TWI249182B - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
TWI249182B
TWI249182B TW092125032A TW92125032A TWI249182B TW I249182 B TWI249182 B TW I249182B TW 092125032 A TW092125032 A TW 092125032A TW 92125032 A TW92125032 A TW 92125032A TW I249182 B TWI249182 B TW I249182B
Authority
TW
Taiwan
Prior art keywords
film
oxide film
layer
plasma
gas
Prior art date
Application number
TW092125032A
Other languages
English (en)
Other versions
TW200404332A (en
Inventor
Tadahiro Ohmi
Shigetoshi Sugawa
Masaki Hirayama
Yasuyuki Shirai
Original Assignee
Tadahiro Ohmi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tadahiro Ohmi filed Critical Tadahiro Ohmi
Publication of TW200404332A publication Critical patent/TW200404332A/zh
Application granted granted Critical
Publication of TWI249182B publication Critical patent/TWI249182B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28202Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02247Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by nitridation, e.g. nitridation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02252Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by plasma treatment, e.g. plasma oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02307Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • H01L21/02315Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3143Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers
    • H01L21/3144Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/3143Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers
    • H01L21/3145Inorganic layers composed of alternated layers or of mixtures of nitrides and oxides or of oxinitrides, e.g. formation of oxinitride by oxidation of nitride layers formed by deposition from a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • H01L21/31608Deposition of SiO2
    • H01L21/31612Deposition of SiO2 on a silicon body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/3165Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation
    • H01L21/31654Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself
    • H01L21/31658Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself by thermal oxidation, e.g. of SiGe
    • H01L21/31662Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of semiconductor materials, e.g. the body itself by thermal oxidation, e.g. of SiGe of silicon in uncombined form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/318Inorganic layers composed of nitrides
    • H01L21/3185Inorganic layers composed of nitrides of siliconnitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823462MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate insulating layers, e.g. different gate insulating layer thicknesses, particular gate insulator materials or particular gate insulator implants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/40Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/40Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
    • H10B41/42Simultaneous manufacture of periphery and memory cells
    • H10B41/49Simultaneous manufacture of periphery and memory cells comprising different types of peripheral transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate

Description

1249182 玫、發明說明: 【發明所屬之技術領域】 本發明和矽半導體上之氧化膜、氮化膜、及氧氮化膜等 开乂成之半導體裝置及其形成方法相關。 【先前技術】 MIS(金屬/絕緣材/矽)電晶體之閘極絕緣膜,要求低漏電 私况特性、低界面準位密度、高耐壓性、高熱載流子耐性、 以及均一臨限值電壓特性等各種高性能電氣特性及高信賴 度特性。 滿足這些要求之閘極絕緣膜形成技術方面,傳統上係採 用氧分子及氫分子之800°c以上的熱氧化技術。 熱氧化步驟係從其前步驟之有機物、金屬、微粒等表面 附著污染物之去除的洗淨步驟開始。此種傳統洗淨步驟, 最後都以稀氟酸或加氫水等進行洗淨,以氳來將矽表面之 矽未結合鍵予以末端化,抑制.矽表面之自然氧化膜的形 成,再陸續將具有清淨表面之矽基板導入熱氧化步騾。熱 氧化步驟係在氬(Ar)等惰性氣體環境下使矽基體昇溫之過 程中,在大約600°C以上之溫度使此表面末端氫脫離。矽表 面之氧化,則是在其後之80(TC以上時導入氧分子或氫分子 之環境下實施。 膜 以往,使用此種熱氧化技術在矽表面形成矽氧化膜時, 只有表面採用(100)面方位配向之矽時,才能獲得良好氧化 膜/矽界面特性、氧化膜之耐壓特性、以及漏電電流特性 等。另外,以傳統熱氧化技術製成之矽氧化膜時,若其
O:\88\88059.DOC 1249182 厚在大約2 nm以下時,就會發生明顯漏電電流惡化的現 象,而妨礙要求閘極絕緣膜薄膜化之高性能微細電晶體的 實現。 此外,(100)面以外之其他面方位配向之結晶矽、及絕緣 膜上主要為(111)面配向之多結晶矽等時,即始使用熱氧化 技術來形成矽氧化膜,和(100)面方位配向之矽的矽氧化膜 比較時,氧化膜/矽界面之界面準位密度會顯著增高,故膜 厚較薄之矽氧化膜時,耐壓特性及漏電電流特性等之電氣 特性會劣化,若要使用,則必須增加矽氧化膜之膜厚。 另一方面,近年來為了提升半導體裝置之生產效率,持 續採用矽晶片基板或大面積玻璃基板。為了能以大型基 板、高生產量來生產整體具有均一特性之電晶體,必須為 昇溫降溫之溫度變化幅度較少的低溫、且溫度依賴性較少 之絕緣膜形成步驟。傳統之熱氧化步騾中,氧化反應速度 會對應溫度之變動而有較大的變化,故想要使用大面積基 板實施高生產量之半導體裝置的生產十分困難。 為了解決此種傳統熱氧化步驟之問題,嚐試各種低溫成 膜處理。其中,日本專利特開平11-279773公報記載之技 術、Technical Digest of International Electron Devices Meeting 1999 pp. 249-252 記載之技術、或 2000 Symposium on VLSI Technology Digest of Technical Papers pp. 76-177 記載之技術中,就是利用將惰性氣體及氧氣分子導入電漿 内,有效使具有較大準安定準位之惰性氣體中之氧分子的 原子化,利用原子氧之矽表面的氧化可以獲得較佳之電氣
O:\88\88059.DOC 1249182 特性。 這些技術中,對惰性氣體之氪(Kr)及氧(〇2)混合氣體照射 微波,產生Kr及〇2混合電漿並大量產生原子氧〇*,在4〇〇 °C左右之溫度進行矽之氧化,實現可以和傳統熱氧化相比 之低漏電電流特性、低界面準位密度、及高耐壓性。另外, 利用此氧化技術,也可在具有(1 〇〇)面以外之其他面方位的 表面獲得高品質氧化膜。 然而,此種利用傳統微波激勵電漿之矽氧化膜形成技術 中,雖然使用原子氧〇*來實施氧化,卻只能得到和傳統使 用氧分子或氫分子之熱氧化步驟相類似之電氣特性的矽氧 化膜。尤其是矽基板表面中,具有約2 nm以下之氧化膜厚 的梦氧化膜即無法獲得良好之低漏電電流特性,想要實現 要求閘極絕緣膜更為薄膜化之高性能微細電晶體,則和傳 統之熱氧化膜技術同樣困難。 此外,對電晶體之氧化膜的熱載流子注入所造成的影響 導致電導劣化、及快閃記憶體等將電子以隧道傳導方式傳 送至矽氧化膜之元件中隨著漏電電流之增加等而產生電氣 特性 < 經時劣化等問題,比利用傳統熱步驟來形成矽氧化 膜時更為明顯。 【發明内容】 本發明係以提供新穎有用之半導體裝置及其製造方法來 解決前面所述之課題。 本發明之更具體的課題,係提供可以取代傳統熱氧化技 術之低溫電漿氧化技術。
O:\88\88059.DOC 1249182 本發明之其他課題’係提供全部面方位之麵都可使用 之低溫高品質絕緣膜形成技術。 本發明(另外課題’係提供使用低溫高品質絕緣膜形成 技術之高信賴度、高品質微細半導體裝置,尤其是電晶體 積體電路裝置、快閃記憶體裝置、以及具有複數電晶體及 各種機能元件之3次元積體電路裝置、及其製造方法。 本發明之其他課題,係提供一半導體裝置,其係含有在 石夕表面上形切化合物層之半導體裝置,其特徵為··前述 矽化合物層至少含有特定惰性氣體且氲含量之面密度換算 為l〇11/cm2以下。 本發明之其他課題’是提供—半導體裝置,其係在共用 基板上具備具有介由仏夕化合物層切表面上形成之多 結晶秒膜的電晶體、以及在多結晶珍表面上形成之第2珍化 =物層的電容器之半導體裝置,其特徵為:具有前述第以 第^夕化合物層至少含有特定惰性氣體且氫含量之面密度 換算為l〇u/cm2以下。 ,發明之其他課題,是提供—半導體裝置,其係以基板 成之夕結日日碎層或無結晶層為活性層之半導體裝置, =徵::前述珍層之表面上形成至少含有特定惰性氣體 气η里之面被度換算為丨〇 1 l/cm2以下之矽化合物層, 且以前述半導體裝置驅動前述基板上形成之顯示元:牛。 本發明之其他課題’是提供—半導體裝置,其係前述矽 :板上之半導體裝置的製造方法,其特徵為:具有使前述珍 面曝露於第1惰性氣體之第i電漿,去除前述石夕表面上至
O:\88\88059.DOC 1249182 V 4份且預先存在之氫的步驟、及 以第2惰性氣體及一種或複數種氣體分子之混合氣體形 成< 第2電漿’且在前述第2電漿狀態下,形成至少含有在 則述石夕表面上構成前述氣體分子之部份元素的矽化合物層 之步驟。 本發明之其他課題,是提供一半導體裝置,其係在共用 基板上具備具有介由第1絕緣膜在矽表面上形成之多結晶 石夕膜的電晶體、以及在多結晶矽表面上形成之含有第2絕緣 月吴的電容器之丨導體裝置製造方S,其特徵A :具有使前 述石夕表面曝露於第1惰性氣體之第1電漿,去除前述矽表面 上至少部份且預先存在之氫的步騾、及 以第2惰性氣體及一種或複數種氣體分子之混合氣體形 成之第2私漿,且在前述第2電漿狀態下,以前述第1絕緣膜 方式形成至少含有在前述矽表面上構成前述氣體分子之部 伤元素的石夕化合物層之步驟。 本I明之其他課題,是提供一半導體裝置,其係以活性 層做為基板上之多結晶矽層或非晶質矽層的半導體裝置製 匕方法,其特徵為:具有在前述基板上形成由多結晶矽層 或非晶質矽層構成之矽層的步驟, 使岫述矽層表面曝露於第丨惰性氣體之電漿,去除前述矽 層表面上至少部份存在之氫的步驟、及 、以第2“性氣體及一種或複數種氣體分子之混合氣體形 成之電漿,以在前述矽層表面形成至少含有構成前述氣體 分子之部份元素的矽化合物層之步驟。
O:\88\88059.DOC -10 - 1249182 利用本务明,可以在不會使碎表面之平坦性惡化且不會 · 破壞真空之連續步驟中,即始在4〇(rc以下之低溫也可除去 表面末端氫,並在50(TC以下之低溫於所有面方位之矽上, 形成具有比以傳統熱氧化步驟及微波電漿步騾成膜之矽氧 化膜更佳之特性及信賴度的矽氧化膜、矽氮化膜、及矽氧 氮化膜,實現高信賴度、高性能微細電晶體積體電路。 另外,利用本發明,在具有淺溝分離等元件分離壁部之 角部或凹凸表面形狀之矽表面,也可形成漏電電流及耐壓 等特性良好之較薄、高品質石夕氧化膜、珍氣化膜、及梦氧钃 氮化膜’也可達成具有元件分離寬度較有之高密度元件積 體化及立體構造的高密度元件積體化。 使用本發明之閘極絕緣膜,可以實現可增加甚多重寫次 數之快閃記憶體元件等。 此外’利用本發明’也可以在絕緣膜上形成、以⑴_ 配向為王之多結晶石夕上,形成高品質石夕間極氧化膜及石夕問 極乱化艇’見現使用具有高驅動能力之多結晶石夕電晶體的籲 顯示裝置、以及電晶體及嫵邻;Μ > % + 夂機把疋件 <複數積層的3次元積體 電路元件。 【實施方式】 下面以圖面說明使用本發明之最佳諸實施形態。 (第1實施形態) 首先,針對使用電漿之低溫氧化膜形成進行說明。 圖1為本發明所使用之輕射狀線I缝天線電槳處理裝置 之實例的剖面圖。
O:\88\88059.DOC -11 · 1249182 在本實施形態中,為了去除矽表面 衣面<未結合鍵末端氫, 使用在下-氧化膜形成步驟中被當作電浆激勵氣體使用之 κΓ,在同一處理室内連續實施表面末端氳除去處理及氧化 處理。 首先,使真空容器(處理室)101内成Α直办 + η风為異空,再從喷淋板 1〇2先導入Ar氣體,然後再換成Kr氣體。间心、,^ 礼Μ時,將前述處理 室101内之壓力設定為133 Pa (1 Τ〇π〇。 其次,將矽基板103置於具有加熱機構之試料台ι〇4上, 將試料溫度設定為400°C。前述矽基板1〇3之溫度若在 200-550°C之範圍内,則會獲得和下面所述大致相同的結 果。前述矽基板103在前處理步驟中實施稀氟酸洗淨,結 果,以氫將表面之矽未結合键予以末端化。 從同軸導波管105對輻射狀線隙縫天線ι〇6供應頻率為 2.45 GHz之微波,前述微波會從前述輻射狀線隙缝天線 106,經由設於處理室101之部份壁面上的謗電體板1〇7 ,導 入至前述處理室101内。導入之微波,會激勵從前述噴淋板 102導入前述處理室ιοί内之Kr氣體,結果,在前述噴淋板 102之正下方形成高密度Kr電漿。提供之微波的頻率只要大 約在900 MHz以上、1〇 GHz以下之範圍内,則可獲得如下 所述之相似結果。 圖1之構成上,噴淋板102及基板103之間隔,本實施形態 中設定為6 cm。此間隔愈狹窄即可愈快速成膜。在本實施 形態中,係以使用輻射狀線隙缝天線之電漿裝置來做為實 例,但也可使用其他方法來將微波導入處理室内並激勵電 O:\88\88059.DOC -12 - 1249182 漿亦可。 將前述矽基板1 03曝露於以Κι*氣體激勵之電漿中,使前述 石夕基板10 3之表面受到低能量之Kr離子的照射,去除其表面 的末端氫。 圖2係以紅外分光器分析前述梦基板1 〇 3表面之硬_氯衾士 合的結果,係以133?3(1!\>1^)之壓力、1.2\\^1112之能量將 微波導入前述處理室1〇1中,利用激勵之Kr電漿來去除石夕表 面末端氫之效果。 參照圖2,可知僅1秒左右之Kr電漿照射即可幾乎完全消 ® 除石夕一氫結合之特徵波長2100 cm-1附近之光吸收,而大約 30秒之照射則可完全消除。亦即,大約3〇秒之Kr電漿照射 即可去除將矽表面予以末端化之氫。在本實施形態中,實 施1分鐘之Kr電漿照射來完全去除表面末端氫。 然後’從前述喷淋板1〇2導入97/3分壓比之Ki702混合氣 體。此時,處理室内之壓力維持133 pa (1 Torr)程度。在混 合著Kr氣體及〇2氣體之高密度激勵電漿中,中間激勵狀態 _ 之Kr*及〇2分子會衝擊而有效且大量產生原子氧〇*。 在本實施例中,利用此原子氧〇*來使前述矽基板1〇3之表 面氧化。傳統之矽表面的熱氧化法中,以〇2分子及h2〇分 子進行氧化’需要極高之8〇〇。〇以上的處理溫度,而利用本 發明之原子氧的氧化處理,則在極低之4〇〇°c的溫度即可實 施氧化。為了擴大Kr*及〇2之衝擊機會,最好能有較高的處 理▲壓力’但壓力太高時,產生之〇*會互相衝擊,而變回 〇2分子。當然,存在最適氣體壓力。
O:\88\88059.DOC •13- 1249182 圖3係使處理室内之Kr/〇2壓力比保持97/3、改變前述處 理罜101内之氣體壓力時,所形成之氧化膜厚度及處理室内 壓力的關係。圖3中,矽基板1〇3之溫度設定為4〇〇π,實施 10分鐘之氧化處理。 參照圖3,前述處理室1〇1内之壓力約為133 pa (丨T〇rr)時會 有最快的氧化速度,可知此壓力或其附近之壓力條件為最 適。此最適壓力並不限於前述矽基板1〇3之面方位為(1〇〇)面 時,任何面方位之矽表面都會有相同結果。 在膜厚達到期望值之矽氧化膜時,停止導入微波動力, 結束電漿激勵,並將Kr/〇2混合氣體換成Ar氣體,結束氧化 v知在本步驟之前後使用Ar氣體的目的,係以比Kr較便 宜之氣體做為清洗氣體。本步騾使用之以氣體可以回收再 利用。 在形成氧化膜後,實施電極形成步驟、保護膜形成步驟、 及氫燒結處理步驟等,完成含有電晶體及電容元件之半導 體積體電路裝置。 利用昇溫放出測量以前述步.驟形成之矽氧化膜中的氫含 有量時,3 nm膜厚之矽氧化膜的面密度換算為i〇12/cm2以 下。尤其是漏電電流較小之氧化膜時,確認矽氧化膜内之 氫含有量的面密度換算為l〇u/cm2以下。另一方面,形成氧 化膜前未實施Kr電漿曝露之氧化膜,含有超過面密度換算 l〇12/cm2以上的氫。 汁 以原子間力顯微鏡測量剥離利用前述步驟形成之矽氧化 膜的矽表面粗細度、以及形成氧化膜前之 < 7表面的表面粗
O:\88\88059.DOC -14- 1249182 細度並進行比較,確認矽表面之粗細並無變化。亦即,去 除末端氫並氧化後,矽表面也不會變粗糙。 圖4係以全反射螢光X線分光裝置,調查以前述步驟形成 之矽氧化膜中Kr密度的深度方向分布。然而,圖4之結果為 針對矽之(100)面,但(100)面以外之方位也會獲得相同結 果。 在圖4之實驗中,Kr中之氧的分壓設定為3%,處理室内 之壓力則設定為133 Pa (1 Torr),在基板溫度為4〇〇χ:時實 施電漿氧化處理。 參照圖4,矽氧化膜中之以密度距離底層矽表面愈遠會愈 大,在矽氧化膜表面的密度則達到2xl〇n/cm2。由此可知二 以前述步驟得到之矽氧化膜,在距離底層之矽表面4 nm以 上的區域時’膜中之Kr濃度會一定,另一方面,距離底層 二矽表面4nm以下的區域時,其濃度則會隨著愈靠近矽/矽 氧化膜:之界面而減少。 圖5係以上述步驟獲得之矽氧化膜的漏電電流施加電界 依賴性。然@,圖5之結果為石夕氧化膜之膜厚44随時。為 了進仃比較’圖5中也標示形成氧化膜前未實施&電聚曝露 時之同一膜厚氧化膜的漏電電流特性。 、圖5 ’未貝訑Kr電漿曝露時之矽氧化膜的漏電電流特 性,和傳統之熱氧化法的漏電電流特性相 同,即使以Kr/〇2 微波«實施氧化處理,可知所得之氧化膜的漏電電流特 性並無太大改吾。相對於此,利用Kr電漿照射實施末端氫 去除後,導入Kr/〇2氣體進行氧化之本實施形態方法所形成
O:\88\88059.DOC -15- 1249182 的矽氧化膜,其同一電界之漏電電流會為以傳統微波電漿 氧化所形成之碎氧化膜的數百分之一至數千分之^一,呈現 非常良好之低漏電特性。同時可確認,膜厚為丨.7 nm左右 之矽氧化膜也可獲得相同程度之漏電電流特性的改善。 圖6係變更前述矽氧化膜之膜厚來測量本實施形態之矽 氧化膜漏電電流特性的結果。圖6中,△為傳統熱氧化膜之 漏電電流特性、〇為省略Kr電漿曝露而以Kr/〇2電漿實施氧 化時之矽氧化膜的漏電電流特性、鲁為前述Kr電漿曝露後 以前述Kr/〇2電漿實施氧化之本實施形態矽氧化膜的漏電 電流特性。此外,圖6中之的資料,為後面將要說明之氧 氮化膜的漏電電流特性。 由圖6可知,如〇所示之省略Kr電漿曝露步驟而以電漿氧 化步驟形成矽氧化膜的漏電電流特性、和如△所示之熱氧 化膜的漏電電流特性一致,相對於此,如❿所示之本實施 形怨矽氧化膜的漏電電流特性為〇所示之漏電電流特性的 數百分足一至數千分之一。雖然本實施形態之矽氧化膜的 膜厚約為1.5 nm,卻可實現相當於2nm厚度之熱氧化膜的i X l(T2A/cm2漏電電流。 此外,針對本實施形態之矽氧化膜,測量矽/矽氧化膜界 面準位密度之面方位依賴度,發現任何面方位之矽表面, 都可仔到極低〈約i χ 1〇1〇cm-2eV]的低界面準位密度。 另外,耐壓特性、熱載流子耐性、%過應力電流時之石夕 氧化膜破壞電荷量QBD(Charge_to_Breakdown)等電氣特 性、及仏賴度特性方面,以本實施形態形成之氧化膜具有
O:\88\88059.DOC -16- 1249182 和傳統熱氧化膜相同或更好的特性。 如上面所述,去除表面末端氬後&Kr/〇2高密度電漿實施 矽氧化步驟,即始在40(TC之低溫下,所有面方位之矽都可 形成優良之矽氧化膜。可以獲得此效果之原因,係因去除 末端氫可以減少氧化膜中之氫含有量,且氧化膜中含有
Kr。氧化膜中之氫較少,可以減少矽氧化膜内之元素的弱 口且因為含有Kr,膜中& Sl/Si〇2界面之應力會較緩和, 膜中電荷及界面準位密度會降低,戶斤以石夕氧化膜之電氣特 性可獲得大幅改善。 特別是當表面密度換算下的氫濃度為1〇12/cm2以下、較佳 l〇"/Cm2以下時,及含有5xl〇u/cm2以下左右之心時,矽氧 化膜的電氣特性及可靠性可獲得改善。 為實現本發明之氧化膜,除了圖丨之裝置以外,也可使用 其他使用電漿而可形成低溫氧化膜之電漿處理用裝置。例 如,可以使用2段噴淋板型電漿處理裝置,其具有以利用微 波來激勵電漿為目的之排放Kr氣體的第丨氣體排放構造、以 及和W述第1氣體排放構造不同而以排放氧氣為目的之第2 氣體排放構造。 此外,在本實施形態中,在膜厚達到期望值之矽氧化膜 時,停止導入微波動力,結束電漿激勵,並將混合氣 體換成Ar氣體,結束氧化步驟,但在停止前述微波動力前, 也可在保持133 Pa (1 T。⑺壓力之狀態下,從噴淋板102導 入分壓比為98/2之Kr/NH3混合氣體,在矽氧化膜之表面形 成約〇·7 nm的矽氮化膜再結束處理亦可。利用此方法,可
O:\88\88059.DOC -17- 1249182 *于/在表面上形成♦氮化膜之梦氧氮化膜,形成具有較 咼比誘電率之絕緣膜。 (第2實施形態) 其次,針對使用電漿之低溫氮化膜形成進行說明。氯化 膜之形成上,使用和圖丨相同之裝置。 人 在本只她形悲中’在去除末端氫及形成氮化膜形成時以 Ar或Kr做為電漿激勵氣體,是為了形成良質的氮化膜。 以下說明使用Ar之一例。 首先,使真空容器(處理室)101内進行排氣成為真空,再 從喷淋板102導人Ar氣體,同時,將處理室内之壓力設定為 13·3 Pa (100 mTorr)。 其次’將在前處理步驟中利用加氫水洗淨以氫將表面之 矽未結合鍵予以末端化的矽基板103,置入處理室1〇丨内, 並置於具有加熱機構之試料台104上。將試料溫度設定為 50(TC。溫度若在300-55(TC之範園内,則會獲得和下面所 述大致相同的結果。 通過輻射狀線隙縫天線1〇6及誘電體板1〇7,從同軸導波 管105對處理室内供應2.45 GHz之微波,使處理室内產生高 密度Ar電漿。提供之微波的頻率只要大約在9〇〇 MHz以 上、10 GHz以下之範圍内,則可獲得如下所述之相似結果。 口貧淋板102及基板103之間隔,本實施形態中役定為6 此間隔愈狹窄即可愈快速成膜。在本實施形態中,係以使 用库§射狀線隙缝天線之電漿裝置來做為實例,但也可使用 其他方法來將微波導入處理室内。 O:\88\88059.DOC -18- 1249182 利用此方式,曝露於以Ar氣體激勵之電漿中的石夕基板, 會受到低能量之Ar離子的照射,而去除其表面末端氫。在 本實施形態中,實施1分鐘之Ar電漿曝露。 然後,從前述喷淋板102導入對Ar氣體之分壓比為2%之 NH3混合氣體。此時,處理室内之壓力維持13.3 Pa (100 mToir)程度。在混合著At*氣體及NH3氣體之高密度激勵電漿 中,中間激勵狀態之Ar*及NH3分子會衝擊而有效產生NH* 基。此NH*基可氮化矽基板表面。 在膜厚達到期望值之矽氮化膜時,停止導入微波動力, 結束電漿激勵,並將AiVNH3混合氣體換成Ar氣體,結束氮 化步驟。 在形成氮化膜後,實施電極形成、保護膜形成、及氳燒 結處理等,完成含有電晶體及電容元件之半導體積體裝置。 在本實施形態中,以使用輻射狀線隙缝天線之電漿裝置 來形成氮化膜之實例,但也可使用其他方法將微波導入處 理室内。此外,在本實施形態中之電漿激勵係使用Αι*,然 而,使用Kr也可獲得相同的結果。另外,本實施形態中之 電漿處理氣體係使用NH3,但也可使用N2&H2等之混合氣 體。 本發明之矽氮化膜形成上,即始在去除表面末端氫後, 電漿中存在氫仍是重要要件。電漿中存在氫,矽氮化膜中 及界面之懸空键會形成Si-H、N-H結合而末端化,結果,矽 氮化膜及界面之電子陷阱應可消失。 本發明之氮化膜存在Si-H結合及N-H結合,分別以測量紅 O:\88\88059.DOC -19- 1249182 外線吸收光譜及X線光電子分光光譜來獲得確認。氫的存 在,可消除CV特性之滯後現象,也可將矽/矽氮化膜界面準 位密度抑制於較低之2 X l〇iGcm-2。使用稀有氣體(A^tKr) 及N2/H2之混合氣體形成矽氮化膜時,使氫氣之分壓達到 0.5%以上,即可明顯減少膜中之電子及正孔之陷阱。 圖7係以上述步驟獲得之矽氮化膜厚的壓力依賴性。然 而圖7之貫驗中,Αγ/ΝΗ3之分壓比設定為98/2,成膜時間 為30分鐘。 參照圖7可知,降低處理室内壓力,增加稀有氣體(八^或 Κ〇提供給ΝΗ3(或NVH2)之能量時,可加快氮化膜之成長速 度。從氮化膜形成效率之觀點而言,氣壓最好在6 65至13.3 Pa(50至l00mTorr)範圍内,然而,如其他實施形態中所述, 在連續氧化及氮化之步驟中,統一以適合氧化之壓力一例 如133 Pa (1 Τ〇ΓΓ)來實施氮化,從生產性觀點而言,也屬於 良好條件。此外,稀有氣體中之丽3(或Ν2/Η2)之分壓應在i 至10%範圍内,最好則是2至6%内。 J用本貫私开7悲得到之石夕氮化膜的比誘電率為7 · 9,此數 值相當於矽氧化膜之比誘電率的大約2倍。 4里利用本實施形態得到之矽氮化膜的電流電壓特性, 膜^為3.0nm(謗電率換算相當於15nm氧化膜)時,若施加 V私£可以得到膜厚1 ·5 nm熱氧化膜之數萬分之一至數 :萬分之-的低漏電電流特性。故使用本實施例之碎氮化 莫表不可此大破在閘極絕緣膜上使用矽氧化膜之電晶體 時之微細化限界的問題。
O:\88\88059.DOC -20· 1249182 前述之氮化膜的成膜條件、物性、及電氣特性並不限於 (100)面方位之矽表面,含(111)面在内之所有面方位的矽也 同樣會成立。 利用本實施形態可以獲得好結果,不但是因為去除末端 氫而已,應該和氮化膜中含有Ar或Kr有關。亦即,本實施 形態之氮化膜時,氮化膜中及矽/氮化膜界面之應力會因為 氮化胰中含有之Ar或Kr而緩和,結果,會降低矽氮化膜中 之固定電荷及界面準位密度,因而大幅改善電氣特性及信 賴度特性。 尤其是,和矽氧化膜時相同,表面密度中含有5χi〇11/cm2 、下之Ar或Kr ’應可改善珍氮化膜之電氣特性及信賴度特 性。 '、 為了實現本發明之氮化膜,除了圖i之裝置以外,也可使 用其他使用電漿而可形成低溫氧化膜之電裝處理用裝置。 :如’可以使用2段噴淋㈣電漿處理裝置,其具有以利用 微波來激勵電“目的之排放域以氣體的第道體排放 構造、以及和前述第1氣體排放構造不同而以排放WHS(或 ΝνΗ2氣體)氧氣為目的之第2氣體排放構造。 (第3實施形態) 其次,針對在閘極絕緣膜上使用電漿之低溫氮化膜及氮 化膜I 2層構造的實施形態進行說明。 本實施形態所用之氧化膜及氮化膜之形成裝置,和圖i 相同。在本實施形態中’氧化膜及氮化膜之形成上,使用
Kr做為電漿激勵氣體。
O:\88\88059.DOC -21- 1249182 首先,使真空各咨(處理室)101内進行排氣成為真空,再 從噴淋板102導入Ar氣體。然後,將導入之氣體從最先的Ar 換成Kr氣體,將處理室1〇1内之壓力設定為133 pa (1 。 其次,將在别處理步驟中利用加氫水洗淨以氫將表面之 碎未結合鍵丁以末端化的碎基板1 〇 3,置入處理室1 〇 1内, 並置於具有加熱機構之試料台1 〇4上。將試料溫度設定為 400〇C。 接著,從同軸導波管105對輻射狀線隙缝天線ι〇6供應 2.45 GHz之微波約1分鐘,前述微波會通過前述誘電體板 107而被導入前述處理室101内。使前述矽基板1〇3之表面曝 露於前述處理室101内產生之高密度以電漿中,去除表面末 端氫。 然後’使别述處理室1〇1内之壓力維持133 Pa (1 Torr)程 度’從喷淋板102導入分壓比為97/3之Ki702混合氣體,使前 述石夕基板103之表面上形成厚度nm之矽氧化膜。 然後’暫時停止供應微波,暫停導入〇2氣體。以Kr清理 真2容器(處理室)ι〇ι内後,從噴淋板1〇2導入分壓比為98/2 之Kr/NH3混合氣體,使前述處理室ι〇1内之壓力維持133Pa (1 Ton·)程度,再度供應頻率為2·56 GHz之微波,前述處理 室101内產生高密度電漿,在前述矽氧化膜之表面形成1 nm 之矽氮化膜。 在膜厚達到期望值之矽氮化膜時,停止導入微波動力, 結束電漿激勵,並將Kr/NH3混合氣體換成Ar氣體,結束氧 化氮化步驟。 O:\88\88059.DOC -22- 1249182 在形成氧化氮化膜後,實施電極形成、保護膜形成、及 氫燒結處理等,完成含有電晶體及電容元件之半導體積體 電路裝置。 測1得到以此方式形成之積層閘極絕緣膜的實效謗電率 大約為6的數值。此外,漏電電流特性、耐壓特性、及熱載 流子.耐性等之電氣特性及信賴度特性也和前面之實施形態 1相同,具有十分優良的特性。所得到之閘極絕緣膜上並未 發現對矽基板103之面方位的依賴性,(100)面方位以外之所 有面方位的矽也同樣可以形成具有優良特性之閘極絕緣 膜。 本貫施形態、說明在石夕化物形成氧化膜時之氧化膜及氮 化膜的2層構成,也可配合目的更換氧化膜及氮化膜之順 序或以氧化膜/氮化膜/氧化膜或氮化膜/氧化膜/氮化膜等 方式形成複數之積層膜。 (第4實施形態) 其次,針對在閘極絕緣膜上使用電漿之低溫氧氮化膜的 實施形態進行說明。 本實施形態所用之氧氮化膜形成裝置,和圖丨相同。使用 Kr做為電漿激勵氣體。 首先,使真S答器(處理室)101内進行排氣成為真空,再 從噴淋板102導入Ar氣體。然後,將導入之氣體從最先的μ 換成Kr氣體,將處理室内之壓力設定為133 pa (丨。 其次,將在前處理步驟中利用加氫水洗淨以氫將表面之 矽未結合鍵予以末端化的矽基板1〇3,置入處理室ι〇ι内, O:\88\88059.DOC -23- 1249182 並置於具有加熱機構之試料台104上。將試料溫度設定為 400〇C。 接著,從同軸導波管105對輻射狀線隙缝天線106供應 2.45 GHz之微波約1分鐘,前述微波會從輻射狀線隙缝天線 106通過前述謗電體板107而被導入前述處理室101内,前述 處理室101内會產生高密度Kr電漿。使前述矽基板103之表 面曝露於以Κι·氣體激勵之電漿中,去除表面末端氫。 然後,使前述處理室101内之壓力維持133 Pa (1 Torr)程 度,從噴淋板102導入分壓比為96.5/3/0.5之尺1*/〇2/^^13混合 氣體,使石夕基板之表面上形成厚度3.5 nm之石夕氧氮化膜。 在膜厚達到期望值之矽氧氮化膜時,停止導入微波動力, 結束電漿激勵,並將Kr/02/NH3混合氣體換成Ar氣體,結束 氧化氧氮化步騾。 在形成以上之氧化膜後,實施電極形成、保護膜形成、 及氫燒結處理等,完成含有電晶體及電容元件之半導體積 體電路裝置。 如圖8所示,利用發光分析測得之原子氧0*的發生密度方 面,在Κι702/ΝΗ3氣體之混合比為97/3/0至95/3/2之範圍内不 會有實質之變化,但ΝΗ3之比率增大時,原子氧之發生量會 減少,而原子氫的量則會增加。尤其是Kr/02/NH3氣體之混 合比為96.5/3/0.5時,漏電電流會減少最多,絕緣耐壓及電 荷注入耐壓也都提高。 圖9為以2次離子質量分析器測量所得之本實施形態氧氮 化膜内的石夕、氧、及氮之濃度分布。圖9中,橫軸為從氧氮 O:\88\88059.DOC -24- 1249182 化膜之表面的深度。圖9中…氧、及氮之分布呈現平緩 變化:其原因並非氧氮化膜之膜厚不均一,而是敍刻均一 性較差。 /照圖9可知’前述氧氮化膜中之氮濃度在撕氧氮化 膜界面及梦氧氮化腺矣而杳六古 _ . ^ 、 乂回,而在氧氮化膜中央部則會 減少。此氧氮化膜中本右夕翁旦 、、育之虱里只有矽及氧之數成以下。 圖10為本貫施形態之曼奇仆笞 〜义虱虱化膜的漏電電流施加電界依賴 性。圖二中j了進行比較,也同時標出,以微波電聚形成 乳化膜可未實杨電漿曝露處理之同一膜厚氧化膜的漏電 電流特性、及利用熱氧化形成氧傾之漏電電流特性。 參照圖1〇 ’利用Kr電漿照射去除末端氫後導入Kr/〇顧3 氣體實施氧氮化之本實施形態的氧氮化膜時,和傳統方法 形成之氧化膜在同-電界下進行比較,其漏電電流值減少 為^十刀至數千分之―’可知可獲得良好低漏電特性。 如面說明之圖6中,利用J:卜女44、Λί* γ 口 r扪用此万式形成惑虱氮化膜的漏電電 泥特性及膜厚的關係以_來表示。 再度參照圖6,利用本實施形態在㈣照射後所形成之氧 氮化膜,具有和以同樣步驟形成之氧化膜相同的漏電電流 特性’尤其是,膜厚雖然為大約16 時,其漏電電流的 值也僅為1 X l〇-2A/cm2。 本實施形態之氧氮化膜也較前面之實施形態i氧化膜,具 有較優良之耐壓特性及熱載流子耐性等電氣特性、及俨賴 度特性等其他特性。且與矽基板之面方位無關,不只^矽 的(100)面,在任何-面方位切表面上均可形成特性優異
O:\88\88059.DOC -25 - 1249182 之閘極絕緣膜。 如上面所逑’去除表面末端氫後以Kr/02/NH3高密度電漿 只施矽氧氮化步騾,即始在4〇(rc之低溫下,所有面方位之 石夕表面都可形成具有優氣特性及膜厚之矽氧氮化膜。 本實施形態可以獲得此效果之原因,不但是因為去除末 娜氫來減少氧氮化膜中之氫含有量而已,還使氧氮化膜中 含有之氮降至數成以下。本實施形態之氧氮化膜的訢含量 約為實施形態1之氧化膜的1/1〇以下,以被氮取代,而含有 較有之氮。亦即,因為氧氮化膜中之氫較少,可以減少矽 氧氮化膜内之弱結合的比率,且因為含有氮,膜中及Si/Si〇2 界面之應力會較緩和,結果,膜中電荷及界面準位之密度 會降低,所以前述矽氧氮化膜之電氣特性可獲得大幅改 善。前述氧氮化膜中之氫濃度的表面密度換算為1〇u cm·2 以下,最好能減少至l〇iicm·2以下,同時,膜中之氮濃度若 能為矽或氧之數成以下,則應可改善矽氧氮化膜之電氣特 性及信賴度特性。 此外,在本實施形態中,在膜厚達到期望值之矽氧氮化 膜時,停止導入微波動力,結束電漿激勵,並將Κγ/〇2/ΝΗ3 混合氣體換成Ar氣體,結束氧氮化步驟,但在停止前述 微波動力前,也可在保持133 Pa (1 T〇rr)壓力之狀態下,從 喷淋板102導入分壓比為98/2之K1VNH3混合氣體,在硬氧氮 化膜之表面形成約0.7 nm的珍氮化膜再結束氧氮化步驟亦 可。利用此方法,可以在矽氧氮化膜之表面形成矽氮化膜 之,形成具有較高誘電率之絕緣膜。 O:\88\88059.DOC -26- 1249182 (第5實施形態) 其次,係在具有淺溝分離等元件分離側壁部之角部、及 凹凸表面形狀之矽表面上形成高品質矽氧化膜之本發明第 5實施形態的半導體裝置形成方法。 圖11A係淺溝分離之概念圖。 參照圖11A ’圖示之淺溝分離之形成上,係在矽基板丨〇〇3 表面以電漿蚀刻形成絕緣溝,再以CVD法形成之矽氧化膜 1002充填形成之溝,再利用如CMP法等使前述矽氧化膜 1002平坦化。 在本實施形態中,利用CMP法之前述矽氧化膜1〇〇2的研 磨步騾後,使矽基板曝露於800至9〇〇〇c之氧化性環境下進 行犧牲氧化,將以犧牲氧化形成之矽氧化膜浸入含氟酸之 藥液中進行蝕刻,得到以氫末端化之表面。本實施形態中, 以和實施形態i相同之步驟,利用Kr電漿去除表面末㈣, 然後導入Kr/〇2氣體形成約2·5 nm之矽氧化膜。 依本實施形態,會如圖llc所示,淺溝分離之角部亦可形 成-樣厚度切氧化膜,不會發切氧化膜之膜厚減少的 情形。含有利用此Kr電漿之電漿氧化法形成之淺溝分離部 份的整體碎氧化膜之卿(Charge t。特性非常 艮好’注入電荷量WOW時亦不會使漏電電流上昇,大 幅改善裝置之信賴性。 _ 熱氧化法形成前“氧化膜時,則如圖UB所 ::::離角部《薄膜化會隨著淺溝分離之錐角的變大 而更為❹,而本發明之電漿氧化時,雖然錐角變大,淺
O:\88\88059.DOC -27- 1249182 溝分離角部亦不會發切氧化膜之薄膜化。因此,在本實 犯例中’可以使淺溝分離之溝的錐角接近直角來減少元件 分離區域。可以使半導體元件具有更高之積體度。傳統之 熱氧化等技術時’會受到圖11B所示之溝角部熱氧化膜薄膜 化的限制,而在元件分離部採用約7〇度之錐角,但本發明 則可使用90度之角度。 固12係在對石夕基板貫施大約9〇度之餘刻、且在具有凹凸 表面形狀之矽基板上,依據實施形態丨之步騾,形成3nm厚 度之矽氧化膜的剖面。 參知圖12,確認任何面上皆可形成均一膜厚之矽氧化膜。 利用此方式形成之氧化膜,具有良好漏電電流及耐壓等 電氣特性,故利用本發明,可實現具有縱型構造等複數面 方位之碎立體構造的高密度半導體積體化裝置。 (第6實施形態) 其次,針對使用前述電漿低溫氧化膜及氮化膜、或氧氮 化膜形成技術之本發明第6實施形態的快閃記憶體元件進 行說明。下面的說明係以快閃記憶體元件為一實例,然而, 本發明也可使用於具有相同積層構造之EPROM及EEPROM 等。 圖13係本實施形態快閃記憶體元件之概略剖面構造圖。 參照圖13,前述快閃記憶體元件係在矽基板1201上形 成,含有前述梦基板1201上形成之隧道氧化膜1202、前述 隧道氧化膜1202上形成而為浮動閘極之第1多結晶矽閘極 1203、前述多結晶矽閘極1203上依序形成之矽氧化膜1204 O:\88\88059.DOC -28- 1249182 及矽氮化膜1205、以及前述矽氮化膜1205上形成並構成控 制閘極之第2多結晶矽閘極12〇6。此外,圖13中省略源極區 域、汲極區域、傳導孔、及配線圖案等之圖示。前述矽氧 化膜1202之形成係利用第!實施形態說明之矽氧化膜形成 方法,而矽氧化膜1204及氮化膜1205之積層構造的形成, 則係利用實施形態3說明之矽氮化膜形成方法。 圖14至圖17係以階段式說明本實施形態之快閃記憶體元 件製造方法為目的的概略剖面圖。 參照圖I4 ’矽基板1301上,係利用場氧化膜13〇2來區劃 快閃記憶體胞區域A、高電壓用電晶體區域B、及低電壓用 電晶體區域C,前述矽基板3〇1之表面上的前述各區域A〜c 内开J成石夕氧化膜1303。前述場氧化膜1302以選擇氧化法 (LOCOS法)或淺溝分離法等形可即可。 在本實施形態中,係使用以做為以去除表面末端氫、氧 化膜及氮化膜形成為目的之電漿激勵氣體。氧化膜及氮化 膜形成裝置和圖1相同。 在圖15之步驟中,從記憶體胞區域A去除前述矽氧化膜 1303,利用稀氟酸洗淨實施矽表面之氫末端化。然後,以 和前面實施形態1相同之方法來形成隧道氧化膜13〇4。 亦即,和前面之實施形態丨一樣,對前述真空容器(處理 罜)101内進行排氣成為真空,再從噴淋板1〇2將旭氣體導入 前述處理室101内。然後,將前述^氣體換成心氣體,並將 處理室内之壓力設定為1 T〇rr。 其次,去除前述矽氧化膜1303,將矽表面經過稀氟酸處 O:\88\88059.DOC -29- 1249182 理之前述矽基板1301當做圖1之矽基板103,置入處理室1〇ι 内,並置於具有加熱機構之試料台104上。將試料溫度設定 為 400°C。 接著’從同軸導波管1〇5對輻射狀線隙缝天線1〇6供應 2.45 GHz之微波約丨分鐘,前述微波會通過前述謗電體板 107而被導入前述處理室内。使前述石夕基板之表面 曝露於前述處理室101内產生之高密度以電漿中,去除前述 基板1301之矽表面的末端氫。 然後’從噴淋板102導入Kr氣體及02氣體,使前述區域a 上开少成當做前述隨道絕緣膜之厚度3·5 nm的石夕氧化膜 1304 ’接著’以覆蓋前述碎氧化膜1304方式堆積第1多結晶 矽層1305。 使高電壓用及低電壓用電晶體形成區域B及C,利用前述 第1多結晶矽層1305之圖案化實施去除,而只在記憶體胞區 域A之隧道氧化膜1304上留下第1多結晶矽圖案13〇5。 蚀刻後進行洗淨,並實施多結晶矽圖案1305之表面的氫 末端化。 圖16之步騾中,和前面之第3實施形態相同,以覆蓋前述 多結.晶石夕圖案1305之表面的方式來形成具有下部氧化膜 1306A及上部氮化膜1306B之ON(開)構造的絕緣膜1306。 此ON膜以下列方式形成。 使真2容器(處理室)101内進行排氣成為真空,再將從噴 淋板102導入Ar氣體改變Kr氣體。將處理室内之壓力設定為 133 Pa (1 Torr)。其次’將前述經過氫末端化且具有多結晶 O:\88\88059.DOC -30- 1249182 夕圖案1305之碎基板1301,置入前述處理室101内,並置於 具有加熱機構之試料台1〇4上。將試料溫度設定為4〇〇ac。 接著,從同軸導波管105對輻射狀線隙缝天線1〇6供應 2·45 GHz之微波約1分鐘,前述微波會從輻射狀線隙缝天線 〇6通過箣述诱電體板107而被導入前述處理室ιοί内,並產 生之高密度Kr電漿。結果,前述多結晶矽圖案13〇5之表面 曝露於Kr氣體中,去除表面末端氫。 然後,使前述處理室101内之壓力維持133 pa (1 T〇rr)程 度,從噴淋板102將Kr/〇2混合氣體導入前述處理室1〇1内, 使多結晶矽之表面上形成厚度3 nm之矽氧化膜。 然後,暫時停止供應微波,停止導入心氣體及〇2氣體, 實施真空容器(處理室)101之排氣後,從喷淋板1〇2導入Kr 氣及NH3氣體。將前述處理室1〇1内之壓力設定為 (100 mTorr)程度,再度從輻射狀線隙缝天線1〇6對前述處理 罜1〇1内供應頻率為2.45 GHz之微波,處理室内產生高密度 包漿’在石夕氧化膜表面形成6 nm之>5夕氮化膜。 利用此方式形成9 nmi 0N膜時,所得到之〇N膜的膜厚會一 樣,也未發現對多結晶矽之面方位有依賴性,故知道可得到 極為均一之膜。 利用此方式形成前述〇N膜後,在圖丨7之步騾中,以圖案 化方式從高電壓用及低電壓用電晶體區域B&c去除絕緣 膜1306,然後,對高電壓用及低電壓用電晶體區域b及◦上 貝施I限值電壓控制用之離子注入。再去除前述區域B及。 上形成之氧化膜丨303,在前述區域B上形成5 nm厚度之閘極
O:\88\88059.DOC -31 - 1249182 氧化膜13 07 ’然後在前述區域C上形成3 nm厚度之閘極氧化 膜 1308。 其後,在包括場氧化膜1302之整體構造上,依序形成第2 多結晶矽層1309及矽化物層1310,再對前述第2多結晶石夕層 1309及矽化物層1310實施圖案化,分別在前述高電壓用電 晶體區域B及低電壓用電晶體區域c形成閘極丨3丨丨B及 1311C。而且,對應前述記憶體胞區域八形成閘極13ua。 圖17之步騾後,依據標準半導體步驟,形成源極區域及 汲極區域,並實施層間絕緣膜及傳導孔之形成及配線圖案 之形成等,完成元件。 本發明之絕緣膜1306A及1306B的膜厚即使減少為傳統 之氧化膜或氮化膜的一半左右,也可維持良好之電氣特 性。亦即’此矽氧化膜1306A及矽氮化膜13〇63即使薄膜 化,亦可擁有良好之電氣特性,並有精密之高品質。此外, 本發明之前述矽氧化膜13〇6A及矽氮化膜13〇6B因為係低 ^/成,故閘極多結晶石夕及氧化膜之界面不會發生熱預算 (thermal budget),而獲得良好界面。 本發明之快閃記憶體元件可以低電壓來執行情報之寫入 及消除動作,並抑制基板電流之發生,而抑止隧道絕緣膜 之豸化。因此,以二次元配列本發明快閃記憶體元件所形 成之非揮發性半導體記憶裝置,可以在較佳之廢料率下實 施製造並具有安定之特性。 本&明之快閃記憶體元件,對應前述絕緣膜丨3〇6A及 1306B具有優良膜質而有較小之漏電電流,且因為可以在不
O:\88\88059.DOC -32- 1249182 增加漏電電流之情形下減少膜厚,故寫入或消除動作只需 要5 V程度之動作電壓。結果,快閃記憶體元件之記憶儲存 時間比傳統時間增加數十倍以上,故寫入次數也會增加為 數十倍以上。 同時,絕緣膜1306之膜構成並不限於前述ON構造,亦可 為由和實施形態1相同之氧化膜所構成之Ο構造、由和實施 形態2相同之氮化膜所構成之N構造、以及和實施形態4相同 之氧氮化膜。另外,前述絕緣膜1306亦可以為由氮化膜及 氧化膜所構成之NO構造、由氧化膜、氮化膜、及氧化膜依 序積層而成之ΟΝΟ構造、以及由氮化膜、氧化膜、氮化膜、 及氧化膜依序積層而成之ΝΟΝΟ構造等。前述絕緣膜1306 應選擇何種構造,需考慮周邊電路之高電壓電晶體及低電 壓電晶體之閘極氧化膜的整合性及共用可能性等,可配合 目的來實施選擇。 (第7實施形態) 利用圖1裝置之Kr/02微波激勵高密度電漿的閘極氧化膜 形成、或Ar(或Kr)/NH3(或N2/H2)微波激勵高密度電漿的閘 極氮化膜形成,亦可以使用底層矽内含有傳統上無法使用 高溫步驟之金屬層的金屬基板SOI (silicon on syn-schrotter) 晶片上之半導體積體電路裝置形成。尤其是,矽之膜厚較 薄且實施完全空乏化動作之SOI構造時,本發明之末端氫的 去除效果會更為顯著。 圖18係具有.金屬基板SOI構造之MOS電晶體的剖面圖。 參照圖18,1701為η—型或p+型之低抵抗半導體層、1702 O:\88\88059.DOC -33 - 1249182 為NiSi等之矽化物層、1703為TaN及TiN等之導電性氮化物 層、1704為Cu等之金屬層、1705為TaN及TiN等之導電性氮 化物層、1706為n+型或p+型之低抵抗半導體層、1707為A1N 及Si3N4等之氮化物絕緣層、1708為Si02膜、1709為Si02層、 BPSG層、或由此組合而成之絕緣膜層、1710為n+型汲極區 域、1711為n+型源極區域、1712為p+型汲極區域、1713為 P+型源極區域、1714及1715為<111>方向配向之矽半導體 層、1716為依本發明實施形態1步騾以Kr電漿照射去除表面 末端氫後再以KiV02微波激勵高密度電漿所形成之Si02 膜、1717及1718為分別由丁3、丁卜丁&1^/丁3、及1^>^丁丨等所形 成之nMOS電晶體及pMOS電晶體的閘極、1719為nMOS電晶 體之源極電極、以及1720為nMOS電晶體及pMOS電晶體的 汲極電極。1721則為pMOS電晶體的源極電極。1722為基板 表面電極。 此種含有以TaN或TiN保護之Cu層的基板,為了壓抑Cu 之擴散,熱處理溫度必須為約700°C以下。n+型或p+型之源 極區域或汲極區域,則在注入As+、AsF2+、或BF2+之離子 後,以550°C之熱處理來形成。 具有圖1 8之裝置構造的半導體裝置中,若閘極絕緣膜採 用熱氧化膜時、以及採用在以Kr電漿照射來去除表面末端 氫後再以KiV02微波激勵高密度電漿處理形成閘極絕緣膜 時,進行電晶體之次閾特性(sub-threshold特性)比較,利用 熱氧化形成閘極絕緣膜時,次閾特性可以觀察到扭結及漏 電,而以本發明方式形成閘極絕緣膜時,則次閾特性極為 O:\88\88059.DOC -34- 1249182 良好。 另外,若採用台面型元件分離構造,台面型元件分離構 造之側壁部,在矽平面部以外會出現其他面方位之矽表 面,然而,因是使用Kr之電漿氧化來形成閘極絕緣膜,台 面元件分離側壁部之氧化也可以和平面部一樣相當均一, 故可得到良好之電氣特性及高信賴性。 而依第2實施形態之步驟,使用&Ar/NH3氣體形成之矽氮 化膜來做為閘極絕緣膜時,亦可作成具有極佳電氣特性及 高信賴性之金屬基板soi積體電路裝置。 在本實施形態中,矽氮化膜之厚度只有3 nm(矽氧化膜厚謗 電率換算1.5 nm)時,亦可得到良好電氣特性,比使用3nm之 石夕氧化膜時’電晶體之驅動能約提高為2倍。 (第8實施形態) 圖19係針對形成液晶顯示元件及有機電致發光元件等之 玻璃基板及塑膠基板等大型長方形基板上形成之多結晶矽 及非晶質矽層實施氧化處理、氮化處理、或氧氮化處理為 目的,為本發明弟8貫施形態之一製造裝置實例的概念圖。 參照圖19,使真空容器(處理室)18〇7内處於減壓狀態 下’然後從設置於前述處理室18〇7内之喷淋板18〇1導入 KiV〇2混合氣體,再以螺絲溝泵18〇2實施前述處理室18〇7内 之排氣’將前述處理室1807内之壓力設定為133 pa (1 Torr) °再將玻璃基板1803置於具有加熱機構之試料台1 8〇4 上,將玻璃基板之溫度設定為3〇〇°c。 前述處理室1807設有多數方形導波管1805,從前述多數
O:\88\88059.DOC -35- 1249182 方形導波管1805之各隙缝部通過謗電體板18〇6將微波導入 前述處理室1807内,前述處理室18〇7内產生高密度激勵電 漿。此時,設於前述處理室1807内之喷淋板18〇1會將導波 官放射出來之微波視為表面波,而發揮將其傳播至左右之 導波路機能。 圖20係使用圖19之裝置製作本發明之閘極氧化膜或閘極 氮化膜,並形成液晶顯示元件及有機EL發光元件等之驅 動、或處理電路用多結晶石夕薄膜電晶體(TFT)之實例。 首先’說明形成矽氧化膜而使用之例。 參照圖20 ’ 1901為玻璃基板、1902為Si3N4膜、1903為以 (111)面為主配向之多結晶矽nMOS之通道層、1905及1906 分別為多結晶矽nMOS之源極區域及汲極區域、19〇4為以 (U1)面為主配向之多結晶矽pMOS之通道層、1907及1908 分別為多結晶矽pMOS之源極區域及汲極區域。191〇為多結 晶矽nMOS之閘極、1911為多結晶矽pm〇S之閘極、1912為 以〇2、:880、及3?80等之絕緣膜、1913及1914為多結晶矽 n-MOS之源極電極(同時為多結晶石夕p_M〇S之汲極電極)、 1915為多結晶碎p_jy[〇s之源極電極。 絕緣膜上形成之多結晶矽,(111)面方位對絕緣膜呈垂直 方向時十分安定,同時為十分緻密且結晶性佳之高品質 者。本實施形態中,1909係使用圖19之裝置,依實施形態i 相同步驟,做成厚度0.2 //m之本發明矽氧化膜層,4〇〇t: 時,面對(111)面之多結晶矽上形成3 nm厚度。 依據本實施形態,可以確認電晶體間之元件分離區域銳
O:\88\88059.DOC -36- 1249182 角邵的氧化膜亦不會變薄,不論是平坦部或邊緣邵,多結 晶矽上會形成均一膜厚之矽氧化膜。以形成源極及汲極區 域為目的之離子注入,並未通過閘極氧化膜,而以400°C之 電氣活性化來形成。結果,全部步騾都可在400°C以下之溫 度執行,玻璃基板上也可形成電晶體。此電晶體之移動度 方面,電子約為300 cm2/Vsec以上、正孔約為150 cm2/Vsec 以上、以及源極及汲極耐壓和閘門耐壓為12V以上。通道長 度1.5-2.0 nm程度之電晶體時,可以達到超過100 MHz之高 速動作。矽氧化膜之漏電特性、多結晶矽/氧化膜之界面準 位特性也都十分良好。 使用本實施形態之電晶體的話,液晶顯示元件及有機EL 發光元件可維持大畫面、低價格、高速動作及高信賴性。 本實施形態之本發明閘極氧化膜或閘極氮化膜係配合多 結晶石夕,然而,亦可使用於液晶顯示元件等使用之非晶質 矽薄膜電晶體(TFT)-尤其是參差型薄膜電晶體(TFT)之閘 極氧化膜或閘極氮化膜。 (第9實施形態) 其次,說明實施具有金屬層之SOI元件、多結晶矽元件、 及非晶質矽元件之積層的3次元積層LSI實施形態。 圖21係本發明之3次元LSI剖面構造的概念圖。 圖21中,2001為第1 SOI及配線層、2002為第2 SOI及配 線層、2003為第1多結晶矽元件及配線層、2004為第2多結 晶矽元件及配線層、2005為無結晶半導體元件、機能材料 元件、及配線層。 O:\88\88059.DOC - 37- 1249182 前述第1 SOI及配線層2001、以及前述第2 SOI及配線層 2002中,含有使用如實施形態7說明之SOI電晶體的數位演 算處理部、高精度高度類比部、同步DRAM部、電源部、 及界面電路部等。 前述第1多結晶矽元件及配線層2003中,含有使用如前面 實施形態6及8說明之多結晶矽電晶體及快閃記憶體的並聯 數位演算部、機能方塊間轉發部、及記憶元件部等。 另一方面,前述第2多結晶矽元件及配線層2004中,含有 使用如前面實施形態8說明之多結晶矽電晶體的放大器及 AD變換器等並聯類比演算部。無結晶半導體元件、機能材 料元件、及配線層2005中,含有光感應器、聲音感應器、 觸覺感應器、及電波傳送接收部等。 設於無結晶半導體元件、機能材料元件、及配線層2005 中之光感應器、聲音感應器、觸覺感應器、及電波傳送接 收部的信號,先經過設於前述第2多結晶矽元件及配線層 2004中使用多結晶矽電晶體之放大器及AD變換器等並聯 類比演算部處理,再經過設於前述第1多結晶矽元件及配線 層2003、或前述第2多結晶矽元件及配線層2004中使用多結 晶矽電晶體及快閃記憶體的並聯數位演算部及記憶元件部 處理,然後才由設於前述第1 SOI及配線層2001、及前述第 2 SOI及配線層2002中使用SOI電晶體之數位演算處理部、 高精度高度類比部、及同步DRAM部實施處理。 此外,設於前述第1多結晶矽元件及配線層2003中之機能 方塊間轉發部,雖然採複數設置亦不會佔據太大晶片面 O:\88\88059.DOC -38- 1249182 積,卻可調整LSI整體之信號同步。 〜、看出,隹有利用前述實施形態中詳細說明之本發 明技術才能做成上述3次元LSI。 以j係以適當實施例說明本發明,本發明並不限於這些 特疋實施例者,而可以在本發明之要旨内實施各種變形及 變更。 發明之功效 利用本發明,可以在不導切表面平坦性惡化、及不會 破壞真空之連續步驟中,縱然只是峨程度以下之低溫亦 可完全去除表面末端氫,且在約5⑼。c以下之低溫,在全部 面方位足矽上,形成比以傳統熱氧化步驟或微波電漿步驟 成艇nuc膜具有更優良特性及信賴性之%氧化膜、石夕 氮化膜1石夕氧氮化膜,實現高信賴性、高性能之微細電 晶體積體電路。 此外’利用本發明,可以在淺溝分離等元件分離側壁部 之角部、或具有凹ώ之表面形狀㈣表面上,形成漏電電 流及耐壓等特性良好之厚度較薄且高品質切氧化膜、碎 氮化膜、及石夕氧氮化膜,達成元件分離寬度較窄之高密度 元件積體化、以及具有立體構造之高密度元件積體化。 同時’使用本發明之閘極絕緣月奠,實;見可以大幅增加取 代次數之快閃記憶體元件。 其次,利用本發明,亦可在絕緣膜上形成、以(111)面為 王(配向的多結晶矽上,形成高品質矽閘極氧化膜及矽閘 極氮化胺,貫現使用具有高驅動能力之多結晶矽電晶體的 O:\88\88059.DOC -39- 1249182 顯示裝置、以及電晶體及機能元件之複數積層的3次元積體 電路元件,故此技術之效果的影響甚大。 【圖式簡單說明】 圖1係使用無射狀線隙縫天、線之電聚裝置概念圖; 圖2係以紅外分光咨測量之石夕表面末端氮及碎的結合之 Kr電漿曝露依賴度特性圖; 圖3係矽氧化膜厚之處理室氣壓依賴性特性圖; 圖4係石夕氧化膜中之Kr密度的深度方向分布特性圖; 圖5係矽氧化膜之電流電壓特性圖; 圖6係矽氧化膜及矽氧氮化膜之漏電電流特性及膜厚關 係圖; 圖7係矽氮化膜厚之處理室氣壓依賴性特性圖; 圖8係矽氧氮化膜形成時之原子氧及原子氫的發光強度 特性圖; 圖9係石夕氧氮化膜之元素分布特性圖; 圖10係矽氧氮化膜之電流電壓特性圖; 圖11Α至11C係淺溝分離之概念剖面圖; 圖12係在凹凸之矽表面上形成的立體電晶體之剖面構造 圖, 圖13係快閃記憶體元件之剖面構造概念圖; 圖14係階段性說明本發明之快閃記憶體元件形成方法的 概略剖面圖; 圖15係階段性說明本發明之快閃記憶體元件形成方法的 概略剖面圖;
O:\88\88059.DOC 1249182 圖16係階段性說明本發明之快閃記憶體元件形成方法的 概略剖面圖; 圖17係階段性說明本發明之快閃記憶體元件形成方法的 概略剖面圖; 圖18係金屬基板SOI上之MOS電晶體的剖面構造概略圖; 圖19係適應玻璃基板及塑膠基板等之電漿裝置的概念圖; 圖20係絕緣膜將之多結晶矽電晶體的剖面構造概略圖; 圖21係3次元LSI之剖面構造概念圖。 O:\88\88059.DOC -41 -

Claims (1)

  1. 拾、申請專利範園: 1…種半導體裝置,其特徵為:其係含有切表面上形成 之矽化合物層者,且 ^夕化合物層至少含有特定惰性氣體,其氫含有量 之面密度換算g10"/cm2以下。 2.如2請專利範圍第丨項之半導體裝置,其中 、前述惰性氣體至少為氬㈤、氪间、或氤(Xe)之其中 ~ 〇 3. -種半導體裝置,其特徵為:其係在共用基板上含有且 有初表面上介由第…匕合物層形成之多結晶珍膜的 電晶體、及具有在多結晶砍表面上形成之第2珍化合物 層的電晶體者,且 4. A則述弟1及第2碎化合物層各自至少含有一種特定惰性 氣體,其氫含有量之面密度換算為10"W以下。 :種半導體裝置,其特徵為:其係以基板上形成之多結 曰曰石夕層或非晶質矽層做為活性層者,且 述矽層表面上形成至少含有一種特定惰性氣體,其 氫=有量之面密度換算為1〇n/cm2以下之矽化合物層,〃 月ί述半導體裝置驅動前述基板上形成之顯示元件。 O:\88\88059.DOC
TW092125032A 2000-12-28 2001-12-27 Semiconductor device TWI249182B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000402834 2000-12-28
JP2001094245A JP4713752B2 (ja) 2000-12-28 2001-03-28 半導体装置およびその製造方法

Publications (2)

Publication Number Publication Date
TW200404332A TW200404332A (en) 2004-03-16
TWI249182B true TWI249182B (en) 2006-02-11

Family

ID=26607204

Family Applications (2)

Application Number Title Priority Date Filing Date
TW090132522A TW587273B (en) 2000-12-28 2001-12-27 Method of producing semiconductor device
TW092125032A TWI249182B (en) 2000-12-28 2001-12-27 Semiconductor device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW090132522A TW587273B (en) 2000-12-28 2001-12-27 Method of producing semiconductor device

Country Status (10)

Country Link
US (2) US6975018B2 (zh)
EP (1) EP1347506A4 (zh)
JP (1) JP4713752B2 (zh)
KR (2) KR100797432B1 (zh)
CN (1) CN100352016C (zh)
AU (1) AU2002217545B2 (zh)
CA (1) CA2433565C (zh)
IL (2) IL156619A0 (zh)
TW (2) TW587273B (zh)
WO (1) WO2002054473A1 (zh)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1879213B1 (en) * 1999-05-26 2012-03-14 Tokyo Electron Limited Plasma processing apparatus
JP4713752B2 (ja) * 2000-12-28 2011-06-29 財団法人国際科学振興財団 半導体装置およびその製造方法
JP4048048B2 (ja) * 2001-12-18 2008-02-13 東京エレクトロン株式会社 基板処理方法
US7517751B2 (en) 2001-12-18 2009-04-14 Tokyo Electron Limited Substrate treating method
JP4164324B2 (ja) * 2002-09-19 2008-10-15 スパンション エルエルシー 半導体装置の製造方法
JP4320167B2 (ja) 2002-12-12 2009-08-26 忠弘 大見 半導体素子及びシリコン酸化窒化膜の製造方法
CN100429753C (zh) 2003-02-06 2008-10-29 东京毅力科创株式会社 等离子体处理方法、半导体基板以及等离子体处理装置
JP2004265916A (ja) * 2003-02-06 2004-09-24 Tokyo Electron Ltd 基板のプラズマ酸化処理方法
JP2004319907A (ja) * 2003-04-18 2004-11-11 Tadahiro Omi 半導体装置の製造方法および製造装置
JP5014566B2 (ja) * 2003-06-04 2012-08-29 国立大学法人東北大学 半導体装置およびその製造方法
JP4723797B2 (ja) 2003-06-13 2011-07-13 財団法人国際科学振興財団 Cmosトランジスタ
JP2005005620A (ja) * 2003-06-13 2005-01-06 Toyota Industries Corp スイッチトキャパシタ回路及びその半導体集積回路
WO2006033166A1 (ja) * 2004-09-24 2006-03-30 Tadahiro Ohmi 有機el発光素子、その製造方法および表示装置
US6992370B1 (en) * 2003-09-04 2006-01-31 Advanced Micro Devices, Inc. Memory cell structure having nitride layer with reduced charge loss and method for fabricating same
CN100485885C (zh) * 2003-12-18 2009-05-06 东京毅力科创株式会社 成膜方法
US7161833B2 (en) * 2004-02-06 2007-01-09 Sandisk Corporation Self-boosting system for flash memory cells
US7466590B2 (en) * 2004-02-06 2008-12-16 Sandisk Corporation Self-boosting method for flash memory cells
JP2005285942A (ja) * 2004-03-29 2005-10-13 Tadahiro Omi プラズマ処理方法及びプラズマ処理装置
US7091089B2 (en) * 2004-06-25 2006-08-15 Freescale Semiconductor, Inc. Method of forming a nanocluster charge storage device
US7361543B2 (en) 2004-11-12 2008-04-22 Freescale Semiconductor, Inc. Method of forming a nanocluster charge storage device
KR100673205B1 (ko) * 2004-11-24 2007-01-22 주식회사 하이닉스반도체 플래쉬 메모리소자의 제조방법
US20060270066A1 (en) 2005-04-25 2006-11-30 Semiconductor Energy Laboratory Co., Ltd. Organic transistor, manufacturing method of semiconductor device and organic transistor
JP4734019B2 (ja) 2005-04-26 2011-07-27 株式会社東芝 半導体記憶装置及びその製造方法
US7410839B2 (en) 2005-04-28 2008-08-12 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor and manufacturing method thereof
US8318554B2 (en) 2005-04-28 2012-11-27 Semiconductor Energy Laboratory Co., Ltd. Method of forming gate insulating film for thin film transistors using plasma oxidation
TWI408734B (zh) * 2005-04-28 2013-09-11 Semiconductor Energy Lab 半導體裝置及其製造方法
JP2006310601A (ja) * 2005-04-28 2006-11-09 Toshiba Corp 半導体装置およびその製造方法
US7364954B2 (en) 2005-04-28 2008-04-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US7785947B2 (en) 2005-04-28 2010-08-31 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device comprising the step of forming nitride/oxide by high-density plasma
US8193642B2 (en) 2005-06-20 2012-06-05 Tohoku University Interlayer insulating film, interconnection structure, and methods of manufacturing the same
US7820495B2 (en) * 2005-06-30 2010-10-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR101192613B1 (ko) 2005-09-26 2012-10-18 고에키자이단호진 고쿠사이카가쿠 신고우자이단 플라즈마 처리 방법 및 플라즈마 처리 장치
JP5222478B2 (ja) * 2006-02-10 2013-06-26 株式会社半導体エネルギー研究所 不揮発性半導体記憶装置の作製方法
EP1818989A3 (en) 2006-02-10 2010-12-01 Semiconductor Energy Laboratory Co., Ltd. Nonvolatile semiconductor storage device and manufacturing method thereof
US7511995B2 (en) * 2006-03-30 2009-03-31 Sandisk Corporation Self-boosting system with suppression of high lateral electric fields
US7428165B2 (en) 2006-03-30 2008-09-23 Sandisk Corporation Self-boosting method with suppression of high lateral electric fields
JP5235333B2 (ja) * 2006-05-26 2013-07-10 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR101432766B1 (ko) 2006-05-26 2014-08-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작방법
JP2007324185A (ja) * 2006-05-30 2007-12-13 Canon Inc プラズマ処理方法
US8895388B2 (en) * 2006-07-21 2014-11-25 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device and a non-volatile semiconductor storage device including the formation of an insulating layer using a plasma treatment
JP5010222B2 (ja) * 2006-09-21 2012-08-29 株式会社東芝 不揮発性半導体記憶装置
JP4906659B2 (ja) 2006-09-29 2012-03-28 東京エレクトロン株式会社 シリコン酸化膜の形成方法
US8581260B2 (en) * 2007-02-22 2013-11-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including a memory
CN102033361B (zh) * 2008-03-21 2013-03-06 北京京东方光电科技有限公司 液晶取向层的制作方法
JPWO2010064549A1 (ja) 2008-12-04 2012-05-10 三菱電機株式会社 薄膜光電変換装置の製造方法
KR101096909B1 (ko) 2009-12-04 2011-12-22 주식회사 하이닉스반도체 반도체 소자의 트랜지스터 및 그 형성방법
CN103451620A (zh) * 2013-09-02 2013-12-18 上海华力微电子有限公司 金属硅化物阻挡层的表面处理方法
US9947585B2 (en) * 2014-06-27 2018-04-17 Intel Corporation Multi-gate transistor with variably sized fin
CN108807165B (zh) * 2018-06-14 2021-04-13 上海华力集成电路制造有限公司 氧化层的制造方法
US10666353B1 (en) * 2018-11-20 2020-05-26 Juniper Networks, Inc. Normal incidence photodetector with self-test functionality
JP7008844B2 (ja) * 2018-12-05 2022-01-25 三菱電機株式会社 半導体装置および半導体装置の製造方法

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3447238A (en) * 1965-08-09 1969-06-03 Raytheon Co Method of making a field effect transistor by diffusion,coating with an oxide and placing a metal layer on the oxide
US4089992A (en) * 1965-10-11 1978-05-16 International Business Machines Corporation Method for depositing continuous pinhole free silicon nitride films and products produced thereby
US3650042A (en) * 1969-05-19 1972-03-21 Ibm Gas barrier for interconnecting and isolating two atmospheres
US3765935A (en) * 1971-08-10 1973-10-16 Bell Telephone Labor Inc Radiation resistant coatings for semiconductor devices
DE3280026D1 (en) * 1981-05-29 1989-12-21 Kanegafuchi Chemical Ind Process for preparing amorphous silicon semiconductor
FR2519770B1 (fr) * 1982-01-08 1985-10-04 Thomson Csf Systeme d'antenne a pouvoir separateur eleve
EP0115204B1 (en) * 1982-12-27 1989-03-29 Mitsubishi Kasei Polytec Company Epitaxial wafer for use in the production of an infrared led
DE3689735T2 (de) * 1985-08-02 1994-06-30 Semiconductor Energy Lab Verfahren und Gerät zur Herstellung von Halbleitervorrichtungen.
US4895734A (en) * 1987-03-31 1990-01-23 Hitachi Chemical Company, Ltd. Process for forming insulating film used in thin film electroluminescent device
FR2614317B1 (fr) * 1987-04-22 1989-07-13 Air Liquide Procede de protection de substrat polymerique par depot par plasma de composes du type oxynitrure de silicium et dispositif pour sa mise en oeuvre.
US4854263B1 (en) * 1987-08-14 1997-06-17 Applied Materials Inc Inlet manifold and methods for increasing gas dissociation and for PECVD of dielectric films
US5164040A (en) * 1989-08-21 1992-11-17 Martin Marietta Energy Systems, Inc. Method and apparatus for rapidly growing films on substrates using pulsed supersonic jets
JPH0740569B2 (ja) * 1990-02-27 1995-05-01 エイ・ティ・アンド・ティ・コーポレーション Ecrプラズマ堆積方法
US5225366A (en) * 1990-06-22 1993-07-06 The United States Of America As Represented By The Secretary Of The Navy Apparatus for and a method of growing thin films of elemental semiconductors
JP2880322B2 (ja) * 1991-05-24 1999-04-05 キヤノン株式会社 堆積膜の形成方法
JPH0563172A (ja) * 1991-09-02 1993-03-12 Hitachi Ltd 半導体装置とその製造方法
US5340754A (en) * 1992-09-02 1994-08-23 Motorla, Inc. Method for forming a transistor having a dynamic connection between a substrate and a channel region
JPH06120152A (ja) * 1992-10-06 1994-04-28 Nippondenso Co Ltd 水素ドープ非晶質半導体膜の製造方法
JP3190745B2 (ja) * 1992-10-27 2001-07-23 株式会社東芝 気相成長方法
DE4340590A1 (de) * 1992-12-03 1994-06-09 Hewlett Packard Co Grabenisolation unter Verwendung dotierter Seitenwände
US5543356A (en) * 1993-11-10 1996-08-06 Hitachi, Ltd. Method of impurity doping into semiconductor
US5716709A (en) * 1994-07-14 1998-02-10 Competitive Technologies, Inc. Multilayered nanostructures comprising alternating organic and inorganic ionic layers
JP3146113B2 (ja) * 1994-08-30 2001-03-12 シャープ株式会社 薄膜トランジスタの製造方法および液晶表示装置
US5656834A (en) * 1994-09-19 1997-08-12 Philips Electronics North America Corporation IC standard cell designed with embedded capacitors
JP3016701B2 (ja) 1995-02-07 2000-03-06 三洋電機株式会社 水素化非晶質シリコンの製造方法
US5601656A (en) * 1995-09-20 1997-02-11 Micron Technology, Inc. Methods for cleaning silicon wafers with an aqueous solution of hydrofluoric acid and hydriodic acid
US5763327A (en) * 1995-11-08 1998-06-09 Advanced Micro Devices, Inc. Integrated arc and polysilicon etching process
US6106678A (en) * 1996-03-29 2000-08-22 Lam Research Corporation Method of high density plasma CVD gap-filling
US5702869A (en) * 1996-06-07 1997-12-30 Vanguard International Semiconductor Corporation Soft ashing method for removing fluorinated photoresists layers from semiconductor substrates
JP3220645B2 (ja) 1996-09-06 2001-10-22 富士通株式会社 半導体装置の製造方法
JPH10275913A (ja) * 1997-03-28 1998-10-13 Sanyo Electric Co Ltd 半導体装置、半導体装置の製造方法及び薄膜トランジスタの製造方法
JP3222404B2 (ja) * 1997-06-20 2001-10-29 科学技術振興事業団 半導体基板表面の絶縁膜の形成方法及びその形成装置
JP2000022185A (ja) * 1998-07-03 2000-01-21 Sharp Corp 太陽電池セル及びその製造方法
US20010052323A1 (en) * 1999-02-17 2001-12-20 Ellie Yieh Method and apparatus for forming material layers from atomic gasses
JP4119029B2 (ja) * 1999-03-10 2008-07-16 東京エレクトロン株式会社 半導体装置の製造方法
KR100745495B1 (ko) * 1999-03-10 2007-08-03 동경 엘렉트론 주식회사 반도체 제조방법 및 반도체 제조장치
US6461909B1 (en) * 2000-08-30 2002-10-08 Micron Technology, Inc. Process for fabricating RuSixOy-containing adhesion layers
JP4713752B2 (ja) * 2000-12-28 2011-06-29 財団法人国際科学振興財団 半導体装置およびその製造方法
US6586792B2 (en) * 2001-03-15 2003-07-01 Micron Technology, Inc. Structures, methods, and systems for ferroelectric memory transistors

Also Published As

Publication number Publication date
KR100797432B1 (ko) 2008-01-23
CN100352016C (zh) 2007-11-28
WO2002054473A1 (fr) 2002-07-11
CN1592957A (zh) 2005-03-09
JP2002261091A (ja) 2002-09-13
EP1347506A1 (en) 2003-09-24
IL181060A0 (en) 2007-07-04
JP4713752B2 (ja) 2011-06-29
US6975018B2 (en) 2005-12-13
KR20030068570A (ko) 2003-08-21
AU2002217545B2 (en) 2005-03-17
US20050272266A1 (en) 2005-12-08
IL181060A (en) 2011-03-31
TW200404332A (en) 2004-03-16
TW587273B (en) 2004-05-11
KR20060083232A (ko) 2006-07-20
KR100662310B1 (ko) 2006-12-28
US20040102052A1 (en) 2004-05-27
EP1347506A4 (en) 2005-04-20
CA2433565C (en) 2008-04-08
IL156619A0 (en) 2004-01-04
CA2433565A1 (en) 2002-07-11

Similar Documents

Publication Publication Date Title
TWI249182B (en) Semiconductor device
TW525217B (en) Dielectric film and method of producing the same, semiconductor device nonvolatile semiconductor memory device, and method producing semiconductor device
JP4397491B2 (ja) 111面方位を表面に有するシリコンを用いた半導体装置およびその形成方法
US6551948B2 (en) Flash memory device and a fabrication process thereof, method of forming a dielectric film
KR101147920B1 (ko) 실리콘 산화막의 성막 방법, 실리콘 산화막, 반도체 장치, 반도체 장치의 제조 방법 및 라이너 막의 성막 방법
TW200903643A (en) Method for forming silicon nitride film, method for manufacturing nonvolatile semiconductor memory device, nonvolatile semiconductor memory device and plasma processing apparatus
KR20040068990A (ko) 기판 처리 방법 및 반도체 장치의 제조 방법
JP2013225682A (ja) プラズマ窒化処理方法および半導体装置の製造方法
JP2004165628A (ja) 酸化薄膜の界面構造とその形成方法、及び薄膜トランジスタ
JP2012160747A (ja) シリコン酸化膜の形成方法、半導体装置及びその製造方法
Kaluri Plasma-assisted nitrogen incorporation in thin gate dielectrics

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees