TW526564B - Method of fabricating semiconductor side wall fin - Google Patents

Method of fabricating semiconductor side wall fin Download PDF

Info

Publication number
TW526564B
TW526564B TW090125391A TW90125391A TW526564B TW 526564 B TW526564 B TW 526564B TW 090125391 A TW090125391 A TW 090125391A TW 90125391 A TW90125391 A TW 90125391A TW 526564 B TW526564 B TW 526564B
Authority
TW
Taiwan
Prior art keywords
gate
patent application
silicon
source
layer
Prior art date
Application number
TW090125391A
Other languages
English (en)
Inventor
James W Adkisson
Paul D Agnello
Arne W Ballantine
Rama Divakaruni
Erin C Jones
Original Assignee
Ibm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibm filed Critical Ibm
Application granted granted Critical
Publication of TW526564B publication Critical patent/TW526564B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66484Unipolar field-effect transistors with an insulated gate, i.e. MISFET with multiple gate, at least one gate being an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/78654Monocrystalline silicon transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78684Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys
    • H01L29/78687Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys with a multilayer structure or superlattice structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Bipolar Transistors (AREA)

Description

526564 A7 B7 五、發明説明(1 ) 發明背景 發明領域 本發明主要係關於製備雙閘極金屬氧化物半導體場效應 電晶體(MOSFET),更具體地,係關於製備具有較薄磊晶 生長的通道的雙閘極MOSFET。 背景描述 、 場效應電晶體(FET)的結構可以包括單個閘極(單通道) 或一對閘極,雙閘極的形式的優點為具有更短的通道並因 而產生更快的元件。當閘極長度縮減至50nm以下時,FET 的尺寸(scaling)受到閘極控制的有限深度的限制。研究已 顯示,將閘極設置在FET通道的多個側部將導致涉及短通 道特性和截止電流特性的改良的FET性能。假設碎足夠薄 以至於被完全空乏,那麼將閘極設置在FET通道的多個側 部上就比標準FET更加緊密地限制電場和電荷,在標準 FET中,電場無約束地深深穿透有效無限大之矽基板中。 完全空乏型雙閘極結構的可能約束使得具有20- 30nm的閘 極長度的改良的短通道效應和元件成為可能。反向感應通 道(inversion induced channel)將在碎的兩個側部上形成,且 可能越過整個通道,此通道可以增加飽和電流。其他所報 導的優點包括接近理想的次臨限值斜率、增加的飽和電流 以及減小的短通道和漂移體效應。要求主要是5 - 50nm範 圍内的薄擴散區和低至20- 100nm的閘極長度,閘極長度 較佳為擴散長度的2至4倍。 許多水平雙閘極FET結構,尤其是SOI (絕緣體上矽) -4- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)
裝 訂
線一 526564 A7 B7 五、發明説明(2 ) 雙閘極FET結構已經被提出。除傳統的頂部閘極外,這些 結構通常尚要求形成在薄的矽主體之下的底部閘極。因為 頂部和底部閘極必須對齊至一超出當前微影蝕刻設備與方 法的精度以外的容差,且因為自對準技術受到頂部和底部 閘極間層的阻礙,所以這種結構的製造是困難的。 在菲利普洪森(Hon Sum Philip)等人在 IEDM97-427, IEEE1997中的“具有25nm厚矽通道的自對準(頂部和底部) 雙閘極 MOSFET (Self-Aligned (Top and Bottom) Double-Gate MOSFET with a 25 nm Thick Silicon Channel) ” 中,雙 閘極MOSFET被認為是縮減至20- 30nm閘極長度的極限的 互補型金屬氧化物半導體(CMOS)的最有希望的候選者。 假設矽通道厚度可以減小至10- 25nm且閘極氧化物的厚度 減小至2 - 3nm,精確之蒙特卡洛(Monte Carlo)元件模擬和 分析計算預測了縮減至20- 30nm閘極長度元件性能的連續 改善。然而,因為失準將導致額外的閘極對源極/汲極的 重疊電容和電流驅動損耗,所以頂部和底部的對準對於高 性能非常關鍵。 下述專利係關於FET,且具體地係有關於雙閘極FET。 褚(Chu)等人的名稱為“垂直雙閘極場效應電晶體 (Vertical Double- Gate Field Effect Transistor) 的第 5,780, 327號美國專利描述了垂直雙閘極場效應電晶體, 其包括排列在主體或SOI基板上的堆疊内的磊晶通道層和 汲極層。利用不同的氧化速率將閘極氧化物熱生長在堆疊 的側部上,以使輸入電容的問題減至最小。閘極圍繞在堆 -5- 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 526564 A7 _________ 五、發明説明(3 ) 疊一端的周圍,而接觸部形成在第二端。内礙在堆疊第二 端内的蚀刻終止層使得接觸部可以直接製造到通道層上。 索羅門(Solomon)等人的名稱為“製造具有側壁源極一 汲極接觸部的單和雙閘極場效應電晶體的方法(Method for Making Single and Double Gate Field Effect Transistors with Sidewall Source-Drain Contacts)的第 5,773, 331 號美國專 利描述了用於製造具有側壁汲極接觸部的單閘極和雙閘極 場效應電晶體的方法。相對於下面的支撐結構提升FET通 道’並且源極和閘極區形成為通道的組成部分。 特沃瑞(Tiwad)等人的名稱為“具有超窄通道的自對準 雙閘極 MOSFET (Self-Aligned Dural Gate MOSFET with an Ultranarrow Channel) ”的第5,757, 03 8號美國專利係有關 於藉由自對準製程形成的具有充分一致寬度的超薄通道的 自對準雙閘極FET。在不同的材料之間利用選擇性蝕刻或 受控氧化,以形成在源極和汲極區間延伸的垂直通道,其 具有從2 · 5nm到100nm範圍内的厚度。 梅耶(Mayer)等人的名稱為“絕緣體上矽閘極全環繞 MOSFET 的製造方法(Silicon-on-Insulator Gate-All-Around MOSFET Fabrication Methods) ” 的第 5,580, 802 號美國專利 描述了 SOI閘極全環繞(GAA) MOSFET,該MOSFET包括被 頂部閘極包圍的源極、通道和汲極,此頂部閘極還用於其 他的掩埋結構,並且在形成在SOI晶片的源極、通道和汲 極半導體層上的底部閘極電介質上形成。 哥圖(Gotou)等人的名稱為“具有薄膜SOI結構的 -6- 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 526564 A7 B7 五、發明説明(4 ) MOSFET (MOSFET Having a Thin Film SOI Structure),, 的第5,308, 999號美國專利描述了具有薄膜SOI結構的 MOSFET,其中藉由在SOI層的通道區的頂表面和兩個側 表面上形成閘極電極,並藉由將閘極電極部分地延伸至通 道區底部下方内使得閘極電極不完全連接,而使具有SOI 結構的MIS(金屬絕緣材料半導體)FET的崩潰電壓得以提 南。 褚(Chu)等人的名稱為“垂直雙閘極場效應電晶體 (Vertical Double- Gate Field Effect Transistor) ” 的 第 5,689, 127號美國專利描述了垂直雙閘極FET,該FET包括 在主體或SOI基板上排列的源極層、磊晶通道層和汲極 層。使用不同的氧化速率在堆疊的側部上熱生長閘極氧化 物,以將輸入電容的問題減至最小。閘極圍繞在堆疊一端 周圍,同時接觸部形成在第二端上。内嵌在堆疊第二端内 的蝕刻終止層使接觸部可以直接形成在通道層上。 目前,微影蝕刻定義的閘極是最簡單的,但卻有許多缺 點。首先,閘極的定義可能在擴散區的側部上留下多晶矽 隔離襯,或可能在擴散區的側部上產生一所需的斜面,因 而導致較差的品質和/或較難控制的元件。其次,多晶矽 的斜面本質上導致難以形成矽化物閘極,這導致較慢的元 件特性。最後,多晶矽的階躍高度引起微影蝕刻定義的難 題,因為在50nm的設計規則技術中,我們希望階躍大約 為100nm-200nm的大小。 製造雙閘極FET的關鍵困難是實現薄擴散的矽化作用或 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 裝 訂
咸- 526564 A7 _B7_ · 五、發明説明(5 ) 具有可接受的接觸電阻的多晶矽,這使得兩個閘極沒有失 準的環繞閘極的製造和窄擴散區(理想上比閘極長度小2 -4倍)的製造成為可能。 用於製造雙閘極電晶體的其他技術包括微影蝕刻定義具 有高階躍高度的閘極(見史拉斯基(Shirasaki)的名稱為“增 加源極和汲極區之間電導率的MIS電晶體結構(MIS Transistor Structure for Increasing Conductance between Source and Dmin Reigions) ”的第4,996, 574號美國專利)、形成提 供“空氣橋(air bridge) ”矽結構的選擇性磊晶生長(見 1997年國際電子元件會議(IEDM)第427頁洪森菲利浦王 (Hon- Sum Philip Wong)的文章),以及形成具有垂直載子 傳輸的環繞閘極(見1988年IEDM第222頁H.特卡托(Η · Takato)的文章)。 總之,先前的製造方案取決於微影蝕刻定義的矽通道’ 以及耗時且受限的橫向磊晶生長。然而,在上述方法中’ 微影蝕刻定義的通道不能以足夠小的容差形成,甚至可用 的容差也不能得以充分維持以支撐接近最佳的雙閘極電晶 體的特性。另外,即使能夠嚴格控制矽的厚度,使用橫向 電流的具有橫向定義的FET寬度的技術也難以對準頂部和 底部閘極。 假設通道寬度可以製造得足夠小,詹姆斯· W ·埃迪克松 (James W. Adkisson),約翰·Α·布拉赫塔(John Α· Bracchitta) 5 約韓· J ·埃利絲-莫娜甘(John J · Ellis-Monaghan),傑羅姆· b ·拉斯基(Jerome B · Lasky),克拉克 -8 - 本紙張尺度適用中國國家榡準(CNS) A4規格(210X297公釐) 526564 A7 B7 五、發明説明(6 ) • D ·彼得森(Kirk D · Peterson)和傑德· Η .蘭金(Jed H Rankin) 的在2000年3月16日申請且與上文以引用的方式併入本 文中的名稱為“雙平板閘極 SOI MOSFET結構(Double Planar Gated SOI MOSFET Structure) ” 的美國專利申請號第 0 9 / 526, 857號描述了形成雙閘極電晶體的方法。 發明簡述 因此,本發明的一個目的是提供具有較薄磊晶生長通道 的雙閘極電晶體。 根據本發明,提供一種形成場效應電晶體(FET)的方 法,包括在基板上形成碎層的步驟。其次,在碎層的側表 面上形成磊晶通道,因而顯露通道的一個側壁。然後除去 矽層,因而顯露磊晶通道的第二側壁。然後形成與磊晶通 道端部聯接的源極和汲極區。最後,在磊晶通道上方形成 閘極。 本發明試圖利用用於生長磊晶區的已知技術提供非常薄 的擴散區以形成非常薄的通道,且具有在通道厚度上提供 比微影蝕刻定義的通道更小的容差的優點,該微影蝕刻定 義的通道可以藉由選擇性i虫刻來保持,且由於薄限制層的 出現,蟲晶生長也不會複雜。 圖式簡單說明 從以下結合附圖的本發明較佳實施例的詳細說明中,本 發明之前述及其他目的、特徵和優點將得以更好地理解, 其中: 圖1A係示出矽線的元件的頂視圖; -9- 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐) 裝 訂
526564 A7 B7
圖1时、沿圖1A所示的線卜1剖開的橫截面圖. 圖iC係沿圖⑽示的線2_2刻開的橫截面圖. 圖2A係示出圖⑽基板在蚀刻终止層和通道層羞晶生 長之後的視圖; ^ 圖則、沿圖2續示的線卜1剖開的橫截面圖; 圖2C係沿圖2A所示的線2_2剖開的橫截面圖; 圖3A係示出圖2A具有用於去除矽線的光罩開口的視 圖; 的橫截面圖; 餘刻終止層的所有殘 圖3B係沿圖3A所示的線2 - 2剖開 圖4A係示出圖3A在去除矽線和 留部分之後的視圖; 圖4B係沿圖4A所示的線2_2剖開的橫截面圖; 圖5係圖4A的元件在形成第二通道之後的視圖; 圖6係沿圖5所示的線2·2剖開的示意性橫截面圖; 圖7係示出圖6的基板在淺槽隔離(STi)填充和拋光之 後的視圖; 圖8A係沿圖11B所示的線2 - 2剖開的在塗覆多晶矽導 體(PC)抗姓光罩並姓刻之後的示意性橫截面圖; 圖8B係沿圖11B所示的線2 - 2剖開的在塗覆pC抗蝕光 罩之後的示意性橫截面; 圖9A係tf出圖8A的基板在閘極電介質生長或沈積和閘 極導體沈積之後的視圖; 圖9B係示出圖8B的基板在pC抗蝕光罩去除之後的視 Γ^Τ · 圖, -10- 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公爱) 526564
圖1〇A不出圖9A的基板中STI和隔離佈植物的去除; 圖1〇Β π出圖9B的基板中的延伸佈植物; 圖11A係不出圖1〇A的成品元件在接觸部前的視圖; 固11B係示出成品元件的頂視圖;以及 圖12祝明去除因過多蝕刻導致的有缺陷材料的技術。 發明詳細說明
k- 現在參^目1 A ’其示出了起始絕緣體上碎(SOI)基板 100的頂視圖。如分別與圖1A中所示的截面和2-2 對應的圖1B和1C所示,基板100包括主體基板106、掩 埋氧化物(BOX)層108和主動層11〇。圖⑴和1€還示出了 主動層U〇上的氧化物緩衝膜(pad film) 102和氮化物緩衝 月吴104。熟習於本領域者將意識到較佳係具有設置在氮化 物緩衝膜104頂部上的氧化物緩衝膜1〇2。緩衝氧化物1〇2 使用標準氧化技術生長,且典型地將在3至14nm的範圍 内’較佳為8nm。緩衝膜104設置在緩衝氧化物ι〇2上。 較佳的是氮化物膜被用作緩衝膜1〇4,雖然也可使用其他 材料。氮化物(上)緩衝膜1〇4 一般在30至12〇11111的範圍之 間,較佳為80nm,且定義用於淺槽隔離(STI)成型的蝕刻 區域。 主動元件層110係被圖案化以形成矽通道將形成在其上 的邊緣112。用於形成將要成為通道區的主動層11〇的寬 度113不是關鍵的,然而其必須足夠寬以用於掩蔽並且足 夠窄以限制過度蝕刻,因而提供了適當且實用的製造容 差。較佳係在此階段根據熟習於本領域者所公知的傳統加 -11-
526564 A7 B7 ____ 五、發明説明(9 ) 工技術形成矽區域,此區域將成為源極114和汲極116區 域和接觸區域118、120。 在蝕刻終止層202的磊晶生長和通道204後續的磊晶生 長之後,圖2A、2B和2C分別相應於圖1A、1B和1 C。 較佳係蝕刻終止層包括S i( 0.3 ) Ge( 0 · 7 ),且磊晶生長通 道包括矽或具有鍺和/或碳的矽合金。藉由將應變添加到 通道和/或改變穿過通道的導帶和價帶以改變元件的臨限 值(threshold)或提高載子輸運,矽與其他IV族元素的合金 (尤其是鍺和碳)也可用於最佳化FET的特性。對於熟習於 本領域者顯而易見的是,在形成蝕刻終止層202和通道 204前,使用適當的清潔處理以去除氧化物緩衝膜104下 方的矽110的一部分。被去除的矽的寬度應當大致等於蝕 刻終止層202和通道204的總寬度。 雖然選擇性沈積是較佳的,但是如果蝕刻過度了,可以 要求蝕刻終止層202和通道204的非選擇性磊晶沈積。較 隹的是,層202的厚度大約是5nm。平面化(faceting)將極 其依賴於磊晶生長的細節。尤其是使用選擇性磊晶生長, 當抵達開口邊緣時,平面化可以改變磊晶區域的厚度。因 為相對於生長高度通道凸出得非常薄,所以通道將受到影 響的區域可能較小。引發錯位(dislocation)前的允許厚度對 Ge的百分率是敏感的,並隨Ge百分率的增加迅速減小(見 Phys· Stat. Sol· (a)雜誌 1996 年第 155 卷第 14 1 頁 A.菲謝 爾(A · Fischer)和Η ·庫勒(Η · Kuhne)的“應變層結構的臨 界劑量(Critical Dose for Strained Layer Configuration) ”)o -12- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 526564 A7 B7 五、發明説明(11 ) 内暴露的矽no。 然後蝕刻光罩開口 304内暴露的矽110。因為在此蝕刻 過程中不是所有的矽110被去除,所以矽層110也被橫向 蝕刻,在蝕刻終止層202上終止(見1988年10月《IEEE國 際絕緣體上矽(SOI)會議論文集(Proc. IEEE International Silicon on Insulator (SOI) Conference)》第 145- 146 頁 K.D· 赫伯特(K. D. Hobart),F.J·庫伯(F. J. Kub),Μ·Ε·特維 戈(Μ · E · Twigg),G.G.傑尼耿(G. G. Jemigan),P . E ·湯 普森(P . E · Thompson)的“超切口:用於具有超薄(< 5nm) 石夕膜的 SOI基板的製造的簡單技術(Ultra-cut: a Simple Technique for the Fabrication of SOI Substrates with Ultra-Thin (< 5nm) Silicon Films) ”)。KOH 可以用作姓刻劑,其 對Si_.Si(0.3)Ge(0.7)具有大約20:1的選擇性,然而公開 了 NH4〇H對25% Ge膜具有比100:1更好的選擇性(見《電 化學學會學報(J. Electrochem. Soc·)》1997年3月第144 卷第3期第L37頁G·王(G. Wang)等人的“使用NH4OH 溶液的 Si對Si( 1 -x)G(x)的高選擇性化學蝕刻(Highly Selective Chemical Etching of Si vs. Si(l-x)G(x) Using NH4OH Solution),,)。 因而,由於具有約70nm的重疊和約20nm的邊緣容差, 故所希望厚度約為85nm。假設20%的過度蝕刻,將需要 100nm的蝕刻。於是,當KOH用作蝕刻劑時,最差情況的 SiGe侵蝕將是約5nm,且當NH4OH用作姓刻劑時,約為 lnm 〇 -14 - 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐)
裝 訂
線 526564 A7 B7 五、發明説明(12 ) 接著,對蝕刻終止層202進行選擇性蝕刻至通道204。 對於70%的 Ge膜,HF: Η 2 Ο 2 : CH3COOH的選擇性約為 1000: 1。假設 10nm的蝕刻,則因而矽侵蝕可忽略。對於 50% 的 Ge 膜,HN〇3:H20:HF(40:20:5)的選擇性約為 25: 1。有效的HF稀釋液約為12: 1。氧化物的侵姓將是顯 著的,但根據熟習於本領域者所公知的傳統處理步驟則是 可控制的。HN〇3: H20: HF的钱刻速率約為40nm/min,建議 非常短的曝光且為了控制可能允許進一步的稀釋。(見 1992年《電化學學會學報(J · Electrochem. Soc.)》第139 卷第10期第2943頁D· J·戈德貝(D· J· Godbey)等人的 “使用 HN〇3和HF的Si( 1-x)Ge(x)從< 100>矽上的選擇 性去除(Selective Removal of Si( 1 - X ) Ge( X ) from Si Using HN03 and HF) ”)。如果需要,可以根據熟習於本領域者 所公知的傳統處理步驟除去隔離襯302。 在主動層10和蝕刻終止層202的蝕刻後,圖4A和4B分 別對應圖3 A和3B。如果需要,可以根據熟習於本領域者 所公知的傳統處理步驟塗覆修整光罩以去除不需要的翼片 402。圖5示出第二通道502形成後的圖4A的元件,如同 熟習於本領域者將容易認識到的那樣,該通道可以藉由使 用與對第一通道204的先前描述相同處理步驟形成。 在形成第一通道204和第二通道502區域後,完成雙閘 極電晶體所需的最終處理步驟的第一序列將描述如下。 現在參照圖6,圖5中的通道204和502與可用於形成 另一閘極結構的延伸通道602 —起得以顯示。於是,熟習 -15- 本纸張尺度適用中國國家標準(CNS) A4規格(210X297公釐)
裝 訂
春- 526564 A7 B7 ,五、發明説明(13 ) 於本領域者應當理解,除所示通道204、502和602外,基 板100可以包括多個通道。此處,基板100因而包括主體 基板102、BOX層104和通道204、502及602。 裝 於是,在圖7中,提供了標準STI填充物702,較佳係 約300至5OOnm厚的二氧化碎層。然而,熟習於本領域者 所公知的其他適宜材料也可用作犧牲膜。較佳係藉由掘光 使STI表面平坦化。
線。 圖8A是圖11B的沿1 - 1截面的代表性橫截面圖。圖8 A 因為多晶矽導體(PC)抗蝕光罩802和STI填充物702在圖 8A中的製造過程中出現,卻未出現在圖11B的對應區141 中而具有代表性。在STI填充物702的所選區域上設置PC 抗蝕光罩802後,相對於緩衝膜104選擇性蝕刻STI填充 物702並往下至BOX層108。較佳的但不是必須的是,蝕 刻也可以相對於BOX層108是選擇性的。然後,相對於 STI填充層702和BOX層108選擇性地去除緩衝膜104。圖 9A和10A示出了,如果需要,緩衝層104可以留下以使得 薄閘極電介質904僅在通道204、502和602的側壁上。較 佳的是,在每次蝕刻中約10: 1的選擇度,這可用具現有 技術水準的蝕刻完成。如果需要,可以選擇性地在此點引 入阱佈植。這些佈植物將使用高角度佈植完成,較佳地在 10至45度的範圍内,每次佈植相互之間旋轉約90度以充 分摻雜擴散區的側壁。為了避免比側部更多地摻雜擴散區 的表面層,佈植可以在去除PC抗蝕光罩802暴露區内的 缓衝膜104之前進行。 -16- 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 526564 A7 B7 五、發明説明(14 ) 圖8B是圖11B所示截面2 - 2的代表性橫截面圖。圖8B 因為PC抗蝕光罩802和STI填充物702在圖8B中的製造 過程中出現,卻未示出在圖11B中源極114、汲極116和 閘極902之間的區域内而具有代表性。圖8B於是示出製 造過程中PC光罩802的選擇性設置。這可以利用使用較 佳地包括光阻或硬光罩的PC光罩的標準圖案化微影蝕刻 技術完成。 圖9A示出了閘極電介質904(例如Si〇2)生長和閘極導體 902沈積之後的圖8A的基板。應當被理解的是氮氧化物、 氮化物/氧化物的複合物、金屬氧化物(例如 Al2〇3、 ZrSi04、Ti〇2、Ta205、Zr02 等)、鈣鈦礦(例如(Ba, Sr) Ti03、La203)及其混合物也可用作電介質。在每個通道 204、502和602上的閘極電介質的生長可以是根據傳統方 法的標準爐或單晶片室氧化。如果需要,氮化物(如 N20、NO或N2佈植)可以在氧化之前、之中或之後引入。 在每個通道204、502和602上的閘極電介質的沈積可以藉 由例如化學氣相沈積(CVD)或熟習於本領域者公知的其他 技術來完成。 在蝕刻後,沈積閘極9 02。閘極導體的沈積可以使用傳 統CVD或直接濺射技術完成。應當理解的是,可以使用 非多晶矽的閘極導體。例如,可以使用SiGe混合物、高 熔點金屬(例如 W)、金屬(例如Ir、A卜Ru、Pt)和TiN。 總體上,可以使用能拋光的並具有高電導率和合理功函數 (workfunction)的任何材料替代多晶矽。在沈積後,根據傳 -17- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)
裝 訂

Claims (1)

  1. A B c D 526564 六、申請專利範圍 位、孩源極區和汲極區之間的中心部,並實質與該 極區及該汲極區平行。 5.如申請專利範圍第2項的場效應電晶體,另包括接觸 該閘極頂表面的石夕化物層。 6·如申請專利範圍第2項的場效應電晶體,另包括接觸 忒閘極的第一侧端部和第二侧端部的電介質層。 7 .如申請專利範圍第2項的場效應電晶體,另包括接觸 該通道侧表面的電介質。 8 ·如申請專利範圍第2項的場效應電晶體,其中該閘極 包括多晶;^。 9 .如申請專利範圍第2項的場效應電晶體,其中該通道 大致為該場效應電晶體長度的四分之一。 10·如申請專利範圍第2項的場效應電晶體,另包括用於 將閘極電隔離成兩個電絕緣部分的電介質材料,每個 部分具有共面的頂表面和在每個各自共面的頂表面上 的接觸緩衝層。 11·如申請專利範圍第2項的場效應電晶體,其中該系晶 通道由第IV族元素的組合物形成。 12·如申請專利範圍第2項的場效應電晶體,其中該系晶 通道由石夕和第IV族元素的合金形成。 13.如申請專利範圍第2項的場效應電晶體,其中該系晶 通道由矽與鍺和碳中的至少一個的合金形成。 14· 種形成雙閘極場效應電晶體的方法,包括·· 在基板上形成第一和第二系晶生長通道; -2- 本紙張尺度適用中國國家標準(CNS) Α4規格(210X297公釐) 〜 ' ---
    526564 、申請專利範圍 蝕刻矽層中的區域以形成源極和汲極,其中源 極的一侧表面接觸第一和第-4 及 部表m 一長通通的相對端 形成閘極,其接觸第一和第二暴晶生長通道的 和兩個侧表面以及基板的頂表面。a如申請專利範圍第14項的方法,其巾㈣成步费 括: 形成第一和第二矽線,矽線的每個端部接觸源極和 極的一端; 在第一和第二矽線各自的被暴露的侧表面上形成蝕 終止層; 在各蝕刻終止層上磊晶生長第一和第二矽層; 蝕刻掉第一和第二矽線及蝕刻終止層; 用氧化物填充物填充圍繞第一和第二磊晶生長矽層 區域以及在源極和汲極之間的區域; 蝕刻氧化物填充物的一部分以形成定義閘極的區域 其中足義間極的區域位於源極和汲極之間的中心部 與該源極及汲極實質平行;以及 沈積材料以形成閘極。 16.如申請專利範圍第15項的方法,另包括下列步驟: 銀刻閘極和源極之間的氧化物填充物以曝露第一和 二羞晶生長碎層;以及 蝕刻閘極和汲極之間的氧化物填充物以曝露第一和 —系晶生長碎層。 包 的 並 第 第 本纸張尺度適财g ®家標芈(⑽)A4規格(210x297公i) 526564
    17·如申請專利範圍第16項的方法, 磊晶生長矽層上形成氧化物的步驟。匕括在第一和第二 18·如申請專利範圍第1?項的方法,龙 化矽。 V、疼氧化物為二氧 19·如申請專利範圍第16項的方 盤石曰丄P 包括下列步驟· 广生切層在問極和源極間的部分進行体植;以 對磊晶生長矽層在閘極和汲極間的部分進行佈植 2〇·如申請專利範圍第19項的方法,其中該伟丁植步驟係在 相對於垂直於磊晶生長矽層頂表面的向量的1〇至“度 的範圍内進行。 21·如申請專利範圍第19項的方法,其中該等佈植係以相 互間隔90度系列地進行。 22.如申請專利範圍第14項的方法,另包括在閘極、源極 和汲極上各形成接觸部的步騾。 23·如申請專利範圍第14項的方法,其中該閘極材料為多 晶石夕0 -4- 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)
TW090125391A 2000-10-18 2001-10-15 Method of fabricating semiconductor side wall fin TW526564B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/691,353 US7163864B1 (en) 2000-10-18 2000-10-18 Method of fabricating semiconductor side wall fin

Publications (1)

Publication Number Publication Date
TW526564B true TW526564B (en) 2003-04-01

Family

ID=24776208

Family Applications (1)

Application Number Title Priority Date Filing Date
TW090125391A TW526564B (en) 2000-10-18 2001-10-15 Method of fabricating semiconductor side wall fin

Country Status (9)

Country Link
US (3) US7163864B1 (zh)
EP (1) EP1202335B1 (zh)
JP (1) JP4071951B2 (zh)
KR (1) KR100444095B1 (zh)
CN (1) CN100530567C (zh)
AT (1) ATE426246T1 (zh)
DE (1) DE60138000D1 (zh)
SG (1) SG97204A1 (zh)
TW (1) TW526564B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI384614B (zh) * 2003-04-03 2013-02-01 Advanced Micro Devices Inc 形成鰭狀場效電晶體裝置中之結構的方法

Families Citing this family (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7358121B2 (en) 2002-08-23 2008-04-15 Intel Corporation Tri-gate devices and methods of fabrication
US6800910B2 (en) * 2002-09-30 2004-10-05 Advanced Micro Devices, Inc. FinFET device incorporating strained silicon in the channel region
JP4546021B2 (ja) * 2002-10-02 2010-09-15 ルネサスエレクトロニクス株式会社 絶縁ゲート型電界効果型トランジスタ及び半導体装置
KR100474850B1 (ko) * 2002-11-15 2005-03-11 삼성전자주식회사 수직 채널을 가지는 비휘발성 sonos 메모리 및 그 제조방법
US6709982B1 (en) 2002-11-26 2004-03-23 Advanced Micro Devices, Inc. Double spacer FinFET formation
US6720619B1 (en) * 2002-12-13 2004-04-13 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor-on-insulator chip incorporating partially-depleted, fully-depleted, and multiple-gate devices
US6803631B2 (en) 2003-01-23 2004-10-12 Advanced Micro Devices, Inc. Strained channel finfet
US6762483B1 (en) * 2003-01-23 2004-07-13 Advanced Micro Devices, Inc. Narrow fin FinFET
WO2004073044A2 (en) * 2003-02-13 2004-08-26 Massachusetts Institute Of Technology Finfet device and method to make same
KR100483425B1 (ko) * 2003-03-17 2005-04-14 삼성전자주식회사 반도체소자 및 그 제조 방법
WO2004090992A1 (ja) * 2003-04-09 2004-10-21 Nec Corporation 高移動度シリコンチャネルを有する縦型misfet半導体装置
US7074656B2 (en) * 2003-04-29 2006-07-11 Taiwan Semiconductor Manufacturing Company, Ltd. Doping of semiconductor fin devices
US6909186B2 (en) * 2003-05-01 2005-06-21 International Business Machines Corporation High performance FET devices and methods therefor
JP4105044B2 (ja) 2003-06-13 2008-06-18 株式会社東芝 電界効果トランジスタ
US6894326B2 (en) * 2003-06-25 2005-05-17 International Business Machines Corporation High-density finFET integration scheme
US7456476B2 (en) 2003-06-27 2008-11-25 Intel Corporation Nonplanar semiconductor device with partially or fully wrapped around gate electrode and methods of fabrication
US6909151B2 (en) 2003-06-27 2005-06-21 Intel Corporation Nonplanar device with stress incorporation layer and method of fabrication
US6716686B1 (en) 2003-07-08 2004-04-06 Advanced Micro Devices, Inc. Method for forming channels in a finfet device
KR100973092B1 (ko) 2003-07-21 2010-07-29 매그나칩 반도체 유한회사 실리콘 온 인슐레이터 웨이퍼를 이용한 수직구조의 모스커패시터의 제조방법
US7013447B2 (en) * 2003-07-22 2006-03-14 Freescale Semiconductor, Inc. Method for converting a planar transistor design to a vertical double gate transistor design
US7355253B2 (en) 2003-08-22 2008-04-08 International Business Machines Corporation Strained-channel Fin field effect transistor (FET) with a uniform channel thickness and separate gates
US6946377B2 (en) * 2003-10-29 2005-09-20 Texas Instruments Incorporated Multiple-gate MOSFET device with lithography independent silicon body thickness and methods for fabricating the same
US7029958B2 (en) 2003-11-04 2006-04-18 Advanced Micro Devices, Inc. Self aligned damascene gate
US7498225B1 (en) 2003-12-04 2009-03-03 Advanced Micro Devices, Inc. Systems and methods for forming multiple fin structures using metal-induced-crystallization
US7388258B2 (en) * 2003-12-10 2008-06-17 International Business Machines Corporation Sectional field effect devices
US7105390B2 (en) 2003-12-30 2006-09-12 Intel Corporation Nonplanar transistors with metal gate electrodes
US7268058B2 (en) 2004-01-16 2007-09-11 Intel Corporation Tri-gate transistors and methods to fabricate same
US7154118B2 (en) * 2004-03-31 2006-12-26 Intel Corporation Bulk non-planar transistor having strained enhanced mobility and methods of fabrication
US7115920B2 (en) * 2004-04-12 2006-10-03 International Business Machines Corporation FinFET transistor and circuit
US7042009B2 (en) 2004-06-30 2006-05-09 Intel Corporation High mobility tri-gate devices and methods of fabrication
US7348284B2 (en) 2004-08-10 2008-03-25 Intel Corporation Non-planar pMOS structure with a strained channel region and an integrated strained CMOS flow
KR100555573B1 (ko) 2004-09-10 2006-03-03 삼성전자주식회사 Seg막에 의해 확장된 접합영역을 갖는 반도체 소자 및그의 제조방법
US7422946B2 (en) 2004-09-29 2008-09-09 Intel Corporation Independently accessed double-gate and tri-gate transistors in same process flow
US7332439B2 (en) 2004-09-29 2008-02-19 Intel Corporation Metal gate transistors with epitaxial source and drain regions
US7361958B2 (en) 2004-09-30 2008-04-22 Intel Corporation Nonplanar transistors with metal gate electrodes
US20060086977A1 (en) 2004-10-25 2006-04-27 Uday Shah Nonplanar device with thinned lower body portion and method of fabrication
US7193279B2 (en) 2005-01-18 2007-03-20 Intel Corporation Non-planar MOS structure with a strained channel region
WO2006079964A2 (en) * 2005-01-28 2006-08-03 Nxp B.V. Method of fabricating a dual-gate fet
US7518196B2 (en) 2005-02-23 2009-04-14 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
US20060202266A1 (en) 2005-03-14 2006-09-14 Marko Radosavljevic Field effect transistor with metal source/drain regions
JP4987244B2 (ja) * 2005-04-28 2012-07-25 株式会社東芝 半導体装置の製造方法
US9153645B2 (en) 2005-05-17 2015-10-06 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US8324660B2 (en) 2005-05-17 2012-12-04 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
US7858481B2 (en) 2005-06-15 2010-12-28 Intel Corporation Method for fabricating transistor with thinned channel
US7547637B2 (en) 2005-06-21 2009-06-16 Intel Corporation Methods for patterning a semiconductor film
US7902598B2 (en) 2005-06-24 2011-03-08 Micron Technology, Inc. Two-sided surround access transistor for a 4.5F2 DRAM cell
US7279375B2 (en) 2005-06-30 2007-10-09 Intel Corporation Block contact architectures for nanoscale channel transistors
US7888721B2 (en) 2005-07-06 2011-02-15 Micron Technology, Inc. Surround gate access transistors with grown ultra-thin bodies
US7768051B2 (en) 2005-07-25 2010-08-03 Micron Technology, Inc. DRAM including a vertical surround gate transistor
US7402875B2 (en) 2005-08-17 2008-07-22 Intel Corporation Lateral undercut of metal gate in SOI device
US7339241B2 (en) * 2005-08-31 2008-03-04 Freescale Semiconductor, Inc. FinFET structure with contacts
US20070090416A1 (en) 2005-09-28 2007-04-26 Doyle Brian S CMOS devices with a single work function gate electrode and method of fabrication
US7479421B2 (en) 2005-09-28 2009-01-20 Intel Corporation Process for integrating planar and non-planar CMOS transistors on a bulk substrate and article made thereby
US7485503B2 (en) 2005-11-30 2009-02-03 Intel Corporation Dielectric interface for group III-V semiconductor device
DE102006001680B3 (de) 2006-01-12 2007-08-09 Infineon Technologies Ag Herstellungsverfahren für eine FinFET-Transistoranordnung und entsprechende FinFET-Transistoranordnung
US7446001B2 (en) * 2006-02-08 2008-11-04 Freescale Semiconductors, Inc. Method for forming a semiconductor-on-insulator (SOI) body-contacted device with a portion of drain region removed
WO2007112066A2 (en) 2006-03-24 2007-10-04 Amberwave Systems Corporation Lattice-mismatched semiconductor structures and related methods for device fabrication
US7670928B2 (en) 2006-06-14 2010-03-02 Intel Corporation Ultra-thin oxide bonding for S1 to S1 dual orientation bonding
US8143646B2 (en) 2006-08-02 2012-03-27 Intel Corporation Stacking fault and twin blocking barrier for integrating III-V on Si
EP1892765A1 (en) * 2006-08-23 2008-02-27 INTERUNIVERSITAIR MICROELEKTRONICA CENTRUM vzw (IMEC) Method for doping a fin-based semiconductor device
EP1916717A3 (en) * 2006-08-23 2010-12-22 Imec Method for doping a fin-based semiconductor device
WO2008030574A1 (en) 2006-09-07 2008-03-13 Amberwave Systems Corporation Defect reduction using aspect ratio trapping
WO2008039534A2 (en) 2006-09-27 2008-04-03 Amberwave Systems Corporation Quantum tunneling devices and circuits with lattice- mismatched semiconductor structures
WO2008051503A2 (en) * 2006-10-19 2008-05-02 Amberwave Systems Corporation Light-emitter-based devices with lattice-mismatched semiconductor structures
KR100827696B1 (ko) * 2006-12-08 2008-05-07 삼성전자주식회사 액티브 영역의 변화 없이 사이즈 조절이 가능한 트랜지스터레이아웃 구조 및 트랜지스터 사이즈 조절 방법
CN101601138B (zh) * 2007-01-22 2012-07-25 松下电器产业株式会社 半导体装置及其制造方法
US7838948B2 (en) * 2007-01-30 2010-11-23 Infineon Technologies Ag Fin interconnects for multigate FET circuit blocks
US7772048B2 (en) * 2007-02-23 2010-08-10 Freescale Semiconductor, Inc. Forming semiconductor fins using a sacrificial fin
US9508890B2 (en) * 2007-04-09 2016-11-29 Taiwan Semiconductor Manufacturing Company, Ltd. Photovoltaics on silicon
US7825328B2 (en) 2007-04-09 2010-11-02 Taiwan Semiconductor Manufacturing Company, Ltd. Nitride-based multi-junction solar cell modules and methods for making the same
US8237151B2 (en) 2009-01-09 2012-08-07 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
US8304805B2 (en) 2009-01-09 2012-11-06 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor diodes fabricated by aspect ratio trapping with coalesced films
US7709390B2 (en) * 2007-05-31 2010-05-04 Micron Technology, Inc. Methods of isolating array features during pitch doubling processes and semiconductor device structures having isolated array features
US8329541B2 (en) 2007-06-15 2012-12-11 Taiwan Semiconductor Manufacturing Company, Ltd. InP-based transistor fabrication
JP5011011B2 (ja) * 2007-07-12 2012-08-29 株式会社東芝 半導体装置の製造方法
CN101884117B (zh) * 2007-09-07 2013-10-02 台湾积体电路制造股份有限公司 多结太阳能电池
JP2010541229A (ja) * 2007-09-26 2010-12-24 エステミクロエレクトロニクス(クロレ・2)・エスアーエス 集積電子回路におけるワイヤー部の形成方法
JP2008160145A (ja) * 2008-02-04 2008-07-10 Renesas Technology Corp 絶縁ゲート型電界効果型トランジスタ及び半導体装置
US8183667B2 (en) 2008-06-03 2012-05-22 Taiwan Semiconductor Manufacturing Co., Ltd. Epitaxial growth of crystalline material
US8362566B2 (en) 2008-06-23 2013-01-29 Intel Corporation Stress in trigate devices using complimentary gate fill materials
US8274097B2 (en) 2008-07-01 2012-09-25 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
US8981427B2 (en) 2008-07-15 2015-03-17 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
US8034697B2 (en) 2008-09-19 2011-10-11 Taiwan Semiconductor Manufacturing Company, Ltd. Formation of devices by epitaxial layer overgrowth
US20100072515A1 (en) * 2008-09-19 2010-03-25 Amberwave Systems Corporation Fabrication and structures of crystalline material
US8253211B2 (en) 2008-09-24 2012-08-28 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor sensor structures with reduced dislocation defect densities
WO2010114956A1 (en) 2009-04-02 2010-10-07 Taiwan Semiconductor Manufacturing Company, Ltd. Devices formed from a non-polar plane of a crystalline material and method of making the same
US7855105B1 (en) * 2009-06-18 2010-12-21 International Business Machines Corporation Planar and non-planar CMOS devices with multiple tuned threshold voltages
US8021949B2 (en) * 2009-12-01 2011-09-20 International Business Machines Corporation Method and structure for forming finFETs with multiple doping regions on a same chip
JP5714831B2 (ja) * 2010-03-18 2015-05-07 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
US8338256B2 (en) 2010-07-08 2012-12-25 International Business Machines Corporation Multi-gate transistor having sidewall contacts
US8298913B2 (en) * 2010-10-12 2012-10-30 International Business Machines Corporation Devices with gate-to-gate isolation structures and methods of manufacture
US8404560B2 (en) * 2010-10-12 2013-03-26 International Business Machines Corporation Devices with gate-to-gate isolation structures and methods of manufacture
US8455330B2 (en) 2010-10-12 2013-06-04 International Business Machines Corporation Devices with gate-to-gate isolation structures and methods of manufacture
JP5713837B2 (ja) * 2011-08-10 2015-05-07 株式会社東芝 半導体装置の製造方法
FR2995720B1 (fr) * 2012-09-18 2014-10-24 Commissariat Energie Atomique Procede de realisation d'un dispositif a effet de champ a double grille a grilles independantes
JP6033714B2 (ja) * 2013-03-11 2016-11-30 株式会社日立製作所 半導体光素子およびその製造方法
US8895395B1 (en) 2013-06-06 2014-11-25 International Business Machines Corporation Reduced resistance SiGe FinFET devices and method of forming same
CN105321820B (zh) * 2014-07-08 2018-09-14 台湾积体电路制造股份有限公司 通过opc修改布局设计以降低拐角圆化效应
KR102290793B1 (ko) 2014-12-18 2021-08-19 삼성전자주식회사 반도체 장치, 반도체 장치의 패턴 형성 방법 및 반도체 장치의 제조 방법
US9704859B1 (en) 2016-05-06 2017-07-11 International Business Machines Corporation Forming semiconductor fins with self-aligned patterning
US10157745B2 (en) 2016-06-29 2018-12-18 International Business Machines Corporation High aspect ratio gates
US10276442B1 (en) 2018-05-30 2019-04-30 Globalfoundries Inc. Wrap-around contacts formed with multiple silicide layers
US20240105793A1 (en) * 2022-09-26 2024-03-28 Psemi Corporation Transistors designed with reduced leakage

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3876480A (en) 1972-08-28 1975-04-08 Motorola Inc Method of manufacturing high speed, isolated integrated circuit
US4716128A (en) 1986-12-10 1987-12-29 General Motors Corporation Method of fabricating silicon-on-insulator like devices
JPH0214578A (ja) * 1988-07-01 1990-01-18 Fujitsu Ltd 半導体装置
US5346834A (en) 1988-11-21 1994-09-13 Hitachi, Ltd. Method for manufacturing a semiconductor device and a semiconductor memory device
FR2645345A1 (fr) * 1989-03-31 1990-10-05 Thomson Csf Procede de modulation dirigee de la composition ou du dopage de semi-conducteurs, notamment pour la realisation de composants electroniques monolithiques de type planar, utilisation et produits correspondants
US5049521A (en) 1989-11-30 1991-09-17 Silicon General, Inc. Method for forming dielectrically isolated semiconductor devices with contact to the wafer substrate
FR2666172B1 (fr) * 1990-08-24 1997-05-16 Thomson Csf Transistor de puissance et procede de realisation.
JP3202223B2 (ja) 1990-11-27 2001-08-27 日本電気株式会社 トランジスタの製造方法
DE69213539T2 (de) * 1991-04-26 1997-02-20 Canon Kk Halbleitervorrichtung mit verbessertem isoliertem Gate-Transistor
JPH05121321A (ja) * 1991-10-25 1993-05-18 Rohm Co Ltd シリコンの結晶成長法
US5273921A (en) * 1991-12-27 1993-12-28 Purdue Research Foundation Methods for fabricating a dual-gated semiconductor-on-insulator field effect transistor
US5391506A (en) 1992-01-31 1995-02-21 Kawasaki Steel Corporation Manufacturing method for semiconductor devices with source/drain formed in substrate projection.
US5365097A (en) * 1992-10-05 1994-11-15 International Business Machines Corporation Vertical epitaxial SOI transistor, memory cell and fabrication methods
US5346934A (en) * 1992-12-21 1994-09-13 Chriss Henry T Footwear additive made from recycled materials
EP0937917B1 (en) * 1993-07-29 2003-05-21 Fuji Jukogyo Kabushiki Kaisha Cruise control signal failure detecting system and method for automatic transmission
US5593928A (en) 1993-11-30 1997-01-14 Lg Semicon Co., Ltd. Method of making a semiconductor device having floating source and drain regions
US5494837A (en) 1994-09-27 1996-02-27 Purdue Research Foundation Method of forming semiconductor-on-insulator electronic devices by growing monocrystalline semiconducting regions from trench sidewalls
DE4441901C2 (de) * 1994-11-24 1998-07-02 Siemens Ag MOSFET auf SOI-Substrat und Verfahren zu dessen Herstellung
US5581101A (en) 1995-01-03 1996-12-03 International Business Machines Corporation FET and/or bipolar devices formed in thin vertical silicon on insulator (SOI) structures
US5675164A (en) * 1995-06-07 1997-10-07 International Business Machines Corporation High performance multi-mesa field effect transistor
US5757038A (en) * 1995-11-06 1998-05-26 International Business Machines Corporation Self-aligned dual gate MOSFET with an ultranarrow channel
DE19548058C2 (de) * 1995-12-21 1997-11-20 Siemens Ag Verfahren zur Herstellung eines MOS-Transistors
US5698884A (en) * 1996-02-07 1997-12-16 Thunderbird Technologies, Inc. Short channel fermi-threshold field effect transistors including drain field termination region and methods of fabricating same
JPH09293793A (ja) * 1996-04-26 1997-11-11 Mitsubishi Electric Corp 薄膜トランジスタを有する半導体装置およびその製造方法
US5773331A (en) 1996-12-17 1998-06-30 International Business Machines Corporation Method for making single and double gate field effect transistors with sidewall source-drain contacts
US6118161A (en) * 1997-04-30 2000-09-12 Texas Instruments Incorporated Self-aligned trenched-channel lateral-current-flow transistor
KR100281110B1 (ko) * 1997-12-15 2001-03-02 김영환 반도체소자및그제조방법
KR100295636B1 (ko) * 1997-12-17 2001-08-07 김영환 박막트랜지스터및그제조방법
US6177299B1 (en) 1998-01-15 2001-01-23 International Business Machines Corporation Transistor having substantially isolated body and method of making the same
US6040605A (en) * 1998-01-28 2000-03-21 Hitachi, Ltd. Semiconductor memory device
US6013936A (en) * 1998-08-06 2000-01-11 International Business Machines Corporation Double silicon-on-insulator device and method therefor
DE19853268C2 (de) * 1998-11-18 2002-04-11 Infineon Technologies Ag Feldeffektgesteuerter Transistor und Verfahren zu dessen Herstellung
JP2000243854A (ja) * 1999-02-22 2000-09-08 Toshiba Corp 半導体装置及びその製造方法
US6365465B1 (en) * 1999-03-19 2002-04-02 International Business Machines Corporation Self-aligned double-gate MOSFET by selective epitaxy and silicon wafer bonding techniques
US6479847B2 (en) * 1999-05-07 2002-11-12 International Business Machines Corporation Method for complementary oxide transistor fabrication
US6967140B2 (en) * 2000-03-01 2005-11-22 Intel Corporation Quantum wire gate device and method of making same
US6483156B1 (en) * 2000-03-16 2002-11-19 International Business Machines Corporation Double planar gated SOI MOSFET structure
US6563131B1 (en) * 2000-06-02 2003-05-13 International Business Machines Corporation Method and structure of a dual/wrap-around gate field effect transistor
US6441433B1 (en) * 2001-04-02 2002-08-27 Advanced Micro Devices, Inc. Method of making a multi-thickness silicide SOI device
US6458662B1 (en) * 2001-04-04 2002-10-01 Advanced Micro Devices, Inc. Method of fabricating a semiconductor device having an asymmetrical dual-gate silicon-germanium (SiGe) channel MOSFET and a device thereby formed
KR100431489B1 (ko) * 2001-09-04 2004-05-12 한국과학기술원 플래쉬 메모리 소자 및 제조방법
US6800905B2 (en) * 2001-12-14 2004-10-05 International Business Machines Corporation Implanted asymmetric doped polysilicon gate FinFET
US6657252B2 (en) * 2002-03-19 2003-12-02 International Business Machines Corporation FinFET CMOS with NVRAM capability
US6833569B2 (en) * 2002-12-23 2004-12-21 International Business Machines Corporation Self-aligned planar double-gate process by amorphization
US7192876B2 (en) * 2003-05-22 2007-03-20 Freescale Semiconductor, Inc. Transistor with independent gate structures
US7355253B2 (en) * 2003-08-22 2008-04-08 International Business Machines Corporation Strained-channel Fin field effect transistor (FET) with a uniform channel thickness and separate gates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI384614B (zh) * 2003-04-03 2013-02-01 Advanced Micro Devices Inc 形成鰭狀場效電晶體裝置中之結構的方法

Also Published As

Publication number Publication date
US7361556B2 (en) 2008-04-22
US7163864B1 (en) 2007-01-16
CN1349249A (zh) 2002-05-15
EP1202335B1 (en) 2009-03-18
ATE426246T1 (de) 2009-04-15
DE60138000D1 (de) 2009-04-30
EP1202335A3 (en) 2004-09-08
US20050001216A1 (en) 2005-01-06
JP4071951B2 (ja) 2008-04-02
CN100530567C (zh) 2009-08-19
KR20020031286A (ko) 2002-05-01
JP2002198538A (ja) 2002-07-12
US7265417B2 (en) 2007-09-04
SG97204A1 (en) 2003-07-18
US20070026617A1 (en) 2007-02-01
EP1202335A2 (en) 2002-05-02
KR100444095B1 (ko) 2004-08-11

Similar Documents

Publication Publication Date Title
TW526564B (en) Method of fabricating semiconductor side wall fin
US7326634B2 (en) Bulk non-planar transistor having strained enhanced mobility and methods of fabrication
US6780694B2 (en) MOS transistor
USRE45944E1 (en) Structure for a multiple-gate FET device and a method for its fabrication
US7879675B2 (en) Field effect transistor with metal source/drain regions
TWI232489B (en) Multiple-gate transistors formed on bulk substrates
TW550811B (en) CMOS vertical replacement gate (VRG) transistors
US6432754B1 (en) Double SOI device with recess etch and epitaxy
US7453123B2 (en) Self-aligned planar double-gate transistor structure
US7682916B2 (en) Field effect transistor structure with abrupt source/drain junctions
JP3575596B2 (ja) ダブルゲート集積回路を作製する方法及びダブルゲート金属酸化物半導体トランジスタを作製する方法
US6967377B2 (en) Double-gate fet with planarized surfaces and self-aligned silicides
US8455859B2 (en) Strained structure of semiconductor device
TW200425519A (en) Self-aligned isolation double-gate FET
US20070102756A1 (en) FinFET transistor fabricated in bulk semiconducting material
JP3692039B2 (ja) 電界効果制御型トランジスタの製造方法
US7648880B2 (en) Nitride-encapsulated FET (NNCFET)
CN112951765B (zh) 半导体结构及其形成方法

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees