008017473A3 (en) 2008-06-05
ES2911034T3 (es) 2022-05-17
SI2056845T1 (en) 2018-02-28
AU2007283022A1 (en) 2008-02-14
US20160051573A1 (en) 2016-02-25
EP4082551A1 (en) 2022-11-02
JP2018082706A (ja) 2018-05-31
JP7071299B2 (ja) 2022-05-18
PL2056845T3 (pl) 2018-01-31
JP6748629B2 (ja) 2020-09-02
US10238682B2 (en) 2019-03-26
WO2008017473A2 (en) 2008-02-14
JP2021050214A (ja) 2021-04-01
EP3342415B1 (en) 2022-01-26
JP2019077709A (ja) 2019-05-23
JP2014207906A (ja) 2014-11-06
JP7108011B2 (ja) 2022-07-27
EP2056845A2 (en) 2009-05-13
US20120288476A1 (en) 2012-11-15
HUE037173T2 (hu) 2018-08-28
CA2660232A1 (en) 2008-02-14
PT2056845T (pt) 2017-11-17
JP2010500011A (ja) 2010-01-07
LT2056845T (lt) 2017-11-27
EP3342415A1 (en) 2018-07-04
JP2016189790A (ja) 2016-11-10
US9381208B2 (en) 2016-07-05
CA2660232C (en) 2019-05-21
EP2056845B1 (en) 2017-10-11
AU2007283022B2 (en) 2011-07-28

Similar Documents

Publication Publication Date Title
US10238682B2 (en) Structure and use of 5′ phosphate oligonucleotides
US10036021B2 (en) 5′ triphosphate oligonucleotide with blunt end and uses thereof
US8815503B2 (en) Compositions and methods for immunostimulatory RNA oligonucleotides
EP1920775B1 (en) 5'Triphosphate oligonucleotide induces anti-viral response
EP2123757B1 (en) 5` triphosphate oligonucleotide with blunt end and uses thereof
EP3600342B1 (en) Method for designing rig-i ligands
AU2011244863B2 (en) Structure and use of 5' phosphate oligonucleotides

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION