RU2686575C2 - Полевой транзистор с гетеропереходом - Google Patents

Полевой транзистор с гетеропереходом Download PDF

Info

Publication number
RU2686575C2
RU2686575C2 RU2016140219A RU2016140219A RU2686575C2 RU 2686575 C2 RU2686575 C2 RU 2686575C2 RU 2016140219 A RU2016140219 A RU 2016140219A RU 2016140219 A RU2016140219 A RU 2016140219A RU 2686575 C2 RU2686575 C2 RU 2686575C2
Authority
RU
Russia
Prior art keywords
layer
inclusive
crystal structure
hexagonal crystal
epitaxy
Prior art date
Application number
RU2016140219A
Other languages
English (en)
Other versions
RU2016140219A3 (ru
RU2016140219A (ru
Inventor
Петер ФРЕЙЛИНК
Original Assignee
Оммик
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Оммик filed Critical Оммик
Publication of RU2016140219A publication Critical patent/RU2016140219A/ru
Publication of RU2016140219A3 publication Critical patent/RU2016140219A3/ru
Application granted granted Critical
Publication of RU2686575C2 publication Critical patent/RU2686575C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

Способ изготовления полевого транзистора с гетеропереходом, содержащего полупроводниковую структуру из наложенных друг на друга слоев, включающий: обеспечение на слое подложки (1) буферного слоя (2), канального слоя (3) и барьерного слоя (4), выполненных из материалов с гексагональной кристаллической структурой типа Ga(1-p-q)Al(p)In(q)N, выполнение отверстия в диэлектрическом маскирующем слое (5), нанесенном на барьерный слой, выращивание эпитаксией при высокой температуре полупроводникового материала (6, 6') с гексагональной кристаллической структурой Ga(1-x'-y')Al(x')In(y')N, легированного германием, на зоне роста, заданной выполненным в маскирующем слое отверстием, нанесение контактного электрода истока или стока (15, 16) на материал, нанесенный эпитаксией, и электрода затвора (13) в местоположении вне зоны роста. Изобретение обеспечивает улучшенное задание кромок локализованных эпитаксиальных слоев. 3 н. и 5 з.п. ф-лы, 6 ил.

Description

Настоящее изобретение относится к полевому транзистору с гетеропереходом или HEMT (от английского "High Electronic Mobility Transistor", т.е. «транзистор с высокой подвижностью электронов», ТВПЭ), содержащему полупроводниковую структуру из наложенных друг на друга слоев, нанесенных на подложку, причем наложенные друг на друга слои состоят из полупроводниковых материалов с гексагональной кристаллической структурой типа Ga(1-p-q)Al(p)In(q)N, где p и q могут иметь значения в интервале от 0 включительно до 1 включительно, сумма p+q меньше или равна 1, а пара {p,q} является специфической для каждого слоя. Материалом подложки может быть, например, GaN, AlN, SiC, Si, алмаз или сапфир.
Этот транзистор может быть использован в MMIC (от английского "Monolithic Microwave Integrated Circuit", т.е. «монолитной сверхвысокочастотной (СВЧ) интегральной схеме») или в иной схеме.
HEMT-транзистор (называемый также HFET от английского "Heterostructure Field Effect Transistor", т.е. полевой транзистор с гетеропереходом, или MODFET от английского "Modulation Doped Field Effect Transistor", т.е. «селективно легированный полевой транзистор») обычно содержит:
- канальный слой, выполненный из первого полупроводникового материала, например GaN,
- барьерный слой на канальном слое, выполненный из полупроводникового материала с более широкой запрещенной зоной, чем у первого материала, и меньшим сродством к электронам, чем у первого материала, например из AlN или AlGaN,
- электрод затвора, образующий вместе с барьерным слоем переход Шоттки, и
- электрод истока и электрод стока с одной и с другой сторон от электрода затвора.
Известно нанесение в местоположениях, соответствующих электродам истока и стока, перед нанесением этих электродов, слоя GaN, легированного атомами Si, эпитаксиальным выращиванием. Этот легированный слой GaN может позволить разработать транзисторы с меньшими размерами. Для разграничения этих местоположений используют маскирующий слой.
В документах K. Shinohara с соавт., "Electron Velocity Enhancement in Laterally Scaled GaN DH-HEMTs with fT of 260 GHz", IEEE Electron Device Letters, т. 32, № 8, август 2011, и T. Fujiwara, "Low Ohmic Contact Resistance m-Plane AlGaN/GaN Heterojunction Field-Effect Transistors with Enhancement-Mode Operations", Applied Physics Express 3 (2010), описаны два примера способов изготовления HEMT-транзисторов на подложке из GaN со стадиями локализованного эпитаксиального выращивания легированных кремнием слоев.
В документе US 2005/0258451, указанном в отчете о предварительном информационном поиске, осуществленном по французской заявке, приоритет которой испрашивается здесь, описан HEMT-транзистор, полученный нанесением слоя GaN, легированного кремнием, германием, кислородом или иным элементом, при достаточно низкой температуре с целью препятствования массопереносу к местоположениям, соответствующим электродам стока и истока. И хотя среди прочих возможностей указан выбор легирования германием, выбор низкой температуры осуществляют во избежание недостатков, связанных с массопереносом в случае нанесения эпитаксией легированного кремнием GaN, а именно риска проблем с морфологией, в частности осадков SiN, недостаточно равномерных высот слоев GaN и посредственной воспроизводимости. В силу отсутствия массопереноса GaN наносят с относительно малой толщиной во избежание превышения слоя диэлектрика.
Существует потребность в относительно простом способе, обеспечивающем улучшенное задание кромок локализованных эпитаксиальных слоев.
Предложен способ изготовления полевого транзистора с гетеропереходом, содержащего полупроводниковую структуру из наложенных друг на друга слоев, включающий:
a) обеспечение на подложке:
буферного слоя, состоящего из полупроводникового материала с гексагональной кристаллической структурой Ga(1-x-y)Al(x)In(y)N, где x и y имеют значения в интервале от 0 включительно до 1 включительно, а сумма x+y меньше или равна 1,
канального слоя на буферном слое, причем этот канальный слой состоит из материала с гексагональной кристаллической структурой Ga(1-z-w)Al(z)In(w)N, где z и w могут иметь значения в интервале от 0 включительно до 1 включительно, сумма z+w меньше или равна 1, а по меньшей мере один из z и w отличается от x или y соответственно,
барьерного слоя на этом канальном слое, причем этот барьерный слой состоит из материала с гексагональной кристаллической структурой Ga(1-z'-w')Al(z')In(w')N, где z' и w' могут иметь значения в интервале от 0 включительно до 1 включительно, сумма z'+w' меньше или равна 1, а по меньшей мере один из z' и w' отличается от z или w соответственно;
b) нанесение маскирующего слоя из диэлектрического материала на барьерный слой;
c) выполнение отверстия в маскирующем слое;
d) выращивание эпитаксией при высокой температуре полупроводникового материала с гексагональной кристаллической структурой Ga(1-x'-y')Al(x')In(y')N, легированного германием, где x' и y' имеют значения в интервале от 0 включительно до 1 включительно, а сумма x'+y' меньше или равна 1, на зоне роста, соответствующей местоположению отверстия, выполненного в маскирующем слое;
e) нанесение контактного электрода, истока или стока, на материал, нанесенный эпитаксией на стадии d);
f) нанесение электрода затвора в местоположении вне зоны роста.
Под "высокой температурой" понимают температуру, которая является достаточно высокой для того, чтобы полупроводниковый материал с гексагональной кристаллической структурой Ga(1-x'-y')Al(x')In(y')N, легированный германием, мог бы мигрировать к зоне роста за счет массопереноса, так чтобы стадия d) была селективной. Эта температура может составлять, например, в интервале от 700° до 1200°C, преимущественно быть строго большей, чем 960°C, и меньшей или равной 1150°C, а предпочтительно от 970°C до 1150°C.
Этот способ может позволять получать кромки нанесенного эпитаксией слоя материала более четкими, чем в предшествующем уровне техники, что может представлять интерес в тех случаях, когда эти кромки могут служить метками совмещения на дополнительных стадиях процесса изготовления.
Таким образом, этот способ может обеспечивать точное совмещение затвора поблизости от омического контакта истока и/или омического контакта стока, что позволяет получать более низкое последовательное сопротивление и улучшать коэффициент усиления транзисторов.
Было замечено, что при использовании этого способа получают продукт, в котором легированный германием материал имеет достаточно четко заданную кристаллическую структуру для того, чтобы боковые кромки выращиваемого слоя, полученного таким образом, были слегка наклонены и, следовательно, относительно удалены от практически вертикальных кромок маскирующего слоя. Таким образом, этот способ может позволить избежать необходимости в защите диэлектрического маскирующего слоя другой маской перед стадией d), а значит, и избежать стадии удаления этой маски после стадии d), как это описано в документе US 2005/0258451.
Кроме того, по описанному выше способу выращиваемый материал может быть нанесен так, чтобы образовывать относительно толстый выращенный слой, а именно – более толстый, чем маскирующий слой, причем без риска сделать способ более продолжительным или более сложным. Таким образом, маскирующий слой может иметь относительно малую толщину, например, в интервале от 0,1 до 100 нм, преимущественно от 0,5 до 10 нм, а предпочтительно от 1 до 7 нм, например, 5 нм.
Таким образом, этот способ позволяет изготавливать полевой транзистор с гетеропереходом, содержащий полупроводниковую структуру из наложенных друг на друга слоев, причем слои полупроводников состоят по существу из материалов III-V, при этом атомы из группы V Периодической системы элементов представляют собой атомы азота, а атомы из группы III этой системы выбраны из галлия, алюминия и индия.
Материалом подложки может быть, например, GaN, AlN, SiC, Si, алмаз, сапфир или другие.
По меньшей мере один из x' и y' может отличаться от z' или w' соответственно, то есть x' имеет значение, отличающееся от z', и/или y' имеет значение, отличающееся от w'. Иначе говоря, материал выращиваемого слоя может отличаться от материала барьерного слоя.
Материал канального слоя отличается от материала буферного слоя, то есть z имеет значение, отличающееся от x, и/или w имеет значение, отличающееся от y.
Материал барьерного слоя отличается от материала канального слоя, то есть z' имеет значение, отличающееся от z, и/или w' имеет значение, отличающееся от w.
Кроме того, материалы барьерного и канального слоев выбирают так, чтобы обеспечить возможность изготовления HEMT-транзистора. Ширина запрещенной зоны материала барьерного слоя больше ширины запрещенной зоны материала канального слоя, а сродство к электронам материала барьерного слоя меньше, чем у материала канального слоя, чтобы в канальном слое образовывался двумерный электронный газ. Таким образом, материалы канального и барьерного слоев выбирают так, чтобы вызвать накопление электронов на границе раздела между этими двумя слоями. При этом электрод затвора может вместе с этим барьерным слоем образовывать переход Шоттки.
Материалы буферного, канального и барьерного слоев могут быть нелегированными или же легированными.
Структура может содержать один или более буферных слоев, то есть, как известно само по себе, буферный слой может быть многослойным. Аналогичным образом, структура может содержать один или более канальных слоев, один или более барьерных слоев.
Под выражением "легированный германием" понимают то, что эпитаксиальный материал содержит число атомов германия в кубическом сантиметре, большее или равное 1018.
Преимущественно и неограничительным образом, маскирующий слой может быть удален полностью по всему местоположению, соответствующему этому слою, или только на части этого местоположения. Эта стадия удаления может быть реализована после стадии d) выращивания и перед нанесением электрода затвора.
На стадии c) отверстие в маскирующем слое может быть выполнено (сформировано) за счет удаления материала маскирующего слоя травлением.
Преимущественно и неограничительным образом, может быть предусмотрено углубление этого отверстия так, чтобы барьерный слой имел уменьшенную или нулевую толщину в местоположении отверстия. В последнем случае часть барьерного слоя, соответствующая этому местоположению, удаляется.
Преимущественно и неограничительным образом, способ может включать стадию травления, предшествующую стадии d) эпитаксиального выращивания, для удаления материала в местоположении отверстия, выполненного в маскирующем слое, с целью удаления части барьерного слоя, соответствующей этому местоположению.
Это локальное удаление барьерного слоя избавляет электроны, формируемые током между истоком и стоком, от необходимости преодолевать потенциальный барьер, соответствующий барьерному слою, тем самым сильно уменьшая напряжение Vds между стоком и истоком, необходимое для протекания тока между истоком и стоком, в случае максимальной положительной поляризации затвора по отношению к истоку. Вследствие этого уменьшается рассеивание тепла в транзисторе во время его работы и, следовательно, увеличивается эффективность по мощности усилителей, содержащих такие транзисторы. Отсутствие необходимости преодолевать барьерный слой позволяет также выбирать барьерный слой, являющийся оптимизированным для получения относительно малого тока утечки Шоттки в инверсном режиме и относительно сильной электростатической поляризации, даже если толщина барьерного слоя относительно мала, например порядка 1-10 нм, например 4 нм. Из-за этой малой толщины собственная активная межэлектродная проводимость является относительно высокой, так что предельная частота транзистора может быть относительно высокой. Из-за сильной электростатической поляризации концентрация электронов в канальном слое относительно высока, что позволяет получать относительно большой максимальный ток транзистора на единицу ширины (длины). Такой барьерный слой с высоким потенциальным барьером и сильной электростатической поляризацией может быть, например, образован материалом AlN на канальном слое из GaN, на буферном слое с элементарной кристаллической решеткой, близкой к GaN.
Преимущественно, может быть предусмотрено углубление этого отверстия, например, травлением, так чтобы канальный слой имел уменьшенную или нулевую толщину в месте нахождения отверстия. Стадия травления может быть осуществлена, например, таким образом, чтобы углубить выполненное на стадии c) отверстие до канального слоя, например, уменьшая толщину канального слоя в этом месте (то есть в канальном слое выполняют отверстие) или же удаляя часть канального слоя, соответствующую этому месту (то есть отверстие проходит через весь канальный слой до достижения буферного слоя или подложки).
Эпитаксиальный материал может быть легирован только германием, или же может также содержать другие атомы, обеспечивающие легирование, например атомы кремния, причем число атомов на кубический сантиметр всех этих других легирующих примесей меньше или равно числу атомов германия на кубический сантиметр. Иначе говоря, германий составляет по меньшей мере 50% от числа легирующих примесей, преимущественно по меньшей мере 80%, предпочтительно около 100%.
Преимущественно и неограничительным образом, способ может включать в себя предварительную стадию изолирования для того, чтобы сделать непроводящей зону вокруг транзистора. Таким образом обеспечивается то, что во время работы транзистора электроны, текущие между истоком и стоком, проходят по канальному слою под управлением напряжения затвора. Могут быть применены традиционные способы, например, травление активных слоев или ионная имплантация. Это является обычной практикой в случае любых полевых транзисторов и известно специалистам в данной области техники.
Преимущественно и неограничительным образом, на стадии d) может быть предусмотрено применение метода эпитаксии из газовой фазы металлоорганических соединений, или MOVPE (от английского "metalorganic vapor phase epitaxy", также называемой «газофазной эпитаксией из металлорганических соединений», или же MOCVD (от английского "metalorganic chemical vapor deposition", т.е. химическое осаждение из паровой фазы металлорганических соединений). Этот метод может быть относительно выгодным в том смысле, что способ может быть относительно легко осуществлен в промышленном масштабе.
Разумеется, изобретение не ограничивается выбором конкретного метода эпитаксии для этой стадии d). Можно, например, предусмотреть применение метода эпитаксии молекулярными пучками, или MBE (от английского "Molecular Beam Epitaxy", т.е. молекулярно-пучковая эпитаксия) или любого другого метода, позволяющего выращивать эпитаксией материал III-V, причем атомы группы V Периодической системы элементов представляют собой атомы азота, а атомы группы III этой системы выбраны из галлия, алюминия и индия.
Преимущественно и неограничительным образом, в ходе стадии e) наносят несколько металлических слоев, например:
- обеспечивающий сцепление слой, например титана, нанесенный на эпитаксиальный материал;
- барьерный слой, например платины, нанесенный на обеспечивающий сцепление слой; и
- проводящий слой, например золота, нанесенный на барьерный слой.
Альтернативно, контактный электрод может быть сформирован только из одного слоя, например, из вольфрама.
Преимущественно и неограничительным образом, стадия e) нанесения контактного электрода может быть осуществлена без отжига для сплавления.
Этот контактный электрод может содержать электрод истока.
В ходе этой стадии может быть предусмотрено также нанесение электрода стока.
Кроме того, предложен полевой транзистор с гетеропереходом, содержащий полупроводниковую структуру из наложенных друг на друга слоев, содержащую в порядке наслоения на подложку:
- буферный слой, состоящий из полупроводникового материала с гексагональной кристаллической структурой Ga(1-x-y)Al(x)In(y)N, где x и y имеют значения в интервале от 0 включительно до 1 включительно, а сумма x+y меньше или равна 1;
- канальный слой, причем этот канальный слой состоит из материала с гексагональной кристаллической структурой Ga(1-z-w)Al(z)In(w)N, где z и w могут иметь значения в интервале от 0 включительно до 1 включительно, сумма z+w меньше или равна 1, а z отличается от x и/или w отличается от y;
- барьерный слой, причем этот барьерный слой состоит из материала с гексагональной кристаллической структурой Ga(1-z'-w')Al(z')In(w')N, где z' и w' могут иметь значения в интервале от 0 включительно до 1 включительно, сумма z'+w' меньше или равна 1, а z' отличается от z и/или w' отличается от w;
- слой выращенного материала (называемый эпитаксиальным слоем), нанесенный эпитаксией при высокой температуре на зоне роста, соответствующей местоположению отверстия, выполненного в диэлектрическом маскирующем слое, причем этот выращенный материал состоит из легированного германием Ga(1-x'-y')Al(x')In(y')N с гексагональной кристаллической структурой, где x' и y' имеют значения в интервале от 0 включительно до 1 включительно, а сумма x'+y' меньше или равна 1;
- контактный электрод, истока или стока, на слое выращенного материала и электрод затвора в местоположении снаружи от зоны роста.
Такой HEMT-транзистор может иметь относительно четкие кромки слоя выращенного материала. В частности, эти кромки могут иметь наклон относительно вертикали, который может составлять от 5° до 60°, а обычно около 45°.
Кроме того, предложена интегральная схема, содержащая такой транзистор, как описанный выше.
Эта схема может представлять собой монолитную сверхвысокочастотную интегральную схему (MMIC) или иную схему.
В настоящей заявке под термином "на" понимают как "непосредственно на", так и "опосредованно на", то есть один слой, нанесенный на другой слой, может находиться в контакте с этим другим слоем или быть отделенным от этого другого слоя одним или несколькими промежуточными слоями.
Изобретение может быть лучше понято при обращении к фигурам, которые иллюстрируют неограничительные варианты осуществления, приведенные в качестве примеров.
На фигурах 1-5 очень схематично показаны виды в разрезе одного примера транзистора в ходе изготовления согласно примеру способа по одному варианту осуществления изобретения.
На фиг. 6 очень схематично показан вид в разрезе примера транзистора по другому варианту осуществления изобретения.
Одинаковые номера позиций используются от одной фигуры к другой для обозначения идентичных или подобных элементов.
Обращаясь к фигуре 1, там показано наслоение на подложке 1, выполненной, например, из кремния, слоев полупроводников с гексагональной кристаллической структурой, состоящих из материалов III-V, причем атомы группы V Периодической системы элементов представляют собой атомы азота, а атомы группы III этой системы выбраны из галлия, алюминия и индия.
Это наслоение включает:
- буферный слой 2, состоящий, например, из нелегированного Ga0,9Al0,1N;
- канальный слой 3, состоящий, например, из нелегированного GaN;
- барьерный слой 4, состоящий, например, из нелегированного AlN;
- диэлектрический маскирующий слой 5, состоящий, например, из SiN.
На фигуре 1 проведена стадия травления, осуществляемая известным самим по себе способом и задействующая дополнительный маскирующий слой, не показанный ввиду его удаления после травления, с образованием отверстий в маскирующем слое 5, так что остается только центральная часть этого слоя 5.
Обращаясь к фигуре 2, стадия травления, осуществляемая известным самим по себе способом, проведена для удаления материала на уровне отверстий, выполненных в маскирующем слое 5, таким образом, чтобы удалить часть барьерного слоя 4, соответствующего этим местоположениям. При этом сохраняется только часть барьерного слоя 4, соответствующая местоположению центральной части слоя 5. Выполненные таким образом отверстия проникают теперь в толщу до канального слоя 3.
Обращаясь к фигуре 3, методом MOVPE осуществляют наращивание легированного германием материала 6, 6' в местоположениях, соответствующих отверстиям в маскирующем слое 5. Наращиваемый материал представляет собой материал с гексагональной кристаллической структурой, состоящий из GaN, легированного N+ германием.
Выбор германия позволяет получать относительно четкие границы раздела между частями 6, 6' и 5.
Эту стадию осуществляют при высокой температуре с целью получения значительного массопереноса. Зародыши могут быть способны, например, мигрировать на расстояние порядка 10 мкм. В силу того, что расстояние между местоположениями стока и истока в общем случае меньше одного мкм, понятно, что селективность обеспечивается. Таким образом, материал зародышей, которые могли бы образовываться на слое 5, переносится за счет диффузии на поверхности слоя 5 к слоям 6 и 6', где внедрение является термодинамически более благоприятным. Этот высокотемпературный процесс позволяет ограничить, а преимущественно предотвратить, образование зародышей на поверхности слоя 5.
Поскольку наращиваемый материал легирован германием, механические напряжения являются более низкими, чем у материала, легированного Si, и при этом не обнаруживаются проблемы с морфологией, способные возникать в случае легирования кремнием. Толщина выращиваемых слоев 6, 6' относительно одинаковой по всей пластине. Кромки зон 6, 6' являются относительно четкими. Воспроизводимость также является удовлетворительной.
Сильное легирование этих локализованных эпитаксиальных зон 6, 6' выгодно, поскольку это позволяет избежать необходимости сплавления для реализации хорошего омического контакта с низким сопротивлением контакта с электродами, а улучшение и лучший контроль морфологии позволяет поэтому еще больше уменьшить размеры.
С этой целью, для стадии локальной эпитаксии могут быть приняты следующие условия:
- газ-носитель: H2 и/или N2, и/или другой инертный газ;
- температура в интервале от 700 до 1150°C, преимущественно от 1000° до 1150°C;
- реагенты: триметилгаллий (и/или другие металлоорганические соединения Ga) и NH3 (и/или другие молекулы-поставщики N, такие как гидразин, амины и т.д.);
- легирующий газ: GeH4 (и/или германийорганические соединения или галогениды германия).
Соотношения реагентов и легирующей примеси выбраны для получения материала, содержащего 1018 атомов германия на кубический сантиметр или больше, например, 1020 или 1021 атомов германия на кубический сантиметр.
Затем на эти слои выращенного материала 6, 6' известным самим по себе способом наносят контакты 15, 16. Более точно, каждый из контактов 15, 16 содержит:
- обеспечивающий сцепление слой 7, 10, например, слой титана, нанесенный на эпитаксиальный материал,
- барьерный слой 8, 11, например, слой платины, нанесенный на соответствующий обеспечивающий сцепление слой 7, 10, и
- проводящий слой 9, 12, например, слой золота, нанесенный на соответствующий барьерный слой 8, 11.
Можно отметить, что это нанесение контактов истока 15 и стока 16 осуществляют без отжига.
Затем, обращаясь к фигуре 5, часть маскирующего слоя 5 стравливают, так что остаются только два участка 5A, 5B этого маскирующего слоя SiN, и в новом отверстии, выполненном таким образом, наносят металлический контакт затвора 13.
Альтернативно, можно, разумеется, предусмотреть удаление полностью всего маскирующего слоя 5 перед нанесением контакта затвора.
Опять же альтернативно, можно также оставлять весь маскирующий слой 5 SiN или его часть на месте и осаждать электрод затвора сверху.
Известным самим по себе способом этот контакт затвора также может быть выполнен из нескольких слоев (обеспечивающего сцепление, барьерного, проводящего), в данном случае не показанных. Например, можно предусмотреть обеспечивающий сцепление слой из никеля и проводящий слой из золота.
Полученный таким образом транзистор может обладать легированными германием частями 6, 6' относительно высокого качества.
Материалы канального слоя 2 и барьерного слоя 3 выбраны так, чтобы образовывать двумерный электронный газ, показанный на фигуре 5 в виде зоны с позицией 14. Легирование германием слоев 6, 6' позволяет получать между слоями 6, 3, 4 и 6', 3, 4 относительно четкий переход, который способствуют улучшению характеристик транзистора.
Этот транзистор может позволить реализовывать MMIC-схему, обладающую повышенными характеристиками.
Обращаясь к фигуре 6, представленный на ней HEMT-транзистор был изготовлен при осуществлении травления материала, соответствующего местоположениям, заданным маскирующим диэлектрическим слоем, соответствующим позиции 5 на фигурах 1-4, в таких условиях, что образуемое таким образом отверстие проходит до буферного слоя 2. Иначе говоря, канальный слой 3 пронизывается насквозь.
Затем при высокой температуре наносят эпитаксиально выращиваемый материал.
Как ясно показано на этой фигуре, наращиваемые слои 6, 6', полученные таким образом, имеют слегка наклонные стенки 61, отступающие от маскирующего слоя.
Слои 6, 6' могут иметь такую толщину, что они выходят по высоте за пределы маскирующего слоя, причем без риска покрывания этого слоя.
Поэтому в начале способа можно выбрать нанесение относительно тонкого маскирующего слоя.

Claims (22)

1. Способ изготовления полевого транзистора с гетеропереходом, содержащего полупроводниковую структуру из наложенных друг на друга слоев, включающий:
a) обеспечение на слое подложки (1):
буферного слоя (2), состоящего из полупроводникового материала с гексагональной кристаллической структурой Ga(1-x-y)Al(x)In(y)N, где x и y составляют от 0 включительно до 1 включительно, а сумма x+y меньше или равна 1;
канального слоя (3) на буферном слое, причем этот канальный слой состоит из материала с гексагональной кристаллической структурой Ga(1-z-w)Al(z)In(w)N, где z и w составляют от 0 включительно до 1 включительно, сумма z+w меньше или равна 1, а по меньшей мере один из z и w отличается от x или y соответственно; и
барьерного слоя (4) на этом канальном слое, причем этот барьерный слой состоит из материала с гексагональной кристаллической структурой Ga(1-z'-w')Al(z')In(w')N, где z' и w' составляют от 0 включительно до 1 включительно, сумма z'+w' меньше или равна 1, а по меньшей мере один из z' и w' отличается от z или w соответственно;
b) нанесение диэлектрического маскирующего слоя (5) на барьерный слой;
c) выполнение отверстия в диэлектрическом маскирующем слое;
d) выращивание эпитаксией при высокой температуре полупроводникового материала (6, 6') с гексагональной кристаллической структурой Ga(1-x'-y')Al(x')In(y')N, легированного германием, где x' и y' составляют от 0 включительно до 1 включительно, а сумма x'+y' меньше или равна 1, на зоне роста, заданной выполненным в маскирующем слое отверстием, при этом температура эпитаксии достаточно высока, чтобы составляющие атомы полупроводникового материала с гексагональной кристаллической структурой Ga(1-x'-y')Al(x')In(y')N, легированного германием, были способны мигрировать к зоне роста за счет массопереноса;
e) нанесение контактного электрода истока или стока (15, 16) на материал, нанесенный эпитаксией на стадии d);
f) нанесение электрода затвора (13) в местоположении вне зоны роста.
2. Способ по п. 1, в котором на стадии d) применяют метод эпитаксии из газовой фазы металлоорганических соединений.
3. Способ по п. 1, в котором на стадии d) применяют метод молекулярно-пучковой эпитаксии.
4. Способ по любому из пп. 1-3, в котором материал, нанесенный эпитаксией на стадии d), представляет собой GaN, легированный германием.
5. Способ по любому из пп. 1-4, в котором стадию e) нанесения контактного электрода осуществляют без отжига для сплавления.
6. Способ по любому из пп. 1-5, в котором стадию d) осуществляют при температуре, строго большей чем 960°C, и меньшей или равной 1150°C.
7. Полевой транзистор с гетеропереходом, содержащий полупроводниковую структуру из наложенных друг на друга слоев, содержащую в порядке наслоения на слой подложки (1):
- буферный слой (2), состоящий из материала с гексагональной кристаллической структурой Ga(1-x-y)Al(x)In(y)N, где x и y составляют от 0 включительно до 1 включительно, а сумма x+y меньше или равна 1;
- канальный слой (3) на буферном слое, причем этот канальный слой состоит из материала с гексагональной кристаллической структурой Ga(1-z-w)Al(z)In(w)N, где z и w составляют от 0 включительно до 1 включительно, сумма z+w меньше или равна 1, а по меньшей мере один из z и w отличается от x или y соответственно;
- барьерный слой (4) на этом канальном слое, причем этот барьерный слой состоит из материала с гексагональной кристаллической структурой Ga(1-z'-w')Al(z')In(w')N, где z' и w' составляют от 0 включительно до 1 включительно, сумма z'+w' меньше или равна 1, а по меньшей мере один из z' и w' отличается от z или w соответственно;
- слой эпитаксиального материала (6, 6'), нанесенный эпитаксией при высокой температуре на зоне роста, соответствующей местоположению отверстия, выполненного в диэлектрическом маскирующем слое (5), причем этот выращенный материал обладает гексагональной кристаллической структурой и состоит из легированного германием Ga(1-x'-y')Al(x')In(y')N, где x' и y' составляют от 0 включительно до 1 включительно, а сумма x'+y' меньше или равна 1, при этом температура эпитаксии достаточно высока, чтобы составляющие атомы полупроводникового материала с гексагональной кристаллической структурой Ga(1-x'-y')Al(x')In(y')N, легированного германием, были способны мигрировать к зоне роста за счет массопереноса; и
- контактный электрод (15, 16) на слое выращенного материала и электрод затвора (13) в местоположении снаружи от зоны роста.
8. Монолитная сверхвысокочастотная интегральная схема, содержащая транзистор по п. 7.
RU2016140219A 2014-03-14 2015-03-10 Полевой транзистор с гетеропереходом RU2686575C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1452132 2014-03-14
FR1452132A FR3018629B1 (fr) 2014-03-14 2014-03-14 Structure semiconductrice formant transistor hemt
PCT/FR2015/050600 WO2015136218A1 (fr) 2014-03-14 2015-03-10 Transistor a effet de champ et a heterojonction.

Publications (3)

Publication Number Publication Date
RU2016140219A RU2016140219A (ru) 2018-04-17
RU2016140219A3 RU2016140219A3 (ru) 2018-10-31
RU2686575C2 true RU2686575C2 (ru) 2019-04-29

Family

ID=51014442

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016140219A RU2686575C2 (ru) 2014-03-14 2015-03-10 Полевой транзистор с гетеропереходом

Country Status (10)

Country Link
US (1) US10340376B2 (ru)
EP (1) EP3117465B1 (ru)
JP (1) JP6933466B2 (ru)
KR (1) KR102329663B1 (ru)
ES (1) ES2927683T3 (ru)
FR (1) FR3018629B1 (ru)
PL (1) PL3117465T3 (ru)
RU (1) RU2686575C2 (ru)
TW (1) TWI675480B (ru)
WO (1) WO2015136218A1 (ru)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6627408B2 (ja) * 2015-10-21 2020-01-08 住友電気工業株式会社 半導体装置及び半導体装置の製造方法
US10388753B1 (en) * 2017-03-31 2019-08-20 National Technology & Engineering Solutions Of Sandia, Llc Regrowth method for fabricating wide-bandgap transistors, and devices made thereby
JP7013710B2 (ja) * 2017-08-07 2022-02-01 住友電気工業株式会社 窒化物半導体トランジスタの製造方法
JP7099255B2 (ja) * 2018-11-01 2022-07-12 富士通株式会社 化合物半導体装置、高周波増幅器及び電源装置
US10964803B2 (en) * 2018-11-19 2021-03-30 Texas Instruments Incorporated Gallium nitride transistor with a doped region
JP2021144993A (ja) 2020-03-10 2021-09-24 富士通株式会社 半導体装置
US11978790B2 (en) * 2020-12-01 2024-05-07 Texas Instruments Incorporated Normally-on gallium nitride based transistor with p-type gate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050258451A1 (en) * 2004-05-20 2005-11-24 Saxler Adam W Methods of fabricating nitride-based transistors having regrown ohmic contact regions and nitride-based transistors having regrown ohmic contact regions
US20080176366A1 (en) * 2006-11-13 2008-07-24 Oki Electric Industry Co., Ltd. Method for fabricating AIGaN/GaN-HEMT using selective regrowth
US20090321717A1 (en) * 2008-06-30 2009-12-31 Ravi Pillarisetty Compositionally-graded quantum-well channels for semiconductor devices
US20100258843A1 (en) * 2009-04-08 2010-10-14 Alexander Lidow ENHANCEMENT MODE GaN HEMT DEVICE AND METHOD FOR FABRICATING THE SAME
US20110049570A1 (en) * 2009-08-28 2011-03-03 Ngk Insulators, Ltd. Epitaxial substrate for semiconductor device, semiconductor device, and method of manufacturing epitaxial substrate for semiconductor device
US20130105863A1 (en) * 2011-10-27 2013-05-02 Samsung Electronics Co., Ltd. Electrode structures, gallium nitride based semiconductor devices including the same and methods of manufacturing the same
RU136238U1 (ru) * 2013-07-04 2013-12-27 Открытое акционерное общество "Научно-производственное предприятие "Пульсар" Гетероструктурный модулировано-легированный полевой транзистор

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4742399B2 (ja) * 1999-03-12 2011-08-10 住友化学株式会社 3−5族化合物半導体の製造方法
JP2001135575A (ja) * 1999-03-12 2001-05-18 Sumitomo Chem Co Ltd 3−5族化合物半導体
JP3518455B2 (ja) * 1999-12-15 2004-04-12 日亜化学工業株式会社 窒化物半導体基板の作製方法
JP3430206B2 (ja) * 2000-06-16 2003-07-28 学校法人 名城大学 半導体素子の製造方法及び半導体素子
JP2006013006A (ja) * 2004-06-23 2006-01-12 Shin Etsu Handotai Co Ltd 半導体複合基板及びそれを用いた化合物半導体素子
JP2008085215A (ja) * 2006-09-28 2008-04-10 Oki Electric Ind Co Ltd 半導体装置の製造方法
JP5881383B2 (ja) * 2011-11-17 2016-03-09 株式会社豊田中央研究所 半導体装置とその製造方法
US10164038B2 (en) * 2013-01-30 2018-12-25 Taiwan Semiconductor Manufacturing Company, Ltd. Method of implanting dopants into a group III-nitride structure and device formed
US9159822B2 (en) * 2014-02-24 2015-10-13 International Business Machines Corporation III-V semiconductor device having self-aligned contacts

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050258451A1 (en) * 2004-05-20 2005-11-24 Saxler Adam W Methods of fabricating nitride-based transistors having regrown ohmic contact regions and nitride-based transistors having regrown ohmic contact regions
US20080176366A1 (en) * 2006-11-13 2008-07-24 Oki Electric Industry Co., Ltd. Method for fabricating AIGaN/GaN-HEMT using selective regrowth
US20090321717A1 (en) * 2008-06-30 2009-12-31 Ravi Pillarisetty Compositionally-graded quantum-well channels for semiconductor devices
US20100258843A1 (en) * 2009-04-08 2010-10-14 Alexander Lidow ENHANCEMENT MODE GaN HEMT DEVICE AND METHOD FOR FABRICATING THE SAME
US20110049570A1 (en) * 2009-08-28 2011-03-03 Ngk Insulators, Ltd. Epitaxial substrate for semiconductor device, semiconductor device, and method of manufacturing epitaxial substrate for semiconductor device
US20130105863A1 (en) * 2011-10-27 2013-05-02 Samsung Electronics Co., Ltd. Electrode structures, gallium nitride based semiconductor devices including the same and methods of manufacturing the same
RU136238U1 (ru) * 2013-07-04 2013-12-27 Открытое акционерное общество "Научно-производственное предприятие "Пульсар" Гетероструктурный модулировано-легированный полевой транзистор

Also Published As

Publication number Publication date
TWI675480B (zh) 2019-10-21
WO2015136218A1 (fr) 2015-09-17
EP3117465A1 (fr) 2017-01-18
JP6933466B2 (ja) 2021-09-08
US10340376B2 (en) 2019-07-02
US20170092751A1 (en) 2017-03-30
EP3117465B1 (fr) 2022-07-20
RU2016140219A3 (ru) 2018-10-31
FR3018629B1 (fr) 2022-10-28
KR20160132108A (ko) 2016-11-16
FR3018629A1 (fr) 2015-09-18
RU2016140219A (ru) 2018-04-17
TW201539742A (zh) 2015-10-16
PL3117465T3 (pl) 2022-11-28
KR102329663B1 (ko) 2021-11-22
JP2017514316A (ja) 2017-06-01
ES2927683T3 (es) 2022-11-10

Similar Documents

Publication Publication Date Title
RU2686575C2 (ru) Полевой транзистор с гетеропереходом
US11830940B2 (en) Semiconductor device including high electron mobility transistor or high hole mobility transistor and method of fabricating the same
US7550784B2 (en) Nitride-based transistors and methods of fabrication thereof using non-etched contact recesses
US8946777B2 (en) Nitride-based transistors having laterally grown active region and methods of fabricating same
JP6335444B2 (ja) 再成長構造を用いたiii族窒化物トランジスタ
US8563984B2 (en) Semiconductor device
US7626217B2 (en) Composite substrates of conductive and insulating or semi-insulating group III-nitrides for group III-nitride devices
US20060226412A1 (en) Thick semi-insulating or insulating epitaxial gallium nitride layers and devices incorporating same
US20210050209A1 (en) High electron mobility transistor (hemt) having an indium-containing layer and method of manufacturing the same
JP2008539587A (ja) 2元のiii族窒化物をベースとする高電子移動度トランジスタおよびその製造方法
JP2007165431A (ja) 電界効果型トランジスタおよびその製造方法
US20220344500A1 (en) Gallium nitride high-electron mobility transistors with p-type layers and process for making the same
JP2009206163A (ja) ヘテロ接合型電界効果トランジスタ
US20160276473A1 (en) Access Conductivity Enhanced High Electron Mobility Transistor
CN105957881A (zh) 具有背势垒的AlGaN/GaN极化掺杂场效应晶体管及制造方法
CN109285777A (zh) 具有n-极性氮化镓的外延衬底的形成方法
US8524550B2 (en) Method of manufacturing semiconductor device and semiconductor device
KR101038836B1 (ko) 질화계 이종접합 전계효과 트랜지스터 제조방법
JP2009239144A (ja) 窒化ガリウム系化合物半導体からなる半導体素子及びその製造方法
JP6301863B2 (ja) 窒化物半導体装置およびその製造方法
JP2017152467A (ja) 電界効果トランジスタおよびその製造方法
JP2003197645A (ja) ヘテロ接合電界効果トランジスタ及びその製造方法
JP6416705B2 (ja) 電界効果トランジスタおよびその製造方法
US20240120386A1 (en) Power semiconductor device and manufacturing method thereof
WO2024026816A1 (en) Nitride-based semiconductor device and method for manufacturing the same