TW201518389A - 樹脂組成物 - Google Patents

樹脂組成物 Download PDF

Info

Publication number
TW201518389A
TW201518389A TW103121549A TW103121549A TW201518389A TW 201518389 A TW201518389 A TW 201518389A TW 103121549 A TW103121549 A TW 103121549A TW 103121549 A TW103121549 A TW 103121549A TW 201518389 A TW201518389 A TW 201518389A
Authority
TW
Taiwan
Prior art keywords
resin composition
hardened body
curing agent
resin
mass
Prior art date
Application number
TW103121549A
Other languages
English (en)
Other versions
TWI699399B (zh
Inventor
Shigeo Nakamura
Yoshio Nishimura
Tatsuya Homma
Original Assignee
Ajinomoto Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Kk filed Critical Ajinomoto Kk
Publication of TW201518389A publication Critical patent/TW201518389A/zh
Application granted granted Critical
Publication of TWI699399B publication Critical patent/TWI699399B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Epoxy Resins (AREA)

Abstract

本發明提供一種樹脂組成物,其帶來能展現充分的熱擴散性,同時表面粗度低,與導體層的密接強度(剝離強度)良好之硬化體。該樹脂組成物之特徵在於包含(A)由氮化鋁及氮化矽所成之群組中選出的至少1種之高熱傳導性無機填充材、(B)環氧樹脂及(C)硬化劑,(A)成分係經矽烷化合物處理。

Description

樹脂組成物
本發明關於樹脂組成物。
作為多層印刷配線板之製造技術,已知藉由將絕緣層與導體層交替地堆疊之增建方式的製造方法。於增建方式的製造方法中,一般地絕緣層係使樹脂組成物熱硬化而形成。例如,專利文獻1中揭示使含有環氧樹脂、活性酯系硬化劑、苯酚系硬化劑及矽石之樹脂組成物熱硬化而形成絕緣層之技術。
近年來,電子機器往小型化及高機能化進展,多層印刷配線板中的半導體元件之組裝密度有變高之傾向。加上所組裝的半導體元件之高機能化,亦要求能有效率的擴散半導體元件所發生的熱之技術。例如,專利文獻2中揭示作為擴散半導體元件所發生的熱之技術,使用含有氮化鋁等的高熱傳導性無機填充材之薄膜狀接著劑,將半導體元件組裝於多層印刷配線板之技術。
〔先前技術文獻〕 〔專利文獻〕
[專利文獻1]特開2011-132507號公報
[專利文獻2]特開2012-207222號公報
本發明者等為了更有效率地擴散半導體元件所發生的熱,著眼於絕緣層之熱擴散性。而且,為了提高絕緣層的熱擴散性,使含有比以往慣用的矽石顯示較高的熱傳導率之氮化鋁等的高熱傳導性無機填充材之樹脂組成物進行熱硬化,嘗試絕緣層之形成。結果,本發明者等發現:隨著樹脂組成物中的高熱傳導性無機填充材之含量升高,雖然所得之硬化體(絕緣層)的熱擴散性升高,但若以展現充分熱擴散性之程度,提高高熱傳導性無機填充材之含量,則所得之硬化體的表面粗度(所謂粗化處理後的硬化體之表面粗度)變高,將導體層以微細的配線圖型形成在硬化體(絕緣層)表面上時,有成為障礙之情況。本發明者等更發現:使含有高含量之氮化鋁等的高熱傳導性無機填充材之樹脂組成物進行熱硬化而得之硬化體,儘管表面粗度高,卻與導體層的密接強度(剝離強度)顯著地差。
本發明之課題在於提供一種樹脂組成物,其帶來能展現充分的熱擴散性,同時表面粗度低,與導體層的密接強度(剝離強度)良好之以高水準滿足多層印刷配線板的絕緣層所要求之特性的硬化體。
本發明者們對於上述課題,專心致力地檢討,結果發現藉由使用由氮化鋁及氮化矽所成之群組中選出的至少1種之高熱傳導性無機填充材經矽烷化合物處理之填充材,可解決上述問題,終於完成本發明。
即,本發明包含以下之內容。
[1]一種樹脂組成物,其係包含(A)由氮化鋁及氮化矽所成之群組中選出的至少1種之高熱傳導性無機填充材、(B)環氧樹脂、及(C)硬化劑之樹脂組成物,(A)成分係經矽烷化合物處理。
[2]如[1]記載之樹脂組成物,其中矽烷化合物具有苯基。
[3]如[1]或[2]記載之樹脂組成物,其中相對於高熱傳導性無機填充材100質量份,矽烷化合物之處理量為0.05質量份以上。
[4]如[1]~[3]中任一項記載之樹脂組成物,其中(C)成分包含第1硬化劑及與該第1硬化劑不同之第2硬化劑,第1硬化劑係活性酯系硬化劑。
[5]如[4]記載之樹脂組成物,其中第2硬化劑係含三構造的硬化劑。
[6]如[4]或[5]記載之樹脂組成物,其中第2硬化劑係 含三構造的苯酚系硬化劑或含三構造的氰酸酯系硬化劑。
[7]如[4]~[6]中任一項記載之樹脂組成物,其中第1硬化劑相對於第2硬化劑之質量比(第1硬化劑/第2硬化劑)為0.3~2。
[8]一種硬化體,其係使如[1]~[7]中任一項記載之樹脂組成物熱硬化而得。
[9]如[8]記載之硬化體,其表面之算術平均粗糙度(Ra)為180nm以下。
[10]如[8]或[9]記載之硬化體,其熱傳導率為1W/m‧K以上。
[11]一種粗化硬化體,其係將如[8]~[10]中任一項記載之硬化體粗化處理而得。
[12]一種層合體,其具備如[11]記載之粗化硬化體與在該粗化硬化體之表面上所形成的導體層。
[13]如[12]記載之層合體,其中粗化硬化體與導體層之剝離強度為0.25kgf/cm以上。
[14]一種多層印刷配線板,其包含如[8]~[10]中任一項記載之硬化體或如[11]記載之粗化硬化體。
[15]一種半導體裝置,其包含如[14]記載之多層印刷配線板。
依照本發明,提供一種樹脂組成物,其帶來能展現充 分的熱擴散性,同時表面粗度低,與導體層的密接強度(剝離強度)良好之硬化體。
〔實施發明的形態〕
以下,詳細說明本發明結合其合適的實施形態。
[樹脂組成物]
本發明之樹脂組成物之特徵為包含(A)由氮化鋁及氮化矽所成之群組中選出的至少1種之高熱傳導性無機填充材、(B)環氧樹脂及(C)硬化劑,(A)成分係經矽烷化合物處理。
<(A)成分>
本發明之(A)成分之特徵為由氮化鋁及氮化矽所成之群組中選出的至少1種之高熱傳導性無機填充材,經矽烷化合物處理。
由氮化鋁及氮化矽所成之群組中選出的高熱傳導性無機填充材,與作為無機填充材的以往慣用之矽石(熱傳導率頂多1.5W/m‧K)相比,具有非常高之熱傳導率。從得到具有充分熱擴散性的硬化體之觀點來看,使用於(A)成分的高熱傳導性無機填充材之熱傳導率較佳為25W/m‧K以上,更佳為50W/m‧K以上,尤佳為75W/m‧K以上,尤更佳為100W/m‧K以上,特佳為125W/m‧K以上、 150W/m‧K以上、175W/m‧K以上、200W/m‧K以上、或225W/m‧K以上。高熱傳導性無機填充材的熱傳導率之上限係沒有特別的限定,但通常為400W/m‧K以下。高熱傳導性無機填充材的熱傳導率,例如可藉由熱流計法及溫度波分析法等之眾所周知的方法測定。
作為(A)成分使用的高熱傳導性無機填充材之形狀係沒有特別的限定,但較佳為球狀。又,高熱傳導性無機填充材之平均粒徑,從得到具有充分的熱擴散性同時表面粗度低的硬化體之觀點來看,較佳為5μm以下,更佳為3μm以下,尤佳為2μm以下,尤更佳為1.5μm以下。該高熱傳導性無機填充材之平均粒徑的下限係沒有特別的限定,但通常為0.01μm以上,更佳為0.05μm以上。高熱傳導性無機填充材的平均粒徑係可藉由以米氏(Mie)散射理論為基礎的雷射繞射‧散射法進行測定。具體地,可藉由雷射繞射散射式粒度分布測定裝置,以體積基準作成高熱傳導性填充材之粒度分布,將其中位徑當作平均粒徑而測定。測定樣品較佳可使用高熱傳導性無機填充材經由超音波分散在溶劑中者。作為雷射繞射散射式粒度分布測定裝置,可使用股份有限公司堀場製作所製LA-500等。
作為氮化鋁之市售品,例如可舉出(股)TOKUYAMA製「Shapal H」(平均粒徑1.1μm,比表面積2.6m2/g),作為氮化矽之市售品,例如可舉出電氣化學工業(股)製「SN-9S」(平均粒徑1.1μm,比表面積7m2/g)。
於本發明中,藉由使用由氮化鋁及氮化矽所成之群組 中選出的高熱傳導性無機填充材經矽烷化合物處理之填充材,而實現一種樹脂組成物,其帶來展現充分的熱擴散性,同時表面粗度低,與導體層的密接強度(剝離強度)良好之硬化體。此處,使用於(A)成分的氮化鋁及氮化矽,係與以往慣用的矽石不同,僅極少量地具有能與矽烷化合物反應之表面羥基等的官能基。因此,一般不以矽烷化合物處理氮化鋁及氮化矽,何況當氮化鋁及氮化矽經矽烷化合物處理時,所得之硬化體的表面粗度或與導體層的密接強度(剝離強度)等特性係顯著地變化,此本發明所發現的知識見解,係由以往的知識見解所無法預測者。又,觀察熱擴散性,本發明者等亦確認含有氮化鋁及氮化矽經矽烷化合物處理的填充材之硬化體,與含有相同含量之未處理的氮化鋁及氮化矽之硬化體比較下,係呈現更高之值。於此點,關於以往慣用的矽石,已知除了矽烷化合物,還有鋁系偶合劑、鈦系偶合劑及鋯系偶合劑等作為表面處理劑,但本發明者等發現以此等鋁系偶合劑等其它的表面處理劑,無法達成本發明之效果,使用矽烷化合物時,能特異地達成本發明之效果。
使用於高熱傳導性無機填充材之處理的矽烷化合物,係在分子中包含至少1個有機基。作為該有機基,從得到表面粗度低、與導體層的密接強度(剝離強度)良好的硬化體之觀點來看,較佳為碳原子數是1~20(較佳是1~10,更佳是1~6,尤佳是1~4)的烷基,碳原子數是6~20(較佳是6~14,更佳是6~12,尤佳是6~10)的芳基,其中 較佳為苯基。
作為使用於高熱傳導性無機填充材之處理的矽烷化合物,只要是可將上述的有機基導入至高熱傳導性無機填充材之表面,則沒有特別的限定,亦可更具有或不具有能與後述之(B)成分反應的反應基(例如胺基、環氧基、巰基等)。作為具有反應基的矽烷化合物,例如可舉出(i)鍵結於Si原子的有機基之一部分的氫原子經反應基或含反應基的基取代之矽烷化合物,(ii)鍵結於Si原子的反應基或含反應基的基之一部分的氫原子經有機基取代之矽烷化合物。
使用於高熱傳導性無機填充材之處理的矽烷化合物之分子量,較佳為70以上,更佳為90以上,尤佳為110以上、130以上、150以上、170以上或190以上。矽烷化合物的分子量之上限較佳為500以下,更佳為400以下,尤佳為350以下、300以下、280以下或260以下。
於一實施形態中,使用於高熱傳導性無機填充材之處理的矽烷化合物,係下式(1)所示的化合物。
Si(R1)n(R2)4-n (1)[式中,R1表示-R11、-R11’-R12、或-R12’-R11,此處R11表示烷基或芳基,R12表示胺基、環氧基或巰基、或含有胺基、環氧基或巰基的1價基,R11’表示自R11所示的1價基中去掉1個氫原子後之2價基,R12’表示自R12所示的1價基中去掉1個氫原子後之2價基,R2表示氫原子或烷氧 基,n表示1~3之整數。R1複數存在場合,彼等可相同或相異,當R2複數存在時,彼等可相同或相異]。
R11所示的烷基之碳原子數較佳為1~20,更佳為1~10,尤佳為1~6,尤更佳為1~4。R11所示的芳基之碳原子數,較佳為6~20,更佳為6~14,尤佳為6~12,尤更佳為6~10。作為R11,較佳為芳基,特佳為苯基。
作為R12,較佳為含有胺基、巰基、胺基的1價基、含有環氧基的1價基。作為含有胺基的1價基,例如可舉出N-(胺基C1-10烷基)胺基、胺基C1-10烷氧基、胺基C1-10烷基,較佳為N-(2-胺基乙基)胺基、N-(3-胺基丙基)胺基、胺基乙氧基、胺基丙氧基、胺基乙基、胺基丙基。作為含有環氧基的1價基,例如可舉出環氧基烷基、環氧基烷氧基,此等之碳原子數較佳為3~10,更佳為3~6。作為合適的具體例,可舉出環氧丙基、環氧丙氧基、3,4-環氧基環己基。
R11’表示自R11所示的1價基中去掉1個氫原子後之2價基,即伸烷基或伸芳基。R11’所示的2價基之合適的碳原子數,係可與對R11說明者相同。作為R11’,較佳為伸烷基。
R12’表示自R12所示的1價基中去掉1個氫原子後之2價基,較佳為自含有胺基的1價基中去掉1個氫原子後之2價基,更佳為去掉胺基C1-10烷基(更佳為胺基乙基、胺基丙基)之鍵結於氮原子的1個氫原子後之2價基。
n表示1~3之整數,較佳為1或2。R1複數存在時, 彼等可相同或相異。從得到表面粗度低、與導體層的密接強度(剝離強度)良好之硬化體的觀點來看,式(1)中至少1個R1較佳為-R11或-R12’-R11
R2所示的烷氧基之碳原子數較佳為1~10,更佳為1~6,尤佳為1~4,尤更佳為1或2。作為R2,較佳為烷氧基。
作為矽烷化合物之具體例,可舉出甲基三甲氧基矽烷、十八基三甲氧基矽烷、苯基三甲氧基矽烷、二苯基二甲氧基矽烷等之矽烷化合物、胺基丙基甲氧基矽烷、胺基丙基三乙氧基矽烷、N-苯基-3-胺基丙基三甲氧基矽烷、N-(2-胺基乙基)胺基丙基三甲氧基矽烷等之胺基矽烷化合物、環氧丙氧基丙基三甲氧基矽烷、環氧丙氧基丙基三乙氧基矽烷、環氧丙氧基丙基甲基二乙氧基矽烷、環氧丙氧基丙基苯基二乙氧基矽烷、環氧丙基丁基三甲氧基矽烷、(3,4-環氧基環己基)乙基三甲氧基矽烷等之環氧基矽烷化合物、巰基丙基三甲氧基矽烷、巰基丙基苯基二甲氧基矽烷、巰基丙基三乙氧基矽烷等之巰基矽烷化合物。作為矽烷化合物之市售品,例如可舉出信越化學工業(股)製「KBM103」(苯基三甲氧基矽烷)、信越化學工業(股)製「KBM573」(N-苯基-3-胺基丙基三甲氧基矽烷)、信越化學工業(股)製「KBE903」(3-胺基丙基三乙氧基矽烷)、信越化學工業(股)製「KBM403」(3-環氧丙氧基丙基三甲氧基矽烷)、信越化學工業(股)製「KBM803」(3-巰基丙基三甲氧基矽烷)等。矽烷化合物係可單獨1種使用,也可組 合2種以上使用。
藉由矽烷化合物的高熱傳導性無機填充材之處理,係可藉由習知的乾式法及濕式法之任一者來實施。
從得到表面粗度低、與導體層的密接強度(剝離強度)良好之硬化體的觀點來看,相對於高熱傳導性無機填充材100質量份,矽烷化合物之處理量較佳為0.05質量份以上,更佳為0.1質量份以上,尤佳為0.3質量份以上,尤更佳為0.5質量份以上。該處理量之上限係沒有特別的限制,但較佳為5質量份以下。此處,所謂上述矽烷化合物之處理量,就是以使用於藉由矽烷化合物的高熱傳導性無機填充材之處理的矽烷化合物之質量與高熱傳導性無機填充材之質量為基礎所算出之值。
矽烷化合物之處理程度,亦可藉由高熱傳導性無機填充材的每單位表面積之碳量進行評價。高熱傳導性無機填充材的每單位表面積之碳量,從得到表面粗度低、與導體層的密接強度(剝離強度)良好之硬化體的觀點來看,較佳為0.05mg/m2以上,更佳為0.10mg/m2以上,尤佳為0.15mg/m2以上。另一方面,從防止樹脂清漆的熔融黏度或薄膜形態的熔融黏度之上升的觀點來看,較佳為1.0mg/m2以下,更佳為0.8mg/m2以下,尤佳為0.6mg/m2以下。
高熱傳導性無機填充材的每單位表面積之碳量,係可在藉由溶劑(例如甲基乙基酮(MEK))洗淨處理已矽烷化合物處理後的高熱傳導性無機填充材後,進行測定。具體地,可將作為溶劑的充分量之MEK加到已矽烷化合物處 理的高熱傳導性無機填充材中,於25℃超音波洗淨5分鐘。去除上清液,使固體成分乾燥後,使用碳分析計測定高熱傳導性無機填充材的每單位表面積之碳量。作為碳分析計,可使用堀場製作所製「EMIA-320V」等。
再者,使用於(A)成分的高熱傳導性無機填充材,亦可在矽烷化合物的處理之前,給予疏水化處理。作為高熱傳導性無機填充材之疏水化處理,例如可舉出高溫(例如200℃以上,較佳為300℃以上,更佳為400℃以上)下的加熱處理。
從得到具有充分的熱擴散性之硬化體的觀點來看,樹脂組成物中的高熱傳導性無機填充材之含量較佳為50質量%以上,更佳為55質量%以上,尤佳為60質量%以上。
再者,於本發明中,樹脂組成物中的各成分之含量,只要沒有另外明示,則是以樹脂組成物中的不揮發成分之合計作為100質量%時之值。
於使用由氮化鋁及氮化矽所成之群組中選出的高熱傳導性無機填充材經矽烷化合物處理之填充材的本發明中,不過度地提高所得之硬化體的表面粗度,而且不使與導體層的密接強度(剝離強度)降低,可進一步提高高熱傳導性無機填充材之含量。例如,樹脂組成物中的高熱傳導性無機填充材之含量可提高至62質量%以上、64質量%以上、66質量%以上、68質量%以上、70質量%以上、72質量%以上、74質量%以上、76質量%以上、78質量%以 上或80質量%以上為止。
樹脂組成物中的高熱傳導性無機填充材之含量的上限,從經由樹脂組成物之熱硬化所得的硬化體之機械強度的觀點來看,較佳為95質量%以下,更佳為90質量%以下,尤佳為85質量%以下。
<(B)成分>
本發明之樹脂組成物中所含有的(B)成分係環氧樹脂。
作為環氧樹脂,例如可舉出雙酚A型環氧樹脂、雙酚F型環氧樹脂、雙酚S型環氧樹脂、聯苯型環氧樹脂、萘酚型環氧樹脂、萘型環氧樹脂、二環戊二烯型環氧樹脂、蒽型環氧樹脂、茀型環氧樹脂、環氧丙基胺型環氧樹脂、環氧丙基酯型環氧樹脂、三苯酚環氧樹脂、含有磷的環氧樹脂、脂環式環氧樹脂、線狀脂肪族環氧樹脂、苯酚酚醛清漆型環氧樹脂、甲酚酚醛清漆型環氧樹脂、雙酚A酚醛清漆型環氧樹脂、具有丁二烯構造的環氧樹脂、雜環式環氧樹脂、含有螺環的環氧樹脂、環己烷二甲醇型環氧樹脂、伸萘基醚型環氧樹脂、三羥甲基型環氧樹脂、雙酚類的二環氧丙基醚化物、萘二酚的二環氧丙基醚化物、苯酚類的環氧丙基醚化物、及醇類的二環氧丙基醚化物、以及此等之環氧樹脂的烷基取代物、鹵化物及氫化物等。此等之環氧樹脂係可單獨1種使用,也可組合2種以上使用。
環氧樹脂較佳為包含在1分子中具有2個以上的環氧 基之環氧樹脂。以環氧樹脂之不揮發成分作為100質量%時,至少50質量%以上較佳為在1分子中具有2個以上的環氧基之環氧樹脂。其中,較佳為包含在1分子中具有2個以上的環氧基,在溫度20℃下為液狀之環氧樹脂(以下稱為「液狀環氧樹脂」),與在1分子中具有3個以上的環氧基,在溫度20℃下為固體狀之環氧樹脂(以下稱為「固體狀環氧樹脂」)。作為環氧樹脂,藉由併用液狀環氧樹脂與固體狀環氧樹脂,而得到具有優異的可撓性之樹脂組成物。又,將樹脂組成物硬化而形成的絕緣層之斷裂強度亦升高。
作為液狀環氧樹脂,較佳為雙酚A型環氧樹脂、雙酚F型環氧樹脂、苯酚酚醛清漆型環氧樹脂、或萘型環氧樹脂,更佳為雙酚A型環氧樹脂、雙酚F型環氧樹脂、或萘型環氧樹脂。作為液狀環氧樹脂之具體例,可舉出DIC(股)製之「HP4032」、「HP4032D」、「EXA4032SS」、「HP4032SS」(萘型環氧樹脂)、三菱化學(股)製之「jER828EL」(雙酚A型環氧樹脂)、「jER807」(雙酚F型環氧樹脂)、「jER152」(苯酚酚醛清漆型環氧樹脂)、新日鐵化學(股)製之「ZX1059」(雙酚A型環氧樹脂與雙酚F型環氧樹脂之混合品)等。此等係可單獨1種使用或併用2種以上。
作為固體狀環氧樹脂,較佳為4官能萘型環氧樹脂、甲酚酚醛清漆型環氧樹脂、二環戊二烯型環氧樹脂、三苯酚環氧樹脂、萘酚酚醛清漆環氧樹脂、聯苯型環氧樹脂、 聯二甲苯酚型環氧樹脂、伸萘基醚型環氧樹脂或茀型環氧樹脂,更佳為4官能萘型環氧樹脂、聯苯型環氧樹脂、聯二甲苯酚型環氧樹脂、伸萘基醚型環氧樹脂或茀型環氧樹脂。作為固體狀環氧樹脂之具體例,可舉出DIC(股)製之「HP-4700」、「HP-4710」(4官能萘型環氧樹脂)、「N-690」(甲酚酚醛清漆型環氧樹脂)、「N-695」(甲酚酚醛清漆型環氧樹脂)、「HP-7200」(二環戊二烯型環氧樹脂)、「EXA7311」、「EXA7311-G3」、「HP6000」(伸萘基醚型環氧樹脂)、日本化藥(股)製之「EPPN-502H」(三苯酚環氧樹脂)、「NC7000L」(萘酚酚醛清漆環氧樹脂)、「NC3000H」、「NC3000」、「NC3000L」、「NC3100」(聯苯型環氧樹脂)、新日鐵化學(股)製之「ESN475」(萘酚酚醛清漆型環氧樹脂)、「ESN485」(萘酚酚醛清漆型環氧樹脂)、三菱化學(股)製之「YX4000H」、「YL6121」(聯苯型環氧樹脂)、「YX4000HK」(聯二甲苯酚型環氧樹脂)、「YL7800」(茀型環氧樹脂)等。
作為環氧樹脂,併用液狀環氧樹脂與固體狀環氧樹脂時,彼等之量比(液狀環氧樹脂:固體狀環氧樹脂)以質量比計較佳為1:0.1~1:6之範圍。藉由使液狀環氧樹脂與固體狀環氧樹脂之量比成為該範圍,得到(i)於以接著薄膜之形態使用時,造成適度的黏著性,(ii)於以接著薄膜之形態使用時,得到充分的可撓性,操作性升高,以及(iii)可得到具有充分的斷裂強度之絕緣層等之效果。從上 述(i)~(iii)的效果之觀點來看,液狀環氧樹脂與固體狀環氧樹脂之量比(液狀環氧樹脂:固體狀環氧樹脂)以質量比計更佳為1:0.3~1:5之範圍,尤佳為1:0.6~1:4.5之範圍,特佳為1:0.8~1:4之範圍。
樹脂組成物中的環氧樹脂之含量較佳為3質量%~50質量%,更佳為5質量%~45質量%,尤佳為5質量%~40質量%,特佳為7質量%~35質量%。
環氧樹脂之環氧當量較佳為50~4500,更佳為50~3000,尤佳為80~2000,尤更佳為110~1000。藉由成為此範圍,硬化物的交聯密度變充分,造成表面粗度低的絕緣層。再者,環氧當量係可依照JIS K7236測定,為含有1當量的環氧基之樹脂的質量。
環氧樹脂的聚苯乙烯換算之重量平均分子量較佳為100~3000之範圍,更佳為200~2500之範圍,尤佳為300~2000之範圍。環氧樹脂的聚苯乙烯換算之重量平均分子量係以凝膠滲透層析(GPC)法測定。具體地,環氧樹脂的聚苯乙烯換算之重量平均分子量,係可使用(股)島津製作所製LC-9A/RID-6A作為測定裝置,使用昭和電工(股)製Shodex K-800P/K-804L/K-804L作為管柱,使用氯仿等作為移動相,於40℃的管柱溫度進行測定,使用標準聚苯乙烯的校正曲線來算出。
<(C)成分>
本發明之樹脂組成物中所含有的(C)成分係硬化劑。
作為硬化劑,只要是具有將(B)環氧樹脂予以硬化之機能,則沒有特別的限定,例如可舉出活性酯系硬化劑、苯酚系硬化劑、萘酚系硬化劑、氰酸酯系硬化劑、苯并系硬化劑、酸酐系硬化劑、此等的環氧加成物或微膠囊化物等。硬化劑係可單獨1種使用,也可組合2種以上使用。
作為活性酯系硬化劑,並沒有特別的限制,一般較宜使用苯酚酯類、噻吩酯類、N-羥基胺酯類、雜環羥基化合物之酯類等的反應活性高之在1分子中具有2個以上的酯基之化合物。該活性酯系硬化劑較佳為藉由羧酸化合物及/或硫代羧酸化合物與羥基化合物及/或硫醇化合物之縮合反應而獲得者。其中,較佳為由羧酸化合物與羥基化合物所得之活性酯系硬化劑,更佳為由羧酸化合物與苯酚化合物及/或萘酚化合物所得之活性酯系硬化劑。
作為羧酸化合物,例如可舉出碳原子數1~20(較佳為2~10,更佳為2~8)的脂肪族羧酸、碳原子數7~20(較佳為7~10)的芳香族羧酸。作為合適的脂肪族羧酸,例如可舉出醋酸、丙二酸、琥珀酸、馬來酸、伊康酸等。作為合適的芳香族羧酸,例如可舉出苯甲酸、苯二甲酸、間苯二甲酸、對苯二甲酸、苯均四酸等。
作為苯酚化合物,例如可舉出碳原子數6~40(較佳為6~30,更佳為6~23,尤佳為6~22)的苯酚化合物,作為合適的具體例,可舉出氫醌、間苯二酚、雙酚A、雙酚F、雙酚S、酚酞啉、甲基化雙酚A、甲基化雙酚F、甲基 化雙酚S、苯酚、鄰甲酚、間甲酚、對甲酚、兒茶酚、二羥基二苯基酮、三羥基二苯基酮、四羥基二苯基酮、間苯三酚(phloroglucin)、苯三酚(benzenetriol)、二環戊二烯型二苯酚等。作為苯酚化合物,亦可使用苯酚酚醛清漆。作為萘酚化合物,例如可舉出碳原子數10~40(較佳為10~30,更佳為10~20)的萘酚化合物,作為合適的具體例,可舉出α-萘酚、β-萘酚、1,5-二羥基萘、1,6-二羥基萘、2,6-二羥基萘等。作為萘酚化合物,可使用萘酚酚醛清漆。
作為活性酯系硬化劑之合適的具體例,可舉出含有二環戊二烯型二苯酚構造的活性酯化合物、含有萘構造的活性酯化合物、含有苯酚酚醛清漆的乙醯化物之活性酯化合物、含有苯酚酚醛清漆的苯甲醯化物之活性酯化合物,其中更佳為含有萘構造的活性酯化合物、含有二環戊二烯型二苯酚構造的活性酯化合物。再者,於本發明中,所謂「二環戊二烯型二苯酚構造」,就是表示由伸苯基-伸二環戊基-伸苯基所成之2價的構造單位。
作為活性酯系硬化劑之市售品,於包含二環戊二烯型二苯酚構造的活性酯化合物中,可舉出「EXB9451」、「EXB9460」、「EXB9460S」、「HPC-8000-65T」(DIC(股)製),於包含萘構造的活性酯化合物中,可舉出「EXB9416-70BK」(DIC(股)製),於包含苯酚酚醛清漆的乙醯化物之活性酯化合物中,可舉出「DC808」(三菱化學(股)製),於包含苯酚酚醛清漆的苯甲醯化物之活性酯化合 物中,可舉出「YLH1026」(三菱化學(股)製)等。
作為苯酚系硬化劑及萘酚系硬化劑,從耐熱性及耐水性之觀點來看,較佳為具有酚醛清漆構造的苯酚系硬化劑、或具有酚醛清漆構造的萘酚系硬化劑。又,於與(A)成分的組合中,從得到與導體層的密接強度(剝離強度)優異之硬化體的觀點來看,更佳為含三骨架的苯酚系硬化劑。其中,於與(A)成分的組合中,從高度滿足耐熱性、耐水性及與導體層的密接強度(剝離強度)之硬化體的觀點來看,較佳為含三構造的苯酚酚醛清漆硬化劑。
作為苯酚系硬化劑及萘酚系硬化劑之具體例,例如可舉出明和化成(股)製之「MEH-7700」、「MEH-7810」、「MEH-7851」、日本化藥(股)製之「NHN」、「CBN」、「GPH」、東都化成(股)製之「SN170」、「SN180」、「SN190」、「SN475」、「SN485」、「SN495」、「SN375」、「SN395」、DIC(股)製之「TD2090」等。作為含三構造的苯酚系硬化劑之具體例,例如可舉出DIC(股)製的「LA3018」等。作為含三構造的苯酚酚醛清漆硬化劑之具體例,可舉出DIC(股)製之「LA7052」、「LA7054」、「LA1356」等。
作為氰酸酯系硬化劑,例如可舉出雙酚A二氰酸酯、多酚氰酸酯(寡聚(3-亞甲基-1,5-伸苯基氰酸酯))、4,4’-亞甲基雙(2,6-二甲基苯基氰酸酯)、4,4’-亞乙基二苯基二氰酸酯、六氟雙酚A二氰酸酯、2,2-雙(4-氰酸酯)苯基丙烷、1,1-雙(4-氰酸酯苯基甲烷)、雙(4-氰酸酯-3,5-二甲基 苯基)甲烷、1,3-雙(4-氰酸酯苯基-1-(甲基亞乙基))苯、雙(4-氰酸酯苯基)硫醚、及雙(4-氰酸酯苯基)醚等之2官能氰酸酯樹脂、由苯酚酚醛清漆及甲酚酚醛清漆等所衍生之多官能氰酸酯樹脂、此等氰酸酯樹脂羥一部分三化的預聚物(以下亦稱為「含三構造的氰酸酯系硬化劑」)。其中,於與(A)成分的組合中,從得到與導體層的密接強度(剝離強度)優異之硬化體的觀點來看,較佳為含三構造的氰酸酯系硬化劑。
作為氰酸酯系硬化劑之具體例,可舉出LONZA日本(股)製之「PT30」及「PT60」(皆苯酚酚醛清漆型多官能氰酸酯樹脂)、「BA230」(雙酚A二氰酸酯之一部分或全部羥三化而成為三聚物之含三構造的氰酸酯系硬化劑)等。
作為苯并系硬化劑之具體例,可舉出昭和高分子(股)製之「HFB2006M」、四國化成工業(股)製之「P-d」、「F-a」。
作為酸酐系硬化劑,例如可舉出苯二甲酸酐、四氫苯二甲酸酐、六氫苯二甲酸酐、甲基四氫苯二甲酸酐、甲基六氫苯二甲酸酐、甲基納狄克酸酐、氫化甲基納狄克酸酐、三烷基四氫苯二甲酸酐、十二烯基琥珀酸酐、5-(2,5-二氧代四氫-3-呋喃基)-3-甲基-3-環己烯-1,2-二羧酸酐、偏苯三酸酐、苯均四酸酐、二苯基酮四羧酸二酐、聯苯四羧酸二酐、萘四羧酸二酐、羥基二苯二甲酸二酐、3,3’-4,4’-二苯基磺四羧酸二酐、1,3,3a,4,5,9b-六氫-5-(四氫-2,5-二 氧代-3-呋喃基)-萘并[1,2-C]呋喃-1,3-二酮、乙二醇雙(脫水偏苯三酸酯)、苯乙烯與馬來酸共聚合成的苯乙烯‧馬來酸樹脂等之聚合物型酸酐等。
於與(A)成分的組合中,從進一步壓低所得之硬化體的表面粗度(尤其粗化處理後的硬化體之表面粗度)之觀點來看,(C)成分較佳為包含活性酯系硬化劑。
於合適的實施形態中,(C)成分包含第1硬化劑及與該第1硬化劑不同之第2硬化劑,第1硬化劑係活性酯系硬化劑。於該實施形態中,作為第2硬化劑,可使用由上述之苯酚系硬化劑、萘酚系硬化劑、苯并系硬化劑、氰酸酯系硬化劑、酸酐系硬化劑、此等的環氧加成物或微膠囊化物所成之群組中選出的1種以上之硬化劑,但於與(A)成分的組合中,從得到與導體層的密接強度(剝離強度)優異之硬化體的觀點來看,上述硬化劑之中較佳為含有三構造的硬化劑(以下亦稱為「含三構造的硬化劑」),更佳為含三構造的苯酚系硬化劑或含三構造的氰酸酯系硬化劑。作為(C)成分,藉由使用該特定的硬化劑之組合,可進一步壓低所得之硬化體的表面粗度(尤其粗化處理後的硬化體之表面粗度),同時得到與導體層的密接強度(剝離強度)優異之硬化體。又,藉由使用該特定的硬化劑之組合,即使已提高樹脂組成物中的高熱傳導性無機填充材之含量的情況(例如70質量%以上),也可得到表面粗度低、與導體層的密接強度優異之硬化體。
作為(C)成分,使用上述之第1硬化劑與第2硬化劑 的組合時,第1硬化劑相對於第2硬化劑之質量比(第1硬化劑/第2硬化劑),從得到表面粗度低、與導體層的密接強度(剝離強度)優異之硬化體的觀點來看,較佳為0.3~2,更佳為0.4~1.8,尤佳為0.5~1.6。又,[第1硬化劑的反應基之數]/[第2硬化劑的反應基之數],從得到表面粗度低、與導體層的密接強度(剝離強度)優異之硬化體的觀點來看,較佳為0.1~2,更佳為0.2~1.8,尤佳為0.3~1.6,尤更佳為0.4~1.4,特佳為0.5~1.2。於此,所謂第1硬化劑的反應基,就是活性酯基。所謂第2硬化劑的反應基,就是活性羥基等,取決於硬化劑的種類而不同。又,所謂第1硬化劑的反應基之數,就是將使用於(C)成分的活性酯系硬化劑之固體成分質量除以反應基當量而得之值。所謂第2硬化劑的反應基之數,就是將使用於(C)成分的活性酯系硬化劑以外之硬化劑的固體成分質量除以反應基當量而得之值,對於全部的硬化劑進行合計之值。
樹脂組成物中的(B)成分與(C)成分之量比,以[(B)環氧樹脂的環氧基之合計數]:[(C)硬化劑的反應基之合計數]的比率計,較佳為1:0.2~1:2之範圍,更佳為1:0.3~1:1.5,尤佳為1:0.4~1:1。於此,所謂(B)環氧樹脂的環氧基之合計數,就是將各環氧樹脂的固體成分質量除以環氧當量而得之值,對於全部的環氧樹脂進行合計之值,所謂(C)硬化劑的反應基之合計數,就是將各硬化劑的固體成分質量除以反應基當量而得之值,對於全部的 硬化劑進行合計之值。
<其它成分>
本發明之樹脂組成物視需要亦可包含(D)氮化鋁及氮化矽以外之無機填充材(以下僅稱「無機填充材」)、(E)熱塑性樹脂、(F)硬化促進劑、(G)難燃劑及(H)橡膠粒子等之添加劑。
(D)無機填充材
作為無機填充材,例如可舉出矽石、氧化鋁、玻璃、菫青石、矽氧化物、硫酸鋇、碳酸鋇、滑石、黏土、雲母粉、氧化鋅、水滑石、勃姆石、氫氧化鋁、氫氧化鎂、碳酸鈣、碳酸鎂、氧化鎂、氮化硼、氮化錳、硼酸鋁、鈦酸鋇、碳酸鍶、鈦酸鍶、鈦酸鈣、鈦酸鎂、鈦酸鉍、氧化鈦、氧化鋯、鈦酸鋯酸鋇、鋯酸鋇、鋯酸鈣、磷酸鋯及磷酸鎢酸鋯等。無機填充材係可單獨1種使用,也可組合2種以上使用。
無機填充材之平均粒徑較佳為3μm以下,更佳為1.5μm以下。無機填充材之平均粒徑的下限係沒有特別的限定,通常為0.01μm以上,較佳為0.05μm以上。無機填充材之平均粒徑,係與高熱傳導性無機填充材同樣地,可藉由以米氏(Mie)散射理論為基礎的雷射繞射‧散射法進行測定。
無機填充材係可經胺基矽烷化合物、環氧基矽烷化合 物、巰基矽烷化合物、矽烷化合物、有機矽氮烷化合物、鋁系偶合劑、鈦系偶合劑、鋯系偶合劑等之表面處理劑所處理。
使用無機填充材時,可以樹脂組成物中的高熱傳導性無機填充材與該無機填充材之合計含量,較佳成為50質量%~95質量%之範圍,更佳成為60質量%~95質量%之範圍而使用。
(E)熱塑性樹脂
作為熱塑性樹脂,例如可舉出苯氧樹脂、聚乙烯縮醛樹脂、聚烯烴樹脂、聚丁二烯樹脂、聚醯亞胺樹脂、聚醯胺醯亞胺樹脂、聚醚碸樹脂、聚伸苯基醚樹脂及聚碸樹脂等。熱塑性樹脂係可為單獨1種使用,也可組合2種以上使用。
熱塑性樹脂的聚苯乙烯換算之重量平均分子量較佳為8,000~70,000之範圍,更佳為10,000~60,000之範圍,尤佳為15,000~60,000之範圍,尤更佳為20,000~60,000之範圍。熱塑性樹脂的聚苯乙烯換算之重量平均分子量係以凝膠滲透層析(GPC)法來測定。具體地,熱塑性樹脂的聚苯乙烯換算之重量平均分子量,係可使用(股)島津製作所製LC-9A/RID-6A當作測定裝置,使用昭和電工(股)製Shodex K-800P/K-804L/K-804L當作管柱,使用氯仿等當作移動相,在管柱溫度40℃進行測定,使用標準聚苯乙烯的校正曲線來算出。
作為苯氧樹脂,例如可舉出具有由雙酚A骨架、雙酚F骨架、雙酚S骨架、雙酚苯乙酮骨架、酚醛清漆骨架、聯苯骨架、茀骨架、二環戊二烯骨架、降冰片烯骨架、萘骨架、蒽骨架、金剛烷骨架、萜烯骨架及三甲基環己烷骨架所組成之群組中選出的1種以上之骨架的苯氧樹脂。苯氧樹脂的末端也可為酚性羥基、環氧基等之任一的官能基。苯氧樹脂係可以單獨1種使用,或組合2種以上使用。作為苯氧樹脂之具體例,可舉出三菱化學(股)製的「1256」及「4250」(皆為含雙酚A骨架的苯氧樹脂)、「YX8100」(含雙酚S骨架的苯氧樹脂)及「YX6954」(含雙酚苯乙酮骨架的苯氧樹脂),另外還可舉出東都化成(股)製的「FX280」及「FX293」、三菱化學(股)製的「YL7553」、「YL6794」、「YL7213」、「YL7290」及「YL7482」等。
作為聚乙烯縮醛樹脂之具體例,可舉出電氣化學工業(股)製之電化Butyral 4000-2、5000-A、6000-C、6000-EP、積水化學工業(股)製之S-LEC BH系列、BX系列、KS系列、BL系列、BM系列等。
作為聚醯亞胺樹脂之具體例,可舉出新日本理化(股)製的「Rikacoat SN20」及「Rikacoat PN20」。作為聚醯亞胺樹脂的具體例,還可舉出使2官能性羥基末端聚丁二烯、二異氰酸酯化合物及四元酸酐反應而得之線狀聚醯亞胺(特開2006-37083號公報記載者)、含聚矽氧烷骨架的聚醯亞胺(特開2002-12667號公報及特開2000-319386號公 報等中記載者)等之改性聚醯亞胺。
作為聚醯胺醯亞胺樹脂之具體例,可舉出東洋紡績(股)製之「Vylomax HR11NN」及「Vylomax HR16NN」。作為聚醯胺醯亞胺樹脂之具體例,還可舉出日立化成工業(股)製之含聚矽氧烷骨架的聚醯胺醯亞胺「KS9100」、「KS9300」等之改性聚醯胺醯亞胺。
作為聚醚碸樹脂之具體例,可舉出住友化學(股)製之「PES5003P」等。
作為聚碸樹脂之具體例,可舉出Solvay Advanced Polymers(股)製之聚碸「P1700」、「P3500」等。
樹脂組成物中的熱塑性樹脂之含量較佳為0.1質量%~60質量%,更佳為0.1質量%~50質量%,尤佳為0.5質量%~30質量%,尤更佳為0.5質量%~10質量%。藉由使熱塑性樹脂之含量成為該範圍,樹脂組成物之黏度係適度,可形成厚度或整體性狀均勻的樹脂組成物。
(F)硬化促進劑
作為硬化促進劑,例如可舉出磷系硬化促進劑、胺系硬化促進劑、咪唑系硬化促進劑、胍系硬化促進劑等,較佳為磷系硬化促進劑、胺系硬化促進劑、咪唑系硬化促進劑,更佳為胺系硬化促進劑、咪唑系硬化促進劑。硬化促進劑係可單獨1種使用,也可組合2種以上使用。
作為磷系硬化促進劑,例如可舉出三苯基膦、硼酸鏻化合物、四苯基鏻四苯基硼酸鹽、正丁基鏻四苯基硼酸 鹽、四丁基鏻癸酸鹽、(4-甲基苯基)三苯基鏻硫氰酸鹽、四苯基鏻硫氰酸鹽、丁基三苯基鏻硫氰酸鹽等。
作為胺系硬化促進劑,例如可舉出三乙胺、三丁胺等之三烷基胺、4-二甲基胺基吡啶、苄基二甲基胺、2,4,6-三(二甲基胺基甲基)苯酚、1,8-二氮雜雙環(5,4,0)-十一烯等。
作為咪唑系硬化促進劑,例如可舉出2-甲基咪唑、2-十一基咪唑、2-十七基咪唑、1,2-二甲基咪唑、2-乙基-4-甲基咪唑、1,2-二甲基咪唑、2-乙基-4-甲基咪唑、2-苯基咪唑、2-苯基-4-甲基咪唑、1-苄基-2-甲基咪唑、1-苄基-2-苯基咪唑、1-氰基乙基-2-甲基咪唑、1-氰基乙基-2-十一基咪唑、1-氰基乙基-2-乙基-4-甲基咪唑、1-氰基乙基-2-苯基咪唑、1-氰基乙基-2-十一基咪唑鎓偏苯三酸酯、1-氰基乙基-2-苯基咪唑鎓偏苯三酸酯、2,4-二胺基-6-[2’-甲基咪唑基-(1’)]-乙基-s-三、2,4-二胺基-6-[2’-十一基咪唑基-(1’)]-乙基-s-三、2,4-二胺基-6-[2’-乙基-4’-甲基咪唑基-(1’)]-乙基-s-三、2,4-二胺基-6-[2’-甲基咪唑基-(1’)]-乙基-s-三異三聚氰酸加成物、2-苯基咪唑異三聚氰酸加成物、2-苯基-4,5-二羥基甲基咪唑、2-苯基-4-甲基-5羥基甲基咪唑、2,3-二氫-1H-吡咯并[1,2-a]苯并咪唑、1-十二基-2-甲基-3-苄基咪唑鎓氯化物、2-甲基咪唑啉、2-苯基咪唑啉等之咪唑化合物及咪唑化合物與環氧樹脂之加成物。
作為胍系硬化促進劑,例如可舉出氰胍、1-甲基胍、 1-乙基胍、1-環己基胍、1-苯基胍、1-(鄰甲苯基)胍、二甲基胍、二苯基胍、三甲基胍、四甲基胍、五甲基胍、1,5,7-三氮雜雙環[4.4.0]癸-5-烯、7-甲基-1,5,7-三氮雜雙環[4.4.0]癸-5-烯、1-甲基雙胍、1-乙基雙胍、1-正丁基雙胍、1-正十八基雙胍、1,1-二甲基雙胍、1,1-二乙基雙胍、1-環己基雙胍、1-烯丙基雙胍、1-苯基雙胍、1-(鄰甲苯基)雙胍等。
樹脂組成物中的硬化促進劑之含量較佳為0.01質量%~3質量%,更佳為0.01質量%~2質量%,尤佳為0.01質量%~1質量%。
作為硬化促進劑,亦可使用金屬系硬化促進劑。作為金屬系硬化促進劑,例如可舉出鈷、銅、鋅、鐵、鎳、錳、錫等之金屬的有機金屬錯合物或有機金屬鹽。作為有機金屬錯合物之具體例,可舉出乙醯丙酮鈷(II)、乙醯丙酮鈷(III)等之有機鈷錯合物、乙醯丙酮銅(II)等之有機銅錯合物、乙醯丙酮鋅(II)等之有機鋅錯合物、乙醯丙酮鐵(III)等之有機鐵錯合物、乙醯丙酮鎳(II)等之有機鎳錯合物、乙醯丙酮錳(II)等之有機錳錯合物等。作為有機金屬鹽之具體例,可舉出辛酸鋅、辛酸錫、環烷酸鋅、環烷酸鈷、硬脂酸錫、硬脂酸鋅等。
使用金屬系硬化促進劑時,樹脂組成物中的金屬系硬化促進劑之含量,係以金屬系硬化促進劑為基礎的金屬之含量較佳成為25ppm~500ppm之範圍、更佳成為40ppm~200ppm之範圍而設定。
(G)難燃劑
作為難燃劑,例如可舉出有機磷系難燃劑、有機系含氮的磷化合物、氮化合物、矽氧系難燃劑、金屬氫氧化物等。難燃劑係可單獨1種使用,也可組合2種以上使用。樹脂組成物層中的難燃劑之含量係沒有特別的限定,但較佳為0.5質量%~10質量%,更佳為1質量%~9質量%,尤佳為1.5質量%~8質量%。
(H)橡膠粒子
作為橡膠粒子,例如使用在後述的有機溶劑中不溶解且與上述的環氧樹脂、硬化劑及熱塑性樹脂等皆不相溶者。如此的橡膠粒子,一般係藉由使橡膠成分的分子量大到不溶解在有機溶劑或樹脂中的程度為止,而成為粒狀來調製。
作為橡膠粒子,例如可舉出芯殼型橡膠粒子、交聯丙烯腈丁二烯橡膠粒子、交聯苯乙烯丁二烯橡膠粒子、丙烯酸橡膠粒子等。芯殼型橡膠粒子係具有芯層與殼層之橡膠粒子,例如可舉出外層的殼層由玻璃狀聚合物構成且內層的芯層由橡膠狀聚合物構成之2層構造,或外層的殼層由玻璃狀聚合物構成,中間層由橡膠狀聚合物構成且芯層由玻璃狀聚合物構成之3層構造者等。玻璃狀聚合物層例如係由甲基丙烯酸甲酯聚合物等所構成,橡膠狀聚合物層例如係由丙烯酸丁酯聚合物(丁基橡膠)等所構成。橡膠粒子 係可以單獨1種使用,也可組合2種以上使用。
橡膠粒子的平均粒徑較佳為0.005μm~1μm之範圍,更佳為0.2μm~0.6μm之範圍。橡膠粒子的平均粒徑係可使用動態光散射法測定。例如,可藉由超音波等使橡膠粒子均勻分散在適當的有機溶劑中,使用濃厚系粒徑分析器(FPAR-1000;大塚電子(股)製),以質量基準作成橡膠粒子的粒度分布,將其中位徑當作平均粒徑而測定。樹脂組成物中的橡膠粒子之含量較佳為1質量%~10質量%,更佳為2質量%~5質量%。
本發明之樹脂組成物視需要亦可含有其它的添加劑,作為該其它的添加劑,例如可舉出有機填料、增黏劑、消泡劑、均平劑、密接性賦予劑及著色劑等之樹脂添加劑等。
本發明之樹脂組成物,由於其硬化體展現充分的熱擴散性,可使用於各種的用途。例如,本發明之樹脂組成物係可使用於接著薄膜、預浸物等之絕緣樹脂薄片、電路基板(層合板用途、多層印刷配線板用途等)、阻焊劑、底部填充材、晶粒接合材、半導體密封材、埋孔樹脂、零件埋入樹脂等之可享受熱擴散性的好處之廣範圍用途。其中,可較宜使用作為形成覆金屬層合板之絕緣層用的樹脂組成物(覆金屬層合板的絕緣層用樹脂組成物)、形成多層印刷配線板之絕緣層用的樹脂組成物(多層印刷配線板的絕緣層用樹脂組成物),於藉由增建方式的多層印刷配線板之製造中,可更宜使用作為形成絕緣層用的樹脂組成物(多 層印刷配線板的增建絕緣層用樹脂組成物),尤更宜使用作為藉由鍍敷來形成導體層用的樹脂組成物(藉由鍍敷來形成導體層之多層印刷配線板的增建絕緣層用樹脂組成物)。
本發明之樹脂組成物亦可以清漆狀態塗佈而使用於各種用途,但工業上一般較佳為以後述的接著薄膜、預浸物等之薄片狀層合材料的形態使用。
於一實施形態中,接著薄膜係包含支持體及與該支持體接合的樹脂組成物層(接著層)所成,樹脂組成物層(接著層)係由本發明之樹脂組成物所形成。
樹脂組成物層之厚度亦隨著用途而不同,但作為多層印刷配線板之絕緣層使用時,較佳為100μm以下,更佳為80μm以下,尤佳為60μm以下,尤更佳為50μm以下。樹脂組成物層之厚度的下限亦隨著用途而不同,但作為多層印刷配線板之絕緣層使用時,通常為10μm以上。
作為支持體,宜使用由塑膠材料所構成的薄膜。作為塑膠材料,例如可舉出聚對苯二甲酸乙二酯(以下亦簡稱「PET」)、聚萘二甲酸乙二酯(以下亦簡稱「PEN」)等之聚酯、聚碳酸酯(以下亦簡稱「PC」)、聚甲基丙烯酸甲酯(PMMA)等之壓克力、環狀聚烯烴、三乙醯纖維素(TAC)、聚醚硫化物(PES)、聚醚酮、聚醯亞胺等。其中,較佳為聚對苯二甲酸乙二酯、聚萘二甲酸乙二酯,特佳為便宜的聚對苯二甲酸乙二酯。於合適的一實施形態中,支持體係聚對苯二甲酸乙二酯薄膜。
支持體係在與樹脂組成物層接合側之表面,可施予消光處理、電暈處理。又,作為支持體,亦可使用在與樹脂組成物層接合側之表面上具有脫模層之附脫模層的支持體。
支持體的厚度係沒有特別的限定,較佳5μm~75μm之範圍,更佳為10μm~60μm之範圍。再者,當支持體為附脫模層的支持體時,附脫模層的支持體全體之厚度較佳為上述範圍。
接著薄膜例如係可藉由調製在有機溶劑中溶解有樹脂組成物之樹脂清漆,使用口模式塗佈機等,將此樹脂清漆塗佈於支持體上,更藉由加熱或熱風噴吹等以使有機溶劑乾燥,形成樹脂組成物層而製造。
作為有機溶劑,例如可舉出丙酮、甲基乙基酮及環己酮等之酮類,乙酸乙酯、乙酸丁酯、乙酸溶纖劑、丙二醇單甲基醚乙酸酯及卡必醇乙酸酯等之乙酸酯類,溶纖劑及丁基卡必醇等之卡必醇類,甲苯、二甲苯等之芳香族烴類,二甲基甲醯胺、二甲基乙醯胺及N-甲基吡咯啶酮等之醯胺系溶劑等。有機溶劑係可以單獨1種使用,也可組合2種以上使用。
乾燥條件係沒有特別的限定,但以樹脂組成物層中之有機溶劑的含量成為10質量%以下、較佳5質量%以下之方式使乾燥。雖然亦隨著樹脂清漆中的有機溶劑之沸點而不同,但例如當使用含有30質量%~60質量%的有機溶劑之樹脂清漆時,藉由在50℃~150℃使乾燥3~10分 鐘,可形成樹脂組成物層。
於接著薄膜中,在樹脂組成物層之未與支持體接合的面(即與支持體相反側之面),可更層合符合支持體的保護薄膜。保護薄膜之厚度係沒有特別的限定,但例如為1μm~40μm。藉由層合保護薄膜,可防止灰塵等對樹脂組成物層的表面之附著或損傷。接著薄膜係可捲繞成圓筒狀而保存。當接著薄膜具有保護薄膜時,藉由剝離保護薄膜而成為可使用。
於一實施形態中,預浸物係使薄片狀纖維基材含浸本發明的樹脂組成物而形成。
用於預浸物的薄片狀纖維基材係沒有特別的限定,可使用玻璃布、芳香族聚醯胺不織布、液晶聚合物不織布等之作為預浸物用基材所常用者。使用於多層印刷配線板之絕緣層之形成時,宜使用厚度為50μm以下的薄型之薄片狀纖維基材,特別地較佳為厚度10μm~40μm之薄片狀纖維基材,更佳為10μm~30μm之薄片狀纖維基材,尤佳為10~20μm之薄片狀纖維基材。
預浸物係可藉由熱熔法、溶劑法等之眾所周知的方法來製造。
預浸物之厚度係可與上述接著薄膜中的樹脂組成物層同樣之範圍。
[硬化體]
本發明之硬化體係使本發明的樹脂組成物熱硬化而 得。
樹脂組成物之熱硬化條件係沒有特別的限定,例如可使用在形成多層印刷配線板的絕緣層之際所通常採用的條件。
例如,樹脂組成物之熱硬化條件亦取決於樹脂組成物的組成等而不同,但硬化溫度可為120℃~240℃之範圍(較佳為150℃~210℃之範圍,更佳為170℃~190℃之範圍),硬化時間可為5分鐘~90分鐘之範圍(較佳為10分鐘~75分鐘,更佳為15分鐘~60分鐘)。
於使樹脂組成物熱硬化之前,亦可在比硬化溫度還低的溫度預備加熱樹脂組成物。例如於使樹脂組成物熱硬化之前,可在50℃以上且未達120℃(較佳為60℃以上110℃以下,更佳為70℃以上100℃以下)之溫度,將樹脂組成物預備加熱5分鐘以上(較佳為5分鐘~150分鐘,更佳為15分鐘~120分鐘)。
本發明之硬化體係可展現充分的熱擴散性。例如,本發明之硬化體,雖然亦取決於所使用的樹脂組成物中之高熱傳導性無機填充材之含量而不同,但可展現較佳為1W/m‧K以上、更佳為1.2W/m‧K以上、尤佳為1.4W/m‧K以上、尤更佳為1.5W/m‧K以上、特佳為1.6W/m‧K以上、1.7W/m‧K以上、1.8W/m‧K以上、1.9W/m‧K以上、2.0W/m‧K以上、2.1W/m‧K以上、2.2W/m‧K以上、2.3W/m‧K以上、2.4W/m‧K以上、2.5W/m‧K以上、2.6W/m‧K以上、2.7W/m‧K以上或 2.8W/m‧K以上之熱傳導率。本發明之硬化體的熱傳導率之上限係沒有特別的限制,但通常為30W/m‧K以下。本發明之硬化體的熱傳導率,例如可藉由熱流計法及溫度波分析法等之眾所周知的方法來測定。雖然亦隨用途而不同,但當本發明之硬化體的厚度薄時(例如100μm以下),從可使用與實際使用狀態相同厚度的硬化體測定熱傳導率者來看,較佳為藉由溫度波分析法進行測定。作為溫度波分析法的熱傳導率之測定裝置的具體例,可舉出ai-Phase製之「ai-Phase Mobile 1u」。
本發明之硬化體的特徵為如上述地展現充分的熱擴散性,同時表面粗度低。關於本發明之硬化體,表面之算術平均粗糙度(Ra值)較佳為300nm以下,更佳為260nm以下,尤佳為220nm以下,尤更佳為180nm以下,特佳為160nm以下、150nm以下、140nm以下、130nm以下、120nm以下、110nm以下、100nm以下、90nm以下或80nm以下。該Ra值之下限係沒有特別的限制,但通常可為10nm以上。硬化體表面之算術平均粗糙度(Ra值)係可使用非接觸型表面粗糙度計進行測定。作為非接觸型表面粗糙度計之具體例,可舉出VEECO儀器製之「WYKO NT3300」。
本發明之硬化體的特徵為展現充分的熱擴散性,同時表面粗度低。此在本發明之硬化體中,判斷一個原因為由氮化鋁及氮化矽所成之群組中選出的高熱傳導性無機填充材係極良好地分散。
本發明之硬化體的厚度,雖然亦隨著用途而不同,但作為多層印刷配線板的絕緣層使用時,較佳為100μm以下,更佳為80μm以下,尤佳為60μm以下,尤更佳為50μm以下。硬化體的厚度之下限亦隨著用途而不同,但作為多層印刷配線板的絕緣層使用時,通常為10μm以上。
[粗化硬化體]
本發明之粗化硬化體係將本發明的硬化體予以粗化處理而得。
粗化處理之程序、條件係沒有特別的限定,可採用在形成多層印刷配線板的絕緣層時所通常使用之眾所周知的程序、條件。例如,可依順序實施藉由膨潤液的膨潤處理、藉由氧化劑的粗化處理、藉由中和液的中和處理,而將硬化體表面予以粗化處理。作為膨潤液,並沒有特別的限定,可舉出鹼溶液、界面活性劑溶液等,較佳為鹼溶液,作為該鹼溶液,更佳為氫氧化鈉溶液、氫氧化鉀溶液。作為市售的膨潤液,例如可舉出ATOTECH日本(股)製之Swelling Dip Securiganth P、Swelling Dip Securiganth SBU等。藉由膨潤液的膨潤處理係沒有特別的限定,例如可藉由在30~90℃的膨潤液中,將硬化體浸漬1分鐘~20分鐘而進行。從將硬化體之樹脂的膨潤抑制在適度的水準之觀點來看,較佳為在40~80℃的膨潤液中將硬化體浸漬5秒~15分鐘。作為氧化劑,並沒 有特別的限定,例如可舉出在氫氧化鈉的水溶液中溶解有過錳酸鉀或過錳酸鈉之鹼性過錳酸溶液。以鹼性過錳酸溶液等之氧化劑進行的粗化處理,較佳為於經加熱至60℃~80℃的氧化劑溶液中,將硬化體浸漬10分鐘~30分鐘而進行。又,鹼性過錳酸溶液中的過錳酸鹽之濃度較佳為5質量%~10質量%。作為市售的氧化劑,例如可舉出ATOTECH日本(股)製之Concentrate Compact CP、Dosing Solution Securiganth P等的鹼性過錳酸溶液。又,作為中和液,較佳為酸性的水溶液,作為市售品,例如可舉出ATOTECH日本(股)製之Reduction Solution Securigand P。藉由中和液的處理,係可藉由將經氧化劑溶液所粗化處理的處理面浸漬於30~80℃的中和液中5分鐘~30分鐘而進行。從作業性等之點來看,較佳為將已以氧化劑溶液進行粗化處理的對象物浸漬於40~70℃的中和液中5分鐘~20分鐘之方法。
關於包含由氮化鋁及氮化矽所成之群組中選出的高熱傳導性無機填充材之硬化體,本發明者等發現藉由粗化處理,其表面粗度有急劇地增大之情況。該粗化處理所造成的表面粗度之增大,係在使用氮化鋁作為高熱傳導性無機填充材時,有更顯著之傾向。相對於其,於使用高熱傳導性無機填充材經矽烷化合物處理的填充材之本發明中,可抑制因粗化處理所造成的表面粗度之增大,能實現可展現充分的熱擴散性,同時表面粗度低之粗化硬化體。已知氮化鋁及氮化矽各自係容易因水及鹼而分解。本發明中,判 斷藉由以矽烷化合物處理氮化鋁及氮化矽,而形成對於水或鹼顯示優異的耐性之表面。
於合適的實施形態中,本發明之粗化硬化體係表面之算術平均粗糙度(Ra值)較佳為500nm以下,更佳為400nm以下,尤佳為300nm以下,尤更佳為280nm以下,特佳為260nm以下、240nm以下、220nm以下或200nm以下。該Ra值之下限係沒有特別的限制,但通常可為10nm以上。又,本發明之硬化體係表面的均方根粗糙度(Rq值)較佳為650nm以下,更佳為600nm以下,尤佳為550nm以下,特佳為500nm以下、550nm以下、500nm以下、450nm以下、400nm以下、350nm以下或300nm以下。該Rq值之下限係沒有特別的限制,但通常為10nm以上、30nm以上、50nm以上等。粗化硬化體之表面之算術平均粗糙度(Ra值)及均方根粗糙度(Rq值)係可使用非接觸型表面粗糙度計進行測定。作為非接觸型表面粗糙度計之具體例,可舉出VEECO儀器製之「WYKO NT3300」。
[層合體]
本發明之層合體係具備本發明的粗化硬化體、與形成在該粗化硬化體的表面上之導體層。
使用於導體層的金屬係沒有特別的限定,於合適的一實施形態中,導體層含有由金、鉑、銀、銅、鋁、鈷、鉻、鋅、鎳、鈦、鎢、鐵、錫及銦所組成之群組中選出的 1種以上之金屬。導體層係可為單金屬層或合金層,作為合金層,例如可舉出由選自上述群中的2種以上之金屬的合金(例如,鎳.鉻合金、銅.鎳合金及銅.鈦合金)所形成之層。其中,從導體層形成的通用性、成本、蝕刻的去除容易性等之觀點來看,較佳為鉻、鎳、鈦、鋁、鋅、金、銀或銅的單金屬層,或鎳.鉻合金、銅.鎳合金、銅.鈦合金的合金層,更佳為鉻、鎳、鈦、鋁、鋅、金、銀或銅的單金屬層,或鎳.鉻合金的合金層,尤佳為銅的單金屬層。
導體層係可為單層構造,也可為層合有2層以上之由不同種類的金屬或合金所構成的單金屬層或合金層之複層構造。當導體層為複層構造時,與粗化硬化體相接之層較佳為鉻、鋅或鈦的單金屬層,或鎳.鉻合金的合金層。
導體層之厚度,從多層印刷配線板的微細配線化之觀點來看,較佳為40μm以下,更佳為1~35μm,尤佳為3~30μm。當導體層為複層構造時,導體層全體之厚度亦較佳為上述範圍。
導體層係可藉由乾式鍍敷或濕式鍍敷而形成在粗化硬化體之表面。作為乾式鍍敷,例如可舉出蒸鍍、濺鍍、離子鍍等之眾所周知的方法。於濕式鍍敷之情況,例如組合無電解鍍敷與電解鍍敷來形成導體層。或者,形成與導體層相反圖型的抗鍍敷體,僅藉由無電解鍍敷,亦可形成導體層。作為配線圖型形成之方法,例如可使用本業者中眾所周知之減成法、半加成法等。
藉由半加成法形成導體層時,可用以下的程序來形成。首先,於粗化硬化體的表面上,藉由無電解鍍敷而形成鍍籽層。其次,於所形成的鍍籽層上,對應於所欲的配線圖型,形成使鍍籽層的一部分露出之遮罩圖型。於所露出的鍍籽層上,藉由電解鍍敷而形成金屬層後,去除遮罩圖型。然後,藉由蝕刻等來去除不要的鍍籽層,可形成具有所欲的配線圖型之導體層。
所謂的粗化硬化體(絕緣層)與導體層,係要求顯示充分的密接強度(剝離強度),一般藉由因粗化硬化體表面之凹凸所造成的錨固效果而得到該密接性。然而,粗化硬化體表面之凹凸若大,則在配線圖型形成時藉由蝕刻去除不要的鍍籽層之際,難以去除凹凸部分的籽層,而且於能充分去除凹凸部分的鍍籽層之條件下蝕刻時,配線圖型的溶解係顯著化,成為微細配線化之妨礙。此點,關於含有由氮化鋁及氮化矽所成之群組中選出的高熱傳導性無機填充材之硬化體,係如前述,本發明者等發現藉由粗化處理,不僅其表面粗度急劇地增大,而且表面粗度高,但有歸於與導體層的密接強度(剝離強度)顯著地差之粗化硬化體的情況。相對於其,於使用高熱傳導性無機填充材經矽烷化合物處理的填充材之本發明中,可有利地得到表面粗度低、與導體層的密接強度(剝離強度)良好之粗化硬化體(粗化硬化體之表面粗度係如前述)。加上能實現充分的熱擴散性的效果,本發明之層合體係顯著地有助於多層印刷配線板的熱擴散性與微細配線化這兩者。
於本發明之層合體中,粗化硬化體與導體層之剝離強度較佳為0.25kgf/cm以上,更佳為0.30kgf/cm以上,尤佳為0.35kgf/cm以上,特佳為0.40kgf/cm以上或0.45kgf/cm以上。剝離強度之上限係沒有特別限制,但通常為1.0kgf/cm以下、0.9kgf/cm以下等。再者,所謂粗化硬化體與導體層之剝離強度,就是指在對粗化硬化體呈垂直的方向(90度方向)中撕下導體層時的剝離強度(90度剝離強度),可藉由拉伸試驗機來測定在對粗化硬化體呈垂直的方向(90度方向)中撕下導體層時的剝離強度。作為拉伸試驗機,例如可舉出(股)TSE製之「AC-50C-SL」等。
[多層印刷配線板]
本發明之多層印刷配線板包含本發明之硬化體或粗化硬化體。
於一實施形態中,本發明之多層印刷配線板包含本發明之粗化硬化體作為絕緣層。於另一實施形態中,本發明之多層印刷配線板包含本發明之硬化體作為阻焊劑。於本發明之多層印刷配線板中,本發明之硬化體或粗化硬化體包含按照其具體的用途,作為適當的構件。
以下,說明包含本發明之硬化體或粗化硬化體作為絕緣層的多層印刷配線板之實施形態。
於一實施形態中,本發明之多層印刷配線板係可使用上述的接著薄膜來製造。於該實施形態中,以接著薄膜的樹脂組成物層與電路基板接合之方式進行層合處理後,實 施上述的「預備加熱」及「熱硬化」,可在電路基板上形成本發明之硬化體。再者,當接著薄膜具有保護薄膜時,係可在去除保護薄膜後供製造。
層合處理的條件係沒有特別的限定,可採用在使用接著薄膜來形成多層印刷配線板的絕緣層時所使用之眾所周知的條件。例如,可藉由從接著薄膜的支持體側來加壓經加熱的SUS鏡面板等之金屬板而實施。此時,較佳為不直接加壓金屬板,而是以接著薄膜充分地追隨電路基板的電路凹凸之方式,隔著耐熱橡膠等的彈性材進行加壓者。加壓溫度較佳為70℃~140℃之範圍,加壓壓力較佳以1kgf/cm2~11kgf/cm2(0.098MPa~1.079MPa)之範圍進行,加壓時間較佳為5秒~3分鐘之範圍。又,層合處理較佳為在20mmHg(26.7hPa)以下的減壓下實施。層合處理係可使用市售的真空層合機來實施。作為市售的真空層合機,例如可舉出(股)名機製作所製之真空加壓式層合機、Nichigo-Morton(股)製真空施加機等。
再者,於本發明中,所謂的「電路基板」,主要指在玻璃環氧基板、金屬基板、聚酯基板、聚醯亞胺基板、BT樹脂基板、熱硬化型聚伸苯基醚基板等的基板之一面或兩面上形成有經圖型加工的導體層(電路)者。又,於製造多層印刷配線板之際,應該進一步形成絕緣層及/或導體層的中間製造物之內層電路基板亦包含在本發明所言之「電路基板」中。
於另一實施形態中,本發明之印刷配線板係可使用上 述的樹脂清漆來製造。於該實施形態中,藉由口模式塗佈機等將樹脂清漆均勻地塗佈在電路基板上,加熱、乾燥而在電路基板上形成樹脂組成物層後,實施上述的「預備加熱」及「熱硬化」,可在電路基板上形成本發明之硬化體。使用於樹脂清漆的有機溶劑以及加熱、乾燥之條件,係可與接著薄膜之製造時說明者同樣。
其次,對於在電路基板上所形成的硬化體,實施上述的「粗化處理」而形成粗化硬化體後,在該粗化硬化體之表面上形成導體層。再者,於多層印刷配線板之製造中,亦可包含對絕緣層進行開孔之開孔步驟等。此等的步驟係本業者中眾所周知,可依照多層印刷配線板之製造時使用的各種方法來進行。
[半導體裝置]
可使用上述的多層印刷配線板來製造半導體裝置。
作為該半導體裝置,可舉出供用於電氣製品(例如電腦、行動電話、數位相機及電視等)及交通工具(例如機車、汽車、電車、船舶及航空機等)等之各種半導體裝置。
〔實施例〕
以下,藉由實施例來具體說明本發明,惟本發明不受此等的實施例所限定。再者,於以下的記載中,「份」及「%」只要沒有另外記載,則分別意味「質量份」及「質 量%」。
<測定方法‧評價方法>
首先,說明各種測定方法‧評價方法。
[測定‧評價用基板之調製] (1)內層電路基板之基底處理
將兩面形成有內層電路的玻璃布基材環氧樹脂兩面覆銅層合板(銅箔厚度18μm,基板厚度0.3mm,松下電工(股)製「R5715ES」)之兩面浸漬於MEC(股)製「CZ8100」中,進行銅表面的粗化處理(銅蝕刻量1μm)。
(2)接著薄膜之層合處理
將實施例及比較例所製作之接著薄膜,使用批次式真空加壓層合機(名機(股)製「MVLP-500」),以樹脂組成物層與內層電路基板接合之方式,對內層電路基板之兩面進行層合處理。層合處理係藉由減壓30秒以使氣壓成為13hPa以下後,在120℃、壓力0.74MPa下加壓30秒而進行。
(3)樹脂組成物層之熱硬化
於樹脂組成物層之層合處理後,剝離作為支持體的PET薄膜。其次,將層合有樹脂組成物層的內層電路基板,在100℃預備加熱30分鐘後,在180℃加熱30分 鐘,使樹脂組成物層熱硬化而形成硬化體。
(4)粗化處理
於60℃將在兩面上形成有硬化體的內層電路基板浸漬於膨潤液(ATOTECH日本(股)製「Swelling Dip Securigand P」,含有二乙二醇單丁基醚之氫氧化鈉水溶液)中5分鐘,其次於80℃浸漬在氧化劑(ATOTECH日本(股)製「Concentrate Compact CP」,過錳酸鉀濃度約6質量%、氫氧化鈉濃度約4質量%之水溶液)中20分鐘,最後於40℃浸漬在中和液(ATOTECH日本(股)製「Reduction Solution Securigand P」,硫酸羥基胺水溶液)中5分鐘。然後,於80℃乾燥30分鐘,而在內層電路基板之兩面上形成粗化硬化體。
(5)導體層之形成
依照半加成法,在粗化硬化體之表面上形成導體層。
即,將在兩面上形成有粗化硬化體的內層電路基板,於40℃浸漬在含PdCl2的無電解鍍敷用溶液中5分鐘,其次於25℃浸漬在無電解銅鍍敷液中20分鐘,而在粗化硬化體表面上形成鍍籽層。於150℃加熱30分鐘而進行退火處理後,於鍍籽層上設置抗蝕刻劑,藉由蝕刻而將鍍籽層予以圖型形成。隨後,進行硫酸銅電解鍍敷,形成厚度30μm的導體層後,於190℃退火處理60分鐘,而在粗化硬化體的表面上形成導體層。
[算術平均粗糙度(Ra值)、均方根粗糙度(Rq值)之測定]
硬化體的表面之算術平均粗糙度(Ra值)、粗化硬化體的表面之算術平均粗糙度(Ra值)及均方根粗糙度(Rq值),係使用非接觸型表面粗糙度計(VEECO儀器公司製「WYKO NT3300」),藉由VSI接觸模式、50倍透鏡,由測定範圍為121μm×92μm所得之數值來求得。對於各硬化體及粗化硬化體,求得隨意選擇的10點之平均值。
[導體層之剝離強度(peel強度)之測定]
於評價基板之導體層中,導入寬度10mm、長度100mm的部分之切槽,剝離其一端,以夾具(股份有限公司T.S.E製之Autocom型試驗機「AC-50C-SL」)抓住,測定在室溫中以50mm/分鐘的速度在垂直方向中撕下35mm時之荷重(kgf/cm),求得剝離強度。
[硬化體的熱擴散性之測定及評價]
硬化體之熱擴散性,係依照以下之程序,測定硬化體之熱傳導率而評價。即,將實施例及比較例所製作之接著薄膜,在190℃加熱90分鐘而使樹脂組成物層熱硬化。於樹脂組成物層之熱硬化後,剝離作為支持體的PET薄膜,得到薄片狀之硬化體。對於所得之硬化體,使用ai-Phase製「ai-Phase Mobile 1u」,藉由溫度波分析法測定該硬化體的厚度方向之熱傳導率。對相同的試驗片進行3 次測定,算出平均值。然後,將平均值為1.5W/m‧K以上時評價為「○」,將平均值為1W/m‧K以上且未達1.5W/m‧K時評價為「△」,將平均值未達1W/m‧K時評價為「×」。
<實施例1>
於溶劑油30份中邊攪拌邊加熱溶解萘型環氧樹脂(DIC(股)製「HP4032SS」,環氧當量約144)12份、伸萘基醚型環氧樹脂(DIC(股)製「HP6000」,環氧當量約250)6份、聯二甲苯酚型環氧樹脂(三菱化學(股)製「YX4000HK」,環氧當量約185)4份、及苯氧樹脂(三菱化學(股)製「YL7553BH30」,固體成分30質量%之甲基乙基酮(MEK)與環己酮之1:1溶液)6份。冷卻至室溫為止後,於其中混入含三構造的甲酚酚醛清漆樹脂(DIC(股)製「LA-3018-50P」,羥基當量151,固體成分50%之2-甲氧基丙醇溶液)9份、活性酯系硬化劑(DIC(股)製「HPC8000-65T」,活性基當量約223,不揮發成分65質量%之甲苯溶液)10份、硬化促進劑(4-二甲基胺基吡啶,「DMAP」,固體成分5質量%之MEK溶液)2份、經胺基矽烷化合物(信越化學工業(股)製「KBM573」,N-苯基-3-胺基丙基三甲氧基矽烷)0.7份所表面處理之氮化鋁((股)TOKUYAMA製「Shapal H」,平均粒徑1.1μm,比表面積2.6m2/g,比重3.3g/cm3)120份,用高速旋轉混合機進行均勻分散,調製樹脂清漆。
其次,於附脫模層的PET薄膜(LINTEC(股)製「PET501010」,厚度50μm)之脫模層側,以乾燥後的樹脂組成物層之厚度成為30μm之方式,均勻地塗佈樹脂清漆,於80~120℃(平均100℃)乾燥4分鐘,而製作接著薄膜。
<實施例2>
於溶劑油40份中邊攪拌邊加熱溶解雙酚型環氧樹脂(新日鐵化學(股)製「ZX1059」、雙酚A型與雙酚F型的1:1混合品,環氧當量約169)6份、聯苯型環氧樹脂(日本化藥(股)製「NC3000H」,環氧當量約288)9份、聯二甲苯酚型環氧樹脂(三菱化學(股)製「YX4000HK」,環氧當量約185)12份、茀型環氧樹脂(三菱化學(股)製「YL7800BH40」,固體成分40質量%之甲基乙基酮(MEK)與環己酮的1:1溶液,環氧當量約4100)6份。冷卻至室溫為止後,於其中混入含三構造的苯酚酚醛清漆樹脂(DIC(股)製「LA-1356」,羥基當量146)之固體成分60%的MEK溶液10份、活性酯型硬化劑(DIC(股)製「HPC8000-65T」,活性基當量約223之不揮發成分65質量%的甲苯溶液)10份、硬化促進劑(4-二甲基胺基吡啶,固體成分5質量%的MEK溶液)2份、經矽烷化合物(信越化學工業(股)製「KBM103」,苯基三甲氧基矽烷)1份所表面處理之氮化鋁((股)TOKUYAMA製「Shapal H」,平均粒徑1.1μm,比表面積2.6m2/g,比重3.3 g/cm3)170份,用高速旋轉混合機進行均勻分散,調製樹脂清漆。其次,與實施例1同樣地製作接著薄膜。
<實施例3>
於溶劑油30份中邊攪拌邊加熱溶解萘型環氧樹脂(DIC(股)製「HP4032SS」,環氧當量約144)4份、聯苯型環氧樹脂(日本化藥(股)製「NC3000H」,環氧當量約288)12份、聯二甲苯酚型環氧樹脂(三菱化學(股)製「YX4000HK」,環氧當量約185)6份、苯氧樹脂(三菱化學(股)製「YL7553BH30」,固體成分30質量%之甲基乙基酮(MEK)與環己酮的1:1溶液)9份。冷卻至室溫為止後,於其中混入含三構造的氰酸酯樹脂(LONZA日本(股)製「BA230S75」,氰酸酯當量約232,不揮發成分75質量%的MEK溶液)12份、苯酚酚醛清漆型氰酸酯樹脂(LONZA日本(股)製「PT30S」,氰酸酯當量約133,不揮發分85質量%的MEK溶液)3份、活性酯系硬化劑(DIC(股)製「HPC8000-65T」,活性基當量約223的不揮發分65質量%的甲苯溶液)12份、硬化促進劑(4-二甲基胺基吡啶,固體成分5質量%的MEK溶液)0.4份、硬化促進劑(東京化成(股)製,乙醯丙酮鈷(III),固體成分1質量%的MEK溶液)3份、難燃劑(三光(股)製「HCA-HQ」,10-(2,5-二羥基苯基)-10-氫-9-氧雜-10-磷雜菲-10-氧化物,平均粒徑2μm)3份、經胺基矽烷化合物(信越化學工業(股)製「KBM573」,N-苯基-3-胺基丙基三甲氧基矽烷)0.6份 所表面處理之氮化鋁((股)TOKUYAMA製「Shapal H」,平均粒徑1.1μm,比表面積2.6m2/g,比重3.3g/cm3)110份,用高速旋轉混合機進行均勻分散,調製樹脂清漆。其次,與實施例1同樣地製作接著薄膜。
<實施例4>
除了代替活性酯系硬化劑(DIC(股)製「HPC8000-65T」,活性基當量約223,不揮發成分65質量%的甲苯溶液)10份,使用萘酚系硬化劑(新日鐵化學(股)製「SN-485」,羥基當量215,固體成分60%的MEK溶液)10份以外,與實施例2同樣地調製樹脂清漆,製作接著薄膜。
<實施例5>
除了在不添加含三構造的苯酚酚醛清漆樹脂(DIC(股)製「LA-1356」羥基當量146)之固體成分60%的MEK溶液10份之點,及將活性酯系硬化劑(DIC(股)製「HPC8000-65T」,活性基當量約223,不揮發成分65質量%的甲苯溶液)之配合量由10份增量至24份之點以外,與實施例2同樣地調製樹脂清漆,製作接著薄膜。
<實施例6>
除了代替經胺基矽烷化合物(信越化學工業(股)製「KBM573」,N-苯基-3-胺基丙基三甲氧基矽烷)0.7份所表面處理之氮化鋁((股)TOKUYAMA製「Shapal H」,平 均粒徑1.1μm,比表面積2.6m2/g,比重3.3g/cm3)120份,使用經胺基矽烷化合物(信越化學工業(股)製「KBM573」,N-苯基-3-胺基丙基三甲氧基矽烷)0.7份所表面處理之氮化矽(電氣化學工業(股)製「SN-9S」,平均粒徑1.1μm,比表面積7m2/g,比重3.4g/cm3)以外,與實施例1同樣地調製樹脂清漆,製作接著薄膜。
<比較例1>
於溶劑油30份中邊攪拌邊加熱溶解萘型環氧樹脂(DIC(股)製「HP4032SS」,環氧當量約144)4份、聯苯型環氧樹脂(日本化藥(股)製「NC3000H」,環氧當量約288)12份、聯二甲苯酚型環氧樹脂(三菱化學(股)製「YX4000HK」,環氧當量約185)6份、苯氧樹脂(三菱化學(股)製「YL7553BH30」,固體成分30質量%之甲基乙基酮(MEK)與環己酮之1:1溶液)9份。冷卻至室溫為止後,於其中混入含三構造的氰酸酯樹脂(LONZA日本(股)製「BA230S75」,氰酸酯當量約232,不揮發成分75質量%的MEK溶液)24份,苯酚酚醛清漆型氰酸酯樹脂(LONZA日本(股)製「PT30S」,氰酸酯當量約133,不揮發分85質量%的MEK溶液)3份、硬化促進劑(4-二甲基胺基吡啶,固體成分5質量%的MEK溶液)0.4份、硬化促進劑(東京化成(股)製,乙醯丙酮鈷(III),固體成分1質量%的MEK溶液)3份、難燃劑(三光(股)製「HCA-HQ」,10-(2,5-二羥基苯基)-10-氫-9-氧雜-10-磷雜菲-10-氧化 物,平均粒徑2μm)3份、未進行表面處理的氮化鋁((股)TOKUYAMA製「Shapal H」,平均粒徑1.1μm,比表面積2.6m2/g,比重3.3g/cm3)100份,用高速旋轉混合機進行均勻分散,調製樹脂清漆。其次,與實施例1同樣地製作接著薄膜。
<比較例2>
除了代替經矽烷化合物(信越化學工業(股)製「KBM103」,苯基三甲氧基矽烷)1份所表面處理之氮化鋁((股)TOKUYAMA製「Shapal H」,平均粒徑1.1μm,比表面積2.6m2/g,比重3.3g/cm3)170份,使用未進行表面處理的氮化鋁((股)TOKUYAMA製「Shapal H」,平均粒徑1.1μm,比表面積2.6m2/g,比重3.3g/cm3)170份,與實施例5同樣地調製樹脂清漆,製作接著薄膜。
<比較例3>
除了使用經胺基矽烷化合物(信越化學工業(股)製「KBM573」,N-苯基-3-胺基丙基三甲氧基矽烷)0.7份所表面處理之氮化鋁((股)TOKUYAMA製「Shapal H」,平均粒徑1.1μm,比表面積2.6m2/g,比重3.3g/cm3)120份,使用經鋁系偶合劑(味之素精密科技製「Plenact AL-M」,乙烯烷氧基鋁二異丙氧化物)0.7份所表面處理之氮化鋁((股)TOKUYAMA製「Shapal H」,平均粒徑1.1μm,比表面積2.6m2/g,比重3.3g/cm3)120份以外,與實 施例1同樣地調製樹脂清漆,製作接著薄膜。
表1中顯示結果。
於使用含有由氮化鋁及氮化矽所成之群組中選出的高熱傳導性無機填充材經矽烷化合物處理之填充材的樹脂組成物之實施例1~6中,得到展現充分的熱擴散性(熱傳導率),同時表面粗度低,與導體層的密接強度(剝離強度)良好之硬化體、粗化硬化體。其中,於組合活性酯系硬化劑與含三構造的硬化劑而使用之實施例1~3及6中,得到展現充分的熱擴散性(熱傳導率),同時表面粗度極低,與導體層的密接強度(剝離強度)優異之硬化體、粗化硬化體。相對於其,於使用含有未處理之高熱傳導性無機填充材的樹脂組成物之比較例1及2中,藉由提高高熱傳導性無機填充材之含量,雖然硬化體的熱擴散性(熱傳導率)升高(於比較例1與比較例2之對比中),但歸於表面粗度高、與導體層的密接強度(剝離強度)顯著差之硬化體、粗化硬化體。又,於使用高熱傳導性無機填充材經鋁系偶合劑所處理之填充材的樹脂組成物之比較例3中,亦歸於表面粗度高、與導體層的密接強度(剝離強度)顯著差之硬化體、粗化硬化體。再者,含有高熱傳導性無機填充材經矽烷化合物處理的填充材之硬化體,與以大致相同之含量含有未處理的高熱傳導性無機填充材之硬化體比較下,確認呈現更高的熱擴散性(熱傳導率)(於實施例3與比較例1之對比,或實施例5與比較例2之對比中)。

Claims (15)

  1. 一種樹脂組成物,其係包含(A)由氮化鋁及氮化矽所成之群組中選出的至少1種之高熱傳導性無機填充材、(B)環氧樹脂、及(C)硬化劑之樹脂組成物,(A)成分係經矽烷化合物處理。
  2. 如請求項1之樹脂組成物,其中矽烷化合物具有苯基。
  3. 如請求項1之樹脂組成物,其中相對於高熱傳導性無機填充材100質量份,矽烷化合物之處理量為0.05質量份以上。
  4. 如請求項1之樹脂組成物,其中(C)成分包含第1硬化劑及與該第1硬化劑不同之第2硬化劑,第1硬化劑係活性酯系硬化劑。
  5. 如請求項4之樹脂組成物,其中第2硬化劑係含三構造的硬化劑。
  6. 如請求項4之樹脂組成物,其中第2硬化劑係含三構造的苯酚系硬化劑或含三構造的氰酸酯系硬化劑。
  7. 如請求項4之樹脂組成物,其中第1硬化劑相對於第2硬化劑之質量比(第1硬化劑/第2硬化劑)為0.3~2。
  8. 一種硬化體,其係使如請求項1之樹脂組成物熱硬化而得。
  9. 如請求項8之硬化體,其表面之算術平均粗糙度(Ra)為180nm以下。
  10. 如請求項8之硬化體,其熱傳導率為1W/m‧K以上。
  11. 一種粗化硬化體,其係將如請求項8~10中任一項之硬化體粗化處理而得。
  12. 一種層合體,其具備如請求項11之粗化硬化體與在該粗化硬化體之表面上所形成的導體層。
  13. 如請求項12之層合體,其中粗化硬化體與導體層之剝離強度為0.25kgf/cm以上。
  14. 一種多層印刷配線板,其包含如請求項8~10中任一項之硬化體或如請求項11之粗化硬化體。
  15. 一種半導體裝置,其包含如請求項14之多層印刷配線板。
TW103121549A 2013-06-25 2014-06-23 樹脂組成物 TWI699399B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-132867 2013-06-25
JP2013132867 2013-06-25

Publications (2)

Publication Number Publication Date
TW201518389A true TW201518389A (zh) 2015-05-16
TWI699399B TWI699399B (zh) 2020-07-21

Family

ID=52141696

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103121549A TWI699399B (zh) 2013-06-25 2014-06-23 樹脂組成物

Country Status (5)

Country Link
JP (1) JP6595336B2 (zh)
KR (1) KR102288571B1 (zh)
CN (1) CN105308121B (zh)
TW (1) TWI699399B (zh)
WO (1) WO2014208352A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6623632B2 (ja) * 2015-09-11 2019-12-25 日立化成株式会社 絶縁樹脂フィルム及び多層プリント配線板
JP6694513B2 (ja) * 2016-08-22 2020-05-13 富士フイルム株式会社 遮光性組成物、遮光膜、固体撮像素子、カラーフィルタ、及び、液晶表示装置
JP7082496B2 (ja) * 2017-02-27 2022-06-08 株式会社Adeka 繊維強化プラスチック用樹脂組成物、その硬化物、及び該硬化物を含有する繊維強化プラスチック
JP2018150446A (ja) * 2017-03-13 2018-09-27 株式会社日立製作所 電気絶縁樹脂材料
JP6787210B2 (ja) * 2017-03-23 2020-11-18 味の素株式会社 樹脂組成物
TW201904929A (zh) * 2017-06-28 2019-02-01 日商迪愛生股份有限公司 活性酯組成物及半導體密封材料
WO2020075663A1 (ja) * 2018-10-11 2020-04-16 三菱ケミカル株式会社 樹脂組成物、樹脂硬化物および複合成形体
JP2020094089A (ja) * 2018-12-10 2020-06-18 積水化学工業株式会社 樹脂材料及び多層プリント配線板
EP4101892B1 (en) * 2020-02-06 2024-02-21 FUJIFILM Corporation Composition, thermally conductive material, thermally conductive sheet, and device with thermally conductive layer
CN111763403A (zh) * 2020-07-15 2020-10-13 深圳先进电子材料国际创新研究院 一种液体环氧树脂组合物及其制备方法和应用
WO2023032537A1 (ja) * 2021-09-03 2023-03-09 株式会社Adeka 組成物及び硬化物
CN117795002A (zh) * 2021-11-16 2024-03-29 纳美仕有限公司 环氧树脂组合物、液状压缩模制材料、顶部包封材料以及半导体装置
CN116867174A (zh) * 2023-07-06 2023-10-10 宁波科浩达电子有限公司 一种pcb印制线路板的制作方法及pcb印制线路板

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60195160A (ja) * 1984-03-16 1985-10-03 Tokuyama Soda Co Ltd 複合シ−ト
JPS6438420A (en) * 1987-08-03 1989-02-08 Matsushita Electric Works Ltd Epoxy resin molding material
JPH03157447A (ja) * 1989-11-14 1991-07-05 Shin Etsu Chem Co Ltd エポキシ樹脂組成物及びエポキシ樹脂硬化物
JPH03287654A (ja) * 1990-04-05 1991-12-18 Shin Etsu Chem Co Ltd 半導体封止用エポキシ樹脂組成物及び半導体装置
JPH0496929A (ja) * 1990-08-14 1992-03-30 Shin Etsu Chem Co Ltd エポキシ樹脂組成物及び半導体装置
JP3175073B2 (ja) * 1994-07-11 2001-06-11 信越化学工業株式会社 窒化アルミニウム粉末
JP3157447B2 (ja) 1996-01-24 2001-04-16 三洋電機株式会社 空気調和装置
JP2789088B2 (ja) * 1996-12-16 1998-08-20 東洋アルミニウム株式会社 粒子状無機質複合体の製造方法
JPH10292093A (ja) * 1997-04-21 1998-11-04 Toshiba Chem Corp エポキシ樹脂組成物および半導体封止装置
JP4170570B2 (ja) * 2000-08-09 2008-10-22 電気化学工業株式会社 高熱伝導性フィラー及びその用途
TWI259200B (en) * 2001-07-12 2006-08-01 Univ Nat Cheng Kung Surface treating method of aluminum nitride powder
JP5396805B2 (ja) * 2008-10-07 2014-01-22 味の素株式会社 エポキシ樹脂組成物
JP2010229227A (ja) * 2009-03-26 2010-10-14 Sekisui Chem Co Ltd エポキシ樹脂組成物、シート状成形体、プリプレグ、硬化体及び積層板
TWI506082B (zh) * 2009-11-26 2015-11-01 Ajinomoto Kk Epoxy resin composition
JP5630241B2 (ja) * 2010-02-15 2014-11-26 日立化成株式会社 絶縁樹脂、配線板及び配線板の製造方法
JP2012140570A (ja) * 2011-01-06 2012-07-26 Sekisui Chem Co Ltd エポキシ樹脂材料及び多層基板
JP5871428B2 (ja) 2011-03-16 2016-03-01 古河電気工業株式会社 高熱伝導性フィルム状接着剤用組成物、高熱伝導性フィルム状接着剤、並びに、それを用いた半導体パッケージとその製造方法
CN102822272A (zh) * 2011-03-31 2012-12-12 积水化学工业株式会社 预固化物、粗糙化预固化物及层叠体

Also Published As

Publication number Publication date
CN105308121A (zh) 2016-02-03
KR20160023679A (ko) 2016-03-03
WO2014208352A1 (ja) 2014-12-31
JPWO2014208352A1 (ja) 2017-02-23
KR102288571B1 (ko) 2021-08-12
JP6595336B2 (ja) 2019-10-23
CN105308121B (zh) 2018-09-18
TWI699399B (zh) 2020-07-21

Similar Documents

Publication Publication Date Title
TWI701289B (zh) 樹脂組成物
TWI668269B (zh) Resin composition
TWI699399B (zh) 樹脂組成物
TWI572663B (zh) Resin composition
TWI629306B (zh) Resin composition
TWI701288B (zh) 樹脂組成物
TWI637852B (zh) Resin sheet with support
TWI748969B (zh) 樹脂薄片
TWI717464B (zh) 附支撐體之樹脂薄片
KR20170049448A (ko) 접착 필름
JP6156020B2 (ja) 樹脂組成物
TW201418357A (zh) 樹脂組成物
TWI721130B (zh) 樹脂薄片
TW201311810A (zh) 樹脂組成物
KR20140102613A (ko) 경화성 수지 조성물
JP6534986B2 (ja) 樹脂組成物
TWI707611B (zh) 附支撐體之樹脂薄片,及使用其之零件內置電路板之製造方法
TWI620613B (zh) Manufacturing method of component mounting substrate, thermosetting resin composition, prepreg, multilayer printed wiring board, and component mounting substrate
JP2015205983A (ja) 樹脂組成物
TW201920414A (zh) 樹脂組成物
TW202142587A (zh) 樹脂組成物
TW202003767A (zh) 附有支撐體的接著薄片
JP6610612B2 (ja) 支持体付き樹脂シート
TW202130241A (zh) 印刷配線板之製造方法及附無機層之樹脂薄片