JP5286416B2 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
JP5286416B2
JP5286416B2 JP2011530655A JP2011530655A JP5286416B2 JP 5286416 B2 JP5286416 B2 JP 5286416B2 JP 2011530655 A JP2011530655 A JP 2011530655A JP 2011530655 A JP2011530655 A JP 2011530655A JP 5286416 B2 JP5286416 B2 JP 5286416B2
Authority
JP
Japan
Prior art keywords
insulating film
region
gate electrode
film
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011530655A
Other languages
English (en)
Other versions
JPWO2011030396A1 (ja
Inventor
林 幸 雄 中
田 敏 典 沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of JPWO2011030396A1 publication Critical patent/JPWO2011030396A1/ja
Application granted granted Critical
Publication of JP5286416B2 publication Critical patent/JP5286416B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7843Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being an applied insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823821Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET

Description

本発明は、半導体装置およびその製造方法に関する。
LSIの高集積化と高性能化は、その基本構成素子である電界効果トランジスタ(以下、FET(Field Effect Transistor)とも云う)の微細化とそれに伴う性能向上によって実現されてきた。FETの性能はオン動作時の駆動電流の大きさとオフ時のチャネルリーク電流の小ささで決定される。
リーク電流の低減に関しては、短チャネル効果に対する耐性が高い、チャネル領域を完全空乏化したFD(Fully-Depleted)デバイスが次世代の基本素子構造として期待されている。中でも注目されているのは、マルチゲート型トランジスタである。マルチゲート型とは、従来のシングルゲート型と異なり、微小なチャネル領域をゲート電極で取り囲む構造である。その構造の利点は、チャネル領域のポテンシャルの制御性を高め、デバイスの短チャネル化によるポテンシャル障壁の低下を抑え、オフ時のリーク電流を低減できることである。
ここで、集積回路の性能として重要となるのは、デバイスのしきい値制御と駆動電流の増加である。完全空乏型デバイスはバルク型のデバイスと比較して、反転電荷が生成される電圧が低いという特徴がある。従って、仕事関数がバンドギャップ端となる従来のポリシリコンゲート電極では、オフ状態(0ボルト)での電流が大きくなりすぎる。現在、新たなゲート電極の候補として挙げられているのは、金属そのものをゲート電極として用いるタイプ(メタルゲート)と、金属と半導体の化合物(半導体がシリコンの場合シリサイドと呼ぶ)を用いるタイプ(シリサイドゲート)である。
また、駆動電流はキャリア(電荷担体)密度とキャリア移動度との積であるため、駆動電流の増加には移動度の向上が有効である。このキャリア移動度を向上させる方法として、ゲート電極として金属と半導体の化合物を用い、その体積変調により、チャネル領域に歪を印加する方法が提案されている(例えば、特許文献1参照)。この特許文献1に記載の方法は、FinFET(いわゆる立体型のダブルゲートトランジスタ)に関するもので、背の高い例えば高さが50nm〜100nmのFin型のチャネル領域を覆っているポリシリコン上に、精密にリソグラフィを行うために、CMPにより平坦化したポリシリコンをシリサイド化する方法を取っている。このため、この特許文献1においては、シリサイド化されたゲート電極は、チャネル領域上以外の領域でもチャネル領域上と同じ高さとなっている。
特開2007−294757号公報
また、トライゲートトランジスタまたはナノワイヤー型トランジスタのチャネル領域に歪みを導入することが試みられているが、今までのところ、成功してはいない。
本発明は、上記事情を考慮してなされたものであって、キャリア移動度を向上させ、駆動電流も増加させることのできるトライゲートトランジスタまたはナノワイヤー型トランジスタを備えた半導体装置およびその製造方法を提供することを目的とする。
本発明の第1の態様による半導体装置の製造方法は、第1絶縁膜上に設けられたシリコン膜をパターニングすることにより、前記第1絶縁膜上に離間した複数の半導体層を形成する工程であって、それぞれの半導体層は、延在する方向に離間して形成された第1領域および第2領域と、前記第1領域と前記第2領域との間に設けられる第3領域とを有する、複数の半導体層を形成する工程と、各半導体層の前記第3領域の両側面および上面を覆うゲート絶縁膜を形成する工程と、各半導体層を覆うポリシリコン膜を形成し、前記ポリシリコン膜をパターニングすることにより、各半導体層の前記第1領域および第2領域を露出させるとともに、各半導体層の前記ゲート絶縁膜を覆うポリシリコン膜のゲート電極を形成する工程と、各半導体層の前記第1および第2領域にソース領域およびドレイン領域を形成する工程と、全面に第2絶縁膜を形成する工程と、前記ゲート電極上の前記第2絶縁膜を選択的にエッチングし、前記ゲート電極の上面を露出させる工程と、前記ゲート電極をシリサイド化する工程と、シリサイド化された前記ゲート電極を覆うように、各半導体層の前記第3領域に、各半導体層の延在する方向と直交し、前記第1絶縁膜の上面に平行な方向に応力を印加する応力印加膜を形成する工程と、を備えたことを特徴とする。
また、本発明の第2の態様による半導体装置は、第1絶縁膜上に離間して設けられた複数の半導体層であって、それぞれが、延在する方向に離間して形成されたソース領域およびドレイン領域と、前記ソース領域と前記ドレインとの間に設けられるチャネル領域とを有する複数の半導体層と、各半導体層の前記チャネル領域の両側面および上面を覆うゲート絶縁膜と、各半導体層の前記ゲート絶縁膜を覆うシリサイドのゲート電極と、前記ゲート電極の側面を覆い少なくとも前記チャネル領域の直上の前記ゲート電極上に開口を有する第2絶縁膜と、前記ゲート電極の上面を覆い、かつ各半導体層の前記チャネル領域に、各半導体層の延在する方向と直交し、前記第1絶縁膜の上面に平行な方向に応力を印加する応力印加膜と、を備えたことを特徴とする。
本発明によれば、キャリア移動度を向上させ、駆動電流も増加させることが可能なトライゲートトランジスタまたはナノワイヤー型トランジスタを備えた半導体装置およびその製造方法を提供することができる。
図1は一実施形態による立体形マルチゲートトランジスタの上面図。 図2(a)乃至図2(d)は一実施形態の立体形マルチゲートトランジスタの製造工程を示す断面図。 図3(a)乃至図3(d)は一実施形態の立体形マルチゲートトランジスタの製造工程を示す断面図。 図4(a)乃至図4(d)は一実施形態の立体形マルチゲートトランジスタの製造工程を示す断面図。 図5(a)乃至図5(d)は一実施形態の立体形マルチゲートトランジスタの製造工程を示す断面図。 図6(a)乃至図6(d)は一実施形態の立体形マルチゲートトランジスタの製造工程を示す断面図。 図7(a)乃至図7(d)は一実施形態の立体形マルチゲートトランジスタの製造工程を示す断面図。
まず、実施形態を説明する前に、本発明に至った経緯について説明する。
プレーナ型のMOSFETにおいては、キャリア移動度の向上のために、チャネル領域に歪を印加する方法が知られている。具体的には、CESL(Contact Etch Stop Layer)としての連続したSiN膜(応力印加膜)をゲート長方向に沿って、ゲート電極を覆うように形成することにより凹凸(段差)を生じさせ、この凹凸を用いてSiN膜に引っ張り、または圧縮の応力を持たせ、チャネル領域のゲート長方向に歪を印加している。
しかし、立体型のトライゲートトランジスタまたはナノワイヤー型トランジスタにおいて、ゲート電極を形成後に、ゲート電極を覆うように応力印加膜を形成すると、ゲート電極が延在する方向(ゲート幅方向)と、ゲート電極が延在する方向と直交する方向(ゲート長方向)とに凹凸が形成される。このため、応力印加膜からチャネル領域には、ゲート長方向およびゲート幅方向に圧縮応力が作用する。しかし一般に、ある方向に圧縮応力が印加されると、その方向と直交する方向に引っ張り応力が生じる。このため、立体型の上記トランジスタにおいては、応力印加膜によってゲート長方向に印加される圧縮応力は、ゲート幅方向に印加される圧縮応力に起因するゲート長方向の引っ張り応力によって小さくなる。また、同様に、応力印加膜によってゲート幅方向に印加される圧縮応力は、ゲート長方向に印加される圧縮応力に起因するゲート幅方向の引っ張り応力によって小さくなる。したがって、立体型のトランジスタにおいて、ゲート電極を形成後に、ゲート電極を覆うように応力印加膜を形成しても、チャネル領域に適切な歪みを印加することができない。
しかも、この応力印加膜による歪印加は、微細化が進みデバイス間のピッチが狭くなると、応力印加膜の凹凸が小さくなるため、チャネル領域に印加される歪みが小さくなって、キャリア移動度の向上が見込めなくなる。
そこで、本発明者達は、鋭意研究に努め、微細化しても立体型のトライゲートトランジスタまたはナノワイヤー型トランジスタにおいて、キャリア移動度を向上させ、駆動電流も増加させることが可能な構造を発明した。この構造を、以下の実施形態で説明する。
一実施形態による半導体装置の製造方法について図1乃至図7(d)を参照して説明する。本実施形態の製造方法によって製造される半導体装置は、立体形マルチゲートトランジスタである。以下では、n型チャネルトランジスタについて説明するが、イオン注入するイオン種を変えるなどすればp型チャネルトランジスタについても同様に製造することができる。
図1は、本実施形態の製造方法によって製造される立体形マルチゲートトランジスタの上面図である。この立体形マルチゲートトランジスタは以下のように製造される。
まず、図2(a)乃至図2(d)に示すように、支持基板2上に絶縁膜4が形成され、絶縁膜4上に50nm未満(例えば20nm)のSOI(Silicon On Insulator)層が形成されたSOI基板上に、チャネルの保護膜として第1窒化シリコン膜(図示せず)を例えばLPCVD(Low Pressure Chemical Vapor Deposition)法を用いて厚さ100nm程度堆積し、公知の素子分離技術によって、素子分離を行う。なお、本実施形態においては、SOI層の面方位は、(001)である。更に、既存のパターニング技術により、SOI層をパターニングすることにより、チャネル領域6aと、ソース領域となる第1領域6bと、ドレイン領域となる第2領域6cとを有する半導体層6を形成し、その後、上記第1窒化シリコン膜を除去する。第1領域6bおよび第2領域6cは、チャネル領域6aと略同じ高さおよび幅を有し、チャネル領域に接続する第1の部分と、この第1の部分に接続し、第1の部分と高さは同じであるが幅が広い第2の部分とをそれぞれ有している。なお、トランジスタが完成すると、この第1の部分は図1の符号12a、12bに示す部分となり、第2の部分は図1の符号12a、12bに示す部分となる。したがって第1領域6および第2領域6cのそれぞれの第1の部分と、チャネル領域6aとはナロー部(narrow部)を形成する。なお、図2(a)乃至図2(d)は、それぞれ図1に示す切断線A−A、B−B、C−C、D−Dで切断した断面図である。なお、本実施形態においては、ナロー部の断面形状は矩形であるが、円形、または楕円形であってもよい。
このようにして形成されたナロー部となる、チャネル領域6aと、第1領域6bおよび第2領域6cの第1の部分の幅(ソース領域とドレイン領域とを結ぶ方向と直交する方向の厚さ)は例えば10nm〜20nmである。次いで、ゲート絶縁膜8として、例えば厚さ1nmの二酸化シリコンを例えばRTO(Rapid Thermal Oxidation)法を用いて形成する。その後、プラズマ窒化をしてゲート絶縁膜8の誘電率を大きくする。なお、二酸化シリコンを形成し、プラズマ窒化する代わりに、高誘電率(high−k)材料の膜をゲート絶縁膜として形成してもよい。
さらにゲート電極10となるポリシリコン膜を例えばLPCVD法を用いて厚さ15nm〜50nm(例えば50nm)堆積する。続いて、ポリシリコン膜上に第2窒化シリコン膜(図示せず)を堆積する。そして、フォトリソグラフィー技術などを用いて上記第2窒化シリコン膜をパターニングすることによってハードマスク層を形成する。その後、パターニングされたハードマスク層をマスクとしてRIE等でポリシリコン膜をパターニングすることにより、ゲート電極10が形成される。なお、本実施形態においては、チャネル領域6aとなる半導体層の高さが20nmと低いので、ポリシリコン膜をゲート電極形状にパターニングする際のリソグラフィを精密に行うことが可能となり、CMP等で平坦化する必要がない。したがって、図2(a)に示すように、チャネル領域6aを覆うポリシリコンのゲート電極10には、チャネル領域6aに歪みを印加するために用いられる凹凸(段差)が存在する。パターニング後に、さらにオフセットスペーサーなどを形成する場合もあるが図示していない。なお、このオフセットスペーサーは、ソース領域およびドレイン領域に不純物を注入する際に用いられ、不純物の活性化のためのアニールによりソース領域およびドレイン領域の不純物がチャネル領域に深く拡散するのを防止するためのものである。
次に、図3(a)乃至図3(d)に示すように、露出している、第1領域6bおよび第2領域6cをシリサイド化するための金属膜(例えばNi膜またはNiPt膜)を堆積し、熱処理を行うことにより、第1領域6bおよび第2領域6cをシリサイド化し、ソース領域12aおよびドレイン領域12b(図1参照)を形成する。このとき、図1に示すように、ソース領域12aは、シリサイド化された第1の部分12aと、シリサイド化された第2の部分12aとを有し、ドレイン領域12bは、シリサイド化された第1の部分12bと、シリサイド化された第2の部分12bとを有している。ソース領域12aおよびドレイン領域12bのシリサイド化された第2の部分上には、ソース電極およびドレイン電極がそれぞれ形成される。なお、図3(a)乃至図3(d)は、それぞれ図1に示す切断線A−A、B−B、C−C、D−Dで切断した断面図である。その後、未反応の金属膜を除去し、その後上記ハードマスク層を除去する。続いて、CESL(Contact Etch Stop Layer)となる窒化シリコン膜14を例えば厚さ60nm堆積させる。なお、本実施形態では、第1領域6bおよび第2領域6cはシリサイド化したが、シリサイド化する代わりに、不純物を注入してチャネル領域と導電型が異なる不純物拡散領域としてもよい。
次に、層間絶縁膜16となる例えば酸化シリコン膜を600nm程度堆積する。この際、堆積膜厚が厚いため、層間絶縁膜16上面はほぼ平坦となる。続いて、チャネル領域6a上における窒化シリコン膜14の上面が露出するまで、CMPにより上記酸化シリコン膜の平坦化を行う。この結果、図4(a)乃至図4(d)に示す層間絶縁膜16を形成する。なお、図4(a)乃至図4(d)は、それぞれ図1に示す切断線A−A、B−B、C−C、D−Dで切断した断面図である。この層間絶縁膜16を形成した時、チャネル領域6a上における窒化シリコン膜14の部分の高さが一番高いため、この部分における窒化シリコン膜14が、酸化シリコン膜にCMPを行ったときにストッパーの役割を果たす。すなわち、窒化シリコン膜14がCESLとなる。なお、このCMPによって、図4(d)に示すゲート電極10の直上の層間絶縁膜16の厚さ(例えば20nm以下程度)は、図4(b)に示すドレイン領域12bの直上の層間絶縁膜16の厚さに比べて非常に薄くなる。
続いて、図5(a)乃至図5(d)に示すように、窒化シリコンと酸化シリコンの選択比が高いRIE(Reactive Ion Etching)法を用いることにより、露出している窒化シリコン膜14をエッチバックする。なお、図5(a)乃至図5(d)は、それぞれ図1に示す切断線A−A、B−B、C−C、D−Dで切断した断面図である。露出している窒化シリコン膜14のエッチバックを行うと、図5(a)、5(c)に示すように、ゲート電極10であるポリシリコン膜の上面が剥き出しになり、ゲート電極10上の窒化シリコン膜14に開口18が形成される(図5(c))。このとき、図4(d)で説明したように、ゲート電極10の直上の層間絶縁膜16の厚さは、例えば20nm以下程度と非常に薄いので、エッチングされ窒化シリコン膜14の上面が露出し、窒化シリコン膜14がエッチングされて、図5(c)に示す場合と同様に、ゲート電極10上の窒化シリコン膜14に開口18が形成される(図5(d))。
しかし、図5(b)、5(c)に示すように、ソース領域12aおよびドレイン領域12b(図1参照)においては、厚い層間絶縁膜16が存在しているため、ソース領域12aおよびドレイン領域12bは層間絶縁膜16および窒化シリコン膜14で囲まれたままとなる。なお、本実施形態では、図4(d)に示すようにゲート電極10の直上の層間絶縁膜16の厚さを薄くしたが、薄くしなくともよい。この場合には、図5(d)に示す開口18は形成されず、ゲート電極10は、窒化シリコン膜14および層間絶縁膜16で覆われたままとなる。
次に、図6(a)乃至図6(d)に示すように、例えばスパッタリング法を用いて全面に金属膜(例えばNi膜やNiPt膜)を堆積し、熱処理を行うことにより、上面が露出したポリシリコン膜のゲート電極10を完全にシリサイド化し、完全にシリサイド化されたゲート電極20を形成する。この時、ポリシリコンとシリサイドの密度の差により体積膨張が起こり、チャネル領域6aに圧縮応力が印加される。この場合、チャネル幅方向に応力が印加されることになり、チャネル幅方向に歪みが生じる(図6(a)参照)。なお、図6(a)乃至図6(d)は、それぞれ図1に示す切断線A−A、B−B、C−C、D−Dで切断した断面図である。
次に、図7(a)乃至図7(d)に示すように、露出しているゲート電極20を覆うように、窒化シリコン膜22を膜厚50nm〜100nm堆積し、ゲート電極20の凹凸に応じて付加的にチャネル領域6aに応力を印加する。この窒化シリコン膜に起因する応力も図7(a)に示すようにチャネル領域6aのゲート幅方向((101)方向)に印加され、ゲート幅方向に歪みが生じる。すなわち、本実施形態においては、シリサイド化されたゲート電極20の体積膨張に起因するチャネル領域6aへの圧縮応力と、ゲート電極20の凹凸によって生じる窒化シリコン膜22からチャネル領域6aへの圧縮応力は、共にチャネル領域6aのゲート幅方向((101)方向)に作用する。このため、より大きな圧縮応力がチャネル領域6aに働き、大きな歪みをチャネル領域6aに生じさせることが可能となる。これにより、微細化しても、キャリア移動度が向上し、駆動電流も増加させることができる。
図7(a)乃至図7(d)は、それぞれ図1に示す切断線A−A、B−B、C−C、D−Dで切断した断面図である。
以上説明したように、本実施形態の製造方法によって製造される立体形マルチゲートトランジスタは、完全にシリサイド化されたゲート電極20の体積膨張と、凹凸があるゲート電極20を覆うように形成された窒化シリコン膜22とによって、チャネル領域6aのゲート幅方向(チャネル幅方向)に一軸性の応力を印加してゲート幅方向に歪みを生じることが可能となる。これにより、微細化しても、キャリア移動度が向上し、駆動電流も増加させることができる。この場合、完全にシリサイド化したゲート電極20上に十分な凹凸を確保し、かつ窒化シリコン膜22の効果を、より有効にする構造は、チャネル領域6aの高さh(図7(a)参照)が高く、ゲート電極20シリサイドの厚さt(図7(a)、7(c)参照)が薄く、隣接するチャネル領域6a間の距離(隣接するFin間の中心間距離d)が広い方が望ましい。しかしながら、短チャネル効果を抑えるためには、チャネル領域6aの高さ(チャネル領域6aの断面が丸い場合は直径)が20nm以下であることが必要であり、ゲート構造の信頼性を考えるとゲート電極20のシリサイドの厚さtは30nmより薄くするのは難しい。また、駆動電流を維持するために、隣接するチャネル領域6a間の距離dは100nmよりも狭くせざるを得ず、チャネル領域6aの高さhを2とすると、ゲート電極20のシリサイドの厚さtは3〜10(シリサイド化前のポリシリコン膜10の厚さは1.5〜5)、隣接するチャネル領域6a間の距離dが3〜10以下の比となることが望ましい。
したがって、本実施形態の半導体装置は、絶縁膜4上に離間して設けられた複数の半導体層を有し、これらの半導体層のそれぞれが、延在する方向に離間して形成されたソース領域12aおよびドレイン領域12bと、ソース領域とドレインとの間に設けられるチャネル領域6aとを有している。図1に示すように、各半導体層のソース領域12aは、チャネル領域に接続する第1の部分12aと、この第1の部分12aに接続し、第1の部分と高さは同じであるが幅が広い第2の部分12aとを有している。また、ドレイン領域12bは、チャネル領域に接続する第1の部分12bと、この第1の部分12bに接続し、第1の部分と高さは同じであるが幅が広い第2の部分12bとを有している。
なお、ソースおよびドレイン領域のそれぞれの第1の部分12a、12bは、第2の部分12a、12bと同じ層に設けられそれぞれ共通に接続されている。これらの第2の部分12a、12bはそれぞれ第1の部分12a、12bに電流を流すとともに第1の部分12a、12bからの電流をうけるパッドの機能を有しているので、第1の部分12a、12bと同じ層に設ける代わりに、第1の部分12a、12bを覆うように設けられる層間絶縁膜内に第1の部分12a、12bと電気的に接続するコンタクトとして形成してもよい。
そして、図7(a)に示すように、各半導体層のチャネル領域6aの両側面および上面にはゲート絶縁膜8が設けられている。また、各半導体層のゲート絶縁膜8を覆うようにシリサイドのゲート電極20が設けられている。そして、ゲート電極20の側面を覆い、少なくともチャネル領域6aの直上のゲート電極上に開口を有する絶縁膜14、16が設けられている(図7(c)、7(d))。更に、ゲート電極20の上面を覆い、かつ各半導体層のチャネル領域6aに、各半導体層の延在する方向と直交し、絶縁膜4の上面に平行な方向に応力を印加する応力印加膜22が設けられている。
このように、本実施形態の半導体装置においては、完全にシリサイド化されたゲート電極20の体積膨張と、凹凸があるゲート電極20を覆うように形成された窒化シリコン膜22とによって、チャネル領域6aのゲート幅方向(チャネル幅方向)に一軸性の応力を印加してゲート幅方向に歪みを生じることが可能となり、これにより微細化しても、キャリア移動度が向上し、駆動電流も増加させることができる。
2 支持基板
4 絶縁膜
6 半導体層
6a チャネル領域
6b 第1領域
6c 第2領域
8 ゲート絶縁膜
10 ポリシリコン膜(ゲート電極)
12a ソース領域
12a ソース領域の第1の部分
12a ソース領域の第2の部分
12b ドレイン領域
12b ドレイン領域の第1の部分
12b ドレイン領域の第2の部分
14 窒化シリコン膜
16 層間絶縁膜
18 開口
20 シリサイド化されたゲート電極
22 窒化シリコン膜

Claims (8)

  1. 第1絶縁膜上に設けられたシリコン膜をパターニングすることにより、前記第1絶縁膜上に離間した複数の半導体層を形成する工程であって、それぞれの半導体層は、延在する方向に離間して形成された第1領域および第2領域と、前記第1領域と前記第2領域との間に設けられる第3領域とを有する、複数の半導体層を形成する工程と、
    各半導体層の前記第3領域の両側面および上面を覆うゲート絶縁膜を形成する工程と、
    各半導体層を覆うポリシリコン膜を形成し、前記ポリシリコン膜をパターニングすることにより、各半導体層の前記第1領域および第2領域を露出させるとともに、各半導体層の前記ゲート絶縁膜を覆うポリシリコン膜のゲート電極を形成する工程と、
    各半導体層の前記第1および第2領域にソース領域およびドレイン領域を形成する工程と、
    全面に第2絶縁膜を形成する工程と、
    前記ゲート電極上の前記第2絶縁膜を選択的にエッチングし、前記ゲート電極の上面を露出させる工程と、
    前記ゲート電極をシリサイド化する工程と、
    シリサイド化された前記ゲート電極を覆うように、各半導体層の前記第3領域に、各半導体層の延在する方向と直交し、前記第1絶縁膜の上面に平行な方向に応力を印加する応力印加膜を形成する工程と、
    を備えたことを特徴とする半導体装置の製造方法。
  2. 前記第2絶縁膜は前記第3絶縁膜および前記第4絶縁膜を有し、
    前記第2絶縁膜を形成する工程は、
    前記ゲート電極の上面および側面を覆う前記第3絶縁膜を全面に形成する工程と、
    前記第3絶縁膜を覆い前記第3絶縁膜と材質の異なる前記第4絶縁膜を形成する工程と、
    を備え、
    前記ゲート電極上の前記第2絶縁膜を選択的にエッチングし、前記ゲート電極の上面を露出させる工程は、
    前記第3領域上における前記第3絶縁膜の上面が露出するまで前記第4絶縁膜を平坦化する工程と、
    前記第4絶縁膜に対する前記第3絶縁膜のエッチング選択比の高いエッチング方法を用いて、露出した前記第3絶縁膜と前記第4絶縁膜をエッチングし、前記ゲート電極の上面を露出させる工程と、
    を備えていることを特徴とする請求項1記載の半導体装置の製造方法。
  3. 前記応力印加膜は窒化シリコン膜であることを特徴とする請求項1記載の半導体装置の製造方法。
  4. 前記ポリシリコン膜の前記ゲート電極を形成する工程は、隣接する半導体層の前記第3領域間の前記第1絶縁膜を前記ポリシリコン膜が覆うように形成することを特徴とする請求項1記載の半導体装置の製造方法。
  5. 前記第1および第2領域は、それぞれシリサイド化されてソース領域およびドレイン領域となることを特徴とする請求項1記載の半導体装置の製造方法。
  6. 前記第3領域の前記第1絶縁膜の上面からの高さと、シリサイド化された前記ゲート電極の厚さと、隣接する半導体層の中心間距離との比は、2:3:3〜2:10:10との間にあることを特徴とする請求項1記載の半導体装置の製造方法。
  7. 前記第3領域の前記第1絶縁膜の上面からの高さは20nm以下であり、シリサイド化された前記ゲート電極の厚さは30nm以上であり、隣接する半導体層の中心間距離は100nmよりも狭いことを特徴とする請求項6記載の半導体装置の製造方法。
  8. 第1絶縁膜上に離間して設けられた複数の半導体層であって、それぞれが、延在する方向に離間して形成されたソース領域およびドレイン領域と、前記ソース領域と前記ドレインとの間に設けられるチャネル領域とを有する複数の半導体層と、
    各半導体層の前記チャネル領域の両側面および上面を覆うゲート絶縁膜と、
    各半導体層の前記ゲート絶縁膜を覆うシリサイドのゲート電極と、
    前記ゲート電極の側面を覆い少なくとも前記チャネル領域の直上の前記ゲート電極上に開口を有する第2絶縁膜と、
    前記ゲート電極の上面を覆い、かつ各半導体層の前記チャネル領域に、各半導体層の延在する方向と直交し、前記チャネル領域に応力を印加する応力印加膜と、
    を備えたことを特徴とする半導体装置。
JP2011530655A 2009-09-08 2009-09-08 半導体装置およびその製造方法 Expired - Fee Related JP5286416B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/065667 WO2011030396A1 (ja) 2009-09-08 2009-09-08 半導体装置およびその製造方法

Publications (2)

Publication Number Publication Date
JPWO2011030396A1 JPWO2011030396A1 (ja) 2013-02-04
JP5286416B2 true JP5286416B2 (ja) 2013-09-11

Family

ID=43732084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011530655A Expired - Fee Related JP5286416B2 (ja) 2009-09-08 2009-09-08 半導体装置およびその製造方法

Country Status (3)

Country Link
US (1) US8669162B2 (ja)
JP (1) JP5286416B2 (ja)
WO (1) WO2011030396A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9373720B2 (en) 2013-10-14 2016-06-21 Globalfoundries Inc. Three-dimensional transistor with improved channel mobility
JP6537341B2 (ja) 2014-05-07 2019-07-03 株式会社半導体エネルギー研究所 半導体装置
US9768254B2 (en) 2015-07-30 2017-09-19 International Business Machines Corporation Leakage-free implantation-free ETSOI transistors
JP7049316B2 (ja) * 2016-08-08 2022-04-06 東京エレクトロン株式会社 三次元半導体デバイス及び製造方法
CN108615733B (zh) * 2018-06-21 2023-12-19 长江存储科技有限责任公司 半导体结构及其形成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242737A (ja) * 2006-03-06 2007-09-20 Toshiba Corp 半導体装置
JP2007329295A (ja) * 2006-06-08 2007-12-20 Hitachi Ltd 半導体及びその製造方法
JP2009054705A (ja) * 2007-08-24 2009-03-12 Toshiba Corp 半導体基板、半導体装置およびその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4960007B2 (ja) 2006-04-26 2012-06-27 株式会社東芝 半導体装置及び半導体装置の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007242737A (ja) * 2006-03-06 2007-09-20 Toshiba Corp 半導体装置
JP2007329295A (ja) * 2006-06-08 2007-12-20 Hitachi Ltd 半導体及びその製造方法
JP2009054705A (ja) * 2007-08-24 2009-03-12 Toshiba Corp 半導体基板、半導体装置およびその製造方法

Also Published As

Publication number Publication date
US8669162B2 (en) 2014-03-11
US20120146114A1 (en) 2012-06-14
JPWO2011030396A1 (ja) 2013-02-04
WO2011030396A1 (ja) 2011-03-17

Similar Documents

Publication Publication Date Title
US10020230B2 (en) FinFETs with multiple threshold voltages
TWI485848B (zh) 半導體裝置及其製造方法
US10825907B2 (en) Self-aligned contact and manufacturing method thereof
JP5017795B2 (ja) 電界効果トランジスタの製造方法
CN100378901C (zh) 应变鳍型场效应晶体管互补金属氧化物半导体器件结构
JP5159413B2 (ja) 半導体装置及びその製造方法
TWI641135B (zh) 具有磊晶結構之鰭狀場效電晶體
JP5337438B2 (ja) マルチゲート型電界効果トランジスタおよびその製造方法
US8766371B2 (en) Semiconductor structure and method for manufacturing the same
JP2006505950A (ja) 分離した複数のゲートを有するダブルゲート半導体デバイス
CN102376766A (zh) 半导体设备及其制造方法
JP2006054423A (ja) 半導体装置及びその製造方法
US8883577B2 (en) Semiconductor device and producing method thereof
US10128375B2 (en) Strained FinFET and method for manufacturing the same
WO2012100463A1 (zh) 一种形成半导体结构的方法
KR20200066546A (ko) 반도체 디바이스 및 그 제조 방법
US10727227B2 (en) Fin-type field effect transistor structure and manufacturing method thereof
US20090215277A1 (en) Dual contact etch stop layer process
JP5286416B2 (ja) 半導体装置およびその製造方法
TW201731111A (zh) 鰭式場效電晶體及其製造方法
JP2011066362A (ja) 半導体装置
JP2007173356A (ja) 半導体装置およびその製造方法
JP2005311058A (ja) 半導体装置及びその製造方法
JP2007141903A (ja) 半導体装置およびその製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

LAPS Cancellation because of no payment of annual fees