TW587336B - Germanium field effect transistor and method of fabricating the same - Google Patents

Germanium field effect transistor and method of fabricating the same Download PDF

Info

Publication number
TW587336B
TW587336B TW092107386A TW92107386A TW587336B TW 587336 B TW587336 B TW 587336B TW 092107386 A TW092107386 A TW 092107386A TW 92107386 A TW92107386 A TW 92107386A TW 587336 B TW587336 B TW 587336B
Authority
TW
Taiwan
Prior art keywords
carrier
type
component
crystal
channel
Prior art date
Application number
TW092107386A
Other languages
English (en)
Other versions
TW200306008A (en
Inventor
Massimo V Fischetti
Steven E Laux
Paul M Solomon
Hon-Sum Philip Wong
Original Assignee
Ibm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibm filed Critical Ibm
Publication of TW200306008A publication Critical patent/TW200306008A/zh
Application granted granted Critical
Publication of TW587336B publication Critical patent/TW587336B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/7853Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET the body having a non-rectangular crossection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1037Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure and non-planar channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78684Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

587336 玖、發明說明: 【發明所屬之技術領域】 本發明一般係關於在相同晶圓上製造一 η型通道場效電晶 體(n-channel field effect transistor; nFET)及一ρ型通道場 效電晶體(p-channel Held effect transistor; pFET),使每個 裝置的載子傳輸最佳化。具體而言,在一鍺層上,在(lu) 表面,沿<110>方向製造一 n型通道FET,在(1〇〇)表面,沿 <110〉方向製造一 ρ型通道FET。 【先前技術】 載子傳輸在鍺場效電晶體(Ge FET)中相對於在矽場效電 晶體中是已知的。因此,先前技術認為鍺提供的電子遷移 率遠遠大於矽。此外,先前技術通常將nFE 丁及pFE 丁組合在 一互補金氧半導體電路(c〇mplementary metal 〇xide semiconductor ; CM0S)之單一晶圓上。然而,先前技術未 能根據載子遷移率的特性將該等互補裝置之結構及定向最 佳化。 【發明内容】 本發明者不但已經理解在鍺中載子遷移率高於在矽中, 而且也理解’為最大限度利用載子傳輸,有必要選擇適當 的晶體定向及載子億給+ A 40- '/v ” 丁傅輸万向。對於包含兩種載子的CMOS, 该理解更為重要。目此,本發明認為,一電路的每個裝置 有、/裝置〈載子類型為基礎的一較佳晶體定向及方 =-項範例性具體實施例係— nFET,具有— 晶 體表面形成的㈣。本發明額外提供—種在相同晶片上製 84143 造兩個裝置之方法,其中每個裝置包含一不同載子類型, /、在 日日眼表面具有取佳載子遷移率。一項範例性具體實 施例係在鍺上兼有n型通道及卩型通道FET,其採用各自較佳 的晶體定向。 圖1顯示石夕及鍺反轉層電子遷移率在包括及不包括介面輪 度散射的計算比較結果,該電子遷移率與電子片密度呈函 數關係。如曲線1所示,一鍺反轉層(111)表面電子遷移率明 顯大於鍺(1〇〇)表面(曲線2)及矽(1〇〇)表面(曲線3)。此等三 條曲線中的空心符號代表無表面糙度,而對應於曲線4、5 及6中的實心符號代表有表面縫度。 具體而言,在鍺中,在(111)晶體表面及沿<11〇>方向,η 型通道FET載子傳輸較快,而在(1〇〇)晶體表面及沿<11〇>方 向,ρ型通道FET載子傳輸較快。發明者已經認識到,遵循 該指導方針,根據晶體方向為每個裝置選擇一裝置結構, 並將該裝置定向於<110>方向,藉此可使η型通道FE 丁及ρ型 通道FET在鍺中的載子傳輸最佳化。 因此,本發明的一目的係提供一種用以在(m)表面,沿 <110〉方向製造一 η型通道FET的結構及方法。 本發明另一目的係提供一種在相同晶圓上製造具有第一 類型載子的一第一裝置以及具有第二類型載子的一第二裝 置之結構及方法,其中第一類型載子的載子遷移率沿(ιιι) 晶體定向更高,第二類型載子的載子遷移率沿(1〇〇)晶體定 向更高。 一特定具體實施 本發明又一目的係提供此方法及結構的 84143 587336 例’以便使用鍺作為下層,在相同晶片上形成一η型通道PM 及一 P型通道FET。 本發明另-目的是揭示在鍺金屬氧化物半導體場效電晶 體中m〇sfet),或任何在(⑴)及陶表面具有不同傳 輸特性的金屬氧化半導體場.效電晶體中獲得nFET& _丁最 佳傳輸特性的方法。 為達到上述及其他目@ ’本發明之—第一方面係說明一 :電子晶片的製造方法以及結構,該電子晶片包括具有一 :-類型載子的一第一裝置’該第一裝置形成在—載子遷 移率表面大於在(⑽)表面的材料之⑴叫體表面 上4第方面之一項較佳具體實施例係在鍺的(丨i丨)表面 沿<110>方向製造的η型通道fet。 本發明一第二方面係說明一種電子晶片的製造方法以及 結構,該電子晶片包括具有一第一類型載子的一第一裝置, 該第-裝置形成在一種材料之(111)晶體表面内,該材料的 載子遷移率在(111)表面大於在(⑽)表面,ϋ包括具有一第 二類型載子的一第二裝置,,第二裝置形成在一種材料之 (100)晶體表面内,該材料之第二載子類型的載子遷移率在 (100)表面大於在(111)表面。該第二方面之一項較佳具體實 施例包括一在(π 1)表面沿 < 丨丨〇>方向的η型通道FET以及一 在(1 〇〇)表面沿<Π 0>方向的p型通道feT,其中二裝置都开< 成於同一錯層内。 【實施方式】 參照附圖,特別是圖1,藉由將曲線!與曲線2、3及6比較, 84143 587336
Ge反轉層在(111)表面上的電子遷移率明顯大於以或以反轉 層的(10G)表面。透過嚴格的裝置模擬及分析,本發明者输 製了該圖並從而決定’當n型通道FET電流傳輸係在⑴〇晶 體表面沿<ιιο>方向’以及p型通道FET電流傳輸係在⑽) 晶體表面沿<ιιο>方向時,鍺場效電晶體(Ge fet)具有較高 的電流驅動力。 圖2顯示由計算值繪製出的汲極電流對汲極-源極電壓曲 線20,用以說明在(100)表面上25nm通道長度以底材n型 MOSFET (曲線21),以及在⑴υ表面上類似的以裝置(曲線φ 22) 。 Ge裝置呈現明顯較大的電流及跨導 (transconductance) 〇 因此,為最大限度利用載子傳輸,不僅有必要選擇材料, 也要選擇適當的晶體定向及載子傳輸方向。本發明揭示選 擇一較佳的晶體定向及方向以使載子傳輸最佳化。 由於晶圓只是沿一個主要晶體方向從鑄錠上切下,因此 通常難以在相同晶圓上製造不同晶體定向之FET。因此,本 發明也揭示一種在相同晶圓上製造η型通道及p型通道_ FET的方法’該方法使用不同的FET結構,其具有使各載子 遷移率最佳化之晶體平面及方向。 使用石夕(Si)當作具有(111)結構的閘通道iFET組態已為吾 人所熟知。圖3顯示一實例,如sah〇等人在「三角平行線通 道M0SFET中短通道效應的抑制」(IEEE矽奈米電子學研究 講習會,第6至7頁,曰本東京,2〇〇1年6月1〇至u 日)(Suppression of Short Channel Effect in Triangular 84143
Parallel Wire Channel MOSFETs 」(IEEE Silicon Nanoelectronics Workshop,pp.6-7, Kyoto,Japan, June 10-11,2001))中所述,其具有一形成於矽上之埋入氧化物 (BOX)32上面,並包括三角平行線通道31的MOSFET結構 30。該三角平行線通道31係藉由用四甲基氫氧化銨(TMAH) 進行各向異性蝕刻而獲得。所形成之矽(111)平面隨後藉由 具有一氧化層及閘電極的閘結構32所覆蓋。用於線通道的 相同矽層也用於源極33及汲極34的形成。 在「短通道效應」抑制技術中同樣為吾人所熟知的是: 以矽為基礎、自行對準雙閘極MOSFET結構,稱為FinFET(鰭 式場效電晶體)。圖4係FinFET40之一縱向斷面圖,Huang等 人在「50 nm 以下 FinFET : PMOS」(Sub50- nm FinFET:PMOS)(IEEE國際電子裝置會議(IEDM),第67至70 頁,1999 年)(IEEE International Electron Devices Meeting (IEDM),pp.67-70,1999)對其進行了論述。使用多晶矽鍺 (poly-SiGe),在埋入氧化(BOX)層43(在矽晶圓44上)與藉由 矽氧化層46所覆蓋之矽鰭片45上製造源極41及汲極42。由 SiGe所構成之氮化物間隔層(Nitride spacer)47及閘極48完成 FinFET結構,其可使短通道結構短到17nm,並可能將閘極 長度減小到1 〇nm。 超薄矽鰭片45用於抑制短通道效應。氮化物間隔層47之 間的兩個間隔定義該通道*度。由多晶矽鍺所構成的昇起 式源極(raised source)4 1及汲極42降低了寄生電阻。
圖5顯示該基於矽的FinFET之一可能製造順序。在步驟A 84143 -10- 中,將厚度為50nm — Si層51沈積到一 S0I晶圓Β〇χ層5〇之 上,隨後係厚度為10〇1^的一 Si〇#52。在步驟B中,將矽 層51蝕刻以形成氧化物覆蓋的鰭片結構,使用電子束微影 去蝕刻Si〇252層以形成一硬光罩,以在蝕刻矽時形成鰭片 結構。在步驟c中,將一 300nm厚低溫氧化物(LT〇)沈積在 200nm厚p+多晶矽鍺層上,在步驟D中,將此二層“及” 進订蝕刻,首先藉由蝕刻LT〇層使其成為一光罩,以在該多 晶矽鍺層反應離子蝕刻時形成源極56及汲極57。該氮化物 間隔層58係在步驟e中藉由1〇〇nm氮化層之沈積而形成,隨 後對之進行蝕刻。間隔層間之間隙通常小於2〇nm。 為形成步驟F中的閘結構59,首先生長一 1511〇1厚犧牲氧 化層’然後對其實施濕式蝕刻,W除去在先前鰭片側面的 一乾式蝕刻時造成的損害。該步驟進一步降低該鰭片的厚 度,使孩鰭片之最終厚度範圍為15至3〇11111。在75〇<>c下,一 2.5nm閘極氧化物生長於該鰭片側面,與一額外的退火步驟 結合的該「高溫」步驟將硼從該SiGe昇起式源極/汲極區域 驅入到該氮化物間隔層下面的鰭片中,以形成对源極/沒極 延伸部分。在沈積20〇nm原處摻雜以(}6(6〇%(^,其功函數 為4.75eV)作為閘極材料後,將該電極圖案化並加以蝕刻。 藉由此等先前技術實例說明該等技術,其中為一裝置之 一特疋組件製備一特足晶體平面,如(丨丨丨),並將一適當先 則技術與圖1及結論結合,使用鍺作為材料、fet通道作 為特定裝置組件來說明兩項範例性較佳具體實施例。 第一項範例性具體實施例包括藉由圖6所述之方法6〇。在 84143 -11 - 587336 第61步’將一鍺(Ge)材料確定為一材料,在其(ιη)晶體平 面内一 η型通道FEt具有一最佳載子遷移率,及在(1〇〇)晶體 平面内,一ρ型通道FE 丁具有一最佳載子遷移率。兩種類型 載子之最佳載子遷移方向均為<11 〇>方向。 因此’為說明本發明之第一項範例性具體實施例,特設 计最佳鍺n型通道FET。由於發生在一 FET中的相關活動 都^生在違通道中’因此本發明之相關組件包括該MET通 這,本發明揭示其在(111)平面具有一最佳載子遷移率。因 此,第63步及第64步揭示,GenFET之閘極及通道應在(I") φ 表面上製備。其餘nFE丁組件(如源極與汲極)的製造較為簡 早,但取決於所選擇的特定nFET結構。因此,在步驟63之 則所製備 < 孩等特定裝置組件及在步驟64之後所製備之該 寺特疋裝置組件取決於該裝置結構,可能之實例為圖3所示 之平行線結構或圖4所示之。 由於最佳載子遷移發生在<110>方向’因此要將通道定向 =將源極及沒極定位,對熟知技術人士此乃易事。亦應注 意’熟悉技術人士很容易明白第63步及第64步可以在順序鲁 上^開’以在此等兩步中間製造一或多個裝置組件。熟悉 技咖人士亦應理解,該鍺材料可能是一基板、或可能是加 到一石夕晶圓之上的一層、或加到一絕緣層之上的-層,如 在一石夕晶圓之上的氧切、或提供鍺作為—晶圓上之一層 或-區域的任何其他方法一錯層之最小厚度要使咖了(^) 平面表面足以獲得四角錐形晶體結構。 本發明之-第二項範例性具體實施例係圖7所示的方法 84143 -12- 587336 70。在此項具體實施例中,將具有各自不同類型載子的二 不同裝置製造在同一晶片上,以根據個別載子特性使每個 裝置最佳化。如上述第一項具體實施例中所述,此非限制 性實例包括一 riFE 丁及一pFET,其使用與第7;[步中所確定之 相同鍺材料。由於使用(111)平面才能獲得最佳nFET通道及 使用(100)平面才能獲得最佳pFET通道,因此第73A、74A、 73B及74B步包括使用一(111)蝕刻劑在一鍺材料一第一區域 製備該nFET及使用一蝕刻劑在該鍺材料之一第二區域製備 一(100)平面用於該pFET。 鲁 應明白’該第一及第二區域的製備可以以任何順序實施, 且该製備的某些步驟可以共用。此外,與上面第一範例性 具體實施例類似,該nFET及PFET裝置可以具有任何一種為 吾人所熟知的基本結構。此二裝置可使用相同的基本結構, 只是通道製備不同,或此二裝置可具有不同的基本結構。 如上所述,該鍺可以為一層,其具有足以在nFET(丨11)平面 表面獲得四角錐形晶體結構的最小厚度。或者,該鍺材料 可此疋一晶圓基板、或可能是加到一矽晶圓上的一鍺層、籲 或加到一絕緣層之上的一鍺層,如在一矽晶圓之上的氧化 矽或提供鍺作為一晶圓上之一層或一區域的任何其他方
法。同樣如上所述,步驟72A、72B、74A、74B、75A及75B 中的特定組件製造將根據該裝置結構而變化,如上所述, 邊通迢及其餘裝置組件之定向要滿足兩種載子1…較佳載 子方向之要求。 圖8為通逍nFET8 1及一通道pFET82的示範性斷面圖 84143 -13- 587336 8〇此兩通迢形成於同一晶片83上及在同一埋入氧化層 (B〇X)84上製造。源極及汲極未顯示,但圖3及4中所示的裝 置佈局可用以說明:源極及汲極可以定位於該圖8斷面圖的 支面或納面。忒通道以由一閘極絕緣體8 6,如氧化石夕及閘 電極87所t蓋。肖閘極i緣體及閘電極之製造為吾人所熟 知。應明白,該圖說明上述第二項範例性具體實施例,藉 由研艽與PFET82相間隔層的nFET81,也說明了第一範例性 具體實施例。 圖9顯示Ge層92 nFET區域之(ill)晶體製備90。有一硬光 _ 罩91位於與<ιι〇>方向相適應的nFET通道區域之上。為獲 得該(1 11)平面之棱鏡結構94,使用一範例性酸性化學配方 (H3P〇4:H202:C2H5〇H,比例:1:1:1,或 HF:H202:H20, 比例:17:17:66)(如Lang等人在微機械微工程雜誌(j,
Micromech. Microeng. ν〇1·6,ρρ·46-48,1996·)6卷 46至 48 頁刊 登的「用於紅外光柵製造的鍺整體微細加工」(Bulk micromachining of Ge for IR gratings)中所述)實施鍺各向異 性蚀刻93)。前者最好係使用一絡硬光罩。 _ 在該nFET右側顯示的區域95可以以另一方式製備,如在 一 pFET之Ge(100)平面,使用標準垂直蝕刻方法,如圖8之 右側所示。 只要該nFET是基於四棱鏡結構及該pFE丁是以該平面表面 為基礎,如在圖8之斷面圖所示,可以使用任何已知方法完 成該nFET及pFET結構,本發明之該較佳具體實施例中二通 道結構的定位使nFET及pFET之載子移動都發生在<11〇>方 84143 -14- 587336 向0 根據上面所述可以清楚看到,本發明—主要優點為,益 論在GeM〇SFET或在任何在⑴丨)及⑽)表面具有不同傳輸 特性的Μ0贿中,鑛及_裝置都能獲得最佳載子傳 輸特性。 雖然本發明僅就一單一較佳具體實施例加以說明,但是 熟悉技術人士應明白,本發明可在隨附申請專利範圍的精 神及範疇内進行修改。 【圖式簡單說明】 攸本發明較佳具體貫例的上述詳細說明並參考圖式,即 可更加瞭解上述及其它目的、觀點及優點,其中·· 圖1顯示矽及鍺反轉層電子遷移率的計算比較結果,該電 子遷移率與電子片密度成函數關係; 圖2顯示由計算值繪製出的汲極電流對汲極-源極電壓曲 線’用以說明在(100)表面上之矽底材η型MOSFET,以及在 (111)表面上類似的Ge裝置·; 圖3顯示一在SOI基板上,具有三角平行線通道的MOSFET 結構’如在先前技術中所述; 圖4顯示該FinFET結構之一縱向斷面圖,如在先前技術中 所述; 圖5顯示圖4中所示之一 FinFET製造範例; 圖6顯π本發明一範例性弟'一具體貫施例之一範例性方 法; 圖7顯示本發明一範例性第二具體實施例之一範例性方 84143 -15- 587336 法; 圖8顯示根據本發明製造的π範例性#£ 丁及pFET之一橫 向斷面圖;以及 圖9顯示一範例性鍺材料之(1丨丨)平面的一範例性製備方 法0 【圖式代表符號說明】 30 MOSFET 結構 3 1 三角平行線通道 32 埋入氧化物 33 源極 3 4 汲極 41 源極 42 沒極 43 埋入氧化層 44 矽晶圓 45 矽鳍片 46 氧化層 47 氮化物間隔層 48 閘極 50 埋入氧化層 51 Si 層
52 SiOJ 54 低溫氧化物 55 P+多晶矽鍺層 84143 • 16 - 源極 汲極 氮化物間隔層 閘結構 N型通道場效電晶體 P型通道場效電晶體 晶片 共用埋入氧化層 通道 閘絕緣體 閘電極 晶體製備 硬光罩 Ge層 棱鏡結構 17-

Claims (1)

  1. 587336 拾、申請專利範圍: 1· 一種至少具有一層材料之電 子類型在-第-晶触矣“ 層材料的一第—載 在罘日曰岐表面内的載子遷移率大於在一# 體表面内的載子遷移率, 罘一晶 表面内的-載子遷移率大於 吊… 移率,該電子晶片包括: 心表面内的載子遷 弟-裝置’其至少具有形成於該材料之該第触 表面上之一組件,其中該第_ T ^裝置 < 琢至少'组件的 動王要涉及該第一載子類型;以及 / 一第二裝置, 表面上之一組件 動主要涉及該第
    其至少具有形成於該材料之該第二晶體 ’其中該第二裝置之該至少—組件的―: 二載子類型。 電子晶片,其中該第一晶體表面 而該第二晶體表面則包括一(丨00) 2·如申請專利範圍第丨項之 包括一(111)晶體表面, 表面。 3. 如申請專利範圍第2嗔之電子晶片,其中該材料包括錯。
    4. 如申請專利範圍第2項之電子晶片,其中該第—裝置包括 1型通道而(場效電晶體),而該第:裝置包括—^通 道FET ’ JL 1¾至少一組件包括該等FET之一通道。 5’如申請專利範圍第4項之電子晶片’其中該n型通道印丁及 孩Ρ型通道FET之至少—個的該通道與一 <11〇>方向對齊。 6. 如申請專利範圍第4项之電子晶片,其中該第—裝置及該 第二裝置之至少一個包括一 FinFET結構。 7. 如申請專利範圍第4項之電子晶片,其中該材料包括鍺。 84143 8·—種電子晶片,其包括: —、弟—裝置’其至少具有—層材料,該層材料的-第 —載子類型在一第一晶體表面内 # 载子遷移率大於在一 ^晶體表面内的載子遷移率’且該層材料的-第二載子 2型在孩第二晶體表面内的—載子遷移率大於在該第—晶 體表面内的載子遷移率,嗜筐世罢^ 、 、夕手落罘一裝置至少具有由該材料之 琢第-晶體表面形成之一組件,該至少一組件的一活動主 要涉及該第-載子類型,其中該第一晶體表面包括一⑴” 晶體表面’而該第二晶體表面則包括—(100)表面。 9.如申請專利範圍第8項之電子晶片,其中該材料包括鍺。 10·如申請專利範圍第9項之電子晶片,其中該第一裝置包括 — η型通道FET (場效電晶體),且該至少一組件包括該η型 通道FET之一通道。 .如申請專利範圍第10項之電子晶片,其中該11型通道邱丁 之該通道與一 <11 〇>方向對齊。 12·如申請專利範圍第1〇項之電子晶片,其中該η型通道吓丁 之一結構包括一 FinFET結構。 13·如申請專利範圍第8項之電子晶片,其進一步包括: 一第二裝置,其至少具有一層該材料,該第二裝置至 少具有一由該材料之該第二晶體表面形成之一組件,該第 —裝置之該至少一組件的—活動主要涉及該第二載子類 型。 14.如申請專利範圍第13項之電子晶片,其中該第二裝置包 括一 p型通道FET。 84143 587336 15:如:請±專利範園第14項之電子晶片,其中該第-裝置及 μ第I置之土少一個的一結構包括一FinFET結構。 16•如申請專利範圍第13項之電子晶片,其中該材料包括錯。 17·-種在-晶圓上製造一第—裝置及一第二裝置的方法, 該第:裝置具有—第一類型的一載子,而該第二裝置則具 有-第二類型的一載子,該第一類型載子在一⑴”晶體 表面的載子遷移率大於在_ (1〇〇)晶體表面的載子遷移 率,該帛二類型載子在該⑽)晶體表面的載子遷移率大 於在该(1 1 1 )晶體表面的載子遷移率,該方法包括: 提供一層材料,其具有一特性,即該第一類型載子在 一⑴1)晶體表面的-載子遷移率大於在 的載子遷移率,還具有一特性,即該第二類型載子在二 晶體表面的-載子遷移率大於在該⑴”晶體表面的載子 遷移率; 使用一(111)蝕刻劑在該層之一第一區域蝕刻,以提供 該第一裝置之至少一組件;以及 使用一蝕刻劑在該層之一第二區域蝕刻,以提供該第 二裝置之至少一組件的該(100)晶體表面。 18.如申請專利範圍第17項之方法,其中該材料包含鍺。 19·如申請專利範圍第17項之方法,其中該第一裝置包括一打 型通适FET(場效電晶體),且該第二裝置包括一 ρ型通道 FET,且該至少一組件包括該等FET之一通道。 20.如申請專利範圍第丨7項之方法,其進一步包括: 將該第一裝置之該至少一組件及該第二裝置之該至少 一組件中至少一個的一載子方向與一 <11〇>方向對齊Λ。 ’ 84143
TW092107386A 2002-04-04 2003-04-01 Germanium field effect transistor and method of fabricating the same TW587336B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/116,568 US6864520B2 (en) 2002-04-04 2002-04-04 Germanium field effect transistor and method of fabricating the same

Publications (2)

Publication Number Publication Date
TW200306008A TW200306008A (en) 2003-11-01
TW587336B true TW587336B (en) 2004-05-11

Family

ID=28674018

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092107386A TW587336B (en) 2002-04-04 2003-04-01 Germanium field effect transistor and method of fabricating the same

Country Status (8)

Country Link
US (1) US6864520B2 (zh)
EP (1) EP1495495A1 (zh)
JP (1) JP4299678B2 (zh)
KR (1) KR100598371B1 (zh)
CN (1) CN100375291C (zh)
AU (1) AU2003215750A1 (zh)
TW (1) TW587336B (zh)
WO (1) WO2003088360A1 (zh)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7682947B2 (en) * 2003-03-13 2010-03-23 Asm America, Inc. Epitaxial semiconductor deposition methods and structures
US7238595B2 (en) * 2003-03-13 2007-07-03 Asm America, Inc. Epitaxial semiconductor deposition methods and structures
KR100491979B1 (ko) * 2003-06-27 2005-05-27 한국전자통신연구원 초미세 채널 전계 효과 트랜지스터 및 그 제조방법
US7034361B1 (en) * 2003-09-03 2006-04-25 Advanced Micro Devices, Inc. Narrow body raised source/drain metal gate MOSFET
EP1555688B1 (en) 2004-01-17 2009-11-11 Samsung Electronics Co., Ltd. Method of manufacturing a multi-sided-channel finfet transistor
US7224029B2 (en) * 2004-01-28 2007-05-29 International Business Machines Corporation Method and structure to create multiple device widths in FinFET technology in both bulk and SOI
EP1763893A2 (en) * 2004-02-27 2007-03-21 ASM America, Inc. Germanium deposition
KR100576361B1 (ko) * 2004-03-23 2006-05-03 삼성전자주식회사 3차원 시모스 전계효과 트랜지스터 및 그것을 제조하는 방법
KR100612419B1 (ko) * 2004-10-19 2006-08-16 삼성전자주식회사 핀 트랜지스터 및 평판 트랜지스터를 갖는 반도체 소자 및그 형성 방법
US7208379B2 (en) * 2004-11-29 2007-04-24 Texas Instruments Incorporated Pitch multiplication process
KR100849177B1 (ko) * 2005-01-04 2008-07-30 삼성전자주식회사 패싯 채널들을 갖는 모스 트랜지스터를 채택하는 반도체집적회로 소자들 및 그 제조방법들
TWI263328B (en) * 2005-01-04 2006-10-01 Samsung Electronics Co Ltd Semiconductor devices having faceted channels and methods of fabricating such devices
US7388278B2 (en) * 2005-03-24 2008-06-17 International Business Machines Corporation High performance field effect transistors on SOI substrate with stress-inducing material as buried insulator and methods
US7456450B2 (en) * 2006-02-09 2008-11-25 International Business Machines Corporation CMOS devices with hybrid channel orientations and method for fabricating the same
US7566949B2 (en) * 2006-04-28 2009-07-28 International Business Machines Corporation High performance 3D FET structures, and methods for forming the same using preferential crystallographic etching
US20070262296A1 (en) * 2006-05-11 2007-11-15 Matthias Bauer Photodetectors employing germanium layers
US7582516B2 (en) * 2006-06-06 2009-09-01 International Business Machines Corporation CMOS devices with hybrid channel orientations, and methods for fabricating the same using faceted epitaxy
US7648853B2 (en) 2006-07-11 2010-01-19 Asm America, Inc. Dual channel heterostructure
US7728364B2 (en) * 2007-01-19 2010-06-01 International Business Machines Corporation Enhanced mobility CMOS transistors with a V-shaped channel with self-alignment to shallow trench isolation
JP4504390B2 (ja) * 2007-02-27 2010-07-14 株式会社東芝 相補型半導体装置
US7691752B2 (en) * 2007-03-30 2010-04-06 Intel Corporation Methods of forming improved EPI fill on narrow isolation bounded source/drain regions and structures formed thereby
US20080237741A1 (en) * 2007-03-30 2008-10-02 Pushkar Ranade Methods of forming improved epi fill on narrow isolation bounded source/drain regions and structures formed thereby
US7842982B2 (en) 2008-01-29 2010-11-30 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing method thereof
JP4543093B2 (ja) * 2008-01-29 2010-09-15 株式会社東芝 半導体装置
JP4724231B2 (ja) * 2009-01-29 2011-07-13 株式会社東芝 半導体装置およびその製造方法
WO2011013042A1 (en) 2009-07-29 2011-02-03 International Business Machines Corporation Germanium n-mosfet devices and production methods
NL2003357C2 (en) * 2009-08-14 2011-02-15 Univ Twente Method for manufacturing a single crystal nano-wire.
US9396947B2 (en) 2011-08-25 2016-07-19 Aeroflex Colorado Springs Inc. Wafer structure for electronic integrated circuit manufacturing
US9312133B2 (en) 2011-08-25 2016-04-12 Aeroflex Colorado Springs Inc. Wafer structure for electronic integrated circuit manufacturing
US9378955B2 (en) 2011-08-25 2016-06-28 Aeroflex Colorado Springs Inc. Wafer structure for electronic integrated circuit manufacturing
US9378956B2 (en) 2011-08-25 2016-06-28 Aeroflex Colorado Springs Inc. Wafer structure for electronic integrated circuit manufacturing
CN103000504A (zh) * 2011-09-14 2013-03-27 中国科学院微电子研究所 半导体器件及其制造方法
KR101865626B1 (ko) * 2011-11-09 2018-06-11 삼성전자주식회사 박막 구조물 및 박막 구조물의 형성 방법
US9127345B2 (en) 2012-03-06 2015-09-08 Asm America, Inc. Methods for depositing an epitaxial silicon germanium layer having a germanium to silicon ratio greater than 1:1 using silylgermane and a diluent
CN103383961A (zh) * 2012-05-03 2013-11-06 中芯国际集成电路制造(上海)有限公司 FinFET结构及其制造方法
US8940580B2 (en) 2012-06-28 2015-01-27 International Business Machines Corporation Textured multi-junction solar cell and fabrication method
US9105775B2 (en) 2012-06-28 2015-08-11 International Business Machines Corporation Textured multi-junction solar cell and fabrication method
US9171715B2 (en) 2012-09-05 2015-10-27 Asm Ip Holding B.V. Atomic layer deposition of GeO2
CN103839891A (zh) * 2012-11-26 2014-06-04 中国科学院微电子研究所 一种半导体结构及其制造方法
CN103915335B (zh) * 2013-01-08 2016-08-03 中芯国际集成电路制造(上海)有限公司 半导体器件的形成方法
TWI531059B (zh) 2013-03-18 2016-04-21 財團法人國家實驗研究院 半導體結構
CN104241117B (zh) * 2013-06-09 2017-05-17 中芯国际集成电路制造(上海)有限公司 图形化方法
US9218963B2 (en) 2013-12-19 2015-12-22 Asm Ip Holding B.V. Cyclical deposition of germanium
US9263586B2 (en) 2014-06-06 2016-02-16 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum well fin-like field effect transistor (QWFinFET) having a two-section combo QW structure
US9064976B1 (en) 2014-12-02 2015-06-23 International Business Machines Corporation Modeling charge distribution on FinFET sidewalls
US9437445B1 (en) 2015-02-24 2016-09-06 International Business Machines Corporation Dual fin integration for electron and hole mobility enhancement
US9472555B1 (en) * 2015-12-19 2016-10-18 International Business Machines Corporation Nanosheet CMOS with hybrid orientation
WO2018182685A1 (en) * 2017-03-31 2018-10-04 Intel Corporation Germanium cmos channel structures with optimized quantum confinement and multiple threshold voltage operation
KR102414182B1 (ko) * 2017-06-29 2022-06-28 삼성전자주식회사 반도체 소자

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3603848A (en) * 1969-02-27 1971-09-07 Tokyo Shibaura Electric Co Complementary field-effect-type semiconductor device
US4119996A (en) * 1977-07-20 1978-10-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Complementary DMOS-VMOS integrated circuit structure
NL184551C (nl) * 1978-07-24 1989-08-16 Philips Nv Veldeffekttransistor met geisoleerde stuurelektrode.
US4225879A (en) 1979-01-26 1980-09-30 Burroughs Corporation V-MOS Field effect transistor for a dynamic memory cell having improved capacitance
US4255879A (en) * 1979-03-19 1981-03-17 Amf Incorporated Snow blower dead man control
US4768076A (en) * 1984-09-14 1988-08-30 Hitachi, Ltd. Recrystallized CMOS with different crystal planes
JPS6292361A (ja) * 1985-10-17 1987-04-27 Toshiba Corp 相補型半導体装置
JP3038939B2 (ja) * 1991-02-08 2000-05-08 日産自動車株式会社 半導体装置
JPH06349735A (ja) * 1993-06-12 1994-12-22 Semiconductor Energy Lab Co Ltd 半導体装置
JPH07221304A (ja) * 1994-02-07 1995-08-18 Nippondenso Co Ltd Mosデバイス及びその製造方法
JP3675886B2 (ja) * 1995-03-17 2005-07-27 株式会社半導体エネルギー研究所 薄膜半導体デバイスの作製方法
US6165874A (en) * 1997-07-03 2000-12-26 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for growth of crystal surfaces and growth of heteroepitaxial single crystal films thereon
US6436748B1 (en) * 1999-08-31 2002-08-20 Micron Technology, Inc. Method for fabricating CMOS transistors having matching characteristics and apparatus formed thereby
US6245615B1 (en) * 1999-08-31 2001-06-12 Micron Technology, Inc. Method and apparatus on (110) surfaces of silicon structures with conduction in the <110> direction
JP2001332726A (ja) * 2000-05-22 2001-11-30 Hitachi Ltd 縦形電界効果半導体装置及びその製造方法
JP4732599B2 (ja) * 2001-01-26 2011-07-27 株式会社日立製作所 薄膜トランジスタ装置

Also Published As

Publication number Publication date
AU2003215750A1 (en) 2003-10-27
KR100598371B1 (ko) 2006-07-06
CN100375291C (zh) 2008-03-12
US6864520B2 (en) 2005-03-08
CN1643694A (zh) 2005-07-20
JP2005526385A (ja) 2005-09-02
WO2003088360A1 (en) 2003-10-23
EP1495495A1 (en) 2005-01-12
JP4299678B2 (ja) 2009-07-22
TW200306008A (en) 2003-11-01
KR20040094779A (ko) 2004-11-10
US20030190791A1 (en) 2003-10-09

Similar Documents

Publication Publication Date Title
TW587336B (en) Germanium field effect transistor and method of fabricating the same
JP5009611B2 (ja) Finfetデバイス中の構造を形成する方法
US11007005B2 (en) Method of manufacturing a semiconductor device and a semiconductor device
TWI260688B (en) Strained channel CMOS device with fully silicided gate electrode
KR100962947B1 (ko) 고이동도 평면 및 다중-게이트 MOSFETs을 위한 혼성기판 기술
US7728324B2 (en) Field effect transistor, integrated circuit element, and method for manufacturing the same
KR101436129B1 (ko) 스트레스형 전계효과 트랜지스터 및 그 제조방법
TWI485848B (zh) 半導體裝置及其製造方法
CN105810643B (zh) 制造Si和SiGe鳍片、制造CMOS器件的方法以及CMOS器件
US7964465B2 (en) Transistors having asymmetric strained source/drain portions
JP2008227026A (ja) 半導体装置の製造方法
US8815658B2 (en) Hetero-structured inverted-T field effect transistor
JP2009054705A (ja) 半導体基板、半導体装置およびその製造方法
US20060226495A1 (en) Structure and Method of Three Dimensional Hybrid Orientation Technology
US7982269B2 (en) Transistors having asymmetric strained source/drain portions
US10211225B2 (en) FinFET devices wit multiple channel lengths
JP5286416B2 (ja) 半導体装置およびその製造方法
US20130292779A1 (en) Semiconductor device and semiconductor device production process
US7238567B2 (en) System and method for integrating low schottky barrier metal source/drain
JP2004214457A (ja) 半導体装置及び半導体装置の製造方法
JP2005012087A (ja) 半導体装置
JP6064665B2 (ja) 半導体装置およびその製造方法
JP2010034470A (ja) 半導体装置
JP2004273818A (ja) 半導体装置及びその製造方法
JP2005277345A (ja) 半導体装置および半導体装置の製造方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees