JP3575596B2 - ダブルゲート集積回路を作製する方法及びダブルゲート金属酸化物半導体トランジスタを作製する方法 - Google Patents

ダブルゲート集積回路を作製する方法及びダブルゲート金属酸化物半導体トランジスタを作製する方法 Download PDF

Info

Publication number
JP3575596B2
JP3575596B2 JP2000069146A JP2000069146A JP3575596B2 JP 3575596 B2 JP3575596 B2 JP 3575596B2 JP 2000069146 A JP2000069146 A JP 2000069146A JP 2000069146 A JP2000069146 A JP 2000069146A JP 3575596 B2 JP3575596 B2 JP 3575596B2
Authority
JP
Japan
Prior art keywords
forming
source
channel layer
drain regions
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000069146A
Other languages
English (en)
Other versions
JP2000277745A (ja
Inventor
ケビン・ケイ・チャン
ガイ・エム・コーエン
ユアン・タワー
ホン−サン・ピー・ワン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of JP2000277745A publication Critical patent/JP2000277745A/ja
Application granted granted Critical
Publication of JP3575596B2 publication Critical patent/JP3575596B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/78654Monocrystalline silicon transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • H01L29/42392Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/66772Monocristalline silicon transistors on insulating substrates, e.g. quartz substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78684Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78684Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys
    • H01L29/78687Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys with a multilayer structure or superlattice structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • H01L21/76275Vertical isolation by bonding techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一般的には金属酸化物半導体電界効果トランジスタ(MOSFET)に関し、特に従来のシングルゲートMOSFETにはない利点を持つダブルゲートMOSFETに関する。
【0002】
【従来の技術】
ダブルゲートMOSFETには、シングルゲートMOSFET構造にはない利点のあることは知られている(デュアル・ゲートは横並びで、ダブルゲートは上下のゲート構造)。例えば、ダブルゲートMOSFET構造は、シングルゲートMOSFET構造に比べて、相互コンダクタンスが高く、寄生容量が低く、短チャネル特性に優れている。様々なシミュレーションの結果を見ると、30nmのチャネルのダブルゲートMOSFETは、相互コンダクタンスがかなり高く(2300mS/mm)、スイッチング速度も極めて高速である。更にチャネル長20nmまで、良好な短チャネル特性が得られ、ドーピングは不要である。従って、ダブルゲートMOSFETは、トンネル破壊を回避し、シングルチャネルMOSFET構造に必要な従来のドーピングに伴うドーパント量子化、及び不純物の散乱を避けることができる。
【0003】
しかし、上下両方のゲートがチャネル領域に対して自己整合するダブルゲートMOSFET構造を作る方法はこれまでなかった。ダブルゲートMOSFET構造を形成するこれまでの努力は、一般には以下の3つのカテゴリに分けられる。
【0004】
第1の方法は、シリコンをエッチングして柱構造を得、柱構造のまわりにゲートを被着する。しかし、この方法では、反応性イオン・エッチング(RIE)による損傷がなく、厚みを適宜に制御できる薄い垂直な柱(10nm等)を形成することは困難である。
【0005】
第2の方法は、従来のシングルゲートMOSFETを形成し、選択的エピタキシまたは接合−エッチバック法により、第2のゲートを形成することである。しかし、この方法では、上下のゲート酸化物を同じ厚みに保ち、ゲート相互の位置を合わせるのは困難である。
【0006】
第3の方法は、薄いSOI膜から始め、SOI膜下のトンネルをパターン化した後、SOI膜周囲のトンネルにゲート電極を被着することである。この方法ではしかし、シリコン厚の制御とゲートの位置合わせが問題になる。
【0007】
【発明が解決しようとする課題】
従って、酸化物の厚みを適宜に制御でき、上下のゲート位置を合わせることのできるダブルゲートMOSFET構造を形成する方法及び構造が求められる。本発明の目的は、従来技術に見られる前記の問題をダブルゲートMOSFETにより解決する構造及び方法を提供することである。
【0008】
【課題を解決するための手段】
本発明の方法は、既存の単結晶シリコンMOSFETチャネルからのシリコンの選択的側方エピタキシャル成長により、ソース/ドレイン領域を形成する。ソース/ドレイン領域の境界は、予め定義された誘電境界であり、従って、大きさは局所的ソース/ドレイン領域に限定される。選択的エピタキシャル成長を限定する誘電体は、高ドープのソース/ドレイン領域を選択的に形成するための自己整合注入マスクとして使用する。ソース/ドレイン領域の形成後に誘電体を除去し、懸吊したシリコン・チャネルを得る。その後、ゲート絶縁体とゲート電極を形成してMOSFETが完成する。
【0009】
本発明は、具体的には、単結晶シリコン・チャネル層及び単結晶シリコン・チャネルの各側に絶縁酸化物と窒化物の層を持つ積層構造を形成するステップと、積層構造に開口を形成するステップと、開口にソースとドレインの領域を形成するステップと、ソースとドレインの領域をドープするステップと、積層構造上にメサ・マスクを形成するステップと、メサ・マスク及び絶縁酸化物と窒化物の層を除去して、ソースとドレインの領域から懸吊した単結晶シリコン・チャネル層を残すステップと、ソースとドレインの領域及びゲート・チャネル層を覆う酸化物を形成するステップと、単結晶シリコン・チャネル層の第1側に第1の導体を、単結晶シリコン・チャネル層の第2側に第2導体を含むように酸化層上にダブルゲート導体を形成するステップとを含む、ダブルゲートMOSFETを作製する方法を含む。ダブルゲート導体の形成中、ソースとドレインの領域及び酸化層によりダブルゲート導体が自己整合する。
【0010】
ソースとドレインの領域の形成は、単結晶シリコン・チャネル層から開口にシリコンをエピタキシャル成長させるステップを含む。シリコンのエピタキシャル成長は、ドーパントまたは合金としてのSi、Ge、C、Nの導入を含む。
【0011】
本発明のこの面にとって重要な課題が2つある。まず、不純物の導入は拡散の制限を目的としている。例えば炭素を導入するとボロンの拡散が減少する。第2に、Si1−x等の合金をソースとドレインの領域に形成するのは、バンドギャップ技術である。例えば、Si1−xソースでは、チャネルに生成される”空孔”の吸込み効率が良くなり、従って”キンク(kink)効果”が少なくなる。
【0012】
ソースとドレインの領域の形成は、単結晶シリコン・チャネル層から開口の一部にシリコンをエピタキシャル成長させ、開口の残りの部分をアモルファス・シリコンで埋めてソースとドレインの領域を完成させることによっても行える。
【0013】
積層構造の形成は、積層構造へのシリコン基板の接合を含む。その場合、開口の形成時にシリコン基板を露出させることができ、ソースとドレインの領域の形成時に、単結晶シリコン・チャネル層とシリコン基板から開口にシリコンをエピタキシャル成長させる。
【0014】
本発明の方法ではまた、ソースとドレインの領域を形成する前に、寄生容量を減らすために開口にスペーサを形成する。スペーサは、ソースとドレインへの注入のために、チャネルに対して、セットバック領域を形成するためにも使用する。
【0015】
本発明のプロセスにより、nチャネル・デバイスとpチャネル・デバイスの両方を作製することができる。デバイスのタイプは、ソースとドレインの注入に使用するドーパントのタイプによる(図41等)。相補型MOS(CMOS)回路は、本発明により容易に実現できる。
【0016】
本発明のダブルゲート集積回路は、チャネル層、チャネル層に接続されるドープしたソースとドレインの領域、ゲート・チャネル層及びドープしたソースとドレインの層を覆う絶縁体、絶縁体上のダブルゲート導体(ダブルゲート導体はチャネル層の第1の側に第1の導体、チャネル層の第2側に第2導体を含む)、ダブルゲート導体の第1側に隣接した上パシベーション酸化層と、ダブルゲート導体の上パシベーション酸化層とは反対側の下パシベーション酸化層を含み、絶縁体の厚みは、上パシベーション酸化層と下パシベーション酸化層の厚みに依存しない。
【0017】
第1導体と第2導体は、ソースとドレインの領域及び絶縁体により自己整合する。ソースとドレインの領域は、チャネル層からエピタキシャル成長させるシリコンを含む。エピタキシャル成長させるシリコンには、Si、Ge、C、Nを使用できる。これに代えて、アモルファス・シリコンとチャネル層からエピタキシャル成長させるシリコンをソースとドレインの領域に含めることもできる。
【0018】
積層構造は、第1酸化層を含み、ソースとドレインの領域には、チャネル層及び基板からエピタキシャル成長させるシリコンを含めることができる。またチャネル層は単結晶シリコン層を含む。
【0019】
本発明では、側壁の被着とエッチング方により、ダブルゲート電極とソース/ドレイン間に、下ゲート酸化物及び上ゲート酸化物に依存せずに側壁誘電体を形成する。従って、本発明では、側壁誘電体の厚みを個別に制御でき、ソース/ドレインとゲート電極間のオーバラップ容量を少なくすることができる。
【0020】
また、本発明では、ソース/ドレインとチャネルの接合部でのバンドギャップ技術によって性能を高めることができる。本発明では、エピタキシャル成長時に炭素、窒素等の不純物を導入し、ソース/ドレイン接合部の形成プロセスに続く熱サイクル時のドーパントの拡散を最小にすることができる。
【0021】
本発明は更に、上下のゲートの自己整合を、側壁の繰り返しエッチング・プロセスとその後の下ゲートの側面リセスに頼ることなく達成している。本発明では、下ゲートの上ゲートに対する位置合わせの精度は、従来のように側方エッチング制御により制限されることがない。
【0022】
【発明の実施の形態】
本発明の構造を示した図1乃至図4を参照する。本発明の構造は、シリコン・ウエハ等の基板4、絶縁体3、ソースとドレインの領域9、ソース、ドレイン、ゲートの接触15、接触開口14、ダブルゲート12、パシベーション誘電体13、チャネル領域5、絶縁体及び薄いゲート酸化物11を含む。図2は本発明の構造の平面図である。図1は、図2の線A−Aに沿った断面図を、図3は図2の線B−Bに沿った断面図を示す。図4は、図44乃至図45に関して詳述する誘電体スペーサ21を含む他の実施例を示す。
【0023】
前記の構造を形成する好適な方法について、図5乃至図32を参照して説明する。図5で、基板5と絶縁体1は、従来の作製方法、被着方法により形成する。例えば、基板は、単結晶シリコン・ウエハ等の一般的基板でよい。同様に、絶縁体1は、窒化シリコン、二酸化シリコン、酸化アルミニウム等、任意のタイプの絶縁体でよい。絶縁体1は、化学気相成長(CVD)、物理気相成長(PVD)、スパッタリング等、一般的な被着方法(または熱成長方法)によりシリコン・ウエハ上に形成(または成長)することができる。絶縁体1は、好適にはホット・ウォール拡散炉により熱成長させた二酸化シリコン(SiO2)である。また、誘電層は、窒化シリコン、酸化物/窒化物/酸化物(ONO)膜、五酸化タンタル(Ta)、BPSG(borophosphosilicate glass)等の誘電体から形成できる。絶縁体1は、作製するデバイスによるが、この例では0.1nm乃至100nmの範囲、好適には2nmである。
【0024】
図6に示す通り、第1絶縁体1の上部に、二酸化シリコン、酸化アルミニウム、好適には窒化シリコン等の第2絶縁体2を形成する。第1絶縁体1と同様、残りの物質の層の厚みは、設計要件に依存し、第2絶縁体の厚みは、10nm乃至500nmの範囲、好適には100nmである。
【0025】
図7で、第2絶縁体2の上部に、前記のような周知の方法により、一般には埋め込み酸化層(BOX)と呼ばれる厚みのある(10nm乃至1000nmの範囲、好適には300nm)前記のような絶縁体3を形成する。
【0026】
次に、図7に示す通り、構造1、2、3、5をウエハ4上に図7の矢印で示すように移動させ、A. J. Auberton−HerveによりIEDM Technical Digest、 p. 3及び同文献内の参考文献に説明されているSmartCut等の標準的なシリコン接合方法またはホウ素エッチング・ステップにより、別の単結晶シリコン・ウエハ等、別の基板4を厚みのある絶縁体3に接合する。
【0027】
単結晶シリコン(SOI)ウエハ5は、例えば、機械化学的研磨(CMP)、酸化とエッチング等の一般的な平坦化方法により、所要厚みまで薄くする。図8の例では、ウエハ5を金属酸化物半導体電界効果トランジスタ(MOSFET)のチャネル領域として使用し、厚みは1nm乃至500nmの範囲、好適には約5nmである。所望厚みはデバイス・ゲート長による。
【0028】
図9で、SOI層5上に、前記のような、好適には二酸化シリコン6(0.1nm乃至100nmの範囲、例では好適には約2nm)等の薄い絶縁体を形成し、二酸化シリコン層6の上部に、図10に示すように、前記のような、好適には窒化シリコン(10nm乃至500nm、例では好適には約250nm)の厚い絶縁体7を形成する。
【0029】
図11で、開口8をエッチングして堆積膜を形成し、エッチングは、埋め込み酸化層3内にまで一定距離進んだ後停止する。開口8は、リソグラフィ・マスキング、エッチング等、従来の周知の方法により形成できる。例えば、堆積膜は、Cl、O、N、NF、SF、CF等のエッチング剤を使用できる混合ガスにより、従来のドライ・エッチング等の手段によりエッチングできる。マスク層は、厚み約10nm乃至100nmの範囲、好適には約30nmの、ドープしていないシリコン・ガラス・フォトレジストから形成する。構造の平面図であり、図11の断面の線A−Aを示す図12に示す通り、開口間距離は、この例で作製されるMOSFETのゲートの長さ(Lg)になる。
【0030】
図13で、単結晶SOIチャネル5からエピタキシャル・シリコン9を成長させて開口8を埋める。具体的には、構造全体を400℃乃至1200℃の範囲まで加熱し、加熱と前記の方法でチャネルからシリコンをエピタキシャル成長させる。図14は、構造の平面図で、図13を示す断面A−Aを示す。
【0031】
図15で、前記のような周知の方法により構造を平坦化する。前記の図と同様、図16は、構造の平面図で、図15の構造を示す断面A−Aを示す。
【0032】
図17に示すように、反応性イオン・エッチング等の一般的エッチング法により、開口8のシリコン9にリセスを形成する。前記の被着方法により誘電体10(酸化物、窒化物等)をコンフォーマルに被着し、後に、前記のような周知の方法によりエッチングしてスペーサ10を形成する。例えば、低圧反応性イオン・エッチング剤で異方性エッチングが行える。このようなエッチングでは、水平面が、垂直面よりもかなり高いレート(50倍等)でエッチングされるので、エッチング・プロセスの後に側壁スペーサ10を残すことができる。前記の図と同様、図18は図17の構造の平面図である。
【0033】
図19で、イオン注入32により、開口8のシリコン9を高ドープし、例としてのMOSFETトランジスタのソースとドレインの領域を形成する。本発明の主な特徴は、パターン化した絶縁体7が、SOIチャネル領域5をイオン注入32に対して保護し、自己整合する注入マスクを含むことである。従って、スペーサ10は、チャネル領域5に対してソース/ドレインの注入32の位置をずらす役割を担う。
【0034】
図20の構造の平面図に示すように、メサ・マスクを形成し、図21及び図22に示すように、メサ・マスクで保護されない領域は、前記のようなエッチング法により除去し、この例で述べているMOSFETデバイスの個々のデバイスを分離する。図23及び図24で、湿式化学エッチング(高温リン酸等)等の一般的エッチング法により、上部の窒化物7と下部の窒化物2を除去し、ドープしたシリコン(ソース/ドレイン等)領域9のブリッジをなす懸吊したシリコン・チャネル5を形成する。図25及び図26に示すように、絶縁体1、6(犠牲パッド酸化物等)を、湿式化学エッチング(フッ化水素酸を使用する等)等の一般的エッチング・プロセスで除去する。
【0035】
図27及び図28の断面図と平面図に示す通り、SOIチャネル5の上面と下面の両方に、前記のような周知の方法により、コンフォーマル・ゲート型絶縁部11(酸化物等)を成長または被着(好適には熱成長)する。
【0036】
図29で、ゲート酸化物11まわりに、導体物質12(金属、合金、ドープしたポリシリコン、タングステン、銅等)をコンフォーマルに被着し、この例で説明しているMOSFET構造のダブルゲート導体を形成する。図30に示すように、導体物質12上にはゲート・マスクを形成する。次に、ゲート・マスクで保護されない導体物質12を選択的エッチングにより除去し、図31及び図32に示す構造を得る。
【0037】
図1乃至図3に示した最終構造を得るため、前記のような従来の被着法によりパシベーション誘電体13を被着する。図1及び図2に示すように、前記のような従来のフォトリソグラフィ・パターン形成とエッチングのプロセスにより、パシベーション誘電体13及び酸化誘電体11を通して接触開口14を形成し、ソースとドレインの領域9を露出させる。また、図2及び図3に示すように、パシベーション誘電体13を通して同様な接触開口14を形成し、導体物質12を露出させる。次に、導体物質15を被着し、後にパターン化し(ここでも当業者には周知の、前記のようなマスキングとエッチングの方法による)、ソースとドレインの領域9及びダブルゲート導体12との電気接触15を形成する。
【0038】
図33乃至図36は、前の実施例のエピタキシャル成長シリコンではなくアモルファス・シリコンの被着によりソース/ドレイン領域9を形成する他の実施例を示す。
【0039】
具体的には、図33に示すように、エピタキシャル・シリコン16をSOIチャネルから少しの距離(例えば約20nm)成長させる。この成長プロセスは、エピタキシャル成長シリコン9について述べた成長プロセスと同様であるが、前記のプロセスは比較的長い時間継続する一方、この実施例では、シリコンのエピタキシャル成長を1nm乃至100nmの範囲に制限するために成長プロセスの時間を制限する。
【0040】
次に、図35で、前記のような従来の被着プロセスによりアモルファス・シリコン17を被着し、ソース/ドレイン領域17を形成する。他の場合、作製プロセスの他の部分は図5乃至図32と同様である。
【0041】
図37乃至図41は、シリコンからのエピタキシャル成長及びSOIチャネル5からのエピタキシャル成長によりソース/ドレイン領域を形成する他の実施例を示す。
【0042】
具体的には、図37に示すように、ここでも上部誘電体7を自己整合型マスクとして、埋め込み酸化層(BOX)3を通ってシリコン・ハンドル・ウエハ4までのエッチングによりシード開口18を開ける。開口18を形成するため、図11に関して説明した開口8を形成するエッチング・プロセスの時間を延長して、開口18を完全に基板4まで延長することができる。また、前の開口8の形成後に、上部誘電体7を自己整合型マスクとして、構造に対して別のエッチング・プロセスも採用できる。上部誘電体7により充分なエッチング選択性が得られない場合は、別のマスクをパターン化してから、追加マスクを使用して酸化層(BOX)3をシリコン・ハンドル・ウエハまでエッチングできる。
【0043】
図39及び図40で、シード開口18(シリコン・ウエハ等)とSOIチャネル5の露出したエッジの両方からエピタキシャル・シリコンを、ソース/ドレイン領域8がシリコン9で埋められるまで成長させる。
【0044】
この実施例の他の変形例として、シリコン・ウエハ4を露出する前にチャネル・シリコン5からエピタキシャル・シリコンを少量成長させることができる。この操作では、別のエッチング・プロセスで開口8、18を形成する。この操作で重要な点は、チャネル・シリコン5から成長させるエピタキシャル・シリコンの量である。SOIチャネル5から成長させるエピタキシャル・シリコンと、後に形成するシード開口18を使ってシリコン・ウエハ4から成長させるエピタキシャル・シリコンとが、重要なチャネル領域から適正距離(50nm等)離れたところで接合するように、充分な量のシリコンをチャネル・シリコン5から成長させる必要がある。例えば、SOIチャネル5から、積層構造の側壁に対して約1nm乃至100nm、好適には50nm延びたエピタキシャル・シリコンを部分的に成長させるため、エピタキシャル成長プロセスを一定時間継続できる。このようにして高ドープ領域に”接触ポイント”を形成する。
【0045】
残りの作製プロセスは、図5乃至図32に関して説明したプロセスと同様であるが、ソースとドレインの領域9のシリコン物質は、ハンドル・ウエハ4のシリコンと接触するので、図41に示すように、シリコン・ウエハ4に接合分離領域34を形成する必要がある。例えば、NMOSFETの場合、シード開口(分離領域34等)を形成するハンドル・ウエハ4の領域はp型にする必要がある。一方PMOSFETの場合は、シード開口(分離領域34等)を形成するハンドル・ウエハの領域はn型にする必要がある。また、例えば、PMOSFETの場合、ドーピングは、ヒ素、リン等のN型原子種を注入して行える。代表的な注入は、注入量約1×1012原子/cm乃至3×1015原子/cm、エネルギ約0.1KeV乃至100KeVのリン(P)、ヒ素(As)等である。また、シード開口18を開ける場合と同じマスク7を使って注入を行える。
【0046】
また、デバイス間間隔が接合分離領域34によって制限されないように、接合分離領域34の大きさを制限することが望ましい。注入領域34は、接合分離のためソース/ドレイン領域9よりも常にわずかに大きくする必要がある。注入領域がソース/ドレイン領域より小さい場合、ソース/ドレイン領域は、接合部が延びていない部分で基板と電気的に短絡する可能性がある。接合分離注入の前にスペーサを使用すると(後述する図45を参照)、接合分離注入位置がソース/ドレイン領域のエッジに対してずれるので、接合部によるデバイス間間隔の開きが防止される。
【0047】
図42乃至図43は、本発明にバンド・ギャップ技術或いは不純物技術を利用できる他の実施例を示す。
【0048】
具体的には、図42に示すように、SOIチャネル5からエピタキシャル・シリコン19を成長させる。ただしこの実施例は、先の制限付き成長シリコン16とは異なり、Si、Ge、C、N等別の物質19を物質の制限付き成長に使用できる。残りの作製プロセスは、図5乃至図32に関して説明したプロセスと同様である。炭素、窒素等の不純物をエピタキシャル成長時に導入することで、ソースとドレインの領域9からのドーパント拡散(後の熱作製サイクル時等)が最小になる。
【0049】
炭素、ゲルマニウム、窒素等の不純物を導入することができ、これらは前記の実施例に使用できる。不純物は、注入、その場のドーピング(エピタキシャル成長時)等により物質に導入できる。
【0050】
図44乃至図47は、デバイス構造に任意の厚みのスペーサを導入する他の実施例を示す。具体的には、図44に示すように、前記のプロセスにより、エピタキシャル・シリコン16をSOIチャネルから少しの距離(例えば20nm)成長させる。また、エピタキシャル成長シリコン16の大きさをより正確に制御するには、前記のような従来のエッチング・プロセス、好適には反応性イオン・エッチング・プロセスにより小さいエピタキシャル成長シリコン16をエッチングして、SOIチャネル上に延びた領域にリセスを形成することができる。
【0051】
別に、エピタキシャル成長シリコン16に対してイオン注入を行えば、SOIチャネルへのアクセス領域のコンダクタンスが改良される。例えば、このような注入は、注入量約1×1012原子/cm乃至3×1015原子/cm、エネルギ・レベル0.1KeV乃至100KeVで行える。
【0052】
図44に示すように、構造全体に誘電体20をコンフォーマルに被着する。この誘電体の厚みにより、得られるスペーサの厚みが決まる。誘電体20は、酸化物−窒化物−酸化物(ONO)等、先に述べたようなエッチング選択性が得られる誘電体である。
【0053】
前記のように、反応性イオン・エッチングにより、図45に示すようにスペーサ21を形成する。図46は、SOIチャネル5の露出したシリコン側壁から誘電体スペーサ21の残留物22を除去するため行う(反応性イオンエッチング、湿式化学エッチング等の)等方性エッチング・プロセスの結果を示す。次に、図47のように、アモルファス・シリコン31を被着してソース/ドレイン領域を形成する。これに代えて、露出したSOIチャネルの延長部16からエピタキシャル・シリコンを再成長させ、ソースとドレインの領域を埋めることもできる。残りの作製プロセスは、先に図5乃至図32に関して説明したプロセスと同様である。
【0054】
代表的なSiGe1−xMOSFETは、デバイスのチャネルとして2つのシリコン層の間に挟まれたSiGe膜を使用する。シリコンとシリコン・ゲルマニウムのバンド・ギャップ・エネルギが異なるため、SiGe膜は、キャリアをSiGe膜に閉じ込める量子井戸を形成する。SiGe FETの利点として、Si FETと比べてチャネル移動度が大きい。
【0055】
本発明に説明した手順により、SiGeダブルゲート構造を実現できる。このような構造を形成するには、先に説明したデバイス作製プロセスを、図25に示すように懸吊したSOIブリッジ5が形成されるまで行う。本発明は、オーバラップ容量を減らすため、エピタキシャル延長部16の成長ステップに続いて誘電体スペーサ21を前記のように導入する。図48及び図49に示すように、CVD(化学気相成長)等の方法により、SiGe層35を、SOIブリッジ5の全周にわたり選択的に成長させる。次に、SOIブリッジ5の全周にわたりシリコン・キャップ層36を被着して、SiGe膜35を覆う。図48及び図49は、SiGe層とシリコン・キャップ層の被着の後のデバイスの2つの断面を示す。ここから先のプロセス・ステップは前記のプロセス・ステップと同じである。具体的には、シリコン・キャップ層36の成長に続いて、図27に示すように熱ゲート酸化物11を成長させ、続いて図29に示すようにゲート導体を被着する。次に、図31に示すようにゲート導体物質をパターン化し、分離誘電体13を被着する。最後に、接触開口14とメタライゼーション15によりデバイスの作製が完了する。
【0056】
図50は、本発明の好適実施例のフロー図である。項目80で、図10に示した積層構造を形成する。項目81で、図13に示すように、積層構造に開口8を形成し、単結晶シリコン・チャネル層5からソースとドレインの領域9をエピタキシャル成長させる。
【0057】
図19に示すように、項目82で、自己整合マスクとして窒化層7を使用して拡散領域9をドープする。項目83で、図25に示すように、メサ・マスクを形成し、積層構造の大半を除去して、ソースとドレインの領域9の間に懸吊したチャネル領域5を形成する。次に、項目84で、ゲート酸化物11とダブルゲート導体12を形成し、項目85で上酸化物13を形成する。
【0058】
前記の本発明のプロセスと構造は、様々な面で従来のプロセス、構造よりも優れている。例えば、ソース/ドレインとゲート電極の間の絶縁体は、従来は、上下のゲート酸化物の成長時に形成する。その場合、従来の絶縁体の厚みはゲート酸化物の厚みに依存し、個別に制御してゲート電極とソース/ドレイン領域のオーバラップ容量を減らすことはできない。
【0059】
しかし、本発明では、側壁被着とエッチングの方法により、ダブルゲート電極12とソース/ドレイン領域9の間に、下酸化物3と上酸化物13に依存せずに側壁誘電体11を提供する。従って、本発明では、側壁誘電体11の厚みを、図27に示すように個別に制御できるので、本発明により、ソース/ドレイン領域9とゲート電極12の間のオーバラップ容量を減らすことができる。
【0060】
前記の通り、MOSFETのソース/ドレインのバンドギャップ技術(SiGe等)により性能が改良される。本発明では、ソース/ドレインとチャネルの接合部でバンドギャップ技術を利用できる。
【0061】
本発明では、エピタキシャル成長時に炭素、窒素等の不純物を導入でき、ソース/ドレイン接合形成プロセスに続く熱サイクル時のドーパントの拡散が最小になる。
【0062】
また、チャネルは、選択的エピタキシャル成長によってではなくウエハ5の接合により形成されるので、本発明でのシリコン・チャネル5の質は、良質な単結晶バルク・シリコンと同じである。本発明では、ソース/ドレイン領域9だけをエピタキシャル成長させる。ソース/ドレイン領域9は、縮退を促すようにドープされるので、ソース/ドレイン領域での物質の欠陥が問題になることはない。
【0063】
更に、本発明は、上下のゲートの自己整合を、従来のような側壁の繰り返しエッチング・プロセスとその後の下ゲートの側方リセスに頼らずに達成する。本発明では、下ゲートの上ゲートに対する整合の精度が、従来のように側方エッチング制御によって制限されることがない。
【0064】
本発明は、好適実施例に関して説明したが、当業者には明らかなように、本発明に変更を加えて実施することは、特許請求の範囲の主旨と範囲から逸脱することなく可能である。例えば、本発明はMOSFET構造に関して説明しているが、当業者には開示の内容からわかる通り、本発明は、半導体デバイス、トランジスタ、他の電界効果型デバイス等、同様な全ての集積回路デバイスに適用できる。
【0065】
まとめとして、本発明の構成に関して以下の事項を開示する。
【0066】
(1)ダブルゲート集積回路を作製する方法であって、
チャネル層及び該チャネル層の各面に第1絶縁体を持つ積層構造を形成するステップと、
前記積層構造に開口を形成するステップと、
前記開口にソースとドレインの領域を形成するステップと、
前記ソースとドレインの領域をドープし、前記積層構造の前記開口により該ドーピングのアライメントをとるステップと、
前記積層構造の部分部分を除去して、前記ソースとドレインの領域から懸吊した前記チャネル層を残すステップと、
第2絶縁体を形成して、前記ソースとドレインの領域及び前記チャネル層を覆うステップと、
前記チャネル層の第1側に第1導体が、前記チャネル層の第2側に第2導体が含まれるように前記第2絶縁体上にダブルゲート導体を形成するステップと、
を含む、方法。
(2)前記ダブルゲート導体の形成時、前記ソースとドレインの領域及び前記第2絶縁体によって前記ダブルゲート導体が自己整合する、前記(1)記載の方法。
(3)前記積層構造の形成は、前記第1絶縁体の1つに隣接した下絶縁体の形成を含み、更に、前記ダブルゲート導体の形成後、前記下絶縁体に対して前記ダブルゲート導体の反対側に上絶縁体を形成するステップを含み、前記第2絶縁体の厚みを、前記下絶縁体と前記上絶縁体の厚みに依存しないようにする、前記(1)記載の方法。
(4)前記ソースとドレインの領域の形成ステップは、前記チャネル層から前記開口にソースとドレインの領域をエピタキシャル成長させるステップを含む、前記(1)記載の方法。
(5)前記ソースとドレインの領域のエピタキシャル成長ステップは、Si、Ge、C、N、合金のいずれか1つ以上を導入するステップを含む、前記(4)記載の方法。
(6)前記ソースとドレインの領域の形成ステップは、前記チャネル層から前記開口に前記ソースとドレインの領域の一部をエピタキシャル成長させ、前記開口の残りの部分をアモルファス・シリコンで埋めて前記ソースとドレインの領域を完成させるステップを含む、前記(1)記載の方法。
(7)前記積層構造の形成ステップは、基板を前記積層構造に接続するステップを含み、
前記開口の形成ステップは、前記基板を露出させるステップを含み、
前記ソースとドレインの領域の形成ステップは、前記チャネル層及び前記基板から前記開口に前記ソースとドレインの領域をエピタキシャル成長させるステップを含む、
前記(1)記載の方法。
(8)前記チャネル層は、単結晶シリコン層を含み、前記積層構造の形成ステップは、該単結晶シリコン・ウエハの各面に前記第1絶縁体を被着するステップを含む、前記(1)記載の方法。
(9)ダブルゲート金属酸化物半導体トランジスタを作製する方法であって、
単結晶シリコン・チャネル層及び該単結晶シリコン・チャネルの各面に絶縁酸化物と窒化物の層を持つ積層構造を形成するステップと、
前記積層構造に開口を形成するステップと、
前記開口にソースとドレインの領域を形成するステップと、
前記ソースとドレインの領域をドープし、前記積層構造の前記開口により該ドーピングのアライメントをとるステップと、
前記積層構造の部分部分を除去して、前記ソースとドレインの領域から懸吊した前記単結晶シリコン・チャネル層を残すステップと、
酸化層を形成して、前記ソースとドレインの領域及び前記単結晶シリコン・チャネル層を覆うステップと、
前記単結晶シリコン・チャネル層の第1側に第1導体が、前記単結晶シリコン・チャネル層の第2側に第2導体が含まれるように前記酸化層上にダブルゲート導体を形成するステップと、
を含む、方法。
(10)前記ダブルゲート導体の形成時、前記ソースとドレインの領域及び前記酸化層により前記ダブルゲート導体が自己整合する、前記(9)記載の方法。
(11)前記積層構造の形成は、前記第1絶縁体の1つに隣接した下酸化層の形成を含み、更に、前記ダブルゲート導体の形成後、前記下酸化層に対して前記ダブルゲート導体の反対側に上酸化層を形成するステップを含み、前記ゲート酸化層の厚みを、前記上酸化層と前記下酸化層の厚みに依存しないようにする、前記(9)記載の方法。
(12)前記ソースとドレインの領域の形成ステップは、前記単結晶シリコン・チャネル層から前記開口にシリコンをエピタキシャル成長させるステップを含む、前記(9)記載の方法。
(13)前記シリコンのエピタキシャル成長ステップは、Si、Ge、C、N、合金のいずれか1つ以上を導入するステップを含む、前記(12)記載の方法。
(14)前記ソースとドレインの領域の形成ステップは、前記単結晶シリコン・チャネル層から前記開口の一部にシリコンをエピタキシャル成長させ、前記開口の残りの部分をアモルファス・シリコンで埋めて前記ソースとドレインの領域を完成させるステップを含む、前記(9)記載の方法。
(15)前記積層構造の形成ステップは、シリコン基板を前記積層構造に接続するステップを含み、
前記開口の形成ステップは、前記シリコン基板を露出させるステップを含み、
前記ソースとドレインの領域の形成ステップは、前記単結晶シリコン・チャネル層及び前記シリコン基板から前記開口にシリコンをエピタキシャル成長させるステップを含む、
前記(9)記載の方法。
(16)前記ソースとドレインの領域の形成前に、前記開口にスペーサを形成するステップを含む、前記(9)記載の方法。
(17)ダブルゲート集積回路であって、
チャネル層と、
ドープし、前記チャネル層に接続したソースとドレインの領域と、
前記チャネル層と前記ドープしたソースとドレインの領域を覆うゲート絶縁体と、
前記絶縁体上に、前記チャネル層の第1側に第1導体と、前記チャネル層の第2側に第2導体とを含むダブルゲート導体と、
前記ダブルゲート導体の第1側に隣接する上絶縁体と、
前記上絶縁体に対して前記ダブルゲート導体の反対側の下絶縁体とを含み、前記ゲート絶縁体の厚みは、前記上絶縁体と前記下絶縁体の厚みに依存しない、
集積回路。
(18)前記第1導体と前記第2導体は前記ドープしたソースとドレインの領域により自己整合する、前記(17)記載のダブルゲート集積回路。
(19)前記ドープしたソースとドレインの領域は、前記チャネル層からエピタキシャル成長させたシリコンを含む、前記(17)記載のダブルゲート集積回路。
(20)前記エピタキシャル成長シリコンは、Si、Ge、C、N、合金のいずれか1つ以上を含む、前記(19)記載のダブルゲート集積回路。
(21)前記ソースとドレインの領域はアモルファス・シリコン及び前記チャネル層からエピタキシャル成長させたシリコンを含む、前記(17)記載のダブルゲート集積回路。
(22)前記下絶縁体に接続された基板を含み、前記ソースとドレインの領域は、前記チャネル層と前記基板とからエピタキシャル成長させたシリコンを含む、前記(17)記載のダブルゲート集積回路。
(23)前記チャネル層は単結晶シリコン層を含む、前記(17)記載のダブルゲート集積回路。
【図面の簡単な説明】
【図1】本発明の完成したデバイスを示す図である。
【図2】本発明の完成したデバイスを示す図である。
【図3】本発明の完成したデバイスを示す図である。
【図4】本発明の完成したデバイスを示す図である。
【図5】最終デバイスを得るための好適な作製手順を示す図である。
【図6】最終デバイスを得るための好適な作製手順を示す図である。
【図7】最終デバイスを得るための好適な作製手順を示す図である。
【図8】最終デバイスを得るための好適な作製手順を示す図である。
【図9】最終デバイスを得るための好適な作製手順を示す図である。
【図10】最終デバイスを得るための好適な作製手順を示す図である。
【図11】最終デバイスを得るための好適な作製手順を示す図である。
【図12】最終デバイスを得るための好適な作製手順を示す図である。
【図13】最終デバイスを得るための好適な作製手順を示す図である。
【図14】最終デバイスを得るための好適な作製手順を示す図である。
【図15】最終デバイスを得るための好適な作製手順を示す図である。
【図16】最終デバイスを得るための好適な作製手順を示す図である。
【図17】最終デバイスを得るための好適な作製手順を示す図である。
【図18】最終デバイスを得るための好適な作製手順を示す図である。
【図19】最終デバイスを得るための好適な作製手順を示す図である。
【図20】最終デバイスを得るための好適な作製手順を示す図である。
【図21】最終デバイスを得るための好適な作製手順を示す図である。
【図22】最終デバイスを得るための好適な作製手順を示す図である。
【図23】最終デバイスを得るための好適な作製手順を示す図である。
【図24】最終デバイスを得るための好適な作製手順を示す図である。
【図25】最終デバイスを得るための好適な作製手順を示す図である。
【図26】最終デバイスを得るための好適な作製手順を示す図である。
【図27】最終デバイスを得るための好適な作製手順を示す図である。
【図28】最終デバイスを得るための好適な作製手順を示す図である。
【図29】最終デバイスを得るための好適な作製手順を示す図である。
【図30】最終デバイスを得るための好適な作製手順を示す図である。
【図31】最終デバイスを得るための好適な作製手順を示す図である。
【図32】最終デバイスを得るための好適な作製手順を示す図である。
【図33】本発明の他の実施例を示す図である。
【図34】本発明の他の実施例を示す図である。
【図35】本発明の他の実施例を示す図である。
【図36】本発明の他の実施例を示す図である。
【図37】本発明の他の実施例を示す図である。
【図38】本発明の他の実施例を示す図である。
【図39】本発明の他の実施例を示す図である。
【図40】本発明の他の実施例を示す図である。
【図41】本発明の他の実施例を示す図である。
【図42】バンドギャップ技術を示す本発明の他の実施例の図である。
【図43】バンドギャップ技術を示す本発明の他の実施例の図である。
【図44】側壁スペーサを形成する本発明の他の実施例を示す図である。
【図45】側壁スペーサを形成する本発明の他の実施例を示す図である。
【図46】側壁スペーサを形成する本発明の他の実施例を示す図である。
【図47】側壁スペーサを形成する本発明の他の実施例を示す図である。
【図48】SiGeとシリコン・キャップ層の被着後の断面を示す図である。
【図49】SiGeとシリコン・キャップ層の被着後の断面を示す図である。
【図50】好適実施例のフロー図である。
【符号の説明】
1、2、3、6、7 絶縁体
4、5 シリコン・ウエハ
9、16、19 エピタキシャル・シリコン
10、20 誘電体
11 ゲート酸化物
12 導体物質
13 パシベーション誘電体(上酸化物)
15 メタライゼーション
17、31 アモルファス・シリコン
19 物質
21 誘電体スペーサ
22 スペーサ
32 イオン注入
34 接合分離領域
36 シリコン・キャップ

Claims (15)

  1. ダブルゲート集積回路を作製する方法であって、
    チャネル層及び該チャネル層の各面に第1絶縁体を持つ積層構造を形成するステップと、
    前記積層構造に開口を形成するステップと、
    少なくとも前記開口に第2絶縁体を被着するステップと、
    前記第2絶縁体を覆うように前記開口にソースとドレインの領域を形成するステップと、
    前記ソースとドレインの領域をドープし、前記積層構造の前記開口により該ドーピングのアライメントをとるステップと、
    前記ソースとドレインの領域から懸吊した前記チャネル層が残るように、前記積層構造の一部を除去するステップと、
    前記チャネル層の第1側に第1導体が、前記チャネル層の第2側に第2導体が含まれるように前記第2絶縁体上にダブルゲート導体を形成するステップと、
    を含む、方法。
  2. 前記ダブルゲート導体の形成時、前記ソースとドレインの領域及び前記第2絶縁体によって前記ダブルゲート導体が自己整合する、請求項1記載の方法。
  3. 前記積層構造を形成するステップは、前記第1絶縁体の1つに隣接した下絶縁体の形成を含み、
    更に、前記ダブルゲート導体を形成するステップの後、前記下絶縁体に対して前記ダブルゲート導体の反対側に上絶縁体を形成するステップを含み、
    前記第2絶縁体の厚みが、前記下絶縁体と前記上絶縁体の厚みに依存しないことを特徴とする、請求項1記載の方法。
  4. 前記チャネル層は、単結晶シリコン層を含み、
    前記積層構造の形成ステップは、該単結晶シリコン層の各面に前記第1絶縁体を被着するステップを含む、請求項1記載の方法。
  5. 前記開口に第2絶縁体を被着するステップは、前記ソースとドレインの領域の形成前に、前記開口にスペーサを形成するステップを含む、請求項1記載の方法。
  6. ダブルゲート集積回路を作製する方法であって、
    チャネル層及び該チャネル層の各面に第1絶縁体を持つ積層構造を形成するステップと、
    前記積層構造の上にマスクを配置し、該マスクを通して異方性エッチングを行うことにより、前記積層構造に側壁面が平坦面を有する開口を形成するステップと、
    前記開口を形成した後に、前記開口を等方性エッチングにより拡大する工程を経ることなく、前記開口にソースとドレインの領域を形成するステップと、
    前記ソースとドレインの領域をドープし、前記積層構造の前記開口により該ドーピングのアライメントをとるステップと、
    前記ソースとドレインの領域から懸吊した前記チャネル層が残るように、前記積層構造の一部を除去するステップと、
    第2絶縁体を形成して、前記ソースとドレインの領域及び前記チャネル層を覆うステップと、
    前記チャネル層の第1側に第1導体が、前記チャネル層の第2側に第2導体が含まれるように前記第2絶縁体上にダブルゲート導体を形成するステップと、
    を含み、
    前記ソースとドレインの領域の形成ステップは、前記チャネル層から前記開口にソースとドレインの領域をエピタキシャル成長させるステップを含む、方法。
  7. ダブルゲート集積回路を作製する方法であって、
    チャネル層及び該チャネル層の各面に第1絶縁体を持つ積層構造を形成するステップと、
    前記積層構造に開口を形成するステップと、
    前記開口にソースとドレインの領域を形成するステップと、
    前記ソースとドレインの領域をドープし、前記積層構造の前記開口により該ドーピングのアライメントをとるステップと、
    前記ソースとドレインの領域から懸吊した前記チャネル層が残るように、前記積層構造の一部を除去するステップと、
    第2絶縁体を形成して、前記ソースとドレインの領域及び前記チャネル層を覆うステップと、
    前記チャネル層の第1側に第1導体が、前記チャネル層の第2側に第2導体が含まれるように前記第2絶縁体上にダブルゲート導体を形成するステップと、
    を含み、
    前記ソースとドレインの領域の形成ステップは、前記チャネル層から前記開口に前記ソースとドレインの領域の一部をエピタキシャル成長させ、前記開口の残りの部分をアモルファス・シリコンで埋めて前記ソースとドレインの領域を完成させるステップを含む、方法。
  8. ダブルゲート集積回路を作製する方法であって、
    チャネル層及び該チャネル層の各面に第1絶縁体を持つ積層構造を形成するステップと、
    前記積層構造の上にマスクを配置し、該マスクを通して異方性エッチングを行うことにより、前記積層構造に側壁面が平坦面を有する開口を形成するステップと、
    前記開口を形成した後に、前記開口を等方性エッチングにより拡大する工程を経ることなく、前記開口にソースとドレインの領域を形成するステップと、
    前記ソースとドレインの領域をドープし、前記積層構造の前記開口により該ドーピングのアライメントをとるステップと、
    前記ソースとドレインの領域から懸吊した前記チャネル層が残るように、前記積層構造の一部を除去するステップと、
    第2絶縁体を形成して、前記ソースとドレインの領域及び前記チャネル層を覆うステップと、
    前記チャネル層の第1側に第1導体が、前記チャネル層の第2側に第2導体が含まれるように前記第2絶縁体上にダブルゲート導体を形成するステップと、
    を含み、
    前記積層構造の形成ステップは、基板を前記積層構造に接続するステップを含み、
    前記開口の形成ステップは、前記基板を露出させるステップを含み、
    前記ソースとドレインの領域の形成ステップは、前記チャネル層及び前記基板から前記開口に前記ソースとドレインの領域をエピタキシャル成長させるステップを含む、方法。
  9. ダブルゲート金属酸化物半導体トランジスタを作製する方法であって、
    単結晶シリコン・チャネル層及び該単結晶シリコン・チャネル層の各面に絶縁酸化物と窒化物の層を持つ積層構造を形成するステップと、
    前記積層構造に開口を形成するステップと、
    前記開口にソースとドレインの領域を形成するステップと、
    前記ソースとドレインの領域をドープし、前記積層構造の前記開口により該ドーピングのアライメントをとるステップと、
    前記ソースとドレインの領域から懸吊した前記単結晶シリコン・チャネル層が残るように、前記積層構造の一部を除去するステップと、
    ゲート酸化層を形成して、前記ソースとドレインの領域及び前記単結晶シリコン・チャネル層を覆うステップと、
    前記単結晶シリコン・チャネル層の第1側に第1導体が、前記単結晶シリコン・チャネル層の第2側に第2導体が含まれるように前記ゲート酸化層上にダブルゲート導体を形成するステップと、
    を含む、方法。
  10. 前記ダブルゲート導体の形成時、前記ソースとドレインの領域及び前記ゲート酸化層により前記ダブルゲート導体が自己整合する、請求項9記載の方法。
  11. 前記積層構造を形成するステップは、前記窒化物の層の1つに隣接した下酸化層の形成を含み、
    更に、前記ダブルゲート導体を形成するステップの後、前記下酸化層に対して前記ダブルゲート導体の反対側に上酸化層を形成するステップを含み、
    前記ゲート酸化層の厚みが、前記上酸化層と前記下酸化層の厚みに依存しないことを特徴とする、請求項9記載の方法。
  12. 前記ソースとドレインの領域の形成ステップは、前記単結晶シリコン・チャネル層から前記開口にシリコンをエピタキシャル成長させるステップを含む、請求項9記載の方法。
  13. ダブルゲート金属酸化物半導体トランジスタを作製する方法であって、
    単結晶シリコン・チャネル層及び該単結晶シリコン・チャネル層の各面に絶縁酸化物と窒化物の層を持つ積層構造を形成するステップと、
    前記積層構造に開口を形成するステップと、
    前記開口にソースとドレインの領域を形成するステップと、
    前記ソースとドレインの領域をドープし、前記積層構造の前記開口により該ドーピングのアライメントをとるステップと、
    前記ソースとドレインの領域から懸吊した前記単結晶シリコン・チャネル層が残るように、前記積層構造の一部を除去するステップと、
    ゲート酸化層を形成して、前記ソースとドレインの領域及び前記単結晶シリコン・チャネル層を覆うステップと、
    前記単結晶シリコン・チャネル層の第1側に第1導体が、前記単結晶シリコン・チャネル層の第2側に第2導体が含まれるように前記ゲート酸化層上にダブルゲート導体を形成するステップと、
    を含み、
    前記ソースとドレインの領域の形成ステップは、前記単結晶シリコン・チャネル層から前記開口の一部にシリコンをエピタキシャル成長させ、前記開口の残りの部分をアモルファス・シリコンで埋めて前記ソースとドレインの領域を完成させるステップを含む、方法。
  14. 前記積層構造の形成ステップは、シリコン基板を前記積層構造に接続するステップを含み、
    前記開口の形成ステップは、前記シリコン基板を露出させるステップを含み、 前記ソースとドレインの領域の形成ステップは、前記単結晶シリコン・チャネル層及び前記シリコン基板から前記開口にシリコンをエピタキシャル成長させるステップを含む、
    請求項9記載の方法。
  15. 前記ソースとドレインの領域の形成前に、前記開口にスペーサを形成するステップを含む、請求項9記載の方法。
JP2000069146A 1999-03-19 2000-03-13 ダブルゲート集積回路を作製する方法及びダブルゲート金属酸化物半導体トランジスタを作製する方法 Expired - Fee Related JP3575596B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/272,297 US6365465B1 (en) 1999-03-19 1999-03-19 Self-aligned double-gate MOSFET by selective epitaxy and silicon wafer bonding techniques
US09/272297 1999-03-19

Publications (2)

Publication Number Publication Date
JP2000277745A JP2000277745A (ja) 2000-10-06
JP3575596B2 true JP3575596B2 (ja) 2004-10-13

Family

ID=23039217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000069146A Expired - Fee Related JP3575596B2 (ja) 1999-03-19 2000-03-13 ダブルゲート集積回路を作製する方法及びダブルゲート金属酸化物半導体トランジスタを作製する方法

Country Status (2)

Country Link
US (2) US6365465B1 (ja)
JP (1) JP3575596B2 (ja)

Families Citing this family (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19924571C2 (de) * 1999-05-28 2001-03-15 Siemens Ag Verfahren zur Herstellung eines Doppel-Gate-MOSFET-Transistors
US7242064B2 (en) * 1999-06-30 2007-07-10 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
AU2001261232A1 (en) * 2000-05-08 2001-11-20 Walker Digital, Llc Method and system for providing a link in an electronic file being presented to a user
US6642115B1 (en) * 2000-05-15 2003-11-04 International Business Machines Corporation Double-gate FET with planarized surfaces and self-aligned silicides
TW490745B (en) * 2000-05-15 2002-06-11 Ibm Self-aligned double gate MOSFET with separate gates
US6982460B1 (en) * 2000-07-07 2006-01-03 International Business Machines Corporation Self-aligned gate MOSFET with separate gates
JP2002151688A (ja) * 2000-08-28 2002-05-24 Mitsubishi Electric Corp Mos型半導体装置およびその製造方法
US7163864B1 (en) * 2000-10-18 2007-01-16 International Business Machines Corporation Method of fabricating semiconductor side wall fin
US6657261B2 (en) * 2001-01-09 2003-12-02 International Business Machines Corporation Ground-plane device with back oxide topography
US7026219B2 (en) * 2001-02-12 2006-04-11 Asm America, Inc. Integration of high k gate dielectric
WO2002080244A2 (en) * 2001-02-12 2002-10-10 Asm America, Inc. Improved process for deposition of semiconductor films
US6630388B2 (en) * 2001-03-13 2003-10-07 National Institute Of Advanced Industrial Science And Technology Double-gate field-effect transistor, integrated circuit using the transistor and method of manufacturing the same
JP4799786B2 (ja) * 2001-10-02 2011-10-26 ルネサスエレクトロニクス株式会社 電力増幅用電界効果型半導体装置およびその製造方法、ならびにパワーモジュール
US6781409B2 (en) * 2001-10-10 2004-08-24 Altera Corporation Apparatus and methods for silicon-on-insulator transistors in programmable logic devices
KR100497672B1 (ko) * 2002-05-10 2005-07-01 재단법인서울대학교산학협력재단 자기 배열 에스오아이 더블 게이트 트랜지스터를 이용한디램 및 이의 제조방법
DE10223709B4 (de) * 2002-05-28 2009-06-10 Qimonda Ag Verfahren zum Herstellen eines Doppel-Gate-Transistors
US7186630B2 (en) * 2002-08-14 2007-03-06 Asm America, Inc. Deposition of amorphous silicon-containing films
KR100481209B1 (ko) * 2002-10-01 2005-04-08 삼성전자주식회사 다중 채널을 갖는 모스 트랜지스터 및 그 제조방법
US6833569B2 (en) * 2002-12-23 2004-12-21 International Business Machines Corporation Self-aligned planar double-gate process by amorphization
US7078773B2 (en) * 2002-12-23 2006-07-18 International Business Machines Corporation Nitride-encapsulated FET (NNCFET)
WO2004088757A1 (ja) * 2003-03-28 2004-10-14 Fujitsu Limited 半導体装置及びその製造方法
US6764884B1 (en) * 2003-04-03 2004-07-20 Advanced Micro Devices, Inc. Method for forming a gate in a FinFET device and thinning a fin in a channel region of the FinFET device
JP4000087B2 (ja) * 2003-05-07 2007-10-31 株式会社東芝 半導体装置およびその製造方法
US7202118B1 (en) * 2003-06-13 2007-04-10 Advanced Micro Devices, Inc. Fully depleted SOI MOSFET arrangement with sunken source/drain regions
US20050003592A1 (en) * 2003-06-18 2005-01-06 Jones A. Brooke All-around MOSFET gate and methods of manufacture thereof
US7015547B2 (en) * 2003-07-03 2006-03-21 American Semiconductor, Inc. Multi-configurable independently multi-gated MOSFET
US7019342B2 (en) * 2003-07-03 2006-03-28 American Semiconductor, Inc. Double-gated transistor circuit
US7652330B1 (en) 2003-07-03 2010-01-26 American Semiconductor, Inc. Independently-double-gated combinational logic
US6919647B2 (en) 2003-07-03 2005-07-19 American Semiconductor, Inc. SRAM cell
US6921700B2 (en) * 2003-07-31 2005-07-26 Freescale Semiconductor, Inc. Method of forming a transistor having multiple channels
US6927104B2 (en) * 2003-09-15 2005-08-09 Chartered Semiconductor Manufacturing Ltd. Method of forming double-gated silicon-on-insulator (SOI) transistors with corner rounding
US7205185B2 (en) * 2003-09-15 2007-04-17 International Busniess Machines Corporation Self-aligned planar double-gate process by self-aligned oxidation
US6787404B1 (en) * 2003-09-17 2004-09-07 Chartered Semiconductor Manufacturing Ltd. Method of forming double-gated silicon-on-insulator (SOI) transistors with reduced gate to source-drain overlap capacitance
US6835609B1 (en) 2003-09-17 2004-12-28 Chartered Semiconductor Manufacturing Ltd. Method of forming double-gate semiconductor-on-insulator (SOI) transistors
KR100553703B1 (ko) * 2003-10-01 2006-02-24 삼성전자주식회사 반도체 소자 및 그 형성 방법
US6888199B2 (en) 2003-10-07 2005-05-03 International Business Machines Corporation High-density split-gate FinFET
KR20050034884A (ko) * 2003-10-10 2005-04-15 삼성전자주식회사 소노스 메모리 장치와 그 제조 및 동작방법
FR2861501B1 (fr) * 2003-10-22 2006-01-13 Commissariat Energie Atomique Dispositif microelectronique a effet de champ apte a former un ou plusiseurs canaux de transistors
US6967175B1 (en) 2003-12-04 2005-11-22 Advanced Micro Devices, Inc. Damascene gate semiconductor processing with local thinning of channel region
US6936516B1 (en) * 2004-01-12 2005-08-30 Advanced Micro Devices, Inc. Replacement gate strained silicon finFET process
US7186599B2 (en) * 2004-01-12 2007-03-06 Advanced Micro Devices, Inc. Narrow-body damascene tri-gate FinFET
FR2865850B1 (fr) * 2004-02-03 2006-08-04 St Microelectronics Sa Procede de realisation d'un transistor a effet de champ et transistor ainsi obtenu
KR100574971B1 (ko) * 2004-02-17 2006-05-02 삼성전자주식회사 멀티-게이트 구조의 반도체 소자 및 그 제조 방법
US7105391B2 (en) * 2004-03-04 2006-09-12 International Business Machines Corporation Planar pedestal multi gate device
US6835641B1 (en) * 2004-04-30 2004-12-28 Nanya Technology Corporation Method of forming single sided conductor and semiconductor device having the same
US7112997B1 (en) 2004-05-19 2006-09-26 Altera Corporation Apparatus and methods for multi-gate silicon-on-insulator transistors
US7195963B2 (en) * 2004-05-21 2007-03-27 Freescale Semiconductor, Inc. Method for making a semiconductor structure using silicon germanium
DE102005026228B4 (de) * 2004-06-08 2010-04-15 Samsung Electronics Co., Ltd., Suwon Transistor vom GAA-Typ und Verfahren zu dessen Herstellung
US7141476B2 (en) * 2004-06-18 2006-11-28 Freescale Semiconductor, Inc. Method of forming a transistor with a bottom gate
US20050285160A1 (en) * 2004-06-28 2005-12-29 Chang Peter L Methods for forming semiconductor wires and resulting devices
US7319252B2 (en) * 2004-06-28 2008-01-15 Intel Corporation Methods for forming semiconductor wires and resulting devices
CN100444405C (zh) * 2004-07-02 2008-12-17 中华映管股份有限公司 双栅级薄膜电晶体与像素结构及其制造方法
DE102004033147B4 (de) * 2004-07-08 2007-05-03 Infineon Technologies Ag Planarer Doppel-Gate-Transistor und Verfahren zum Herstellen eines planaren Doppel-Gate-Transistors
US6969659B1 (en) 2004-08-12 2005-11-29 International Business Machines Corporation FinFETs (Fin Field Effect Transistors)
US7518195B2 (en) * 2004-10-21 2009-04-14 Commissariat A L'energie Atomique Field-effect microelectronic device, capable of forming one or several transistor channels
EP1812964A1 (en) * 2004-11-10 2007-08-01 Gil Asa Transistor structure and method of manufacturing thereof
US8319307B1 (en) 2004-11-19 2012-11-27 Voxtel, Inc. Active pixel sensors with variable threshold reset
US7230270B2 (en) * 2004-11-24 2007-06-12 Taiwan Semiconductor Manfacturing Company, Ltd. Self-aligned double gate device and method for forming same
US7202117B2 (en) * 2005-01-31 2007-04-10 Freescale Semiconductor, Inc. Method of making a planar double-gated transistor
US7384869B2 (en) * 2005-04-07 2008-06-10 Texas Instruments Incorporated Protection of silicon from phosphoric acid using thick chemical oxide
US7387946B2 (en) * 2005-06-07 2008-06-17 Freescale Semiconductor, Inc. Method of fabricating a substrate for a planar, double-gated, transistor process
JP4967264B2 (ja) * 2005-07-11 2012-07-04 株式会社日立製作所 半導体装置
US7384851B2 (en) * 2005-07-15 2008-06-10 International Business Machines Corporation Buried stress isolation for high-performance CMOS technology
US7288802B2 (en) * 2005-07-27 2007-10-30 International Business Machines Corporation Virtual body-contacted trigate
US7354831B2 (en) * 2005-08-08 2008-04-08 Freescale Semiconductor, Inc. Multi-channel transistor structure and method of making thereof
US20070105320A1 (en) * 2005-08-31 2007-05-10 Xiao ("Charles") Yang Method and Structure of Multi-Surface Transistor Device
WO2007034553A1 (ja) * 2005-09-22 2007-03-29 Fujitsu Limited 半導体装置およびその製造方法
FR2893762B1 (fr) * 2005-11-18 2007-12-21 Commissariat Energie Atomique Procede de realisation de transistor a double grilles auto-alignees par reduction de motifs de grille
US7679125B2 (en) 2005-12-14 2010-03-16 Freescale Semiconductor, Inc. Back-gated semiconductor device with a storage layer and methods for forming thereof
US7498211B2 (en) * 2005-12-28 2009-03-03 Intel Corporation Independently controlled, double gate nanowire memory cell with self-aligned contacts
FR2895835B1 (fr) * 2005-12-30 2008-05-09 Commissariat Energie Atomique Realisation sur une structure de canal a plusieurs branches d'une grille de transistor et de moyens pour isoler cette grille des regions de source et de drain
KR100790869B1 (ko) * 2006-02-16 2008-01-03 삼성전자주식회사 단결정 기판 및 그 제조방법
FR2899381B1 (fr) * 2006-03-28 2008-07-18 Commissariat Energie Atomique Procede de realisation d'un transistor a effet de champ a grilles auto-alignees
JP4755245B2 (ja) * 2006-03-29 2011-08-24 富士通セミコンダクター株式会社 半導体装置の製造方法
US20070257322A1 (en) * 2006-05-08 2007-11-08 Freescale Semiconductor, Inc. Hybrid Transistor Structure and a Method for Making the Same
US7893493B2 (en) * 2006-07-10 2011-02-22 International Business Machines Corproation Stacking fault reduction in epitaxially grown silicon
US7999251B2 (en) * 2006-09-11 2011-08-16 International Business Machines Corporation Nanowire MOSFET with doped epitaxial contacts for source and drain
US8292862B2 (en) * 2007-08-03 2012-10-23 Kimberly-Clark Worldwide, Inc. Dynamic fitting body adhering absorbent article
US7671418B2 (en) * 2007-09-14 2010-03-02 Advanced Micro Devices, Inc. Double layer stress for multiple gate transistors
FR2921757B1 (fr) * 2007-09-28 2009-12-18 Commissariat Energie Atomique Structure de transistor double-grille dotee d'un canal a plusieurs branches.
KR100944342B1 (ko) * 2008-03-13 2010-03-02 주식회사 하이닉스반도체 플로팅 바디 트랜지스터를 갖는 반도체 소자 및 그 제조방법
FR2952224B1 (fr) * 2009-10-30 2012-04-20 Soitec Silicon On Insulator Procede de controle de la repartition des contraintes dans une structure de type semi-conducteur sur isolant et structure correspondante.
US8455334B2 (en) * 2009-12-04 2013-06-04 International Business Machines Corporation Planar and nanowire field effect transistors
US8143113B2 (en) * 2009-12-04 2012-03-27 International Business Machines Corporation Omega shaped nanowire tunnel field effect transistors fabrication
US8384065B2 (en) * 2009-12-04 2013-02-26 International Business Machines Corporation Gate-all-around nanowire field effect transistors
US8173993B2 (en) * 2009-12-04 2012-05-08 International Business Machines Corporation Gate-all-around nanowire tunnel field effect transistors
US8129247B2 (en) * 2009-12-04 2012-03-06 International Business Machines Corporation Omega shaped nanowire field effect transistors
US8097515B2 (en) * 2009-12-04 2012-01-17 International Business Machines Corporation Self-aligned contacts for nanowire field effect transistors
US8722492B2 (en) * 2010-01-08 2014-05-13 International Business Machines Corporation Nanowire pin tunnel field effect devices
US8324940B2 (en) 2010-04-13 2012-12-04 International Business Machines Corporation Nanowire circuits in matched devices
US8361907B2 (en) 2010-05-10 2013-01-29 International Business Machines Corporation Directionally etched nanowire field effect transistors
US8324030B2 (en) 2010-05-12 2012-12-04 International Business Machines Corporation Nanowire tunnel field effect transistors
KR101688057B1 (ko) * 2010-08-09 2016-12-21 삼성디스플레이 주식회사 가시광선 감지 센서 및 이를 포함하는 광 센서
US8835231B2 (en) 2010-08-16 2014-09-16 International Business Machines Corporation Methods of forming contacts for nanowire field effect transistors
US8536563B2 (en) 2010-09-17 2013-09-17 International Business Machines Corporation Nanowire field effect transistors
US8921899B2 (en) * 2010-11-19 2014-12-30 Micron Technology, Inc. Double gated 4F2 dram CHC cell and methods of fabricating the same
US8753942B2 (en) * 2010-12-01 2014-06-17 Intel Corporation Silicon and silicon germanium nanowire structures
US8288758B2 (en) 2010-12-02 2012-10-16 International Business Machines Corporation SOI SiGe-base lateral bipolar junction transistor
US8685823B2 (en) * 2011-11-09 2014-04-01 International Business Machines Corporation Nanowire field effect transistor device
CN102637592A (zh) * 2012-04-20 2012-08-15 中国科学院微电子研究所 一种半导体结构的制造方法
US9219129B2 (en) 2012-05-10 2015-12-22 International Business Machines Corporation Inverted thin channel mosfet with self-aligned expanded source/drain
EP2851938A4 (en) 2012-05-18 2016-02-17 Renesas Electronics Corp SEMICONDUCTOR COMPONENT AND MANUFACTURING METHOD THEREFOR
US9006810B2 (en) * 2012-06-07 2015-04-14 International Business Machines Corporation DRAM with a nanowire access transistor
JP5944266B2 (ja) 2012-08-10 2016-07-05 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
US9947773B2 (en) * 2012-08-24 2018-04-17 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor arrangement with substrate isolation
US9590109B2 (en) * 2013-08-30 2017-03-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9343589B2 (en) * 2014-01-22 2016-05-17 Globalfoundries Inc. Field effect transistor (FET) with self-aligned double gates on bulk silicon substrate, methods of forming, and related design structures
US9391163B2 (en) 2014-10-03 2016-07-12 International Business Machines Corporation Stacked planar double-gate lamellar field-effect transistor
US9768254B2 (en) * 2015-07-30 2017-09-19 International Business Machines Corporation Leakage-free implantation-free ETSOI transistors
DE102016117921A1 (de) * 2016-09-22 2018-03-22 Infineon Technologies Ag Verfahren zum Spalten von Halbleiterbauelementen und Halbleiterbauelement
US10580903B2 (en) * 2018-03-13 2020-03-03 Psemi Corporation Semiconductor-on-insulator transistor with improved breakdown characteristics
US10573674B2 (en) 2018-07-19 2020-02-25 Psemi Corporation SLT integrated circuit capacitor structure and methods
US20200043946A1 (en) 2018-07-31 2020-02-06 Psemi Corporation Low Parasitic Capacitance RF Transistors
US10777636B1 (en) 2019-06-12 2020-09-15 Psemi Corporation High density IC capacitor structure
US11715781B2 (en) 2020-02-26 2023-08-01 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor devices with improved capacitors
US11201134B2 (en) 2020-04-20 2021-12-14 United Microelectronics Corp. Method of manufacturing semiconductor device
US20230147329A1 (en) * 2021-11-08 2023-05-11 International Business Machines Corporation Single Process Double Gate and Variable Threshold Voltage MOSFET

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2743391B2 (ja) * 1988-08-25 1998-04-22 ソニー株式会社 半導体メモリの製造方法
JPH02302044A (ja) 1989-05-16 1990-12-14 Fujitsu Ltd 半導体装置の製造方法
US6143582A (en) * 1990-12-31 2000-11-07 Kopin Corporation High density electronic circuit modules
US5166084A (en) 1991-09-03 1992-11-24 Motorola, Inc. Process for fabricating a silicon on insulator field effect transistor
US5273921A (en) * 1991-12-27 1993-12-28 Purdue Research Foundation Methods for fabricating a dual-gated semiconductor-on-insulator field effect transistor
JPH05226655A (ja) * 1992-02-18 1993-09-03 Fujitsu Ltd 半導体装置の製造方法
JPH0685177A (ja) 1992-08-31 1994-03-25 Hitachi Ltd 半導体集積回路装置
US5604368A (en) * 1994-07-15 1997-02-18 International Business Machines Corporation Self-aligned double-gate MOSFET by selective lateral epitaxy
JP3319215B2 (ja) 1995-03-31 2002-08-26 株式会社豊田中央研究所 絶縁ゲート型半導体装置およびその製造方法

Also Published As

Publication number Publication date
US6365465B1 (en) 2002-04-02
JP2000277745A (ja) 2000-10-06
US20020093053A1 (en) 2002-07-18
US6759710B2 (en) 2004-07-06

Similar Documents

Publication Publication Date Title
JP3575596B2 (ja) ダブルゲート集積回路を作製する方法及びダブルゲート金属酸化物半導体トランジスタを作製する方法
US7696046B2 (en) Method of manufacturing a semiconductor device having a multi-channel type MOS transistor
US6406962B1 (en) Vertical trench-formed dual-gate FET device structure and method for creation
US7723196B2 (en) Damascene gate field effect transistor with an internal spacer structure
US6878990B2 (en) Vertical transistor and method of manufacturing thereof
KR100499159B1 (ko) 리세스 채널을 갖는 반도체장치 및 그 제조방법
JP5579280B2 (ja) Cmos垂直置換ゲート(vrg)トランジスタ
US7714394B2 (en) CMOS semiconductor devices having elevated source and drain regions and methods of fabricating the same
TWI408805B (zh) 虛擬本體接觸之三閘極
US6967377B2 (en) Double-gate fet with planarized surfaces and self-aligned silicides
US8263444B2 (en) Methods of forming semiconductor-on-insulating (SOI) field effect transistors with body contacts
US11823949B2 (en) FinFet with source/drain regions comprising an insulator layer
US6174754B1 (en) Methods for formation of silicon-on-insulator (SOI) and source/drain-on-insulator(SDOI) transistors
WO2007037847A1 (en) Methods for fabrication of a stressed mos device
US12009429B2 (en) Semiconductor device and method
KR20010105160A (ko) 분리된 게이트들을 갖는 자기 정렬 이중 게이트 모스 전계효과 트랜지스터
US6649979B2 (en) Method of manufacturing MOSFET and structure thereof
US20180151689A1 (en) Spacers for tight gate pitches in field effect transistors
US8329519B2 (en) Methods for fabricating a semiconductor device having decreased contact resistance
KR100569708B1 (ko) 반도체 장치 및 그 제조 방법
KR20220056088A (ko) 반도체 디바이스 및 형성 방법들
KR20050094937A (ko) 시스템 온 칩 소자의 제조 방법

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

RD14 Notification of resignation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7434

Effective date: 20040616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040630

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees